

AECOM 1001 Bishop Street Suite 1600 Honolulu, HI 96813 ATTN: Ms. Alethea Ramos alethea.ramos@aecom.com

SUBJECT: Red Hill Bulk Storage Facility, CTO 18F0126 - Data Validation

Dear Ms. Ramos,

Enclosed is the final validation report for the fraction listed below. This SDG was received on September 29, 2021. Attachment 1 is a summary of the samples that were reviewed for the analysis.

LDC Project #51261W:

 SDG #
 Fraction

 97221
 Volatiles, Polynuclear Aromatic Hydrocarbons, Gasoline Range Organics, Total Petroleum Hydrocarbons as Extractables

The data validation was performed under Stage 2B & 4 validation guidelines. The analysis was validated using the following documents and variances, as applicable to the method:

- Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor Hickam, O'ahu, Hawai'i (Revision 02, January 2017)
- Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor Hickam, O'ahu, Hawai'i (Revision 01, April 2017)
- Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017)
- Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018)
- U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019)
- DoD General Validation Guidelines (November 2019)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020)
- U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021)
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014; update VI, July 2018

Please feel free to contact us if you have any questions.

Sincerely,

the abuse

Stella Cuenco Operations Manager/Senior Chemist scuenco@lab-data.com

	1,222 pages-DL R12 (added T-W) 1 WEEK TAT Attachment 1																																
	90/10 2B/4 E	EDD	LDO	C# 5	5126	61 (/	٩EC	ON	I - H	lone	olul	u, ⊦	11 / F	Red	Hill	l Bu	lk S	Stor	age	e Fa	cilit	y, C	то	18F	=012	26)							
LDC	SDG#	DATE REC'D	(2) DATE DUE	BT (826	EX i0B)	(3)P (827 -SI	AHs 70D M)	GF (826	RO 60B)	TPI (801	-Е 5В)	SG TPI (801	CU H-E 5B)						-		-				-		-		-				
Matrix:	Water/Soil			W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	s	W	S	W	s	W	S
А	96179	06/02/21	06/09/21	4	0	2	0	4	0	2	0	2	0																				
В	96188	06/02/21	06/09/21	1	0	0	0	1	0	0	0	0	0																				
В	96188	06/02/21	06/09/21	1	0	1	0	1	0	2	0	1	0																				
С	96269	06/10/21	06/17/21	2	0	1	0	2	0	1	0	1	0																				
D	96282	06/10/21	06/17/21	3	0	1	0	3	0	1	0	1	0																				
D	96282	06/10/21	06/17/21	1	0	1	0	1	0	1	0	1	0																				
Е	96320	06/11/21	06/18/21	4	0	2	0	4	0	2	0	2	0																				
F	96343	06/11/21	06/18/21	2	0	1	0	2	0	1	0	1	0																				
G	96363	06/15/21	06/22/21	6	0	3	0	6	0	3	0	2	0																				
Н	96472	06/18/21	06/25/21	6	0	3	0	6	0	3	0	3	0																				
Ι	96410	06/18/21	06/25/21	12	0	6	0	12	0	6	0	6	0																				
J	96438	06/18/21	06/25/21	6	0	3	0	6	0	3	0	3	0																				
к	96439	06/18/21	06/25/21	2	0	1	0	2	0	1	0	1	0																				
L	96463	06/18/21	06/25/21	5	0	2	0	5	0	2	0	2	0																				
L	96463	06/18/21	06/25/21	1	0	1	0	1	0	1	0	1	0																				
М	96524	06/28/21	07/06/21	6	0	3	0	6	0	3	0	3	0																				\square
Ν	96537	06/28/21	07/06/21	2	0	1	0	2	0	1	0	-	-																				\square
0	96548	06/28/21	07/06/21	4	0	2	0	4	0	1	0	1	0																				\square
0	96548	06/28/21	07/06/21	2	0	1	0	2	0	2	0	2	0																				\square
Р	96623	07/01/21	07/09/21	8	0	4	0	8	0	4	0	4	0																				\square
Q	96714	08/10/21	08/24/21	8	0	5	0	8	0	12	0	6	0																				\square
R	92701	08/23/21	08/30/21	2	0	1	0	2	0	1	0	1	0																				\square
R	92701	08/23/21	08/30/21	1	0	1	0	1	0	1	0	1	0																				\square
s	96778	09/21/21	09/28/21	7	0	4	0	7	0	4	0	4	0																				\square
Т	96846	09/29/21	10/06/21	8	0	4	0	8	0	4	0	4	0																				\square
U	97004	09/29/21	10/06/21	8	0	4	0	8	0	4	0	4	0							ĺ	ĺ						1		ĺ	ĺ			\square
V	97159	09/29/21	10/06/21	8	0	4	0	8	0	4	0	4	0																				\square
w	97221	09/29/21	10/06/21	6	0	2	0	6	0	2	0	2	0																				
w	97221	09/29/21	10/06/21	2	0	2	0	2	0	2	0	2	0																				\square
																																	\square
Total	J/T/SC			128	0	66	0	128	0	74	0	65	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	461

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Bulk Storage Facility, CTO 18F0126

LDC Report Date: October 7, 2021

Parameters: Volatiles

Validation Level: Stage 2B & 4

Laboratory: APPL, Inc.

Sample Delivery Group (SDG): 97221

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
ERH1591	BA38280	Water	08/19/21
ERH1592**	BA38281**	Water	08/19/21
ERH1593	BA38282	Water	08/19/21
ERH1594**	BA38283**	Water	08/19/21
ERH1595	BA38284	Water	08/19/21
ERH1596	BA38285	Water	08/19/21
ERH1597	BA38286	Water	08/19/21
ERH1598	BA38287	Water	08/19/21

**Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) which are Benzene, Toluene, Ethylbenzene and Xylenes (BTEX) by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for all samples were reported at 10.1°C upon receipt by the laboratory.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples ERH1591, ERH1593, ERH1595, and ERH1597 were identified as a trip blanks. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Data Qualification Summary - SDG 97221

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Laboratory Blank Data Qualification Summary - SDG 97221

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Volatiles - Field Blank Data Qualification Summary - SDG 97221

No Sample Data Qualified in this SDG

LDC #: <u>51261W1a</u>	VALIDATION COMPLETENESS WORKSHEET	Date: 1042
SDG #: <u>97221</u>	Stage 2B/4	Page: <u>\</u> of <u>'</u>
Laboratory: APPL, Inc., Clovis,	CA	Reviewer: <u>۲</u>
		2nd Reviewer:
METHOD: CC/MS Valatilas (B)	TEX)(EDA S)M 846 Mothod 8260B)	

METHOD: GC/MS Volatiles (BTEX)(EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. 0, ١ ١

		one	of 2 couldrs = 10.10 fert
	Validation Area		Comments
١.	Sample receipt/Technical holding times	AIA	
11.	GC/MS Instrument performance check	Δ	•
111.	Initial calibration/ICV	A/A	$0/0$ PSD $\leq T $ $ CV \leq 20$
IV.	Continuing calibration ending	\wedge	$cu = \omega D$
V.	Laboratory Blanks	Δ	t
VI.	Field blanks	NY	TB= 1,3,5,7
VII.	Surrogate spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	N	\sim
IX.	Laboratory control samples	4	les 10
Х.	Field duplicates	2	
XI.	Internal standards	4	
XII.	Target analyte quantitation	<u>A</u>	Not reviewed for Stage 2B validation.
XIII.	Target analyte identification	Δ	Not reviewed for Stage 2B validation.
XIV.	System performance	4	Not reviewed for Stage 2B validation.
XV.	Overall assessment of data	\wedge	

A = Acceptable N = Not provided/applicable Note: ND = No compounds detected R = Rinsate SW = See worksheet FB = Field blank ** Indicates sample underwent Stage 4 validation

D = Duplicate TB = Trip blank EB = Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	ERH1591 TB	BA38280	Water	08/19/21
2	ERH1592**	BA38281**	Water	08/19/21
3	ERH1593 TB	BA38282	Water	08/19/21
4	ERH1594**	BA38283**	Water	08/19/21
5	ERH1595 TB	BA38284	Water	08/19/21
6	ERH1596	BA38285	Water	08/19/21
7	ERH1597 てり	BA38286	Water	08/19/21
8	ERH1598	BA38287	Water	08/19/21
g				
Notes				
	210827AM			

210827AM			

Method: Volatiles (EPA SW 846 Method 8260 P)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	/	-		
Was cooler temperature criteria met?				
II. GC/MS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?	_			
Were all samples analyzed within the 12 hour clock criteria?		-		
Illa. Initial calibration		<u></u>		~ **
Did the laboratory perform a 5 point calibration prior to sample analysis?	\leq			
Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?	_	-		
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?			-	
Were all percent relative standard deviations (%RSD) \leq 15% and relative response factors (RRF) \geq 0.05?	/			
IIIb. Initial Calibration Verification				_
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) <u><</u> 20%?				
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?	\leq			
Were all percent differences (%D) \leq 20% and relative response factors (RRF) \geq 0.05?	/			
Were all percent differences (%D) \leq 50% for closing calibration verifications?	-			L
V. Laboratory Blanks				-
Was a laboratory blank associated with every sample in this SDG?	1	<u>t</u>	<u> </u>	
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	/	<u> </u>		
Was there contamination in the laboratory blanks?	L	/	1	
VI. Field blanks			- 	•
Were field blanks were identified in this SDG?	//	ſ.		
Were target compounds detected in the field blanks?		Z		

VII. Surrogate spikes				······································
Were all surrogate percent recovery (%R) within QC limits?	/			
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?			/	ſ
VIII. Matrix spike/Matrix spike duplicates				· · · · · · · · · · · · · · · · · · ·
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?			_	<u> </u>
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			-	
IX. Laboratory control samples				
Was an LCS analyzed per analytical batch?	_			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			
X. Field duplicates				
Were field duplicate pairs identified in this SDG?		/	-	
Were target compounds detected in the field duplicates?				f
XI. Internal standards				· · · · · · · · · · · · · · · · · · ·
Were internal standard area counts within -50% to +100% of the associated calibration standard?	/			
Were retention times within <u>+</u> 30 seconds of the associated calibration standard?				
XII. Target analyte quantitation				* *
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	/			
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	/			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?		1		
XIII. Target analyte identification		_		
Were relative retention times (RRT's) within \pm 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	/			
Were chromatogram peaks verified and accounted for?	/			
XIV. System performance				
System performance was found to be acceptable.	/			
XV. Overall assessment of data		/		
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-lsopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	I1. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	OOOO.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methyl cyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1. 2-Propanol
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC #: 5/26/w/a

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:	1	_of_	1
Reviewer:		FT	

METHOD: GC/MS VOA (EPA SW 846 Method 8260 /3)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

RRF : avera %RSI	= (A _x)(C _{is})/(A _{is})(C _x) ge RRF = sum of D = 100 * (S/X)	the RRFs/number	of standards $A_x = Area ext{ of composition}$ $C_x = Concentration G$ S = Standard deviat $X = Mean ext{ of the RR}$	und, of compound, ion of the RRFs Fs /6	A _{is} = Area of a C _{is} = Concentr	ssociated internal s ation of internal sta	tandard ndard		
				Reported	Recalc	Reported	Recalc	Reported	Recalc
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF (ら. ジ std)	RRF (5. Ustd)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	8/28/21	V (1st internal standard)	0.3433	0.3433	0.4246	0.4246	9.5	9-5
	MAX		EE (2nd internal standard)	0.5025	0.5025	0.6596	0.6596	12	12
		1	(3rd internal standard)						
			(4th internal standard)						
2			(1st internal standard)				· ·		
			(2nd internal standard)						
			(3rd internal standard)						
			(4th internal standard)						
3			(1st internal standard)						
			(2nd internal standard)						
			(3rd internal standard)						
			(4th internal standard)	L					
4			(1st internal standard)						
			(2nd internal standard)						
			(3rd internal standard)						
			(4th internal standard)						

LDC #: 5/26/W/a

VALIDATION FINDINGS WORKSHEET **Continuing Calibration Results Verification**

Page: 1_of_1_ Reviewer: FT

METHOD: GC/MS VOA (EPA SW 846 Method 8260 /3

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF A, = Area of compound,

A_{is} = Area of associated internal standard

 $\hat{C_x}$ = Concentration of compound,

C_{is} = Concentration of internal standard

#	Standard ID	Calibration Date	Compound (R	eference internal Standard)	Average RRF (initial)	Reported RRF (CC)	Recalculated RRF (CC)	Reported %D	Recalculated %D
1	08271009	8/27/2/	Y	(1st internal standard)	0.4296	0.4494	0.4494	4.6	4.6
	cuv	*	Æ	(2nd internal standard)	0.6596	0-6842	0.6842	3.7	3.7
				(3rd internal standard)					
				(4th internal standard)					
2				(1st internal standard)					
				(2nd internal standard)					
				(3rd internal standard)					
				(4th internal standard)					
3				(1st internal standard)					
				(2nd internal standard)					· · · · · · · · · · · · · · · · · · ·
				(3rd internal standard)					
				(4th internal standard)					
4				(1st internal standard)					
			·	(2nd internal standard)		i			
				(3rd internal standard)					
				(4th internal standard)					
Com	ments: <u>Refer t</u>	o Continuing	Calibration find	ings worksheet for list of qu	alifications and a	associated sample	s when reported re	sults do not agree	within 10.0% of
ine r	ecalculated res	<u>uits</u>							

METHOD: GC/MS VOA (EPA SW 846 Method 8260 🏠

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

%	Recovery:	SE/SS	*	100
70	Recovery.	36/33		100

Where: SF = Surrogate Found

SS = Surrogate Spiked

Sample ID:____#22

Sample ID: ± 2							
	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference		
Dibromofluoromethane	25.0	25.22	101	10)	U		
1,2-Dichloroethane-d4		27-57	110	110			
Toluene-d8		24.25	97.0	97.0			
Bromofluorobenzene		25.84	103	50			

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

LDC #: 5126/w/a

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: 1_of 1_ Reviewer: ____FT

METHOD: GC/MS VOA (EPA Method 8260 3)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

 % Recovery = 100 * SSC/SA
 Where:
 SSC = Spiked sample concentration

 SA = Spike added
 SA = Spike added

 RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)
 LCSC = Laboractry control sample concentration

LCS ID: 210927ANA

	S	pike	Spiked	Sample		cs	<u>_</u>	SD		<u>/I CSD</u>
Compound	(N	g(V)	(UG))		Percent Recovery		Percent Recovery		RPD	
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
1,1-Dichloroethene										
Trichloroethene										
Benzene	10.J	10.0	10.5	9.69	105	105	96.9	96.9	8. U	8.0
Toluene	L	\downarrow	10.3	10.1	103	103	101	10.]	7.0	2.0
Chlorobenzene										

Comments: <u>Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #: 5/26/ W/A VALIDATION FINDINGS WORKSHEET

Conce	entration = $(A_{i})(I_{*})(DF)$ $(A_{is})(RRF)(V_{*})(A_{is})(RF)(V_{*})(A_{is})(RF)(V_{*})(A_{is})(RF)(V_{*})(A_{is})(A$	Related results for detected ta	arget compounds agree v Example:	vithin 10.0% of the	reported results
A _x	 Area of the character compound to be me 	eristic ion (EICP) for the easured	Sample I.D. 2108	2,7 <u>AM</u>	¥
A_{is}	 Area of the character internal standard 	eristic ion (EICP) for the specific	G		
l _s	 Amount of internal s (ng) 	standard added in nanograms	Conc. = (42.63)	$\frac{2}{2} (r)$	
RRF V。	 Relative response fa Volume or weight of or grams (g). 	actor of the calibration standard.	(
Df	= Dilution factor.			~	
%S	 Percent solids, appl only. 	icable to soils and solid matrices	<u> </u>	0.50	
#	Sample ID	Compound	Reported Concentration	Calculated Concentration	Qualification
	les	N	10.5	0.58	
	1				

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Storage Facility, CTO 18F0126
LDC Report Date:	October 7, 2021
Parameters:	Polynuclear Aromatic Hydrocarbons

Validation Level:Stage 2B & 4

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97221

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
ERH1592**	BA38281**	Water	08/19/21
ERH1594**	BA38283**	Water	08/19/21
ERH1596	BA38285	Water	08/19/21
ERH1598	BA38287	Water	08/19/21

**Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 1: Data Validation Procedure for Organic Analysis by GC/MS (May 2020). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) which are 1-Methylnaphthalene, 2-Methylnaphthalene, and Naphthalene by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for all samples were reported at 10.1°C upon receipt by the laboratory.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all analytes.

Average relative response factors (RRF) for all analytes were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIII. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG 97221

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126

Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG 97221

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary -SDG 97221

No Sample Data Qualified in this SDG

_ VALIDATION COMPLETENESS WORKSHEET

LDC #: <u>51261W2b</u> **V/** SDG #: <u>97221</u> Laboratory: <u>APPL, Inc., Clovis, CA</u>

Stage 2B/4

Date:_10	14	2)
Page: <u> </u> c	of	1
Reviewer:	.F	_
2nd Reviewer:	nb	_

METHOD: GC/MS Polynuclear Aromatic Hydrocarbons (EPA SW 846 Method 8270D-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	<i>۵</i> ۷	ve of t	NU COOLUS = 10.10 Text
	Validation Area		Comments
<u> </u>	Sample receipt/Technical holding times	AIA	
11.	GC/MS Instrument performance check	Δ	
III.	Initial calibration/ICV	$\Delta \Delta$	°/u psD ≤ 15 1(V € W
IV.	Continuing calibration	A	$cw \in \mathcal{W}$
V.	Laboratory Blanks	Δ	
VI.	Field blanks	N	
VII.	Surrogate spikes	4	
VIII.	Matrix spike/Matrix spike duplicates	N	5
IX.	Laboratory control samples	4	LesiD
Х.	Field duplicates	て	
XI.	Internal standards	Λ	
XII.	Target analyte quantitation	$\overline{\mathbf{v}}$	Not reviewed for Stage 2B validation.
XIII.	Target analyte identification	\triangle	Not reviewed for Stage 2B validation.
XIV.	System performance	A	Not reviewed for Stage 2B validation.
XV.	Overall assessment of data		

Note: A = Acceptable N = Not provided/applicable

**

ND = No compounds detected R = Rinsate D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

SW = See worksheet	FB = Field blank
ndicates sample underwent Stage 4 validation	

	Client ID			Lab ID	N	latrix	Date
1+	ERH1592**	 		BA38281**	v	Vater	08/19/21
2	ERH1594**			BA38283**	v	Vater	08/19/21
3	ERH1596			BA38285	V	Vater	08/19/21
4	ERH1598			BA38287	v	Vater	08/19/21
5							
6							
7							
8							
9		 					
Notes							
	210823A						

LDC #: 51261W2b

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?				
II. GC/MS Instrument performance check (Not required)				
Were the DFTPP performance results reviewed and found to be within the specified criteria?	/			
Were all samples analyzed within the 12 hour clock criteria?	/			
Illa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?	/			
Were all percent relative standard deviations (%RSD) \leq 15% and relative response factors (RRF) \geq 0.05?	~			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?				
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	1			
Were all percent differences (%D) ≤20%?				
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	1			
Were all percent differences (%D) \leq 20% and relative response factors (RRF) \geq 0.05?	$\lfloor 2 \rfloor$	-		
Were all percent differences (%D) \leq 50% for closing calibration verifications?				
V. Laboratory Blanks				·
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?	\square			
Was there contamination in the laboratory blanks?		/		
VI. Field blanks				<u></u>
Were field blanks identified in this SDG?		/		
Were target compounds detected in the field blanks?			\angle	
VII. Surrogate spikes				
Were all surrogate percent differences (%R) within QC limits?				
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?	 		<	
If any percent recoveries (%R) was less than 10 percent, was a reanalysis performed to confirm %R?			/	[
VIII. Matrix spike/Matrix spike duplicates			, <u>_</u>	<u> </u>
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?				

Method: Semivolatiles (EPA SW 846 Method 8270 f) 51M

LDC #: 51261W2b

VALIDATION FINDINGS CHECKLIST

Page: 2	_of_	2
Reviewer:	F	T

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	-
IX. Laboratory control samples			<u>. </u>	
Was an LCS analyzed per extraction batch?	/	İ		
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/	ł		
X. Field duplicates		.		
Were field duplicate pairs identified in this SDG?		/	t	
Were target compounds detected in the field duplicates?				
XI. Internal standards				
Were internal standard area counts within -50% or +100% of the associated calibration standard?	-			
Were retention times within ± 10 seconds of the associated calibration standard?				
XII. Compound quantitation				
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	/			
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	/			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
Did compound quantitation limits meet QAPP limits?	/			
XIII. Target compound identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?	/			
XIV. System performance				
System performance was found to be acceptable.		1		
XV. Overall assessment of data		/		
Overall assessment of data was found to be acceptable.				

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	CC. Dimethylphthalate	EEE. Bis(2-ethylhexyl)phthalate	GGGG. C30-Hopane	11. Methyl methanesulfonate
B. Bis (2-chloroethyl) ether	DD. Acenaphthylene	FFF. Di-n-octylphthalate	HHHH. 1-Methylphenanthrene	J1. Ethyl methanesulfonate
C. 2-Chlorophenol	EE. 2,6-Dinitrotoluene	GGG. Benzo(b)fluoranthene	IIII. 1,4-Dioxane	K1. o,o',o"-Triethylphosphorothioate
D. 1,3-Dichlorobenzene	FF. 3-Nitroaniline	HHH. Benzo(k)fluoranthene	JJJJ. Acetophenone	L1. n-Phenylene diamine
E. 1,4-Dichlorobenzene	GG. Acenaphthene	III. Benzo(a)pyrene	KKKK. Atrazine	M1. 1,4-Naphthoquinone
F. 1,2-Dichlorobenzene	HH. 2,4-Dinitrophenol	JJJ. Indeno(1,2,3-cd)pyrene	LLLL. Benzaldehyde	N1. N-Nitro-o-toluidine
G. 2-Methylphenol	II. 4-Nitrophenol	KKK. Dibenz(a,h)anthracene	MMMM. Caprolactam	O1. 1,3,5-Trinitrobenzene
H. 2,2'-Oxybis(1-chloropropane)	JJ. Dibenzofuran	LLL. Benzo(g,h,i)perylene	NNNN. 2,6-Dichlorophenol	P1. Pentachlorobenzene
I. 4-Methylphenol	KK. 2,4-Dinitrotoluene	MMM. Bis(2-Chloroisopropyl)ether	0000. 1,2-Diphenylhydrazine	Q1. 4-Aminobiphenyl
J. N-Nitroso-di-n-propylamine	LL. Diethylphthalate	NNN. Aniline	PPPP. 3-Methylphenol	R1. 2-Naphthylamine
K. Hexachloroethane	MM. 4-Chlorophenyl-phenyl ether	OOO. N-Nitrosodimethylamine	QQQQ. 3&4-Methylphenol	S1. Triphenylene
L. Nitrobenzene	NN. Fluorene	PPP. Benzoic Acid	RRRR. 4-Dimethyldibenzothiophene (4MDT)	T1. Octachlorostyrene
M. Isophorone	OO. 4-Nitroaniline	QQQ. Benzyl alcohol	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	U1. Famphur
N. 2-Nitrophenol	PP. 4,6-Dinitro-2-methylphenol	RRR. Pyridine	TTTT. 1-Methyldibenzothiophene (1MDT)	V1. 1,4-phenylenediamine
O. 2,4-Dimethylphenol	QQ. N-Nitrosodiphenylamine	SSS. Benzidine	UUUU 2,3,4,6-Tetrachlorophenol	W1. Methapyrilene
P. Bis(2-chloroethoxy)methane	RR. 4-Bromophenyl-phenylether	TTT. 1-Methylnaphthalene	VVVV. 1,2,4,5-Tetrachlorobenzene	X1. Pentachloroethane
Q. 2,4-Dichlorophenol	SS. Hexachlorobenzene	UUU.Benzo(b)thiophene	WWWW 2-Picoline	Y1. 3,3'-Dimethylbenzidine
R. 1,2,4-Trichlorobenzene	TT. Pentachlorophenol	VVV.Benzonaphthothiophene	XXXX. 3-Methylcholanthrene	Z1. o-Toluidine
S. Naphthalene	UU. Phenanthrene	WWW.Benzo(e)pyrene	YYYY. a,a-Dimethylphenethylamine	A2. 1-Naphthylamine
T. 4-Chloroaniline	VV. Anthracene	XXX. 2,6-Dimethylnaphthalene	ZZZZ. Hexachloropropene	B2. 4-Aminobiphenyl
U. Hexachlorobutadiene	WW. Carbazole	YYY. 2,3,5-Trimethylnaphthalene	A1. N-Nitrosodiethylamine	C2. 4-Nitroquinoline-1-oxide
V. 4-Chloro-3-methylphenol	XX. Di-n-butylphthalate	ZZZ. Perylene	B1. N-Nitrosodi-n-butylamine	D2. Hexachloropene
W. 2-Methylnaphthalene	YY. Fluoranthene	AAAA. Dibenzothiophene	C1. N-Nitrosomethylethylamine	E2. Bis (2-chloro-1-methylethyl) ether
X. Hexachlorocyclopentadiene	ZZ. Pyrene	BBBB. Benzo(a)fluoranthene	D1. N-Nitrosomorpholine	F2. Bifenthrin
Y. 2,4,6-Trichlorophenol	AAA. Butylbenzylphthalate	CCCC. Benzo(b)fluorene	E1. N-Nitrosopyrrolidine	G2. Cyfluthrin
Z. 2,4,5-Trichlorophenol	BBB. 3,3'-Dichlorobenzidine	DDDD. cis/trans-Decalin	F1. Phenacetin	H2. Cypermethrin
AA. 2-Chloronaphthalene	CCC. Benzo(a)anthracene	EEEE. 1,1'-Biphenyl	G1. 2-Acetylaminofluorene	l2. Permethrin (cis/trans)
BB. 2-Nitroaniline	DDD. Chrysene	FFFF. Retene	H1. Pronamide	J2. 5-Nitro-o-toluidine

VALIDATION FINDINGS WORKSHEET **Initial Calibration Calculation Verification**

Page: 1_of 1 Reviewer: FT

METHOD: GC/MS BNA (EPA SW 846 Method 8270 D) 51M

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $\mathsf{RRF} = (\mathsf{A}_{\mathsf{x}})(\mathsf{C}_{\mathsf{is}})/(\mathsf{A}_{\mathsf{is}})(\mathsf{C}_{\mathsf{x}})$ average RRF = sum of the RRFs/number of standards

%RSD = 100 * (S/X)

 $A_x = Area of compound,$

 C_x = Concentration of compound, C_{is} = Concentration of in S = Standard deviation of the RRFs, X = Mean of the RRFs

A_{is} = Area of associated internal standard

 $\tilde{C_{is}}$ = Concentration of internal standard

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Internal Standard)	RRF (5・ジ std)	RRF (<i>S</i> . ン std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	7/15/2/	S (1st IS)	1.169	1.169	1.176	1.176	6.9	6.9
	1.		(2nd IS)					,	
	Linus		(3rd IS)						
			(4th IS)						
			(5th IS)						
			(6th IS)						
2			(1st IS)						
			(2nd IS)						
			(3rd IS)			·			
			(4th IS)		······				
			(5th IS)						
			(6th IS)						
3			(1st IS)						
			(2nd IS)						,
			(3rd IS)						
			(4th IS)						
			(5th IS)						
			(6th IS)						

Comments: Refer to Initial Calibration findings worksheet for list of gualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

METHOD: GC/MS BNA (EPA SW 846 Method 8270 ${\cal H}$

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_x)(C_{is})/(A_{is})(C_x)$

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF

 A_x = Area of compound, C_x = Concentration of compound, A_{is} = Area of associated internal standard

C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Internal Standard)	Average RRF (Initial)	RRF (CC)	RRF (CC)	%D	%D
1	08691214	8/15/2/	<u>د</u> (1st IS)	1.176	1.144	1.144	2.7	2.7
	CCV	-1 1 -	(2 nd IS)					
			(3 rd IS)					
			(4 th IS)					
			(5 th IS)					
			(6 th IS)					
2	08096218	8/27/21	5 (1st IS)	1.176	1.143	1.143	2.8	2-8
	ccV		(2 nd IS)					
			(3 rd IS)					
			(4 th IS)					
			(5 th IS)					
			(6 th IS)					
3			(1st IS)					
			(2 nd IS)					
			(3 rd IS)					
			(4 th IS)	ļ	l	L		
			(5 th IS)	 				
			(6 th IS)		IL	<u> </u>		

Comments: <u>Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270 $\,\mathcal{D}$

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

		11
Compl		Jr.
- 3 2111111	E D .	

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobonzene-go W-allU	5.882	4.97	४५.5	84-5	0
2-Fluorobiphenyl YY-dIU	5-882	5.25	89.2	49.2	
Terphenyld14					
Phenol- 4 5					
2-Flugrophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

LDC #: 5126 | wab

VALIDATION FINDINGS WORKSHEET

Page: <u>1</u> of <u>1</u> Reviewer: FT

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

METHOD: GC/MS BNA (EPA SW 846 Method 8270

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA

Where: SSC = Spike concentration SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC) LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS/LCSD samples: 210823A

	S	pike	S	pike	10	<u>.</u>	10	I CSD			
Compound	Ac (10	dded	Conce	ntration	Percent	Recovery	Percent	Recovery	RPD		
					Reported	Recalc	Reported	Recalc	Reported	Recalculated	
Phenol											
N-Nitroso-di-n-propylamine											
4-Chloro-3-methylphenol											
Acenaphthene											
Pentachlorophenol											
Pyrene											
S	5.00	5.0	4.47	4.74	89.4	89.21	94.8	94-2	5-9	5.9	
				•							
· · · · · · · · · · · · · · · · · · ·											

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC #: 5 26 W2b

%S

=

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

METHOD: GC/MS VOA (EPA SW 846 Method 8260 \overrightarrow{F}) <u>Y N N/A</u> Were all reported results recalculated and verified for all level IV samples? <u>Y/N N/A</u> Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concent	ration	$= \frac{(A_{\circ})(I_{\circ})(DF)}{(A_{is})(RRF)(V_{o})(\%S)}$
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured
A _{is}	=	Area of the characteristic ion (EICP) for the specific internal standard
l _s	=	Amount of internal standard added in nanograms (ng)
RRF	=	Relative response factor of the calibration standard.
V _o	=	Volume or weight of sample pruged in milliliters (ml) or grams (g).
Df	=	Dilution factor.

Percent solids, applicable to soils and solid matrices

Example:

	only.				
#	Sample ID	Compound	Reported Concentration (VQ_1)	Calculated Concentration (หรู L)	Qualification
	#2	S	110	110	
				· · · · · · · · · · · · · · · · · · ·	
		<u> </u>			
		· · · · · · · · · · · · · · · · · · ·			

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Red Hill Bulk Storage Facility, CTO 18F0126

LDC Report Date: October 8, 2021

Parameters: Gasoline Range Organics

Validation Level: Stage 2B & 4

Laboratory: APPL, Inc

Sample Delivery Group (SDG): 97221

Sample Identification	Laboratory Sample	Matrix	Collection
Sample identification	Identification	watrix	Date
ERH1591	BA38280	Water	08/19/21
ERH1592**	BA38281**	Water	08/19/21
ERH1593	BA38282	Water	08/19/21
ERH1594**	BA38283**	Water	08/19/21
ERH1595	BA38284	Water	08/19/21
ERH1596	BA38285	Water	08/19/21
ERH1597	BA38286	Water	08/19/21
ERH1598	BA38287	Water	08/19/21

**Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- I LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^2) was greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Samples ERH1591, ERH1593, ERH1595, and ERH1597 were identified as trip blanks. No contaminants were found.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation.

Manual integrations were reviewed and were considered acceptable. The laboratory provided before and after integration printouts.

Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Data Qualification Summary - SDG 97221

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG 97221

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126 Gasoline Range Organics - Field Blank Data Qualification Summary - SDG 97221

No Sample Data Qualified in this SDG

LDC #:_	<u>51261W7</u>	VALI
SDG #:	97221	
Laborat	orv: APPL. Inc	Clovis. CA

ALIDATION COMPLETENESS WORKSHEET

Stage 2B/4

Laboratory. <u>AFT L, Inc., Clovis, CA</u>

METHOD: GC/MS Gasoline Range Organics (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments					
<u>ı</u> .	Sample receipt/Technical holding times	A,A						
	GC/MS Instrument performance check	Δ						
- 111.	Initial calibration/ICV	Δ_{μ}	(2	164 5 20)			
IV.	Continuing calibration	Δ		CN = 21	2			
V.	Laboratory Blanks	Λ						
VI.	Field blanks	NP	TB = 1	3, 5, 7				
VII.	Surrogate spikes	4						
VIII.	Matrix spike/Matrix spike duplicates	N	-					
IX.	Laboratory control samples	4	ues/p					
Х.	Field duplicates	と						
XI.	Internal standards	\leq						
XII.	Target analyte quantitation	Δ	Not reviewed for	Stage 2B validation.	vI)			
XIII.	Target analyte identification	4	Not reviewed for	Stage 2B validation.				
XIV.	System performance	4	Not reviewed for	Stage 2B validation.				
XV.	Overall assessment of data	\land						
Note: ** Indica	A = AcceptableND = NoN = Not provided/applicableR = RinsSW = See worksheetFB = Fieates sample underwent Stage 4 validation	o compounds sate eld blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blank	SB=Source b OTHER:	lank		
	Client ID			Lab ID	Matrix	Date		
1	ERH1591 TB			BA38280	Water	08/19/21		
2 1	ERH1592**			BA38281**	Water	08/19/21		
3 1	ERH1593 Ţ (?)			BA38282	Water	08/19/21		
4 1	ERH1594**		·	BA38283**	Water	08/19/21		
5 1	ERH1595 てり			BA38284	Water	08/19/21		
6 1	ERH1596			BA38285	Water	08/19/21		
7 1	ERH1597 ↑ [?			BA38286	Water	08/19/21		
8 I	ERH1598			BA38287	Water	08/19/21		
g								
Notes:								
2	10827AM							

Method: Volatiles (EPA SW 846 Method 8260 $\mathcal{P}_{\mathcal{P}}$

Validation Area	Yes	No	NA	Findings/Comments			
I. Technical holding times							
Were all technical holding times met?	/						
Was cooler temperature criteria met?							
II. GC/MS Instrument performance check							
Were the BFB performance results reviewed and found to be within the specified criteria?							
Were all samples analyzed within the 12 hour clock criteria?							
Illa. Initial calibration		-					
Did the laboratory perform a 5 point calibration prior to sample analysis?	/						
Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?			-	-			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?	$\boldsymbol{\nu}$	-	**	r FI			
Were all percent relative standard deviations (%RSD) $\leq 16\%$ and relative response factors (RRF) ≥ 0.05 ?			V	/			
IIIb. Initial Calibration Verification							
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/						
Were all percent differences (%D) <u>≤</u> 20%?	/						
IV. Continuing calibration							
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?	-	-					
Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?			-				
Were all percent differences (%D) \leq 20% and relative response factors (RRF) \geq 0.05?	_	-					
Were all percent differences (%D) \leq 50% for closing calibration verifications?				·			
V. Laboratory Blanks			.	• · · · · · · · · · · · · · · · · · · ·			
Was a laboratory blank associated with every sample in this SDG?	/						
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	/	-					
Was there contamination in the laboratory blanks?			Ł				
VI. Field blanks				······································			
Were field blanks were identified in this SDG?	/	t					
Were target compounds detected in the field blanks?							

VII. Surrogate spikes				
Were all surrogate percent recovery (%R) within QC limits?	-			
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?			/	
VIII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?			_	-
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	-
IX. Laboratory control samples				
Was an LCS analyzed per analytical batch?	_			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			
X. Field duplicates				
Were field duplicate pairs identified in this SDG?		/		
Were target compounds detected in the field duplicates?				
XI. Internal standards				······································
Were internal standard area counts within -50% to +100% of the associated calibration standard?	<			
Were retention times within ± 30 seconds of the associated calibration standard?				
XII. Target analyte quantitation				
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?	/			
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	/	-		
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
XIII. Target analyte identification		_		
Were relative retention times (RRT's) within <u>+</u> 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data		/		
Overall assessment of data was found to be acceptable.				

LDC#: 51261W7

Page:	_1_	of_	_1_
Reviewe	er:	FT	

Method: Gasoline (EPA SW 846 Method 8260B)

Calibration				(Y)	(X)
Date	System	Compound	Standard	Response	Concentration
8/25/2021	GCMS	Gasoline C6-C10	1	11.040	0.8
	Max		2	11.378	2.0
			3	12.076	4.0
(4	15.480	12.0
			5	19.694	24.0
	1		6	22.774	32.0
			7	25.396	40.0

Regression Outp	ut	Reported
Constant	10.743188	10.700000
Std Err of Y Est		
R Squared	0.999132	0.999000
Degrees of Freedom		
X Coefficient(s)	0.371398	0.372000
Std Err of Coef.		
Correlation Coefficient	0.999566	
Coefficient of Determination (r^2)	0.999132	0.999000

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

METHOD: GC/MS VOA (EPA SW 846 Method 8260 3)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_x)(C_{is})/(A_{is})(C_x)$ Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF A_x = Area of compound,

A_{is} = Area of associated internal standard

 $C_x = Concentration of compound,$

 C_{is} = Concentration of internal standard

#	Standard ID	Calibration Date	Compound (Reference internal Standard)	Average RRF (initial)	Reported RRF (CC)	Recalculated RRF (CC)	Reported %D	Recalculated %D
1	0827M06	8/27/21	GRO CL_CIO (1st internal standard)	300	278.02	278.12	7.3	7.3
	CON		(2nd internal standard)					
			(3rd internal standard)					
			(4th internal standard)			1 		
2			(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)					
			(4th internal standard)					
3			(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)					
			(4th internal standard)					
4			(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)					
			(4th internal standard)					
Com	ments: <u>Refer t</u>	o Continuing	Calibration findings worksheet for list of qu	alifications and a	associated sample	s when reported re	sults do not agree	within 10.0% of

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:	1	_of_	1
Reviewer:		_FT	

METHOD: GC/MS VOA (EPA SW 846 Method 8260 P

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

世ン Sample ID:

Percent Percent Surrogate Surrogate Recovery Recovery Percent Spiked Found Reported Recalculated Difference Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 VS.V 25.84 103 103 Ú Bromofluorobenzene

Sample ID:__

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:_

Sample ID:				<u></u>	
	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					_
Bromofluorobenzene					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: 1_of_1_ Reviewer: __FT

METHOD: GC/MS VOA (EPA Method 8260 B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA .	Where:	SSC = Spiked sample concentration SA = Spike added
RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)		LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCSID: 210827AM LOSID

	SI	pike Ided	Spiked Conce	Sample		cs	c	SD		
Compound	(W	y V	('	1gpL	Percent	Recovery	Percent	Recovery	RPD	
	LCS	J LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
GRO 1 ,1-Dichloroethenje	300	300	278	745	92.7	F7-51.7	81.7	81.7	12.6	
Trichloroethene						92.7				
Benzene										
Toluene										
Chlerobenzerie										

Comments: <u>Refer to Laboratory Control Sample findings worksheet for list of gualifications and associated samples when reported results do not agree within 10.0%</u> of the recalculated results.

VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

METHOD: GC/MS VOA (EPA SW 846 Method 8260) Y N N/A Were all reported results recalculated and verified for all level IV samples?

<u>N N/A</u> <u>N N/A</u>

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Example:

Concer	ntratior	$n = \frac{(A_{x})(I_{s})(DF)}{(A_{is})(RRF)(V_{s})(\%S)}$
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard
ا _s	Ξ	Amount of internal standard added in nanograms (ng)
RRF	=	Relative response factor of the calibration standard.
V。	=	Volume or weight of sample pruged in milliliters (ml) or grams (g).
Df	=	Dilution factor.
%S	=	Percent solids, applicable to soils and solid matrices

Sample I.D. #4, GRO
Conc. =
$$\left(\frac{3132841}{260965} - 10.74319\right)(x.0)$$

 $\left(\begin{array}{c} 0.3171398\\ 0.371398\end{array}\right)F7$
 $= 849 \text{ ug} \text{H}$

	only.				
#	Sample ID	Compound	Reported Concentration (vg [}	Calculated Concentration	Qualification
	井上	GRD	X	४ २	
	• • •				
		· · · · · · · · · · · · · · · · · · ·			
			·····		
				· · · · · · · · · · · · · · · · · · ·	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Red Hill Bulk Storage Facility, CTO 18F0126

LDC Report Date: October 8, 2021

Parameters: Total Petroleum Hydrocarbons as Extractables

Validation Level: Stage 2B & 4

Laboratory: APPL, Inc., Clovis, CA

Sample Delivery Group (SDG): 97221

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
ERH1592**	BA38281**	Water	08/19/21
ERH1594**	BA38283**	Water	08/19/21
ERH1596	BA38285	Water	08/19/21
ERH1598	BA38287	Water	08/19/21
ERH1592(SGCU)**	BA38281(SGCU)**	Water	08/19/21
ERH1594(SGCU)**	BA38283(SGCU)**	Water	08/19/21
ERH1596(SGCU)	BA38285(SGCU)	Water	08/19/21
ERH1598(SGCU)	BA38287(SGCU)	Water	08/19/21

**Indicates sample underwent Stage 4 validation Samples appended with SGCU underwent "Silica Gel Clean Up"

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 02, January 2017), the Sampling and Analysis Plan, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 01, April 2017), the Sampling and Analysis Plan, Addendum 01, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, September 2017), the Sampling and Analysis Plan, Addendum 03, Investigation and Remediation of Releases and Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, O'ahu, Hawai'i (Revision 00, June 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), the DoD General Validation Guidelines (November 2019), and the U.S. Department of Defense (DoD) Data Validation Guidelines Module 4: Data Validation Procedure for Organic Analysis by GC (March 2021). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Total Petroleum Hydrocarbons (TPH) as Extractables by Environmental Protection Agency (EPA) SW 846 Method 8015B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J+ (Estimated, High Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying high bias, due to non-conformances discovered during data validation.
- J- (Estimated, Low Bias): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated, displaying low bias, due to non-conformances discovered during data validation.
- J (Estimated, Bias Indeterminate): The analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation. Bias is indeterminate.
- U (Non-detected): The analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detected due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The analyte was not detected and the associated numerical value is approximate.
- X (Exclusion of data recommended): The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Exclusion of the data is recommended.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- a ICP Serial Dilution %D was not within control limits.
- b Presumed contamination from preparation (method blank).
- c Calibration %RSD, r, r^2 , %D or %R was noncompliant.
- d The analysis with this flag should not be used because another more technically sound analysis is available.
- e MS/MSD or Duplicate RPD was high.
- f Presumed contamination from FB or ER.
- g ICP ICS results were unsatisfactory.
- h Holding times were exceeded.
- i Internal standard performance was unsatisfactory.
- k Estimated Maximum Possible Concentration (HRGC/HRMS only)
- LCS/LCSD %R was not within control limits.
- m Result exceeded the calibration range.
- o Cooler temperature or temperature blank was noncompliant and/or sample custody problems.
- p RPD between two columns was high (GC only).
- q MS/MSD recovery was not within control limits.
- s Surrogate recovery was not within control limits.
- t Presumed contamination from trip blank.
- v Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.
- w LCS/LCSD RPD was high.
- y Chemical recovery was not within control limits (Radiochemistry only).

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.

The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for all samples were reported at 10.1°C upon receipt by the laboratory.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

For analytes where average calibration factors were utilized, percent relative standard deviations (%RSD) were less than or equal to 20.0%.

In the case where the laboratory used a calibration curve to evaluate the analytes, all coefficients of determination (r^2) were greater than or equal to 0.990.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all analytes.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all analytes.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (%R) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Analyte	LCS %R (Limits)	LCSD %R (Limits)	Flag	A or P
210823A-LCS/LCSD (ERH1594(SGCU)** ERH1598(SGCU))	Oil (C24-C40)	117 (41-113)	126 (41-113)	NA	-
210823A-LCS/LCSD (ERH1592(SGCU)** ERH1596(SGCU))	Oil (C24-C40)	117 (41-113)	126 (41-113)	J+ (all detects)	Р

Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Target Analyte Quantitation

All target analyte quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XI. Target Analyte Identification

All target analyte identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected or recommended for exclusion in this SDG.

Due to LCS/LCSD %R, data were qualified as estimated in two samples.

Red Hill Bulk Storage Facility, CTO 18F0126 Total Petroleum Hydrocarbons as Extractables - Data Qualification Summary -SDG 97221

Sample	Analyte	Flag	A or P	Reason (Code)
ERH1592(SGCU)** ERH1596(SGCU)	Oil (C24-C40)	J+ (all detects)	Р	Laboratory control samples (%R) (I)

Red Hill Bulk Storage Facility, CTO 18F0126

Total Petroleum Hydrocarbons as Extractables - Laboratory Blank Data Qualification Summary - SDG 97221

No Sample Data Qualified in this SDG

Red Hill Bulk Storage Facility, CTO 18F0126

Total Petroleum Hydrocarbons as Extractables - Field Blank Data Qualification Summary - SDG 97221

No Sample Data Qualified in this SDG

				•		
	Validation Area			Comm	ents	
I.	Sample receipt/Technical holding times		0/	2		
<u>II.</u>	Initial calibration/ICV		10 23	N = 20, ["	ICV.	520
.	Continuing calibration	$-\frac{R}{2}$		<u> </u>	= 20	
IV.	Laboratory Blanks					
V.	Field blanks	<u> </u>				
VI.	Surrogate spikes	SUU				
VII.	Matrix spike/Matrix spike duplicates	N	C's			
∕Ⅲ .	Laboratory control samples	Ju	Lesp			
IX.	Field duplicates	N				
Х.	Target analyte quantitation	4	Not reviewed fo	r Stage 2B validation.		
XI.	Target analyte identification	4	Not reviewed for	r Stage 2B validation.		
XII	Overall assessment of data	<u> </u>				
Indica	N = Not provided/applicable R = I SW = See worksheet FB = ates sample underwent Stage 4 validation	Rinsate Field blank		TB = Trip blank EB = Equipment blan	OTHER:	
Indica	N = Acceptable ND - N = Not provided/applicable R = I SW = See worksheet FB = ates sample underwent Stage 4 validation	Rinsate Field blank		TB = Trip blank EB = Equipment blan	OTHER:	
	N = Acceptable ND = N = Not provided/applicable R = I SW = See worksheet FB = ates sample underwent Stage 4 validation	Rinsate Field blank		TB = Trip blank EB = Equipment blan	OTHER:	Date
ndica	N = Acceptable ND = N = Not provided/applicable R = I SW = See worksheet FB = ates sample underwent Stage 4 validation	Rinsate Field blank		TB = Trip blank EB = Equipment blan Lab ID BA38281**	OTHER: k Matrix Water	Date 08/19/21
ndica + +	N = Acceptable ND - N = Not provided/applicable R = I SW = See worksheet FB = ates sample underwent Stage 4 validation Client ID ERH1592** ERH1594**	Rinsate Field blank		TB = Trip blank EB = Equipment blan Lab ID BA38281** BA38283**	Matrix Water Water	Date 08/19/21 08/19/21
+ + + +	N = Acceptable ND - N = Not provided/applicable R = I SW = See worksheet FB = ates sample underwent Stage 4 validation FB = Client ID ERH1592** ERH1594** ERH1596	Rinsate Field blank		TB = Trip blank EB = Equipment blan BA38281** BA38283** BA38285	Matrix Water Water Water Water	Date 08/19/21 08/19/21 08/19/21
ndic: + + + +	N = Acceptable ND - N = Not provided/applicable R = I SW = See worksheet FB = ates sample underwent Stage 4 validation FB = Client ID ERH1592** ERH1594** ERH1596 ERH1598 ERH1598	Rinsate Field blank		TB = Trip blank EB = Equipment blan BA38281** BA38283** BA38285 BA38287	Matrix Water Water Water Water Water	Date 08/19/21 08/19/21 08/19/21 08/19/21
+ + + +	N = Acceptable ND N = Not provided/applicable R = I SW = See worksheet FB = ates sample underwent Stage 4 validation Client ID ERH1592** ERH1596 ERH1598 ERH1592(SGCU)**	Rinsate Field blank		TB = Trip blank EB = Equipment blan BA38281** BA38283** BA38285 BA38287 BA38281(SGCU)**	Matrix Water Water Water Water Water Water	Date 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21
Indica + + + +	N = Acceptable ND - N = Not provided/applicable R = I SW = See worksheet FB = ates sample underwent Stage 4 validation Client ID ERH1592** ERH1594** ERH1596 ERH1598 ERH1592(SGCU)** ERH1594(SGCU)**	Rinsate Field blank		TB = Trip blank EB = Equipment blan BA38281** BA38283** BA38285 BA38285 BA38287 BA38281(SGCU)**	Matrix Water Water Water Water Water Water Water Water	Date 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21
+ + + +	N = Acceptable ND = N = Not provided/applicable R = I SW = See worksheet FB = ates sample underwent Stage 4 validation Client ID ERH1592** ERH1596 ERH1592(SGCU)** ERH1594(SGCU)**	Rinsate Field blank		TB = Trip blank EB = Equipment blan Lab ID BA38281** BA38283** BA38285 BA38287 BA38281(SGCU)** BA38285(SGCU)	Matrix Water Water Water Water Water Water Water Water Water Water	Date 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21
+ + + +	N = Acceptable ND N = Not provided/applicable R = I SW = See worksheet FB = ates sample underwent Stage 4 validation Client ID ERH1592** ERH1594** ERH1596 ERH1592(SGCU)** ERH1594(SGCU)** ERH1598(SGCU)	Rinsate Field blank		TB = Trip blank EB = Equipment blan Lab ID BA38281** BA38283** BA38285 BA38287 BA38281(SGCU)** BA38285(SGCU) BA38285(SGCU) BA38287(SGCU)	Matrix Water Water Water Water Water Water Water Water Water Water Water	Date 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21
+ + +	N = Acceptable ND - N = Not provided/applicable R = I SW = See worksheet FB = ates sample underwent Stage 4 validation FB = Client ID ERH1592** ERH1594** ERH1596 ERH1598 ERH1594(SGCU)** ERH1596(SGCU) ERH1596(SGCU) ERH1598(SGCU) ERH1598(SGCU)	Rinsate Field blank		TB = Trip blank EB = Equipment blan Lab ID BA38281** BA38283** BA38285 BA38287 BA38281(SGCU)** BA38283(SGCU)** BA38285(SGCU) BA38287(SGCU)	A Matrix Water Water Water Water Water Water Water Water Water Water	Date 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21
1ndic: + + + + + +	N = Acceptable ND = N = Not provided/applicable R = I SW = See worksheet FB = ates sample underwent Stage 4 validation Client ID ERH1592** ERH1594** ERH1596 ERH1592(SGCU)** ERH1594(SGCU)** ERH1598(SGCU) ERH1598(SGCU)	Rinsate Field blank		TB = Trip blank EB = Equipment blan Lab ID BA38281** BA38283** BA38285 BA38287 BA38281(SGCU)** BA38285(SGCU) BA38285(SGCU) BA38287(SGCU)	Matrix Water Water Water Water Water Water Water Water Water Water	Date 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21
1ndica + + + + + 	N = Acceptable ND - N = Not provided/applicable R = I SW = See worksheet FB = ates sample underwent Stage 4 validation Client ID ERH1592** ERH1594** ERH1596 ERH1592(SGCU)** ERH1594(SGCU)** ERH1598(SGCU) ERH1598(SGCU)	Rinsate Field blank		TB = Trip blank EB = Equipment blan Lab ID BA38281** BA38283** BA38285 BA38287 BA38281(SGCU)** BA38285(SGCU) BA38287(SGCU) BA38287(SGCU)	A Matrix Water Water Water Water Water Water Water Water Water Water	Date 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21
Indica + + + + + - - - - - - - - - - - - - -	A = Acceptable ND N = Not provided/applicable R = I SW = See worksheet FB = ates sample underwent Stage 4 validation Client ID ERH1592** ERH1594** ERH1596 ERH1598 ERH1594(SGCU)** ERH1596(SGCU) ERH1598(SGCU)	Rinsate Field blank		TB = Trip blank EB = Equipment blan Lab ID BA38281** BA38283** BA38285 BA38285 BA38287 BA38281(SGCU)** BA38285(SGCU) BA38287(SGCU) BA38287(SGCU)	A Matrix Matrix Water Water Water Water Water Water Water Water Water Water	Date 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21
1 dice + + + + + + + + + + + + + + + + + + +	N = Acceptable ND N = Not provided/applicable R = I SW = See worksheet FB = ates sample underwent Stage 4 validation Client ID ERH1592** ERH1594** ERH1596 ERH1592(SGCU)** ERH1594(SGCU)** ERH1598(SGCU) ERH1598(SGCU) ERH1598(SGCU)	Rinsate Field blank	A 10 2	TB = Trip blank EB = Equipment blan Lab ID BA38281** BA38283** BA38285 BA38287 BA38281(SGCU)** BA38285(SGCU) BA38285(SGCU) BA38287(SGCU)	A Matrix Matrix Water Water Water Water Water Water Water Water Water	Date 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21
1 1 2 3 1 2	N = Acceptable ND N = Not provided/applicable R = I SW = See worksheet FB = ates sample underwent Stage 4 validation Client ID ERH1592** ERH1596 ERH1596 ERH1594(SGCU)** ERH1594(SGCU) ERH1598(SGCU) ERH1598(SGCU)			TB = Trip blank EB = Equipment blan Lab ID BA38281** BA38283** BA38285 BA38287 BA38281(SGCU)** BA38285(SGCU) BA38287(SGCU) BA38287(SGCU)	OTHER: k Matrix Water Uater Uater Water	Date 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21
Indica + + + + + + + + + + + + +	N = A = A C C E plable N = Not provided/applicable SW = See worksheet TB = ates sample underwent Stage 4 validation Client ID ERH1592** ERH1594** ERH1596 ERH1598 ERH1594(SGCU)** ERH1596(SGCU) ERH1598(SGCU) ERH1	Field blank	à'loat /	TB = Trip blank EB = Equipment blan Lab ID BA38281** BA38283** BA38285 BA38285 BA38287 BA38281(SGCU)** BA38285(SGCU) BA38287(SGCU) BA38287(SGCU)	A Matrix Water Water Water Water Water Water Water Water Water	Date 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21
Indica + + + + + + - - - - - - - - - - - - -	A = Acceptable ND - N = Not provided/applicable R = I SW = See worksheet FB = ates sample underwent Stage 4 validation Client ID ERH1592** ERH1594** ERH1596 ERH1598 ERH1598(SGCU)** ERH1598(SGCU) ERH1598(SGCU) ERH1598(SGCU) $A = Acceptable v$ $I0% 23% - BIK S6c 4$	Field blank	Alleak /	TB = Trip blank EB = Equipment blan Lab ID BA38281** BA38283** BA38285 BA38285 BA38287 BA38281(SGCU)** BA38285(SGCU) BA38285(SGCU) BA38287(SGCU)	A Matrix Water Water Water Water Water Water Water Water Water	Date 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21 08/19/21

LDC #: <u>51261W8</u> VALIDATION COMPLETENESS WORKSHEET SDG #: <u>97221</u> Stage 2B/4 Laboratory: <u>APPL, Inc., Clovis, CA</u>

METHOD: GC TPH as Extractables (EPA SW 846 Method 8015B)

Date: <u>///4/</u>/ Page: <u>/</u>of__/ Reviewer: <u>//</u> 2nd Reviewer: <u>///</u>

	/	
Method:	<u></u> GC	HPLC

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	/			
Was cooler temperature criteria met?				
IIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) < 20%?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990 ?	/			
Were the RT windows properly established?	/			
IIb. Initial calibration verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/			
Were all percent differences (%D) <u><</u> 20%?	-	_		
III. Continuing calibration				
Was a continuing calibration analyzed daily?	/			
Were all percent differences (%D) <u><</u> 20%?	/			
Were all the retention times within the acceptance windows?				
IV. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	/			
Was a laboratory blank analyzed for each matrix and concentration?	/			
Was there contamination in the laboratory blanks?			-	
V. Field Blanks				······
Were field blanks identified in this SDG?		_		
Were target compounds detected in the field blanks?			/	
VI. Surrogate spikes		~		r
Were all surrogate percent recovery (%R) within the QC limits?				
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?			-	
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?	<u> </u>			
VII. Matrix spike/Matrix spike duplicates	······			p
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?	ļ		/	
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?			/	f
VIII. Laboratory control samples			·	p
Was an LCS analyzed per analytical or extraction batch?			<u> </u>	
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				

				T
IX. Field duplicates	_	····-		
Were field duplicate pairs identified in this SDG?	<u> </u>	/		
Were target compounds detected in the field duplicates?			/	
X. Target analyte quantitation			-	
Did the laboratory LOQs/RLs meet the QAPP LOQs/RLs?				
Wereanalyte quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XI. Target analyte identification				
Were the retention times of reported detects within the RT windows?	\square			
XIII. Overall assessment of data		/		
Overall assessment of data was found to be acceptable.				

LDC #: 5/26/W8

VALIDATION FINDINDS WORKSHEET

Surrogate Recovery

(s)

METHOD: HPLC GC

Are surrogates required by the method? Yes____ or No____. Rease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". $\frac{V}{N}$ N/A Were surrogates spiked into all samples and blanks? $\frac{V}{N}$ N/A Did all surrogate recoveries (%R) meet the QC limits?

	Y		_					<u> </u>	the state of the s		
#	Sample ID		Detec Colu	tor/ mn	Surrogate Compound		%R (Limits	5)		Q	ualifications
	2108234-				G		144 (60-	-142 1 17	15/	ρ
	BIK						() / (<u>v</u> .			
	Pin										
		l					<u> </u>		<u> </u>		
<u> </u>							()		
							()		
							()		
							()		
							()		
							()		
						T	(<u> </u>		
┣───	I										
<u> </u>											
						<u> </u>)		
			_				()		
							()		
	ļ			_)		
<u> </u>							()		
							()		
							()		
— —							()		
							()		
	Eurogata Compo	nd	_	Surrog	to Compound		Surrogate Compound	Γ	Surrogate Compound		
┣━━	Surrogate Compo	Suna		Surroya				<u> </u>	Surroyate Compound		==
<u> </u>	Chlorobenzene (CB	3Z)	G	00	ctacosane	M	Benzo(e)Pyrene	S	1-Chloro-3-Nitrobenzene	<u> </u>	Tetrachloro-m- xylene
<u> </u>	4-Bromofluorobenzene	(BFB)	<u>H</u>	Orth	o-Terphenyl	<u>N</u>	Terphenyl-D14	T	3,4-Dinitrotoluene	Z	2-Bromonaphthalene
<u> </u>	a,a,a-Trifluorotoluer	ne		Fluoro	benzene (FBZ)	0	Decachlorobiphenyl (DCB)	U			Chloro-octadecane
	Bromochlorobenen	ne	J	<u>n-1</u>	riacontane		1-methylnaphthalene V Tri-n-propyltin			BB	2,4-Dichlorophenylacetic acid
╟╌╧	1,4-Dichlorobutane		<u> </u>	<u>He</u>			A Nitrephenel		Tripbond Phosphate		2,5-Dibromotoluene
	Bromochlorobenen 1,4-Dichlorobutane		 	n-1 He		P Q	1-methylnaphthalene Dichlorophenyl Acetic Acid (DCAA)	v v	Tri-n-propyltin Tributyl Phosphate	BB CC	2,4-Dichlorophenylacetic acid 2,5-Dibromotoluene

LDC #: 5/26/W8

VALIDATION FINDINGS WORKSHEET Laboratory Control Samples (LCS)

(0)

METHOD: ___GC __ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". <u>Y N/A</u> <u>Y N/A</u> Were a laboratory control samples (LCS) and laboratory control sample duplicate (LCSD) analyzed for each matrix in this SDG? Were the LCS percent recoveries (%R) and relative percent differences (RPD) within the QC limits?

/Level Ⅳ/D Only

Y/N N/A Was an LCS analyzed every 20 samples for each matrix or whenever a sample extraction was performed?

	1								-		
#	LCS/LCSD ID	Compound	LCS %R (Limits)		L %R	CSD (Limits)		RPD (Limits)		Associated Samples	Qualifications
			()		()	() [9-78, \	
	210823A	01 (c24-cup)	117 (41-1	<u>13)</u>	.120	(41-112))	()	210823A - BIK/	St dut /r
	LOSID		()		()	()		+5.7 Det
			()		()	()		
			()		()	()		
			()		()	()		
			()		()	()		
			()		(λ		Д		
			()		()	())		
			()		()	())		
			()		()	())		
			()		()	())		
			()		()	())		
			()		()	())		
			()		()	())		
)		.(()	Ц		
			()		()	())		
			()		()	())		
			()		()	())	-	
			()		()	())		
			()		()	())		
			()		()	())		
			((\mathbf{y}	()			

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Where:

Page: __1__ of _1___ Reviewer: ____FT___

METHOD: GC X HPLC

The calibration factors (CF), average CF, and relative standard deviation (%RSD) were recalculated for compounds identified below using the following calculations:

CF = A/C average CF = sum of the CF/number of standards %RSD = 100 * (S/X) A = Area of compound C = Concentration of compound S = Standard deviation of calibration factors

X = Mean of calibration factors

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration				Average CF	Average CF	%RSD	%RSD
#	Standard ID	Date	Compound	(std=250ppb)	(std=250ppb)	(Initial)	(Initial)		
1	ICAL	8/30/2021	Diesel C10-C24)	1954573	1954573	2019597	2019597	2.7	2.7
	Apollo								

LDC #:______S126/W&

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: 1_of 1_____ Reviewer: <u>FT</u>______

METHOD: GC ______HPLC _____

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. CF -CF)/ave.CF

Where: ave. CF = initial calibration average CF

CF = continuing calibration CF

A = Area of compound

C = Concentration of compound

	Standard	Calibration			Reported	Recalculated	Reported	Recalculated
#	ID	Date	Compound	Average CF(ICAL)/ CCV Conc.	CF/ Conc. CCV	CF/ Conc. CCV	%D	%D
1	Cev 830 1091	9/1/2)	Diesel C10-CZ4	2019597	2201840	2201840	9.0	٩.७
	·		·······					
2	cev 903010	9 321	×	V	2069420	2069420	٦.٢	2.5
3	CCV 916113	9/12/2)	JJ	↓	2117110	2117110	4.8	4-7
4								. <u></u>
Com	ments: Refer to	Continuing Calil	bration findings worksheet	for list of qualifications a	nd associated sam	oles when reported	results do not agr	ee within 10.0% of
the re	ecalculated resu	lts.						

VALIDATION FINDINGS WORKSHEET **Surrogate Results Verification**

METHOD: ____GC ___ HPLC

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

#1 Sample ID:

Sample ID:# /						
Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
octacosane		152.0	127.005	84.7	84.7	0
0-terphenenly		L	98.942	66·U	66.0	υ

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	

	Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound
A	Chlorobenzene (CBZ)	G	Octacosane	м	Benzo(e)Pyrene	s	1-Chloro-3-Nitrobenzene	Y	Tetrachloro-m- xylene
в	4-Bromofluorobenzene (BFB)	Н	Ortho-Terphenyl	N	Terphenyl-D14	т	3,4-Dinitrotoluene	z	2-Bromonaphthalene
C,	a,a,a-Trifluorotoluene	Ι	Fluorobenzene (FBZ)	0	Decachlorobiphenyl (DCB)	U	Tripentyltin	AA	Chloro-octadecane
D	Bromochlorobenene	J	n-Triacontane	Р	1-methylnaphthalene	V	Tri-n-propyltin	BB	2,4-Dichlorophenylacetic acid
Ε	1,4-Dichlorobutane	к	Hexacosane	Q	Dichlorophenyl Acetic Acid (DCAA)	w	Tributyl Phosphate	cc	2,5-Dibromotoluene
F	1,4-Difluorobenzene (DFB)	L	Bromobenzene	R	4-Nitrophenol	x	Triphenyl Phosphate		

LDC #: 5/26/WX

VALIDATION FINDINGS WORKSHEET

Page: 1 of 1

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification Reviewer: FT

METHOD: ____GC ___HPLC

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

%Recovery = 100 * (SSC/SA) RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100 Where SSC = Spiked sample concentration

LCS = Laboratory Control Sample

SA = Spike added LCSD = Laboratory Control Sample duplicate

LCS/LCSD samples: 210823 LCS IP

	S	pike	Spike Sample		LC	s	LC	SD	LCS/	LCSD
Compound			Conce		Percent F	Recovery	Percent F	Recovery	RI	PD
	LCS	LCSD	LCS	LCSD	Reported Recalc.		Reported Recalc.		Reported	Recalc.
Diesel Clo-C24	2000	2000	2090	2030	105	105	102	102	2.9	2.9
								•		
	, , , , , , , , , , , , , , , , , , , ,									
Comments: <u>Refer to Laboratory</u>	Control Samp	ble/Laboratory (Control Sample	e Duplicate find	ings workshee	t for list of qual	ifications and a	ssociated sam	ples when repo	rted results do

[/] N/A

VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

Page:	1	_of_	1
Reviewer:		FT	

LDC #: <u>\$/26</u>/WX METHOD: <u>GC</u>HPLC

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds within 10% of the reported results?

Concentration= (A)(Fv)(Df)	Example:				
(RF)(Vs or Ws)(%S/100)	Sample ID.	#2_	Compound Name	Diesel (c10-c24)	
A= Area or height of the compound to be measured Fv= Final Volume of extract					
RF= Average response factor of the compound	Concentration =		2771603993 (5) (100)	=
In the initial calibration Vs= Initial volume of the sample Ws= Initial weight of the sample %S= Percent Solid			2019597(2)((040)	

#	Sample ID	Compound	Reported Concentrations (<u>ug</u> /)	Recalculated Results Concentrations	Qualifications
	#2.	Diesel (CID-CZY)	3300	3298.9	
		/			

Comments: _____

Red Hill Bulk Storage Facility, CTO 18F0126 - SDG 97221 LDC 51261

AECOM

		• • •									
EPA_NO LAB_ID DF	ANALYTE	COLL_DATE	ANAL_DATE	QCLev	RESULT	UNITS	LAB_Q	LOQ	LOD	REV	Q_C
METHOD: 80)15B_E										
ERH1592 BA38281 1 C10-C24	4 DIESEL RANGE ORGANICS	8/19/2021 10:15:00 AM	9/3/2021 5:47:00 PM	4	230	UG/L	J	320	300.0	J	
ERH1592 BA38281 1 C10-C24	4 DIESEL RANGE ORGANICS	8/19/2021 10:15:00 AM	9/19/2021 12:19:00 AM	4	300.0	UG/L	U	320	300.0	U	
ERH1592 BA38281 1 C24-C4	0 TOTAL PETROLEUM HYDROCARBONS, OI	8/19/2021 10:15:00 AM	9/19/2021 12:19:00 AM	4	190	UG/L	JD	320	300.0	J+	1
ERH1592 BA38281 1 C24-C4	0 TOTAL PETROLEUM HYDROCARBONS, OI	8/19/2021 10:15:00 AM	9/3/2021 5:47:00 PM	4	310	UG/L	J	320	300.0	J	
ERH1594 BA38283 1 C10-C24	4 DIESEL RANGE ORGANICS	8/19/2021 11:40:00 AM	9/19/2021 12:47:00 AM	4	340	UG/L	D	320	300.0		
ERH1594 BA38283 1 C10-C24	4 DIESEL RANGE ORGANICS	8/19/2021 11:40:00 AM	9/3/2021 6:15:00 PM	4	3300	UG/L		320	300.0		
ERH1594 BA38283 1 C24-C4	0 TOTAL PETROLEUM HYDROCARBONS, OI	8/19/2021 11:40:00 AM	9/19/2021 12:47:00 AM	4	300.0	UG/L	U	320	300.0	U	
ERH1594 BA38283 1 C24-C40	0 TOTAL PETROLEUM HYDROCARBONS, OI	8/19/2021 11:40:00 AM	9/3/2021 6:15:00 PM	4	470	UG/L		320	300.0		
ERH1596 BA38285 1 C10-C24	4 DIESEL RANGE ORGANICS	8/19/2021 12:40:00 PM	9/3/2021 6:43:00 PM	3	270	UG/L	J	320	300.0	J	
ERH1596 BA38285 1 C10-C24	4 DIESEL RANGE ORGANICS	8/19/2021 12:40:00 PM	9/19/2021 1:16:00 AM	3	300.0	UG/L	U	320	300.0	U	
ERH1596 BA38285 1 C24-C4	0 TOTAL PETROLEUM HYDROCARBONS, OI	8/19/2021 12:40:00 PM	9/19/2021 1:16:00 AM	3	190	UG/L	JD	320	300.0	J+	1
ERH1596 BA38285 1 C24-C4	0 TOTAL PETROLEUM HYDROCARBONS, OI	8/19/2021 12:40:00 PM	9/3/2021 6:43:00 PM	3	520	UG/L		320	300.0		
ERH1598 BA38287 1 C10-C24	4 DIESEL RANGE ORGANICS	8/19/2021 8:50:00 AM	9/19/2021 1:44:00 AM	3	300.0	UG/L	U	320	300.0	U	
ERH1598 BA38287 1 C10-C24	4 DIESEL RANGE ORGANICS	8/19/2021 8:50:00 AM	9/3/2021 7:12:00 PM	3	300.0	UG/L	U	320	300.0	U	
ERH1598 BA38287 1 C24-C4	0 TOTAL PETROLEUM HYDROCARBONS, OI	8/19/2021 8:50:00 AM	9/19/2021 1:44:00 AM	3	300.0	UG/L	U	320	300.0	U	
ERH1598 BA38287 1 C24-C4	0 TOTAL PETROLEUM HYDROCARBONS, OI	8/19/2021 8:50:00 AM	9/3/2021 7:12:00 PM	3	320	UG/L		320	300.0		
METHOD: 82	260B										
ERH1591 BA38280 1 BENZE	NE	8/19/2021 9:58:00 AM	8/27/2021 3:42:00 PM	3	0.30	UG/L	U	1.0	0.30	U	
ERH1591 BA38280 1 ETHYL	BENZENE	8/19/2021 9:58:00 AM	8/27/2021 3:42:00 PM	3	0.50	UG/L	U	1.0	0.50	U	
ERH1591 BA38280 1 PETRO	LEUM HYDROCARBONS C6-C10	8/19/2021 9:58:00 AM	8/27/2021 3:43:00 PM	3	18.0	UG/L	U	20	18.0	U	
ERH1591 BA38280 1 TOLUE	NE	8/19/2021 9:58:00 AM	8/27/2021 3:42:00 PM	3	0.30	UG/L	U	1.0	0.30	U	
ERH1591 BA38280 1 Xylenes		8/19/2021 9:58:00 AM	8/27/2021 3:42:00 PM	3	0.30	UG/L	U	2.0	0.30	U	
ERH1592 BA38281 1 BENZE	NE	8/19/2021 10:15:00 AM	8/27/2021 4:10:00 PM	4	0.30	UG/L	U	1.0	0.30	U	
ERH1592 BA38281 1 ETHYL	BENZENE	8/19/2021 10:15:00 AM	8/27/2021 4:10:00 PM	4	0.50	UG/L	U	1.0	0.50	U	
ERH1592 BA38281 1 PETRO	LEUM HYDROCARBONS C6-C10	8/19/2021 10:15:00 AM	8/27/2021 4:11:00 PM	4	18.0	UG/L	U	20	18.0	U	

EPA_NO	LAB_ID DF	ANALYTE	COLL_DATE	ANAL_DATE	QCLev	RESULT	UNITS	LAB_Q	LOQ	LOD	REV	Q_C
	METHOD: 8260	В										
ERH1592 E	3A38281 1 TOLUENE		8/19/2021 10:15:00 AM8	/27/2021 4:10:00 PM	4	0.30	UG/L	U	1.0	0.30	U	
ERH1592 E	3A38281 1 Xylenes		8/19/2021 10:15:00 AM 8	/27/2021 4:10:00 PM	4	0.30	UG/L	U	2.0	0.30	U	
ERH1593 E	BA38282 1 BENZENE		8/19/2021 11:25:00 AM8	/27/2021 4:38:00 PM	3	0.30	UG/L	U	1.0	0.30	U	
ERH1593 E	A38282 1 ETHYLBEN	IZENE	8/19/2021 11:25:00 AM8	/27/2021 4:38:00 PM	3	0.50	UG/L	U	1.0	0.50	U	
ERH1593 E	A38282 1 PETROLEU	M HYDROCARBONS C6-C10	8/19/2021 11:25:00 AM 8	/27/2021 4:37:00 PM	3	18.0	UG/L	U	20	18.0	U	
ERH1593 E	A38282 1 TOLUENE		8/19/2021 11:25:00 AM 8	/27/2021 4:38:00 PM	3	0.30	UG/L	U	1.0	0.30	U	
ERH1593 E	3A38282 1 Xylenes		8/19/2021 11:25:00 AM 8	/27/2021 4:38:00 PM	3	0.30	UG/L	U	2.0	0.30	U	
ERH1594 E	A38283 1 BENZENE		8/19/2021 11:40:00 AM 8	/27/2021 5:05:00 PM	4	0.30	UG/L	U	1.0	0.30	U	
ERH1594 E	3A38283 1 ETHYLBEN	VZENE	8/19/2021 11:40:00 AM 8	/27/2021 5:05:00 PM	4	0.50	UG/L	U	1.0	0.50	U	
ERH1594 E	A38283 1 PETROLEU	M HYDROCARBONS C6-C10	8/19/2021 11:40:00 AM8	/27/2021 5:06:00 PM	4	85	UG/L	G3	20	18.0		
ERH1594 E	A38283 1 TOLUENE		8/19/2021 11:40:00 AM8	/27/2021 5:05:00 PM	4	0.30	UG/L	U	1.0	0.30	U	
ERH1594 E	3A38283 1 Xylenes		8/19/2021 11:40:00 AM8	/27/2021 5:05:00 PM	4	0.30	UG/L	U	2.0	0.30	U	
ERH1595 E	A38284 1 BENZENE		8/19/2021 12:25:00 PM 8	/27/2021 5:33:00 PM	3	0.30	UG/L	U	1.0	0.30	U	
ERH1595 E	3A38284 1 ETHYLBEN	VZENE	8/19/2021 12:25:00 PM 8	/27/2021 5:33:00 PM	3	0.50	UG/L	U	1.0	0.50	U	
ERH1595 E	A38284 1 PETROLEU	M HYDROCARBONS C6-C10	8/19/2021 12:25:00 PM 8	/27/2021 5:34:00 PM	3	18.0	UG/L	U	20	18.0	U	
ERH1595 E	A38284 1 TOLUENE		8/19/2021 12:25:00 PM 8	/27/2021 5:33:00 PM	3	0.30	UG/L	U	1.0	0.30	U	
ERH1595 E	3A38284 1 Xylenes		8/19/2021 12:25:00 PM 8	/27/2021 5:33:00 PM	3	0.30	UG/L	U	2.0	0.30	U	
ERH1596 E	A38285 1 BENZENE		8/19/2021 12:40:00 PM 8	/27/2021 6:01:00 PM	3	0.30	UG/L	U	1.0	0.30	U	
ERH1596 E	3A38285 1 ETHYLBEN	ZENE	8/19/2021 12:40:00 PM 8	/27/2021 6:01:00 PM	3	0.50	UG/L	U	1.0	0.50	U	
ERH1596 E	A38285 1 PETROLEU	M HYDROCARBONS C6-C10	8/19/2021 12:40:00 PM 8	/27/2021 6:02:00 PM	3	18.0	UG/L	U	20	18.0	U	
ERH1596 E	A38285 1 TOLUENE		8/19/2021 12:40:00 PM 8	/27/2021 6:01:00 PM	3	0.30	UG/L	U	1.0	0.30	U	
ERH1596 E	3A38285 1 Xylenes		8/19/2021 12:40:00 PM 8	/27/2021 6:01:00 PM	3	0.30	UG/L	U	2.0	0.30	U	
ERH1597 E	A38286 1 BENZENE		8/19/2021 8:45:00 AM 8	/27/2021 6:29:00 PM	3	0.30	UG/L	U	1.0	0.30	U	
ERH1597 E	3A38286 1 ETHYLBEN	IZENE	8/19/2021 8:45:00 AM 8	/27/2021 6:29:00 PM	3	0.50	UG/L	U	1.0	0.50	U	
ERH1597 E	A38286 1 PETROLEU	M HYDROCARBONS C6-C10	8/19/2021 8:45:00 AM 8	/27/2021 6:30:00 PM	3	18.0	UG/L	U	20	18.0	U	
ERH1597 E	A38286 1 TOLUENE		8/19/2021 8:45:00 AM 8	/27/2021 6:29:00 PM	3	0.30	UG/L	U	1.0	0.30	U	
ERH1597 E	3A38286 1 Xylenes		8/19/2021 8:45:00 AM 8	/27/2021 6:29:00 PM	3	0.30	UG/L	U	2.0	0.30	U	

EPA_NO	LAB_ID DF	ANALYTE	COLL_DATE	ANAL_DATE	QCLev	RESULT	UNITS	LAB_Q	LOQ	LOD	REV	Q_C
	METHOD:	8260B										
ERH1598 E	BA38287 1 BEN	NZENE	8/19/2021 8:50:00 AM 8	8/27/2021 6:58:00 PM	3	0.30	UG/L	U	1.0	0.30	U	
ERH1598 B	BA38287 1 ETH	IYLBENZENE	8/19/2021 8:50:00 AM 8	3/27/2021 6:58:00 PM	3	0.50	UG/L	U	1.0	0.50	U	
ERH1598 E	BA38287 1 PET	ROLEUM HYDROCARBONS C6-C10	8/19/2021 8:50:00 AM 8	8/27/2021 6:57:00 PM	3	18.0	UG/L	U	20	18.0	U	
ERH1598 E	BA38287 1 TOI	LUENE	8/19/2021 8:50:00 AM 8	8/27/2021 6:58:00 PM	3	0.30	UG/L	U	1.0	0.30	U	
ERH1598 B	BA38287 1 Xyle	enes	8/19/2021 8:50:00 AM 8	8/27/2021 6:58:00 PM	3	0.30	UG/L	U	2.0	0.30	U	
	METHOD:	8270DSIM										
ERH1592 B	BA38281 1 1-M	ETHYLNAPHTHALENE	8/19/2021 10:15:00 AM8	8/27/2021 12:40:00 PM	4	0.19	UG/L	J	0.2	0.10	J	
ERH1592 B	BA38281 1 2-M	ETHYLNAPHTHALENE	8/19/2021 10:15:00 AM8	3/27/2021 12:40:00 PM	4	0.089	UG/L	J	0.2	0.10	J	
ERH1592 B	8A38281 1 NAI	PHTHALENE	8/19/2021 10:15:00 AM8	3/27/2021 12:40:00 PM	4	0.10	UG/L	U	0.2	0.10	U	
ERH1594 B	BA38283 2 1-M	ETHYLNAPHTHALENE	8/19/2021 11:40:00 AM	3/27/2021 1:03:00 PM	4	53	UG/L		0.4	0.20		
ERH1594 B	BA38283 2 2-M	ETHYLNAPHTHALENE	8/19/2021 11:40:00 AM	3/27/2021 1:03:00 PM	4	49	UG/L		0.4	0.20		
ERH1594 B	8A38283 2 NAI	PHTHALENE	8/19/2021 11:40:00 AM	3/27/2021 1:03:00 PM	4	110	UG/L		0.4	0.20		
ERH1596 B	BA38285 1 1-M	ETHYLNAPHTHALENE	8/19/2021 12:40:00 PM 8	8/27/2021 1:25:00 PM	3	0.10	UG/L	U	0.2	0.10	U	
ERH1596 B	BA38285 1 2-M	ETHYLNAPHTHALENE	8/19/2021 12:40:00 PM §	3/27/2021 1:25:00 PM	3	0.10	UG/L	U	0.2	0.10	U	
ERH1596 B	BA38285 1 NAI	PHTHALENE	8/19/2021 12:40:00 PM §	8/27/2021 1:25:00 PM	3	0.10	UG/L	U	0.2	0.10	U	
ERH1598 E	BA38287 1 1-M	ETHYLNAPHTHALENE	8/19/2021 8:50:00 AM 8	8/27/2021 1:47:00 PM	3	0.10	UG/L	U	0.2	0.10	U	
ERH1598 E	BA38287 1 2-M	ETHYLNAPHTHALENE	8/19/2021 8:50:00 AM 8	8/27/2021 1:47:00 PM	3	0.10	UG/L	U	0.2	0.10	U	
ERH1598 B	BA38287 1 NA	PHTHALENE	8/19/2021 8:50:00 AM 8	8/27/2021 1:47:00 PM	3	0.10	UG/L	U	0.2	0.10	U	