

AECOM 1001 Bishop Street Suite 1600 Honolulu, HI 96813 ATTN: Ms. Alethea Ramos alethea.ramos@aecom.com

SUBJECT: Red Hill Bulk Storage Facility, CTO 18F0126 - Data Validation

Fraction

Dear Ms. Ramos,

Enclosed is the final validation report for the fraction listed below. This SDG was received on November 12, 2021. Attachment 1 is a summary of the samples that were reviewed for analysis.

LDC Project #52646A:

<u>SDG #</u>

97541

Volatiles, Polynuclear Aromatic Hydrocarbons, Gasoline Range Organics, Total Petroleum Hydrocarbons As Extractables

The data validation was performed under Stage 2B & 4 validation guidelines. The analysis was validated using the following documents and variances, as applicable to method:

- Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor Hickam, O'ahu, Hawai'i (Revision 02, January 2017)
- Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor Hickam, O'ahu, Hawai'i (Revision 01, April 2017)
- Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017)
- Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018)
- U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019)
- DoD General Validation Guidelines (November 2019)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021)
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Stelle auno

Stella Cuenco Operations Manager/Senior Chemist scuenco@lab-data.com

	262 pages-DL												At	tachr	nent	1																	
	90/10 2B/4	EDD	LDO	C# 5	5264	16 (/	٩EC	ON	I - H	lon	olul	u, ⊦	1 1 / F	Red	Hil	l Bu	lk S	Stor	age	e Fa	cilit	y, C	то	18F	=012	26)							
LDC	SDG#	DATE REC'D	(2) DATE DUE	ВТ (826	ЕХ 60В)	(3)P (82 -SI	AHs 70D M)	GF (826	RO 60B)	TPI (801	H-E 15B)	SG TPI (801	CU H-E I5B)	тс (906	DC 50A)																		
Matrix	: Water/Soil	_		W	s	W	S	W	S	W	s	W	s	W	S	W	S	W	S	W	s	W	s	W	s	W	S	W	s	W	s	W	s
А	97541	11/12/21	11/30/21	9	0	5	0	9	0	5	0	5	0	-	-																		
В	97717	11/12/21	11/30/21	2	0	1	0	2	0	1	0	1	0	1	0																		
В	97717	11/12/21	11/30/21	2	0	2	0	2	0	2	0	2	0	1	0																		
С	97833	11/12/21	11/30/21	5	0	4	0	5	0	3	0	3	0	2	0																		
											ĺ		ĺ							ĺ	ĺ					ĺ							
																						Ī						Ī					
																						Ī						Ī					
Total	T/SC			18	0	12	0	18	0	11	0	11	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	74

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Bulk Storage Facility, CTO 18F0126

LDC Report Date: November 30, 2021

Parameters: Volatiles

Validation Level:Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97541

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
ERH1661	BA40883	Water	09/15/21
ERH1662	BA40884	Water	09/15/21
ERH1663	BA40885	Water	09/15/21
ERH1664	BA40886	Water	09/15/21
ERH1665	BA40887	Water	09/15/21
ERH1666	BA40888	Water	09/15/21
ERH1667	BA40889	Water	09/15/21
ERH1668	BA40890	Water	09/15/21
ERH1669	BA40891	Water	09/15/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation. Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) which are Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r², %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average relative response factors (RRFs) were utilized, the percent relative standard deviations (%RSD) were less than or equal to 15.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples ERH1661, ERH1663, ERH1665, and ERH1667 were identified as trip blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples ERH1662 and ERH1669 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Data Qualification Summary - SDG 97541

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Laboratory Blank Data Qualification Summary - SDG 97541

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Field Blank Data Qualification Summary - SDG 97541

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B

LDC #: <u>52646A1a</u> **V** SDG #: <u>97541</u> Laboratory: <u>APPL, Inc., Clovis, CA</u>

Date: 1)222 Page: 1 of) Reviewer: _____ 2nd Reviewer: _____

METHOD: GC/MS Volatiles (BTEX)(EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A /A	
١١.	GC/MS Instrument performance check	4	
III.	Initial calibration/ICV	A,A	°/0 p>D = 15, (2 101 ≤ 20
IV.	Continuing calibration endurg	Δ	ect \$ 20/50
V.	Laboratory Blanks	A	
VI.	Field blanks	NO	TB=1,35.7
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	N	<i>U</i> 5
IX.	Laboratory control samples	4	kes 11/
Х.	Field duplicates	ND	D=2,9
XI	Internal standards	5	Ч
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	2	

Note:

A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID		Lab ID	Matrix	Date
1	ERH1661	ТВ	BA40883	Water	09/15/21
2	ERH1662	D	BA40884	Water	09/15/21
3	ERH1663	ТВ	BA40885	Water	09/15/21
4	ERH1664		BA40886	Water	09/15/21
5	ERH1665	ТВ	BA40887	Water	09/15/21
6	ERH1666		BA40888	Water	09/15/21
7	ERH1667	TB	BA40889	Water	09/15/21
8	ERH1668		BA40890	Water	09/15/21
9	ERH1669	D	BA40891	Water	09/15/21
10				l	
Notes	:				

210920BM			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
--------------------	---

LDC Report Date: November 30, 2021

Parameters: Polynuclear Aromatic Hydrocarbons

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97541

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1662	BA40884	Water	09/15/21
ERH1664	BA40886	Water	09/15/21
ERH1666	BA40888	Water	09/15/21
ERH1668	BA40890	Water	09/15/21
ERH1669	BA40891	Water	09/15/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) which are 1-Methylnaphthalene, 2-Methylnaphthalene, and Naphthalene by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples ERH1662 and ERH1669 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	tion (ug/L)			
Analyte	ERH1662	ERH1669	RPD (Limits)	Flag	A or P
1-Methylnaphthalene	0.19	0.21	10 (≤50)	-	-

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 97541

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 97541

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 97541

No Sample Data Qualified in this SDG

LDC #:_	52646A2b		VALIDAT
SDG #:_	97541		
		0	~

ALIDATION COMPLETENESS WORKSHEET Stage 2B

	Date:_	11	28/2
	Page:_	<u>/</u> of_	
	Reviewer:_		<u>E7</u>
2nd	Reviewer:		2
		•	l l

Laboratory: APPL, Inc., Clovis, CA

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW846 Method 8270D-SIM)

TTT, W,S

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AIA	
١١.	GC/MS Instrument performance check		
111.	Initial calibration/ICV	AIA	0/0 PSD ±15 101 ± 20
IV.	Continuing calibration	A	CUN \$ 20/50
V.	Laboratory Blanks	A	
VI.	Field blanks	N	
VII.	Surrogate spikes	4	
VIII.	Matrix spike/Matrix spike duplicates	4	دم
IX.	Laboratory control samples	A	10510
Х.	Field duplicates	SW	D=15
XI.	Internal standards	Δ	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data		

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
	ERH1662 D	BA40884	Water	09/15/21
2+	ERH1664	BA40886	Water	09/15/21
3	ERH1666	BA40888	Water	09/15/21
4	ERH1668	BA40890	Water	09/15/21
54	ERH1669 D	BA40891	Water	09/15/21
6				
7				
8				
9				
Notes				
\vdash	210921A			

VALIDATION FINDINGS WORKSHEET

ME	THC	D: (GC/	MS :	SVOA	

A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	11. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	0000. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. Biphenyl	G1. 2-Acetylaminofluorene	I2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

.

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: GC/MS BNA (EPA SW 846 Method 8270 0) 5 M

<u>YN N/A</u> YN N/A

Were field duplicate pairs identified in this SDG? Were target compounds identified in the field duplicate pairs?

	Concentration	y ug/L,		
Compound	1	\$ 5	RPD (≤ 𝔥 %)	QUAL
TTT	0.19	0.21	10	

	Concentration ()		
Compound		RPD (≤ %)	QUAL

	Concentration ()			
Compound			RPD (≤%)	QUAL

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
--------------------	---

LDC Report Date: November 30, 2021

- Parameters: Gasoline Range Organics
- Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97541

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
ERH1661	BA40883	Water	09/15/21
ERH1662	BA40884	Water	09/15/21
ERH1663	BA40885	Water	09/15/21
ERH1664	BA40886	Water	09/15/21
ERH1665	BA40887	Water	09/15/21
ERH1666	BA40888	Water	09/15/21
ERH1667	BA40889	Water	09/15/21
ERH1668	BA40890	Water	09/15/21
ERH1669	BA40891	Water	09/15/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Samples ERH1661, ERH1663, ERH1665, and ERH1667 were identified as trip blanks. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Analyte	Concentration	Limit of Quantitation	Associated Samples
ERH1663	09/15/21	Gasoline range organics	23 ug/L	20 ug/L	ERH1664

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated field blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Limit of Quantitation	Modified Final Concentration
ERH1664	Gasoline range organics	46 ug/L	20 ug/L	46J+ ug/L

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples ERH1662 and ERH1669 were identified as field duplicates. No results were detected in any of the samples.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to trip blank contamination, data were qualified as estimated in one sample.

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Data Qualification Summary - SDG 97541

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 97541

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 97541

Sample	Analyte	Modified Final Concentration	A or P	Code
ERH1664	Gasoline range organics	46J+ ug/L	A	т

VALIDATION	COMPL	ETENESS	WORKSHEET
------------	-------	---------	-----------

Stage 2B

LDC #:_	<u>52646A7</u>	V/
SDG #:_	97541	
Laborate	ory: APPL, Inc., Clovi	<u>s, CA</u>

Date: 11 28 2 / Page: 1 of 1 Reviewer: <u>P</u> 2nd Reviewer: <u>P</u>

METHOD: GC/MS Gasoline Range Organics (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A/A	
П.	GC/MS Instrument performance check	4	
111.	Initial calibration/ICV	AIA	1 ²
IV.	Continuing calibration	A	
V.	Laboratory Blanks	6	* * *
VI.	Field blanks	يسى	TB=1, 3, 5, 7
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	N	
IX.	Laboratory control samples	A	Les 10
Х.	Field duplicates	NO	p = 2, 9
XI.	Internal standards	4	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data		

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID		Lab ID	Matrix	Date
1 -	ERH1661	тв	BA40883	Water	09/15/21
2	ERH1662	D	BA40884	Water	09/15/21
3+	ERH1663	TB	BA40885	Water	09/15/21
4 +	ERH1664		BA40886	Water	09/15/21
5	ERH1665	TB	BA40887	Water	09/15/21
6-	ERH1666		BA40888	Water	09/15/21
ŕ	ERH1667	TB	BA40889	Water	09/15/21
8	ERH1668		BA40890	Water	09/15/21
9	ERH1669	p	BA40891	Water	09/15/21
10	<u> </u>				

_		_	and the second		
	210920B-BIK				

LDC #: <u>و 2 6 46</u> METHOD: GC/MS VOA (E <u>Y N N/A</u> Were field <u>Y N N/A</u> Were targe Blank units: <u>المال</u> Ass Sampling date: <u>۹</u>] Field blank type: (circle on	PA SW 846 Me blanks identifie et compounds c ociated sampl こした ne) Field Blank	VALIDAT ethod 8260 19 ed in this SDG? detected in the field blanks e units: ug 12 / Rinsate / Trip Blank / Oth	FION FINDI <u>Field f</u> ? ner: <u>TB</u>	NGS WOR <u>Blanks</u> 	KSHEET Rejult LOQ ciated Sampl	es:	(t 4	Rev	Page:/of/ /iewer: <u>FT</u>
Compound	Blank ID			s	ample Identific	ation			
	3	4							T
gasoline Range	23	467+							
Organics	20	20							
		<u> </u>							
Riank units: As	sociated same	le unite:	L						
Sampling date: Field blank type: (circle of	ne) Field Blank	/ Rinsate / Trip Blank / Oth	ner:	Asso	ciated Sampl	es:			
Compound	Blank ID			S	ample Identifica	ation			
									ļ
							ļ		ļ
			<u> </u>				<u> </u>		_
			L	l		<u> </u>			

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
--------------------	---

LDC Report Date: December 2, 2021

Parameters: Total Petroleum Hydrocarbons as Extractables

Validation Level: Stage 4

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97541

Sample Identification	Laboratory Sample	Matrix	Collection Date
ERH1662	BA40884	Water	09/15/21
ERH1664	BA40886	Water	09/15/21
ERH1666	BA40888	Water	09/15/21
ERH1668	BA40890	Water	09/15/21
ERH1669	BA40891	Water	09/15/21
ERH1662(SGCU)	BA40884(SGCU)	Water	09/15/21
ERH1664(SGCU)	BA40886(SGCU)	Water	09/15/21
ERH1666(SGCU)	BA40888(SGCU)	Water	09/15/21
ERH1668(SGCU)	BA40890(SGCU)	Water	09/15/21
ERH1669(SGCU)	BA40891(SGCU)	Water	09/15/21

Samples ending in "SGCU" underwent Silica Gel cleanup

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by Environmental Protection Agency (EPA) SW 846 Method 8015B

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average calibration factors were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Analyte	Concentration	Limit of Quantitation	Associated Samples
210922A1	09/22/21	Oil (C24-C40)	150 ug/L	320 ug/L	ERH1662(SGCU) ERH1664(SGCU) ERH1666(SGCU) ERH1668(SGCU) ERH1669(SGCU)

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
ERH1662(SGCU)	Oil (C24-C40)	150 ug/L	300U ug/L
ERH1664(SGCU)	Oil (C24-C40)	160 ug/L	300U ug/L
ERH1666(SGCU)	Oil (C24-C40)	440 ug/L	440J+ ug/L
ERH1668(SGCU)	Oil (C24-C40)	370 ug/L	370J+ ug/L
ERH1669(SGCU)	Oil (C24-C40)	250 ug/L	300U ug/L

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Analyte	Flag	A or P
ERH1662(SGCU)	Octacosane	148 (60-142)	All analytes	J+ (all detects)	Ρ
ERH1664(SGCU)	Octacosane Ortho-Terphenyl	172 (60-142) 136 (56-125)	All analytes	J+ (all detects)	Р
ERH1668(SGCU)	Octacosane Ortho-Terphenyl	159 (60-142) 133 (56-125)	All analytes	J+ (all detects)	Ρ
ERH1669(SGCU)	Octacosane Ortho-Terphenyl	156 (60-142) 131 (56-125)	All analytes	J+ (all detects)	Ρ

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
210922A-LCS/LCSD (ERH1662 ERH1664 ERH1666 ERH1668 ERH1668 ERH1669)	Oil (C24-C40)	-	123 (41-113)	J+ (all detects)	A
210922A1-LCS/LCSD (ERH1662(SGCU) ERH1666(SGCU) ERH1668(SGCU) ERH1669(SGCU))	Diesel (C10-C24)	184 (36-132)	134 (36-132)	NA	-
210922A1-LCS/LCSD (ERH1664(SGCU))	Diesel (C10-C24)	184 (36-132)	134 (36-132)	J+ (all detects)	A
210922A1-LCS/LCSD (ERH1662(SGCU) ERH1664(SGCU) ERH1666(SGCU) ERH1668(SGCU) ERH1669(SGCU))	Oil (C24-C40)	187 (41-113)	132 (41-113)	J+ (all detects)	A

Relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	RPD (Limits)	Flag	A or P
210922A1-LCS/LCSD (ERH1662(SGCU) ERH1666(SGCU) ERH1668(SGCU) ERH1669(SGCU))	Diesel (C10-C24)	31.5 (≤30)	NA	-
210922A1-LCS/LCSD (ERH1664(SGCU))	Diesel (C10-C24)	31.5 (≤30)	J+ (all detects)	А
210922A1-LCS/LCSD (ERH1662(SGCU) ERH1664(SGCU) ERH1666(SGCU) ERH1668(SGCU) ERH1669(SGCU))	Oil (C24-C40)	34.6 (≤30)	J (all detects)	A

IX. Field Duplicates

Samples ERH1662 and ERH1669 and samples ERH1662(SGCU) and ERH1669(SGCU) were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ug/L)		
Analyte	ERH1662	ERH1669	RPD (Limits)
Diesel (C10-C24)	240	280	15 (≤50)
Oil (C24-C40)	210	310	38 (≤50)

	Concentration (ug/L)					
Analyte	ERH1662(SGCU) ERH1669(SGCU) RPD (Limits)		RPD (Limits)			
Oil (C24-C40)	150	250	50 (≤50)			

X. Target Analyte Quantitation

All target analyte quantitations met validation criteria.

XI. Target Analyte Identification

All target analyte identifications met validation criteria.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to surrogate %R and LCS/LCSD %R and RPD, data were qualified as estimated in ten samples.

Due to laboratory blank contamination, data were qualified as estimated or not detected in five samples.

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 97541

Sample	Analyte	Flag	A or P	Reason (Code)
ERH1662(SGCU) ERH1664(SGCU) ERH1668(SGCU) ERH1669(SGCU)	All analytes	J+ (all detects)	Ρ	Surrogates (%R) (s)
ERH1662 ERH1664 ERH1666 ERH1668 ERH1669	Oil (C24-C40)	J+ (all detects)	A	Laboratory control samples (%R) (I)
ERH1664(SGCU)	Diesel (C10-C24)	J (all detects)	A	Laboratory control samples (%R)(RPD) (I) (w)
ERH1662(SGCU) ERH1664(SGCU) ERH1666(SGCU) ERH1668(SGCU) ERH1669(SGCU)	Oil (C24-C40)	J (all detects)	A	Laboratory control samples (%R)(RPD) (I) (w)

Red Hill Bulk Storage Facility, CTO 18F0126

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 97541

Sample	Analyte	Modified Final Concentration	A or P	Code
ERH1662(SGCU)	Oil (C24-C40)	300U ug/L	А	b
ERH1664(SGCU)	Oil (C24-C40)	300U ug/L	A	b
ERH1666(SGCU)	Oil (C24-C40)	440J+ ug/L	А	b
ERH1668(SGCU)	Oil (C24-C40)	370J+ ug/L	A	b
ERH1669(SGCU)	Oil (C24-C40)	300U ug/L	A	b

Red Hill Bulk Storage Facility, CTO 18F0126

Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 97541

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B- 4

LDC #:	<u>52646A8</u>	V
SDG #:_	97541	
Laborato	ory: APPL, Inc., Clovis	<u>s, CA</u>

Date: <u>11</u>262 Page: <u>1</u> of <u>/</u> Reviewer: <u>1</u> 2nd Reviewer: <u>2</u>

METHOD: GC TPH as Extractables (EPA SW 846 Method 8015B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Sample receipt/Technical holding times	AIA	
11.	Initial calibration/ICV	A/A	°/0 p>0 ± 20, (2 10/ ± 20
111.	Continuing calibration ending acr	Δ	CU E 20/20
IV.	Laboratory Blanks	su)	
V.	Field blanks	ĸ	
VI.	Surrogate spikes	SW	
VII.	Matrix spike/Matrix spike duplicates	Ч	\mathcal{C}
VIII.	Laboratory control samples	SUU	Leslo
IX.	Field duplicates	ક્પ	D = 1.5 6.10
Х.	Target analyte quantitation	N	
XI.	Target analyte identification	N	
	Overall assessment of data	4	

A = Acceptable N = Not provided/applicable SW = See worksheet

Note:

ND = No compounds detected R = Rinsate - FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1+1	ERH1662 P	BA40884	Water	09/15/21
271	ERH1664	BA40886	Water	09/15/21
まり	ERH1666	BA40888	Water	09/15/21
4	ERH1668	BA40890	Water	09/15/21
5 ١	ERH1669 0	BA40891	Water	09/15/21
6 r	ERH1662(SGCU)	BA40884(SGCU)	Water	09/15/21
7 *	ERH1664(SGCU)	BA40886(SGCU)	Water	09/15/21
8 7	ERH1666(SGCU)	BA40888(SGCU)	Water	09/15/21
9 r	ERH1668(SGCU)	BA40890(SGCU)	Water	09/15/21
10~	ERH1669(SGCU) D	BA40891(SGCU)	Water	09/15/21
11	· · · · · · · · · · · · · · · · · · ·			
12				
13				
Notes				

1	210922 A - BIK				
2	210922A1-BIK				

LDC #: 52646A9 Method: GC HPLC

Validation Area	Yes	No	NA	Findings/Comments				
I. Technical holding times								
Were all technical holding times met?	/							
Was cooler temperature criteria met?	/							
lla. Initial calibration								
Did the laboratory perform a 5 point calibration prior to sample analysis?	/							
Were all percent relative standard deviations (%RSD) < 20%?	•/	-	•					
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990 ?	/	·						
Were the RT windows properly established?								
IIb. Initial calibration verification								
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/							
Were all percent differences (%D) <u><</u> 20%?								
III. Continuing calibration								
Was a continuing calibration analyzed daily?	/							
Were all percent differences (%D) ≤ 20%?	/							
Were all the retention times within the acceptance windows?	/	[
IV. Laboratory Blanks								
Was a laboratory blank associated with every sample in this SDG?								
Was a laboratory blank analyzed for each matrix and concentration?	/							
Was there contamination in the laboratory blanks?								
V. Field Blanks								
Were field blanks identified in this SDG?		/	-					
Were target compounds detected in the field blanks?								
VI. Surrogate spikes								
Were all surrogate percent recovery (%R) within the QC limits?		/						
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?		/		4				
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?								
VII. Matrix spike/Matrix spike duplicates	-							
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?								
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/					
VIII. Laboratory control samples	1		T					
Was an LCS analyzed per analytical or extraction batch?								
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?								

Level IV checklist GC_HPLC rev02.wpd

VALIDATION FINDINGS CHECKLIST

IX. Field duplicates			_			
Were field duplicate pairs identified in this SDG?	\checkmark	•				
Were target compounds detected in the field duplicates?	V					
X. Target analyte quantitation						
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	/				_	
Wereanalyte quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/					
XI. Target analyte identification	/					
Were the retention times of reported detects within the RT windows?						
XIII. Overall assessment of data						
Overall assessment of data was found to be acceptable.						

٠

LDC #:	52646AD
--------	---------

VALIDATION FINDINGS WORKSHEET

Blanks

Page:_	1	_of	<u> </u>
Reviewer:		FT	•

Result

___ GC ___ HPLC METHOD:

Please see qualifications	below for a	Il questions answe	ered "N" Not applicable questions are identified as "N/A"

<u>IX N N/A</u> Were all samples associated with a given method blank?

YN N/A Was a method blank performed for each matrix and whenever a sample extraction procedure was performed?

Y N N/A Was a method blank performed with each extraction batch?

 $\frac{1}{\sqrt{N} N/A}$ Were any contaminants found in the method blanks? If yes, please see findings below.

Level IV/D Only

Y N N/A/(Gasoline and aromatics only)Was a method blank analyzed with each 24 hour batch?

Y N N/A Was a method blank analyzed for each analytical / extraction batch of <20 samples? Associated samples: 6 - PIU

Blank extraction date: 9/22 2	Blank analysis date: 10 6 2
Conc. units: yalL	

Compoun	d	Blank ID				Sample Identificat	ion	
		210922A1	ما	7	4	9	10	
0il (C24-	c40)	150	150/3000	160/3000	4401+	3701+	230/3004	
		320	320	320	320	320	320	

Blank extraction date:_____ Blank analysis date:_____

Associated samples:

Conc. units:

Compound	Blank ID	Sample Identification					
	• •						

ALL CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

BLANKS_r1.wpd

VALIDATION FINDINDS WORKSHEET Surrogate Recovery

(5)

METHOD: V GC __ HPLC

Are surrogates required by the method? Yes____ or No__

Phase see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". $\frac{N-N/A}{Y(N-N/A}$ Were surrogates spiked into all samples and blanks? $\frac{Y(N-N/A}{Y(N-N/A})$ Did all surrogate recoveries (%R) meet the QC limits?

#_	Sample ID		Detec Colur	tor/ mn	Surrogate Compound		%R (Limits	5)			Q	ualifications
	6				G		148 (60	-142)	1+ dir	18	ND+Det
							(_)			
		[· · · <u>· · · · · · · · · · · · · · · · </u>		()			
	5				G		172 (60)-142)	Jt det	1P	ND + Det
					Н		136 (56.	-125)	1	·	
							()			
	9				١		159 (1)	1+ du	19	ND + Det
	-				7		(20) (20))	V		
	<u></u>						()			
	10				1		152 (1)	J+ du	IP	ND + Det
					¥		131 (1	()	1	•	
							()			
							()			
								_()				
L							()			
							()			
							()			
							()			
							()			
							()			
L							()			
	Surrogate Compound Surrogate Compound			Surrogate Compound		Surrogate Co	ompound					
А	Chlorobenzene (CB	3Z)	G	00	ctacosane	м	Benzo(e)Pyrene	s	1-Chloro-3-Nitr	obenzene	Y	Tetrachloro-m- xylene
В	4-Bromofluorobenzene	(BFB)	н	Orth	o-Terphenyl	N	Terphenyl-D14	Т	3,4-Dinitrot	oluene	z	2-Bromonaphthalene
<u> </u>	a,a,a-Trifluorotoluer	ne		Fluoro	benzene (FBZ)	0	Decachlorobiphenyl (DCB)	U Tripenty		ltin	AA	Chloro-octadecane
	Bromochlorobenen	1e		<u>n-1</u>	Triacontane	P	1-methyinaphthalene		Tri-n-propyltin		BB	2,4-Dichlorophenylacetic acid
F	1,4-Dichlorobutan			He	mobenzene		UICRIOTOPHENYI ACETIC ACIO (DCAA)	vv x	Tripbenyl Pho	osphate		2,5-Dibromotoluene

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

METHOD: ___GC __ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". <u>Y N N/A</u> <u>Y N N/A</u> Were a laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) analyzed for each matrix in this SDG? Were the LCS percent recoveries (%R) and relative percent differences (RPD) within the QC limits?

Level IV/D Only

Y N M/A/ Was an LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

% RPD= (W) °/0 R= (1)

							<u>r n= (F)</u>
#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	210922A -	011 (c24-e40		123 (4)-113)	()	1-75,	It du 10 all Dot
	resto		()	()	()	210922A - BIK	11
			()	()	()		
			()	()	()		
			()	()	()		
	210922A1-	Diesel (c10-c	4) 184 (36-132)	134 (36-132)	()	6-710	J+ dut /P #7 dut
	Les 10	Dil (czy-cu	0) 187 (41-113)	132 (41-113)	()	210922A1-BIK	1 all Det
			()	().			
			()	()	31.5 (30)		Jdu /P #7det
		V	()	()	24.6 (30)		v all Det
			()	()	()		•
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
	······································		()	()	()		
			()	()	()		
			()]	()	()		

VALIDATION FINDINGS WORKSHEET

Field Duplicates

Page: 1_of_1_ Reviewer: ___FT___

METHOD:GCHPLC Y N N/A Were field duplicate pairs ide Y/N N/A Were target compounds det	entified in this SDG? ected in the field duplicate p	airs?		
	Concentration	(ug/L)	%RPD	Qualification
Compound	1	5	Limit (s <u> </u>	(Parent only)
Diesel (KIO-CZ4)	240 1	2801	15	
0il (c24 - c40)	2101	310]	38	
				-

Compound	Concentration	(ug L)	%RPD	Qualification	
Compound	6 10			(Farent Only)	
.					
Oil (c24- C40)	150 J	2501	50		

Compound	Concentration	()	%RPD Limit (≤%))	Qualification (Parent only)

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:___1__of___1__ Reviewer:___FT____

Method: DRO 8015C

WEIGHTED

Calibration				(Y)	(X)
Date	System	Compound	Standard	Response	Concentration
8/30/2021	GC-Apollo	Motor oil	1	41451191.000	5.0
		(C24-C40)	2	48710805.000	10.0
			3	167306131.000	50.0
			4	768486801.000	250.0
			5	2987558435.000	1000.0
			6	4398400914.000	1500.0
			7	6000685216.000	2000.0

Regression Ou	tput	Reported
Constant	18633287.826932	23900000.0
Std Err of Y Est		
R Squared	0.999789	1.000000
Degrees of Freedom		
X Coefficient(s)	2966182.030781	2960000.0
Std Err of Coef.		
Correlation Coefficient	0.999894	
Coefficient of Determination (r^2)	0.999789	1.000000

LDC #:_____

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:<u>1</u>of<u>1</u>

Reviewer: FT

METHOD: GC _____HPLC____

The calibration factors (CF) and relative standard deviation (%RSD) were recalculated using the following calculations:

CF = A/C

Average CF = sum of the CF/number of standards %RSD = 100 * (S/X) Where: A = Area of compound

C = Concentration of compound S = Standard deviation of calibration factors

X = Mean of calibration factors

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound	CF (std)	CF (std)	CF (initial)	CF (intial)	%RSD	%RSD
1							· · · ·		
2									
			·						
3							· · ·		
			·						
4									
				· · · · ·					

Comments: Refer to Initial Calibration findings worksheet for list of gualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 52646 AX

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

METHOD: GC ______HPLC _____

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. CF -CF)/ave.CF

Where: ave. CF = initial calibration average CF

CF = continuing calibration CF

A = Area of compound

C = Concentration of compound

	Standard	Calibration			Reported	Recalculated	Reported	Recalculated
#	ID	Date	Compound	Average CF(ICAL)/ CCV Conc.	CF/ Conc. CCV	CF/ Conc. CCV	%D	%D
1	928103	9/30/21	motos Oil (Cry-Cy)	250	267.313	267.313	6.9	6.9
	cal							/
	100049	10/1/21			74 07		<u> </u>	
2	cer		₩	<u></u>	<u> </u>	274.31/	<u> </u>	1.8
3								
			· · · · · · · · · · · · · · · · · · ·					
						·····		
4								
Jom he re	ments: <u>Reter to</u> ecalculated resu	Continuing Calit	bration findings worksheet i	for list of qualifications al	no associated samp	bles when reported	results do not agr	ee within 10.0% of

VALIDATION FINDINGS WORKSHEET **Surrogate Results Verification**

LDC #: 5264640 METHOD: ____GC ___ HPLC

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:____

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
octavosane		142.857	162 348	114	114	0
0- Terpheny 1		V	133.426	93.4	93.4	Ū
1.4				•		

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	

	Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound
Α	Chlorobenzene (CBZ)	G	Octacosane	М	Benzo(e)Pyrene	S	1-Chloro-3-Nitrobenzene	Y	Tetrachloro-m- xylene
В	4-Bromofluorobenzene (BFB)	н	Ortho-Terphenyl	N	Terphenyi-D14	т	3,4-Dinitrotoluene	z	2-Bromonaphthalene
C,	a,a,a-Trifluorotoluene	1	Fluorobenzene (FBZ)	0	Decachlorobiphenyl (DCB)	U	Tripentyltin	AA	Chloro-octadecane
D	Bromochlorobenene	J	n-Triacontane	Р	1-methylnaphthalene	V	Tri-n-propyltin	BB	2,4-Dichlorophenylacetic acid
E	1,4-Dichlorobutane	к	Hexacosane	Q	Dichlorophenyl Acetic Acid (DCAA)	w	Tributyl Phosphate	cc	2,5-Dibromotoluene
F	1,4-Difluorobenzene (DFB)	L	Bromobenzene	R	4-Nitrophenol	x	Triphenyl Phosphate		

LDC #: 52646AB

VALIDATION FINDINGS WORKSHEET

Page: 1 of 1

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification Reviewer: FT

METHOD: V GC HPLC

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

%Recovery = 100 * (SSC/SA) RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100

Where SSC = Spiked sample concentration LCS = Laboratory Control Sample SA = Spike added LCSD = Laboratory Control Sample duplicate

LCS/LCSD samples:_____

	Sr	oike	Spike S	Sample	LC	s	LC	SD	LCS/L	CSD
Compound	Ad	ided)	Concer	itration	Percent I	Recovery	Percent I	Recovery	RP	D
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
						· · · · · · · · · · · · · · · · · · ·				
			·····							
Comments: <u>Refer to Laboratory</u>	Control Samp	ole/Laboratory (Control Sample	e Duplicate find	lings workshee	t for list of qual	ifications and a	associated sam	ples when repo	ted results do

LDC #: 52646AB

VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds within 10% of the reported results?

Concentration= (RF	(A)(Fv)(Df) (Vs or Ws)(%S/10))	Example:					
A= Area or height of Fv= Final Volume of Df= Dilution Factor RF= Average respon In the initial calil Vs= Initial volume of Ws= Initial weight of %S= Percent Solid	of the compound to be f extract se factor of the compo bration i the sample the sample	measured	Concentratio	 on =	Comp (22111 (201		(5) (-) (1090) 2606.5	(<u>610 - 274</u>) (1000) =
# 5	Sample ID	Compou	und Reported Recalculated Results Concentrations Qu					
	42	Diesel (C10.	- C24)	260	D	240	6.8	
		(Wang to a state				

Comments: _____

Red Hill Bulk Storage Facility, CTO 18F0126 - SDG 97541 LDC 52646

AECOM

EPA_NO	LAB_ID	DI	F ANALYTE	COLL_DATE	ANAL_DATE QCLev	RESULT	UNITS	LAB_Q	LOQ	LOD	REV	Q_C
	METH	HOE): 8015B_E									
ERH1662	BA40884	1	C10-C24 DIESEL RANGE ORG SILICA GEL CLEAN UP	9/15/2021	10/6/2021 1:21:00 PM 3	300.0	UG_L	U	320	300.0	U	
ERH1662	BA40884	1	C10-C24 DIESEL RANGE ORGANICS	9/15/2021	9/30/2021 6:57:00 PM 3	240	UG_L	J	320	300.0	J	
ERH1662	BA40884	1	C24-C40 OIL RANGE ORGANICS SILICA GEL CLEAN UP	9/15/2021	10/6/2021 1:21:00 PM 3		UG_L	B JD	320	300.0	UJ	s,l,w,b
ERH1662	BA40884	1	C24-C40 TOTAL PETROLEUM HYDROCARBONS, OIL RANGE ORGANICS	9/15/2021	9/30/2021 6:57:00 PM 3	210	UG_L	B J	320	300.0	J+	1
ERH1664	BA40886	1	C10-C24 DIESEL RANGE ORG SILICA GEL CLEAN UP	9/15/2021	10/6/2021 2:18:00 PM 3	1100	UG_L	D	320	300.0	J	s,l,w
ERH1664	BA40886	1	C10-C24 DIESEL RANGE ORGANICS	9/15/2021	9/30/2021 7:25:00 PM 3	2600	UG_L		320	300.0		
ERH1664	BA40886	1	C24-C40 OIL RANGE ORGANICS SILICA GEL CLEAN UP	9/15/2021	10/6/2021 2:18:00 PM 3		UG_L	B JD	320	300.0	UJ	s,l,w,b
ERH1664	BA40886	1	C24-C40 TOTAL PETROLEUM HYDROCARBONS, OIL RANGE ORGANICS	9/15/2021	9/30/2021 7:25:00 PM 3	470	UG_L	В	320	300.0	$\mathbf{J}+$	1
ERH1666	BA40888	1	C10-C24 DIESEL RANGE ORG SILICA GEL CLEAN UP	9/15/2021	10/6/2021 2:46:00 PM 3	300.0	UG_L	U	320	300.0	U	
ERH1666	BA40888	1	C10-C24 DIESEL RANGE ORGANICS	9/15/2021	9/30/2021 7:54:00 PM 3	350	UG_L		320	300.0		
ERH1666	BA40888	1	C24-C40 OIL RANGE ORGANICS SILICA GEL CLEAN UP	9/15/2021	10/6/2021 2:46:00 PM 3	440	UG_L	B D	320	300.0	J	l,w,b
ERH1666	BA40888	1	C24-C40 TOTAL PETROLEUM HYDROCARBONS, OIL RANGE ORGANICS	9/15/2021	9/30/2021 7:54:00 PM 3	700	UG_L	В	320	300.0	J+	1
ERH1668	BA40890	1	C10-C24 DIESEL RANGE ORG SILICA GEL CLEAN UP	9/15/2021	10/6/2021 3:15:00 PM 3	300.0	UG_L	U	320	300.0	U	
ERH1668	BA40890	1	C10-C24 DIESEL RANGE ORGANICS	9/15/2021	9/30/2021 8:22:00 PM 3	300.0	UG_L	U	320	300.0	U	
ERH1668	BA40890	1	C24-C40 OIL RANGE ORGANICS SILICA GEL CLEAN UP	9/15/2021	10/6/2021 3:15:00 PM 3	370	UG_L	B D	320	300.0	J	s,l,w,b
ERH1668	BA40890	1	C24-C40 TOTAL PETROLEUM HYDROCARBONS, OIL RANGE ORGANICS	9/15/2021	9/30/2021 8:22:00 PM 3	270	UG_L	ВJ	320	300.0	J+	1
ERH1669	BA40891	1	C10-C24 DIESEL RANGE ORG SILICA GEL CLEAN UP	9/15/2021	10/6/2021 3:43:00 PM 3	300.0	UG_L	U	320	300.0	U	
ERH1669	BA40891	1	C10-C24 DIESEL RANGE ORGANICS	9/15/2021	9/30/2021 8:50:00 PM 3	280	UG_L	J	320	300.0	J	
ERH1669	BA40891	1	C24-C40 OIL RANGE ORGANICS SILICA GEL CLEAN UP	9/15/2021	10/6/2021 3:43:00 PM 3		UG_L	B JD	320	300.0	UJ	s,l,w,b
ERH1669	BA40891	1	C24-C40 TOTAL PETROLEUM HYDROCARBONS, OIL RANGE ORGANICS	9/15/2021	9/30/2021 8:50:00 PM 3	310	UG_L	ВJ	320	300.0	J+	1
	METH	HOE): 8260B									
ERH1661	BA40883	1	BENZENE	9/15/2021	9/20/2021 10:53:00 PM 3	0.30	UG_L	U	1.0	0.30	U	
ERH1661	BA40883	1	ETHYLBENZENE	9/15/2021	9/20/2021 10:53:00 PM 3	0.50	UG_L	U	1.0	0.50	U	
ERH1661	BA40883	1	PETROLEUM HYDROCARBONS C6-C10	9/15/2021	9/20/2021 10:52:00 PM 3	18.0	UG_L	U	20	18.0	U	
ERH1661	BA40883	1 '	TOLUENE	9/15/2021	9/20/2021 10:53:00 PM 3	0.30	UG_L	U	1.0	0.30	U	

EPA_NO	LAB_ID	Ι	DF	ANALYTE	COLL_DATE	ANAL_DATE	QCLev	RESULT	UNITS	LAB_Q	LOQ	LOD	REV	Q_C
	MET	HO	D: 8260E	3										
ERH1661 B.	A40883	1	Xylenes		9/15/2021	9/20/2021 10:53:00 PI	M 3	0.30	UG_L	U	2.0	0.30	U	
ERH1662 B.	A40884	1	BENZENE		9/15/2021	9/20/2021 11:20:00 PI	M 3	0.30	UG_L	U	1.0	0.30	U	
ERH1662 B.	A40884	1	ETHYLBE	NZENE	9/15/2021	9/20/2021 11:20:00 PI	M 3	0.50	UG_L	U	1.0	0.50	U	
ERH1662 B.	A40884	1	PETROLE	UM HYDROCARBONS C6-C10	9/15/2021	9/20/2021 11:21:00 PI	M 3	18.0	UG_L	U	20	18.0	U	
ERH1662 B.	A40884	1	TOLUENE		9/15/2021	9/20/2021 11:20:00 PI	M 3	0.30	UG_L	U	1.0	0.30	U	
ERH1662 B.	A40884	1	Xylenes		9/15/2021	9/20/2021 11:20:00 PI	M 3	0.30	UG_L	U	2.0	0.30	U	
ERH1663 B.	A40885	1	BENZENE		9/15/2021	9/20/2021 11:48:00 PI	M 3	0.30	UG_L	U	1.0	0.30	U	
ERH1663 B.	A40885	1	ETHYLBE	NZENE	9/15/2021	9/20/2021 11:48:00 PI	M 3	0.50	UG_L	U	1.0	0.50	U	
ERH1663 B.	A40885	1	PETROLE	UM HYDROCARBONS C6-C10	9/15/2021	9/20/2021 11:49:00 PI	M 3	23	UG_L		20	18.0		
ERH1663 B.	A40885	1	TOLUENE		9/15/2021	9/20/2021 11:48:00 PI	M 3	0.30	UG_L	U	1.0	0.30	U	
ERH1663 B.	A40885	1	Xylenes		9/15/2021	9/20/2021 11:48:00 PI	M 3	0.30	UG_L	U	2.0	0.30	U	
ERH1664 B.	A40886	1	BENZENE		9/15/2021	9/21/2021 12:16:00 AI	M 3	0.30	UG_L	U	1.0	0.30	U	
ERH1664 B.	A40886	1	ETHYLBE	NZENE	9/15/2021	9/21/2021 12:16:00 AI	M 3	0.50	UG_L	U	1.0	0.50	U	
ERH1664 B.	A40886	1	PETROLE	UM HYDROCARBONS C6-C10	9/15/2021	9/21/2021 12:17:00 AI	M 3	46	UG_L		20	18.0	J+	t
ERH1664 B.	A40886	1	TOLUENE		9/15/2021	9/21/2021 12:16:00 Al	M 3	0.30	UG_L	U	1.0	0.30	U	
ERH1664 B.	A40886	1	Xylenes		9/15/2021	9/21/2021 12:16:00 Al	M 3	0.30	UG_L	U	2.0	0.30	U	
ERH1665 B.	A40887	1	BENZENE		9/15/2021	9/21/2021 12:44:00 Al	M 3	0.30	UG_L	U	1.0	0.30	U	
ERH1665 B.	A40887	1	ETHYLBE	NZENE	9/15/2021	9/21/2021 12:44:00 Al	M 3	0.50	UG_L	U	1.0	0.50	U	
ERH1665 B.	A40887	1	PETROLE	UM HYDROCARBONS C6-C10	9/15/2021	9/21/2021 12:45:00 At	M 3	18.0	UG_L	U	20	18.0	U	
ERH1665 B.	A40887	1	TOLUENE		9/15/2021	9/21/2021 12:44:00 At	M 3	0.30	UG_L	U	1.0	0.30	U	
ERH1665 B.	A40887	1	Xylenes		9/15/2021	9/21/2021 12:44:00 Al	M 3	0.30	UG_L	U	2.0	0.30	U	
ERH1666 B.	A40888	1	BENZENE		9/15/2021	9/21/2021 1:13:00 Al	M 3	0.30	UG_L	U	1.0	0.30	U	
ERH1666 B.	A40888	1	ETHYLBE	NZENE	9/15/2021	9/21/2021 1:13:00 Al	M 3	0.50	UG_L	U	1.0	0.50	U	
ERH1666 B.	A40888	1	PETROLE	UM HYDROCARBONS C6-C10	9/15/2021	9/21/2021 1:12:00 Al	М 3	18.0	UG_L	U	20	18.0	U	
ERH1666 B.	A40888	1	TOLUENE		9/15/2021	9/21/2021 1:13:00 Al	М 3	0.30	UG_L	U	1.0	0.30	U	
ERH1666 B.	A40888	1	Xylenes		9/15/2021	9/21/2021 1:13:00 Al	М 3	0.30	UG_L	U	2.0	0.30	U	
ERH1667 B.	A40889	1	BENZENE		9/15/2021	9/21/2021 1:40:00 Al	М 3	0.30	UG_L	U	1.0	0.30	U	

EPA_NO	LAB_ID	I	DF ANALYTE	COLL_DATE	ANAL_DATE QCLev	RESULT	UNITS	LAB_Q	LOQ	LOD	REV	Q_C
	MET	НО	D: 8260B									
ERH1667 E	3A40889	1	ETHYLBENZENE	9/15/2021	9/21/2021 1:40:00 AM 3	0.50	UG_L	U	1.0	0.50	U	
ERH1667 E	3A40889	1	PETROLEUM HYDROCARBONS C6-C10	9/15/2021	9/21/2021 1:41:00 AM 3	18.0	UG_L	U	20	18.0	U	
ERH1667 E	3A40889	1	TOLUENE	9/15/2021	9/21/2021 1:40:00 AM 3	0.30	UG_L	U	1.0	0.30	U	
ERH1667 E	3A40889	1	Xylenes	9/15/2021	9/21/2021 1:40:00 AM 3	0.30	UG_L	U	2.0	0.30	U	
ERH1668 E	3A40890	1	BENZENE	9/15/2021	9/21/2021 2:08:00 AM 3	0.30	UG_L	U	1.0	0.30	U	
ERH1668 E	3A40890	1	ETHYLBENZENE	9/15/2021	9/21/2021 2:08:00 AM 3	0.50	UG_L	U	1.0	0.50	U	
ERH1668 E	3A40890	1	PETROLEUM HYDROCARBONS C6-C10	9/15/2021	9/21/2021 2:09:00 AM 3	18.0	UG_L	U	20	18.0	U	
ERH1668 E	3A40890	1	TOLUENE	9/15/2021	9/21/2021 2:08:00 AM 3	0.30	UG_L	U	1.0	0.30	U	
ERH1668 E	3A40890	1	Xylenes	9/15/2021	9/21/2021 2:08:00 AM 3	0.30	UG_L	U	2.0	0.30	U	
ERH1669 E	3A40891	1	BENZENE	9/15/2021	9/21/2021 2:36:00 AM 3	0.30	UG_L	U	1.0	0.30	U	
ERH1669 E	3A40891	1	ETHYLBENZENE	9/15/2021	9/21/2021 2:36:00 AM 3	0.50	UG_L	U	1.0	0.50	U	
ERH1669 E	3A40891	1	PETROLEUM HYDROCARBONS C6-C10	9/15/2021	9/21/2021 2:37:00 AM 3	18.0	UG_L	U	20	18.0	U	
ERH1669 E	3A40891	1	TOLUENE	9/15/2021	9/21/2021 2:36:00 AM 3	0.30	UG_L	U	1.0	0.30	U	
ERH1669 E	3A40891	1	Xylenes	9/15/2021	9/21/2021 2:36:00 AM 3	0.30	UG_L	U	2.0	0.30	U	
	MET	HO	D: 8270DSIM									
ERH1662 E	3A40884	1	1-METHYLNAPHTHALENE	9/15/2021	9/27/2021 3:09:00 PM 3	0.19	UG_L	J	0.2	0.10	J	
ERH1662 E	3A40884	1	2-METHYLNAPHTHALENE	9/15/2021	9/27/2021 3:09:00 PM 3	0.10	UG_L	U	0.2	0.10	U	
ERH1662 E	3A40884	1	NAPHTHALENE	9/15/2021	9/27/2021 3:09:00 PM 3	0.10	UG_L	U	0.2	0.10	U	
ERH1664 E	3A40886	1	1-METHYLNAPHTHALENE	9/15/2021	9/27/2021 3:31:00 PM 3	33	UG_L		0.2	0.10		
ERH1664 E	3A40886	1	2-METHYLNAPHTHALENE	9/15/2021	9/27/2021 3:31:00 PM 3	33	UG_L		0.2	0.10		
ERH1664 E	3A40886	1	NAPHTHALENE	9/15/2021	9/27/2021 3:31:00 PM 3	70	UG_L		0.2	0.10		
ERH1666 E	3A40888	1	1-METHYLNAPHTHALENE	9/15/2021	9/27/2021 3:53:00 PM 3	0.10	UG_L	U	0.2	0.10	U	
ERH1666 E	3A40888	1	2-METHYLNAPHTHALENE	9/15/2021	9/27/2021 3:53:00 PM 3	0.10	UG_L	U	0.2	0.10	U	
ERH1666 E	3A40888	1	NAPHTHALENE	9/15/2021	9/27/2021 3:53:00 PM 3	0.10	UG_L	U	0.2	0.10	U	
ERH1668 E	3A40890	1	1-METHYLNAPHTHALENE	9/15/2021	9/27/2021 4:15:00 PM 3	0.10	UG_L	U	0.2	0.10	U	
ERH1668 E	3A40890	1	2-METHYLNAPHTHALENE	9/15/2021	9/27/2021 4:15:00 PM 3	0.10	UG_L	U	0.2	0.10	U	
ERH1668 E	3A40890	1	NAPHTHALENE	9/15/2021	9/27/2021 4:15:00 PM 3	0.10	UG_L	U	0.2	0.10	U	

EPA_NO LAB_ID	DF	ANALYTE	COLL_DATE	ANAL_DATE	QCLev	RESULT	UNITS	LAB_Q	LOQ	LOD	REV	Q_C
METI	HOD: 8270	DSIM										
ERH1669 BA40891	1 1-METHY	VLNAPHTHALENE	9/15/2021	9/27/2021 4:38:00 H	PM 3	0.21	UG_L		0.2	0.10		
ERH1669 BA40891	1 2-METHY	/LNAPHTHALENE	9/15/2021	9/27/2021 4:38:00 F	PM 3	0.10	UG_L	U	0.2	0.10	U	
ERH1669 BA40891	1 NAPHTH	ALENE	9/15/2021	9/27/2021 4:38:00 F	PM 3	0.10	UG_L	U	0.2	0.10	U	