

March 31, 2022

AECOM 1001 Bishop Street Suite 1600 Honolulu, HI 96813 ATTN: Ms. Alethea Ramos alethea.ramos@aecom.com

SUBJECT: Red Hill Bulk Storage Facility, CTO 18F0126 (NOI) - Data Validation

Dear Ms. Ramos,

Enclosed is the final validation report for the fraction listed below. This SDG was received on February 28th and March 10, 2022 . Attachment 1 is a summary of the samples that were reviewed for the analysis.

LDC Project #53484:

<u>SDG #</u>	Fraction
97466, 97756, 97769, 98212	Volatiles, Polynuclear Aromatic Hydrocarbons, Gasoline Range Organics, Total Petroleum
98336, 98337, 98381, 97924	Hydrocarbons as Extractables, Total Organic Carbon, Gasoline Range Organics

The data validation was performed under Stage 2B & 4 validation guidelines. The analysis was validated using the following documents and variances, as applicable to the method:

- Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor Hickam, O'ahu, Hawai'i (Revision 02, January 2017)
- Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor Hickam, O'ahu, Hawai'i (Revision 01, April 2017)
- Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017)
- Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018)
- U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019)
- DoD General Validation Guidelines (November 2019)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021)
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

file auno

Stella Cuenco Operations Manager/Senior Chemist scuenco@lab-data.com

	561 pages-DL		R1 (a	added	H)								At	tachi	ment	1																	
	90/10 2B/4 E	EDD	LDO	C# 5	5348	34 (/	AEC	ON	1 - 1	lon	olul	u, H	 / F	Red	Hil	l Bu	ılk S	Stor	age	Fa	cilit	y, C	то	18F	-012	26)							
LDC	SDG#	DATE REC'D	(2) DATE DUE	BT (826	ЕХ 60В)	(82	AHs 70D M)	GF (826	RO 50B)	TPI (801			iCU H-E 15B)	тс (906																			
Matrix	: Water/Soil			W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	s	W	S	W	S	W	S	W	s
А	97466	02/28/22	03/14/22	9	0	5	0	9	0	5	0	5	0	-	-																		
В	97756	02/28/22	03/14/22	-	-	-	-	-	-	-	-	-	-	1	0																		
С	97769	02/28/22	03/14/22	-	-	-	-	-	-	-	-	-	-	1	0																	ļ	
D	98212	02/28/22	03/14/22	3	0	2	0	3	0	2	0	2	0	1	0																		
Е	98336	02/28/22	03/14/22	5	0	3	0	5	0	3	0	3	0	2	0																	ļ	
F	98337	02/28/22	03/14/22	8	0	4	0	8	0	4	0	4	0	4	0																		
G	98381	02/28/22	03/14/22	3	0	1	0	3	0	1	0	1	0	5	0																		
G	98381	02/28/22	03/14/22	3	0	2	0	3	0	2	0	2	0	2	0																		
Н	97924	03/10/22	03/24/22	3	0	2	0	3	0	2	0	2	0	1	0																		
Total	T/SC			34	0	19	0	34	0	19	0	19	0	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	142

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Bulk Storage Facility, CTO 18F0126

LDC Report Date: March 27, 2022

Parameters: Volatiles

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97466

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1652	BA40208	Water	09/08/21
ERH1653	BA40209	Water	09/08/21
ERH1654	BA40210	Water	09/08/21
ERH1655	BA40211	Water	09/08/21
ERH1656	BA40212	Water	09/08/21
ERH1657	BA40213	Water	09/08/21
ERH1658	BA40214	Water	09/08/21
ERH1659	BA40215	Water	09/08/21
ERH1660	BA40216	Water	09/08/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) which are Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples ERH1652, ERH1654, ERH1656, and ERH1658 were identified as trip blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Analyte	Flag	A or P
ERH1652	1,2-Dichloroethane-d4	130 (81-118)	All analytes	NA	-
ERH1653	53 1,2-Dichloroethane-d4 133 (81		All analytes	NA	-
ERH1654	1,2-Dichloroethane-d4	133 (81-118)	All analytes	NA	-
ERH1655	1,2-Dichloroethane-d4	129 (81-118)	All analytes	NA	-
ERH1656	1,2-Dichloroethane-d4	128 (81-118)	All analytes	NA	-
ERH1657	1,2-Dichloroethane-d4	129 (81-118)	All analytes	NA	-
ERH1658	1,2-Dichloroethane-d4	127 (81-118)	All analytes	NA	-
ERH1659	1,2-Dichloroethane-d4	134 (81-118)	All analytes	NA	-
ERH1660	1,2-Dichloroethane-d4 Bromofluorobenzene	132 (81-118) 82.9 (85-114)	All analytes	NA	-

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Data Qualification Summary - SDG 97466

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Laboratory Blank Data Qualification Summary - SDG 97466

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Field Blank Data Qualification Summary - SDG 97466

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

LDC #: <u>53484A1a</u> **V/** SDG #: <u>97466</u> Laboratory: <u>APPL, Inc., Clovis, CA</u>

Date: 3 15 22 Page: 1 of 1 Reviewer: 7 2nd Reviewer: 7

METHOD: GC/MS Volatiles (BTEX) (EPA SW-846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AIA	
.	GC/MS Instrument performance check	4	
111.	Initial calibration/ICV	AIA	0/0 PSP =15 (2 10/ 520
IV.	Continuing calibration ending	A	$\frac{1}{2} p_{SD} = 15, r^{2} p_{$
V.	Laboratory Blanks	A	
VI.	Field blanks	ND	TB =1, 3, 5, 7
VII.	Surrogate spikes	SW	
VIII.	Matrix spike/Matrix spike duplicates	2	C٦
IX.	Laboratory control samples	4	Les IP
Х.	Field duplicates	N	
XI.	Internal standards	A	
XII.	Target analyte quantitation	N	
XIII.	II. Target analyte identification		
XIV.	System performance	N	
XV.	Overall assessment of data		

Note:

: A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

Clier	nt ID	Lab ID	Matrix	Date
1 ERH	11652 TB	BA40208	Water	09/08/21
2 ERH	11653	BA40209	Water	09/08/21
3 ERH	11654 TB	BA40210	Water	09/08/21
4 ERH	11655	BA40211	Water	09/08/21
5 ERH	11656 TØ	BA40212	Water	09/08/21
6 ERH	11657	BA40213	Water	09/08/21
7 ERH	11658 TB	BA40214	Water	09/08/21
8 ERH	11659	BA40215	Water	09/08/21
9 ERH	11660	BA40216	Water	09/08/21
10				

210920BL-B1K			

VALIDATION FINDINGS WORKSHEET Surrogate Spikes

Page:	////////
Reviewer:	FT

(5)

METHOD: GC/MS VOA (EPA SW 846 Method 8260 37)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y(N/N/A Were all surrogate %R within QC limits?

Y(N) N/A If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R out of outside of criteria?

Sample ID	Surrogate	%Recovery (Limits)			Qualifications
1	PCE		18)	St dut /P	NØ
		()		
2		37 ()		
		()		
3		137 ()		
		()		
4		129 ()		
		()		
<u>ل</u>		128 ()		
		()		
م		129 ()		
-1		()		
<u> </u>)		
d		121			
<u>></u>					
<i>a</i>		127- ()			
-	RFR		<u>, , , , , , , , , , , , , , , , , , , </u>	¥	
	1	1 DCE 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

F

SMC1 (TOL) = Toluene-d8

SMC2 (BFB) = Bromofluorobenzene

SMC3 (DCE) = 1,2-Dichloroethane-d4

SMC4 (DFM) = Dibromofluoromethane

LDC #: 53484A/a

VALIDATION FINDINGS WORKSHEET Surrogate Spikes

Page: Reviewer: FT

(5)

METHOD: GC/MS VOA (EPA SW 846 Method 8260 b)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>VN/A</u> Were all surrogate %R within QC limits?

If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R out of outside of criteria?

#	Sample ID	Surrogate	%Recovery (Limits)	Qualifications
R	210920BL-BK	DCE	128 (81-118)	It dut /P
	21012002 0114	BFB	82.9 (85-114)	
		PID		¥
			()	
			()	
			()	
			()	
			()	
			()_	
			()	
			()	
			()	
			()	
			()	
			()	

SMC1 (TOL) = Toluene-d8

SMC2 (BFB) = Bromofluorobenzene

SMC3 (DCE) = 1,2-Dichloroethane-d4

SMC4 (DFM) = Dibromofluoromethane

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Bulk Storage Facility, CTO 18F012

LDC Report Date: March 27, 2022

Parameters: Polynuclear Aromatic Hydrocarbons

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97466

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1653	BA40209	Water	09/08/21
ERH1655	BA40211	Water	09/08/21
ERH1657	BA40213	Water	09/08/21
ERH1659	BA40215	Water	09/08/21
ERH1660	BA40216	Water	09/08/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) which are 1-Methylnaphthalene, 2-Methylnaphthalene, and Naphthalene by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Analyte	Flag	A or P
ERH1655	Fluoranthene-d10	51.7 (58-120)	All analytes	J- (all detects)	Р
ERH1657	Fluoranthene-d10	43.7 (58-120)	All analytes	UJ (all non-detects)	Р

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to surrogate %R, data were qualified as estimated in two samples.

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 97466

Sample	Analyte	Flag	A or P	Reason
ERH1655 ERH1657	All analytes	J- (all detects) UJ (all non-detects)	Р	Surrogates (%R) (s)

Red Hill Bulk Storage Facility, CTO 18F0126

Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 97466

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 97466

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: 3/15/2 Page: 1 of 1 Reviewer: 71 2nd Reviewer: 71

SDG #: <u>97466</u> Laboratory: <u>APPL, Inc., Clovis, CA</u>

LDC #: 53484A2b

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW-846 Method 8270D-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u>I.</u>	Sample receipt/Technical holding times	A/A	
١١.	GC/MS Instrument performance check	6	1
HI.	Initial calibration/ICV	AIA	% ps0 ±15 104 ±20
IV.	Continuing calibration ending	4	6 PSD ±15 101 ± 20 CW ± 20/50
V.	Laboratory Blanks	Δ	
VI.	Field blanks	2	
VII.	Surrogate spikes	SW	
VIII.	Matrix spike/Matrix spike duplicates	N	CD
IX.	Laboratory control samples	Δ	LCS IP
Х.	Field duplicates	N	
XI.	Internal standards	Δ	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID			Lab ID	Matrix	Date
17	ERH1653			BA40209	Water	09/08/21
2†	ERH1655			BA40211	Water	09/08/21
3 -	ERH1657	,		BA40213	Water	09/08/21
4	ERH1659			BA40215	Water	09/08/21
4 5+	ERH1660			BA40216	Water	09/08/21
6						
7						
8						
9		· · · · · · · · · · · · · · · · · · ·				
Votes	:					
	210914A-BIK					

METHOD: (Please see Y W N/A Y M N/A Y N M/A	GC/MS BNA (EPA SW 846 Me qualification below for all ques Were percent recoverie If 2 or more base neutra	ethod 8270 ⑦) 5 M stions answered "N". Not applicables (%R) for surrogates within QC li al or acid surrogates were outside a 10 percent, was a reanalysis per	burrogate Recovery le questions are identified mits? QC limits, was a reanalys formed to confirm %R?	as "N/A".	m %R?	دين Reviewer: <u>FT</u>
#	Sample ID	Surrogate	%R (Li	mits)	Q	ualifications
	2	44-010	51.7	(58-120)	J-JUJ P	all Det
		<u> </u>				
	3	V	43.7		J-/UJIP	all NO
		·		()		<u></u>
				()]		
	<u></u>			()		
				()	······································	
				()		• • • • • • • • • • • • • • • • • • •
)		<u></u>
)		
	- <u></u>					<u></u>
				()		······································
				()		
				()		
				()		
				()		
				()		
			··) 		
					······································	

(NBZ) = Nitrobenzene - d5 (FBP) = 2-Fluorobiphenyl (TPH) = Terphenyl - d14

(2FP) = 2-Fluorophenol (TBP) = 2,4,6 -Tribromophenol (2CP) = 2-Chlorophenol - d4

VALIDATION FINDINGS WORKSHEET

LDC #: 53484 A2b

Page: |)

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
LDC Report Date:	March 28, 2022
Parameters:	Gasoline Range Organics

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97466

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
ERH1652	BA40208	Water	09/08/21
ERH1653	BA40209	Water	09/08/21
ERH1654	BA40210	Water	09/08/21
ERH1655	BA40211	Water	09/08/21
ERH1656	BA40212	Water	09/08/21
ERH1657	BA40213	Water	09/08/21
ERH1658	BA40214	Water	09/08/21
ERH1659	BA40215	Water	09/08/21
ERH1660	BA40216	Water	09/08/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check was performed at the required frequency.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples ERH1652, ERH1654, ERH1656, and ERH1658 were identified as trip blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Analyte	Flag	A or P
ERH1660	Bromofluorobenzene	82.9 (85-114)	Gasoline range organics	UJ (all non-detects)	Р

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to surrogate %R, data were qualified as estimated in one sample.

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Data Qualification Summary - SDG 97466

Sample	Analyte	Flag	A or P	Reason (Codes)
ERH1660	Gasoline range organics	UJ (all non-detects)	Р	Surrogates (%R) (s)

Red Hill Bulk Storage Facility, CTO 18F0126

Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 97466

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 97466

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: 3 15 22 Page: 1 of 1 Reviewer: 72 2nd Reviewer: 72

SDG #:<u>97466</u> Laboratory:<u>APPL, Inc., Clovis, CA</u>

LDC #: 53484A7

METHOD: GC/MS Gasoline Range Organics (EPA SW-846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A/A	
11.	GC/MS Instrument performance check	A	
.	Initial calibration/ICV	AIN	2 104 220
IV.	Continuing calibration ending		$\frac{2}{C(V \pm 20)}$
V.	Laboratory Blanks	4	3
VI.	Field blanks	ND	T13 = 1, 3, 5, 7
VII.	Surrogate spikes	لى چ	
VIII.	Matrix spike/Matrix spike duplicates	N	<u>د</u> >
IX.	Laboratory control samples	A	105
Х.	Field duplicates	N	
XI.	Internal standards		
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID		 		Lal	b ID	1	Matrix	Date
1	ERH1652	тв	 		ВА	40208	\	Vater	09/08/21
2	ERH1653		 	 	ВА	40209		Vater	09/08/21
3	ERH1654	TB	 	 	ВА	40210	\	Vater	09/08/21
4 *	ERH1655		 		ВА	40211	۱ <u>۱</u>	Vater	09/08/21
5	ERH1656	TB	 	 	BA	40212	\	Vater	09/08/21
6	ERH1657		 		ВА	40213	١	Vater	09/08/21
7	ERH1658	TB	 		BA	40214	\	Vater	09/08/21
8	ERH1659		 · · · · · · · · · · · · · · · · · · ·		BA	40215	\	Vater	09/08/21
9	ERH1660			 	ВА	40216	\	Water	09/08/21
10	L		 						
Notes			 	 					

VALIDATION FINDINDS WORKSHEET Surrogate Recovery

Page:_	1	_of_	1
Reviewer:_		FT	

METHOD: VGC __ HPLC

Are surrogates required by the method? Yes____ or No__

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". $(\underline{\vee N})N/A$ Were surrogates spiked into all samples and blanks? $\underline{\vee N}N/A$ Did all surrogate recoveries (%R) meet the QC limits?

Y / N/A were surrogates spiked into all samples and blanks? Y / N/A Did all surrogate recoveries (%R) meet the QC limits?								((s)			
#	Sample ID			etector/ Surrogate Column Compound %R (Limits)			Qualifications					
	210920BL-				BFB		82.9 (४८	- 114)	7-1	LN	18
	BIK						()			
							()			
							()			
	9				1		82.9 (ý)	N - L	JIP	ND
							()			
							()			
							()			
							()		·	
)			
				······································			()			
							()			
						1	"ئىيىنە" يىرى "يىرىكى بىلاتىيە" يىرىكى))	1		
							()			
							 ()			
							······································)	1		
						T	()			
							()			
					· · · · · · · · · · · · · · · · · · ·		()	Ī		
							 ()			
							()			
	Surrogate Compo	ound		Surrog	ate Compound		Surrogate Compound		Surrogate C	ompound		
A	Chlorobenzene (CBZ)		G	Octacosane		м	Benzo(e)Pyrene	s	1-Chloro-3-Nitrobenzene		Y	Tetrachloro-m- xylene
В_	4-Bromofluorobenzene (BFB)		Н	Ortho-Terphenyl		N	Terphenyl-D14	т	3,4-Dinitrotoluene		z	2-Bromonaphthalene
C.	a,a,a-Trifluorotoluene		I	Fluorobenzene (FBZ)		0	Decachlorobiphenyl (DCB)	υ	Tripentyltin		AA	Chloro-octadecane
D	Bromochlorobenene		J	n-Triacontane		P	1-methylnaphthalene	v	Tri-n-propyltin		BB	2,4-Dichlorophenylacetic acid
E	1,4-Dichlorobutane		к	Hexacosane		Q	Dichlorophenyl Acetic Acid (DCAA)	w	Tributyl Phosphate		cc	2,5-Dibromotoluene
F	1.4-Difluorobenzene (DFB)	L	Bro	mobenzene	R	4-Nitrophenol		Triphenvl P	nosohate		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
LDC Report Date:	March 28, 2022
Parameters:	Total Petroleum Hydrocarbons as Extractables
Validation Level:	Stage 2B
Laboratory:	APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97466

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
ERH1653	BA40209	Water	09/08/21
ERH1655	BA40211	Water	09/08/21
ERH1657	BA40213	Water	09/08/21
ERH1659	BA40215	Water	09/08/21
ERH1660	BA40216	Water	09/08/21
ERH1653(SGCU)	BA40209(SGCU)	Water	09/08/21
ERH1655(SGCU)	BA40211(SGCU)	Water	09/08/21
ERH1657(SGCU)	BA40213(SGCU)	Water	09/08/21
ERH1659(SGCU)	BA40215(SGCU)	Water	09/08/21
ERH1660(SGCU)	BA40216(SGCU)	Water	09/08/21

Samples appended with SGCU underwent "Silica Gel Clean Up"

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by Environmental Protection Agency (EPA) SW 846 Method 8015B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

Where average calibration factors were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Analyte	Concentration	Associated Samples
210915A1-BLK	09/15/21	Oil (C24-C40)	320 ug/L	ERH1653(SGCU) ERH1655(SGCU) ERH1657(SGCU) ERH1659(SGCU) ERH1660(SGCU)

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
ERH1653(SGCU)	Oil (C24-C40)	330 ug/L	330J+ ug/L
ERH1655(SGCU)	Oil (C24-C40)	300 ug/L	300U ug/L
ERH1657(SGCU)	Oil (C24-C40)	410 ug/L	410J+ ug/L
ERH1659(SGCU)	Oil (C24-C40)	280 ug/L	300U ug/L
ERH1660(SGCU)	Oil (C24-C40)	270 ug/L	300U ug/L

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Analyte	Flag	A or P
ERH1653(SGCU)	Octacosane ortho-Terphenyl	160 (60-142) 128 (56-125)	All analytes	J+ (all detects)	Р
ERH1655(SGCU)	Octacosane ortho-Terphenyl	168 (60-142) 136 (56-125)	All analytes	J+ (all detects)	Р
ERH1657(SGCU)	Octacosane ortho-Terphenyl	175 (60-142) 138 <u>(</u> 56-125)	All analytes	J+ (all detects)	Р
ERH1659(SGCU)	Octacosane ortho-Terphenyl	192 (60-142) 147 (56-125)	All analytes	J+ (all detects)	Р

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
210915A1LCS/LCSD (ERH1655(SGCU))	Diesel (C10-C24)	177 (36-132)	134 (36-132)	J+ (all detects)	Ρ
210915A1LCS/LCSD (ERH1653(SGCU) ERH1657(SGCU) ERH1659(SGCU) ERH1660(SGCU))	Diesel (C10-C24)	177 (36-132)	134 (36-132)	NA	-
210915A1LCS/LCSD (All samples in SDG 97466)	Oil (C24-C40)	190 (41-113)	151 (41-113)	J+ (all detects)	Р

Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to surrogate %R and LCS/LCSD %R, data were qualified as estimated in ten samples.

Due to laboratory blank contamination, data were qualified as estimated or not detected in five samples.

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 97466

Sample	Analyte	Flag	A or P	Reason (Code)
ERH1653(SGCU) ERH1655(SGCU) ERH1657(SGCU) ERH1659(SGCU)	All analytes	J+ (all detects)	Ρ	Surrogates (%R) (s)
ERH1655(SGCU)	Diesel (C10-C24)	J+ (all detects)	Р	Laboratory control samples (%R) (l)
ERH1653 ERH1655 ERH1657 ERH1659 ERH1660 ERH1653(SGCU) ERH1655(SGCU) ERH1657(SGCU) ERH1659(SGCU) ERH1660(SGCU)	Oil (C24-C40)	J+ (all detects)	Ρ	Laboratory control samples (%R) (I)

Red Hill Bulk Storage Facility, CTO 18F0126

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 97466

Sample	Analyte	Modified Final Concentration	A or P	Code
ERH1653(SGCU)	Oil (C24-C40)	330J+ ug/L	A	b
ERH1655(SGCU)	Oil (C24-C40)	300U ug/L	А	b
ERH1657(SGCU)	Oil (C24-C40)	410J+ ug/L	A	b
ERH1659(SGCU)	Oil (C24-C40)	300U ug/L	A	b
ERH1660(SGCU)	Oil (C24-C40)	300U ug/L	A	b

Red Hill Bulk Storage Facility, CTO 18F0126

Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 97466

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

SDG #: <u>97466</u> Laboratory: <u>APPL, Inc., Clovis, CA</u>

LDC #: 53484A8

Date: 3/15/27 Page: 1 of 1/ Reviewer: 5

METHOD: GC TPH as Extractables (EPA SW-846 Method 8015B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AIA	
١١.	Initial calibration/ICV	Δ/Δ	°/0 ps0 ≤ 20, 12 101 ≤ 20
111.	Continuing calibration ending	Δ	$0/0$ $p_{SO} \leq 20$, 1^{2} $ v \leq 20$ $c_{UV} \leq 20/20$
IV.	Laboratory Blanks	ايرى	
V.	Field blanks	N	
VI.	Surrogate spikes	SW	
VII.	Matrix spike/Matrix spike duplicates	N	05
VIII.	Laboratory control samples	SW	ues ID
IX.	Field duplicates	N	
Х.	Target analyte quantitation	N	
XI.	Target analyte identification	N	
	Overall assessment of data	<u> </u>	

Note:

F

A = Acceptable

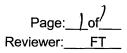
N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

- 1

	Client ID	Lab ID	Matrix	Date
1+1	ERH1653	BA40209	Water	09/08/21
211	ERH1655	BA40211	Water	09/08/21
31	ERH1657	BA40213	Water	09/08/21
41	ERH1659	BA40215	Water	09/08/21
5 1	ERH1660	BA40216	Water	09/08/21
6	ERH1653(SGCU)	BA40209(SGCU)	Water	09/08/21
7	ERH1655(SGCU)	BA40211(SGCU)	Water	09/08/21
8	ERH1657(SGCU)	BA40213(SGCU)	Water	09/08/21
9	ERH1659(SGCU)	BA40215(SGCU)	Water	09/08/21
10	ERH1660(SGCU)	BA40216(SGCU)	Water	09/08/21
11				
12				
13				
Notes				
۱, ۱	21 00150			

VALIDATION FINDINGS WORKSHEET


<u>Blanks</u>

METHOD: \underline{V} GC										
Please see qualifications b				estions are identi	fied as "N/A".					
<u>X N N/A</u> Were all sample				lo ovtraction prod	oduro wao porfor	mod2				
Y N N/A Was a method				le extraction proc	edure was perior	med?	(1,)			
Y N N/A Was a method blank performed with each extraction batch? Y N/A Were any contaminants found in the method blanks? If yes, please see findings below. Result (L)										
Level IV/D Only				je mange zeren	Result LOQ		•			
Y N N/A (Gasoline and a					LEQ					
Y N N/A Was a method				≤20 samples?						
Blank extraction date: 9	IS 2 Blank anal	ysis date: <u> lo / l</u>	121	Associated	samples:	6-10				
Conc. units: vglL		•	·							
Compound	Blank ID			=	Sample Identification	on				
	210915A1-B	IK	6	7	cy	9	10			
0il (c24-c40)	320	2	330 Jt	300 U	410 1+	280 3004	270/3000			
	320		320	320	320	320	321)			
······································										
			· · · · · · · · · · · · · · · · · · ·							
Blank extraction date:	Blank an	alysis date:		Ass	ociated sample	s:				
Conc. units:										
Compound	Blank ID				Sample Identification	on				
				· · · · · · · · · · · · · · · · · · ·						
					_					
							<u> </u>			

ALL CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

All contaminants within five times the method blank concentration were qualified as not detected, "U".

VALIDATION FINDINDS WORKSHEET Surrogate Recovery

(s)

HPLC METHOD: GC

Are surrogates required by the method? Yes____ or No__

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". $\frac{V N N/A}{V N N/A}$ Were surrogates spiked into all samples and blanks?

╞┿┤	V/A Did all surrogat			T	T				2/	<u> </u>
#	Sample ID		tector/ olumn	Surrogate Compound		%R (Limits)		Q	ualifications
	6			9		160 (60-	14Z)]] + du	I IP	ND+DJ
			,	H		128 (-125) 1	-/+	
						() · · · · · · · · · · · · · · · · · ·		
	7			1		168 (1) 1+ dū	TR	NO+ DJ
						136 (,) v	-{}	
	~ 9			<u> </u>		()	0	huo hot
	\$ 9		<u></u>	┼──┴────		175 () <u>11au</u>	<u>- </u>	ND + DX
				• •		138 (/) 		
	10		<u> </u>	1		192 (1) \ + di	I. IP	ND+ DUT
				V		147 (1			
						()	10	
	2109ISA1			<u> </u>		198 (TP + [(<u> </u> <u> </u>	
				V		153 (4			
				Ļ		()		
						()		······································
			······			()		
)		
				ļ		()		
						()		<u> </u>
						()		
	Surrogate Compour	nd	Surrog	ate Compound		Surrogate Compound		Surrogate Compound		
A	Chlorobenzene (CBZ)) G		Octacosane	м	Benzo(e)Pyrene	S	1-Chloro-3-Nitrobenzene	Y	Tetrachloro-m- xylene
В	4-Bromofluorobenzene (B	BFB) H	I Or	tho-Terphenyl	N	Terphenyl-D14	т	3,4-Dinitrotoluene	z	2-Bromonaphthalene
C,	a,a,a-Trifluorotoluene		Fluor	obenzene (FBZ)	0	Decachlorobiphenyl (DCB)	U	Tripentyltin	AA	Chloro-octadecane
D	Bromochlorobenene	J	n	Triacontane	Р	1-methyinaphthalene	v	Tri-n-propyltin	BB	2,4-Dichlorophenylacetic acid
E	1,4-Dichlorobutane	к		lexacosane	Q	Dichlorophenyl Acetic Acid (DCAA)	w	Tributyl Phosphate	cc	2,5-Dibromotoluene
F	1.4-Difluorobenzene (DF	-B) L	Br	omobenzene	R	4-Nitrophenol	X	Triphenyl Phosphate	L	

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

METHOD: C GC HPLC

Please see gualifications below for all questions answered "N". Not applicable questions are identified as "N/A". YAK N/A Were a laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) analyzed for each matrix in this SDG? Y(N)N/A Were the LCS percent recoveries (%R) and relative percent differences (RPD) within the QC limits?

Level IV/D Only

	LCS/LCSD ID	Compound	ا %R	-CS (Limits)	LCSD %R (Limits)		LCSD %R (Limits)		RPD (Lim	its)	Associated Samples	Qualifications
	210915 Al	*	117	(36-132	134	(36-137	()	6-710,	Jt dut /P #7		
	Les IP	**	190	(4)-113		(41-113)	()	210915A1-BIK	J All De		
				()		()	()				
				()		()	()				
1				()		()	()				
1	·····			()		()	()				
↑		* Piesel	(cro-	-24))	#*####################################	()	()				
1				()		_ ()	()				
		** 0il	(C24-	d40))		()	()				
				· · /)		()	()				
				()		()	()				
+				()		()						
╉	<u> </u>			()		()	(
╀	······································			()		()	(
╀							(
t							ţ					
+				()		· · · · · · · · · · · · · · · · · · ·	(<u> </u>				
╉				$\frac{1}{(1)}$		· · · · · · · · · · · · · · · · · · ·	(<u> </u>				
╉				$\frac{1}{()}$		· · · · ·	· · · · · · · · · · · · · · · · · · ·	<u> </u>				
+				()		()	<u>``</u> (<u>`</u>				
+				()		()						
+	<u></u>			$\frac{1}{1}$	· · · ·	$\frac{1}{2}$		<u> </u>				

LDC Report# 53484B6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
	rearing bank otorago raoney, or o rer or zo

LDC Report Date: March 28, 2022

Parameters: Total Organic Carbon

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97756

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1767	BA42410	Water	10/04/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Data Qualification Summary - SDG 97756

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Laboratory Blank Data Qualification Summary - SDG 97756

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Field Blank Data Qualification Summary - SDG 97756

No Sample Data Qualified in this SDG

LDC #:_	53484B6		VAL
SDG #:_	<u>97756</u>		
Laborato	ory: <u>APPL,</u>	Inc., Clovis	<u>, CA</u>

LIDATION COMPLETENESS WORKSHEET Stage 2B

Date: <u>3|15|</u>22-Page: <u>lof 1</u> Reviewer: AT 2nd Reviewer:_

METHOD: (Analyte) TOC (EPA SW-846 Method 9060A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AA	
11	Initial calibration	A	
Ш.	Calibration verification	A	
IV	Laboratory Blanks	A	
v	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	N	C.S
VII.	Duplicate sample analysis	N	
VIII.	Laboratory control samples	A	icslicsD
IX.	Field duplicates	N	
Х.	Target Analyte Quantitation	N	
XI.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	ERH1767	BA42410	Water	10/04/21
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Notes				
15				
Notes	S:			

LDC Report# 53484C6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hi	ill Bulk Storage Facility, CTO 18F0126
---------------------------	--

LDC Report Date: March 28, 2022

Parameters: Total Organic Carbon

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97769

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1771	BA42475	Water	10/05/21

.

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

.

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Data Qualification Summary - SDG 97769

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Laboratory Blank Data Qualification Summary - SDG 97769

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Field Blank Data Qualification Summary - SDG 97769

No Sample Data Qualified in this SDG

VA LDC #: 53484C6 SDG #: 97769 Laboratory: APPL, Inc., Clovis, CA

ALIDATION COMPLETENESS WORKSHEET	
Stage 2B	

Date:	3	115	122
Page:_		of_	
Reviewer:		ATU	
2nd Reviewer:		4	\geq
		•	

METHOD: (Analyte) TOC (EPA SW-846 Method 9060A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Sample receipt/Technical holding times	A.A	
	Initial calibration	A	
	Calibration verification	A	
IV	Laboratory Blanks	A	
v	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	N	CS
VII.	Duplicate sample analysis	N	
VIII.	Laboratory control samples	A	LCSILCSD
IX.	Field duplicates	N	
Х.	Target Analyte Quantitation	N	
XI.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

Client ID Lab ID Matrix Date ERH1771 BA42475 Water 10/05/21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Notes:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
	Rea Thi Balk Clorage Fulling, CTC TO TE

LDC Report Date: March 27, 2022

Parameters: Volatiles

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98212

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1906	BA46114	Water	11/10/21
ERH1907	BA46115	Water	11/10/21
ERH1909	BA46116	Water	11/10/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) which are Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample ERH1906 was identified as a trip blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples ERH1907 and ERH1909 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Data Qualification Summary - SDG 98212

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Laboratory Blank Data Qualification Summary - SDG 98212

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Field Blank Data Qualification Summary - SDG 98212

No Sample Data Qualified in this SDG

LDC #: 53484D1a VA	ALIDATION COMPLETENESS WORKSHEET	Date: <u></u>
SDG #: 98212	Stage 2B	Page:_/
Laboratory: APPL, Inc., Clovis, CA		Reviewer:
		2nd Reviewer

METHOD: GC/MS Volatiles (BTEX) (EPA SW-846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments	
١.	Sample receipt/Technical holding times	ΔΙΔ		
١١.	GC/MS Instrument performance check	A	,	
	Initial calibration/ICV	$\Delta_{i} \Delta_{j}$	0/0 psp = 15 104 520	
IV.	Continuing calibration ending	\wedge	0/0 p>D ≤15 1CY ≤ 20 CUY ≤ 20/50	
V.	Laboratory Blanks	A		
VI.	Field blanks	ND	TB = 1	
VII.	Surrogate spikes	4		
VIII.	Matrix spike/Matrix spike duplicates	2	5	
IX.	Laboratory control samples	A	Les IP	
Х.	Field duplicates	ND	p = 2,3	
XI.	Internal standards	A		
XII.	Target analyte quantitation	N		
XIII.	Target analyte identification	N		
XIV.	System performance	N		
xv.	Overall assessment of data	K		

Note: A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date			
1 2 2	ERH1906 TB	BA46114	Water	11/10/21			
2 3	ERH1907	BA46115	Water	11/10/21			
3 1	ERH1909	BA46116	Water	11/10/21			
4							
4 5 6							
6							
7							
8							
9							
Notes:							
1	211119BT-BIK						
2	211119BT-BIK						

LDC Report# 53484D2b

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126	
LDC Report Date:	March 27, 2022	
Parameters:	Polynuclear Aromatic Hydrocarbons	
Validation Level:	Stage 2B	
Laboratory:	APPL, Inc., Clovis, CA	

Sample Delivery Group (SDG): 98212

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1907	BA46115	Water	11/10/21
ERH1909	BA46116	Water	11/10/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) which are 1-Methylnaphthalene, 2-Methylnaphthalene, and Naphthalene by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples ERH1907 and ERH1909 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 98212

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 98212

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 98212

No Sample Data Qualified in this SDG

LDC #: <u>53484D2b</u> VALIDATION COMPLETENESS WORKSHEET SDG #: <u>98212</u> Stage 2B Laboratory: <u>APPL, Inc., Clovis, CA</u>

Date:	3	/14	5/	22
Page:_ 	lo	·	['	
2nd Reviewer:		t	_	

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW-846 Method 8270D-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AIA	
١١.	GC/MS Instrument performance check	Δ	
III.	Initial calibration/ICV	AIN	0/0 psp = 15 1 cV = 20
IV.	Continuing calibration ending	A	CUV 470 50
V.	Laboratory Blanks	4	
VI.	Field blanks	N	
VII.	Surrogate spikes	А	
VIII.	Matrix spike/Matrix spike duplicates	N	cr
IX.	Laboratory control samples	Δ	Les IP
Х.	Field duplicates	ND	$\mathcal{D} = 1_{1}\mathcal{V}$
XI.	Internal standards	Δ	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	4	

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate

R	insat	e	
= F	Field	blank	

FΒ

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1-	ERH1907	BA46115	Water	11/10/21
2	ERH1909	BA46116	Water	11/10/21
3				
4				
5				
6				
7				
8				
9				
Notes				
	211115AK -BIK			

LDC Report# 53484D6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
--------------------	---

LDC Report Date:	March 28, 2022
------------------	----------------

Parameters: Total Organic Carbon

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98212

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
ERH1907	BA46115	Water	11/10/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
11/19/21	CCV (20:46)	Total organic carbon	85.6 (90-110)	All samples in SDG 98212	J (all detects)	Р
11/20/21	CCV (05:05)	Total organic carbon	84.1 (90-110)	All samples in SDG 98212	J (all detects)	Р

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to continuing calibration %R, data were qualified as estimated in one sample.

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Data Qualification Summary - SDG 98212

Sample	Analyte	Flag	A or P	Reason (Code)
ERH1907	Total organic carbon	J (all detects)	Ρ	Continuing calibration (%R) (c)

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Laboratory Blank Data Qualification Summary - SDG 98212

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Field Blank Data Qualification Summary - SDG 98212

No Sample Data Qualified in this SDG

LDC #:_	<u>53484D6</u>	_ V/
SDG #:_	98212	
Laborat	ory: <u>APPL, Inc., Clovi</u>	s, CA

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: <u></u> 3	115	2	2
Page:_1	of_		
Reviewer:	Ŧι	<u></u>	
2nd Reviewer:	×.		

METHOD: (Analyte) TOC (EPA SW-846 Method 9060A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AA	
	Initial calibration	A	
111.	Calibration verification	SW	
IV	Laboratory Blanks	A	
v	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	N^{-}	
VII.	Duplicate sample analysis	N	
VIII.	Laboratory control samples	A	LCS/LCSD
IX.	Field duplicates	N	
Х.	Target Analyte Quantitation	N	
XI.	Overall assessment of data	A	

Note:

.

A = Acceptable

. . NE N = Not provided/applicable SW = See worksheet R

ND = No compounds detected
R = Rinsate
FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	ERH1907	BA46115	Water	11/10/21
2				
3				
5				
4 5 6				
7				
8				
9				
10				
7 8 9 10 11 12 13 14 15				
12				
13				
14				
15				
Note				

VALIDATION FINDINGS WORKSHEET Calibration

METHOD: Inorganics, EPA Method See cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>Y N/A</u> Were all instruments calibrated daily, each set-up time, and were the proper number of standards used?

Were all initial and continuing calibration verification percent recoveries (%R) within the control limits of 90-110%?

 \overline{N} N/A Are all correlation coefficients ≥ 0.995 ?

LEVEL IV/D ONLY: Y N N/A Were recalculated results acceptable? See Level IV Initial and Continuing Calibration Recaluculation Worksheet for recalulations.

<u>Y N (N/A)</u> <u>Y N (N/A)</u>

Was a balance check conducted prior to the TDS analysis.? Was the titrant normality checked?

Date	Calibration ID	Analyte	%R	Associated Samples	Qualifications Code: c
11/19/21	CCV (20:46)	тос	85.6 (90-110)	all	J/UJ/P (detect)
11/20/21	CCV (05:05)	тос	84.1 (90-110)	all	J/UJ/P (detect)
				······································	
	,				
	11/19/21	11/19/21 CCV (20:46)	11/19/21 CCV (20:46) TOC	11/19/21 CCV (20:46) TOC 85.6 (90-110)	11/19/21 CCV (20:46) TOC 85.6 (90-110) all

Comments:

LDC Report# 53484D7

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
	0 ,

LDC Report Date: March 28, 2022

Parameters: Gasoline Range Organics

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98212

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1906	BA46114	Water	11/10/21
ERH1907	BA46115	Water	11/10/21
ERH1909	BA46116	Water	11/10/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check was performed at the required frequency.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample ERH1906 was identified as a trip blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples ERH1907 and ERH1909 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Data Qualification Summary - SDG 98212

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126

Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 98212

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 98212

No Sample Data Qualified in this SDG

LDC #: <u>53484D7</u>	VALIDATION COMPLETENESS WORKSHEET	Date: 3/15/22
SDG #: 98212	Stage 2B	Page:_/_of/
Laboratory: APPL, Inc., C	lovis, CA	Reviewer:
		2nd Reviewer:

METHOD: GC/MS Gasoline Range Organics (EPA SW-846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	A/A	
11.	GC/MS Instrument performance check	4	
- 111.	Initial calibration/ICV	414	12 ICY 520
IV.	Continuing calibration endury		$cW \neq 20/20$
<u>v.</u>	Laboratory Blanks	N	•
VI.	Field blanks	ND	TB = 1
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	N	\sim
IX.	Laboratory control samples	<u>A</u>	ics ID
Х.	Field duplicates	ND	D = 2, 3
XI.	Internal standards		
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data		

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Dupli	cate
TB = Trip	blank
EB = Equ	ipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	ERH1906 TP	 BA46114	Water	11/10/21
2	ERH1907	BA46115	Water	11/10/21
3	ERH1909	 BA46116	Water	11/10/21
4				
5				
6				
7				
8				
9				
Notes	5			
	21119 AM- BIK			
	p) []			

LDC Report# 53484D8

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126

LDC Report Date: March 28, 2022

Parameters:Total Petroleum Hydrocarbons as Extractables

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98212

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1907	BA46115	Water	11/10/21
ERH1909	BA46116	Water	11/10/21
ERH1907(SGCU)	BA46115(SGCU)	Water	11/10/21
ERH1909(SGCU)	BA46116(SGCU)	Water	11/10/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by Environmental Protection Agency (EPA) SW 846 Method 8015B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

Where average calibration factors were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Analyte	Concentration	Associated Samples
211116A-BLK	11/16/21	Oil (C24-C40)	340 ug/L	ERH1907 ERH1909
211116A1-BLK	11/16/21	Oil (C24-C40)	260 ug/L	ERH1907(SGCU) ERH1909(SGCU)

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
ERH1907	Oil (C24-C40)	300 ug/L	300U ug/L
ERH1909	Oil (C24-C40)	270 ug/L	300U ug/L

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
211116A1-LCS/LCSD (ERH1907(SGCU) ERH1909(SGCU))	Oil (C24-C40)	123 (41-113)	-	NA	-

Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples ERH1907 and ERH1909 and samples ERH1907(SGCU) and ERH1909(SGCU) were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentr	ation (ug/L)	
Analyte	ERH1907	ERH1909	RPD (Limits)
Oil (C24-C40)	300J	270J	11 (≤50)

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to laboratory blank contamination, data were qualified as not detected in two samples.

Red Hill Bulk Storage Facility, CTO 18F0126

Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary - SDG 98212

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 98212

Sample	Analyte	Modified Final Concentration	A or P	Code
ERH1907	Oil (C24-C40)	300U ug/L	A	b
ERH1909	Oil (C24-C40)	300U ug/L	A	b

Red Hill Bulk Storage Facility, CTO 18F0126

Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 98212

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

LDC #:_	<u>53484D8</u>	
SDG #:	98212	

Laboratory: APPL, Inc., Clovis, CA

Date: 3/5/22 Page: of / Reviewer: _____ 2nd Reviewer: _____

METHOD: GC TPH as Extractables (EPA SW-846 Method 8015B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	Δ / Δ	
н.	Initial calibration/ICV	411	°/0 psi ≤ 20, 12 101 = 20
- 111.	Continuing calibration	Δ	cN = 20 20
IV.	Laboratory Blanks	SW	۱ ۱
V.	Field blanks	N	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	N	05
VIII.	Laboratory control samples	500	Les ID
IX.	Field duplicates	SW	p = 1, 2 * 3, 4
Х.	Target analyte quantitation	N	- 1
XI.	Target analyte identification	N	
	Overall assessment of data	<u> </u>	

Note:

ſ

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D =	Duplicate	
ΤВ	= Trip blank	
ED	- Equipment	L

Т

SB=Source blank

1

OTHER:

EB = Equipment blank

۱

	Client ID	 Lab ID	Matrix	Date
1+	ERH1907 D	BA46115	Water	11/10/21
2+	ERH1909 0	 BA46116	Water	11/10/21
3	ERH1907(SGCU)	BA46115(SGCU)	Water	11/10/21
4	ERH1909(SGCU) 2,	BA46116(SGCU)	Water	11/10/21
5				
6				
7				
8				
9				
10				
11				
12				
13				
Notes	S:			
+	21111 GA - BIK			
+	211116A1 - BK	·····		

LDC #: 5348408

VALIDATION FINDINGS WORKSHEET

Blanks

(b

METHOD: ____GC ___ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

K N N/A Were all samples associated with a given method blank?

Y N N/A Was a method blank performed for each matrix and whenever a sample extraction procedure was performed?

Y N N/A Was a method blank performed with each extraction batch?

Y/N_N/A Were any contaminants found in the method blanks? If yes, please see findings below. **Level IV/D Only**

Result LOQ

12

Y N M/A)(Gasoline and aromatics only)Was a method blank analyzed with each 24 hour batch?

<u>Y N N/A</u>/Was a method blank analyzed for each analytical / extraction batch of ≤ 20 samples?

Blank extraction date: 11/16	2 Blank analysis date: 11 1 2 2	Associated samples:
Conc. units: val		

Compound	Blank ID	Sample Identification							
	21116A-B								
0i (c24-c40)	340		300 U	270 3004					
	320		320	320					
·									
					l				
Blank extraction date: 1	162 Blank a	analysis date: <u>1119</u> 21 Associated samples: <u>3,4 (NP</u>)							
Conc. units: 49 1							() P	_/	
Conc. units: <u>ya</u>], Compound	Blank ID				Sample Identification	on			
Conc. units: <u>ya</u> []	· · ·			5	Sample Identificatio	on			
Conc. units: <u>ya</u>	Blank ID				Sample Identificatio	on			
Conc. units: yall Compound	Blank ID 2 1111 6A -				Sample Identificatio				
Conc. units: <u>ya</u>	Blank ID 2 1111 6A - 260				Sample Identificatio	<u>n</u>			
Conc. units: <u>ya</u>	Blank ID 2 1111 6A - 260				Sample Identificatio	on			
Conc. units: <u>ya</u>	Blank ID 2 1111 6A - 260				Sample Identificatio				
Conc. units: <u>ya</u>	Blank ID 2 1111 6A - 260				Sample Identificatio	on			

ALL CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were gualified as not detected, "U".

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

(1)

METHOD: ____GC ___ HPLC

Physical see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". YN N/A

Were a laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) analyzed for each matrix in this SDG?

Y N N/A Were the LCS percent recoveries (%R) and relative percent differences (RPD) within the QC limits?

Level **IV/D** Only

YN N/À Was an LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

(
#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD <u>%R (Limits)</u>	RPD (Limits)	Associated Samples	Qualifications
	21116A1-	0il (c24-c4	0) 123 (41-113)	()	()	3,4,	Itdu /P NP
	BIK LOSIP			()	()	211116A1-B1K	
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()			
			()		()		
				()	<u> </u>		
			()	()			
)	()			
	······································		()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			· · · · · · · · · · · · · · · · · · ·	()	()		
			()	()	()		
			()	()	()		· · · · · · · · · · · · · · · · · · ·
			()	()	()		
			()	()	()		
			()	()	()		
			······································	()	()		
\parallel			()	()	()		

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: <u>1</u>	of1_	
Reviewer:	FT	

METHOD: GC (EPA Method SO 15 B

Were field duplicate pairs identified in this SDG? Were target compounds detected in the field duplicate pairs?

	Concentratio	n(ugL)		
Compound	١١	2	RPD (≤ 50%)	QUAL
Dil (C24 - C40)	3001	2701	11	
L				

	Concentration ()		
Compound		RPD (≤ %)	QUAL

Compound	Concentration ()	RPD (≤ %)	QUAL

Compound	Concentration ()	RPD (≤ %)	QUAL

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
LDC Report Date:	March 27, 2022
Parameters:	Volatiles
Validation Level:	Stage 2B
Laboratory:	APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98336

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1958	BA46970	Water	11/24/21
ERH1959	BA46971	Water	11/24/21
ERH1961	BA46972	Water	11/24/21
ERH1962	BA46973	Water	11/24/21
ERH1964	BA46974	Water	11/24/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) which are Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples ERH1958 and ERH1961 were identified as trip blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples ERH1962 and ERH1964 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Data Qualification Summary - SDG 98336

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Laboratory Blank Data Qualification Summary - SDG 98336

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Field Blank Data Qualification Summary - SDG 98336

No Sample Data Qualified in this SDG

LDC #: 53484E1a	VALIDATION COMPLETENESS WORKSHEET	Date: 3/15/22
SDG #: 98336	Stage 2B	Page:_ <u>/</u> of/
Laboratory: APPL, Inc., Clovis	, CA	Reviewer:
		2nd Reviewer: <u>}+-</u>

METHOD: GC/MS Volatiles (BTEX) (EPA SW-846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AA	
11.	GC/MS Instrument performance check		
	Initial calibration/ICV	ALA	$0/0$ PSD ≤ 15 ICV ≤ 20
IV.	Continuing calibration ending	D	$cv \leq 20 70$
V.	Laboratory Blanks		
VI.	Field blanks	ND	TB= 1,3
VII.	Surrogate spikes		
VIII.	Matrix spike/Matrix spike duplicates	N	es
IX.	Laboratory control samples	Δ	les 17
Х.	Field duplicates	ND	マーナイ
XI.	Internal standards	N	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data		

Note: A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate

FB = Field blank

D = Duplicate	
TB = Trip blank	
EB = Equipment blank	K

SB=Source blank OTHER:

	Client ID				Lab ID	Matrix	Date
T	ERH1958 TB				BA46970	Water	11/24/21
2	ERH1959			 	BA46971	Water	11/24/21
3	ERH1961 TB	·		 	BA46972	Water	11/24/21
4	ERH1962 D			 	BA46973	Water	11/24/21
4	ERH1964 D			 	BA46974	Water	11/24/21
6				 			
7				 			
8							
9	L			 			
Notes	·			 			
	AZ211207						
			_				

Laboratory Data Consultants, Inc. Data Validation Report

LDC Report Date: March 27, 2022

Parameters: Polynuclear Aromatic Hydrocarbons

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98336

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1959	BA46971	Water	11/24/21
ERH1962	BA46973	Water	11/24/21
ERH1964	BA46974	Water	11/24/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) which are 1-Methylnaphthalene, 2-Methylnaphthalene, and Naphthalene by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
211129AK-LCS/LCSD (All samples in SDG 98336)	1-Methylnaphthalene 2-Methylnaphthalene	40.8 (≤20) 45.3 (≤20)	J (all detects) J (all detects)	Ρ
211129AK-LCS/LCSD (ERH1959 ERH1964)	Naphthalene	31.0 (≤20)	J (all detects)	Ρ
211129AK-LCS/LCSD (ERH1962)	Naphthalene	31.0 (≤20)	NA	-

X. Field Duplicates

Samples ERH1962 and ERH1964 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra		
Analyte	ERH1962	ERH1964	RPD (Limits)
1-Methylnaphthalene	0.055J	0.063J	14 (≤50)
2-Methylnaphthalene	0.061J	0.070J	14 (≤50)
Naphthalene	0.10U	0.043J	200 (≤50)

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to LCS/LCSD RPD, data were qualified as estimated in three samples.

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 98336

Sample	Sample Analyte		A or P	Reason	
ERH1959 ERH1962 ERH1964	1-Methylnaphthalene 2-Methylnaphthalene	J (all detects) J (all detects)	Ρ	Laboratory control samples (RPD) (w)	
ERH1959 ERH1964	Naphthalene	J (all detects)	Р	Laboratory control samples (RPD) (w)	

Red Hill Bulk Storage Facility, CTO 18F0126

Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 98336

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126

Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary - SDG 98336

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

LDC #: <u>53484E2b</u> **V/** SDG #: <u>98336</u> Laboratory: <u>APPL, Inc., Clovis, CA</u>

Date:	3	15]7	2
Page:_	_[o	f	<u>/</u>	
Reviewer:		1	1	
2nd Reviewer:	2	Σ^T		
		 		

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW-846 Method 8270D-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times		
١١.	GC/MS Instrument performance check	Δ	
111.	Initial calibration/ICV	AIA	°/2 PSD = 15 1CY ≤ 20
IV.	Continuing calibration ending		CW = 20 50
V.	Laboratory Blanks	Δ	P
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	N	حى .
IX.	Laboratory control samples	SVN	ICS ID
Х.	Field duplicates	لىرى	シニャラ
XI.	Internal standards		
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data		

Note:

A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID					Lab ID	Matri	x	Date
1†	ERH1959			 		BA46971	Wate	r	11/24/21
1 † 2 3 4 5 6 7	ERH1962	Q		 		BA46973	Wate	r	11/24/21
3	ERH1964	D		 		BA46974	Wate	r ·	11/24/21
4				 					
5				 					
6			_						
7									
8 9				 					
Notes				 	 			-	
		4 444 7 A. Horn				<u></u>			
						······································			

VALIDATION FINDINGS WORKSHEET

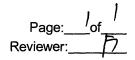
METHOD: GC/MS SVOA

A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o''-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	0000. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methyinaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. Biphenyl	G1. 2-Acetylaminofluorene	I2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page:	_ <u>_</u> of	
Reviewer:	FT	

F7 METHOD: GC/MS BNA (Method タフレロの ら)M PAH


Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N N/A

Was a LCS required? Y (N) N/A

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

Y N/A Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?									
#	LCS/LCSD ID	Compound	LCS %R (Limits)		LCSD %R (Limits)		RPD (Limits)	Associated Samples	Qualifications
	211129AK	ТТТ	()	()	40.8 (20)	AU	Jour/P AILD
	-LCSID	Ŵ	(_)	()	45.3 ()		
		S	()	()	31.0(1)		1,3De
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			(()			
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			(()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
		4.4	()	()	()		
			()	()	()		
			()	()	()		

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: GC/MS BNA (EPA SW 846 Method 8270 \mathcal{D}) - 5 \mathcal{N}

(<u>Y)N N/A</u> (<u>Y)N N/A</u>

Were field duplicate pairs identified in this SDG? Were target analytes identified in the field duplicate pairs?

	Concentration	(ng/k)	RPD	QUAL
Compound	2	3	(5 5 %)	
ТТТ	0.0551	0.0631	14	
SOFAL W	0.0611	0.070]	14	
5	0.104	0.0431	200	

	Concentration ()			
Compound			RPD (≤ %)	QUAL

	Concentration	()		
Compound			RPD (≤ %)	QUAL

LDC Report# 53484E6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
--------------------	---

Parameters: Total Organic Carbon

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98336

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1959	BA46971	Water	11/24/21
ERH1962	BA46973	Water	11/24/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Data Qualification Summary - SDG 98336

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Laboratory Blank Data Qualification Summary - SDG 98336

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Field Blank Data Qualification Summary - SDG 98336

No Sample Data Qualified in this SDG

LDC #: <u>53484E6</u> **VAL** SDG #: <u>98336</u> Laboratory: <u>APPL, Inc., Clovis, CA</u>

ALIDATION COMPLETENESS WORKSHEET	
Stage 2B	

METHOD: (Analyte) TOC (EPA SW-846 Method 9060A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AIA	
	Initial calibration	A	
- 111.	Calibration verification	A	
١٧	Laboratory Blanks	A.	
v	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	N	C.S
VII.	Duplicate sample analysis	N	
VIII.	Laboratory control samples	A	LCS/LCSD
IX.	Field duplicates	N	
Х.	Target Analyte Quantitation	N	
XI.	Overall assessment of data	A	

Note:

: A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = RinsateFB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

Client ID Lab ID Matrix Date ERH1959 BA46971 Water 11/24/21 1 ERH1962 2 BA46973 Water 11/24/21 3 4 5 6 7 8 9 10 11 12 13 14 15 Notes:

LDC Report# 53484E7

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
LDC Report Date:	March 28, 2022
Parameters:	Gasoline Range Organics

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98336

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1958	BA46970	Water	11/24/21
ERH1959	BA46971	Water	11/24/21
ERH1961	BA46972	Water	11/24/21
ERH1962	BA46973	Water	11/24/21
ERH1964	BA46974	Water	11/24/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check was performed at the required frequency.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples ERH1958 and ERH1961 were identified as trip blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples ERH1962 and ERH1964 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

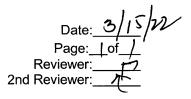
Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Data Qualification Summary - SDG 98336

No Sample Data Qualified in this SDG


Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 98336

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 98336

No Sample Data Qualified in this SDG

LDC #: <u>53484E7</u>	VALIDATION COMPLETENESS WORKSHEET
SDG #: 98336	Stage 2B
Laboratory: APPL, Inc., Clovis, (<u>A</u>

METHOD: GC/MS Gasoline Range Organics (EPA SW-846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	ΑΙΑ	
١١.	GC/MS Instrument performance check		
Ш.	Initial calibration/ICV	AIA	(2) $(\alpha) \leq 20$
IV.	Continuing calibration ending	Δ	$\frac{1}{2} \frac{1}{2} \frac{1}$
V.	Laboratory Blanks		
VI.	Field blanks	\sim	TB = 1,3
VII.	Surrogate spikes	4	
VIII.	Matrix spike/Matrix spike duplicates	N	25
IX.	Laboratory control samples	A	LOS IP
Х.	Field duplicates	NO NO	D = 4.5
XI.	Internal standards	λ	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	<u>N</u>	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date			
1 2 3 4 5 6 7 8 8	ERH1958 TB	BA46970	Water	11/24/21			
2	ERH1959	BA46971	Water	11/24/21			
3	ERH1961 TP	BA46972	Water	11/24/21			
4	ERH1962 ŷ	BA46973	Water	11/24/21			
5	ERH1964 P	BA46974	Water	11/24/21			
6							
7							
8							
<u>9</u>							
Notes:							

211207 AZ			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Bulk Storage Facility, CTO 18F0126

LDC Report Date: March 28, 2022

Parameters: Total Petroleum Hydrocarbons as Extractables

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98336

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1959	BA46971	Water	11/24/21
ERH1962	BA46973	Water	11/24/21
ERH1964	BA46974	Water	11/24/21
ERH1959(SGCU)	BA46971(SGCU)	Water	11/24/21
ERH1962(SGCU)	BA46973(SGCU)	Water	11/24/21
ERH1964(SGCU)	BA46974(SGCU)	Water	11/24/21

Samples appended with SGCU underwent "Silica Gel Clean Up"

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by Environmental Protection Agency (EPA) SW 846 Method 8015B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

Where average calibration factors were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Analyte	Concentration	Associated Samples
211201A1-BLK	12/01/21	Oil (C24-C40)	170 ug/L	ERH1959 ERH1962 ERH1964

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
ERH1959	Oil (C24-C40)	170 ug/L	300U ug/L
ERH1964	Oil (C24-C40)	160 ug/L	300U ug/L

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
211201A-LCS/LCSD (ERH1959(SGCU) ERH1962(SGCU) ERH1964(SGCU))	Oil (C24-C40)	117 (41-113)	-	NA	-
211201A1-LCS/LCSD (ERH1959 ERH1964)	Oil (C24-C40)	149 (41-113)	145 (41-113)	J+ (all detects)	Р
211201A1-LCS/LCSD (ERH1962)	Oil (C24-C40)	149 (41-113)	145 (41-113)	NA	-

Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples ERH1962 and ERH1964 and samples ERH1962(SGCU) and ERH1964(SGCU) were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra			
Analyte	ERH1962	ERH1964	RPD (Limits)	
Oil (C24-C40)	300.0U	160J	200 (≤50)	

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to LCS/LCSD %R, data were qualified as estimated in two samples.

Due to laboratory blank contamination, data were qualified as not detected in two samples.

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 98336

Sample	Analyte	Flag	A or P	Reason (Code)
ERH1959 ERH1964	Oil (C24-C40)	J+ (all detects)	Р	Laboratory control samples (%R) (l)

Red Hill Bulk Storage Facility, CTO 18F0126

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 98336

Sample	Analyte	Modified Final Concentration	A or P	Code
ERH1959	Oil (C24-C40)	300U ug/L	A	b
ERH1964	Oil (C24-C40)	300U ug/L	A	b

Red Hill Bulk Storage Facility, CTO 18F0126

Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 98336

No Sample Data Qualified in this SDG

LDC #: 53484E8 VALIDATION COMPLETENESS WORKSHEE	T Date: $3 15 2\mathcal{V}$
SDG #: 98336 Stage 2B	Page:of
Laboratory: APPL, Inc., Clovis, CA	Reviewer: 7
	2nd Reviewer: //

METHOD: GC TPH as Extractables (EPA SW-846 Method 8015B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments				
I.	Sample receipt/Technical holding times	A A					
١١.	Initial calibration/ICV	AIA	$\frac{0}{0} \frac{1}{100} \frac{1}{1$				
	Continuing calibration ending		$cW \neq 20/20$				
IV.	Laboratory Blanks	SW	1				
V.	Field blanks	้ง					
VI.	Surrogate spikes	Δ					
VII.	Matrix spike/Matrix spike duplicates	N	<i>v</i> >				
VIII.	Laboratory control samples	్రట	Les ID				
IX.	Field duplicates	سی ا	D=2,3 ¥5,6				
<u> </u>	Target analyte quantitation	N	· ·				
XI.	Target analyte identification	N					
	Overall assessment of data	A					

Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

		Client ID	Lab ID	Matrix	Date
	1 1	ERH1959	BA46971	Water	11/24/21
	2	ERH1962 D	BA46973 Water		11/24/21
	3	ERH1964 D	BA46974	Water	11/24/21
-	4 7	ERH1959(SGCU)	BA46971(SGCU)	Water	11/24/21
١	5 Y	ERH1962(SGCU)	BA46973(SGCU) Water		11/24/21
-	6 Y	ERH1964(SGCU)	BA46974(SGCU)	Water	11/24/21
	7				
	8				
	9				
	10				
	11				
	12				
	13			1	
Г П	lotes				
гЩ	2	211201A-BIK			
1	1	211201A1-B1K			

VALIDATION FINDINGS WORKSHEET

<u>Blanks</u>

			-t Bachla au		₽-J "NI/A"				
The ase see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N/A Were all samples associated with a given method blank? N/A Was a method blank performed for each matrix and whenever a sample extraction procedure was performed? N/A Was a method blank performed with each extraction batch? N/A Were any contaminants found in the method blanks? If yes, please see findings below. N/A Were any contaminants found in the method blanks? If yes, please see findings below. N/A Were and aromatics only)Was a method blank analyzed with each 24 hour batch? N/A Was a method blank analyzed for each analytical / extraction batch of ≤ 20 samples? In N/A Was a method blank analyzed for each analytical / extraction batch of ≤ 20 samples: In the extraction date: 12 1 21 Blank analysis date: 12 15 2-1 Associated samples: $4-4-4-1-73$									
Compound	Blank ID			(Sample Identification	on	<u></u>		
	211201A1-P	hik		3					
01 (024-040)	170		170/3004	160 3004					
	320	[F	320	320					
		├ ───── │							
	<u></u>	├							
	1	<u> </u>							
Blank extraction date: Conc. units:	Blank a	analysis date:		Ass	ociated sample	s:			
Compound	Blank ID				Sample Identification	on			
		├ ────────────────────────────────────							
		<u> </u>							
		<u> </u>							

ALL CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

107

LDC #<u>5 かりも</u>りモン METHOD: __GC __HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A Were a laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) analyzed for each matrix in this SDG?

Y N N/A Were the LCS percent recoveries (%R) and relative percent differences (RPD) within the QC limits?

Level **[V/D Only**

Was an LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed? YN KNA

LCS/LCSD ID	Compound		CS _imits)	LCSD %R (Limits)		RPD (Limits	5)	Associated Samples	Qualifications
	Oil Cy-Cy	0 117	(41-113)	()	()	4-6,	It dut IP
LCS/10	- ((• ·	()	()	()	211201A-BK	AIND
			()	()	()	•	
			()	()	(·)		
			()	()	()		
			()	()	()		
			()	()	()		
			()	((
11201A1-	01 C24-C	10 149	(41-113)	145 (41	-113)	()	1+3	State P
esip			()_	()	()	211201A1-BK	13 Det
_			()	()	()		
		<u></u>	<u>()</u>	()	()		
			()	()	(
			()	((
	:		()	((
			<u>(</u>	······		(
			$\left(\right)$	('	(- <u>'</u> -		
			$\frac{1}{1}$	(<u>'</u>	(<u>'</u>		
		<u> </u>	()	(<u>'</u>	('		
		<u></u>	$\frac{1}{(}$	(;+	(<u>'</u>		
			$\frac{1}{(1)}$	(' }	(- <u>'</u>		
	·····		$\frac{1}{1}$	(······································	(
	LOS/0 201A]-	1201A1- Dil C24-C	1/201A1- 0il C24-C40 149	$\frac{1201 \text{ A}[-1]20}{1201 \text{ A}[-1]2}$	$\frac{100}{100} = \frac{100}{100} = $	$\frac{100}{100} = \frac{100}{100} = $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

LDC #: 53484E8

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: <u>1</u>	of1_	
Reviewer:	FT	

METHOD: GC (EPA Method & OISB

Were field duplicate pairs identified in this SDG? Were target compounds detected in the field duplicate pairs?

 $\begin{array}{c|c} \hline Concentration (ug | V) \\ \hline Compound \\ \hline 2 \\ \hline 3 \\ \hline 0i \\ \hline (c_{2.4} - c_{40}) \\ \hline 300.04 \\ \hline 160 \\ \hline 3 \\ \hline 0 \\ \hline 0$

	Concentration (ng 4			
Compound	5	6	RPD (≤ %)	QUAL

	Concentration ()		
Compound			RPD (≤ %)	QUAL

	Concentration ()			
Compound			RPD (≤ %)	QUAL

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
--------------------	---

LDC Report Date: March 27, 2022

Parameters: Volatiles

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98337

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1946	BA46978	Water	11/24/21
ERH1947	BA46979	Water	11/24/21
ERH1949	BA46980	Water	11/24/21
ERH1950	BA46981	Water	11/24/21
ERH1952	BA46982	Water	11/24/21
ERH1953	BA46983	Water	11/24/21
ERH1955	BA46984	Water	11/24/21
ERH1956	BA46985	Water	11/24/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work. Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) which are Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples ERH1946, ERH1949, ERH1952, and ERH1955 were identified as trip blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Data Qualification Summary - SDG 98337

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Laboratory Blank Data Qualification Summary - SDG 98337

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Field Blank Data Qualification Summary - SDG 98337

No Sample Data Qualified in this SDG

LDC #:53484F1a VALIDATION COMPLETENESS WORKSHEET	Date: 3 75 22
SDG #: 98337 Stage 2B	Page: <u>)</u> of <u>)</u>
Laboratory: APPL, Inc., Clovis, CA	Reviewer:
	2nd Reviewer: 21

METHOD: GC/MS Volatiles (BTEX) (EPA SW-846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times		
11.	GC/MS Instrument performance check	4	
III.	Initial calibration/ICV	AA	1/0 PSD = 15 104 = 20
IV.	Continuing calibration ending	Δ	CUN £ 20 50
V.	Laboratory Blanks	Δ	l
VI.	Field blanks	ND	TB = 1.3, 5, 7
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	N	CS
IX.	Laboratory control samples	A	ics 10
Х.	Field duplicates	N	
XI.	Internal standards		
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data		
			a detacted D = Duplicate SP=Source black

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

L	D = Duplicate			
Т	B = Trip blank			
E	B = Equipment blank			

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	ERH1946 TB	BA46978	Water	11/24/21
1 2 3	ERH1947	BA46979	Water	11/24/21
3	ERH1949 TB	BA46980	Water	11/24/21
4	ERH1950	BA46981	Water	11/24/21
4 5	ERH1952 TB	BA46982	Water	11/24/21
6	ERH1953	BA46983	Water	11/24/21
7	ERH1955 TB	BA46984	Water	11/24/21
8	ERH1956	BA46985	Water	11/24/21
9				
Notes				
	AZ 211207-BIK			
	1			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Bulk Storage Facility, CTO 18F0126

LDC Report Date: March 27, 2022

Parameters: Polynuclear Aromatic Hydrocarbons

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98337

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1947	BA46979	Water	11/24/21
ERH1950	BA46981	Water	11/24/21
ERH1953	BA46983	Water	11/24/21
ERH1956	BA46985 .	Water	11/24/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work. Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) which are 1-Methylnaphthalene, 2-Methylnaphthalene, and Naphthalene by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

Relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
211129AK LCS/LCSD (ERH1950 ERH1956)	1-Methylnaphthalene	40.8 (≤20)	J (all detects)	Ρ
211129AK LCS/LCSD (ERH1947 ERH1953)	1-Methylnaphthalene	40.8 (≤20)	NA	-
211129AK LCS/LCSD (ERH1950)	2-Methylnaphthalene Naphthalene	45.3 (≤20) 31.0 (≤20)	J (all detects) J (all detects)	Р
211129AK LCS/LCSD (ERH1947 ERH1953 ERH1956)	2-Methylnaphthalene Naphthalene	45.3 (≤20) 31.0 (≤20)	NA	-

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

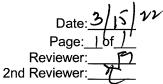
The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to LCS/LCSD RPD, data were qualified as estimated in two samples.

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 98337

Sample Analyte		Flag	A or P	Reason
ERH1950 ERH1956	1-Methylnaphthalene	J (all detects)	Р	Laboratory control samples (RPD) (w)
ERH1950	2-Methylnaphthalene Naphthalene	J (all detects) J (all detects)	Р	Laboratory control samples (RPD) (w)

Red Hill Bulk Storage Facility, CTO 18F0126


Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 98337

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 98337

No Sample Data Qualified in this SDG

LDC #: <u>53484F2b</u>	VALIDATION COMPLETENESS WORKSHEET	
SDG #: 98337	Stage 2B	
Laboratory: APPL, Inc., Clovis	<u>, CA</u>	F

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW-846 Method 8270D-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	414	
11.	GC/MS Instrument performance check	Δ	
111.	Initial calibration/ICV	AIA	% RSD = 15 X2 101 = 20
IV.	Continuing calibration	5	CW = 20 50
V.	Laboratory Blanks	A	
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	N	د>
IX.	Laboratory control samples	SW	Les 10
Х.	Field duplicates	N	
XI.	Internal standards	Δ	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	Ν	
Note:	A = Acceptable ND = N	lo compounds	e detected D = Duplicate SB=Source blank

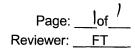
A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
$\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{6}$ $\frac{1}{7}$ $\frac{1}{8}$ $\frac{9}{9}$	ERH1947	BA46979	Water	11/24/21
2+	ERH1950	BA46981	Water	11/24/21
3	ERH1953	BA46983	Water	11/24/21
4+	ERH1956	BA46985	Water	11/24/21
5				
6				
7				
8				
9				
Notes				
	211129AK BIK			

VALIDATION FINDINGS WORKSHEET


METHOD: GC/MS SVOA

Print and a second se				
A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o''-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	0000. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrojidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. Bipheny!	G1. 2-Acetylaminofluorene	l2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

.

LDC #: 53484F2b

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

27

METHOD: GC/MS BNA (Method & 2700- 51M PAH

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

¥∕N N/A Was a LCS required?

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? N/A

were	the LCS/LCSD percent						(\mathcal{W})
# LCS/LCSD ID	Compound	LCS %R (Limits)		LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
211129AK	171	()	() 40.8 (20)	A1)	1 du /P/2 4 po
icsid	Ŵ	()	() $45.3(1)$		1 (2 pit
	S	()	() 310 ())		2 pit 1 (2 pit
		()	() ()		
		()	() ()		
		(()	() ()		
	د	()	() ()		
		()	() ()		
)	(
		()	() ()		
		()	() ()		
		()	() ()		
		()	() ()		
		()	() ()		
		()	() ()		
		()	() ()		
		()	() ()		
		((
	· · · · · · · · · · · · · · · · · · ·	()	() ()		
		()	() ()		
		()	() ()		
		()	() ()		
		()	() ()		
		()	() ()		
		()	() ()		

LDC Report# 53484F6

Laboratory Data Consultants, Inc. Data Validation Report

LDC Report Date: March 28, 2022

Parameters: Total Organic Carbon

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98337

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1947	BA46979	Water	11/24/21
ERH1950	BA46981	Water	11/24/21
ERH1953	BA46983	Water	11/24/21
ERH1956	BA46985	Water	11/24/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work. Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Data Qualification Summary - SDG 98337

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Laboratory Blank Data Qualification Summary - SDG 98337

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Field Blank Data Qualification Summary - SDG 98337

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

METHOD: (Analyte) TOC (EPA SW-846 Method 9060A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u>ı</u> .	Sample receipt/Technical holding times	AIA	
	Initial calibration	A	
111.	Calibration verification	A	
IV	Laboratory Blanks	A	
v	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	N	C.S
VII.	Duplicate sample analysis	N	
VIII.	Laboratory control samples	A	LCS/LCSD
IX.	Field duplicates	N	
X.	Target Analyte Quantitation	N	
XI.	Overall assessment of data	A	

Note: A

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	ERH1947	BA46979	Water	11/24/21
2	ERH1950	BA46981	Water	11/24/21
3	ERH1953	BA46983	Water	11/24/21
4	ERH1956	BA46985	Water	11/24/21
5 6				
6				
7				
8				
8 9				
10				
10 11				
12				
13				
14				
15				
Notes	6:			

Laboratory Data Consultants, Inc. Data Validation Report

LDC Report Date: March 28, 2022

- Parameters: Gasoline Range Organics
- Validation Level: Stage 2B
- Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98337

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1946	BA46978	Water	11/24/21
ERH1947	BA46979	Water	11/24/21
ERH1949	BA46980	Water	11/24/21
ERH1950	BA46981	Water	11/24/21
ERH1952	BA46982	Water	11/24/21
ERH1953	BA46983	Water	11/24/21
ERH1955	BA46984	Water	11/24/21
ERH1956	BA46985	Water	11/24/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check was performed at the required frequency.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples ERH1946, ERH1949, ERH1952, and ERH1955 were identified as trip blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Data Qualification Summary - SDG 98337

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 98337

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 98337

No Sample Data Qualified in this SDG

LDC #: 53484F7	VALIDATION COMPLETENESS WORKSHEET	Date: 3/15/22
SDG #: 98337	Stage 2B	Page:of
Laboratory: APPL, Inc., Clovis,	CA	Reviewer: <u></u>
		2nd Reviewer: 77-
METHOD: GC/MS Gasoline Ra	ange Organics (EPA SW-846 Method 8260B)	

METHOD: GC/MS Gasoline Range Organics (EPA SW-846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A1A	
П.	GC/MS Instrument performance check	Δ	J
	Initial calibration/ICV	AID	$\frac{0}{10} \text{ psp} = 20 \text{ICY} = 20 \\ \text{CW} = 20 \ 20 \ 20 \ 20 \\ \text{CW} = 20 \ 20 \ 20 \ 20 \ 20 \\ \text{CW} = 20 \ 20 \ 20 \ 20 \ 20 \ 20 \ 20 \ 20$
IV.	Continuing calibration ending	5	CW 4 20 20
V.	Laboratory Blanks		· · · · · · · · · · · · · · · · · · ·
VI.	Field blanks	ND	TB = 1, 3, 5, 7
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	N	65
IX.	Laboratory control samples	A	Les 10
Х.	Field duplicates	N	· · · · · · · · · · · · · · · · · · ·
XI.	Internal standards	4	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate		
TB = Trip blank		
EB = Equipment blank		

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	ERH1946 ጊ 	BA46978	Water	11/24/21
$\overline{2}$	ERH1947	BA46979	Water	11/24/21
$\frac{1}{2}$	ERH1949 TB	BA46980	Water	11/24/21
4	ERH1950	BA46981	Water	11/24/21
5	ERH1952 TB	BA46982	Water	11/24/21
II	ERH1953	BA46983	Water	11/24/21
6 17 17 8 9	ERH1955 TO	BA46984	Water	11/24/21
8	ERH1956	BA46985	Water	11/24/21
Notes				
	211207A2-B1K-			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
--------------------	---

LDC Report Date: March 28, 2022

Parameters: Total Petroleum Hydrocarbons as Extractables

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98337

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1947	BA46979	Water	11/24/21
ERH1950	BA46981	Water	11/24/21
ERH1953	BA46983	Water	11/24/21
ERH1956	BA46985	Water	11/24/21
ERH1947(SGCU)	BA46979(SGCU)	Water	11/24/21
ERH1950(SGCU)	BA46981(SGCU)	Water	11/24/21
ERH1953(SGCU)	BA46983(SGCU)	Water	11/24/21
ERH1956(SGCU)	BA46985(SGCU)	Water	11/24/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories. Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by Environmental Protection Agency (EPA) SW 846 Method 8015B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

Where average calibration factors were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Analyte	Concentration	Associated Samples
211201A1-BLK	12/01/21	Oil (C24-C40)	170 ug/L	ERH1947 ERH1950 ERH1953 ERH1956

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
ERH1947	Oil (C24-C40)	200 ug/L	300U ug/L
ERH1950	Oil (C24-C40)	400 ug/L	400J+ ug/L
ERH1953	Oil (C24-C40)	330 ug/L	330J+ ug/L
ERH1956	Oil (C24-C40)	320 ug/L	320U ug/L

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
211201A-LCS/LCSD (ERH1947(SGCU) ERH1950(SGCU) ERH1953(SGCU) ERH1956(SGCU))	Oil (C24-C40)	117 (41-113)	-	NA	-
211201A1-LCS/LCSD (ERH1947 ERH1950 ERH1953 ERH1956)	Oil (C24-C40)	149 (41-113)	145 (41-113)	J+ (all detects)	Ρ

Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to LCS/LCSD %R, data were qualified as estimated in four samples.

Due to laboratory blank contamination, data were qualified as estimated or not detected in four samples.

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 98337

Sample	Analyte	Flag	A or P	Reason (Code)
ERH1947 ERH1950 ERH1953 ERH1956	Oil (C24-C40)	J+ (all detects)	Р	Laboratory control samples (%R) (I)

Red Hill Bulk Storage Facility, CTO 18F0126

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 98337

Sample	Analyte	Modified Final Concentration	A or P	Code
ERH1947	Oil (C24-C40)	300U ug/L	A	b
ERH1950	Oil (C24-C40)	400J+ ug/L	A	b
ERH1953	Oil (C24-C40)	330J+ ug/L	A	b
ERH1956	Oil (C24-C40)	320U ug/L	A	b

Red Hill Bulk Storage Facility, CTO 18F0126

Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 98337

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

LDC #: <u>53484F8</u> **V** SDG #: <u>98337</u> Laboratory: <u>APPL, Inc., Clovis, CA</u>

Date: <u>3//5/7</u> Page: <u>1</u>of <u>1</u> Reviewer: <u>P</u> 2nd Reviewer: <u></u>

METHOD: GC TPH as Extractables (EPA SW-846 Method 8015B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A/A	
11.	Initial calibration/ICV	AIA	% PSD = 210 12 1 CY = 20
HI.	Continuing calibration	A	$\% P50 \pm 20$ 1^2 104 ± 20 $cw \pm 20/20$
IV.	Laboratory Blanks	SW	
V.	Field blanks	Ń	
VI.	Surrogate spikes		
VII.	Matrix spike/Matrix spike duplicates	N	<u>کہ</u>
VIII.	Laboratory control samples	ςw	ies P
IX.	Field duplicates	N	
Х.	Target analyte quantitation	N	
XI.	Target analyte identification	N	
	Overall assessment of data	L A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

Client ID Lab ID Matrix Date 1 2 ERH1947 BA46979 Water 11/24/21 2 V ERH1950 BA46981 Water 11/24/21 3 2 ERH1953 BA46983 Water 11/24/21 4 ᡝ ERH1956 BA46985 Water 11/24/21 5 ERH1947(SGCU) 11/24/21 BA46979(SGCU) Water 6 ١ ERH1950(SGCU) BA46981(SGCU) Water 11/24/21 7 ERH1953(SGCU) BA46983(SGCU) Water 11/24/21 8 | ERH1956(SGCU) BA46985(SGCU) Water 11/24/21 9 10 11 12 13 Notes: 211201 A-BIK

+

2

11201

VALIDATION FINDINGS WORKSHEET

Blanks

METHOD: 🗸 GC ____ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

 \dot{M} N N/A Were all samples associated with a given method blank?

Y N N/A Was a method blank performed for each matrix and whenever a sample extraction procedure was performed?

Y N N/A Was a method blank performed with each extraction batch?

Y/N N/A Were any contaminants found in the method blanks? If yes, please see findings below.

Level IV#Q Only

Y N /N/A)(Gasoline and aromatics only)Was a method blank analyzed with each 24 hour batch?

ΥN	N/A	Was a	method	blan	k aņ	alyzed for	r each an	alytical	l/ex	tract	ion	batch of	≤20 s	samples	?
3 Ian I	< éxti	action	date: 12	- 1	12)	Blank a	analysis	date:_	12	15	2	I	A	Associa	te

Blank	extracti units:	ion date	∋: <u> 2</u>	1	2	B
Conc.	units:	nall		l	1	

Compound Blank ID Sample Identification 211201A1-BIK 2 4 3 200 300.04 400 1+ 3301+ Oil (cnu-c40 3204 170 320 320 320 320 320

Blank analysis date:____ Blank extraction date:_____

Associated samples:

Result

Associated samples:

B

Conc. units:

Compound	Blank ID	Sample Identification					

ALL CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

(1)

METHOD: ____GC ___ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". ¥∕N N/A

Were a laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) analyzed for each matrix in this SDG?

(N) N/A Were the LCS percent recoveries (%R) and relative percent differences (RPD) within the QC limits?

Level IV/D Only

Y N N7A Was an LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

							(1)
#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	211201A -	01 (024-04	n) 117 (41–113)	()	()	5-78,	Hdu IP
	10510		/ ()	()	()	211201A - BIK	(AII'ND)
			()	()	()		
			()	()	()		
			()	()			······································
	211201A1-	λ	149 (41-112)	145 (41-113	()	1-24	It and IP
 		N			()		(All defeat)
╟──-	LCSID			()		21/201A1- BK	(All deter)
			()		()	╎───┴╱┤┡⋝────	
┢──			()	()	()		
			()	()	()		
		failure /	()	()	()		······································
			()	()	()		
-			()	()	()		· · · ·
			()	()	()		
			()	()	()_		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		······································
			()	()	()		
			()	()	()		
			()	()	()		
			······································	()	()		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Bulk Storage Facility, CTO 18F0126

LDC Report Date: March 27, 2022

- Parameters: Volatiles
- Validation Level: Stage 2B & 4

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98381

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH2001	BA47127	Water	12/01/21
ERH2002**	BA47128**	Water	12/01/21
ERH2004	BA47131	Water	12/01/21
ERH2005**	BA47132**	Water	12/01/21
ERH2007	BA47133	Water	12/01/21
ERH2008**	BA47134**	Water	12/01/21

**Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) which are Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples ERH2001, ERH2004, and ERH2007 were identified as trip blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Data Qualification Summary - SDG 98381

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Laboratory Blank Data Qualification Summary - SDG 98381

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Field Blank Data Qualification Summary - SDG 98381

No Sample Data Qualified in this SDG

LDC #: <u>53484G1a</u>	VALIDATION COMPLETENEŞŞ WORKSHEET	Date: 3 5 22
SDG #: 98381	Stage 2B /4	Page: <u></u> of <u></u>
Laboratory: APPL, Inc., Clovis, C		Reviewer: 17
,		2nd Reviewer: M

METHOD: GC/MS Volatiles (BTEX) (EPA SW-846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AA	
11.	GC/MS Instrument performance check		4
- 111.	Initial calibration/ICV	AA	% PSD = 15 ICY < 20
IV.	Continuing calibration	4	$\frac{1000 \pm 15}{100 \pm 20}$
V.	Laboratory Blanks		•
VI.	Field blanks	ND	TB = 1, 3, 5
VII.	Surrogate spikes	6	
VIII.	Matrix spike/Matrix spike duplicates	N	C7
IX.	Laboratory control samples	Δ	Les ID
Х.	Field duplicates	N	
XI.	Internal standards	A	
XII.	Target analyte quantitation	Δ	Not reviewed for Stage 2B validation.
XIII.			Not reviewed for Stage 2B validation.
XIV.	KIV. System performance		Not reviewed for Stage 2B validation.
XV.	Overall assessment of data	A	

Note:	ŀ
NULE.	

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

** Ind	icates sample underwent Stage 4	validation	 		
	Client ID		 Lab ID	Matrix	Date
1	ERH2001 TB		 BA47127	Water	12/01/21
2	ERH2002**		 BA47128**	Water	12/01/21
3	ERH2004 TB		 BA47131	Water	12/01/21
4	ERH2005**		 BA47132**	Water	12/01/21
5	ERH2007 TO		BA47133	Water	12/01/21
6	ERH2008**		 BA47134**	Water	12/01/21
7			 		
8					
9					
Votes			A		
	AZ 211207				

Method: Volatiles (EPA SW 846 Method 8260 P)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	\			
Was cooler temperature criteria met?	/			
II. GC/MS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12 hour clock criteria?	/			
Illa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	~			
Were all percent relative standard deviations (%RSD) \leq 15% and relative response factors (RRF) within method criteria?	\checkmark			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?			~	
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	V			
Were all percent differences (%D) ≤ 20% ?	V	V		
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	/			
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria? Were all percent differences (%D) \leq 50% in the ending CCV?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	/			***
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	/			
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation findings worksheet.		/		
VI. Field blanks	······································			••••••••••••••••••••••••••••••••••••••
Were field blanks were identified in this SDG?	-			
Were target analytes detected in the field blanks?		/		
VII. Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?	-			
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?			-	-
VIII. Matrix spike/Matrix spike duplicates		r		
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?			-	[
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				

LDC #: <u>ラう484 G</u> VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
IX. Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per analytical batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			
X. Field duplicates				· · · · · · · · · · · · · · · · · · ·
Were field duplicate pairs identified in this SDG?		/		
Were target analytes detected in the field duplicates?			/	
XI. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?	/			
Were retention times within ± 30 seconds of the associated calibration standard?	/	Ĺ		
XII. Target analyte quantitation			•	
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	/			
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the target analyte?	/			
Were target analyte quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
XIII. Target analyte identification				
Were relative retention times (RRT's) within <u>+</u> 0.06 RRT units of the standard?				
Did analyte spectra meet specified EPA "Functional Guidelines" criteria?	/			
Were chromatogram peaks verified and accounted for?	\leq			
Were manual integrations reviewed and found acceptable?				
Did the laboratory provide before and after integration printouts?	R	E		<u> </u>
XIV. System performance				
System performance was found to be acceptable.	/	ł		
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chiorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-lsopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	0000.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methyl cyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC #: 53484 G/a

VALIDATION FINDINGS WORKSHEET **Initial Calibration Calculation Verification**

Page: 1_of 1_ Reviewer: FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260 3)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the target analytes identified below using the following calculations:

 $\mathsf{RRF} = (\mathsf{A}_{\mathsf{x}})(\mathsf{C}_{\mathsf{is}})/(\mathsf{A}_{\mathsf{is}})(\mathsf{C}_{\mathsf{x}})$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 A_x = Area of target analyte $C_x = Concentration of target analyte$ S = Standard deviation of the RRFs X = Mean of the RRFs 2/

 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Target Analyte (Internal Standard)	RRE (<u>5</u> .0 std)	(<u>S.U</u> std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	IGAL	12/6/2/	V	0.5735	0.5735	0.5930	0.5930	6.Z.	6.2
		zeus	EE	1.368	1.368	1.405	1.405	3,3	3.3
2	[
3				<u></u>					
Ŭ									
4									
L		1							

Comments: _____

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: <u>1</u> of <u>1</u> Reviewer: FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260 $\ B$)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where:

 $\mathsf{RRF} = (\mathsf{A}_{\mathsf{x}})(\mathsf{C}_{\mathsf{is}})/(\mathsf{A}_{\mathsf{is}})(\mathsf{C}_{\mathsf{x}})$

ave. RRF = initial calibration average RRF A_x = Area of target analyte C_x = Concentration of target analyte RRF = continuing calibration RRF

 A_{is} = Area of associated internal standard

 C_{is} = Concentration of internal standard

#	Standard ID	Calibration Date	Target Analyte (Internal Standard)	Average RRF (initial)	Reported RRF (CC)	Recalculated RRF (CC)	Reported %D	Recalculated %D
1	CeV F7 1207203	12/7/21	V EE	0-5930 1.405	0_5772 J.447	0.5772 1.447	2.7 3.0	2.7 3.0
	1207202				<u>.</u>			
2								
3								
			· · · · · · · · · · · · · · · · · · ·			······································		
4					1 			

LDC #: 53484 G a

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

METHOD: GC/MS VOA (EPA SW 846 Method 8260 🤣

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: #2

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane	25.0	27.97	12	//2	υ
1,2-Dichloroethane-d4	1	28.45	14	114	1
Toluene-d8		25.19	101	ן סן	
Bromofluorobenzene		25-40	102	102	

Comments: _____

LDC #: 534846 a

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: 1 of 1 Reviewer: FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate (if applicable) were recalculated for the target analytes identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC) LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCSID: AZ211207 LCS10

Gammand	Ad	Spike Spiked Sample <u>LCS</u> Added Concentration		Concentration		I CSD				
Compound	<u> </u>	<u>a 14</u>	(42	<u>z [L)</u>	Percent	Recovery	Percent Recovery		RPD	
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
1,1-Dichloroethene										
Trichloroethene										
Benzene	10.0	10.0	9.49	9.85	94.9	949	98.5	98.5	3.7	3.7
Toluene	10.0	10.0	9.36	9.69	93-6	93.6	96.9	96.9	3.5	3.5
Chlorobenzene										

Comments:

LDC #: 53484 G a

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: 1_of_1_ Reviewer: __FT____

METHOD: GC/MS VOA (EPA SW 846 Method 8260 B)

The concentration of the sample was calculated for the target analytes identified below using the following calculation:

Conce	Concentration = $\frac{(A_x)(I_s)(DF)}{(A_{is})(RRF)(V_o)(\%S)}$		Example:
A _x	=	Area of the characteristic ion (EICP) for the target analyte to be measured	Sample I.D. A 721120745 V
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	Conc. = (95557) (x.0)
l _s	=	Amount of internal standard added in nanograms (ng)	Conc. = (95557) (35.0) (424705) (0.5930)
RRF	=	Relative response factor of the calibration standard.	
V _o	=	Volume or weight of sample pruged in milliliters (ml) or grams (g).	= 9.48 ug/L
Df	=	Dilution factor.	
%S	=	Percent solids, applicable to soils and solid matrices only.	

#	Sample ID	Compound	Reported Condentration	Calculated Concentration	Qualification
	¥ les	Υ	9.49	9.48	-
				· · · · · · · · · · · · · · · · · · ·	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
LDC Report Date:	March 27, 2022
Parameters:	Polynuclear Aromatic Hydrocarbons
Validation Level:	Stage 2B & 4

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98381

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH2002	BA47128	Water	12/01/21
ERH2005**	BA47132**	Water	12/01/21
ERH2008**	BA47134**	Water	12/01/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) which are 1-Methylnaphthalene, 2-Methylnaphthalene, and Naphthalene by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 98381

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 98381

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 98381

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B/4

Date:_	3	5	22
Page:_	_lot	[]	_
Reviewer:_		P	
2nd Reviewer:_	<u></u>	<u> </u>	-
	l	-	

٦

SDG #: <u>98381</u> Laboratory: <u>APPL, Inc., Clovis, CA</u>

LDC #: 53484G2b

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW-846 Method 8270D-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	Δ / Δ	
II .	GC/MS Instrument performance check	Δ	
- 111.	Initial calibration/ICV	A/A	% PSD ≤ 15 ICV ≤ 20
IV.	Continuing calibration Ending		CLV = 20 50
V.	Laboratory Blanks	4	· · · ·
VI.	Field blanks	N	
VII.	Surrogate spikes	4	
VIII.	Matrix spike/Matrix spike duplicates	N	
IX.	Laboratory control samples	Ą	Les 10
Х.	Field duplicates	N	
XI.	Internal standards	A	
XII.	Target analyte quantitation	\land	Not reviewed for Stage 2B validation.
XIII.	Target analyte identification	A	Not reviewed for Stage 2B validation.
XIV.	System performance	\Diamond	Not reviewed for Stage 2B validation.
xv.	Overall assessment of data	A	

Note: ** Indica	A = Acceptable N = Not provided/applicable SW = See worksheet ates sample underwent Stage 4 validat	ND = No compounds detected R = Rinsate FB = Field blank ion	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source blank OTHER:

	Client ID			Lab ID	Matrix	Date
1	ERH2002		1	BA47128	Water	12/01/21
2 +	ERH2005**			BA47132**	Water	12/01/21
3	ERH2008**	 		BA47134**	Water	12/01/21
4		 				
5		 		·		
6						
7						
8		 				
9						
Notes	:	 				
	211206AK					

Method: Semivolatiles (EPA SW 846 Method 8270 ())

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	/			
Was cooler temperature criteria met?				
II. GC/MS Instrument performance check		<u> </u>		
Were the DFTPP performance results reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12 hour clock criteria?	\langle			
Illa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	~			
Were all percent relative standard deviations (%RSD) \leq 15% and relative response factors (RRF) within method criteria?	<			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?			\checkmark	
IIIb. Initial Calibration Verification			·	
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/			· · · · · · · · · · · · · · · · · · ·
Were all percent differences (%D) ≤ 20%?				
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria? Were all percent differences (%D) \leq 50% for closing calibration verification?	/			
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	/			
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	_			
Was there contamination in the laboratory blanks? If yes, please see the blanks validation findings worksheet.		/	ŕ	
VI. Field blanks				
Were field blanks were identified in this SDG?				
Were target analytes detected in the field blanks?			1	
VII. Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?	_			
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?			\square	
If any percent recoveries (%R) was less than 10%, was a reanalysis performed to confirm %R ?			. /	
VIII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?				ŕ

LDC #: 534844Ab VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			-	
IX. Laboratory control samples				
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	1	Ĺ		
X. Field duplicates				
Were field duplicate pairs identified in this SDG?		/		
Were target analytes detected in the field duplicates?			\setminus	
XI. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?	/			
Were retention times within \pm 30 seconds of the associated calibration standard?				
XII. Target analyte quantitation	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the target analyte?	/	_		
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/	1		
XIII. Target analyte identification				
Were relative retention times (RRT's) within <u>+</u> 0.06 RRT units of the standard?	/			
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	/			
Were chromatogram peaks verified and accounted for?	\leq			
Were manual integrations reviewed and found acceptable?	\leq			
Did the laboratory provide before and after integration printouts?		L	/	
XIV. System performance				
System performance was found to be acceptable.		-		
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.	/			

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	0000. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	000. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	l2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

LDC #: 53484925

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

METHOD: GC/MS BNA (EPA SW 846 Method 8270 (\mathcal{D}))

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the target analytes identified below using the following calculations:

 $\mathsf{RRF} = (\mathsf{A}_{\mathsf{x}})(\mathsf{C}_{\mathsf{is}})/(\mathsf{A}_{\mathsf{is}})(\mathsf{C}_{\mathsf{x}})$

average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X) A_x = Area of target analyte C_x = Concentration of target analyte S = Standard deviation of the RRFs, A_{is} = Area of associated internal standard

 $C_{is} = Concentration of internal standard$

, X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Target Analyte Internal Standard)	RRF (/ .	RRF (/. // std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	10/19/21	S (1st IS)	1.336	1.299	1.299	1.299	8.6	8-6
			(2nd IS)		•				
}			(3rd IS)						
			(4th IS)						
l.			(5th IS)						
			(6th IS)						
2			(1st IS)						
			(2nd IS)						
			(3rd IS)				8		
			(4th IS)						
			(5th IS)						
			(6th IS)						
3			(1st IS)						
			(2nd IS)						
1			(3rd IS)						
			(4th IS)						
ll –			(5th IS)						
	<u> </u>		(6th IS)						

Comments: <u>Refer to Initial Calibration findings worksheet for list of gualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

VALIDATION FINDINGS WORKSHEET **Continuing Calibration Results Verification**

METHOD: GC/MS BNA (EPA SW 846 Method 8270 ${\cal D}$)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF A_x = Area of target analyte C_{x} = Concentration of target analyte

RRF = continuing calibration RRF A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

	· · ·				Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Target Analyte (Internal Standard)	Average RRF (Initial)	RRF (CC)	RRF (CC)	%D	%D
1	CCV	12/8/2/	<u>(1st IS)</u>	1.299	1.304	1.304	0.39	0.39
		• • • •	(2 nd IS)	,				
			(3 rd IS)					
1			(4 th IS)					
			. (5 th IS)					
			(6 th IS)					
2			(1st IS)					
			(2 nd IS)					
			(3 rd IS)					
			(4 ^۴ IS)					
			(5 th IS)					
	L		(6 th IS)					
3			(1st IS)					
1			(2 nd IS)					
			(3 rd IS)					
			(4 th IS)					
			(5 th IS)					
			(6 th IS)		IL <u></u>			

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET **Surrogate Results Verification**

Page: 1___of__1_ Reviewer: FT

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: 3

		Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5	W- 010	5.263	4.94368	93.9	93.9	0
2-Fluorobiphenyl	44 - 010	5.263	4.62319	87.8	87.8	U
Terphenyl-d14						
Phenol-d5						
2-Fluorophenol						
2,4,6-Tribromophenol						

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					

LDC #: 53484G2b

VALIDATION FINDINGS WORKSHEET

Page: 1 of 1

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification Reviewer: FT

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the target analytes identified below using the following calculation:

SSC =	(Ax)(Cis)(Fv)(Df)
	(A _{IS})(RRF)(Vs or Ws)(%S/100)

%Recovery = (SSC/SA)*100

RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100

211206AK 10110 LCS/LCSD samples:

Where: A_x = Area of the target analyte A_{Is}= Area for the specific internal standard C_{Is} = Concentration of internal standard Fv =Final volume of extract Df= Dilution factor

Ws= Initial weight of the sample %S= Percent Solid SSC = Spiked sample concentration LCS = Laboratory control sample

LCSD = Laboratory control sample duplicate

RRF= Average relative response factor of the target analyte Vs= Initial volume of the sample

Compound	Ad	ike ded 3 L)	Spike Concentration (ハター)		Concentration			RPD		
			LCS	ICSD		Recalc	Reported	Recalc	Reported	Recalculated
Rhenol S N-Nitroso-di-n-propylamine	<u>5</u> .0	5.U	4.82	4.4)	96.4	96.4	88.2,	88.2	<u> </u>	8.9
4-Chloro-3-methylphenol Acenaphthene Pentachlorophenol										
Pyrene										

LDC #: 53484926

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Example:

Page:<u>1</u>of<u>1</u> Reviewer:<u>FT</u>

METHOD: GC/MS BNA (EPA SW 846 Method 8270 D

The concentration of the sample was calculated for the target analyte identified below using the following calculation:

Concen	tratior	$ = \frac{(A_{*})(I_{*})(V_{*})(DF)(2.0)}{(A_{*})(RRF)(V_{*})(V_{*})(S)} $
A _x	=	Area of the characteristic ion (EICP) for the target analyte to be measured
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard
l _s	=	Amount of internal standard added in nanograms (ng)
V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).
Vi	=	Volume of extract injected in microliters (ul)
V _t	=	Volume of the concentrated extract in microliters (ul)
Df	=	Dilution Factor.
%S	=	Percent solids, applicable to soil and solid matrices only.

2.0 = Factor of 2 to account for GPC cleanup

 $Conc. = \frac{(165293)(2-5)(1)(1000)}{(9457)(1-299)(950)}$ =

34.67 ug/L

#	Sample ID	Target Analyte	Reported Concentration (Ид IL)	Calculated Concentration (ပဋ //–	Qualification
	#2.	S	35	35	
	· · · · · · · · · · · · · · · · · · ·				

LDC Report# 53484G6

Laboratory Data Consultants, Inc. Data Validation Report

LDC Report Date: March 28, 2022

Parameters: Total Organic Carbon

Validation Level:Stage 2B & 4

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98381

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH2002	BA47128	Water	12/01/21
ERH2011	BA47129	Water	12/01/21
ERH2013	BA47130	Water	12/01/21
ERH2005**	BA47132**	Water	12/01/21
ERH2008**	BA47134**	Water	12/01/21
ERH2018	BA47135	Water	12/01/21
ERH2020	BA47136	Water	12/01/21

**Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories. Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

All target analyte quantitation met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

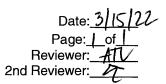
The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Data Qualification Summary - SDG 98381

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Laboratory Blank Data Qualification Summary - SDG 98381

No Sample Data Qualified in this SDG


Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Field Blank Data Qualification Summary - SDG 98381

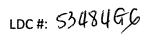
No Sample Data Qualified in this SDG

LDC #:	<u>53484G6</u>		V
SDG #:_	98381		
Laborato	ory: APPL, Inc.	, Clovis,	CA

ALIDATION COMPLETENESS WORKSHEET

Stage 2B/4

METHOD: (Analyte) TOC (EPA SW-846 Method 9060A)


The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area			Com	ments	
١.	Sample receipt/Technical holding times	A A				
	Initial calibration	A				
III.	Calibration verification	A				
IV	Laboratory Blanks	A,				
v	Field blanks	N_{-}				
VI.	Matrix Spike/Matrix Spike Duplicates	<u>N</u>	C.S_	·		
VII.	Duplicate sample analysis	N				
VIII.	Laboratory control samples	A	LCS/LCS	D		
IX.	Field duplicates	$ N_{ }$	· · · · · · · · · · · · · · · · · · ·			
Х.	Target Analyte Quantitation	A	Not reviewed fo	r Stage 2B validation.		
XI.	Overall assessment of data	A				
' Indic	N = Not provided/applicable R = Ri SW = See worksheet FB = F cates sample underwent Stage 4 validation	nsate Field blank	·	TB = Trip blank EB = Equipment bla	OTHER	Date
1	ERH2002		<u> </u>			
2	ERH2011			BA47128 BA47129	Water	12/01/21
3	ERH2013		<u></u>	BA47129 BA47130	Water	12/01/21
, 4	ERH2005**		<u></u>	BA47130	Water	12/01/21
5	ERH2008**			BA47132	Water	12/01/21
6	ERH2018			BA47135	Water	12/01/21
7	ERH2020	<u> </u>		BA47136	Water	12/01/21
B		<u> </u>				
9						
10		<u> </u>		1		
11						
12						
				+		

LDC #: 5348466

VALIDATION FINDINGS CHECKLIST

METHOD: Inorganics				
Validation Area	Yes	No	NA	Comments
I. Technical holding times				
Were all technical holding times met?	\checkmark			
II. Calibration				
Were all instruments calibrated at the	\checkmark			
required frequency?	V			
Were the proper number of standards				
used?	\checkmark			
Were all initial and continuing calibration	1			
verifications within the QC limits?				
Were all initial calibration correlation	1			
coefficients within limits as specifed by the	\bigvee			
method?				
Were balance checks performed as				
required?				
III. Blanks		·	.	
Was a method blank associated with every	. (
sample in this SDG?				
Was there contamination in the method		\checkmark		
blanks?		V		
Was there contamination in the initial and		1		
continuing calibration blanks?		\vee		
IV. Matrix Spike/Matrix Spike Duplicates/L	aborat	ory Dup	olicates	
Were MS/MSD recoveries within the QC				
limits? (If the sample concentration			\bigvee	
exceeded the spike concentration by a				
factor of 4, no action was taken.)				
Were the MS/MSD or laboratory duplicate				
relative percent differences (RPDs) within			V	
the QC limits?				
V. Laboratory Control Samples				
Was a LCS analyzed for each batch in the	./			
SDG?				
Were the LCS recoveries and RPDs (if				
applicable) within QC limits?	•			
X. Target Analyte Quantitation		·		
Were all reporting limits adjusted to reflect	./			
sample dilutions?				
Were all soil samples dry weight corrected?				
XI. Overall Assessment of Data				
Was the overall assessment of the data				
found to be acceptable?	v	l		

METHOD: Inorganics			1	
Validation Area	Yes	No	NA	Comments
XII. Field Duplicates				······································
Were field duplicates identi f ed in this SDG?		\checkmark		
Were target analytes detected in the field duplicates?			\checkmark	
XIII. Field Blanks				
Were field blanks identified in this SDG?				
Were target analytes detected in the field blanks?			\checkmark	

LDC #: 5348466

Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification

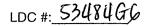
Page:__1__ of __1__ Reviewer:__ATL__

Method: Inorganics, Method <u>See Cover</u>

The correlation coefficient (r) for the calibration of \underline{TDC} was recalculated.Calibration date: \underline{II}

Where,

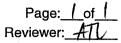
An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:


%R = Found X 100

True

Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration of each analyte in the ICV or CCV source

		FOUND	TRUE		Recalculated	Reported	Acceptable
Type of analysis	Analyte	Standard	Conc. (mg/L)	Area	r or r ²	r or r ²	(Y/N)
Initial calibration		s1	0.0	872			
		s2	0.5	7728	0.99999	0.99999	
	TOC	s3	2	26223			Y
	•	s4	5	65575			
		s5	10	129337			
		s6	20	256854			
ICV (11/27019:41) Calibration verification	TOC	9.880	(0.000		99	99	Y
CCV(12 066 18;24) Calibration verification	TOC	5,360	5.000		107.2	106.2	Y
CCV(12 67 C03:14) Calibration verification	TOC	5,161	5.00D		103.2	102,2	Y


Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

Found = SSR (spiked sample result) - SR (sample result).

concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,

METHOD: Inorganics, Method ______

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

 $R = Found_{x} \times 100$ Where, Found = True

True = concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = <u>S-D</u> x 100	Where,	S =	Original sample concentration
(S+D)/2		D =	Duplicate sample concentration

			Mg/L Found/S	MG/L True/D	Recalculated	Reported	Acceptable
Sample ID	Type of Analysis	Element	(units)	(units)	%R / RPD	%R / RPD	(Y/N)
LCS	Laboratory control sample	TDC	5,360	5.000	107	10,6	Ý
	Matrix spike sample		(SSR-SR)				ć.
	Duplicate sample						

Comments:

LDC #: 5348466

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: ____of__ Reviewer:

See Cover METHOD: Inorganics, Method

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". 7 N <u>N/A</u>

Have results been reported and calculated correctly?

Are results within the calibrated range of the instruments?

Are all detection limits below the CRQL?

TOC reported with a positive detect were Compound (analyte) results for ___ recalculated and verified using the following equation:

Concentration =

Note:

<u>YNN/A</u>

Y) N N/A

Recalculation: #5

 $101986 \times (7.766 \times 10^5) = 7.920$

#	Sample ID	Analyte	Reported Concentration (Mg (L)	Calculated Concentration (MGL)	Acceptable (Y/N)
	4	TOC	2,3	2.366	Y
	5	TOC	7.9	7.920	ý
					/
	·		· · · · · · · · · · · · · · · · · · ·	······	
		· · · · · · · · · · · · · · · · · · ·			
			 		
					·
<u> </u>					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
--------------------	---

LDC Report Date: March 28, 2022

- Parameters: Gasoline Range Organics
- Validation Level:Stage 2B & 4
- Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98381

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH2001	BA47127	Water	12/01/21
ERH2002**	BA47128**	Water	12/01/21
ERH2004	BA47131	Water	12/01/21
ERH2005**	BA47132**	Water	12/01/21
ERH2007	BA47133	Water	12/01/21
ERH2008**	BA47134**	Water	12/01/21

**Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check was performed at the required frequency.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples ERH2001, ERH2004, and ERH2007 were identified as trip blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Data Qualification Summary - SDG 98381

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 98381

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 98381

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B/4

Date: <u>3</u> Page: <u>1</u> of <u>7</u> Reviewer: <u>6</u> 2nd Reviewer: <u>7</u>

SDG #: <u>98381</u> Laboratory: <u>APPL</u>, Inc., Clovis, CA

LDC #: 53484G7

METHOD: GC/MS Gasoline Range Organics (EPA SW-846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AIA	
١١.	GC/MS Instrument performance check	4	
111.	Initial calibration/ICV	AIA	1^{ν} $ c = 20$
IV.	Continuing calibration	Δ	$\frac{1^{2}}{2^{2}} \frac{ c ^{2} \pm 20}{ c ^{2} + 20 2}$
V.	Laboratory Blanks	A	
VI.	Field blanks	ND	TB = 1, 3, 5
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	2	05
IX.	Laboratory control samples		2CS 10
Х.	Field duplicates	N	
XI.	Internal standards	A	
XII.	Target analyte quantitation	Δ	Not reviewed for Stage 2B validation.
XIII.	Target analyte identification	A	Not reviewed for Stage 2B validation.
XIV.	System performance	4	Not reviewed for Stage 2B validation.
XV.	Overall assessment of data	A	

 Note:
 A = Acceptable
 ND = No compounds detected
 D = Duplicate
 SB=Source blank

 N = Not provided/applicable
 R = Rinsate
 TB = Trip blank
 OTHER:

 SW = See worksheet
 FB = Field blank
 EB = Equipment blank

	Client ID	Lab ID	Matrix	Date				
1	ERH2001 TB	BA47127	Water	12/01/21				
2	ERH2002**	BA47128**	Water	12/01/21				
3-	ERH2004 TB	BA47131	Water	12/01/21				
4 7	ERH2005**	BA47132**	Water	12/01/21				
5	ERH2007 TB	BA47133	Water	12/01/21				
6 `	ERH2008**	BA47134**	Water	12/01/21				
6 7 8								
8								
9		l						
Notes:	Notes:							
	211207 AZ							

Method: Volatiles (EPA SW 846 Method 8260 P)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	/			
Was cooler temperature criteria met?	/			
II. GC/MS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12 hour clock criteria?	/			
IIIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	/			
Were all percent relative standard deviations (%RSD) \leq 20%, 15/30% and relative response factors (RRF) within method criteria?			/	
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?	/			
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/			
Were all percent differences (%p) $\leq 20\%$ 30%?	/			
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	/			
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	/			
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	/			
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation findings worksheet.		/	-	
VI. Field blanks				
Were field blanks were identified in this SDG?		-		
Were target analytes detected in the field blanks?		/	ſ	
VII. Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?	/			-
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?			-	-
VIII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?			/	
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
IX. Laboratory control samples				
Was an LCS analyzed for this SDG?	/			
Was an LCS analyzed per analytical batch?	<			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Were field duplicate pairs identified in this SDG?		/	-	
Were target analytes detected in the field duplicates?				
XI. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?	/			
Were retention times within ± 30 seconds of the associated calibration standard?	/			
XII. Target analyte quantitation				•
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	/			
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the target analyte?	/			
Were target analyte quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target analyte identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?	/			
Did analyte spectra meet specified EPA "Functional Guidelines" criteria?	/			
Were chromatogram peaks verified and accounted for?	\leq			
Were manual integrations reviewed and found acceptable?		 		
Did the laboratory provide before and after integration printouts?			/	Ĺ
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.	/	1		

Page:	_1_	of	_1_
Reviewe	er:	_FT_	

Method: Gasoline (EPA SW 846 Method 8260B)

Calibration Date	System	Compound	Standard	(Y) Response	(X) Concentration
12/6/2021	GCMS	Gasoline C6-C10	1	13.28	0.8
	ZEUS		2	14.038	2.0
			3	15.692	4.0
			4	21.84	12.0
			5	29.832	24.0
			6	36.192	32.0
			7	41.64	40.0

Regression Outpu	Reported	
Constant	12.758859	NR
Std Err of Y Est		
R Squared	0.999545	1.000000
Degrees of Freedom		
X Coefficient(s)	0.724756	NR
Std Err of Coef.		
Correlation Coefficient	0.999773	
Coefficient of Determination (r^2)	0.999545	1.000000

VALIDATION FINDINGS WORKSHEET **Continuing Calibration Results Verification**

Page: 1_of 1 Reviewer: FT

Recalculated

%D

°D

METHOD: GC/MS VOA (EPA SW 846 Method 8260 3)

Calibration Date

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

 $\mathsf{RRF} = (\mathsf{A}_{\mathsf{x}})(\mathsf{C}_{\mathsf{is}})/(\mathsf{A}_{\mathsf{is}})(\mathsf{C}_{\mathsf{x}})$

Standard ID

#

ave. RRF = initial calibration average RRF A_x = Area of target analyte C_x = Concentration of target analyte

Where:

RRF = continuing calibration RRF

A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

Reported Recalculated Reported Average RRF RRF RRF Target Analyte (Internal Standard) (initial) (CC) (CC)

1	eev 1207205	12/7/2/	GRU	300	296.68	296.68	1.1	1.1
	1207205							7
							-	
_								
2								
3								
4								

LDC #: 53484G7

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
LDC Report Date:	March 28, 2022
Parameters:	Total Petroleum Hydrocarbons as Extractables
Validation Level:	Stage 2B & 4
Laboratory:	APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98381

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH2002	BA47128	Water	12/01/21
ERH2005**	BA47132**	Water	12/01/21
ERH2008**	BA47134**	Water	12/01/21
ERH2002(SGCU)	BA47128(SGCU)	Water	12/01/21
ERH2005(SGCU)**	BA47132(SGCU)**	Water	12/01/21
ERH2008(SGCU)**	BA47134(SGCU)**	Water	12/01/21

**Indicates sample underwent Stage 4 validation Samples appended with SGCU underwent "Silica Gel Clean Up"

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by Environmental Protection Agency (EPA) SW 846 Method 8015B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 98381

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 98381

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 98381

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B/4

LDC #: <u>53484G8</u> **V** SDG #: <u>98381</u> Laboratory: <u>APPL, Inc., Clovis, CA</u>

Date: 3 5 22 Page: 1 of 7 Reviewer: 7 2nd Reviewer: 7

METHOD: GC TPH as Extractables (EPA SW-846 Method 8015B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments					
1.	Sample receipt/Technical holding times	A/A						
١١.	Initial calibration/ICV		(2	ICY & W				
	Continuing calibration	Δ		CW = 20	20			
IV.	Laboratory Blanks	Δ		,				
V.	Field blanks	N						
VI.	Surrogate spikes	Α						
VII.	Matrix spike/Matrix spike duplicates	2	5					
VIII.	Laboratory control samples	A	Ics IV					
IX.	Field duplicates	N						
X.	Target analyte quantitation	4	Not reviewed for	Stage 2B validation.				
XI.	Target analyte identification	A	Not reviewed for Stage 2B validation.					
	Overall assessment of data							
Note: ** Indica	N = Not provided/applicable R	D = No compounds = Rinsate B = Field blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blanl	SB=Source b OTHER:	lank		
	Client ID			Lab ID	Matrix	Date		

	Client ID	 Lab ID	Matrix	Date
111	ERH2002	BA47128	Water	12/01/21
24	ERH2005**	 BA47132**	Water	12/01/21
3+1	ERH2008**	 BA47134**	Water	12/01/21
	ERH2002(SGCU)	 BA47128(SGCU)	Water	12/01/21
	ERH2005(SGCU)**	 BA47132(SGCU)**	Water	12/01/21
611	ERH2008(SGCU)**	 BA47134(SGCU)**	Water	12/01/21
7				
8				
9				
10				
11				
12				
13				
lotes				
1	211207 AI - BIK			
2	211207A - BIK			

Method: /GC _HPLC

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	/			
Was cooler temperature criteria met?	<u> </u>			
Ila. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) < 20%?	PV.		/	
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990 ?	~		*	
Were the RT windows properly established?	-			
IIb. Initial calibration verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/			
Were all percent differences (%D) <u><</u> 20%?				
III. Continuing calibration				
Was a continuing calibration analyzed daily?	~			
Were all percent differences (%D) <u><</u> 20%?				
Were all the retention times within the acceptance windows?	/	-		
IV. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	-			
Was a laboratory blank analyzed for each matrix and concentration?	-			
Was there contamination in the laboratory blanks?		-	-	
V. Field Blanks				
Were field blanks identified in this SDG?		-		
Were target analytes detected in the field blanks?				
VI. Surrogate spikes				
Were all surrogate percent recovery (%R) within the QC limits?				}
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?			/	
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?				
VII. Matrix spike/Matrix spike duplicates		·		
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?			/	
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	
VIII. Laboratory control samples				
Was an LCS analyzed per analytical or extraction batch?	2	Ł		
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				

Validation Area	Yes	No	NA	Findings/Comments
IX. Field duplicates				
Were field duplicate pairs identified in this SDG?		/		·
Were target analytes detected in the field duplicates?			r	
X. Target analyte quantitation				
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	/			
Were analyte quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XI. Target analyte identification				
Were the retention times of reported detects within the RT windows?	/			
Were manual integrations reviewed and found acceptable?	/			
Did the laboratory provide before and after integration printouts?				
XIII. Overall assessment of data	-			
Overall assessment of data was found to be acceptable.				

.

.

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:	_1_	of	_1_
Reviewe	: r:	_FT_	

Method: DRO 8015B

WEIGHTED

Calibration		<u> </u>		(Y)	(X)
Date	System	Compound	Standard	Response	Concentration
12/12/2021	GC-Apollo	Diesel C10-C24	1	84098995.000	5.0
			2	38506565.000	10.0
			3	206995836.000	50.0
			4	1000844348.000	250.0
			5	4012472898.000	1000.0
			6	5888751722.000	1500.0
			7	8617221755.000	2000.0

Regression Output		Reported
Constant	-32002550.188747	-32000000.0
Std Err of Y Est		
R Squared	0.996648	0.998000
Degrees of Freedom		
X Coefficient(s)	4168828.654272	4170000.0
Std Err of Coef.		
Correlation Coefficient	0.998322	
Coefficient of Determination (r^2)	0.996648	0.998000

LDC #: 5348468

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: 1_of_1___ Reviewer: FT____

METHOD: GC ______HPLC _____

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 * (ave. CF -CF)/ave.CF

Where: ave. CF = initial calibration average CF

CF = continuing calibration CF

A = Area of target analyte C = Concentration of target analyte

	Standard	Calibration			Reported	Recalculated	Reported	Recalculated
#	ID	Date	Target Analyte	Average CF(Ical)/ CCV Conc.	CF/ Conc. CCV	CF/ Conc. CCV	%D	%D
1	CeV 1213003	12/13/2/	Diesel (Cp-c24)	1000	1019-059	1019.059	1.9	1.9
	13003							
2								
3		<u> </u>						
4								
4								
Ļ		0 1/1 1 0 1/1						
	ments: <u>Refer to</u> ecalculated resu		bration findings worksheet f	or list of qualifications a	nd associated same	bles when reported	results do not agr	ee within 10.0% of

VALIDATION FINDINGS WORKSHEET **Surrogate Results Verification**

LDC #:<u>5348</u>498 METHOD: <u>GC</u> HPLC

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

3 Sample ID:___

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
4		147.059	159.187	108	108	0
17		V	126.75	86.2	\$6.2	υ

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
						<u></u>

	Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound
A	Chlorobenzene (CBZ)	G	Octacosane	м	Benzo(e)Pyrene	S	1-Chloro-3-Nitrobenzene	Y	Tetrachloro-m- xylene
В	4-Bromofluorobenzene (BFB)	н	Ortho-Terphenyl	N	Terphenyi-D14	Т	3,4-Dinitrotoluene	z	2-Bromonaphthalene
C,	a,a,a-Trifluorotoluene	1	Fluorobenzene (FBZ)	0	Decachlorobiphenyl (DCB)	U	Tripentyltin	AA	Chloro-octadecane
D	Bromochlorobenene	J	n-Triacontane	Р	1-methylnaphthalene	v	Tri-n-propyltin	BB	2,4-Dichlorophenylacetic acid
E	1,4-Dichlorobutane	к	Hexacosane	Q	Dichlorophenyl Acetic Acid (DCAA)	w	Tributyl Phosphate	сс	2,5-Dibromotoluene
F	1,4-Difluorobenzene (DFB)	L	Bromobenzene	R	4-Nitrophenol	x	Triphenyl Phosphate		

LDC #:_ 5348468

VALIDATION FINDINGS WORKSHEET

Page: 1 of 1

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification Reviewer: FT

METHOD: GC HPLC

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the target analytes identified below using the following calculation:

%Recovery = 100 * (SSC/SA) RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100 Where SSC = Spiked sample concentration LCS = Laboratory Control Sample

SA = Spike added LCSD = Laboratory Control Sample duplicate

LCS/LCSD samples: 21120741 - 10010

	Sp	ike	Spike S	Sample	LC	s	LC	SD	LCS/L	CSD
Compound	Adi (ng	ded V	Concentration $(ug \mathcal{V})$		Concentration (ng レ) Percent Recovery		Percent Recovery		RPD	
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Diesel C10-C24	2000	2000	1870	1730	93.5	93.5	86.5	86.5	7.8	7-8
					·					
							-			
Comments:							, 1997 1997 1997 1997 1997 1997			

LDC #: 5348468

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: <u>1</u>of<u>1</u> Reviewer: <u>FT</u>

METHOD: GC_HPLC

The concentration of the sample was calculated for the target analyte identified below using the following calculation:

A= A Fv= F Df= D RF= Av In Vs= In Ws= In	entration= (A)(Fv)(Df) (RF)(Vs or Ws)(%S/100 rea or height of the target analyte to inal Volume of extract ilution Factor verage response factor of the target a the initial calibration itial volume of the sample itial weight of the sample ercent Solid	Sample ID be measured		-	<u>0.1887)(5) (1000)</u> (1030) -68 49/L
#	Sample ID	Target analyte	Reported Concentrations (Ид/Г)	Recalculated Results Concentrations (ug / L)	Qualifications
	#2	Diesel (cpo-c24)	סטדן	1679-68	
] 			

Comments:

LDC Report# 53484H1a

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Bulk Storage Facility, CTO 18F0126

LDC Report Date: March 27, 2022

Parameters: Volatiles

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97924

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1838	BA43831	Water	10/20/21
ERH1839	BA43832	Water	10/20/21
ERH1841	BA43833	Water	10/20/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) which are Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample ERH1838 was identified as a trip blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples ERH1839 and ERH1841 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Data Qualification Summary - SDG 97924

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Laboratory Blank Data Qualification Summary - SDG 97924

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Field Blank Data Qualification Summary - SDG 97924

No Sample Data Qualified in this SDG

LDC #:	53484H1a	VALIDATION COMPLETENESS WORKSHEET
SDG #:_	97924	Stage 2B
Laborato	ory: APPL, Inc., Clovis	<u>s, CA</u>

Date:_ 3 /	121/22
Page:of	
Reviewer:	1
2nd Reviewer:	1

METHOD: GC/MS Volatiles (BTEX) (EPA SW-846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Sample receipt/Technical holding times	AA	
п.	GC/MS Instrument performance check	<u>A</u>	
.	Initial calibration/ICV	AA	$\frac{1}{6} \frac{1}{100} \frac{1}{1$
IV.	Continuing calibration ending		CU = 20/52
<u>v</u> .	Laboratory Blanks	<u> </u>	
VI.	Field blanks	ND	TB=
VII.	Surrogate spikes	4	
VIII.	Matrix spike/Matrix spike duplicates	N	٥,
IX.	Laboratory control samples	A	Les IP
Х.	Field duplicates	ND	$\mathcal{D} = \mathcal{V}, \mathcal{D}$
XI.	Internal standards		
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
xv.	Overall assessment of data	<u>∧</u>	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID		Lab ID	Matrix	Date
1	ERH1838 TØ		BA43831	Water	10/20/21
2	ERH1839 0		BA43832	Water	10/20/21
3	ERH1841 0		BA43833	Water	10/20/21
4					
5					
6					
7					
8					
9					
Votes		 			
	211026BM				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
LDC Report Date:	March 27, 2022
Parameters:	Polynuclear Aromatic Hydrocarbons
Validation Level:	Stage 2B
Laboratory:	APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97924

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date		
ERH1839	BA43832	Water	10/20/21		
ERH1841	BA43833	Water	10/20/21		

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) which are 1-Methylnaphthalene, 2-Methylnaphthalene, and Naphthalene by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples ERH1839 and ERH1841 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

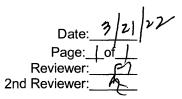
Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 97924

No Sample Data Qualified in this SDG


Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 97924

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 97924

No Sample Data Qualified in this SDG

LDC #: <u>53484H2b</u>	VALIDATION COMPLETENESS WORKSHEET
SDG #: 97924	Stage 2B
Laboratory: APPL, Inc., Clovis,	CA

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW-846 Method 8270D-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AIA	
11.	GC/MS Instrument performance check	$\overline{\nabla}$	
-111.	Initial calibration/ICV	Δ / Δ	$\frac{9}{6} PSP = 15 W \leq 22$ $CW \leq 20 52$
IV.	Continuing calibration	.4	CW 52050
V.	Laboratory Blanks	Δ	
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	И	<i>ح</i> ی
IX.	Laboratory control samples	A	les IV
Х.	Field duplicates	NN	$P = 1_1 \mathcal{V}$
XI.	Internal standards	\wedge	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	$ \wedge$	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID			 	Lab ID	Matrix	Date
1	ERH1839	p			BA43832	Water	10/20/21
2	ERH1841	<i>n</i>			BA43833	Water	10/20/21
3							
4							
5							
6							
7							
8							
9							
Notes	:						
	211022	A-B114			<u></u>		
			<u> </u>		 		
					 	<u> </u>	

LDC Report# 53484H6

Laboratory Data Consultants, Inc. Data Validation Report

LDC Report Date: March 28, 2022

Parameters: Total Organic Carbon

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97924

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1839	BA43832	Water	10/20/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Data Qualification Summary - SDG 97924

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Laboratory Blank Data Qualification Summary - SDG 97924

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Field Blank Data Qualification Summary - SDG 97924

No Sample Data Qualified in this SDG

LDC #:	<u>53484H6</u>	_ V/
SDG #:_	97924	
Laborato	ory: APPL, Inc., Clovi	s, CA

ALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: 3/17/22
Page: of
Reviewer: <u>ATU</u>
2nd Reviewer:

METHOD: (Analyte) TOC (EPA SW-846 Method 9060A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AIA	
<u> </u>	Initial calibration	A	
ш.	Calibration verification	A	
IV	Laboratory Blanks	A	
v	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	N	CIS
VII.	Duplicate sample analysis	N	
VIII.	Laboratory control samples	A	LOSILOSD
IX.	Field duplicates	N	
Х.	Target Analyte Quantitation	N	
XI.	Overall assessment of data	A	

Note: A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

SB=Source blank OTHER:

1 2 3	Client ID	Lab ID	Matrix	Date
1	ERH1839	BA43832	Water	10/20/21
2				
3				
5				
6				
4 5 7 8 9 10 11 12				
8				
9				
10				
11				
12				
13				
13 14 15				
15				
Notes	S:			

LDC Report# 53484H7

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
	rtea rim Bank eterage raemty; ere rererze

LDC Report Date: March 28, 2022

Parameters: Gasoline Range Organics

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97924

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1838	BA43831	Water	10/20/21
ERH1839	BA43832	Water	10/20/21
ERH1841	BA43833	Water	10/20/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

Instrument performance check was performed at the required frequency.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample ERH1838 was identified as a trip blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples ERH1839 and ERH1841 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Data Qualification Summary - SDG 97924

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 97924

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 97924

No Sample Data Qualified in this SDG

LDC #: 53484H7	VALIDATION COMPLETENESS WORKSHEET	D
SDG #: 97924	Stage 2B	Pa
Laboratory: APPL, Inc., C	lovis, CA	Review

Date: 3 2 72 Page: of 72 Reviewer: 72 2nd Reviewer: 74

METHOD: GC/MS Gasoline Range Organics (EPA SW-846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	A /A	
11.	GC/MS Instrument performance check	4	
	Initial calibration/ICV	A/A	(2) $ c \leq 22$ $c w \leq 20 w$
IV.	Continuing calibration	A	$cw \leq 20 w $
V.	Laboratory Blanks	4	
VI.	Field blanks	NV	了み =
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	N	c_{7}
IX.	Laboratory control samples	Δ	ics IV
Х.	Field duplicates	Sort	$\mathcal{P} = \mathcal{V}, \mathcal{F}$
XI.	Internal standards	\land	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	X	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID		 		Lab ID	Matrix	Date
1	ERH1838	<u> </u>	 	 	BA43831	Water	10/20/21
1 2 3 4 5 6 7 8 9	ERH1839	<u>0</u>	 ·	 	BA43832	Water	10/20/21
3	ERH1841	Þ	 	 	BA43833	Water	10/20/21
4			 	 			
5			 	 			
6				 			
7							
8							
9				 			
Votes			 	 			
	211020	GBM					

	211026BM			
Ì				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility,	CTO 18F0126
	rica i ili Baix clorage i acinty,	

LDC Report Date: March 28, 2022

Parameters:Total Petroleum Hydrocarbons as Extractables

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97924

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1839	BA43832	Water	10/20/21
ERH1841	BA43833	Water	10/20/21
ERH1839(SGCU)	BA43832(SGCU)	Water	10/20/21
ERH1841(SGCU)	BA43833(SGCU)	Water	10/20/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by Environmental Protection Agency (EPA) SW 846 Method 8015B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

Where average calibration factors were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Analyte	Concentration	Associated Samples
211022A-BLK	10/22/21	Oil (C24-C40)	160 ug/L	ERH1839 ERH1841

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Analyte	Flag	A or P
ERH1841(SGCU)	ortho-Terphenyl	52.0 (56-125)	All analytes	UJ (all non-detects)	Р

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples ERH1839 and ERH1841 were identified as field duplicates. No results were detected in any of the samples.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to surrogate %R, data were qualified as estimated in one sample.

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 97924

Sample	Analyte	Flag	A or P	Reason (Code)
ERH1841(SGCU)	All analytes	UJ (all non-detects)	Р	Surrogates (%R) (s)

Red Hill Bulk Storage Facility, CTO 18F0126

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 97924

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 97924

No Sample Data Qualified in this SDG

LDC #: <u>53484H8</u> **V** SDG #: <u>97924</u> Laboratory: <u>APPL, Inc., Clovis, CA</u>

Stage 2B

Date:	3	21	22
Page:		of	_
Reviewer:		E7	
2nd Reviewer:_		6	·

METHOD: GC TPH as Extractables (EPA SW-846 Method 8015B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	AIA	
١١.	Initial calibration/ICV	AIA	% PSD 520, 12 KY 520
	Continuing calibration	A	$\frac{0}{0} \frac{1}{0} \frac{1}$
IV.	Laboratory Blanks	30	,
V.	Field blanks	N	
VI.	Surrogate spikes	SW	
VII.	Matrix spike/Matrix spike duplicates	N	\$
VIII.	Laboratory control samples	A	LCS ID
IX.	Field duplicates	$\overline{\Omega}$	= 1,2
<u> </u>	Target analyte quantitation	N	
XI.	Target analyte identification	N	
	Overall assessment of data		

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank

0	TΗ	E	R:	
0	IF	E	R:	

Client ID Lab ID Matrix Date ERH1839 0 BA43832 Water 10/20/21 1 D 2 ERH1841 BA43833 Water 10/20/21 3 ERH1839(SGCU) BA43832(SGCU) Water 10/20/21 4 ERH1841(SGCU) BA43833(SGCU) Water 10/20/21 5 6 7 8 9 10 11 12 13 Notes: + 211022A-BIK 211022A - BIK

LDC	#:_	5	34	84H	θ
LDC	#:_	<u> </u>	24	041	

VALIDATION FINDINGS WORKSHEET

Blanks

Page: 1_of 1_

Reviewer: FT

	./	
METHOD:	<u> </u>	HPLC

Rease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

M N N/A Were all samples associated with a given method blank?

Y N N/A Was a method blank performed for each matrix and whenever a sample extraction procedure was performed?

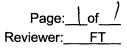
Y N N/A Was a method blank performed with each extraction batch?

Y N N/A Were any contaminants found in the method blanks? If yes, please see findings below.

Level IV/D Only

<u>Y N N/A</u> (Gasoline and aromatics only)Was a method blank analyzed with each 24 hour batch? Y N N/A Was a method blank analyzed for each analytical / extraction batch of ≤ 20 samples?

Y N N/A Was a method plan	< analyzed for each analytical / extra	ction batch of ≤20 samples?	
Blank extraction date: 10/2~	2 Blank analysis date: 10 29	Associated samples:	1, 2 (NU)
Conc. units: val		· 1	


Compound	Blank ID		Sample Identification					
	211022A-B	IK						
0i) (c24-c40)	160							
Blank extraction date:	Blank a	nalysis date:		Ass	ociated sample	s:		

Conc. units:

Compound	Blank ID	Sample Identification					

ALL CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

VALIDATION FINDINDS WORKSHEET Surrogate Recovery

(5)

METHOD: \mathcal{V} GC HPLC

Are surrogates required by the method? Yes____ or No____. Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Y N N/A Were surrogates spiked into all samples and blanks? Y N/A Did all surrogate recoveries (%R) meet the QC limits?

#	Sample ID		Detect Colun		Surrogate Compound		%R (Limits	;)		Qualifications	
	4				Н		52.0 (90-	125)]-11.		P ND
							()		
							()		
	211022A1-				G		56.7 (1.0 -1	42)] - 143	P	
	BK				H		45.3 (Sh -	125)] - UJ	<u>4</u>	
											<u></u>
						-+-					
										<u></u>	
							(
							()]		
							(
							()		······································
							()		,
							()		
							()		
							()		
							()		
							()		
							()		
1								أنهيتك	······································		
									······································		
										<u></u>	
	Surrogate Compound			Surrogate Compound			Surrogate Compound	<u> </u>	Surrogate Compound		
<u>A</u>	Chlorobenzene (CBZ)		G	Octacosane		M	Benzo(e)Pyrene	S	1-Chloro-3-Nitrobenzene	Y	Tetrachloro-m- xylene
В	4-Bromofluorobenzene (BFB)		н	Ortho-Terphenyl		N	Terphenyl-D14	T	3,4-Dinitrotoluene	Z	2-Bromonaphthalene
C.	a,a,a-Trifluorotoluene			Fluorobenzene (FBZ)		_0	Decachlorobiphenyl (DCB)	U	Tripentyltin	AA	Chloro-octadecane
D	Bromochlorobenene		J	n-Triacontane		P	1-methylnaphthalene	V	Tri-n-propyltin	BB	2,4-Dichlorophenylacetic acid
E F	1,4-Dichlorobutane 1.4-Difluorobenzene (DFB)		к	Hexacosane Bromobenzene		Q R	Dichlorophenyl Acetic Acid (DCAA) 4-Nitrophenol	w x	Tributyl Phosphate Triphenyl Phosphate	cc	2,5-Dibromotoluene