

November 24, 2021

AECOM 1001 Bishop Street Suite 1600 Honolulu, HI 96813 ATTN: Ms. Alethea Ramos alethea.ramos@aecom.com

SUBJECT: Red Hill Bulk Storage Facility, CTO 18F0126 - Data Validation

Dear Ms. Ramos,

Enclosed are the final validation reports for the fraction listed below. These SDGs were received on November 11, 2021. Attachment 1 is a summary of the samples that were reviewed for the analysis.

LDC Project #52547B:

SDG #FractionB21101919TPH as Extractables, TPH as Extractables (SGCU)

The data validation was performed under Stage 2B & 4 validation guidelines. The analysis was validated using the following documents and variances, as applicable to the method:

- Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor Hickam, O'ahu, Hawai'i (Revision 02, January 2017)
- Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor Hickam, O'ahu, Hawai'i (Revision 01, April 2017)
- Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017)
- Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018)
- U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019)
- DoD General Validation Guidelines (November 2019)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021)
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

file abro-

Stella Cuenco Operations Manager/Senior Chemist scuenco@lab-data.com

	74 pages-EM		3 DA	Y TA	Т								At	tachi	nent	: 1																	
	90/10 2B/4	EDD	LDC#	# 52	547	7 (A	EC	ЭM	- H	onc	lul	u, H	II / F	Red	Hil	ΙΒι	ılk (Sto	rag	e Fa	acil	ity,	СТ	0 18	8F0	126	5)						
LDC	SDG#	DATE REC'D	(2) DATE DUE		H-E 15C)	TP	iCU H-E 15C)						1								T												
Matrix	c: Water/Soil	1	ł	w	s	W	s	W	s	W	s	W	s	W	s	W	S	W	s	W	s	W	S	W	s	W	s	W	s	W	s	W	s
В	B21101919	11/11/21	11/16/21	6	0	3	0																										
 	B21101919	11/11/21	11/16/21	1	0	1	0																										
																														<u> </u>			
																														<u> </u>	<u> </u>		
																														<u> </u>			
						<u> </u>																								<u> </u>	$\left - \right $		

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Bulk Storage Facility, CTO 18F0126

LDC Report Date: November 16, 2021

Parameters: Total Petroleum Hydrocarbons as Extractables

Validation Level: Stage 2B & 4

Laboratory: Energy Laboratories, Billings, MT

Sample Delivery Group (SDG): B21101919

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1834(RHMW01R)	B21101919-001	Water	10/20/21
ERH1828(RHMW02)**	B21101919-002**	Water	10/20/21
ERH1831(RHMW03)	B21101919-003	Water	10/20/21
ERH1825(RHMW05)	B21101919-004	Water	10/20/21
ERH1837(RHMW2254-01)	B21101919-005	Water	10/20/21
ERH1840(RHSF)	B21101919-006	Water	10/20/21
ERH1842(RHSF)	B21101919-007	Water	10/20/21
ERH1834(RHMW01R)(SGCU)	B21101919-001(SGCU)	Water	10/20/21
ERH1828(RHMW02)(SGCU)**	B21101919-002(SGCU)**	Water	10/20/21
ERH1831(RHMW03)(SGCU)	B21101919-003(SGCU)	Water	10/20/21
ERH1825(RHMW05)(SGCU)	B21101919-004(SGCU)	Water	10/20/21
ERH1834(RHMW01R)MS	B21101919-001MS	Water	10/20/21
ERH1834(RHMW01R)MSD	B21101919-001MSD	Water	10/20/21
ERH1828(RHMW02)MS	B21101919-002MS	Water	10/20/21
ERH1828(RHMW02)MSD	B21101919-002MSD	Water	10/20/21
ERH1834(RHMW01R)(SGCU)MS	B21101919-001(SGCU)MS	Water	10/20/21
ERH1834(RHMW01R)(SGCU)MSD	B21101919-001(SGCU)MSD	Water	10/20/21
ERH1828(RHMW02)(SGCU)MS	B21101919-002(SGCU)MS	Water	10/20/21
ERH1828(RHMW02)(SGCU)MSD	B21101919-002(SGCU)MSD	Water	10/20/21

Samples appended with "SGCU" underwent Silica Gel cleanup **Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work. Investigation and Remediation of Releases and Groundwater Protection and Evaluation. Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation. Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019). and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by Environmental Protection Agency (EPA) SW 846 Method 8015C

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples ERH1840(RHSF) and ERH1842(RHSF) were identified as field duplicates. No results were detected in any of the samples.

X. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

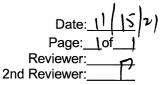
The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG B21101919

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG B21101919

No Sample Data Qualified in this SDG


Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG B21101919

No Sample Data Qualified in this SDG

#:	52547B8	VALIDA
#:_	B21101919	

ATION COMPLETENESS WORKSHEET

Stage 2B/4

SDG Laboratory: Energy Laboratories, Billings, MT

METHOD: GC Diesel Range Organics (EPA SW 846 Method 8015C) TPH デオヤスくためしな

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
Ι.	Sample receipt/Technical holding times	AIA	
11.	Initial calibration/ICV	AIA	10 ps0/101 = 20
111.	Continuing calibration ending	A	6 PSO/ILV ± 20 CU = 20 20
IV.	Laboratory Blanks	\wedge	•
V.	Field blanks	N	
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	4	
VIII.	Laboratory control samples	Δ	10-3
IX.	Field duplicates	NN	D = 6, 7
Х.	Target analyte quantitation	Δ	Not reviewed for Stage 2B validation.
XI.	Target analyte identification	A	Not reviewed for Stage 2B validation.
	Overall assessment of data		
Note:	A = Acceptable ND	= No compounds	s detected D = Duplicate SB=Source blank

F

LDC

N = Not provided/applicable

R = Rinsate FB = Field blank

TB = Trip blank EB = Equipment blank OTHER:

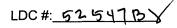
SW = See worksheet ** Indicates sample underwent Stage 4 validation

		Client ID	Lab ID	Matrix	Date
- 16	+ 1	ERH1834(RHMW01R)	B21101919-001	Water	10/20/21
	2 ⁺	ERH1828(RHMW02)**	B21101919-002**	Water	10/20/21
	3	ERH1831(RHMW03)	B21101919-003	Water	10/20/21
	+ 4	ERH1825(RHMW05)	B21101919-004	Water	10/20/21
	5	ERH1837(RHMW2254-01)	B21101919-005	Water	10/20/21
	<u>6</u>	ERH1840(RHSF)	B21101919-006	Water	10/20/21
ľ	7	ERH1842(RHSF)	B21101919-007	Water	10/20/21
1	8	ERH1834(RHMW01R)(SGCU)	B21101919-001(SGCU)	Water	10/20/21
2	+ 9	ERH1828(RHMW02)(SGCU)**	B21101919-002(SGCU)**	Water	10/20/21
3	† 10	ERH1831(RHMW03)(SGCU)	B21101919-003(SGCU)	Water	10/20/21
4	11	ERH1825(RHMW05)(SGCU)	B21101919-004(SGCU)	Water	10/20/21
	12	ERH1834(RHMW01R)MS	B21101919-001MS	Water	10/20/21
	13	ERH1834(RHMW01R)MSD	B21101919-001MSD	Water	10/20/21
	14	ERH1828(RHMW02)MS	B21101919-002MS	Water	10/20/21
	15	ERH1828(RHMW02)MSD	B21101919-002MSD	Water	10/20/21
	16	ERH1834(RHMW01R)(SGCU)MS	B21101919-001(SGCU)MS	Water	10/20/21
	17	ERH1834(RHMW01R)(SGCU)MSD	B21101919-001(SGCU)MSD	Water	10/20/21

LDC #: 52547B8

VALIDATION COMPLETENESS WORKSHEET

Stage 2B/4


SDG #: <u>B21101919</u> Laboratory: <u>Energy Laboratories</u>, Billings, MT Date: 11 15 2 Page: _______ Reviewer: ______ 2nd Reviewer: ______

METHOD: GC Diesel Range Organics (EPA SW 846 Method 8015C)

	Client ID		 Lab ID	Matrix	Date
18	ERH1828(RHMW02)(SGCU)	MS	 B21101919-002(SGCU)MS	Water	10/20/21
19	ERH1828(RHMW02)(SGCU)	MSD	B21101919-002(SGCU)MSD	Water	10/20/21
20					
21					
22					
Notes:					
	160655				
		·			

Method: __GC __HPLC

Method:GCHPLC				
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	\square			
Was cooler temperature criteria met?		-		
IIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?			/	
Were the RT windows properly established?		·-		
IIb. Initial calibration verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?		-		
Were all percent differences (%D) ≤ 20%?				
III. Continuing calibration				
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) < 20%?				
Were all the retention times within the acceptance windows?		,		
IV. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks?		\square		
V. Field Blanks	r			
Were field blanks identified in this SDG?				
Were target analytes detected in the field blanks?			/	-
VI. Surrogate spikes				
Were all surrogate percent recovery (%R) within the QC limits?				
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?			-	-
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?			_	-
VII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?	/			
VIII. Laboratory control samples				
Was an LCS analyzed per analytical or extraction batch?	\square			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
IX. Field duplicates				
Were field duplicate pairs identified in this SDG?	/			
Were target analytes detected in the field duplicates?				
X. Target analyte quantitation				• · · · · · · · · · · · · · · · · · · ·
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	/			
Were analyte quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
XI. Target analyte identification				
Were the retention times of reported detects within the RT windows?	\			
Were manual integrations reviewed and found acceptable?			/	
Did the laboratory provide before and after integration printouts?				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

,

LDC #: 52547B8

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Where:

Page: __1__ of _1___ Reviewer: ____FT___

METHOD: GC X HPLC

The calibration factors (CF), average CF, and relative standard deviation (%RSD) were recalculated for compounds identified below using the following calculations:

CF = A/C average CF = sum of the CF/number of standards %RSD = 100 * (S/X)

- A = Area of compound C = Concentration of compound S = Standard deviation of calibration factors
 - X = Mean of calibration factors

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration				Average CF	Average CF	%RSD	%RSD
#	Standard ID	Date	Compound	15000ng	15000ng	(Initial)	(Initial)		
1	ICAL	1/8/2021	DRO Range	30201	30201	29457.3	29457.3	5.8	5.8

LDC #: 52 547138

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Where:

Page: __1_ of _1___ Reviewer: ____FT___

METHOD: GC __X___ HPLC _____

The calibration factors (CF), average CF, and relative standard deviation (%RSD) were recalculated for compounds identified below using the following calculations:

CF = A/C average CF = sum of the CF/number of standards %RSD = 100 * (S/X) A = Area of compound C = Concentration of compound S = Standard deviation of calibration factors

X = Mean of calibration factors

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration				Average CF	Average CF	%RSD	%RSD
#	Standard ID	Date	Compound	5000ng	5000ng	(Initial)	(Initial)		
1	ICAL	2/18/2021	DRO Range	28746	28746	28542.4	28542.4	4.5	4.5
		L		l <u> </u>		······································			

LDC #: 52 547 BY

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:___of___ Reviewer:___<u>FT</u> 2nd Reviewer:_____

METHOD: GC ______HPLC _____

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. CF -CF)/ave.CF

Where: ave. CF = initial calibration average CF

CF = continuing calibration CF

A = Area of compound

C = Concentration of compound

	Standard	Calibration			Reported	Recalculated	Reported	Recalculated
#	ID	Date	Compound	Average CF(ICAL)/ CCV Conc.	CF/ Conc. CCV	CF/ Conc. CCV	%R	%R
1	Cev 1129 102611506r	10/26/21	PRO CIO-CIU	15.0	14,5 9476	1459476	97	97
2	Cev 1100 -5225	10 [26]2]	TEH DRO Go-czy	15	15.30857	15.30857 14.7781	102 98	102 98
3	cev 1031	10 27 2)	PRU CYD-CH	15	15	14.629	98	98
 	- 578 r							
4	ecv 0748 -5518	10/27/2/		15	15	14.50402	97	97
	ments: <u>Refer to</u> ecalculated resu		bration findings worksheet	for list of qualifications a	nd associated sam	oles when reported	results do not agr	ee within 10.0% of

VALIDATION FINDINGS WORKSHEET **Surrogate Results Verification**

LDC #: <u>5 2 5 4</u> 7 /3メ METHOD: <u>GC</u> HPLC

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

-

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: ٩

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
0- Terpheny (SGT)		0.19	0.132	69.0	69.0	0
n- triacontan (SGT)		01PT	0.085	98.0	w.0	J
		0.0956				

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
			_			

	Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound
A	Chlorobenzene (CBZ)	G	Octacosane	м	Benzo(e)Pyrene	S	1-Chloro-3-Nitrobenzene	Y	Tetrachloro-m- xylene
В	4-Bromofluorobenzene (BFB)	н	Ortho-Terphenyl	N	Terphenyl-D14	Т	3,4-Dinitrotoluene	z	2-Bromonaphthalene
C,	a,a,a-Trifluorotoluene	I	Fluorobenzene (FBZ)	0	Decachlorobiphenyl (DCB)	U	Tripentyltin	AA	Chloro-octadecane
D	Bromochlorobenene	J	n-Triacontane	Р	1-methylnaphthalene	v	Tri-n-propyltin	BB	2,4-Dichlorophenylacetic acid
E	1,4-Dichlorobutane	к	Hexacosane	Q	Dichlorophenyl Acetic Acid (DCAA)	w	Tributyl Phosphate	cc	2,5-Dibromotoluene
F	1,4-Difluorobenzene (DFB)	L	Bromobenzene	R	4-Nitrophenol	x	Triphenyl Phosphate	1	

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u>

Page:<u>1_</u>of_1_ Reviewer:___FT

MS = Matrix spike

MSD = Matrix spike duplicate

METHOD: __GC __HPLC

The percent recoveries (%R) and relative percent differences (RPD) of the matrix spike and matrix spike duplicate were recalculated for the target analytes identified below using the following calculation:

SA = Spike added

%Recovery = 100 * (SSC - SC)/SA

Where

SSC = Spiked sample concentration SC = Sample concentration

RPD =(({SSCMS - SSCMSD} * 2) / (SSCMS + SSCMSD))*100

MS/MSD samples: 12 + 123

Compound	Spike Added (wa)		Sample Conc.	Conc. Concentration		Matrix spike Percent Recovery		Matrix Spik Percent F		MS/MSD RPD		
	MS	MSD		MS	MSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.	
280 010-024	28	28	0.67	26	25	४१	90	86	87	2.8	2.8	
				N.84	25.1233							
······································												
				ļ								
				ļ								
ments: <u>Refer to Matrix Spike</u>			l	L								

LDC #: 52 SY7BY

VALIDATION FINDINGS WORKSHEET

Page: 1_of_1_

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification Reviewer: FT

METHOD: GC HPLC

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the target analytes identified below using the following calculation:

%Recovery = 100 * (SSC/SA) RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100 Where SSC = Spiked sample concentration LCS = Laboratory Control Sample

SA = Spike added LCSD = Laboratory Control Sample duplicate

LCS/LCSD samples: しい - 160 55 5

Spike Added (wg V)		Spike Sample Concentration (mg レ)		LC	s	LC	SD	LCS/LCSD RPD		
				Percent F	Recovery	Percent I	Recovery			
LCS	LCSD	LCS LCSD		Reported Recalc.		Reported Recalc.		Reported	Recalc.	
15	NA	13	ND	81.0	87	NA				
		(13.10165								
			/							
	· · · · · · · · · · · · · · · · · · ·									
			·····							
	Add (Mo	Added (mg V) LCS LCSD	Added Concen (wgV) (wg LCS LCSD LCS 15 NA 13	Added Concentration (mg V) (mg V) LCS LCS	Added (mg/V)Concentration (mg/V)Percent FLCSLCSDLCSLCSDReported15NA13NA87.0	Added (mg V)Concentration (mg V)Percent RecoveryLCSLCSDLCSLCSDReportedRecalc.15NA13NA81.087	Added (mg V)Concentration (mg V)Percent RecoveryPercent ILCSLCSDLCSLCSDReportedRecalc.Reported15NA13NA81.087NA	Added (wg/V) Concentration (wg/V) Percent Recovery Percent Recovery LCS LCS LCS LCS Reported Recalc. 15 NA 13 NA 81.0 87 NA	Added (wg/V) Concentration (wg/V) Percent Recovery Percent Recovery RP LCS LCS LCS LCS Reported Recalc. Reported Reported 15 NA 13 NA 81.0 87.0 87 NA	

Comments:

VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

Page: _1_of_1_ Reviewer: FT

LDC #: <u>52547</u>By METHOD: <u>GC</u> HPLC

The concentration of the sample was calculated for the target analyte identified below using the following calculation:

A= An Fv= Fin Df= Dil RF= Av In Vs= Ini Ws= Ini	ntration= <u>(A)(Fv)(Df)</u> (RF)(Vs or Ws)(%S/100 ea or height of the target analyte to nal Volume of extract lution Factor erage response factor of the target a the initial calibration tial volume of the sample tial weight of the sample ercent Solid	be measured		DRO C ₁₀ -C24 <u>1706 × 10</u> 7)(1) 2945],33)(1050) = 3.038 mg/L	=
#	Sample ID	Target analyte	Reported Concentrations (mg L)	Recalculated Results Concentrations (mg 12)	Qualifications
	サン	DRO 610-624	3.0	3.038	
	· · · · · · · · · · · · · · · · · · ·				

Comments:

Red Hill Bulk Storage Facility, CTO 18F0126 - SDG B21101919

AECOM

			E	2	Б	A	7
L	יט	•	Э	Z	Э	4	7

EPA_NO	LAB_ID	DF	ANALYT	E	COLL_DATE	ANAL_DATE	QCLev	RESULT	UNITS	LAB_Q	LOQ	LOD	REV	Q_C
	METHOD): 801	5C											
ERH1834	B21101919-001	A 1 C	10-C24 DIESE	L RANGE ORG SILICA GEL CLEAN UP	10/20/2021	10/28/2021 2:15:00 AM	1 3	0.14	MG/L	J	0.30	0.12	J	
ERH1834	B21101919-001	A 1 C	10-C24 DIESE	L RANGE ORGANICS	10/20/2021	10/27/2021 8:22:00 AM	1 3	0.67	MG/L		0.30	0.14		
ERH1834	B21101919-001	A 1 C2	24-C40 OIL R.	ANGE ORGANICS SILICA GEL CLEAN UI	p 10/20/2021	10/28/2021 2:15:00 AM	1 3		MG/L	U	0.30	0.14	U	
ERH1834	B21101919-001	A 1 C	24-C40 TOTA	L PETROLEUM HYDROCARBONS, OIL R	10/20/2021	10/27/2021 8:22:00 AM	1 3	0.25	MG/L	J	0.30	0.14	J	
ERH1828	B21101919-002	2A 1 C	10-C24 DIESE	L RANGE ORG SILICA GEL CLEAN UP	10/20/2021	10/28/2021 1:32:00 AM	1 4	0.79	MG/L		0.30	0.11		
ERH1828	B21101919-002	2A 1 C	10-C24 DIESE	L RANGE ORGANICS	10/20/2021	10/27/2021 7:38:00 AM	14	3	MG/L		0.30	0.14		
ERH1828	B21101919-002	2A 1 C2	24-C40 OIL R.	ANGE ORGANICS SILICA GEL CLEAN UI	P 10/20/2021	10/28/2021 1:32:00 AM	1 4		MG/L	U	0.30	0.14	U	
ERH1828	B21101919-002	2A 1 C2	24-C40 TOTA	L PETROLEUM HYDROCARBONS, OIL R	10/20/2021	10/27/2021 7:38:00 AM	14	0.3	MG/L		0.30	0.14		
ERH1831	B21101919-003	BA 1 C	10-C24 DIESE	L RANGE ORG SILICA GEL CLEAN UP	10/20/2021	10/27/2021 11:23:00 PM	M 3		MG/L	U	0.30	0.11	U	
ERH1831	B21101919-003	3A 1 C	10-C24 DIESE	L RANGE ORGANICS	10/20/2021	10/27/2021 6:56:00 AM	1 3	0.15	MG/L	J	0.30	0.14	J	
ERH1831	B21101919-003	3A 1 C2	24-C40 OIL R.	ANGE ORGANICS SILICA GEL CLEAN UI	P 10/20/2021	10/27/2021 11:23:00 PM	M 3		MG/L	U	0.30	0.14	U	
ERH1831	B21101919-003	3A 1 C2	24-C40 TOTA	L PETROLEUM HYDROCARBONS, OIL R	10/20/2021	10/27/2021 6:56:00 AM	1 3	0.28	MG/L	J	0.30	0.14	J	
ERH1825	B21101919-004	A 1 C	10-C24 DIESE	L RANGE ORG SILICA GEL CLEAN UP	10/20/2021	10/27/2021 10:40:00 PM	M 3		MG/L	U	0.30	0.11	U	
ERH1825	B21101919-004	A 1 C	10-C24 DIESE	L RANGE ORGANICS	10/20/2021	10/27/2021 5:29:00 AM	1 3	0.091	MG/L	J	0.30	0.14	J	
ERH1825	B21101919-004	A 1 C	24-C40 OIL R.	ANGE ORGANICS SILICA GEL CLEAN UI	P 10/20/2021	10/27/2021 10:40:00 PM	M 3		MG/L	U	0.30	0.14	U	
ERH1825	B21101919-004	A 1 C	24-C40 TOTA	L PETROLEUM HYDROCARBONS, OIL R	10/20/2021	10/27/2021 5:29:00 AM	1 3	0.13	MG/L	J	0.30	0.14	J	
ERH1837	B21101919-005	5A 1 C	10-C24 DIESE	L RANGE ORGANICS	10/20/2021	10/27/2021 4:46:00 AM	1 3		MG/L	U	0.30	0.14	U	
ERH1837	B21101919-005	5A 1 C2	24-C40 TOTA	L PETROLEUM HYDROCARBONS, OIL R	10/20/2021	10/27/2021 4:46:00 AM	1 3		MG/L	U	0.30	0.14	U	
ERH1840	B21101919-006	5A 1 C	10-C24 DIESE	L RANGE ORGANICS	10/20/2021	10/27/2021 3:19:00 AM	1 3		MG/L	U	0.30	0.15	U	
ERH1840	B21101919-006	5A 1 C2	24-C40 TOTA	L PETROLEUM HYDROCARBONS, OIL R	10/20/2021	10/27/2021 3:19:00 AM	1 3		MG/L	U	0.30	0.15	U	
ERH1842	B21101919-007	A 1 C	10-C24 DIESE	L RANGE ORGANICS	10/20/2021	10/27/2021 2:36:00 AM	1 3		MG/L	U	0.30	0.15	U	
ERH1842	B21101919-007	A 1 C2	24-C40 TOTA	L PETROLEUM HYDROCARBONS, OIL R	10/20/2021	10/27/2021 2:36:00 AM	1 3		MG/L	U	0.30	0.15	U	