

AECOM 1001 Bishop Street Suite 1600 Honolulu, HI 96813 ATTN: Ms. Alethea Ramos alethea.ramos@aecom.com

SUBJECT: Red Hill Bulk Storage Facility, CTO 18F0126 - Data Validation

Dear Ms. Ramos,

Enclosed is the final validation report for the fraction listed below. This SDG was received on December 30, 2021. Attachment 1 is a summary of the samples that were reviewed for analysis.

LDC Project #53054:

 SDG #
 Fraction

 97984, 97943, 98278, 98285, 98299,
 Volatiles,

 98300, 98301, 98556, 98566
 Petroleum

Volatiles, Polynuclear Aromatic Hydrocarbons, Gasoline Range Organics, Total Petroleum Hydrocarbons As Extractables, Total Organic Carbon, 2-(2-Methoxyethoxy)-ethanol, Wet Chemistry

The data validation was performed under Stage 2B & 4 validation guidelines. The analysis was validated using the following documents and variances, as applicable to method:

- Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor Hickam, O'ahu, Hawai'i (Revision 02, January 2017)
- Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor - Hickam, O'ahu, Hawai'i (Revision 01, April 2017)
- Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017)
- Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018)
- U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019)
- DoD General Validation Guidelines (November 2019)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021)
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Stille auno

Stella Cuenco Operations Manager/Senior Chemist scuenco@lab-data.com

	598 pages-DL												At	tachr	nent	1																	1
	90/10 2B/4 E	DD	LD	C# !	5305	54 (/	AEC	CON	1 - ⊦	lon	olul	u, ⊦	i i / F	Red	Hil	l Bu	lk S	Stor	age	e Fa	cilit	y, C	то	18F	=012	26)							
LDC	SDG#	DATE REC'D	(2) DATE DUE		ЕХ 60В)	(82	AHs 70D M)	2,2- (827(MEE)D-M)		RO 60B)	TP (801		SG TPI (801	H-E	AI (232	k. 20B)	CI,5 NO (30	₃-N,	NO (30		NC NO (353	₂ -N	Fe (35 Fe	00-	тс (906	DC 60A)						
Matrix	: Water/Soil	1	T	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	s	W	S	W	S	W	S
А	97984	12/30/21	01/17/22	3	0	2	0	-	-	3	0	2	0	2	0	-	-	-	-	-	-	-	-	-	-	1	0				⊢		
В	97943	12/21/21	01/06/22	8	0	4	0	-	-	8	0	7	0	7	0	-	-	-	-	-	-	-	-	-	-	4	0				⊢		
С	98278	12/28/21	01/13/22	2	0	1	0	-	-	2	0	1	0	1	0	-	-	-	-	-	-	-	-	-	-	1	0				⊢		
D	98285	12/28/21	01/13/22	3	0	2	0	-	-	3	0	2	0	2	0	-	-	-	-	-	-	-	-	-	-	1	0						
Е	98299	12/28/21	01/13/22	4	0	2	0	-	-	4	0	2	0	2	0	-	-	-	-	-	-	-	-	-	-	2	0						
F	98300	12/28/21	01/13/22	4	0	2	0	-	-	4	0	2	0	2	0	-	-	-	-	-	-	-	-	-	-	2	0						
G	98301	12/28/21	01/13/22	-	-	1	0	1	0	-	-	-	-	-	-	1	0	1	0	2	0	1	0	1	0	-	-					, 	
Н	98556	12/30/21	01/17/22	-	-	-	-	2	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-						
Ι	98566	12/30/21	01/17/22	-	-	-	-	1	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-						
I	98566	12/30/21	01/17/22	-	-	-	-	1	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-						
			1																														
																				Ī													
																			1														
Total	T/SC			24	0	14	0	5	0	24	0	16	0	16	0	1	0	1	0	2	0	1	0	1	0	11	0	0	0	0	0	0	116

LDC Report# 53054A1a

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Bulk Storage Facility, CTO 18F0126

LDC Report Date:	January 21, 2022
------------------	------------------

Parameters: Volatiles

Validation Level: Stage 4

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97984

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1858	BA44378	Water	10/26/21
ERH1859	BA44379	Water	10/26/21
ERH1861	BA44380	Water	10/26/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) which are Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample ERH1858 was identified as a trip blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples ERH1859 and ERH1861 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

All target analyte quantitations met validation criteria.

XIII. Target Analyte Identification

All target analyte identifications met validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Data Qualification Summary - SDG 97984

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Laboratory Blank Data Qualification Summary - SDG 97984

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Field Blank Data Qualification Summary - SDG 97984

No Sample Data Qualified in this SDG

LDC #: <u>53054A1a</u>	VALIDATION COMPLETENESS WORKSHEET	Date: 1/18/22
SDG #: <u>97984</u>	Stage 4	Page:/_of/

Laboratory: APPL, Inc., Clovis, CA

Page: /_of	
Reviewer:	p
2nd Reviewer:	-

METHOD: GC/MS Volatiles (BTEX) (EPA SW-846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AIA	
١١.	GC/MS Instrument performance check	А	
111.	Initial calibration/ICV	A/Δ	$\frac{1}{6} PSD \leq 15 CY \leq 20$ $cev \leq 20/5V$
IV.	Continuing calibration	A	Cer = 20/52
V.	Laboratory Blanks	A	
VI.	Field blanks	ND	TB= 1
VII.	Surrogate spikes	Δ	
VIII.	Matrix spike/Matrix spike duplicates	N	es
IX.	Laboratory control samples	A	Lasin
Х.	Field duplicates	M	D = 2, 3
XI.	Internal standards	Δ	
XII.	Target analyte quantitation	A	
XIII.	Target analyte identification	A	
XIV.	System performance	A	
XV.	Overall assessment of data		

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

SB=Source blank OTHER:

	Client ID		Lab ID	Matrix	Date
1-	ERH1858 TO		BA44378	Water	10/26/21
2~	ERH1859 D		BA44379	Water	10/26/21
3~	ERH1861 P		 BA44380	Water	10/26/21
4					
5		·····	 		
6					
7					
4 5 6 7 8 9					
Notes:			 		
	211102 AM				

Method: Volatiles (EPA SW 846 Method 8260 3)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?		-		
Was cooler temperature criteria met?	/			
II. GC/MS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12 hour clock criteria?	/			
IIIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	/			
Were all percent relative standard deviations (%RSD) \leq 15% and relative response factors (RRF) within method criteria?	/			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?			-	-
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/	-		
Were all percent differences (%D) ≤ 20% ?				
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?		+		
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria? Were all percent differences (%D) \leq 50% in the ending CCV?		-		
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?		-		
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	-			
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation findings worksheet.		-		
VI. Field blanks				
Were field blanks were identified in this SDG?	-	\vdash		
Were target analytes detected in the field blanks?		_	\mathbb{F}	
VII. Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?	/			
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?			-	
VIII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?			/	
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	

LDC #: 53054A

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
IX. Laboratory control samples	_			
Was an LCS analyzed for this SDG?	/	[
Was an LCS analyzed per analytical batch?	/	[
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			
X. Field duplicates				
Were field duplicate pairs identified in this SDG?	/			
Were target analytes detected in the field duplicates?		/		
XI. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?	/	ſ		
Were retention times within <u>+</u> 30 seconds of the associated calibration standard?	\angle			
XII. Target analyte quantitation	r			
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	/			
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the target analyte?	/	ſ		
Were target analyte quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target analyte identification				
Were relative retention times (RRT's) within \pm 0.06 RRT units of the standard?	/			
Did analyte spectra meet specified EPA "Functional Guidelines" criteria?	\leq	[
Were chromatogram peaks verified and accounted for?	\leq	[
Were manual integrations reviewed and found acceptable?		[ļ	·
Did the laboratory provide before and after integration printouts?		<u> </u>		Ľ
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.		1		

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-lsopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butyibenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	0000.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methyl cyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: _1___ of __1__ Reviewer: ___ FT____

METHOD: GCMS 8260B

The calibration factors (RRFF), average RRFF, and relative standard deviation (%RSD) were recalculated for compounds identified below using the following calculations:

RRF = (Ax)(Cis)/(Ais)(Cx) average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

- Where:
- Ax = Area of compound Cx = Concentration of compound S = Standard deviation of the RRFs X = Mean of the RRFs Ais = Area of associated internal standard Cis = Concentration of internal Standard

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration				AverageRRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound	(RRF 5ug/L std)	(RRF 5 ug/L std)	(Initial)	(Initial)		
	ICAL	10/15/2021	V	0.4345	0.4345	0.4384	0.4384	4.3	4.3
	MAX		EE	0.7106	0.7106	0.6860	0.6860	8.1	8.1

LDC #: 53054A /a

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:<u>1_</u>of<u>1</u> Reviewer: FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260 /3)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

ave. RRF = initial calibration average RRF A_x = Area of target analyte C_x = Concentration of target analyte RRF = continuing calibration RRF

A_{is} = Area of associated internal standard

C_{is} = Concentration of internal standard

#	Standard ID	Calibration Date	Target Analyte (Internal Standard)	Average RRF (initial)	Reported RRF (CC)	Recalculated RRF (CC)	Reported %D	Recalculated %D
1	COV 1102M03	11/2/2/ /001	۷ ٤ ټ	0.4384 0.6860	0.4201 0.6948	0.420/ 0.6948	4.2. 1.3	4.2 /:3
2								
3			· · · · · · · · · · · · · · · · · · ·					
4			· · · · · · · · · · · · · · · · · · ·					

LDC #: 53054/7/a

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page: <u>1</u> of <u>1</u> Reviewer: <u>FT</u>

METHOD: GC/MS VOA (EPA SW 846 Method 8260 A

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: #2

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane	25.0	26.76	FT toz 107	107	0
1,2-Dichloroethane-d4	1	26.09	10\$ 104.3	104.3	1
Toluene-d8		25.58	98.2 102	102	
Bromofluorobenzene		24.76	95.4 99.1	99.)	

Comments:

LDC #: 33054A/a

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: <u>1</u> of <u>1</u> Reviewer: <u>FT</u>

METHOD: GC/MS VOA (EPA SW 846 Method 8260 A

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate (if applicable) were recalculated for the target analytes identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC) LCSC =

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS ID: 211/02 AM LOS/D

Compound	Spike Spiked Sample LCS Addeal Concentration Percent Recovery				SD Recovery	LCS/LCSD RPD				
	LCS	LCSD	LCS	LCSD	Reported	Reported Recalc.		Reported Recalc.		Recalc.
1,1-Dichloroethene										
Trichloroethene										
Benzene	10.0	10.0	9.58	8.71	95.8	95.8	87./	87./	9-5	9.5
Toluene	JO. J	J.U.	9.33	9.33	105	105	93.3	93.3	11.8	11-8
Chlorobenzene			10.5							

Comments:

LDC #:___________530 57A /a

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	1	of_	1
Reviewer:		FT	

METHOD: GC/MS VOA (EPA SW 846 Method 8260/3)

The concentration of the sample was calculated for the target analytes identified below using the following calculation:

Conce	ntrati	on = $(A_x)(I_s)(DF)$ $(A_{is})(RRF)(V_o)(%S)$
A _x	=	Area of the characteristic ion (EICP) for the target analyte to be measured
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard
l _s	=	Amount of internal standard added in nanograms (ng)
RRF	=	Relative response factor of the calibration standard.
V _o	=	Volume or weight of sample pruged in milliliters (ml) or grams (g).
Df	=	Dilution factor.
%S	=	Percent solids, applicable to soils and solid

matrices only.

Example:

=

Sample I.D. _____ 2 ///02 A M , ____ ies)10

 $Conc. = \frac{(6/699)(75)}{(367/44)(0.4384)}$

9.58 ug/L

#	Sample ID	Compound	Reported Concentration	Calculated Concentration	Qualification
	LCS	Y	9.5B	9.5B	

.

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
--------------------	---

LDC Report Date:	January 21, 2022
EBO Roport Bato.	

Parameters: Polynuclear Aromatic Hydrocarbons

Validation Level: Stage 4

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97984

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1859	BA44379	Water	10/26/21
ERH1861	BA44380	Water	10/26/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work. Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) which are 1-Methylnaphthalene, 2-Methylnaphthalene, and Naphthalene by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples ERH1859 and ERH1861 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

All target analyte quantitations met validation criteria.

XIII. Target Analyte Identification

All target analyte identifications met validation criteria.

XIV. System Performance

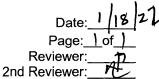
The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 97984

No Sample Data Qualified in this SDG


Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 97984

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 97984

No Sample Data Qualified in this SDG

LDC #: 53054A2b VALIDATION COMPLETENESS WORKSHEET Date: Dat

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW-846 Method 8270D-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
— І.	Sample receipt/Technical holding times	AIA	
١١.	GC/MS Instrument performance check	A	
	Initial calibration/ICV	A-A	$\frac{0}{0} PSD = 15 ICV = 20$ $CLV = 20/50$
IV.	Continuing calibration enoling	A	$CUV \neq 20/52$
V.	Laboratory Blanks	A	
VI.	Field blanks	N	
VII.	Surrogate spikes	y~	
VIII.	Matrix spike/Matrix spike duplicates	N	S.
IX.	Laboratory control samples	A	105 17
Х.	Field duplicates	ND	D = 1, 2
XI.	Internal standards	A	
XII.	Target analyte quantitation	A	
XIII.	Target analyte identification	Α	
XIV.	System performance	A	
XV.	Overall assessment of data	人	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

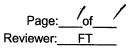
	Client ID		 			Lab ID		Matrix	Date
1-	ERH1859	9				BA44379		Water	10/26/21
2	ERH1861	P				BA44380		Water	10/26/21
3									
4									
5				 					
6									
7									
8					_				
9			 						
Notes									
	211028A	-BIK					Τ		
			.126				T		

Method: Semivolatiles (EPA SW 846 Method 8270 ())

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	-			
Was cooler temperature criteria met?	/			
II. GC/MS Instrument performance check				
Were the DFTPP performance results reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12 hour clock criteria?	/			
IIIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) \leq 15% and relative response factors (RRF) within method criteria?	/			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?			/	-
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/			
Were all percent differences (%D) < 20%?				
IV. Continuing calibration		·		
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	~			
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria? Were all percent differences (%D) \leq 50% for closing calibration verification?	/			
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	~			
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	/			
Was there contamination in the laboratory blanks? If yes, please see the blanks validation findings worksheet.		/		
VI. Field blanks			_	
Were field blanks were identified in this SDG?			L	
Were target analytes detected in the field blanks?			/	f
VII. Surrogate spikes		r	_	
Were all surrogate percent recovery (%R) within QC limits?			<u> </u>	
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?			-	
If any percent recoveries (%R) was less than 10%, was a reanalysis performed to confirm %R ?			-	·
VIII. Matrix spike/Matrix spike duplicates			.	<u>.</u>
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?			\leq	

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	
IX. Laboratory control samples				
Was an LCS analyzed per extraction batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			
X. Field duplicates				
Were field duplicate pairs identified in this SDG?	/			
Were target analytes detected in the field duplicates?		/		
XI. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?	\setminus			
Were retention times within ± 30 seconds of the associated calibration standard?	/	-		
XII. Target analyte quantitation			•	
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the target analyte?	/			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?		-		
XIII. Target analyte identification				
Were relative retention times (RRT's) within <u>+</u> 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	\sim			
Were chromatogram peaks verified and accounted for?	/			
Were manual integrations reviewed and found acceptable?	/			
Did the laboratory provide before and after integration printouts?				F
XIV. System performance				
System performance was found to be acceptable.		ł		
XV. Overall assessment of data	-			
Overall assessment of data was found to be acceptable.	/	1		


VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	11. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	l2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

LDC #: 53054 A26

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

(s)

METHOD: GC/MS BNA (EPA SW 846 Method 8270 \mathcal{D}) Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A". <u>Y N/A</u> Were percent recoveries (%R) for surrogates within QC limits?

Y N/A

If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?

YN NA If any %R was less than 10 percent, was a reanalysis performed to confirm %R?

#	Sample ID	Surrogate	%R (Limits)	%R (Limits)		
	211028A-BIK	W - DIU		39-114)	Qualifications	ND
			()		
			()		
	<u></u>		()		
			()		
				//		
			(
			()		······································
			()		····
			()		
			()		
			()		
			()		
			()	······	t
			(······································		
			()	····	· · · · · · · · · · · · · · · · · · ·
			()		
			()		
			()		
			()		
			()		
			() [

(NBZ) = Nitrobenzene - d5 (FBP) = 2-Fluorobiphenyl

(TPH) = Terphenyl - d14

(2FP) = 2-Fluorophenol (TBP) = 2,4,6 -Tribromophenol (2CP) = 2-Chlorophenol - d4

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: __1__ of _1___ Reviewer: ____FT___

METHOD: GCMS 8270D SIM

The calibration factors (RRFF), average RRFF, and relative standard deviation (%RSD) were recalculated for compounds identified below using the following calculations:

RRF = (Ax)(Cis)/(Ais)(Cx) average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

- Where:
- Ax = Area of compound Cx = Concentration of compound S = Standard deviation of the RRFs X = Mean of the RRFs Ais = Area of associated internal standard Cis = Concentration of internal Standard

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration				AverageRRF	Average RRF	%RSD	%RSD
#	Standard ID	Date	Compound	(RRF1.0 std)	(RRF1.0 std)	(Initial)	(Initial)		
	ICAL	10/19/2021	S	1.336	1.336	1.299	1.299	8.6	8.6
	KYLO								

LDC #: 53054 A26

VALIDATION FINDINGS WORKSHEET **Continuing Calibration Results Verification**

Page: 1 of 1 Reviewer: FT

METHOD: GC/MS BNA (EPA SW 846 Method 8270 ρ)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF A, = Area of target analyte

 C_x = Concentration of target analyte

RRF = continuing calibration RRF

A_{is} = Area of associated internal standard

C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Target Analyte (Internal Standard)	Average RRF (Initial)	RRF (CC)	RRF (CC)	%D	%D
1	Lev	11/3/2/	S (1st IS)	1.299	1.3/9	1.319	1.6	1.6
	Lev 10/9×236	' / /	(2 nd IS)	•				
1			(3 rd IS)					
			(4 th IS)					
			(5 th IS)					
			(6 th IS)					
2			(1st IS)					
			(2 nd IS)					
1			(3 rd IS)					
			(4 th IS)					
1			(5 th IS)					
			(6 th IS)					
3			(1st IS)					
1			(2 nd IS)					
1			(3 rd IS)					
			(4 th IS)					
¥.			(5 th IS)					
			(6 th IS)					

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 53054 A26

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page: 1_of_1_ Reviewer: __FT

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270 /)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: # /

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene d5 W - d10	5.0	106 5.34	107	107	Ο
2-Fluorobiphenyl YY- dIU	L	4.96	99.2	99.2	υ
Terphenyl-14					
Phenol-15					
2-Firorophenol					
2,4,6-Tribromophenol					- · · ·

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					

Page: 1 of 1

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the target analytes identified below using the following calculation:

SSC =	(Ax)(Cis)(Fv)(Df)
	(A _{IS})(RRF)(Vs or Ws)(%S/100)

%Recovery = (SSC/SA)*100

Where: A_x= Area of the target analyte A_{is}= Area for the specific internal standard

Ws= Initial weight of the sample %S= Percent Solid SSC = Spiked sample concentration LCS = Laboratory control sample

Fv =Final volume of extract Df= Dilution factor

C_{is} = Concentration of internal standard

LCSD = Laboratory control sample duplicate

RRF= Average relative response factor of the target analyte Vs= Initial volume of the sample

RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100

211028A Les IN LCS/LCSD samples:

	S	pike Ideg	S	pike	c	:s	LCSD		<u>I CS/I CSD</u>	
Compound				Concentration (ид/4) Percent Recovery		Percent	Recovery	RPD		
			<u> </u>		Reported	Recalc	Reported	Recalc	Reported	Recalculated
Phenol										
N-Nitroso-di-n-propylamine										
4-Chloro-3-methyiphenol										
Acenaphthene										
Pentachlorophenol										ļ
Pyrene										
S	5.0	5.0	4.74	5.23	94.8	94.8	105	105	9.8	9.8
			•							
										·

LDC #: 53054 A26

LDC #: 530 54/7 26

VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

Page: 1_of 1_ Reviewer: FT

METHOD: GC/MS BNA (EPA SW 846 Method 8270 1/2)

The concentration of the sample was calculated for the target analyte identified below using the following calculation:

Conce	ntratio	$n = (A_{,})(I_{,})(V_{,})(DF)(2.0) - (A_{is})(RRF)(V_{o})(V_{i})(%S)$
A _x	=	Area of the characteristic ion (EICP) for the target analyte to be measured
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard
l _s	=	Amount of internal standard added in nanograms (ng)
V。	=	Volume or weight of sample extract in milliliters (ml) or grams (g).
Vi	=	Volume of extract injected in microliters (ul)
Vt	=	Volume of the concentrated extract in microliters (ul)

- Df = Dilution Factor.
- %S Percent solids, applicable to soil and solid matrices = only.
- Factor of 2 to account for GPC cleanup 2.0 =

Example:

Sample I.D. 21/028A Les S

Conc. = <u>(44704) (2.50)</u> (18146) (1.299) = <u>4.74 ug/L</u>

#	Sample ID	Target Analyte	Reported Concentration (43/4	Calculated Concentration (பது//	Qualification
	les	S	¥.74	4.74	
					· · · · · ·

LDC Report# 53054A6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Bulk Storage Facility, CTO 18F0126

LDC Report Date: January 21, 2022

Parameters: Total Organic Carbon

Validation Level: Stage 4

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97984

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
ERH1859	BA44379	Water	10/26/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
11/05/21	CCV (04:24)	Total organic carbon	88.2 (90-110)	All samples in SDG 97984	J- (all detects)	Р

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

All target analyte quantitations were acceptable.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to continuing calibration %R, data were qualified as estimated in one sample.

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Data Qualification Summary - SDG 97984

Sample	Analyte	Flag	A or P	Reason (Code)
ERH1859	Total organic carbon	J- (all detects)	Р	Continuing calibration (%R) (c)

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Laboratory Blank Data Qualification Summary - SDG 97984

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Field Blank Data Qualification Summary - SDG 97984

No Sample Data Qualified in this SDG

LDC #:_	<u>53054A6</u>	<u> </u>		VA
SDG #:_	97984			
Laborato	orv: APPL.	Inc., (Clovis,	CA

ALIDATION COMPLETENESS WORKSHEET

Stage 4

Date:	1922
Page:	_of
Reviewer:	ATV
2nd Reviewer:	N_

METHOD: (Analyte) TOC (EPA SW-846 Method 9060A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	AA	
11	Initial calibration	A	
- 111.	Calibration verification	SW	
IV	Laboratory Blanks	A	
V	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	N	CS
VII.	Duplicate sample analysis	N	
VIII.	Laboratory control samples	A	LCS/LCSD
IX.	Field duplicates	N	
Х.	Target Analyte Quantitation	A	
XI.	Overall assessment of data	A	

Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

SB=Source blank OTHER:

1 2 3 4 5 6 7 8 9 10	Client ID	Lab ID	Matrix	Date
1	ERH1859	BA44379	Water	10/26/21
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15 Notes				
Notes	S:			

LDC #: 53054AG

METHOD: Inorganics **Validation Area** Yes No NA **Comments** I. Technical holding times Were all technical holding times met? V II. Calibration Were all instruments calibrated at the $\sqrt{}$ required frequency? Were the proper number of standards \checkmark used? Were all initial and continuing calibration \checkmark verifications within the QC limits? Were all initial calibration correlation coefficients within limits as specifed by the $\sqrt{}$ method? Were balance checks performed as \checkmark required? III. Blanks Was a method blank associated with every \checkmark sample in this SDG? Was there contamination in the method \checkmark blanks? Was there contamination in the initial and continuing calibration blanks? IV. Matrix Spike/Matrix Spike Duplicates/Laboratory Duplicates Were MS/MSD recoveries within the QC not run limits? (If the sample concentration \checkmark exceeded the spike concentration by a factor of 4, no action was taken.) Were the MS/MSD or laboratory duplicate \checkmark relative percent differences (RPDs) within the QC limits? V. Laboratory Control Samples Was a LCS analyzed for each batch in the \checkmark SDG? Were the LCS recoveries and RPDs (if \checkmark applicable) within QC limits? X. Target Analyte Quantitation Were all reporting limits adjusted to reflect \checkmark sample dilutions? v Were all soil samples dry weight corrected? XI. Overall Assessment of Data Was the overall assessment of the data found to be acceptable?

METHOD: Inorganics	,			
Validation Area	Yes	No	NA	Comments
XII. Field Duplicates				
Were field duplicates identifed in this SDG?		\checkmark		
Were target analytes detected in the field duplicates?			\checkmark	
XIII. Field Blanks				
Were field blanks identified in this SDG?				
Were target analytes detected in the field blanks?			\checkmark	

VALIDATION FINDINGS WORKSHEET Calibration

Page: 1 of 1 Reviewer: ATL

METHOD: Inorganics, EPA Method See cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y) N N/A Were all instruments calibrated daily, each set-up time, and were the proper number of standards used? Y(N)N/A

Were all initial and continuing calibration verification percent recoveries (%R) within the control limits of 90-110%?

YN N/A Are all correlation coefficients >0.995 ?

LEVEL IV/D ONLY: $(\hat{Y})N N/A$

Y N (N/A)

Y N (N/A)

Were recalculated results acceptable? See Level IV Initial and Continuing Calibration Recaluculation Worksheet for recalulations.

Was a balance check conducted prior to the TDS analysis.?

Was the titrant normality checked?

#	Date	Calibration ID	Analyte	%R	Associated Samples	Qualifications Code: c
	11/05/21	CCV (04:24)	тос	88.2 (90-110)	all	J-/UJ/P (detect)
┣───						
	7					

Comments:

LDC #: 53054A6

Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification

Page:__1__ of __1__ Reviewer:__ATL__

Method: Inorganics, Method <u>See Cover</u>

The correlation coefficient (r) for the calibration of \underline{TOC} was recalculated.Calibration date: $\underline{10252}$

An initial or continuing calibration verification percent recovery (%R) was recalculated for each type of analysis using the following formula:

%R = Found X 100

True

Where,

Found = concentration of each analyte <u>measured</u> in the analysis of the ICV or CCV solution True = concentration of each analyte in the ICV or CCV source

		FOUND	TRUE		Recalculated	Reported	Acceptable
Type of analysis	Analyte	Standard	Conc. (mg/L)	Area	r or r ²	r or r ²	(Y/N)
Initial calibration		s1	0.0	4558			
		s2	0.5	9475	0.99987	0.99987	
	TOC	s3	2	29763			Y
		s4	5	69278			
		s5	10	139847			
		s6	20	273227			
ICV Calibration verification	TOC	10.4835	10.000		104.8	105,5	Y
CCV Calibration verification	TOC	5,3361	5.000		106.7	105.9	Y
CCV Calibration verification	TDC	4.4538	5.000		89.1	88.2	Y

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results._____

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

Found = SSR (spiked sample result) - SR (sample result).

concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,

Page: 1 of 1 Reviewer: ATL

METHOD: Inorganics, Method See Cover

Percent recoveries (%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

 $R = Found_{x} \times 100$ Where, Found = True

True = concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

RPD = <u> S-D </u> x 100	Where,	S =	Original sample concentration
(S+D)/2		D =	Duplicate sample concentration

			mg/L Found/S	mg/L True/D	Recalculated	Reported	Acceptable
Sample ID	Type of Analysis	Element	(units)	(units)	%R / RPD	%R / RPD	(Y/N)
LCS	Laboratory control sample	TOC	5,4209	5.00	108	108	Y
	Matrix spike sample		(SSR-SR)				<i>c.</i>
	Duplicate sample						

Comments:

LDC #: 53054A6

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification Page: <u>1</u> of <u>1</u> Reviewer: <u>AT</u>

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Have results been reported and calculated correctly?

Are results within the calibrated range of the instruments?

Are all detection limits below the CRQL?

Concentration =

(Y)N N/A

 $(\bar{Y})N N/A$

Ϋ́

N N/A

Recalculation:

 $6327 \times (7.398 \times 10^5) - 0.237615 = 0.2305$

#	Sample ID	Analyte	Reported Concentration (MCLL)	Calculated Concentration (MGLL) 0: 2305	Acceptable (Y/N)
	1	TOC	0.28	0.2305	V V
					/

Note:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Bulk Storage Facility, CTO 18F0126

LDC Report Date: January 21, 2022

Parameters: Gasoline Range Organics

Validation Level: Stage 4

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97984

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1858	BA44378	Water	10/26/21
ERH1859	BA44379	Water	10/26/21
ERH1861	BA44380	Water	10/26/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample ERH1858 was identified as a trip blank. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples ERH1859 and ERH1861 were identified as field duplicates. No results were detected in any of the samples.

X. Target Analyte Quantitation

All target analyte quantitations met validation criteria.

XI. Target Analyte Identification

All target analyte identifications met validation criteria.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Data Qualification Summary - SDG 97984

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 97984

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 97984

No Sample Data Qualified in this SDG

LDC #: <u>53054A7</u>	VALIDATION COMPLETENESS WORKSHEET	ļ

SDG #:<u>97984</u> Laboratory: <u>APPL, Inc., Clovis, CA</u> Stage 4

	Date:_	1	18	122
	Page:_	_/of		
	Reviewer:		17	2
2nd	Reviewer:_	1	4	

METHOD: GC/MS Gasoline Range Organics (EPA SW-846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	A A	
١١.	GC/MS Instrument performance check	A	
-111.	Initial calibration/ICV	AA	1^2 KY ≤ 20
IV.	Continuing calibration ending	Δ	e N = 20/20
V.	Laboratory Blanks	K	/
VI.	Field blanks	NO	TB=1
VII.	Surrogate spikes		
VIII.	Matrix spike/Matrix spike duplicates	N	es
IX.	Laboratory control samples	A	Las 10
Х.	Field duplicates	ND	$D=R^{3}$
XI.	Internal standards	NO-	D=2,3-
XII.	Target analyte quantitation	4	
XIII.	Target analyte identification	A	
XIV.	System performance	A	
XV.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID				Lab ID	Matrix	Date
1-	ERH1858	TB			BA44378	Water	10/26/21
	ERH1859	Ø			BA44379	Water	10/26/21
3-	ERH1861	P		 · • • • •	BA44380	Water	10/26/21
2 3 4 5 6 7 8 9				 			
5			 	 			
6			 				
7			 				
8							
۹			 	 			
Notes	•		 	 			
	211102 A	M					

Method: Volatiles (EPA SW 846 Method 8260 B)

Validation Area			NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?		•		
Was cooler temperature criteria met?				
II. GC/MS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?	/	-		
Were all samples analyzed within the 12 hour clock criteria?		Ē		
IIIa. Initial calibration	·			
Did the laboratory perform a 5 point calibration prior to sample analysis?	-			
Were all percent relative standard deviations (%RSD) \leq 15% and relative response factors (RRF) within method criteria?			_	-
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?				
IIIb. Initial Calibration Verification			,	
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	-			
Were all percent differences (%D) ≤ 20% ?				
IV. Continuing calibration	.			
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria? Were all percent differences (%D) \leq -50% in the ending CCV?	/			
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	/			
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation findings worksheet.				
VI. Field blanks			,	
Were field blanks were identified in this SDG?	Ĺ	ł		
Were target analytes detected in the field blanks?				Ē
VII. Surrogate spikes				·
Were all surrogate percent recovery (%R) within QC limits?		<u> </u>		<
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				
VIII. Matrix spike/Matrix spike duplicates	- -	·	_	
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?	<u> </u>		\leq	
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
IX. Laboratory control samples				
Was an LCS analyzed for this SDG?	/			
Was an LCS analyzed per analytical batch?	~	r		
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?			ſ	
X. Field duplicates				
Were field duplicate pairs identified in this SDG?	<			
Were target analytes detected in the field duplicates?				
XI. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?	-			
Were retention times within ± 30 seconds of the associated calibration standard?			-	
XII. Target analyte quantitation		_		
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	/			
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the target analyte?	/			
Were target analyte quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/	ł		
XIII. Target analyte identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?	/	ł		
Did analyte spectra meet specified EPA "Functional Guidelines" criteria?	/	<u> </u>		
Were chromatogram peaks verified and accounted for?		ļ		
Were manual integrations reviewed and found acceptable?	\leq			· · · · · · · · · · · · · · · · · · ·
Did the laboratory provide before and after integration printouts?			/	Ĺ
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data		/		
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-lsopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	0000.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methyl cyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanai
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

Page:	_1_	of	_1_
Reviewe	er:	FT	

Method: Gasoline (EPA SW 846 Method 8260B)

Calibration				(Y)	(X)
Date	System	Compound	Standard	Response	Concentration
8/25/2021	GCMS	Gasoline C6-C10	1	11.040	0.8
	Max		2	11.378	2.0
			3	12.076	4.0
			4	15.480	12.0
			5	19.694	24.0
			6	22.774	32.0
			7	25.396	40.0

Regression Output	Reported		
Constant	10.743188	10.700000	
Std Err of Y Est			
R Squared	0.999132	0.999000	
Degrees of Freedom			
X Coefficient(s)	0.371398	0.372000	
Std Err of Coef.			
Correlation Coefficient	0.999566		
Coefficient of Determination (r^2)	0.999132	0.999000	

LDC #: 53054 M77

VALIDATION FINDINGS WORKSHEET **Continuing Calibration Results Verification**

Page: 1_of 1_ Reviewer: FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260 B)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where:

 $\mathsf{RRF} = (\mathsf{A}_{\mathsf{x}})(\mathsf{C}_{\mathsf{is}})/(\mathsf{A}_{\mathsf{is}})(\mathsf{C}_{\mathsf{x}})$

ave. RRF = initial calibration average RRF A_x = Area of target analyte C_x = Concentration of target analyte

RRF = continuing calibration RRF A_{is} = Area of associated internal standard

C_{is} = Concentration of internal standard

#	Standard ID	Calibration Date	Target Analyte (Internal Standard)	Average RRF (initial)	Reported RRF (CC)	Recalculated RRF (CC)	Reported %D	Recalculated %D
1	CON 1102M07	" 2/2/	<u>GRO 66-010</u>	300	282.11	282.1/	6.0	6.0
2								
2								
3								
4								

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page: <u>1</u> of <u>1</u> Reviewer: <u>FT</u>

METHOD: GC/MS VOA (EPA SW 846 Method 8260 3

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: #2

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene	75.0	25./3	10]	101	U

Comments: _____

LDC#: 53054ケ7

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page:<u>1_</u>of<u>1</u> Reviewer:<u>FT</u>

METHOD: GC/MS VOA (EPA SW 846 Method 8260 /3

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate (if applicable) were recalculated for the target analytes identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCSID: 211/02 AM LOSID

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

Spike Added, Compound (Mg /4		Spiked Sample Concentration (49 /)		I CS Percent Recovery		L CSD Percent Recovery		RPD		
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
CaRU 1 ,1-Dichloroethenje	300	300	358	305	119	119	102	102	16.U	16.0
Trichloroethene										
Benzene										
Toluene										
2nlorobenzone_		<u> </u>								

Comments:

LDC#: 53654月7

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: 1 of 1 Reviewer: FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260 B)

matrices only.

The concentration of the sample was calculated for the target analytes identified below using the following calculation:

Concentration = $\frac{(A_{x})(I_{s})(DF)}{(A_{is})(RRF)(V_{o})(\%S)}$	Example:
A _x = Area of the characteristic ion (EICP) for the target analyte to be measured	Sample I.D. 211102 AM LEJ GRU
A _{is} = Area of the characteristic ion (EICP) for the specific internal standard	$Conc. = \frac{(-6887893)}{(-428863)} - 10.7(35)$
I _s = Amount of internal standard added in nanograms (ng)	0.372
RRF = Relative response factor of the calibration standard.	
V _o = Volume or weight of sample pruged in milliliters (ml) or grams (g).	= 359 ug/L
Df = Dilution factor.	
%S = Percent solids, applicable to soils and solid	

#	Sample ID	Compound	Reported Concentration	Calculated Concentration	Qualification
	Los	GRU	358	359	-
				<u> </u>	· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·			
		L			

LDC Report# 53054A8

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
--------------------	---

LDC Report Date: January 21, 2022

Parameters:Total Petroleum Hydrocarbons as Extractables

Validation Level: Stage 4

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97984

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1859	BA44379	Water	10/26/21
ERH1861	BA44380	Water	10/26/21
ERH1859(SGCU)	BA44379(SGCU)	Water	10/26/21
ERH1861(SGCU)	BA44380(SGCU)	Water	10/26/21

Samples appended with "SGCU" underwent Silica Gel cleanup

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons as Extractables by Environmental Protection Agency (EPA) SW 846 Method 8015B

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average calibration factors were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
211029A LCS/LCSD (ERH1859 ERH1861)	Oil (C24-C40)	116 (41-113)	-	NA	-

Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples ERH1859 and ERH1861 were identified as field duplicates. No results were detected in any of the samples.

X. Target Analyte Quantitation

All target analyte quantitations met validation criteria.

XI. Target Analyte Identification

All target analyte identifications met validation criteria.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 97984

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 97984

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 97984

No Sample Data Qualified in this SDG

LDC #: <u>53054A8</u>	VALIDATION COMPLETENESS WORKSHEET	Date: <u> </u>
SDG #: 97984	Stage 4	Page: <u> </u>
Laboratory: APPL, Inc., Clovis	s, CA	Reviewer:

Review 2nd Reviewer

METHOD: GC TPH as Extractables (EPA SW-846 Method 8015B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A/A	
١١.	Initial calibration/ICV	$\Delta_{/\Delta}$	$0_0 \text{ PSD} = 20, 1^2 \text{ IcV} = 20$
111.	Continuing calibration / ending	4	CW 2 20 20
IV.	Laboratory Blanks	Δ	• 7
V.	Field blanks	と	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	Ν	65
VIII.	Laboratory control samples	SW	Les 19
IX.	Field duplicates	NN	D = 1/2
Х.	Target analyte quantitation		
XI.	Target analyte identification	A	
	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

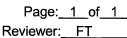
D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1-	ERH1859	BA44379	Water	10/26/21
	ERH1861 17	BA44380	Water	10/26/21
2 3	ERH1859(SGCU)	BA44379(SGCU)	Water	10/26/21
	ERH1861(SGCU)	BA44380(SGCU)	Water	10/26/21
4 5 6 7 8 9 10 11				
6				
7				
8				
9				
10				
11				
12				
13				
Notes				
	211029A - BIK			
	21/029A1-BIL			

Method: GC HPLC

Method: <u>v</u> GCHPLC	T	<u> </u>		
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times		,	r	man
Were all technical holding times met?		L		
Was cooler temperature criteria met?				
IIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	$\lfloor 2 \rfloor$			
Were all percent relative standard deviations (%RSD) < 20%?	-			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?	/			
Were the RT windows properly established?	/	-		
IIb. Initial calibration verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/			
Were all percent differences (%D) $\leq 20\%$?	/			
III. Continuing calibration				
Was a continuing calibration analyzed daily?	/			
Were all percent differences (%D) ≤ 20%?	/			
Were all the retention times within the acceptance windows?	/			
IV. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	/ /			
Was a laboratory blank analyzed for each matrix and concentration?	/			
Was there contamination in the laboratory blanks?		\langle		
V. Field Blanks				
Were field blanks identified in this SDG?		/		
Were target analytes detected in the field blanks?			/	
VI. Surrogate spikes				
Were all surrogate percent recovery (%R) within the QC limits?				
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?			-	
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?			_	
VII. Matrix spike/Matrix spike duplicates			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?			/	
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	
VIII. Laboratory control samples				
Was an LCS analyzed per analytical or extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				


LDC #: 53054AX

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
IX. Field duplicates				
Were field duplicate pairs identified in this SDG?	/			
Were target analytes detected in the field duplicates?			F	
X. Target analyte quantitation			<u> </u>	
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?				
Were analyte quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?		-		
XI. Target analyte identification				
Were the retention times of reported detects within the RT windows?	/			
Were manual integrations reviewed and found acceptable?	\langle			
Did the laboratory provide before and after integration printouts?				
XIII. Overall assessment of data	-			
Overall assessment of data was found to be acceptable.	/			

LDC #: 53054 AX

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

(0)

METHOD: V GC HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". <u>Y N N/A</u> Were a laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) analyzed for each matrix in this SDG? Were the LCS percent recoveries (%R) and relative percent differences (RPD) within the QC limits?

Level IV/D Only

<u>YNN/A</u> Was an LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

		<u> </u>							
#	LCS/LCSD ID	Compound	LCS %R (Limits)		LCSD %R (Limits)		RPD (Limits)	Associated Samples	Qualifications
	2110294	0il (c24-c4	a) 116 (4]-1]	3)	()	()	1,2,211029A -BIK	J'det IP ND
	us 10		/ ()	()	()		/.
			()	()	()		
			()	()	()		
			()	()	()		
	······································		()	()	()		
			(()	()		
			· · · · · · · · · · · · · · · · · · ·)	(
			()	()	()		
			()	()	()		
			()	()	()		
			())	()		
			()	()	()		
			()	()	()		
			()	()	()		
			(
			()	(()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			((γ)	()		

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: __1__ of _1___ Reviewer: ____FT___

METHOD: GC __X___ HPLC _____

The calibration factors (CF), average CF, and relative standard deviation (%RSD) were recalculated for compounds identified below using the following calculations:

CF = A/C average CF = sum of the CF/number of standards %RSD = 100 * (S/X) A = Area of compound
 C = Concentration of compound
 S = Standard deviation of calibration factors
 X = Mean of calibration factors

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
1		Calibration				Average CF	Average CF	%RSD	%RSD
#	Standard ID	Date	Compound	(std=250ppb)	(std=250ppb)	(Initial)	(Initial)		
1	ICAL	10/28/2021	Diesel C10-C24)	2418941	2418941	2516669	2516669	8.7	8.7
	Apollo								

Where:

LDC #: 53054 AX

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: <u>1</u> of <u>1</u> Reviewer: <u>FT</u>

METHOD: GC ______HPLC _____

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 * (ave. CF -CF)/ave.CF

Where: ave. CF = initial calibration average CF

CF = continuing calibration CF

A = Area of target analyte

C = Concentration of target analyte

	Standard	Calibration			Reported	Recalculated	Reported	Recalculated
#	ID	Date	Target Analyte	Average CF(Ical)/ CCV Conc.	CF/ Conc. CCV	CF/ Conc. CCV	%D	%D
1	cer	1/3/2/	Diesel CID-CZY	2516670	23/4530	23/4530	8.0	8.0
	1101110	t					······	
2	00N 11100033	11/10/2/	V	ł	2403900	2403900	4-5	4.57
	1110001							
3								
5								
4								
			bration findings worksheet	for list of qualifications a	and associated sam	ples when reported	results do not ag	ree within 10.0% of
<u>the r</u>	ecalculated resu	lts				···		

VALIDATION FINDINGS WORKSHEET **Surrogate Results Verification**

LDC #:______S7054AS

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Ħ Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
9		144.23/	132.698	92.0	92.0	U
Н		1	108.084	74.9	74.9	U

Sample ID:_____

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
	· · · · · · · · · · · · · · · · · · ·					
			· · · · · · · · · · · · · · · · · · ·			

	Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound
A	Chlorobenzene (CBZ)	G	Octacosane	м	Benzo(e)Pyrene	S	1-Chloro-3-Nitrobenzene	Y	Tetrachloro-m- xylene
В	4-Bromofluorobenzene (BFB)	н	Ortho-Terphenyl	N	Terphenyl-D14	т	3,4-Dinitrotoluene	z	2-Bromonaphthalene
C,	a,a,a-Trifluorotoluene	1	Fluorobenzene (FBZ)	0	Decachlorobiphenyl (DCB)	U	Tripentyltin	AA	Chloro-octadecane
D	Bromochlorobenene	J	n-Triacontane	P	1-methylnaphthalene	v	Tri-n-propyltin	BB	2,4-Dichlorophenylacetic acid
E	1,4-Dichlorobutane	к	Hexacosane	Q	Dichlorophenyl Acetic Acid (DCAA)	w	Tributyl Phosphate	сс	2,5-Dibromotoluene
F	1,4-Difluorobenzene (DFB)	L	Bromobenzene	R	4-Nitrophenol	x	Triphenyl Phosphate		

LDC #: 53094 68

VALIDATION FINDINGS WORKSHEET

Page: 1_of 1_

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification Reviewer: FT

METHOD: GC_HPLC

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the target analytes identified below using the following calculation:

%Recovery = 100 * (SSC/SA) RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100 Where SSC = Spiked sample concentration LCS = Laboratory Control Sample

SA = Spike added LCSD = Laboratory Control Sample duplicate

211029A 10510 LCS/LCSD samples:

	Sp Ad	ike dęd	Spike S Concer	Sample	LC	s	LC	SD	LCS/L	.CSD
Compound	<u> (</u>	<u> 7Ľ)</u>	("	<u>[[]</u>	Percent I	Recovery	Percent I	Recovery	RP	D
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Diesel (cro-cry)	ww	2000	2/00	1980	105	-دەر	99	999	5.9	5.9
,										
Comments:										

VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

Page: <u>1_of_1</u> Reviewer: <u>FT</u>

LDC #:<u>53054</u>AB

The concentration of the sample was calculated for the target analyte identified below using the following calculation:

Concentration= (A)(Fv)(Df)	Example:	
(RF)(Vs or Ws)(%S/100)	Sample ID. <u>2110 29A LCS</u>	Diesel CIO-C24)
A= Area or height of the target analyte to be measured Fv= Final Volume of extract		<u> </u>
Df= Dilution Factor RF= Average response factor of the target analyte	Concentration =	2114420240 (5) (1000) =
In the initial calibration Vs= Initial volume of the sample Ws= Initial weight of the sample		2516670 (1000) (2)
%S= Percent Solid		

#	Sample ID	Target analyte	Reported Concentrations (<u>ug</u> /L)	Recalculated Results Concentrations (பது /)	Qualifications
	Les	Diesel cp-czy	2100	2/00	
ľ					

Comments:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
	The first build bu

LDC Report Date:	January 21, 2022
Parameters:	Volatiles
Validation Level:	Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97943

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1823	BA44047	Water	10/20/21
ERH1824	BA44048	Water	10/20/21
ERH1826	BA44049	Water	10/20/21
ERH1827	BA44050	Water	10/20/21
ERH1829	BA44051	Water	10/20/21
ERH1830	BA44052	Water	10/20/21
ERH1832	BA44053	Water	10/20/21
ERH1833	BA44054	Water	10/20/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) which are Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples ERH1823, ERH1826, ERH1829, and ERH1832 were identified as trip blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Data Qualification Summary - SDG 97943

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Laboratory Blank Data Qualification Summary - SDG 97943

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Field Blank Data Qualification Summary - SDG 97943

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

SDG #: <u>97943</u> Laboratory: <u>APPL, Inc., Clovis, CA</u>

LDC #: 53054B1a

Date: 1/18/2 Page: 1 of 1 Reviewer: 17 2nd Reviewer: 7

METHOD: GC/MS Volatiles (BTEX) (EPA SW-846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u> .	Sample receipt/Technical holding times	A1A	
П.	GC/MS Instrument performance check	4	
- 111.	Initial calibration/ICV	A/A	$^{\circ}/_{\circ}$ PSD $\leq 1^{5}$ $101 \leq 20$
IV.	Continuing calibration ending	4	CLV = 20 5D
V.	Laboratory Blanks	6	
VI.	Field blanks	ND	TB=1, 3, 5, 7
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	Ч	UN
IX.	Laboratory control samples	A	LOSID
Х.	Field duplicates	N	
XI.	Internal standards	5	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	K	

Note: A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1 -	ERH1823 TB	BA44047	Water	10/20/21
2	ERH1824	BA44048	Water	10/20/21
3	ERH1826 TB	BA44049	Water	10/20/21
4+	ERH1827	BA44050	Water	10/20/21
5	ERH1829 T B	BA44051	Water	10/20/21
6	ERH1830	BA44052	Water	10/20/21
7	ERH1832 TB	BA44053	Water	10/20/21
8	ERH1833	BA44054	Water	10/20/21
9				
Notes				
	211026BM			

LDC Report# 53054B2b

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
--------------------	---

LDC Report Date: January 21, 2022

Parameters: Polynuclear Aromatic Hydrocarbons

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97943

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1824	BA44048	Water	10/20/21
ERH1827	BA44050	Water	10/20/21
ERH1830	BA44052	Water	10/20/21
ERH1833	BA44054	Water	10/20/21

÷

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) which are 1-Methylnaphthalene, 2-Methylnaphthalene, and Naphthalene by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 97943

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 97943

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 97943

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

SDG #: 97943

LDC #: 53054B2b

Date Page: Reviewer 2nd Reviewer

Laboratory: APPL, Inc., Clovis, CA

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW-846 Method 8270D-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A A	
П.	GC/MS Instrument performance check	A	
III.	Initial calibration/ICV	41	0 /0 PSD ≤ 15 KV ≤ 20
IV.	Continuing calibration	A	$\begin{array}{c} \circ & \rho \\ \circ & \rho \\$
V.	Laboratory Blanks	Δ	l
VI.	Field blanks	2	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	N	65
IX.	Laboratory control samples	Δ	LCSM
X.	Field duplicates	Ч	
XI.	Internal standards	Δ	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data		

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID			Lab ID	Matrix	Date
ſ	ERH1824		 	BA44048	Water	10/20/21
1 2 3 4 5 6	ERH1827	 		BA44050	Water	10/20/21
3	ERH1830	 		BA44052	Water	10/20/21
₄t	ERH1833			BA44054	 Water	10/20/21
5		 	 			
6					 	
7						
7 8						
9			 			
Notes		 	 		 	
	211026AK					

LDC Report# 53054B6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Bulk Storage Facility, CTO 18F0126

LDC Report Date: January 21, 2022

Parameters: Total Organic Carbon

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97943

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1824	BA44048	Water	10/20/21
ERH1827	BA44050	Water	10/20/21
ERH1830	BA44052	Water	10/20/21
ERH1833	BA44054	Water	10/20/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
11/05/21	CCV (17:26)	Total organic carbon	87.7 (90-110)	ERH1833	J- (all detects)	Ρ
11/06/21	CCV (03:12)	Total organic carbon	82.2 (90-110)	ERH1833	J- (all detects)	Р

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to continuing calibration %R, data were qualified as estimated in one sample.

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Data Qualification Summary - SDG 97943

Sample	Analyte	Flag	A or P	Reason (Code)
ERH1833	Total organic carbon	J- (all detects)	Ρ	Continuing calibration (%R) (c)

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Laboratory Blank Data Qualification Summary - SDG 97943

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Field Blank Data Qualification Summary - SDG 97943

No Sample Data Qualified in this SDG

LDC #:	<u>53054B6</u>		V
SDG #:_	97943		
Laborato	ry: APPL,	Inc., Clovis	<u>, CA</u>

ALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: 1/10/2	2
Page: <u> _of_ </u> _	
Reviewer: ATL	
2nd Reviewer:	
· (

METHOD: (Analyte) TOC (EPA SW-846 Method 9060A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u>I.</u>	Sample receipt/Technical holding times	AIA	
11	Initial calibration	A	
- 111.	Calibration verification	S₩	
IV	Laboratory Blanks	A	
v	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	N	C.S
VII.	Duplicate sample analysis	N	
VIII.	Laboratory control samples	A	LCSILCSD
IX.	Field duplicates	Ň	• •
X.	Target Analyte Quantitation	N	
XI.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	ERH1824	BA44048	Water	10/20/21
2	ERH1827	BA44050	Water	10/20/21
3	ERH1830	BA44052	Water	10/20/21
4	ERH1833	BA44054	Water	10/20/21
5				
6				
7				
8				
9				
5 6 7 8 9 10 11 12 13 14 15				
11				
12				
13				
14				
15				
Note	S:			

VALIDATION FINDINGS WORKSHEET Calibration

Page: 1 of 1 Reviewer: ATL

METHOD: Inorganics, EPA Method <u>See cover</u>

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A Were all instruments calibrated daily, each set-up time, and were the proper number of standards used? Y (N)N/A

Were all initial and continuing calibration verification percent recoveries (%R) within the control limits of 90-110%?

Are all correlation coefficients >0.995 ?

LEVEL IV/D ONLY: Y N NA

Y) N N/A

Y N (N/A)

Y N (N/A)

Were recalculated results acceptable? See Level IV Initial and Continuing Calibration Recaluculation Worksheet for recalulations.

Was a balance check conducted prior to the TDS analysis.?

Was the titrant normality checked?

#	Date	Calibration ID	Analyte	%R	Associated Samples	Qualifications Code: c
	11/05/21	CCV (17:26)	тос	87.7 (90-110)	4	J-/UJ/P (detect)
		CCV (03:12)		82.2 (90-110)		J-/UJ/P (detect)

Comments:

LDC Report# 53054B7

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
--------------------	---

LDC Report Date: January 2	1,2022
----------------------------	--------

Parameters: Gasoline Range Organics

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97943

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1823	BA44047	Water	10/20/21
ERH1824	BA44048	Water	10/20/21
ERH1826	BA44049	Water	10/20/21
ERH1827	BA44050	Water	10/20/21
ERH1829	BA44051	Water	10/20/21
ERH1830	BA44052	Water	10/20/21
ERH1832	BA44053	Water	10/20/21
ERH1833	BA44054	Water	10/20/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Х (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Samples ERH1823, ERH1826, ERH1829, and ERH1832 were identified as trip blanks. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Data Qualification Summary - SDG 97943

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 97943

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 97943

No Sample Data Qualified in this SDG

VALIDATION	COMPL	ETENESS	WORKSHEET
------------	-------	---------	-----------

LDC #: <u>53054B7</u> **V** SDG #: <u>97943</u> Laboratory: <u>APPL, Inc., Clovis, CA</u>

Stage 2B

Date:		18	w
Page:_ Reviewer:	1	of	The second second
2nd Reviewer:	_	4	_

METHOD: GC/MS Gasoline Range Organics (EPA SW-846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A IA	
۱۱.	GC/MS Instrument performance check		
111.	Initial calibration/ICV	A1A	f^{2} $icy = \varpi$
IV.	Continuing calibration	A	$\int \frac{1}{1} $
V.	Laboratory Blanks	4	
VI.	Field blanks	ND	TP =1, 3, 5,7
VII.	Surrogate spikes	4	
VIII.	Matrix spike/Matrix spike duplicates	N	65
IX.	Laboratory control samples	A	Les 10
Х.	Field duplicates	N	
XI.	Internal standards	Δ	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data		

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	ERH1823 TB	BA44047	Water	10/20/21
2	ERH1824	BA44048	Water	10/20/21
3	ERH1826 TB	BA44049	Water	10/20/21
4	ERH1827	BA44050	Water	10/20/21
4 5 6	ERH1829 TB	BA44051	Water	10/20/21
6	ERH1830	BA44052	Water	10/20/21
7	ERH1832 TB	BA44053	Water	10/20/21
84	ERH1833	BA44054	Water	10/20/21
9		<u> </u>	<u> </u>	
Notes				
	211026 BM-BIK			

LDC Report# 53054B8

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
LDC Report Date:	March 3, 2022
Parameters:	Total Petroleum Hydrocarbons as Extractables
Validation Level:	Stage 2B
Laboratory:	APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97943

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
ERH1824	BA44048	Water	10/20/21
ERH1824RE	BA44048RE	Water	10/20/21
ERH1827	BA44050	Water	10/20/21
ERH1830	BA44052	Water	10/20/21
ERH1830RE	BA44052RE	Water	10/20/21
ERH1833	BA44054	Water	10/20/21
ERH1833RE	BA44054RE	Water	10/20/21
ERH1824(SGCU)	BA44048(SGCU)	Water	10/20/21
ERH1824RE(SGCU)	BA44048RE(SGCU)	Water	10/20/21
ERH1827(SGCU)	BA44050(SGCU)	Water	10/20/21
ERH1830(SGCU)	BA44052(SGCU)	Water	10/20/21
ERH1830RE(SGCU)	BA44052RE(SGCU)	Water	10/20/21
ERH1833(SGCU)	BA44054(SGCU)	Water	10/20/21
ERH1833RE(SGCU)	BA44054RE(SGCU)	Water	10/20/21

Samples appended with "SGCU" underwent Silica Gel cleanup

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons as Extractables by Environmental Protection Agency (EPA) SW 846 Method 8015B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average calibration factors were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Analyte	Flag	A or P
ERH1824	ortho-Terphenyl	52.5 (56-125)	TPH as extractables	UJ (all non-detects)	А

Sample	Surrogate	%R (Limits)	Affected Analyte	Flag	A or P
ERH1824(SGCU)	Octacosane ortho-Terphenyl	58.9 (60-142) 47.4 (56-125)	TPH as extractables	UJ (all non-detects)	A
ERH1830(SGCU)	ortho-Terphenyl	54.2 (56-125)	TPH as extractables	UJ (all non-detects)	А
ERH1833(SGCU)	Octacosane ortho-Terphenyl	48.7 (60-142) 38.7 (56-125)	TPH as extractables	UJ (all non-detects)	A

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were recommended for exclusion as follows:

Sample	Analyte	Reason	Flag	A or P
ERH1824 ERH1830 ERH1833 ERH1824(SGCU) ERH1830(SGCU) ERH1833(SGCU)	All analytes	Lower result or surrogate outside of limits,	х	A

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 97943

Sample	Analyte	Flag	A or P	Reason (Code)
ERH1824 ERH1830 ERH1833 ERH1824(SGCU) ERH1830(SGCU) ERH1833(SGCU)	All analytes	x	A	Overall assessment of data (d)

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 97943

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126

Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 97943

No Sample Data Qualified in this SDG

LDC #: <u>53054B8</u>	VALIDATION COMPLETENESS WORKSHEET	
SDG #:97943	Stage 2B	I
Laboratory: <u>APPL, Inc., Clovis</u>	<u>, CA</u>	Rev

Date Page viewer 2nd Reviewer

METHOD: GC TPH as Extractables (EPA SW-846 Method 8015B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AIA	
11.	Initial calibration/ICV	A/A	$\frac{0}{0} \text{PSP} \doteq 20, \text{(P')} \text{(cV} \leq 20) \\ \text{cW} \leq 20, \text{(V)} \text{(cV)} = 20 \\ \text{(V)} \text{(CV)} \text{(CV)}$
111.	Continuing calibration	4	CW 620 20
IV.	Laboratory Blanks	A	
V.	Field blanks	N	
VI.	Surrogate spikes	su)	
VII.	Matrix spike/Matrix spike duplicates	2	05
VIII.	Laboratory control samples	A	Les 10
IX.	Field duplicates	N	
Х.	Target analyte quantitation	N	
XI.	Target analyte identification	Ν,	
	Overall assessment of data	لى ي	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

Client ID Lab ID Matrix Date BA44048 ERH1824 10/20/21 Water 2t2 ERH1824R BA44048R Water 10/20/21 3+1 ERH1827 BA44050 Water 10/20/21 4+1 ERH1830 BA44052 Water 10/20/21 ERH1830RXE -5 t BA44052RX Water 10/20/21 1 6 ERH1833 BA44054 10/20/21 Water 7 **3** ERH1833R BA44054R Water 10/20/21 82 BA44048(SGCU) ERH1824(SGCU) Water 10/20/21 ERH1824R (SGCU) BA44048RK(SGCU) 94 Water 10/20/21 BA44050(SGCU) 102 ERH1827(SGCU) Water 10/20/21 112 ERH1830(SGCU) BA44052(SGCU) Water 10/20/21 12 4 ERH1830R (SGCU) BA44052RK(SGCU) Water 10/20/21 13 Z ERH1833(SGCU) BA44054(SGCU) Water 10/20/21 <u>14</u> ERH1833RX(SGCU) BA44054RX(SGCU) Water 10/20/21 15 211026A -BIK 16 BILL 21/026A) -2111034 611 5

211103A1 - BILC L:\AECOM\Red Hill\53054B8W.wpd 4

LDC #: 53054 BX

VALIDATION FINDINDS WORKSHEET Surrogate Recovery

METHOD: V GC HPLC

Are surrogates required by the method? Yes ____ or No____

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

 $\frac{1}{N_{\rm N}N/A}$ Were surrogates spiked into all samples and blanks?

Y(N/N/A) Did all surrogate recoveries (%R) meet the QC limits?

Sample Detector/ Surrogate Compound # ID Column %R (Limits) Qualifications 52.5 3-143/A (56-125 H ND ND 1-/41/A 58.9 G 60-142 S 56-125 47.4 H NV H 54.2 56-125 al cul 11 1-60-142 w/s NO 48.7 ~ 13 4 56-125 38.1 211103A-BIK J-MJI6 Ц 56-125 53.8 Surrogate Compound Surrogate Compound Surrogate Compound Surrogate Compound G М Benzo(e)Pyrene s 1-Chloro-3-Nitrobenzene Υ Α Chlorobenzene (CBZ) Octacosane Tetrachloro-m- xylene 4-Bromofluorobenzene (BFB) н Ortho-Terphenyl Ν Terphenyl-D14 т 3.4-Dinitrotoluene z 2-Bromonaphthalene в U 0 AA C. a.a.a-Trifluorotoluene . 1 Fluorobenzene (FBZ) Decachlorobiphenyl (DCB) Tripentyltin Chloro-octadecane Р v Tri-n-propyltin BB D Bromochlorobenene 1 n-Triacontane 1-methylnaphthalene 2,4-Dichlorophenylacetic acid F 1.4-Dichlorobutane к Hexacosane Q Dichlorophenyl Acetic Acid (DCAA) w Tributyl Phosphate сс 2.5-Dibromotoluene 1.4-Difluorobenzene (DFB) R Bromobenzene 4-Nitrophenol х Triphenvl Phosphate

(5)

LDC #: 57054 BX

.

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: <u>1</u> of <u>1</u> Reviewer: <u>FT</u>

METHOD: <u>GC</u> HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Y M	N/A Was the overall quality a	and usability of the data acceptable?	(d)			
_#	Associated samples	Compounds	Findings	Qualifications		
	1, 4, 6, 8, 11, 13	AU	lower result or suntagate outside limit	X/A		
			sunogati outsid			
			limit			
				······		
<u> </u>	· · · · · · · · · · · · · · · · · · ·					
				**		
L						

Comments: _____

LDC Report# 53054C1a

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Bulk Storage Facility, CTO 18F0126

LDC Report Date:	January 21, 2022
------------------	------------------

Parameters: Volatiles

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98278

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1929	BA46713	Water	11/17/21
ERH1930	BA46714	Water	11/17/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) which are Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J-(Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- Х (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample ERH1929 was identified as a trip blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Data Qualification Summary - SDG 98278

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Laboratory Blank Data Qualification Summary - SDG 98278

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Field Blank Data Qualification Summary - SDG 98278

No Sample Data Qualified in this SDG

ALIDATION COMPLETENESS WORK	SHEET
-----------------------------	-------

Stage 2B

LDC #: <u>53054C1a</u> ν SDG #: 98278 Laboratory: APPL, Inc., Clovis, CA

18/22 Date Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS Volatiles (BTEX) (EPA SW-846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A /A	
١١.	GC/MS Instrument performance check	Δ	
111.	Initial calibration/ICV	A/A	0 PSD = 15 (2 104 = 20
IV.	Continuing calibration	4	CUV = 20 50
V.	Laboratory Blanks	A	
VI.	Field blanks	NO	TB = 1
VII.	Surrogate spikes	А	
VIII.	Matrix spike/Matrix spike duplicates	と	
IX.	Laboratory control samples	A	ues 10
Х.	Field duplicates	N	
XI.	Internal standards	Δ	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data		

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected
R = Rinsate
FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID		Lab ID	Matrix	Date
1	ERH1929 TO	 	 BA46713	Water	11/17/21
2	ERH1930	 	 BA46714	Water	11/17/21
3		 	 		
4		 	 		
5 6		 			
6		 			
7 8 9 Notes		 			
8		 	 		
9		 			
Notes					
	21112922				

LDC Report# 53054C2b

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
--------------------	---

LDC Report Date: January 21, 2022

Parameters: Polynuclear Aromatic Hydrocarbons

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98278

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1930	BA46714	Water	11/17/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017). the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) which are 1-Methylnaphthalene, 2-Methylnaphthalene, and Naphthalene by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 98278

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 98278

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 98278

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

LDC #: 53054C2b SDG #: 98278

Date Page: Reviewer: 2nd Reviewer

Laboratory: APPL, Inc., Clovis, CA

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW-846 Method 8270D-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Sample receipt/Technical holding times	414	
11.	GC/MS Instrument performance check	Δ	
Ш.	Initial calibration/ICV	A /A	°/0 p5D = 15 1CY = 20
IV.	Continuing calibration ending	6	$0/0$ $p_{5D} = 15$ $1CY = 20$ CW = 20 50
V.	Laboratory Blanks		•
VI.	Field blanks	N	
VII.	Surrogate spikes	4	
VIII.	Matrix spike/Matrix spike duplicates	Ν	CS
IX.	Laboratory control samples	A	Les IP
Х.	Field duplicates	N	
XI.	Internal standards	Δ	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data		

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID		Lab ID	Matrix	Date
1	ERH1930		BA46714	Water	11/17/21
2					
3					
4		-			
5					
6					
7					
8					
9					
Votes		 	 		
	211119AK-BIK				
			····		

LDC Report# 53054C6

Laboratory Data Consultants, Inc. Data Validation Report

LDC Report Date. January 21, 2022	LDC Report D	ate:	January 21,	2022
-----------------------------------	--------------	------	-------------	------

Parameters: Total Organic Carbon

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98278

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
ERH1930	BA46714	Water	11/17/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Data Qualification Summary - SDG 98278

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Laboratory Blank Data Qualification Summary - SDG 98278

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Field Blank Data Qualification Summary - SDG 98278

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET Stage 2B

Date:<u>1/19/2</u>2 Page:_1of_1_ Reviewer:_<u>4TV_</u> 2nd Reviewer:_7__

METHOD: (Analyte) TOC (EPA SW-846 Method 9060A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AA	
11	Initial calibration	A	
111.	Calibration verification	A	
IV	Laboratory Blanks	A	
v	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	N	QS
VII.	Duplicate sample analysis	N	
VIII.	Laboratory control samples	A	LCSILCSD
IX.	Field duplicates	N	
Х.	Target Analyte Quantitation	N	
XI.	Overall assessment of data	A	

Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	ERH1930	BA46714	Water	11/17/21
1 2 3 4				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15_				
Votes	S:			

LDC Report# 53054C7

Laboratory Data Consultants, Inc. Data Validation Report

LDC Report Date:	January 21, 2022

Parameters: Gasoline Range Organics

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98278

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1929	BA46713	Water	11/17/21
ERH1930	BA46714	Water	11/17/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work. Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample ERH1929 was identified as a trip blank. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Data Qualification Summary - SDG 98278

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 98278

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 98278

No Sample Data Qualified in this SDG

LDC #:_	53054C7	VALIDATION COMPLETENESS WORKSHEET
SDG #:	98278	Stage 2B

Date: 1/18/22 Page: _____ of ____ viewer: ______ Reviewer: 2nd Reviewer:

Laboratory: APPL, Inc., Clovis, CA

METHOD: GC/MS Gasoline Range Organics (EPA SW-846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AIA	
Ш.	GC/MS Instrument performance check	Δ	
- 111.	Initial calibration/ICV	AID	
IV.	Continuing calibration	6	
V.	Laboratory Blanks	N	
VI.	Field blanks	NO	TB=)
VII.	Surrogate spikes		
VIII.	Matrix spike/Matrix spike duplicates	N	<i>دی</i>
IX.	Laboratory control samples	4	Las/P
X.	Field duplicates	N	
XI.	Internal standards	A	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	ERH1929 TB	BA46713	Water	11/17/21
2	ERH1930	BA46714	Water	11/17/21
3				
4				
5				
6				
7				
8				
9				
Notes				
	211129AL-BIK			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
--------------------	---

LDC Report Date: January 21, 2022

Parameters:Total Petroleum Hydrocarbons as Extractables

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98278

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1930	BA46714	Water	11/17/21
ERH1930(SGCU)	BA46714(SGCU)	Water	11/17/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan. Addendum 03. Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons as Extractables by Environmental Protection Agency (EPA) SW 846 Method 8015B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average calibration factors were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 98278

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 98278

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 98278

No Sample Data Qualified in this SDG

LDC #: 53054C8 VALIDATION COMPLETENESS WOR	KSHEET D.
SDG #: <u>98278</u> Stage 2B	Pa
Laboratory: <u>APPL, Inc., Clovis, CA</u>	Review

Date: 1 18 22 Page: bf 1 Reviewer: 2nd Reviewer:

METHOD: GC TPH as Extractables (EPA SW-846 Method 8015B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AIA	
Ш.	Initial calibration/ICV	AIA	0 γ
111.	Continuing calibration ending	4	$\begin{array}{c} 0 \ 1 \\ 0 \ 1 \\ 0 \ 2 \ 2 \\ 0 \ 2 \ 2 \ 2 \\ 0 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \$
IV.	Laboratory Blanks	A	
V.	Field blanks	で	
VI.	Surrogate spikes	4	
VII.	Matrix spike/Matrix spike duplicates	N	45
VIII.	Laboratory control samples	4	res/17
IX.	Field duplicates	N	
Х.	Target analyte quantitation	N	
XI.	Target analyte identification	N	
	Overall assessment of data	K	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank

Client ID Lab ID Matrix Date 1 ERH1930 BA46714 Water 11/17/21 2 BA46714(SGCU) ERH1930(SGCU) Water 11/17/21 3 4 5 6 7 8 9 10 11 12 13 Notes:

211/22 A-BIK			
211122 AI-BIK			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
--------------------	---

LDC Report Date: January 21, 2022

Parameters: Volatiles

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98285

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1932	BA46715	Water	11/17/21
ERH1933	BA46716	Water	11/17/21
ERH1935	BA46717	Water	11/17/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work. Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017). the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) which are Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample ERH1932 was identified as a trip blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples ERH1933 and ERH1935 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Data Qualification Summary - SDG 98285

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Laboratory Blank Data Qualification Summary - SDG 98285

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Field Blank Data Qualification Summary - SDG 98285

No Sample Data Qualified in this SDG

VALIDATION	COMPL	ETENESS	WORKSHEET

LDC #: <u>53054D1a</u> **V/** SDG #: <u>98285</u> Laboratory: <u>APPL, Inc., Clovis, CA</u>

Stage 2B

2nd	Date: Page:_ Reviewer: Reviewer:	 +°	18 1-1 F	122
			-	-

METHOD: GC/MS Volatiles (BTEX) (EPA SW-846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AIA	
١١.	GC/MS Instrument performance check	4	
<u> </u>	Initial calibration/ICV	AIA	$\frac{2}{0}$ $\frac{1}{100} \pm 15$, $\frac{1^{2}}{100}$ $\frac{1}{100} \pm 20$ $\frac{1}{100} \pm 15$
IV.	Continuing calibration	A	CON £ 20 50
V.	Laboratory Blanks	A	-
VI.	Field blanks	NO	TB = 1
VII.	Surrogate spikes	Δ	
VIII.	Matrix spike/Matrix spike duplicates	N	
IX.	Laboratory control samples	7	Les ID
Х.	Field duplicates	34	$p = \gamma_1 3$
XI.	Internal standards		
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	, A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

SB=Source blank OTHER:

	Client ID		Lab ID	Matrix	Date
1	ERH1932 TB		 BA46715	Water	11/17/21
1 2 3 4 5 6	ERH1933		BA46716	Water	11/17/21
3	ERH1935	 	BA46717	Water	11/17/21
4		 			
5		 			
6					
7					
8					
9		 			
Notes	:	 	 		
	211129AL				

LDC Report# 53054D2b

Laboratory Data Consultants, Inc. Data Validation Report

LDC Report Date: January 21, 2022

Parameters: Polynuclear Aromatic Hydrocarbons

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98285

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1933	BA46716	Water	11/17/21
ERH1935	BA46717	Water	11/17/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) which are 1-Methylnaphthalene, 2-Methylnaphthalene, and Naphthalene by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples ERH1933 and ERH1935 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 98285

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 98285

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 98285

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

LDC #: <u>53054D2b</u> **V/** SDG #: <u>98285</u> Laboratory: <u>APPL, Inc., Clovis, CA</u>

Date: ____/8/72 Page: ____of___/ Reviewer: ____7 2nd Reviewer: ____7

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW-846 Method 8270D-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validatio	on Area					Comments
١.	Sample receipt/Technical	holding times	414				
11.	GC/MS Instrument perfor	mance check	A				
Ш.	Initial calibration/ICV	•	A/A	0/0	PSD	= 15	$\frac{ c = 20}{ c + 20 50}$
IV.	Continuing calibration	lending	Δ				CUV 4 20/50
V.	Laboratory Blanks		4				
VI.	Field blanks		N				
VII.	Surrogate spikes		A				
VIII.	Matrix spike/Matrix spike	duplicates	N	es			
IX.	Laboratory control sample	es	Δ	ies	Ø		
Х.	Field duplicates		ND	D	= 1	2	
XI.	Internal standards		Δ				
XII.	Target analyte quantitatio	n	N				
XIII.	Target analyte identification	on	N				
XIV.	System performance		N				
XV.	Overall assessment of da	ta	<u>A</u>				

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID			Lab ID	Matrix	Date
1 2 3 4 5 6 7 8	ERH1933	 	 	BA46716	Water	11/17/21
2	ERH1935	 	 	BA46717	Water	11/17/21
3		 	 			
4		 	 			
5		 	 			
6		 	 			
7		 				
8		 	 			
9 Notes	<u> </u>	 	 		<u> </u>	
Notes		 	 			
	211119AK			<u> </u>		
	· · · ·					
						_

LDC Report# 53054D6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Bulk Storage Facility, CTO 18F0126

LDC Report Date: January 21, 2022

Parameters: Total Organic Carbon

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98285

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1933	BA46716	Water	11/17/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan. Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

(\LDCFILESERVER\VALIDATION\LOGIN\AECOM\RED HILL\53054D6_AE3.DOC

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Data Qualification Summary - SDG 98285

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Laboratory Blank Data Qualification Summary - SDG 98285

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Field Blank Data Qualification Summary - SDG 98285

No Sample Data Qualified in this SDG

LDC #:_	<u>53054D6</u>	_ VA
SDG #:_	98285	
Laborate	ory: <u>APPL, Inc., Clo</u>	vis, CA

ALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date:	1	119	22
Page:_	1	of 1	,
Reviewer:	_	471	
2nd Reviewer:		r	

METHOD: (Analyte) TOC (EPA SW-846 Method 9060A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Sample receipt/Technical holding times	AA	
п	Initial calibration	A	
<u> </u>	Calibration verification	A	
IV	Laboratory Blanks	A	
v	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	N	Cis
VII.	Duplicate sample analysis	N	
VIII.	Laboratory control samples	A	Lesilesd
IX.	Field duplicates	N	
X.	Target Analyte Quantitation	N	
XI.	Overall assessment of data	A	

Note: A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	ERH1933	BA46716	Water	11/17/21
2				
3				
4				
5				
6				
7				
8				
9				
10				
11			· · · · · · · · ·	
12				
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Notes				
14				
15				
Notes	S:			

LDC Report# 53054D7

Laboratory Data Consultants, Inc. Data Validation Report

LDC Report Date: January 21, 2022	LDC Report Date:	January 21, 2022
-----------------------------------	------------------	------------------

Parameters: Gasoline Range Organics

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98285

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1932	BA46715	Water	11/17/21
ERH1933	BA46716	Water	11/17/21
ERH1935	BA46717	Water	11/17/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample ERH1932 was identified as a trip blank. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples ERH1933 and ERH1935 were identified as field duplicates. No results were detected in any of the samples.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Data Qualification Summary - SDG 98285

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 98285

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 98285

No Sample Data Qualified in this SDG

LDC #:53054D7	VALIDATION COMPLETENESS WORKSHEET	Date:_
SDG #: <u>98285</u>	Stage 2B	Page:
Laboratory: <u>APPL, Inc., C</u>	lovis, CA	Reviewer:

	4 4	
Date:	1/18	22
Page:_	of/	
Reviewer:	1	
2nd Reviewer:	4	

METHOD: GC/MS Gasoline Range Organics (EPA SW-846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AA	
١١.	GC/MS Instrument performance check	A	
111.	Initial calibration/ICV	A/A	°/2 PSD Y2 ICY ≤ 20
IV.	Continuing calibration	A	$CCV \neq 20$ 20
V.	Laboratory Blanks	Δ	L
VI.	Field blanks	ND	TB=1
VII.	Surrogate spikes		
VIII.	Matrix spike/Matrix spike duplicates	N	0>
IX.	Laboratory control samples	A	us N
Х.	Field duplicates	ND	D = 2 + 3
XI.	Internal standards	K	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

SB=Source blank OTHER:

	Client ID			Lab ID	Matrix	Date
1 1 2 3 4 5 6	ERH1932 NV		 	BA46715	Water	11/17/21
2	ERH1933		 	BA46716	Water	11/17/21
3	ERH1935		 	BA46717	Water	11/17/21
4			 			
5		·····	 			
6			 			
7			 			
8			 			
9			 			<u> </u>
Notes	: 					
	211129AL					

LDC Report# 53054D8

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
--------------------	---

LDC Report Date: January 21, 2022

 Parameters:
 Total Petroleum Hydrocarbons as Extractables

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98285

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1933	BA46716	Water	11/17/21
ERH1935	BA46717	Water	11/17/21
ERH1933(SGCU)	BA46716(SGCU)	Water	11/17/21
ERH1935(SGCU)	BA46717(SGCU)	Water	11/17/21

Samples appended with "SGCU" underwent Silica Gel cleanup

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons as Extractables by Environmental Protection Agency (EPA) SW 846 Method 8015B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average calibration factors were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples ERH1933 and ERH1935 and samples ERH1933(SGCU) and ERH1935(SGCU) were identified as field duplicates. No results were detected in any of the samples.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126

Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary - SDG 98285

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 98285

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 98285

No Sample Data Qualified in this SDG

LDC #: <u>53054D8</u>	VALIDATION COMPLETENESS WORKSHEET			
SDG #: <u>98285</u>	Stage 2B			
Laboratory: <u>APPL, Inc., Clovis, CA</u>				

2nd Reviewer:	 	1/18/22 Lof
---------------	----------	----------------

METHOD: GC TPH as Extractables (EPA SW-846 Method 8015B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AIA	
١١.	Initial calibration/ICV	A/A	% psp ± 20, f 2 101 ± 20
	Continuing calibration ending	A	$c_{V} \neq 20/22$
IV.	Laboratory Blanks	Δ	[
<u>v.</u>	Field blanks	N	
<u>VI.</u>	Surrogate spikes	Δ	
VII.	Matrix spike/Matrix spike duplicates	N	
VIII.	Laboratory control samples	A	Les IP
IX.	Field duplicates	ND	D=1,2 3,4
Х.	Target analyte quantitation	N	
XI.	Target analyte identification	N	
	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1-	ERH1933	BA46716	Water	11/17/21
2 ^	ERH1935 9	BA46717	Water	11/17/21
3~	ERH1933(SGCU)	BA46716(SGCU)	Water	11/17/21
4	ERH1935(SGCU)	BA46717(SGCU)	Water	11/17/21
5	-			
6				
7				
8				
9				
10				
11				
12				
13				
Votes:				
	211122A - BIK			
	211122AI-BIK			
	· - · · · · · · · · · · · · · · · · · ·]

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Bulk Storage Facility, CTO 18F0126

LDC Report Date:	January 21, 2022
------------------	------------------

Parameters: Volatiles

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98299

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1917	BA46826	Water	11/17/21
ERH1918	BA46827	Water	11/17/21
ERH1920	BA46828	Water	11/17/21
ERH1921	BA46829	Water	11/17/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) which are Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples ERH1917 and ERH1920 were identified as trip blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

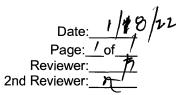
Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Data Qualification Summary - SDG 98299

No Sample Data Qualified in this SDG


Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Laboratory Blank Data Qualification Summary - SDG 98299

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Field Blank Data Qualification Summary - SDG 98299

No Sample Data Qualified in this SDG

LDC #: <u>53054E1a</u>	VALIDATION COMPLETENESS WORKSHEET
SDG #: 98299	Stage 2B
Laboratory: APPL, Inc., Clovis	<u>, CA</u>

METHOD: GC/MS Volatiles (BTEX) (EPA SW-846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments	
I.	Sample receipt/Technical holding times	A A		
١١.	GC/MS Instrument performance check	A		
ш.	Initial calibration/ICV	A.A	$2/p$ PSD = 15, 1^2 KN = 20	
IV.	Continuing calibration ending	4	Car = 20/50	
V.	Laboratory Blanks	Δ	1	
VI.	Field blanks	ND	TB= 1,3	
VII.	Surrogate spikes			
VIII.	Matrix spike/Matrix spike duplicates	Ν	C7	
IX.	Laboratory control samples	Δ	les 10	
Х.	Field duplicates	N		
XI.	Internal standards	Δ		
XII.	Target analyte quantitation	N		
XIII.	Target analyte identification	N		
XIV.	System performance	N		
XV.	Overall assessment of data	N		

A = Acceptable N = Not provided/applicable SW = See worksheet

Note:

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date			
1-7	ERH1917 TB	BA46826	Water	11/17/21			
T	ERH1918	BA46827	Water	11/17/21			
3	ERH1920 T_B	BA46828	Water	11/17/21			
3 4	ERH1921	BA46829	Water	11/17/21			
5							
6							
7							
8							
9		<u> </u>					
Notes:							
	211129 AL-BIK						

Laboratory Data Consultants, Inc. Data Validation Report

LDC Report Date: Janu

Parameters: Polynuclear Aromatic Hydrocarbons

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98299

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1918	BA46827	Water	11/17/21
ERH1921	BA46829	Water	11/17/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) which are 1-Methylnaphthalene, 2-Methylnaphthalene, and Naphthalene by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Analyte	Flag	A or P
ERH1921	Fluoranthene-d10	52.3 (58-120)	All analytes	J- (all detects)	Р

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to surrogate %R, data were qualified as estimated in one sample.

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 98299

Sample	Analyte	Flag	A or P	Reason (Code)
ERH1921	All analytes	J- (all detects)	Ρ	Surrogates (%R) (s)

Red Hill Bulk Storage Facility, CTO 18F0126

Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 98299

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126

Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary - SDG 98299

No Sample Data Qualified in this SDG

LDC #: <u>53054E2b</u> VALIDATION COMPLETENESS WORKSHEET SDG #: <u>98299</u> Stage 2B Laboratory: <u>APPL, Inc., Clovis, CA</u>

Date:_	1/18/22
Page:_	1of
Reviewer:	1=1
2nd Reviewer:_	<u> </u>

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW-846 Method 8270D-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Sample receipt/Technical holding times	ΔΙΔ	
<u>н.</u>	GC/MS Instrument performance check	4	
Ш.	Initial calibration/ICV	A/A	$0_0 \text{ psD} \leq 15$ $1\text{ cy} \leq 20$
IV.	Continuing calibration ending	A	Cer = 20 50
V.	Laboratory Blanks	Δ	
VI.	Field blanks	N	
VII.	Surrogate spikes	رىرى	
VIII.	Matrix spike/Matrix spike duplicates	2	
IX.	Laboratory control samples	A	LCSID
Х.	Field duplicates	N	
XI.	Internal standards	4	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	XIV. System performance		
XV.	Overall assessment of data	Δ	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1+	ERH1918	BA46827	Water	11/17/21
2+	ERH1921	BA46829	Water	11/17/21
4				
3 4 5 6 7 8 9				
6				
7				
8				
9				
Notes:				
	211119AK - BIK			
				· · · · ·

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

Page: **Reviewer:**

(s

METHOD: GC/MS BNA (EPA SW 846 Method 8270 \mathcal{N}) Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A".

Y ANA Were percent recoveries (%R) for surrogates within QC limits? Y (N/ N/A

If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?

Y'N N/A If any %R was less than 10 percent, was a reanalysis performed to confirm %R?

#	Sample ID	Surrogate	%R (Limits)	Qualifications
	2	YY - DIO	52.3 (58-120)	J-/UJ/P Det
			()	1 1
			()	
			()	
			()	
			()	
			()	
			()	
			()	
			()	
			()	
			()	
			()	
			()	
			()	
			()	
			()	
			()	

(NBZ) = Nitrobenzene - d5 (FBP) = 2-Fluorobiphenyl

(2FP) = 2-Fluorophenol

(TBP) = 2,4,6 -Tribromophenol

(TPH) = Terphenyl - d14

(2CP) = 2-Chlorophenol - d4

LDC Report# 53054E6

Laboratory Data Consultants, Inc. Data Validation Report

LDC Report Date: January 21, 2022

Parameters: Total Organic Carbon

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98299

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1918	BA46827	Water	11/17/21
ERH1921	BA46829	Water	11/17/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Data Qualification Summary - SDG 98299

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Laboratory Blank Data Qualification Summary - SDG 98299

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Field Blank Data Qualification Summary - SDG 98299

No Sample Data Qualified in this SDG

V:\LO	OGIN\AECON	Ned Hill\530	54E6W.wpd

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: 110122 Page: of Reviewer: ___

METHOD: (Analyte) TOC (EPA SW-846 Method 9060A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Validation Area Comments A Sample receipt/Technical holding times I. Ш Initial calibration 111. Calibration verification IV Laboratory Blanks v Field blanks Cis VI. Matrix Spike/Matrix Spike Duplicates A VII. Duplicate sample analysis LCS I LCST VIII. Laboratory control samples A) IX. Field duplicates Х. Target Analyte Quantitation Ν A XI. Overall assessment of data

Note:

N

Client ID

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = L	Juplicate
TB =	Trip blank
EB =	Equipment blank

-.. .

Lab ID

SB=Source blank

Date

01		· D.	
- U I	гне	· H1 ·	

Matrix

1	ERH1918	BA46827	Water	11/17/21
2	ERH1921	BA46829	Water	11/17/21
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
Votes	S:			
			·	

2na	Rev	lewei	

LDC Report# 53054E7

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
--------------------	---

Gasoline Range Organics Parameters:

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98299

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1917	BA46826	Water	11/17/21
ERH1918	BA46827	Water	11/17/21
ERH1920	BA46828	Water	11/17/21
ERH1921	BA46829	Water	11/17/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Samples ERH1917 and ERH1920 were identified as trip blanks. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

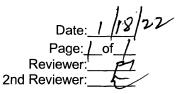
XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Data Qualification Summary - SDG 98299

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 98299


No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 98299

No Sample Data Qualified in this SDG

LDC #: <u>53054E7</u> **V/** SDG #: <u>98299</u> Laboratory: <u>APPL, Inc., Clovis, CA</u>

Stage 2B

METHOD: GC/MS Gasoline Range Organics (EPA SW-846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	A /A	
	GC/MS Instrument performance check	Δ	
- 111.	Initial calibration/ICV	A/D	γ^{γ} $ cv \leq z\bar{Q}$
IV.	Continuing calibration ending	Δ	$\frac{\sqrt{2}}{\sqrt{2}} \frac{ c \leq 20}{2\sqrt{2}}$
V.	Laboratory Blanks	4	P - P
VI.	Field blanks	NO	TB = 1,3
VII.	Surrogate spikes	Δ	
VIII.	Matrix spike/Matrix spike duplicates	Z	es
IX.	Laboratory control samples	A	Les 10
X.	Field duplicates	N	
XI.	Internal standards	A	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	Γ <u>ν</u>	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID		Lab ID	Matrix	Date
1-	ERH1917 TB		 BA46826	Water	11/17/21
27	ERH1918		BA46827	Water	11/17/21
3 -	ERH1920 TB		 BA46828	Water	11/17/21
4+	ERH1921		BA46829	Water	11/17/21
5					
6					
7					
7 8					
9					
Notes			 		
	211129AL-BIK	-			
			· · · · ·		<u> </u>

LDC Report# 53054E8

Laboratory Data Consultants, Inc. **Data Validation Report**

Project/Site Name: Red Hill Bulk Stora	ge Facility, CTO 18F0126
--	--------------------------

LDC Report Date: January 21, 2022

Parameters: Total Petroleum Hydrocarbons as Extractables

Validation Level: Stage 2B

APPL, Inc., Clovis, CA Laboratory:

Sample Delivery Group (SDG): 98299

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1918	BA46827	Water	11/17/21
ERH1921	BA46829	Water	11/17/21
ERH1918(SGCU)	BA46827(SGCU)	Water	11/17/21
ERH1921(SGCU)	BA46829(SGCU)	Water	11/17/21

Samples appended with "SGCU" underwent Silica Gel cleanup

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons as Extractables by Environmental Protection Agency (EPA) SW 846 Method 8015B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

VIV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

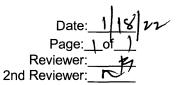
Red Hill Bulk Storage Facility, CTO 18F0126

Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary - SDG 98299

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 98299

No Sample Data Qualified in this SDG


Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 98299

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET	VAL		COMPL	ETENESS	WORKSHEE ⁻	Т
-----------------------------------	-----	--	-------	----------------	-----------------------	---

LDC #: <u>53054E8</u> **V** SDG #: <u>98299</u> Laboratory: APPL, Inc., Clovis, CA

Stage 2B

METHOD: GC TPH as Extractables (EPA SW-846 Method 8015B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	A'A	
- II.	Initial calibration/ICV	AIA	0/2 BD ≤ 1:0 1CY ≤ 20
ш.	Continuing calibration	4	Cer = 20/20
IV.	Laboratory Blanks	Δ	
V.	Field blanks	Ч	
VI.	Surrogate spikes	Δ	
VII.	Matrix spike/Matrix spike duplicates	7	65
VIII.	Laboratory control samples	A	Les W
IX.	Field duplicates	N	
Х.	Target analyte quantitation	N	
XI.	Target analyte identification	N	
	Overall assessment of data	N	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank

OTHER:

-

	Client ID	Lab ID	Matrix	Date		
1	ERH1918	BA46827	Water	11/17/21		
2 [†]	ERH1921	BA46829	Water	11/17/21		
3-	ERH1918(SGCU)	BA46827(SGCU)	Water	11/17/21		
4 +	ERH1921(SGCU)	BA46829(SGCU)	Water	11/17/21		
5						
6						
7						
8						
9						
10						
11						
11 12						
13						
Notes:						
	21119A -B112					

21119A -B112		 			
211119A1-B1K					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Bulk Storage Facility, CTO 18F0126

LDC Report Date:	January 21, 2022
------------------	------------------

Parameters: Volatiles

Validation Level:Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98300

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1923	BA46820	Water	11/17/21
ERH1924	BA46821	Water	11/17/21
ERH1926	BA46822	Water	11/17/21
ERH1927	BA46823	Water	11/17/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017). the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) which are Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples ERH1923 and ERH1926 were identified as trip blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Data Qualification Summary - SDG 98300

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Laboratory Blank Data Qualification Summary - SDG 98300

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Field Blank Data Qualification Summary - SDG 98300

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHE

LDC #: <u>53054F1a</u> **V/** SDG #: <u>98300</u> Laboratory: <u>APPL, Inc., Clovis, CA</u>

Stage 2B

	1 -1
Date:	1/18/22
Page:_	<u>of′</u>
Reviewer:	+7
Reviewer:	br
_	

2nd

METHOD: GC/MS Volatiles (BTEX) (EPA SW-846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding time		
١١.	GC/MS Instrument performance chec	k A	
ш.	Initial calibration/ICV	$\Delta_{1}\Delta$	% PSO = 15 (2 10/ = 20
IV.	Continuing calibration	a b	CUVE 20/90
V.	Laboratory Blanks		· · · · ·
VI.	Field blanks	ND	TB = 1.3
VII.	Surrogate spikes		
VIII.	Matrix spike/Matrix spike duplicates	N	CS
IX.	Laboratory control samples	A	lesid
Х.	Field duplicates	N	
XI.	Internal standards	4	
XII.	Target analyte quantitation	N	
XIII.	. Target analyte identification		
XIV.	System performance	N	
XV.	Overall assessment of data	6	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

SB=Source blank OTHER:

	Client ID			Lab ID	Matrix	Date
1	ERH1923 TB			BA46820	Water	11/17/21
2	ERH1924			BA46821	Water	11/17/21
3-	ERH1926 Tp		 	BA46822	Water	11/17/21
4-	ERH1927	· · · · · · · · · · · · · · · · · · ·	 	BA46823	Water	11/17/21
5		<u> </u>				
6			 			
7						
8						
9			 			
Notes			 			
	21117					
	21112942					

Laboratory Data Consultants, Inc. Data Validation Report

LDC Report Date:	January 21, 2022
LDO Report Date.	January 21, 2022

Parameters: Polynuclear Aromatic Hydrocarbons

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98300

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1924	BA46821	Water	11/17/21
ERH1927	BA46823	Water	11/17/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017). the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) which are 1-Methylnaphthalene, 2-Methylnaphthalene, and Naphthalene by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

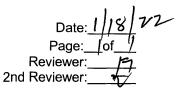
Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 98300

No Sample Data Qualified in this SDG


Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 98300

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 98300

No Sample Data Qualified in this SDG

LDC #: <u>53054F2b</u>	VALIDATION COMPLETENESS WORKSHEET
SDG #: <u>98300</u>	Stage 2B
Laboratory: APPL, Inc., Clovis,	CA

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW-846 Method 8270D-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AIA	
п.	GC/MS Instrument performance check	A	
<u> </u>	Initial calibration/ICV	A/A	
IV.	Continuing calibration ending	Δ	CW = 20 50
V.	Laboratory Blanks	6	ť
VI.	Field blanks	N	
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	N	ر ى
IX.	Laboratory control samples	A	LesID
X.	Field duplicates	N	
XI.	Internal standards	A	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	4	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D	= Duplicate
TE	B = Trip blank
EE	B = Equipment blank

SB=Source blank OTHER:

	Client ID				Lab ID	Matrix	Date
1	ERH1924	 ······	 		BA46821	Water	 11/17/21
2	ERH1927	 	 		BA46823	Water	 11/17/21
2 3 4 5 6 7 8 9 Notes		 	 				
4		 	 				
5		 	 	_			
6							
7							
8							
9			 				
Notes		 					
ſ	211119AK - BIK						
	•						

LDC Report# 53054F6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
--------------------	---

LDC Report Date:	January 21, 2022
	•••••••••••••••••••••••••••••••••••••••

Parameters: Total Organic Carbon

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98300

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1924	BA46821	Water	11/17/21
ERH1927	BA46823	Water	11/17/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific quidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Organic Carbon by Environmental Protection Agency (EPA) SW 846 Method 9060A

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VII. Duplicate Sample Analysis

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Data Qualification Summary - SDG 98300

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Laboratory Blank Data Qualification Summary - SDG 98300

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Organic Carbon - Field Blank Data Qualification Summary - SDG 98300

No Sample Data Qualified in this SDG

LDC #:_	<u>53054F6</u>		VAL
SDG #:_	98300		
Laborat	orv: APPL.	Inc., Clovis	s. CA

ALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date:	11	9	22
Page:_		f_[
Reviewer:		N	/
2nd Reviewer:		r	

METHOD: (Analyte) TOC (EPA SW-846 Method 9060A)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Validation Area		Comments
Sample receipt/Technical holding times	AIA	
Initial calibration	A	
Calibration verification	A	
Laboratory Blanks	A	
Field blanks	N	
Matrix Spike/Matrix Spike Duplicates	N	<i>C</i> .S
Duplicate sample analysis	N	
Laboratory control samples	A	LCS/LCSD
Field duplicates	N	
Target Analyte Quantitation	N	
Overall assessment of data	A	
	Sample receipt/Technical holding times nitial calibration Calibration verification Laboratory Blanks Field blanks Matrix Spike/Matrix Spike Duplicates Duplicate sample analysis Laboratory control samples Field duplicates Field duplicates Field duplicates	Sample receipt/Technical holding times A / A nitial calibration A Calibration verification A _aboratory Blanks A Field blanks N Matrix Spike/Matrix Spike Duplicates N Duplicate sample analysis N _aboratory control samples A Field duplicates N

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1 2 3 4 5	ERH1924	BA46821	Water	11/17/21
2	ERH1927	BA46823	Water	11/17/21
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15 Note				

LDC Report# 53054F7

Laboratory Data Consultants, Inc. Data Validation Report

LDC Report Date: January 21, 202	LDC Rep	ort Date:	January 21	. 2022
----------------------------------	---------	-----------	------------	--------

Parameters: Gasoline Range Organics

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98300

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1923	BA46820	Water	11/17/21
ERH1924	BA46821	Water	11/17/21
ERH1926	BA46822	Water	11/17/21
ERH1927	BA46823	Water	11/17/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0%.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Samples ERH1923 and ERH1926 were identified as trip blanks. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Data Qualification Summary - SDG 98300

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 98300

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 98300

No Sample Data Qualified in this SDG

ALIDATION	COMPL	ETENESS	WORKSHEET
------------------	-------	----------------	-----------

Stage 2B

LDC #: 53054F7 **V** SDG #: 98300 Laboratory: <u>APPL, Inc., Clovis, CA</u>

Date: 1 18 22 Page: 10f 1 Reviewer: 17 2nd Reviewer: 17

METHOD: GC/MS Gasoline Range Organics (EPA SW-846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A/A	
П.	GC/MS Instrument performance check	Δ	
III.	Initial calibration/ICV	AA	F 1 1 CY 5 20
IV.	Continuing calibration	Δ	$\begin{array}{c} F \\ CV \leq 20 \\ \hline \end{array}$
V.	Laboratory Blanks	1	L L
VI.	Field blanks	NN	TB=12
VII.	Surrogate spikes	6	
VIII.	Matrix spike/Matrix spike duplicates	N	05
IX.	Laboratory control samples	A	ICSIP
X.	Field duplicates	N	
XI.	Internal standards	Δ	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	4	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

SB=Source blank OTHER:

	Client ID		Lab ID	Matrix	Date
1	ERH1923 TB		BA46820	Water	11/17/21
2	ERH1924		 BA46821	Water	11/17/21
3	ERH1926 TP	 	 BA46822	Water	11/17/21
4	ERH1927	 	BA46823	Water	11/17/21
5		 			
6		 			
7		 			
8		 			
9					
Notes		 	 		
	211129AL				

LDC Report# 53054F8

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
--------------------	---

LDC Report Date: January 21, 2022

Parameters:Total Petroleum Hydrocarbons as Extractables

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98300

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1924	BA46821	Water	11/17/21
ERH1927	BA46823	Water	11/17/21
ERH1924(SGCU)	BA46821(SGCU)	Water	11/17/21
ERH1927(SGCU)	BA46823(SGCU)	Water	11/17/21

Samples appended with "SGCU" underwent Silica Gel cleanup

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work. Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan. Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons as Extractables by Environmental Protection Agency (EPA) SW 846 Method 8015B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average calibration factors were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 98300

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 98300

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 98300

No Sample Data Qualified in this SDG

LDC #: <u>53054F8</u>	VALIDATION COMPLETENESS WORKSHEET	Date: 1/0/22
SDG #: 98300	Stage 2B	Page: of 1
Laboratory: <u>APPL</u> , Inc., Clovis	0	Reviewer:

METHOD: GC TPH as Extractables (EPA SW-846 Method 8015B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	AIA	
11.	Initial calibration/ICV	AIA	0/0 PSD = 20, 12 16Y = DD
- 111.	Continuing calibration ending	6	$^{\circ}/_{\circ}$ PSD \pm 20, 12 1CY \pm 20 CW \pm 20 20
IV.	Laboratory Blanks		
<u>v.</u>	Field blanks	N	
VI.	Surrogate spikes	Δ	
VII.	Matrix spike/Matrix spike duplicates	N	らく
VIII.	Laboratory control samples	4	LOS 10
IX.	Field duplicates	N	
Х.	Target analyte quantitation	N	
XI.	. Target analyte identification		
	I Overall assessment of data		

Note: A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
+ 1	ERH1924	BA46821	Water	11/17/21
2+	ERH1927	BA46823	Water	11/17/21
3+	ERH1924(SGCU)	BA46821(SGCU)	Water	11/17/21
4 +	ERH1927(SGCU)	BA46823(SGCU)	Water	11/17/21
5				
6				
7				
8				
9				
10				
11				
12				
13				
Notes:				n
	211122 A-BIK			
	211122 A-BIK 211122 AI-BIK			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
riojectone Maine.	Tred Thill Burk Storage Lacinty, CTO TO 0120

LDC Report Date: January 21, 2022

Parameters: Polynuclear Aromatic Hydrocarbons

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98301

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1822	BA46819	Water	11/17/21
ERH1822MS	BA46819MS	Water	11/17/21
ERH1822MSD	BA46819MSD	Water	11/17/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) which are 1-Methylnaphthalene, 2-Methylnaphthalene, and Naphthalene by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 98301

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 98301

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 98301

No Sample Data Qualified in this SDG

LDC #: <u>53054G2b</u>	VALIDATION COMPLETENESS WORKSHEET	Date: 1/18/22
SDG #:98301	Stage 2B	Page: / of/
Laboratory: APPL, Inc., Clovis	, CA	Reviewer: <u>ħ</u> _
		2nd Reviewer: /

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW-846 Method 8270D-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	I. Sample receipt/Technical holding times		
	GC/MS Instrument performance check	5	
	Initial calibration/ICV	AIA	0_0^{\prime} PSD = 15 101^{\prime} = 20
IV.	Continuing calibration	Δ	CCV = 20 50
V.	Laboratory Blanks	6	
<u>VI.</u>	Field blanks	N	
VII.	VII. Surrogate spikes		
VIII.	VIII. Matrix spike/Matrix spike duplicates		
IX.	IX. Laboratory control samples		LCS W
Х.	X. Field duplicates		
XI. Internal standards		4	
XII. Target analyte quantitation		N	
XIII.	XIII. Target analyte identification		
XIV.	XIV. System performance		
XV.	XV. Overall assessment of data		

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
	ERH1822	BA46819	Water	11/17/21
1 2	ERH1822MS	BA46819MS	Water	11/17/21
1	ERH1822MSD	BA46819MSD	Water	11/17/21
3 4 5 6 7				
5				
6				
7				
8				
9				
Notes				
	211119AK			

Laboratory Data Consultants, Inc. Data Validation Report

LDC Report Date: Janua

Parameters: 2-(2-Methoxyethoxy)-ethanol

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98301

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1822	BA46819	Water	11/17/21
ERH1822MS	BA46819MS	Water	11/17/21
ERH1822MSD	BA46819MSD	Water	11/17/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

2-(2-Methoxyethoxy)-ethanol by Environmental Protection Agency (EPA) SW 846 Method 8270D Modified

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0%.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were not added to all samples by the laboratory. Although the LCS/LCSD and MS percent recoveries were outside the QC limits, using professional judgement, no data were qualified.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
ERH1822MS/MSD (ERH1822)	2-(2-Methoxyethoxy)-ethanol	150 (30-130)	-	NA	-

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
ERH1822MS/MSD (ERH1822)	2-(2-Methoxyethoxy)-ethanol	27.9 (≤20)	NA	-

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
211123A LCS/LCSD (All samples in SDG 98556)	2-(2-Methoxyethoxy)-ethanol	135 (30-130)	131 (30-130)	NA	-

Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method with the exception noted in Section VII. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 2-(2-Methoxyethoxy)-ethanol - Data Qualification Summary - SDG 98301

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 2-(2-Methoxyethoxy)-ethanol - Laboratory Blank Data Qualification Summary -SDG 98301

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 2-(2-Methoxyethoxy)-ethanol - Field Blank Data Qualification Summary - SDG 98301

No Sample Data Qualified in this SDG

Stage 2B

LDC #:_	53054G2c	VAL
SDG #:_	98301	_
Laborato	ory: <u>APPL, Inc., Clo</u>	vis, CA

Date: $1/18/2 \sim$ Page: 1 of 1Reviewer: 52nd Reviewer: 5

METHOD: GC/MS 2-(2-Methoxyethoxy)-Ethanol (EPA SW-846 Method 8270D-Modified)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u>і.</u>	Sample receipt/Technical holding times	AIN	
١١.	GC/MS Instrument performance check	4	
	Initial calibration/ICV	$\Delta \Delta$	% PD = 15 1CY = 20
IV.	Continuing calibration ending	Δ	CW 520 50
V.	Laboratory Blanks	Δ	
VI.	Field blanks	N	
VII.	Surrogate spikes	SW	
VIII.	Matrix spike/Matrix spike duplicates	SW	
IX.	Laboratory control samples	SW	LasID
Х.	Field duplicates	N	
XI.	Internal standards	Δ	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	5	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
$\hat{1}$	ERH1822	BA46819	Water	11/17/21
2	ERH1822MS	BA46819MS	Water	11/17/21
3	ERH1822MSD	BA46819MSD	Water	11/17/21
4		·		
5				
6				
6 7				
1				
8 9				
Notes				
	211123A-BIK			

211123A-BIK			

LDC #: <u>53054G2c</u>

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

Page: <u>1</u> of <u>1</u> Reviewer: FT

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A".

N/A Were percent recoveries (%R) for surrogates within QC limits?

N/A If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?

N/A If any %R was less than 10 percent, was a reanalysis performed to confirm %R?

#	Sample ID	Surrogate	%R (Limits)	Qualifications
	all	laboratory. Although the L were outside the QC limi no data were qualified.	added to all samples by the CS/D amd MS percent recovery its, using professional judgment, Additionally, all base surrogate within QC limits in the PAH	Text
			()	
			()	
				· · · · · · · · · · · · · · · · · · ·
			()	
			()	
			()	
			()	
			()	
			()	
			()	
			······································	
			()	
			()	
			()	
			()	

(NBZ) = Nitrobenzene - d5 (2FP)

LDC #: 570 इस G 20

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:__ Reviewer:

METHOD: GC/MS BNA (EPA SW 846 Method 8270 \mathcal{O})

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YNN/A Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.

<u>Y N N/A</u> Y N N/A Was a MS/MSD analyzed every 20 samples of each matrix?

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	243	*	150 (30-130	• ()	()	1 (9)	Jtdut/A NO
		*	()	()	27.9(20)	V (E)	dut /A 1/
			()	()	()		, , , , , , , , , , , , , , , , , , , ,
			()	()	()		
			()	()	()		
		×	()	()	()		
			()	()	()		
		* 2-	2-Methoxy	thoxy)-Etha	10 ()		
			(()		()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
	·		()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		

LDC #: <u>5 3054</u> 92

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page: ___of/__ Reviewer: __FT

(1)

METHOD: GC/MS BNA (EPA SW 846 Method 8270 ${\cal O}$)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

<u>Y N N/A</u> Y (N) N/A

<u>N/A</u> Was a LCS required?

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

								(\)	
#	LCS/LCSD ID	Compound	%R	LCS <u>R (Limits)</u>		LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	2111230	*	135	30-130)	13)	130-130	(AI	Qualifications
	LOSID			()		()	(
				()		()	()	
				()		()	()	
				()		()	()	
	l			()		()	()	
				()		()	(
				()		()	(
				())			
				()		()	()		
				()		()	()	
	¥	2-(2-Methoxy et	hoxy).	-Ethano)		()	(
				()		()	()		
				()		()	(
				()		()	()		
				()		()	()		
				()		()	()		
				()		()			
				()		()	()		
				()		()	()	·	
				()		()	()		
				()		()	()		
				()		()	()		· · · · · · · · · · · · · · · · · · ·
				()		()	()		
				()		()	()		

LDC Report# 53054G6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Bulk Storage Facility, CTO 18F0126

LDC Report Date:	January 21, 2022
LDC Report Date.	January 21, 2022

Parameters: Wet Chemistry

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98301

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1822	BA46819	Water	11/17/21
ERH1822RE	BA46819RE	Water	11/17/21
ERH1822MS	BA46819MS	Water	11/17/21
ERH1822MSD	BA46819MSD	Water	11/17/21
ERH1822DUP	BA46819DUP	Water	11/17/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan. Addendum 03. Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (November 2019). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:

Alkalinity by Standard Method 2320B Chloride, Nitrate, and Sulfate by Environmental Protection Agency (EPA) Method 300.0 Nitrate/Nitrite as Nitrogen by EPA Method 353.2 Ferrous Iron by Standard Method 3500-Fe B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Time From Sample Collection Until Analysis	Required Holding Time From Sample Collection Until Analysis	Flag	A or P
ERH1822	Nitrate	58.13 hours	48 hours	J- (all detects)	А
ERH1822RE	Nitrate	116.97 hours	48 hours	J- (all detects)	A

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable with the following exceptions:

Date	Lab. Reference/ID	Analyte	%R (Limits)	Associated Samples	Flag	A or P
11/19/21	CCV (23:10)	Nitrate	110.7 (90-110)	ERH1822	J+ (all detects)	Р

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Limit of Quantitation	Associated Samples
PB (prep blank)	Alkalinity bicarbonate Alkalinity total Chloride	2.0 mg/L 2.0 mg/L 0.24 mg/L	2.0 mg/L 2.0 mg/L 1.0 mg/L	ERH1822
ICB/CCB	Chloride Nitrate/Nitrite as N	0.24 mg/L 0.047 mg/L	1.0 mg/L 0.10 mg/L	ERH1822

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (%R) (Limits)	MSD (%R) (Limits)	Flag	A or P
ERH1822MS/MSD (ERH1822)	Nitrate/Nitrite as N Alkalinity bicarbonate	-	84.7 (90-110) 89.9 (90-110)	J- (all detects) J- (all detects)	A

Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

In the case where more than one result was reported for an individual sample, the least technically acceptable results were or recommended for exclusion as follows:

Sample	Analyte	Reason	Flag	A or P
ERH1822RE	Nitrate	Analyzed outside of holding time.	х	А

Due to technical holding time, continuing calibration % R, and MS/MSD % R, data were qualified as estimated in one sample.

Red Hill Bulk Storage Facility, CTO 18F0126 Wet Chemistry - Data Qualification Summary - SDG 98301

Sample	Analyte	Flag	A or P	Reason (Code)
ERH1822	Nitrate	J- (all detects)	A	Technical holding times (h)
ERH1822	Nitrate	J+ (all detects)	Р	Continuing calibration (%R) (c)
ERH1822	Nitrate/Nitrite as N Alkalinity bicarbonate	J- (all detects) J- (all detects)	А	Matrix spike/Matrix spike duplicate (%R) (q)
ERH1822RE	Nitrate	х	А	Overall assessment of data (d)

Red Hill Bulk Storage Facility, CTO 18F0126 Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 98301

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Wet Chemistry - Field Blank Data Qualification Summary - SDG 98301

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHE

Stage 2B

Date:	1	119	22
Page:_	1	_of_	L
Reviewer:		ATT	
2nd Reviewer:		K	

METHOD: (Analyte) Alkalinity (SM 2320B), Chloride, Nitrate X, Sulfate (EPA Method 300.0), Nitrate/Nitrite-N (EPA Method 353.2), Ferrous Iron (SM3500-Fe B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AISW	
	Initial calibration	A	
ш.	Calibration verification	SW	
١٧	Laboratory Blanks	SW	
v	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	SW	(3,4)
VII.	Duplicate sample analysis	A	5
VIII.	Laboratory control samples	A	LOSILOSD
IX.	Field duplicates	N	
Х.	Target Analyte Quantitation	N	
XI.	Overall assessment of data	SW	

Note:

LDC #: 53054G6

Laboratory: APPL, Inc., Clovis, CA

SDG #: 98301

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank

OTHER:	
--------	--

1 15

	Client ID	Lab ID	Matrix	Date	
1	ERH1822	BA46819	Water	11/17/21	q
2	ERH1822RE	BA46819RE	Water	11/17/21	
3	ERH1822MS	BA46819MS	Water	11/17/21	
4	ERH1822MSD	BA46819MSD	Water	11/17/21	
5	ERH1822DUP	BA46819DUP	Water	11/17/21	
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
Note	PS:				

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page:	1	_of_	1
Reviewe	r:	A	N

All circled methods are applicable to each sample.

Sample ID	Parameter
1	pH TDS (CI) F (NO) NO, (SO) 0-PO, (AIK) CN NH, TKN TOC Cr6+ CIO, (NO31NO2-N) (Fe2+)
2	pH TDS CI F (NO_2 NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
QC	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
3,4	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ (AIB CN NH ₃ TKN TOC Cr6+ CIO ₄ ($ND3/ND2-N$) (Fe ²⁺)
	pH TDS CI F NO3 NO2 SO4 O-PO4 AIK) CN NH3 TKN TOC Cr6+ CIO4 (Fe24)
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F. NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	pH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	DH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
	DH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄
P	$DH TDS CIF NO_3 NO_2 SO_4 O-PO_4 Alk CN NH_3 TKN TOC Cr6+ ClO_4$
	$DH TDS CI F NO_3 NO_2 SO_4 O-PO_4 Alk CN NH_3 TKN TOC Cr6+ ClO_4$
	$\frac{1}{2} \text{ DH TDS CIF NO_3 NO_2 SO_4 O-PO_4 Alk CN NH_3 TKN TOC Cr6+ ClO_4}{2}$
	$\frac{1}{2} \text{ TDS CI F NO_3 NO_2 SO_4 O-PO_4 Alk CN NH_3 TKN TOC Cr6+ ClO_4}{2}$
	$\frac{1}{2} \text{ DH TDS CIF NO_3 NO_2 SO_4 O-PO_4 Alk CN NH_3 TKN TOC Cr6+ ClO_4}{2}$
p	$\frac{1}{2} \text{ DH TDS CIF NO_3 NO_2 SO_4 O-PO_4 Alk CN NH_3 TKN TOC Cr6+ ClO_4}{2}$
	$\frac{1}{2} \text{ DH TDS CIF NO_3 NO_2 SO_4 O-PO_4 Alk CN NH_3 TKN TOC Cr6+ ClO_4}{2}$
	DH TDS CI F NO ₃ NO ₂ SO ₄ O-PO ₄ Alk CN NH ₃ TKN TOC Cr6+ ClO ₄

Comments:_

LDC #: 5305466

VALIDATION FINDINGS WORKSHEET Technical Holding Times

Page:	_of
Reviewer:	AT

All circled dates have exceeded the technical holding time. <u>YNNA</u> Were all samples preserved as applicable to each method ? <u>YNNA</u> Were all cooler temperatures within validation criteria?				ch method ?	Code: h			
Method:		NO3 (EPA 300.0)						
Parameters:		water						
Technical holding time:		48h						
Sample ID	Sampling date	Analysis date	Total Time	Qualifier	Analysis date	Total Time	Qualifier	
4	9:15711:15	21:23	58.13hrs	JIVJ A (detu	A			
2	V	21:23 11/19/21 08:13 11/22/21	116.97 hrs	JIX A (dete	ť)			
			······	;				
		•	97711-1977-1981-1981-1997-1997-1997-1997					
						l		
		·						

VALIDATION FINDINGS WORKSHEET Calibration

METHOD: Inorganics, EPA Method See cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

YN N/A Were all instruments calibrated daily, each set-up time, and were the proper number of standards used? Y(N)N/A

Were all initial and continuing calibration verification percent recoveries (%R) within the control limits of 90-110%?

Y)N N/A Are all correlation coefficients >0.995 ?

LEVEL IV/D ONLY: Y N NA

YNNA Y N(N/A) Were recalculated results acceptable? See Level IV Initial and Continuing Calibration Recaluculation Worksheet for recalulations.

Was a balance check conducted prior to the TDS analysis.?

Was the titrant normality checked?

#	Date	Calibration ID	Analyte	%R	Associated Samples	Qualifications Code: c
	11/19/21	CCV (23:10)	NO3	110.7 (90-110)	1	Jdet+/P (detect)
				······································		
	· · · · ·					
·····						

Comments:

VALIDATION FINDINGS WORKSHEET Blanks

METHOD: Inorganics, Method See Cover

Conc. units	Conc. units: mg/L Associated Samples: 1											
Analyte	Blank ID	Blank ID	Blank							 		
	PB	ICB/CCB (mg/L)	Action Limit	LOQ							_	
Alkalinity Bicarbonate	2.0		10.0	2.0								
Alkalinity Total	2.0		10.0	2.0								
СІ	0.24		1.20	1.0								
СІ		0.24	1.20	1.0								
NO3/NO2-N		0.047	0.235	0.10								

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

METHOD: Inorganics, EPA Method See cover

Please see gualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a matrix spike analyzed for each matrix in this SDG?

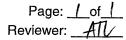
Was a matrix spike analyzed for each matrix in this SDG? *Iab limits* Were matrix spike percent recoveries (%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.

Were all duplicate sample relative percent differences (RPD) < 20% for water samples and <35% for soil samples?

LEVEL IV ONLY:

ÌN N/A

N (N/A)


(Y)N N/A Y(N)N/A

Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

#	MS/MSD ID	Matrix	Analyte	MS %Recovery	MSD %Recovery	RPD (Limits)	Associated Samples	Qualifications	
	3/4	W	NO3/NO2-N		84.7 (90-110)		1	J-/UJ/A (detect) Code: q	
			Alkalinity Bicarbonate		89.9 (90-110)		1	J-/UJ/A (detect) Code: q	
L									
								· · · · · · · · · · · · · · · · · · ·	
╟—									
┡									
								<u> </u>	

Comments:

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

METHOD: Inorganics, Method See Cover

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

<u>YNN/A</u> Was the overall quality and usability of the data acceptable?

#	Date	Sample ID	Compound	Finding	Qualifications
	11/22/21	2	NO3	past hold time (>2x)	X/A (detect) Code:d

Comments:

LDC Report# 53054H2c

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
--------------------	---

LDC Report Date: March 4, 2022

Parameters: 2-(2-Methoxyethoxy)-ethanol

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98556

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH2265	BA48142	Water	12/21/21
ERH2267	BA48143	Water	12/21/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

2-(2-Methoxyethoxy)-ethanol by Environmental Protection Agency (EPA) SW 846 Method 8270D Modified

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0%.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were not added to all samples by the laboratory. Although the LCSD percent recovery was outside the QC limits, using professional judgement, no data were qualified.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
211222A LCS/LCSD (All samples in SDG 98556)	2-(2-Methoxyethoxy)-ethanol	-	159 (30-130)	NA	-

Relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
211222A LCS/LCSD (All samples in SDG 98556)	2-(2-Methoxyethoxy)-ethanol	38.8 (≤20)	NA	-

X. Field Duplicates

Samples ERH2265 and ERH2267 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method with the exception noted in Section VII. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 2-(2-Methoxyethoxy)-ethanol - Data Qualification Summary - SDG 98566

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 2-(2-Methoxyethoxy)-ethanol - Laboratory Blank Data Qualification Summary -SDG 98566

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 2-(2-Methoxyethoxy)-ethanol - Field Blank Data Qualification Summary - SDG 98566

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

Date: 1/18/7 Page: __of___ Reviewer: _____ 2nd Reviewer: _____

SDG #: <u>98556</u> Laboratory: <u>APPL, Inc., Clovis, CA</u>

LDC #: _53054H2c

METHOD: GC/MS 2-(2-Methoxyethoxy)-Ethanol (EPA SW-846 Method 8270D-Modified)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	A /A	
11.	GC/MS Instrument performance check	Δ	
	Initial calibration/ICV	A1A	0/0 PSD = 15 101=W
IV.	Continuing calibration endin	5	°/0 P>D = J = J = U = W CU = W J D
V.	Laboratory Blanks	6	
VI.	Field blanks	N	
VII.	Surrogate spikes	sw.	
VIII.	Matrix spike/Matrix spike duplicates	N	es ا
IX.	Laboratory control samples	ىرى	LOS 10
Х.	Field duplicates	ND	$\mathcal{O} = 1, \mathcal{V}$
XI.	Internal standards	4	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
xv.	Overall assessment of data	5	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID			Lab ID	Matrix	Date
1	ERH2265	D	 	BA48142	Water	12/21/21
2	ERH2267	D	 	 BA48143	Water	12/21/21
3			 			
4			 			
5			 			
6				 		
7						
8						
<u>o</u> Notes:						
Notes			 	 		
	211222	A-BIK				

LDC #: <u>53054H2c</u>

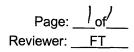
VALIDATION FINDINGS WORKSHEET Surrogate Recovery

Page: 1___of_1__ Reviewer: FT

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A".

N/A Were percent recoveries (%R) for surrogates within QC limits?


N/A If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?

N/A If any %R was less than 10 percent, was a reanalysis performed to confirm %R?

#	Sample ID	Surrogate	%R (Limits)	Qualifications
	all	Surrogates were not added to all samples by the laboratory. Although the LCSD percent recovery and the percent RPD were outside the QC limits, using professional judgment, no data were qualified. Additionally, all-base surrogate percent recoveries were within QC limits in the PAH analysis.		Text
			()	
			()	
			()	
			()	
			()	
		······	()	
			()	
			()	
			()	
			()	
			()	
			()	
			()	
			()	
			()	
			()	
			()	
			()	
			()	
			()	

(NBZ) = Nitrobenzene - d5

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

METHOD: GC/MS BNA (EPA SW 846 Method 8270 \mathcal{D})

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

A Was a LCS required?

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	21/2224	*	()	159 (30-131) ()	$ \qquad A \parallel (l)$	It du NR MD
	1cs1P	*	()		38.8 (20)	$\sqrt{(w)}$	Jour /P
			()	()	()		5 /
			()	()	()		
			()	()	()		· · · · · · · · · · · · · · · · · · ·
			()	()	()		
			()	()	()		
			()	()	()		
			<u>()</u>	()			
	* 2-	(2 - Methoxy etho	xy)-Elthanol	()	()		
		4	()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
		·	()	()	()		
			()	()	()		
)		L()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()	· · · · · · · · · · · · · · · · · · ·	
			()	()	<u> </u>		

LDC Report# 53054I2c

Laboratory Data Consultants, Inc. Data Validation Report

Parameters: 2-(2-Methoxyethoxy)-ethanol

Validation Level: Stage 2B & 4

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 98566

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH2273	BA48188	Water	11/21/21
ERH2274**	BA48198**	Water	11/21/21
ERH2273MS	BA48188MS	Water	11/21/21
ERH2273MSD	BA48188MSD	Water	11/21/21

**Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work. Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017). the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

2-(2-Methoxyethoxy)-ethanol by Environmental Protection Agency (EPA) SW 846 Method 8270D Modified

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were not added to all samples by the laboratory. Although the LCSD percent recovery was outside the QC limits, using professional judgement, no data were qualified.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
211223A LCS/LCSD (ERH2273)	2-(2-Methoxyethoxy)-ethanol	-	143 (30-130)	NA	-

Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method with the exception noted in Section VII. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 2-(2-Methoxyethoxy)-ethanol - Data Qualification Summary - SDG 98566

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 2-(2-Methoxyethoxy)-ethanol - Laboratory Blank Data Qualification Summary -SDG 98566

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 2-(2-Methoxyethoxy)-ethanol - Field Blank Data Qualification Summary - SDG 98566

No Sample Data Qualified in this SDG

LDC #:_	<u>53054l2c</u>	V
SDG #:_	98566	
Laborato	ory: <u>APPL, In</u>	c., Clovis, CA

ALIDATION COMPLETENESS WORKSHEET Stage 2B/4

Date:	1/18/22
Page:_	<u>/</u> of_/_'
Reviewer:	13
Reviewer:	<u>_%</u>

2nd

METHOD: GC/MS 2-(2-Methoxyethoxy)-Ethanol (EPA SW-846 Method 8270D-Modified)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u>I.</u>	Sample receipt/Technical holding times	AIA	
П.	GC/MS Instrument performance check	A'	
- 111.	Initial calibration/ICV		2 12 ICV ±20
IV.	Continuing calibration	Δ	$\frac{2}{CV} \frac{12}{20} \frac{10}{50}$
V.	Laboratory Blanks	4	
VI.	Field blanks	N	
VII.	Surrogate spikes	ر ال	
VIII.	Matrix spike/Matrix spike duplicates	A	
IX.	Laboratory control samples	sw	LesW
Х.	Field duplicates	N	Dat 2
XI.	Internal standards		
XII.	Target analyte quantitation		Not reviewed for Stage 2B validation.
XIII.	Target analyte identification	Δ	Not reviewed for Stage 2B validation.
XIV.	System performance	A	Not reviewed for Stage 2B validation.
XV.	Overall assessment of data		
Note:	A = Acceptable ND =	No compound	s detected D = Duplicate SB=Source blank

	** Indic	N = Not provided/applicable SW = See worksheet ates sample underwent Stage 4 validation	R = Rinsate FB = Field blank	TB = Trip blank EB = Equipment blank	OTHER:	Jank
		Client ID		Lab ID	Matrix	Date
ĺ	1-1	EBH2273 🗘		BA48188	Water	11/2

1 I ERH2273 D	BA48188	Water	11/21/21
2 ⁺ 2 ERH2274** Ŋ	BA48198**	Water	11/21/21
3 ERH2273MS	BA48188MS	Water	11/21/21
4 1 ERH2273MSD	BA48188MSD	Water	11/21/21
5			
6 7			
8			
9			
Notes:			
1 21223A - BIK			
1 21223A - BIK 2 21227A - BIK			

Method: Semivolatiles (EPA SW 846 Method 8270 12)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?	/	, 		
II. GC/MS Instrument performance check				
Were the DFTPP performance results reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12 hour clock criteria?				
Illa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?		-		
Were all percent relative standard deviations (%RSD) \leq 15% and relative response factors (RRF) within method criteria?	×		/	
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?	/			
IIIb. Initial Calibration Verification				······································
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/			
Were all percent differences (%D) ≤ 20%?		-		
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	/	-		
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria? Were all percent differences (%D) \leq 50% for closing calibration verification?	/	ſ		
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	/			
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	-			
Was there contamination in the laboratory blanks? If yes, please see the blanks validation findings worksheet.		/		
VI. Field blanks				······································
Were field blanks were identified in this SDG?			$\frac{1}{2}$	
Were target analytes detected in the field blanks?			-	
VII. Surrogate spikes	1			
Were all surrogate percent recovery (%R) within QC limits?		 		L
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?	<u> </u>		-	
If any percent recoveries (%R) was less than 10%, was a reanalysis performed to confirm %R ?			/	
VIII. Matrix spike/Matrix spike duplicates				•·····································
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?	/			

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?		-		
IX. Laboratory control samples				
Was an LCS analyzed per extraction batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	•	/		
X. Field duplicates				
Were field duplicate pairs identified in this SDG?		/	-	
Were target analytes detected in the field duplicates?			/	
XI. Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?	/			
Were retention times within ± 30 seconds of the associated calibration standard?	-			
XII. Target analyte quantitation		y		************************************ ****
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the target analyte?	/			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target analyte identification				
Were relative retention times (RRT's) within <u>+</u> 0.06 RRT units of the standard?	/			
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?	Ĺ			
Were manual integrations reviewed and found acceptable?	Ľ			
Did the laboratory provide before and after integration printouts?			/	[
XIV. System performance				
System performance was found to be acceptable.	/	t		
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.			/	

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

METHOD. COMIC CON				
A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	0000. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	l2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

LDC #: 53054 l2c

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

Page: 1__of_1_ Reviewer:___FT

METHOD: GC/MS BNA (EPA SW 846 Method 8270D)

Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A".

N/A Were percent recoveries (%R) for surrogates within QC limits?

N/A If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?

N/A If any %R was less than 10 percent, was a reanalysis performed to confirm %R?

#	Sample ID	Surrogate	%R (Limits)	Qualifications
	all	laboratory. Although the	added to all samples by the ELCSD percent recovery was using professional judgment, no	Text
			()	
	·		()	
┣───				
	<u></u>			
 	•			
			()	
			()	
			()	
			()	
			()	
			()	
			()	
			()	
			()	
L			()	

(NBZ) = Nitrobenzene - d5 (FBP) = 2-Fluorobiphenyl (TPH) = Terphenyl - d14 (2FP) = 2-Fluorophenol (TBP) = 2,4,6 -Tribromophenol (2CP) = 2-Chlorophenol - d4

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page:	lof
Reviewer:	FT

(1)

METHOD: GC/MS BNA (EPA SW 846 Method 8270 D)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a LCS required?

Were the LCS/LCSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	2112234	*	()	143 30-130	()	1, 211223A-BK	Jtan 1p MD
	1cs1D		()	()	()	· · · · · · · · · · · · · · · · · · ·	
			()	()	()		
	l		()	()	()		
	· · · · · · · · · · · · · · · · · · ·		()	()	()		
	·		()	()	()		
			()	()	()		
			()	()	()		
		······································	()	()	()		
			()	()	()		
		* 2 - (2 - Met	noxyethoxy)-	Ethanio1)	()		
			· () ·)	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
	· · · · · · · · · · · · · · · · · · ·		()	()	()		
			()		()		
			()	()	()		
			()	()	()		
			()	()	()		· · · · · · · · · · · · · · · · · · ·
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		

Page:1	0	of	1
Reviewer	:	FT_	

Method: 8270D M

Calibration Date	System	Compound	Standard	(Y) Response	(X) Concentration
12/22/2021	Yoda	2-(2-Methoxyethoxy)Ethanol	1	0.0271	0.025
	GCMS		2	0.0807	0.25
			3	0.1970	1.25
			4	0.4683	2.5
			5	0.9590	5
)i i			6	2.6100	12.5
			7	4.2600	20
			8	5.3075	25

Regression Output		Reported
Constant	-0.036319	NR
Std Err of Y Est		
R Squared	0.999474	1.000000
Degrees of Freedom		
X Coefficient(s)	0.213455	NR
Std Err of Coef.		
Correlation Coefficient	0.999737	
Coefficient of Determination (r ²)	0.999474	

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

METHOD: GC/MS BNA (EPA SW 846 Method 8270 🖓

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the target analytes identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_x)(C_{is})/(A_{is})(C_x)$ Where: ave. RRF = initial calibration average RRF A = Area of target analyte RRF = continuing calibration RRF

 A_x = Area of target analyte C_x = Concentration of target analyte A_{is} = Area of associated internal standard

C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Target Analyte (Internal Standard)	Average RRF (Initial)	RRF (CC)	RRF (CC)	%D	%D
1	cev	12 27 2	2 (-2ME)-E (1st IS)	900	527.641	527.641	5.5	5.5
	11104161		(2 nd IS)		•			
			(3 rd IS)					
			(4 th IS)					
	-		(5 th IS)					
			(6 th IS)					
2			(1st IS)					
			(2 nd IS)					
			(3 rd IS)					
			(4 th IS)					
			(5 th IS)					
		• •	(6 th IS)					
3			(1st IS)					
			(2 nd IS)					
ľ			(3 rd IS)					
			(4 th IS)					
			(5 th IS)					
			(6 th IS)					

Comments: <u>Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #: 530 54 I 2C

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page:_	1	_of_	1
Reviewer:	F	Т	

METHOD: GC/MS BNA (EPA SW 846 Method 8270 D

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the target analytes identified below using the following calculation:

SSC =	(Ax)(Cis)(Fv)(Df)				
	(AIS)(RRF)(Vs or Ws)(%S/100)				

%Recovery = (SSC/SA)*100

RPD =(({SSCMS - SSCMSD} * 2) / (SSCMS + SSCMSD))*100

 Where:
 A_x= Area of the target analyte
 Ws= Initial weight of the sample

 A_{is} = Area for the specific internal standard
 %S= Percent Solid

 Cis = Concentration of internal standard
 SSC = Spiked sample concentration

 Fv =Final volume of extract
 SA= Spike added

 Df=
 Dilution factor
 MS= Matrix spike

 RRF= Average relative response factor of the target analyte
 MSD= Matrix spike duplicate

3 -	14		<u></u>	······································			Tu T			
Spike		Sample	Spiked Sample		Matrix Spike		Matrix Spike Duplicate		MS/MSD	
Ac (U	gV)	Concentration		Concentration		Percent Recovery		Percent Recovery		PD
MS	U MSD	U	MS	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalc
							-			
10000	10000	24	9170	9790	91.7	91.7	97.9	97.9	6.5	6.5
	Si Ac (U MS	Spike Addad (US)) MS MSD	Spike Addad (vg V) MS MSD	Spike Added Sample Concentration (ug/) Spike Concentration (ug/) MS MSD	Spike Sample Added Concentration (va) (va) MS MSD	Spike Sample Spiked Sample Added Concentration Concentration (uq) (uq) Percent MS MSD MS	Spike Added (UG/V) Sample Concentration (UG/V) Spiked Sample Concentration (UG/V) Matrix Spike Percent Recovery MS MSD MS MSD Reported Recalc	Spike Added (ue) Sample Concentration (ue) Spiked Sample Concentration (ue) Matrix Spike Matrix Spike MS MSD MSD Reported Recalc Reported	Spike Added Sample Concentration (VG V) Spiked Sample Concentration (VG V) Matrix Spike Matrix Spike Duplicate MS MSD (VG V) Percent Recovery Percent Recovery Percent Recovery MS MSD MSD Reported Recalc Reported MS MSD Image: Concentration (VG V) Image: Concentration (VG V) Image: Concentration (VG V) Image: Concentration (VG V)	Spike Added Sample Concentration (ug V) Spiked Sample Concentration (ug V) Matrix Spike Matrix Spike Duplicate MS/ MS MSD (ug V) Percent Recovery Percent Recovery RI MS MSD MSD Reported Recalc Reported Recalc Reported MS MSD Image: Concentration (ug V) Image: Concentrating V) Image: Concentration (ug V) Image

LDC #: 5 つ ジ ゴ 2 _____ VALIDATION FINDINGS WORKSHEET Page: 1 of 1 Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification Reviewer: FT

METHOD: GC/MS BNA (EPA SW 846 Method 8270)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the target analytes identified below using the following calculation:

SSC =	(Ax)(Cis)(Fv)(Df)
	(A _{IS})(RRF)(Vs or Ws)(%S/100)

%Recovery = (SSC/SA)*100

Where: A_x= Area of the target analyte

 A_{is} = Area for the specific internal standard C_{is} = Concentration of internal standard Fv =Final volume of extract Df= Dilution factor Ws= Initial weight of the sample %S= Percent Solid SSC = Spiked sample concentration LCS = Laboratory control sample

LCSD = Laboratory control sample duplicate

RRF= Average relative response factor of the target analyte Vs= Initial volume of the sample

RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100

LCS/LCSD samples: 2 2127 LCS ID

Compound	Spike Added (ଏନ୍ଦ୍ରାଧ)		Spike Concentration		I CS Percent Recovery		Percent Recovery			
Compound					Reported	Recovery Recalc	Percent	Recalc	Reported	PD Recalculated
Phenol										
N-Nitroso-di-n-propylamine										
4-Chloro-3-methylphenol										
Acenaphthene				· · · · · · · · · · · · · · · · · · ·						
Pentachlorophenol										
Pyrene										
2-(2 ME)-E	30	80	69.3	65.4	26.6	86.6	81.8	81.8	5.8	5.8
-										

LDC #: 53054 I Ze

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: <u>1</u> of <u>1</u> Reviewer: FT

METHOD: GC/MS BNA (EPA SW 846 Method 8270 DV

The concentration of the sample was calculated for the target analyte identified below using the following calculation:

Conce	ntratio	$n = (A_{,)}(I_{o})(V_{,})(DF)(2.0) - (A_{is})(RRF)(V_{o})(V_{i})(%S)$
A _x	=	Area of the characteristic ion (EICP) for the target analyte to be measured
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard
l _s	=	Amount of internal standard added in nanograms (ng)
V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).
V	=	Volume of extract injected in microliters (ul)
Vt	=	Volume of the concentrated extract in microliters (ul)
Df	=	Dilution Factor.

- %S = Percent solids, applicable to soil and solid matrices only.
- 2.0 = Factor of 2 to account for GPC cleanup

=

$$Conc. = \frac{\left(\frac{1687235}{1002812} + 0.036319\right)(40)(100)}{0.213455}$$

#	Sample ID	Target Analyte	Reported Concentration (ug L	Calculated Concentration (બુલુ []	Qualification
	#2	2 (a - MEE)	32000	32207.4	
			·		
	<u></u>				