

AECOM 1001 Bishop Street Suite 1600 Honolulu, HI 96813 ATTN: Ms. Alethea Ramos alethea.ramos@aecom.com

SUBJECT: Red Hill Bulk Storage Facility, CTO 18F0126 - Data Validation

Dear Ms. Ramos,

Enclosed is the final validation report for the fraction listed below. This SDG was received on October 27, 2021. Attachment 1 is a summary of the samples that were reviewed for analysis.

LDC Project #52409:

<u>SDG #</u>	<u>Fraction</u>
97378 97642	Volatiles, Polynuclear Aromatic Hydrocarbons, Gasoline Range Organics, Total Petroleum Hydrocarbons As Extractables

The data validation was performed under Stage 2B & 4 validation guidelines. The analysis was validated using the following documents and variances, as applicable to method:

- Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor Hickam, O'ahu, Hawai'i (Revision 02, January 2017)
- Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor - Hickam, O'ahu, Hawai'i (Revision 01, April 2017)
- Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017)
- Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018)
- U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019)
- DoD General Validation Guidelines (November 2019)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021)
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

Stelle auno

Stella Cuenco Operations Manager/Senior Chemist scuenco@lab-data.com March 4, 2022

1	188 pages-DL		1 WE	EEK T	AT								At	tachr	nent	1																	
	90/10 2B/4	EDD	LD	C# !	524(09 (4	AEC	ON	1 - ⊦	lon	olul	u, ⊦	 /	Red	Hil	l Bu	lk S	Stor	age	e Fa	cilit	y, C	то	18F	-012	26)							
LDC	SDG#	DATE REC'D	(2) DATE DUE		ЕХ 60В)	(82	AHs 70D IM)	GF (826	RO 50B)	TP (801		SG TPI (801																					
Matrix	: Water/Soil			W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S
А	97378	10/27/21	11/03/21	9	0	5	0	9	0	5	0	5	0																				
В	97642	10/27/21	11/03/21	7	0	4	0	7	0	4	0	4	0																				
В	97642	10/27/21	11/03/21	2	0	1	0	2	0	1	0	1	0																				
													1																				
																																	l i
			1																														
			1																														
		1																															
																															┢──╂		
																															┢──╁		
																															┢──╊		
Total	T/SC			18	0	10	0	18	0	10	0	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	66

Laboratory Data Consultants, Inc. Data Validation Report

November 9, 2021

Project/Site Name:

Red Hill Bulk Storage Facility, CTO 18F0126

LDC Report Date:

Parameters:

Volatiles

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97378

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1639	BA39509	Water	09/01/21
ERH1640	BA39510	Water	09/01/21
ERH1641	BA39511	Water	09/01/21
ERH1642	BA39512	Water	09/01/21
ERH1643	BA39513	Water	09/01/21
ERH1644	BA39514	Water	09/01/21
ERH1645	BA39515	Water	09/01/21
ERH1646	BA39516	Water	09/01/21
ERH1647	BA39517	Water	09/01/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work. Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017). the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) which are Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

\\LDCFILESERVER\VALIDATION\LOGIN\AECOM\RED HILL\52409A1A_AE3.DOC

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples ERH1639, ERH1641, ERH1643, and ERH1645 were identified as trip blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Analyte	Flag	A or P
ERH1639	1,2-Dichloroethane-d4	128 (81-118)	All analytes	NA	-
ERH1640	1,2-Dichloroethane-d4	130 (81-118)	All analytes	NA	-
ERH1641	1,2-Dichloroethane-d4	125 (81-118)	All analytes	NA	-
ERH1642	1,2-Dichloroethane-d4	124 (81-118)	All analytes	NA	-
ERH1643	1,2-Dichloroethane-d4	128 (81-118)	All analytes	NA	-
ERH1644	1,2-Dichloroethane-d4	127 (81-118)	All analytes	NA	-
ERH1645	1,2-Dichloroethane-d4	128 (81-118)	All analytes	NA	-
ERH1646	1,2-Dichloroethane-d4	129 (81-118)	All analytes	NA	-
ERH1647	1,2-Dichloroethane-d4	133 (81-118)	All analytes	NA	. .

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples ERH1640 and ERH1647 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Data Qualification Summary - SDG 97378

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Laboratory Blank Data Qualification Summary - SDG 97378

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Field Blank Data Qualification Summary - SDG 97378

No Sample Data Qualified in this SDG

LDC #:_	<u>52409A1a</u>	_ VALIDA
SDG #:	97378	
Laborate	ory: APPL, Inc., Clo	vis. CA

ALIDATION COMPLETENESS WORKSHEET Stage 2B

Date:_	11/8/2/
Page:_	_lof/
Reviewer:_	E
2nd Reviewer:_	- 94-'

METHOD: GC/MS Volatiles (BTEX)(EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
<u> </u>	Sample receipt/Technical holding times	AIA	
П.	GC/MS Instrument performance check	Δ	
111.	Initial calibration/ICV	A,A	$0/0 \text{ PSD} \leq 15$ $1(1 \leq 20)$ $CN \leq 20 50$
IV.	Continuing calibration ending		CUN = 20 50
V.	Laboratory Blanks	Ā	
VI.	Field blanks	ND	TB=1, 3, 5, 7
VII.	Surrogate spikes	SW	
VIII.	Matrix spike/Matrix spike duplicates	N	US .
IX.	Laboratory control samples	4	ies IP
Х.	Field duplicates	ND	D = 2, 9
XI.	Internal standards	4	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

 	BA39509 BA39510 BA39511	Water Water	09/01/21 09/01/21
 			09/01/21
 	PA 20511		
	BA39311	Water	09/01/21
 	BA39512	Water	09/01/21
 	BA39513	Water	09/01/21
 	BA39514	Water	09/01/21
 	BA39515	Water	09/01/21
	BA39516	Water	09/01/21
 	BA39517	Water	09/01/21
		BA39514 BA39515 BA39516	BA39514 Water BA39515 Water BA39516 Water

LDC #: 52409 Ala

VALIDATION FINDINGS WORKSHEET Surrogate Spikes

Page: | of / Reviewer: FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N/A Were all surrogate %R within QC limits?

Y N/A If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R out of outside of criteria?

#	Sample ID	Surrogate	%Recovery (Limits)	Qualifications (5)
	· · · ·	DCE	128 (81-118)	It du IP au ND
	2_			
		¥		<u>v</u>
	3	V	125 (1/)	
	4	\bigvee		
	E	<u> </u>	()	
	2	¥		<u> </u>
	6	\checkmark	127 (1)	
	8		179 (1)	
			()	
	9	V	133 ()	
	210904BM	L	1 126 (1)	V

SMC1 (TOL) = Toluene-d8

SMC2 (BFB) = Bromofluorobenzene

SMC3 (DCE) = 1,2-Dichloroethane-d4

SMC4 (DFM) = Dibromofluoromethane

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Bulk Storage Facility, CTO 18F0126

LDC Report Date: November 9, 2021

Parameters: Polynuclear Aromatic Hydrocarbons

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97378

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1640	BA39510	Water	09/01/21
ERH1642	BA39512	Water	09/01/21
ERH1644	BA39514	Water	09/01/21
ERH1646	BA39516	Water	09/01/21
ERH1647	BA39517	Water	09/01/21

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) which are 1-Methylnaphthalene, 2-Methylnaphthalene, and Naphthalene by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Analyte	Flag	A or P
ERH1642	Fluoranthene-d10	24 (58-120)	All analytes	J- (all detects)	Р

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples ERH1640 and ERH1647 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentra	tion (ug/L)	
Analyte	ERH1640	ERH1647	RPD (Limits)
1-Methylnaphthalene	0.28	0.25	11 (≤50)
2-Methylnaphthalene	0.085	0.064	28 (≤50)

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to surrogate %R, data were qualified as estimated in one sample.

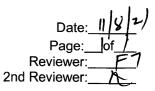
Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 97378

Sample	Analyte	Flag	A or P	Reason (Code)
ERH1642	All analytes	J- (all detects)	Р	Surrogates (%R) (s)

Red Hill Bulk Storage Facility, CTO 18F0126

Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 97378

No Sample Data Qualified in this SDG


Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 97378

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

LDC #: <u>52409A2b</u> **V** SDG #: <u>97378</u> Laboratory: <u>APPL, Inc., Clovis, CA</u>

Stage 2B

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW846 Method 8270D-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	AIA	
١١.	GC/MS Instrument performance check	4	,
111.	Initial calibration/ICV	$\Delta_{1}\Delta$	°/0 PSD = 15 101 = 22
IV.	Continuing calibration ending	Δ	$CW \neq 20 D$
V.	Laboratory Blanks	A	
VI.	Field blanks	N	
VII.	Surrogate spikes	52	
VIII.	Matrix spike/Matrix spike duplicates	2	د۲ ۲
IX.	Laboratory control samples	Δ	Les ID
Х.	Field duplicates	్రచు	D=15
XI.	Internal standards	\wedge	
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	4	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1 ⁺	ERH1640 D	BA39510	Water	09/01/21
2 ⁺	ERH1642	BA39512	Water	09/01/21
3	ERH1644	BA39514	Water	09/01/21
4	ERH1646	BA39516	Water	09/01/21
5 +	ERH1647 D	BA39517	Water	09/01/21
6				
7				
5 + 6 7 8 9				
Notes				

2109080				

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o''-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	OOOO. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	I2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

LDC #: 52409A2b

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

Page:<u>l</u>of<u>/</u> Reviewer:<u>FT</u>

METHOD: GC/MS BNA (EPA SW 846 Method 8270 𝒫) ≯ ▮ М

Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A".

Y WN/A Were percent recoveries (%R) for surrogates within QC limits?

 $\frac{Y(N)N/A}{Y N N/A}$

If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?

If any %R was less than 10 percent, was a reanalysis performed to confirm %R?

#	Sample ID	Surrogate	%R (Limits	5)	Qu	alifications
	2	14 - d10	54	(58-120)	J-INJ P	all Pet
		••		()		
l			L	()		
L				()		
				()		
	[()		
l				()		
L				()		
L				()		
				()		
				()		
				()		
				()		
				()		
		ļ	<u> </u>	()		
				()		
				()		
		<u></u>		()		
				()		
		l		()		
				()		
				()		
				()		
ļ				()		
				()		
				()		

(NBZ) = Nitrobenzene - d5 (FBP) = 2-Fluorobiphenyl

(TPH) = Terphenyl - d14

(2FP) = 2-Fluorophenol (TBP) = 2,4,6 -Tribromophenol (2CP) = 2-Chlorophenol - d4

METHOD: GC/MS BNA (EPA SW 846 Method 827017) 5 M

Were field duplicate pairs identified in this SDG?

Were target compounds identified in the field duplicate pairs?

	Concentration	(ug L)		
Compound		5	RPD (≤ 50%)	QUAL
TTT	0.28	0.25	1]	
Ŵ	0.085J	0.064 1	28	

Compound	Concentration ()	 QUAL

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Bulk Storage Facility, CTO 18F0126

LDC Report Date:

November 9, 2021 Gasoline Range Organics

Parameters:

Validation Level:

Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97378

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
ERH1639	BA39509	Water	09/01/21
ERH1640	BA39510	Water	09/01/21
ERH1641	BA39511	Water	09/01/21
ERH1642	BA39512	Water	09/01/21
ERH1643	BA39513	Water	09/01/21
ERH1644	BA39514	Water	09/01/21
ERH1645	BA39515	Water	09/01/21
ERH1646	BA39516	Water	09/01/21
ERH1647	BA39517	Water	09/01/21

1

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Samples ERH1639, ERH1641, ERH1643, and ERH1645 were identified as trip blanks. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples ERH1640 and ERH1647 were identified as field duplicates. No results were detected in any of the samples.

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

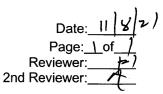
The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Data Qualification Summary - SDG 97378

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 97378

No Sample Data Qualified in this SDG


Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 97378

No Sample Data Qualified in this SDG

LDC #:_	52409A7	 VALIDATION	CC
SDG #:	97378		
		 ~ .	

Laboratory: APPL, Inc., Clovis, CA

ALIDATION COMPLETENESS WORKSHEET Stage 2B

METHOD: GC/MS Gasoline Range Organics (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A A	
١١.	GC/MS Instrument performance check		$ \mathcal{V} \leq \mathcal{W}$ $ \mathcal{C} \mathcal{W} \leq \mathcal{W} \mathcal{W} $
	Initial calibration/ICV	AIN	
IV.	Continuing calibration / ending	Δ	J.
V.	Laboratory Blanks	6	
VI.	Field blanks	ND	TB=1, 3, 5,7
VII.	Surrogate spikes		
VIII.	Matrix spike/Matrix spike duplicates	N	C7
IX.	Laboratory control samples		KS WP
Х.	Field duplicates	ND	D = 2,9
XI.	Internal standards		
XII.	Target analyte quantitation	N	
XIII.	Target analyte identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	Ь	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID					Lab ID	Matrix	Date
1	ERH1639	TB				BA39509	Water	09/01/21
2	ERH1640	Ď	 			BA39510	Water	09/01/21
3	ERH1641	TÂ	 			BA39511	Water	09/01/21
4	ERH1642		 			BA39512	Water	09/01/21
5	ERH1643	TB				BA39513	Water	09/01/21
6	ERH1644		 			BA39514	Water	09/01/21
7	ERH1645	TB	 			BA39515	Water	09/01/21
8	ERH1646					BA39516	Water	09/01/21
9	ERH1647	D		·		BA39517	Water	09/01/21
10 lotes		·	 		a			
						<u>Vakaraan markaan ku </u>		<u></u>
			 	·				
\neg			 					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Bulk Storage Facility, CTO 18F0126

Total Petroleum Hydrocarbons as Extractables

LDC Report Date:

November 9, 2021

Parameters:

Validation Level: Stage 2B

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97378

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1640	BA39510	Water	09/01/21
ERH1642	BA39512	Water	09/01/21
ERH1644	BA39514	Water	09/01/21
ERH1646	BA39516	Water	09/01/21
ERH1647	BA39517	Water	09/01/21
ERH1640(SGCU)	BA39510(SGCU)	Water	09/01/21
ERH1642(SGCU)	BA39512(SGCU)	Water	09/01/21
ERH1644(SGCU)	BA39514(SGCU)	Water	09/01/21
ERH1646(SGCU)	BA39516(SGCU)	Water	09/01/21
ERH1647(SGCU)	BA39517(SGCU)	Water	09/01/21

Samples appended with "SGCU" underwent Silica Gel cleanup

\LDCFILESERVER\VALIDATION\LOGIN\AECOM\RED HILL\52409A8_AE3.DOC

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by Environmental Protection Agency (EPA) SW 846 Method 8015B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average calibration factors were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
210908A-LCS/LCSD (ERH1640 ERH1642 ERH1644 ERH1646 ERH1646	Oil (C24-C40)	_	118 (41-113)	J+ (all detects)	Ρ
210908A1-LCS/LCSD (ERH1640(SGCU) ERH1647(SGCU))	Oil (C24-C40)	120 (41-113)	126 (41-113)	NA	-
210908A1-LCS/LCSD (ERH1642(SGCU) ERH1644(SGCU) ERH1644(SGCU))	Oil (C24-C40)	120 (41-113)	126 (41-113)	J+ (all detects)	Ρ

Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples ERH1640 and ERH1647and samples ERH1640(SGCU) and ERH1647(SGCU) were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ug/L)				
Analyte	ERH1640	ERH1647	RPD (Limits)	Flag	A or P
Diesel (C10-C24)	240	250	4 (≤50)	-	-
Oil (C24-C40)	160	220	32 (≤50)	-	-

X. Target Analyte Quantitation

Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to LCS/LCSD %R, data were qualified as estimated in eight samples.

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 97378

Sample	Analyte	Flag	A or P	Reason (Code)
ERH1640 ERH1642 ERH1644 ERH1646 ERH1647	Oil (C24-C40)	J+ (all detects)	Р	Laboratory control samples (%R) (I)
ERH1642(SGCU) ERH1644(SGCU) ERH1646(SGCU)	Oil (C24-C40)	J+ (all detects)	Р	Laboratory control samples (%R) (I)

Red Hill Bulk Storage Facility, CTO 18F0126

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 97378

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126

Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 97378

No Sample Data Qualified in this SDG

_ VALIDATION COMPLETENESS WORKSHEET		VALIDATION	COMPL	ETENESS	WORKSHEET
-------------------------------------	--	------------	-------	----------------	-----------

Stage 2B

LDC #:_	<u>52409A8</u>	V/
SDG #:_	97378	
Laborat	ory: APPL, Inc.	, Clovis, CA

. . . .

11/8/2/ Date: Page: Reviewer 2nd Reviewer

METHOD: GC TPH as Extractables (EPA SW 846 Method 8015B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	AIA	
١١.	Initial calibration/ICV	AIA	°/0 ps0 ± 20 (2 101 = 20
111.	Continuing calibration ending	Δ	CUY Z 20/20
IV.	Laboratory Blanks	Α	
V.	Field blanks	N	
VI.	Surrogate spikes		
VII.	Matrix spike/Matrix spike duplicates	N	05
VIII.	Laboratory control samples	SW	LOSIP
IX.	Field duplicates	SW	D = 1.5 $T = 6.10$
Х.	Target analyte quantitation	N	
XI.	Target analyte identification	N	
	Overall assessment of data		

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

★ ND = No compounds detected R = Rinsate

D = Duplicate TB = Trip blank SB=Source blank

FB = Field blank

EB = Equipment blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1+	ERH1640	BA39510	Water	09/01/21
2 † 1		BA39512	Water	09/01/21
3+1	ERH1644	BA39514	Water	09/01/21
4+1	ERH1646	BA39516	Water	09/01/21
5 †	ERH1647 P	BA39517	Water	09/01/21
6 2	ERH1640(SGCU)	BA39510(SGCU)	Water	09/01/21
7 * 1	ERH1642(SGCU)	BA39512(SGCU)	Water	09/01/21
8 + 2	ERH1644(SGCU)	BA39514(SGCU)	Water	09/01/21
9 +	ERH1646(SGCU)	BA39516(SGCU)	Water	09/01/21
10 -	\mathcal{O} , \mathcal{O} ,	BA39517(SGCU)	Water	09/01/21
11				
12				
13				
Notes				
1	210908A-BIK			
2	21090841-8112			

LDC #: 52409 AB

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

(0)

METHOD: __GC __ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".(Y N N/A)Were a laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) analyzed for each matrix in this SDG?(Y N N/A)Were the LCS percent recoveries (%R) and relative percent differences (RPD) within the QC limits?

Level IV Only

<u>Y N M/A</u> Was an LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

	<u> </u>						
#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	2109084	0i1(e 24- e40)	()	118 (41-113)	()	1-75	Jt dut IP
	usin		()	()	()	210908A-BK	Jt dui p All Det
			()	()	()	• • • • • • • • • • • • • • • • • • • •	
			()	()	()		
			()	()	()	<u> </u>	
			()	()	()	······································	
			()		()		
			()	()	()		
	210908A		120 (41-113)	126 (41-113)	()	6-710,	J'an p
	LesID		()		()	6-710, 210908A1-	7,8,9, (Dit
			()	()	()	BIK	
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()		()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: <u>1</u>	of1
Reviewer:_	FT

METHOD: GC (EPA Method 80190

Y N N/A Y N N/A Were field duplicate pairs identified in this SDG? Were target compounds detected in the field duplicate pairs?

	Concentratio	n(ug l)	RPD	QUAL
Compound		5	(≤ 5 ⁰ %)	
Diesel (C10-C24)	240 1	250)	4	
011 (024-040)	160 J	2205	32	
· · · · ,				2

Compound	Concentration ()	RPD (≤ %)	QUAL

	Concentration ()	RPD	QUAL
Compound		(≤ %)	

Compound	Concentration ()	RPD (≤ %)	QUAL

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:Red Hill Bulk Storage Facility, CTO 18F0126LDC Report Date:November 9, 2021Parameters:VolatilesValidation Level:Stage 2B & 4Laboratory:APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97642

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
Sample Identification			
ERH1670	BA41498	Water	09/22/21
ERH1671	BA41499	Water	09/22/21
ERH1672	BA41500	Water	09/22/21
ERH1673**	BA41501**	Water	09/22/21
ERH1674	BA41502	Water	09/22/21
ERH1675**	BA41503**	Water	09/22/21
ERH1676	BA41504	Water	09/22/21
ERH1677	BA41505	Water	09/22/21
ERH1678	BA41506	Water	09/22/21

**Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) which are Benzene, Toluene, Ethylbenzene and Xylenes (BTEX) by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all other analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples ERH1670, ERH1672, ERH1674, and ERH1676 were identified as trip blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples ERH1671 and ERH1678 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identifications

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Data Qualification Summary - SDG 97642

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Laboratory Blank Data Qualification Summary - SDG 97642

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Field Blank Data Qualification Summary - SDG 97642

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET

Stage 2B/4

LDC #: <u>52409B1a</u> **V/** SDG #: <u>97642</u> Laboratory: <u>APPL, Inc., Clovis, CA</u>

Date: 1187 Page: of f Reviewer: 7 2nd Reviewer: 7

METHOD: GC/MS Volatiles (BTEX)(EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validatio	on Area		Comments
Ι.	Sample receipt/Technical	holding times	AIA	
11.	GC/MS Instrument perfor	mance check	Δ	,
- 111.	Initial calibration/ICV		Δ / Δ	$\frac{1}{2} \frac{1}{2} \frac{1}$
IV.	Continuing calibration	lending	Δ	$COV \neq 20$ SV
V.	Laboratory Blanks		Δ	
VI.	Field blanks		ND	TB=1, 3, 5, 7
VII.	Surrogate spikes			
VIII.	Matrix spike/Matrix spike	duplicates	2	65
IX.	Laboratory control sample	es	A	Les 10
Х.			ND	P = r, 9
XI.	Internal standards		Δ	
XII.	Target analyte quantitatio	n	Δ	Not reviewed for Stage 2B validation.
XIII. Target analyte identification		Δ	Not reviewed for Stage 2B validation.	
XIV. System performance			A	Not reviewed for Stage 2B validation.
XV.	Overall assessment of da	ta	A	

Note: A

A = Acceptable N = Not provided/applicable

ND = No compounds detected
R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

SW = See worksheet	
** Indicates sample underwent Stage 4 validation	n

	Client ID	Lab ID	Matrix	Date
1-	ERH1670 T B	BA41498	Water	09/22/21
2	ERH1671 0	BA41499	Water	09/22/21
3	ERH1672 TB	BA41500	Water	09/22/21
4+	ERH1673**	BA41501**	Water	09/22/21
5	ERH1674 TB	BA41502	Water	09/22/21
6	ERH1675**	BA41503**	Water	09/22/21
7	ERH1676 TB	BA41504	Water	09/22/21
8	ERH1677	BA41505	Water	09/22/21
9	ERH1678 D	BA41506	Water	09/22/21
10				
Notes	At tracability NP/NR			
	21092882			

Method: Volatiles (EPA SW 846 Method 8260 P

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?				
II. GC/MS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12 hour clock criteria?				
Illa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	~			
Were all percent relative standard deviations (%RSD) \leq 15% and relative response factors (RRF) within method criteria?	/	·		
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?				·
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	<	•		
Were all percent differences (%D) ≤ 20%?				
IV. Continuing calibration				·
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria? Were all percent differences (%D) \leq 50% in the ending CCV?	/			
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	\leq			
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	/			
Was there contamination in the laboratory blanks?		/		
VI. Field blanks				
Were field blanks were identified in this SDG?	-	-		
Were target analytes detected in the field blanks?		-	-	
VII. Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?				
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?			-	-
VIII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	

VALIDATION FINDINGS CHECKLIST

IX. Laboratory control samples			
Was an LCS analyzed per analytical batch?	/		
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/		
X. Field duplicates		 	
Were field duplicate pairs identified in this SDG?	/		
Were target analytes detected in the field duplicates?		-	
XI. Internal standards		 	
Were internal standard area counts within -50% to +100% of the associated calibration standard?	/		
Were retention times within ± 30 seconds of the associated calibration standard?	/		
XII. Target analyte quantitation	·	 	
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?			
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the target analyte?			
Were target analyte quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?			
Were manual integrations reviewed and found acceptable?			
Did the laboratory provide before and after integration printouts?		 /	F
XIII. Target analyte identification		 	
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?	\langle	 	
Did analyte spectra meet specified EPA "Functional Guidelines" criteria?	<	 	
Were chromatogram peaks verified and accounted for?	\checkmark		
XIV. System performance		 	
System performance was found to be acceptable.	/		
XV. Overall assessment of data			
Overall assessment of data was found to be acceptable.	/		

.

.

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-lsopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethyivinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	0000.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methyl cyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC #: 52409Bla

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

METHOD: GC/MS VOA (EPA SW 846 Method 8260 🦻

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

RRF = $(A_x)(C_{is})/(A_{is})(C_x)$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)		of standards $C_x = Concentration of S = Standard deviation of S = Sta$	A_x = Area of compound, C_x = Concentration of compound, S = Standard deviation of the RRFs X = Mean of the RRFs		A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard				
				Reported	Recalc	Reported	Recalc	Reported	Recalc
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF (<u>5</u> , j) std)	RRF (\$.() std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	9/24/2)	(1st internal standard)	0.4313	0.4313	0.4275	0.4275	3.6	3.6
	Loki		EE (2nd internal standard)	0.3828	0.3828	0.3733	0.3733	5.6	5.6
			(3rd internal standard)						
	L		(4th internal standard)		 	·			
2			(1st internal standard)						
ŀ			(2nd internal standard)						
l.			(3rd internal standard)			·			
			(4th internal standard)	ļ					
3			(1st internal standard)						
1			(2nd internal standard)						
			(3rd internal standard)						
			(4th internal standard)	<u> </u>		ļ			
4			(1st internal standard)						
			(2nd internal standard)			ļ			
			(3rd internal standard)	ļ					
			(4th internal standard)	<u> </u>	<u>l</u>	<u> </u>	l		

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

METHOD: GC/MS VOA (EPA SW 846 Method 8260 D

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_x)(C_{is})/(A_{is})(C_x)$ Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF A_x = Area of compound,

 $C_x = Concentration of compound,$

A_{is} = Area of associated internal standard

Cis = Concentration of internal standard

#	Standard ID	Calibration Date	Compound (Reference internal Standard)	Average RRF (initial)	Reported RRF (CC)	Recalculated RRF (CC)	Reported %D	Recalculated %D
1	cev	9/29/2	(1st internal standard)	0.4275	0.4268	0.4268	0.16	0.16
	0928130	う:02	EE (2nd internal standard)	0.3733	0.3713	0.3713	0.53	0.53
			(3rd internal standard)					
	146		(4th internal standard)					
2			(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)					
			(4th internal standard)			<u></u>		
3			(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)					
			(4th internal standard)					
4			(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)					L
			(4th internal standard)					
	ments: <u>Refer t</u> ecalculated res		Calibration findings worksheet for list of qu	ualifications and	associated samp	es when reported re	esults do not agree	e within 10.0% of

LDC #: 52409Bla

METHOD: GC/MS VOA (EPA SW 846 Method 8260 B

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID: 4

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane	25.0	26.16	105	105	υ
1,2-Dichloroethane-d4		24.60	98.4	9×.4	
Toluene-d8		X.41	102	102	
Bromofluorobenzene		24.45	97.8	97.8	J J

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8 ,					
Bromofluorobenzene					

Sample ID:_____

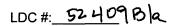
	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

METHOD: GC/MS VOA (EPA Method 8260 🤌


The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA	Where:	SSC = Spiked sample concentration SA = Spike added
RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)		LCSC = Laboraotry control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS ID: 210928BL LOS 10

Compound	Ac	pike Ided Agr 4	Conce	Sample Intration		CS		Recovery		<u>II CSD</u> PD
	LCS	U' LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
1,1-Dichloroethene										
Trichloroethene										
Benzene	10.0	10.0	10.4	10.4	104	104	104	104	0.0	ο
Toluene	V	V	11.0	11.0	01	(1)	UII UII	шĎ	0.90	.90
Chlorobenzene										

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Concentration = $(A_x)(I_x)(DF)$ $(A_{is})(RRF)(V_o)(\%S)$ A_x =Area of the characteristic ion (EICP) for the compound to be measured A_{is} =Area of the characteristic ion (EICP) for the specific internal standard I_s =Amount of internal standard added in nanograms (ng)))(%S)	Example:				
			teristic ion (EICP) for the	Sample I.D	<u> </u>			
				<i>.</i>				
			standard added in nanograms	Conc. =(1)	45) (x))(0.3133)			
RRF	=		factor of the calibration standard.	(428049))(0.3192))		
V _o	Ξ	Volume or weight of or grams (g).	of sample pruged in milliliters (ml)					
Df	=	Dilution factor.		_	= 0. 2730 ug	11-		
%S	=	Percent solids, app only.	olicable to soils and solid matrices			[r		
#		Sample ID	Compound	Reported Concentration	Calculated Concentration (vg //)	Qualificatio		
~†		#4	FE		0.2730			
				0.27	0.2100	1		
						+		
						<u></u>		
\rightarrow						<u></u>		
						+		
-+						+		
			·····					
						+		
\rightarrow						+		
_+		<u></u>			 	+		
-+								
		<u></u>				+		
	-							

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
LDC Report Date:	November 9, 2021
Parameters:	Polynuclear Aromatic Hydrocarbons
Validation Level:	Stage 2B & 4
Laboratory:	APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97642

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1671	BA41499	Water	09/22/21
ERH1673**	BA41501**	Water	09/22/21
ERH1675	BA41503	Water	09/22/21
ERH1677	BA41505	Water	09/22/21
ERH1678	BA41506	Water	09/22/21

**Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) which are 1-Methylnaphthalene, 2-Methylnaphthalene, and Naphthalene by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits with the following exceptions:

Sample	Surrogate	%R (Limits)	Affected Analyte	Flag	A or P
ERH1673**	Fluoranthene	53.1 (58-120)	All analytes	J- (all detects)	Р

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples ERH1671 and ERH1678 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ug/L)		-	
Analyte	ERH1671	ERH1678	RPD (Limits)	
1-Methylnaphthalene	0.10U	0.10	0 (≤50)	

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to surrogate %R, data were qualified as estimated in one sample.

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 97642

Sample	Analyte	Flag	A or P	Reason
ERH1673**	All analytes	J- (all detects)	Ρ	Surrogates (%R) (s)

Red Hill Bulk Storage Facility, CTO 18F0126

Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 97642

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126

Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary - SDG 97642

No Sample Data Qualified in this SDG

VALIDATION COMPLETENESS WORKSHEET Stage 2B/4

LDC #: 52409B2b SDG #: 97642

Date Page: Reviewer: 2nd Reviewer:

Laboratory: APPL, Inc., Clovis, CA

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW 846 Method 8270D-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments						
<u> </u>	Sample receipt/Technical holding times	Δ / Δ							
11.	GC/MS Instrument performance check	Δ							
111.	Initial calibration/ICV	A/Δ	°/0 PSD ≤ 15 1CY ≤ 20						
IV.	Continuing calibration ending	Δ	$\frac{0}{0} PSD \leq S CY \leq 20$ $CW \leq 20 SD$						
V.	Laboratory Blanks	4	+						
VI.	Field blanks	2							
VII.	Surrogate spikes	SW							
VIII.	Matrix spike/Matrix spike duplicates	k	27						
IX.	Laboratory control samples	А	ics 10						
X .	Field duplicates	ND	D=1,5						
XI.	Internal standards	Δ	L						
XII.	Target analyte quantitation A Not reviewed for Stage 2B validation.								
XIII.	Target analyte identification	A Not reviewed for Stage 2B validation.							
XIV.	System performance	A	Not reviewed for Stage 2B validation.						
xv.	Overall assessment of data	Δ							
Note:									
	Client ID			Lab ID	Matrix	Date			
	ERH1671 ()	BA41499	Water	09/22/21					
2 ⁺	ERH1673**	BA41501**	Water	09/22/21					
3	ERH1675	BA41503	Water	09/22/21					
	ERH1677		BA41505	Water	09/22/21				
$\overline{1}$	ERH1678 12		BA41506	Water	09/22/21				
6									
7									
8									
G I									

Notes:

210927A			

LDC #: 52409 B2b

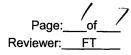
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?		•		
Was cooler temperature criteria met?				
II. GC/MS Instrument performance check (Not required)				
Were the DFTPP performance results reviewed and found to be within the specified criteria?		<i>.</i>		
Were all samples analyzed within the 12 hour clock criteria?				
Illa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	/			
Were all percent relative standard deviations (%RSD) \leq 15% and relative response factors (RRF) \geq 0.05?	/			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?			/	f
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/			
Were all percent differences (%D) ≤20%?				
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	1			
Were all percent differences (%D) \leq 20% and relative response factors (RRF) \geq 0.05?	<			
Were all percent differences (%D) \leq 50% for closing calibration verifications?				·
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	$\left \right $			
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks?		/		
VI. Field blanks				
Nere field blanks identified in this SDG?		1	-	
Nere target compounds detected in the field blanks?			/	
/II. Surrogate spikes				
Were all surrogate percent differences (%R) within QC limits?	هر	\checkmark		
f 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?		/	•	
f any percent recoveries (%R) was less than 10 percent, was a reanalysis performed o confirm %R?			/	F
VIII. Matrix spike/Matrix spike duplicates				<u>/</u>
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?				

LDC #: 52409B2b

VALIDATION FINDINGS CHECKLIST

	_							
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	-				
IX. Laboratory control samples								
Was an LCS analyzed per extraction batch?								
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/	F						
X. Field duplicates								
Were field duplicate pairs identified in this SDG?								
Were target compounds detected in the field duplicates?								
XI. Internal standards								
Were internal standard area counts within -50% or +100% of the associated calibration standard?	/							
Were retention times within ± 10 seconds of the associated calibration standard?								
XII. Compound quantitation								
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?								
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?		Í						
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?								
Did compound quantitation limits meet QAPP limits?								
XIII. Target compound identification								
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?	/							
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	/							
Were chromatogram peaks verified and accounted for?								
XIV. System performance								
System performance was found to be acceptable.	/							
XV. Overall assessment of data								
Overall assessment of data was found to be acceptable.	/							
No Manual	10	ifeo	jrati					

VALIDATION FINDINGS WORKSHEET


METHOD: GC/MS SVOA

A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	I1. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	0000. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	l2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

.

LDC #: 52409 B2b

VALIDATION FINDINGS WORKSHEET Surrogate Recovery

(5)

METHOD: GC/MS BNA (EPA SW 846 Method 8270 ${\cal V}$)

Please see qualification below for all questions answered "N". Not applicable questions are identified as "N/A". $\underline{Y(N)}$ Were percent recoveries (%R) for surrogates within OC limits?

Y W/A

YNN/A

If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?

If any %R was less than 10 percent, was a reanalysis performed to confirm %R?

#	Sample ID	Surrogate	%R (Limits)		Qualifications		
<u> </u>	2	YY	53.1	(58-120)	5-1011P	au bit	
		•		()			
				()			
		<u> </u>		()			
				()			
		L		()			
				()			
				()			
				()			
			ļ	()			
				()	······································		
	·			()	······································		
				()			
			ļ	()			
				()			
				()			
		· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u>()</u>			
		·		()			
				<u>()</u>			
[()			
		1	<u> </u>	()			
		<u> </u>	ļ	()			
				()			
				()			
				<u>()</u>			
			1	()			

(NBZ) = Nitrobenzene - d5 (FBP) = 2-Fluorobiphenyl

(TBP) = 2,4,6 -Tribromophenol

(TPH) = Terphenyl - d14

(2CP) = 2-Chlorophenol - d4

(2FP) = 2-Fluorophenol

LDC #: 52409 B2b

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:	1	_of_	1
Reviewer:	_	FT	

METHOD: GC/MS BNA (EPA SW 846 Method 8270 D

YN N/A YN N/A Were field duplicate pairs identified in this SDG?

Were target compounds identified in the field duplicate pairs?

	Concentratio	n (ug l)		
Compound		5	(≤ 50%)	QUAL
TTT	0.104	0.10\$	200	
		/		
· · · · · · · · · · · · · · · · · · ·				
		-		

Compound	<u>Concentration (</u>)	RPD (≤ %)	QUAL
			·····	

Compound	Concentration ()	RPD (≤ %)	QUAL

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

METHOD: GC/MS BNA (EPA SW 846 Method 8270 \mathcal{P})

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $\mathsf{RRF} = (\mathsf{A}_{\mathsf{x}})(\mathsf{C}_{\mathsf{is}})/(\mathsf{A}_{\mathsf{is}})(\mathsf{C}_{\mathsf{x}})$

average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X) $A_x = Area of compound,$

 $C_x = Concentration of compound,$

S = Standard deviation of the RRFs,

 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Internal Standard)	RRF (RRF (1.0 std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	9/14/2)	S (1st IS)	1.297	1.297	1.279	1.279	6.5	6.5
	Linus		(2nd IS) (3rd IS)						
			(4th IS)						
			(5th IS)						
			(6th IS)			L			
2			(1st IS)						
			(2nd IS)						
			(3rd IS)						
		li li	(4th IS)						
			(5th IS)						
			(6th IS)						
3	[(1st IS)						
			(2nd IS)						
			(3rd IS)						
			(4th IS)						
1			(5th IS)						
			(6th IS)						

Comments: <u>Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

METHOD: GC/MS BNA (EPA SW 846 Method 8270 P)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound, C_x = Concentration of compound, A_{is} = Area of associated internal standard

C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Internal Standard)	Average RRF (Initial)	RRF (CC)	RRF (CC)	%D	%D
1	cov	10/12/	S (1st IS)	1.2.79	1.309	1.309	2.3	2.3
Ï	09142278		(2 nd IS)					
			(3 rd IS)					
1			(4 ^۴ IS)					
			(5 th IS)					
			(6 th IS)					
2			(1st IS)					
			(2 nd IS)					
1			(3 rd IS)					
			(4 th IS)					
			(5 th IS)					
			(6 th IS)			<u> </u>		
3			(1st IS)					
			(2 nd IS)					
			(3 rd IS)					
			(4 th IS)					
			(5 th IS)					
	<u> </u>		(6 th IS)					

Comments: <u>Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270 $\, \wp \,$

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID: <u>H</u>V

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzong d5 W-d10	4.854	4.63407	83.1	83.	ю
2-Fluorobiphenyi M-OID	\mathbf{V}	2.57609	53.1	53.1	υ
Terphenyld14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:__

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol		-			
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

LDC #: 52409B2b

VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: 1_of_1 Reviewer: FT

METHOD: GC/MS BNA (EPA SW 846 Method 8270 P

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: 210927A Les 10

	Ac	pike Ided	Conce	oike ntration	tration				/I CSD	
Compound	(19	(ν)	(~	1914	Percent I	Recovery	Percent	Recovery	RPD	
			LCS		Reported	Recalc	Reported	Recalc	Reported	Recalculated
Phenol										
N-Nitroso-di-n-propylamine										
4-Chloro-3-methylphenol										
Acenaphthene	<u> </u>									
Pentachlorophenol									<u> </u>	
Pyrene										
5	5.0	s. D	3.553	3.66	66.6	66.6	73.2	73.2	9.4	9.4
· · · · · · · · · · · · · · · · · · ·										

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 52409 B2b

VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

= 49.48 ug/L

METHOD: GC/MS BNA (EPA SW 846 Method 8270 p

YN N/A N N/A

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

-

Concentration = $(A_x)(I_x)(V_t)(DF)(2.0)$ $(A_{is})(RRF)(V_o)(V_i)(\%S)$ Area of the characteristic ion (EICP) for the = A_x compound to be measured Area of the characteristic ion (EICP) for the specific A_{is} = internal standard Amount of internal standard added in nanograms (ng) = ١,

- Volume or weight of sample extract in milliliters (ml) or = V, grams (g).
- Volume of extract injected in microliters (ul) V, =
- Volume of the concentrated extract in microliters (ul) V, Ξ
- **Dilution Factor.** Df = Percent solids, applicable to soil and solid matrices %S Ξ only.
 - Factor of 2 to account for GPC cleanup =

Example: Sample I.D. ______, _________;

 $Conc. = \frac{815204}{31262} (2.5)(1) (1000)$

2.0 Calculated Reported Concentration Concentration # Ing 1/ Qualification Sample ID Compound (49 5 サン 40 49.48

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Bulk Storage Facility, CTO 18F0126

LDC Report Date:

November 9, 2021

Gasoline Range Organics

Parameters:

Validation Level: Stage 2B & 4

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97642

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1670	BA41498	Water	09/22/21
ERH1671	BA41499	Water	09/22/21
ERH1672	BA41500	Water	09/22/21
ERH1673**	BA41501**	Water	09/22/21
ERH1674	BA41502	Water	09/22/21
ERH1675**	BA41503**	Water	09/22/21
ERH1676	BA41504	Water	09/22/21
ERH1677	BA41505	Water	09/22/21
ERH1678	BA41506	Water	09/22/21

**Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019). and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 20.0% for all analytes.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Samples ERH1670, ERH1672, ERH1674, and ERH1676 were identified as trip blanks. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples ERH1671 and ERH1678 were identified as field duplicates. No results were detected in any of the samples.

X. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Data Qualification Summary - SDG 97642

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 97642

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 97642

No Sample Data Qualified in this SDG

LDC #:_	52409B7			V
SDG #:_	97642			
Laborato	ory: APPL,	Inc.,	Clovis,	CA

ALIDATION COMPLETENESS WORKSHEET

Stage 2B/4

Date:_	11	100	z
Page:	_of	<u> </u>	
Reviewer:		E	
2nd Reviewer:_		Ľ	

METHOD: GC/MS Gasoline Range Organics (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A/A	
11.	GC/MS Instrument performance check	A	
111.	Initial calibration/ICV	A.A	12 101 = 20
IV.	Continuing calibration ending	A	$\frac{12}{CW \leq 20}$
V.	Laboratory Blanks	A	
VI.	Field blanks	N/	TB = 1,3,5,7
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	2	es
IX.	Laboratory control samples	Δ	LOS IP
Х.	Field duplicates	ND	D = 3 q
XI.	Internal standards	Δ	
XII.	Target analyte quantitation	1	Not reviewed for Stage 2B validation.
XIII.	Target analyte identification	$\mathbf{\Sigma}$	Not reviewed for Stage 2B validation.
XIV.	System performance	4	Not reviewed for Stage 2B validation.
XV.	Overall assessment of data		

Note: A = Acceptable N = Not provided/applicable

SW = See worksheet

ND = No	compounds	detected
R = Rinsa	ate	

FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

Indicates sample underwent Stage 4 validation	<u></u>	· <u> </u>	
Client ID	Lab ID	Matrix	Date
ERH1670 TB	BA41498	Water	09/22/21
- ERH1671 P	BA41499	Water	09/22/21
- ERH1672 TB	BA41500	Water	09/22/21
1 ERH1673**	BA41501**	Water	09/22/21
- ERH1674 ГВ	BA41502	Water	09/22/21
ERH1675**	BA41503**	Water	09/22/21
ERH1675** ERH1676 ГВ ERH1677	BA41504	Water	09/22/21
ERH1677	BA41505	Water	09/22/21
ERH1678	BA41506	Water	09/22/21
ERH1678 V	·····		
tes:			
210928 BL- B114			

Method: Volatiles (EPA SW 846 Method 8260 P)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	/			
Was cooler temperature criteria met?	/			
II. GC/MS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?				
Illa. Initial calibration	·			
Did the laboratory perform a 5 point calibration prior to sample analysis?	~			
Were all percent relative standard deviations (%RSD) <15% and relative response factors (RRF) within method criteria?			\checkmark	
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?				
IIIb. Initial Calibration Verification	·			
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	V			
Were all percent differences (%D) ≤ 20%?				
IV. Continuing calibration	<u> </u>			
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	1			
Were all percent differences (%D) \leq 20% and relative response factors (RRF) within method criteria? Were all percent differences (%D) \leq 50% in the ending CCV?	/			
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	/			
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?				
Was there contamination in the laboratory blanks?				
VI. Field blanks				
Were field blanks were identified in this SDG?				
Were target analytes detected in the field blanks?				
VII. Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?	-			
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?			/	
VIII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?			/	
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				

.

VALIDATION FINDINGS CHECKLIST

IX. Laboratory control samples		 	
Was an LCS analyzed per analytical batch?	1		
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/		
X. Field duplicates			
Were field duplicate pairs identified in this SDG?			
Were target analytes detected in the field duplicates?			
XI. Internal standards		 	
Were internal standard area counts within -50% to +100% of the associated calibration standard?			
Were retention times within ± 30 seconds of the associated calibration standard?	/		
XII. Target analyte quantitation			
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?			
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the target analyte?	1		
Were target analyte quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	1		
Were manual integrations reviewed and found acceptable?	$\mathbf{1}$		
Did the laboratory provide before and after integration printouts?		/	<u> </u>
XIII. Target analyte identification		 	·
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?	~		
Did analyte spectra meet specified EPA "Functional Guidelines" criteria?	/		
Were chromatogram peaks verified and accounted for?	/		
XIV. System performance			
System performance was found to be acceptable.	1		
XV. Overall assessment of data			
Overall assessment of data was found to be acceptable.			

Page:	1	_of_	_1_
Reviewer	:	_FT_	

Method: Gasoline (EPA SW 846 Method 8260B)

Calibration				(Y)	(X)
Date	System	Compound	Standard	Response	Concentration
9/24/21	GCMS	Gasoline C6-C10	1	6.284	0.8
-1129[0]	Loki		2	6.626	2.0
			3	7.012	4.0
			4	8.986	12.0
			5	11.986	24.0
			6	14.298	32.0
			7	15.904	40.0

Regression Outp	ut	Reported
Constant	6.066833	NR
Std Err of Y Est		
R Squared	0.998933	NR
Degrees of Freedom		
X Coefficient(s)	0.249364	NR
Std Err of Coef.		
Correlation Coefficient	0.999466	
Coefficient of Determination (r^2)	0.998933	NR

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: 1_of_1_ Reviewer: FT___

METHOD: GC/MS VOA (EPA SW 846 Method 8260)

449

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF A_v = Area of compound,

A_{is} = Area of associated internal standard

 $C_x = Concentration of compound,$

C_{is} = Concentration of internal standard

#	Standard ID	Calibration Date	Compound (Reference internal Standard)	Average RRF (initial)	Reported RRF (CC)	Recalculated RRF (CC)	Reported %D	Recalculated %D
1	eer	9/29/2)	gazolive CL-CID (1st internal standard)	300	305.17	305.77	1.9	1.9
	0928133	-1 1 I	(2nd internal standard)					/
			(3rd internal standard)					
			(4th internal standard)			······		
2			(1st internal standard)					
			(2nd internal standard)	-				
			(3rd internal standard)					
			(4th internal standard)					
3			(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)					
ļ			(4th internal standard)					
4			(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)					
			(4th internal standard)					
			Calibration findings worksheet for list of qu	ualifications and a	associated sample	s when reported re	esults do not agree	e within 10.0% of
the r	ecalculated resu	ults.						

METHOD: GC/MS VOA (EPA SW 846 Method 8260)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID: 6

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4	<u></u>				
Toluene-d8			<u> </u>		
Bromofluorobenzene	25.V	24.49	91.9	97.9	\cup

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8				·	
Bromofiuorobenzene					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:___

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene				<u></u>	

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

LDC #: 52409B7

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: 1_of 1_ Reviewer: _____FT

METHOD: GC/MS VOA (EPA Method 8260)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

 % Recovery = 100 * SSC/SA
 Where:
 SSC = Spiked sample concentration SA = Spike added

 RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)
 LCSC = Laboratory control sample concentration LCSC = Laboratory control sample concentration

LCS ID: 210928BL

		pike		Sample		cs	<u>ı</u> c	:SD		
Compound		ded G W		ntration	Percent	Recovery	Percent	Recovery	R	PD
	LCS	LCSD	LCS) LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
GR O 1,1-Dichloroethane	300	300	2019	304	99.7	99.7	101	101	1.7	17
Trichloroethene										
Benzene										
Toluene										
Chlorobenzene										

Comments: <u>Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #: <u>5240</u>9ゟ7 **VALIDATION FINDINGS WORKSHEET** Sample Calculation Verification

<u>YN</u>	IOD: 0 N/A N/A	Were all repo	A SW 846 Method 8260) orted results recalculated and alculated results for detected t			eported results?
Conce	Concentration = $\frac{(A_x)(I_y)(DF)}{(A_{is})(RRF)(V_y)(\%S)}$			Example:		
A _x	=	Area of the charact compound to be me	eristic ion (EICP) for the easured	Sample I.D	, <u>4</u> RÙ	
A_{is}	A _{is} = Area of the characteristic ion (EICP) for the specific internal standard			[637	<u>8537</u> -6. <u>909</u>	066833)(25)
l _s	=	Amount of internal (ng)	standard added in nanograms	Conc. = <u>964</u>	· •	
RRF	=	Relative response f	factor of the calibration standard.		0.2493	64
V₀	=	Volume or weight o or grams (g).	f sample pruged in milliliters (ml)			
Df	E	Dilution factor.			1	
%S	%S = Percent solids, applicable to soils and solid matrices				2 54.56	
		only.	licable to soils and solid matrices		J -{ - 3 p	······································
#			Compound	Reported Concentration (Mg)	Calculated Concentration	Qualification
#		only.		Concentration	Calculated Concentrațion	Qualification
#		only.	Compound	Concentration	Calculated Concentration	Qualification
#		only.	Compound	Concentration	Calculated Concentration	Qualification
#		only.	Compound	Concentration	Calculated Concentration	Qualification

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Bulk Storage Facility, CTO 18F0126

LDC Report Date: November 9, 2021

Parameters:Total Petroleum Hydrocarbons as Extractables

Validation Level: Stage 2B & 4

Laboratory: APPL, Inc, Clovis, CA

Sample Delivery Group (SDG): 97642

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1671	BA41499	Water	09/22/21
ERH1673**	BA41501**	Water	09/22/21
ERH1675	BA41503	Water	09/22/21
ERH1677	BA41505	Water	09/22/21
ERH1678	BA41506	Water	09/22/21
ERH1671(SGCU)	BA41499(SGCU)	Water	09/22/21
ERH1673(SGCU)**	BA41501(SGCU)**	Water	09/22/21
ERH1675(SGCU)	BA41503(SGCU)	Water	09/22/21
ERH1677(SGCU)	BA41505(SGCU)	Water	09/22/21
ERH1678(SGCU)	BA41506(SGCU)	Water	09/22/21

Samples appended with "SGCU" underwent Silica Gel cleanup **Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation. Red Hill Bulk Fuel Storage Facility. Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons as Extractables by Environmental Protection Agency (EPA) SW 846 Method 8015B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average calibration factors were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination (r^2) were greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Analyte	Concentration	Limit of Quantitation	Associated Samples
210928A-BLK	09/28/21	Oil (C24-C40)	290 ug/L	320 ug/L	ERH1671 ERH1673** ERH1675 ERH1677 ERH1678
210928A1-BLK	09/28/21	Oil (C24-C40)	170 ug/L	320 ug/L	ERH1671(SGCU) ERH1673(SGCU)** ERH1675(SGCU) ERH1677(SGCU) ERH1678(SGCU)

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
ERH1671	Oil (C24-C40)	170 ug/L	300U ug/L
ERH1673**	Oil (C24-C40)	470 ug/L	470U ug/L
ERH1675	Oil (C24-C40)	530 ug/L	530U ug/L
ERH1677	Oil (C24-C40)	490 ug/L	490U ug/L
ERH1678	Oil (C24-C40)	200 ug/L	300U ug/L
ERH1673(SGCU)**	Oil (C24-C40)	250 ug/L	300U ug/L
ERH1675(SGCU)	Oil (C24-C40)	200 ug/L	300U ug/L
ERH1677(SGCU)	Oil (C24-C40)	280 ug/L	300U ug/L
ERH1678(SGCU)	Oil (C24-C40)	180 ug/L	300U ug/L

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
210928A LCS/LCSD (ERH1671 ERH1673** ERH1675 ERH1677 ERH1678)	Oil (C24-C40)	119 (41-113)	-	J+ (all detects)	Р

Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples ERH1671 and ERH1678 and samples ERH1671(SGCU) and ERH1678(SGCU) were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ug/L)				
Analyte	ERH1671	ERH1678	RPD (Limits)	Flag	A or P
Diesel (C10-C24)	270	220	20 (≤50)	-	-
Oil (C24-C40)	170	200	16 (≤50)	-	-

	Concentration (ug/L)				
Analyte	ERH1671(SGCU)	ERH1678(SGCU)	RPD (Limits)	Flag	A or P
Oil (C24-C40)	190	150	24 (≤50)	-	-

X. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to LCS/LCSD %R, data were qualified as estimated in five samples.

Due to laboratory blank contamination, data were qualified as not detected in nine samples.

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 97642

Sample	Analyte	Flag	A or P	Reason (Code)
ERH1671 ERH1673** ERH1675 ERH1677 ERH1678	Oil (C24-C40)	J+ (all detects)	Ρ	Laboratory control samples (%R) (I)

Red Hill Bulk Storage Facility, CTO 18F0126

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 97642

Sample	Analyte	Modified Final Concentration	A or P	Code
ERH1671	Oil (C24-C40)	300U ug/L	A	b
ERH1673**	Oil (C24-C40)	470U ug/L	A	b
ERH1675	Oil (C24-C40)	530U ug/L	A	b
ERH1677	Oil (C24-C40)	490U ug/L	A	b
ERH1678	Oil (C24-C40)	300U ug/L	A	b
ERH1673(SGCU)**	Oil (C24-C40)	300U ug/L	A	b
ERH1675(SGCU)	Oil (C24-C40)	300U ug/L	A	b
ERH1677(SGCU)	Oil (C24-C40)	300U ug/L	A	b
ERH1678(SGCU)	Oil (C24-C40)	300U ug/L	A	b

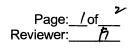
Red Hill Bulk Storage Facility, CTO 18F0126

Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 97642

No Sample Data Qualified in this SDG

LDC #:_	52409B8	VALIDAT
SDG #:	97642	
Laborato	ory: APPL. Inc	Clovis, CA

ALIDATION COMPLETENESS WORKSHEET


Date: 11 2 2, Page: 1 of 1 Reviewer: 5 2nd Reviewer: 7

Stage 2B/4

METHOD: GC TPH as Extractables (EPA SW 846 Method 8015B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments					
<u> </u>	Sample receipt/Technical holding times	A A						
П.	Initial calibration/ICV	Δ / Δ	% psp	± 20, 12	101 =	W		
- 111.	Continuing calibration ending	Δ		cw	= 20/2			
IV.	Laboratory Blanks	sw						
V.	Field blanks	N						
	Surrogate spikes	Δ						
<u></u> ∨II.	Matrix spike/Matrix spike duplicates	N	45	· · · · · · · · · · · · · · · · · · ·		····		
VIII.	Laboratory control samples	S₩	vasio					
IX.	Field duplicates	Jue _	0=1,5	6110				
<u> </u>	Target analyte quantitation	4	Not reviewed for	Stage 2B validation.				
<u>XI.</u>	Target analyte identification	<u>A</u>	Not reviewed for	Stage 2B validation.				
	Overall assessment of data							
Note:	Note: A = Acceptable ND = No compounds detected D = Duplicate SB=Source blank N = Not provided/applicable R = Rinsate TB = Trip blank OTHER: SW = See worksheet FB = Field blank EB = Equipment blank							
	Client ID		· · · · · · · · · · · · · · · · · · ·	Lab ID	Matrix	Date		
1 1	ERH1671 Ø			BA41499	Water	09/22/21		
2 1	ERH1673**			BA41501**	Water	09/22/21		
3 ¹	ERH1675			BA41503	Water	09/22/21		
4 1	ERH1677		·····	BA41505	Water	09/22/21		
<u>5</u>	ERH1678 10			BA41506	Water	09/22/21		
62	ERH1671(SGCU)			BA41499(SGCU)	Water	09/22/21		
72	ERH1673(SGCU)**			BA41501(SGCU)**	Water	09/22/21		
8 1	ERH1675(SGCU)			BA41503(SGCU)	Water	09/22/21		
	ERH1677(SGCU)			BA41505(SGCU)	Water	09/22/21		
10 7	ERH1678(SGCU)			BA41506(SGCU)	Water	09/22/21		
11								
12								
13 Notes:				<u> </u>				
110100.								
	21 DOZOA -BIV_							
L1	210928A-BIK							
L1	210928A-BIK 210928AI-BIK							

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	/			
Was cooler temperature criteria met?	/			
IIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	/			
Were all percent relative standard deviations (%RSD) < 20%?	\angle			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990 ?	/		*	7 F1
Were the RT windows properly established?				
IIb. Initial calibration verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/			
Were all percent differences (%D) ≤ 20%?	/			
III. Continuing calibration				
Was a continuing calibration analyzed daily?	\langle			
Were all percent differences (%D) <u><</u> 20%?	_			
Were all the retention times within the acceptance windows?				
IV. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?	/			
Was there contamination in the laboratory blanks?	•	/		
V. Field Blanks				·
Were field blanks identified in this SDG?		/		
Were target analytes detected in the field blanks?			/	
VI. Surrogate spikes				
Were all surrogate percent recovery (%R) within the QC limits?		[
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?			-	
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?			/	t
VII. Matrix spike/Matrix spike duplicates				· · · · · · · · · · · · · · · · · · ·
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?			-	
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	[
VIII. Laboratory control samples	T	~	<u> </u>	· · · · · · · · · · · · · · · · · · ·
Was an LCS analyzed per analytical or extraction batch?	/	[ļ	
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?		/	[

IX. Field duplicates	 			
Were field duplicate pairs identified in this SDG?				
Were target analytes detected in the field duplicates?	 		<u> </u>	
X. Target analyte quantitation	 			
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?				
Were analyte quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
Were manual integrations reviewed and found acceptable?	/	~		
Did the laboratory provide before and after integration printouts?		~		
XI. Target analyte identification				
Were the retention times of reported detects within the RT windows?	-			
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.	×			

LDC #:	5240938
LDC #:	9240100

VALIDATION FINDINGS WORKSHEET

Blanks

Page: 1_of 1

Reviewer: FT

					Ialiks					Reviewer:	<u> </u>
	IPLC							~			
Please see qualifications belo <u>Y N N/A</u> Were all samples <u>Y N N/A</u> Was a method bla <u>Y N N/A</u> Was a method bla <u>Y N N/A</u> Were any contam	associated with a g ank performed for e ank performed with	given method bla each matrix and w each extraction l	nk? vhenever batch?	a sampl	e extraction	proced		•	es ut /LE	পথ	
Level IV/D Only <u>A N N/A</u> (Gasoline and aro <u>Y N N/A</u> Was a method bla Blank extraction date: <u></u> Conc. units: <u>up</u>	omatics only)Was a ank analyzed for ea	n method blank ar ach analytical / ex	nalyzed w ttraction b	ith each	24 hour bat	ch? s?	mples:	1-7 5	5	(ط)	
Compound	Blank ID					Sar	mple Identific				
	210928A-1	31K	1		2		3	4	5		
0il (czy-cyo)	290		170/3	NV.00	4704		5304	490 U	200 /30	00.04	
	320		320		320		320	320	320'		
Blank extraction date: 9 Conc. units: u9.1	28[2 \ Blank a	nalysis date:	10/2/2	1		Assoc	iated samp	bles:6	-PIU		
Compound	Blank ID					Sar	mple Identifica	ation			
	21092841	-BIK-	7		4		9	10			
011 (C24-C40)	170		250/2	300.9	1 200 3	00-01	280 300.	04 180 300	, o y		
	320		320		320		320	320			
									<u> </u>		
			<u></u> n n								
	L										I

ALL CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

Page: 1_of_1_ Reviewer: <u>FT</u>

(g)

METHOD: V GC __ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N/N N/A Were a laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) analyzed for eac

Were a laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) analyzed for each matrix in this SDG? Were the LCS percent recoveries (%R) and relative percent differences (RPD) within the QC limits?

⊭evel IV/D Only

Y (N) N/A

Y/N_N/A Was an LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

		I				T	<u> </u>
#	LCS/LCSD ID	Compound	LCS %R (Limits)	LCSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	210928A	0i] (Czy-Cyo)	119 (41-113)	()	()	1-751	Jtdut/P all pot
	Lesin		()	()	()	210928A-BIK	
			()	()	()		
			()	()	()		
			()	()	()		······
			()	()	()		
			()	()	()		
			()				
			()	()			
				()	()		
			<u></u>		()	······································	······································
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()		
			()	()	()	······································	
			()	()	()		
			()	, , ()	()		
			()	()	()		
			()	()			

VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page: <u>1</u>	of1
Reviewer:	FT

METHOD: GC (EPA Method sois)

Were field duplicate pairs identified in this SDG? Were target compounds detected in the field duplicate pairs?

	Concentrati	on (ug L)		
Compound		5	RPÐ (≤ بحن %)	QUAL
Diesel (C10- 024)	2705	-78 220J	20	
0il (C2y-C40)	L 071	2001	6	
				1
· · · · · · · · · · · · · · · · · · ·	<u> </u>	· · · · · · · · · · · · · · · · · · ·		

<u></u> 	(≤ SV%)	QUAL
180	J0200	

	Concentration ()		
Compound			QUAL

Compound	Concentration ()	 QUAL

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: __1__ of _1___ Reviewer: ____FT___

METHOD: GC __X___ HPLC _____

The calibration factors (CF), average CF, and relative standard deviation (%RSD) were recalculated for compounds identified below using the following calculations:

CF = A/C average CF = sum of the CF/number of standards %RSD = 100 * (S/X) A = Area of compound
C = Concentration of compound
S = Standard deviation of calibration factors
X = Mean of calibration factors

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
ľ		Calibration	1			Average CF	Average CF	%RSD	%RSD
#	Standard ID	Date	Compound	(std=250ppb)	(std=250ppb)	(Initial)	(Initial)		
1	ICAL	8/30/2021	Diesel C10-C24)	1954573	1954573	2019597	2019597	2.7	2.7
	Apollo								

Where:

LDC #: 52409BX

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: <u>1</u> of <u>1</u> Reviewer: <u>FT</u>

METHOD: GC ______HPLC _____

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. CF -CF)/ave.CF

Where: ave. CF = initial calibration average CF

CF = continuing calibration CF

A = Area of compound

C = Concentration of compound

	Standard	Calibration			Reported	Recalculated	Reported	Recalculated
#	ID	Date	Compound	Average CF(ICAL)/ CCV Conc.	CF/ Conc. CCV	CF/ Conc. CCV	%D	%D
1	005101	10 7 2	Piesel Cro-Czy	2019600	2099130	2099130	ઝ.૧	3.9
2	cev	10 8 21	<u>↓</u>	\checkmark	1903820	1903820	5.7	5.7
	10070433							
3								
4		-		· · · · · · · · · · · · · · · · · · ·			······································	
	ments: <u>Refer to</u> ecalculated resu		bration findings worksheet	for list of qualifications a	nd associated sam	ples when reported	results do not agr	ee within 10.0% of

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:_____#_7

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
octacosane				97.6		
0- Terpheny				84.3		

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
		<u></u>				
		a <u></u>				

	Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound
A	Chlorobenzene (CBZ)	G	Octacosane	м	Benzo(e)Pyrene	S	1-Chloro-3-Nitrobenzene	Y	Tetrachloro-m- xylene
в	4-Bromofluorobenzene (BFB)	н	Ortho-Terphenyl	N	Terphenyl-D14	т	3,4-Dinitrotoluene	z	2-Bromonaphthalene
C,	a,a,a-Trifluorotoluene	1	Fluorobenzene (FBZ)	0	Decachlorobiphenyl (DCB)	U	Tripentyltin	AA	Chloro-octadecane
D	Bromochlorobenene	J	n-Triacontane	Р	1-methylnaphthalene	v	Tri-n-propyltin	BB	2,4-Dichlorophenylacetic acid
E	1,4-Dichlorobutane	к	Hexacosane	Q	Dichlorophenyl Acetic Acid (DCAA)	w	Tributyl Phosphate	сс	2,5-Dibromotoluene
F	1,4-Difluorobenzene (DFB)	L	Bromobenzene	R	4-Nitrophenol	x	Triphenyl Phosphate		

LDC #:	524093	VALIDATION FINDINGS WORKSHEET	Page: <u>1_</u> of_1_
		Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification	Reviewer: FT
METHO	D: GC	HPLC	

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

%Recovery = 100 * RPD =(({SSCLCS -		/ (SSCLCS	S + SSCLC	SD))*100
LCS/LCSD samples:				

Where SSC = Spiked sample concentration LCS = Laboratory Control Sample

SA = Spike added LCSD = Laboratory Control Sample duplicate

Compound	Sr Ad	bike ded)	Spike Sample Concentration (いg し)		LC Percent I		LCSD Percent Recovery		LCS/I	
Compound	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Diesel (C10-024)	2000	2000	2020 =7		117	117	104	104	11-8	11.8
			2340							
				: 						
······································										·
					· · · · ·					
omments: <u>Refer to Laboratory</u> ot agree within 10.0% of the rec			Control Sample	e Duplicate find	lings workshee	t for list of qual	ifications and a	associated sam	ples when repo	ted results do

	<u>52409</u> B8		ON FINDINGS WORKS		Page: <u>1</u> of <u>1</u> Reviewer: <u>FT</u>
	VA Were all reported	results recalculated and verified for ted results for detected target com		ported results?	
A= Ar Fv= Fi Df= Di RF= Av In Vs= Ini Ws= Ini	htration= <u>(A)(Fv)(Df)</u> (RF)(Vs or Ws)(%S/10) ea or height of the compound to be hal Volume of extract ution Factor erage response factor of the compo the initial calibration tial volume of the sample tial weight of the sample ercent Solid	0) Sample ID measured		Dound Name Dies 2629683830 (5 2019597 (1020 = 326) (Bool) =
#	Sample ID	Compound	Reported Concentrations (いみ レ)	Recalculated Results Concentrations (WG /)	Qualifications
	#2,	Diese (C10-C24)	3300	(ng [1) 3264.2	

Comments:
