- For temperatures below 50°F (later versions use the new wind chill formula result here (calculate the wind chill increment using the difference between the air temperature and wind chill)):
 - For the earlier display console versions and WeatherLink version 5.0 or 5.1: use the wind chill calculation as the base temperature.
 - For the WeatherLink software (versions 5.2 through 5.5.1): use the new heat index formula (as described in the heat index section) as the base temperature and calculate the wind chill increment using the difference between the air temperature and wind chill (which is always a negative number).

The resulting value is the wind term, which will be added to the humidity term and subsequently the sun term as indicated below.

Note: The WeatherLink software (version 5.2 through 5.5.1) offers a variable does not include the sun term in its calculation. It shows the result as the "THW Index" or Temperature-Humidity-Wind Index. This value indicates the "apparent" temperature in the shade due to these factors.

SUN FACTOR

The third term is sun. This term, Qg, is actually a combination of four terms (direct incoming solar, indirect incoming solar, terrestrial, and sky radiation). The term depends upon wind speed to determine how strong an effect it is. The value is limited to between -20 and +130 W/m² in the Vantage Pro2 console firmware and WeatherLink software versions 5.6 or later.

REFERENCES

Steadman, R.G., 1979: The Assessment of Sultriness, Part II: Effects of Wind, Extra Radiation and Barometric Pressure on Apparent Temperature. *Journal of Applied Meteorology, July* 1979.

"Media Guide to NWS Products and Services", National Weather Service Forecast Office, Monterey, CA, 1995.

Quayle, R.G. and Steadman, R.G., 1998: The Steadman Wind Chill: An Improvement over Present Scales. Weather and Forecasting, December 1998

BAROMETRIC PRESSURE

What is it:

The weight of the air that makes up our atmosphere exerts a pressure on the surface of the earth. This pressure is known as atmospheric pressure. Generally, the more air above an area, the higher the atmospheric pressure, this, in turn, means that atmospheric pressure changes with altitude. For example, atmospheric pressure is greater at sea-level than on a mountaintop. To compensate for this difference and facilitate comparison between locations with different altitudes, atmospheric pressure is generally adjusted to the equivalent sea-level pressure. This adjusted pressure is known as barometric pressure. In reality, the Vantage Pro and Vantage Pro2 measures atmospheric pressure. When entering the location's altitude in Setup Mode, the Vantage Pro and Vantage Pro2 calculates the necessary correction factor to consistently translate atmospheric pressure into barometric pressure.

Barometric pressure also changes with local weather conditions, making barometric pressure an extremely important and useful weather forecasting tool. High pressure zones are generally associated with fair weather while low pressure zones are generally associated with poor weather. For forecasting purposes, however, the absolute barometric pressure value is generally less important than the change in barometric pressure. In general, rising pressure indicates improving weather conditions while falling pressure indicates deteriorating weather conditions.

The following section applies to Vantage Pro and Vantage Pro2 systems only:

Parameters Used: Outside Air Temperature, Outside Humidity, Elevation, Atmospheric Pressure

Formula: Simply,

 $P_{\rm SL}=P_{\rm S}\star(R),$

where P_{SL} is sea level pressure, P_S is the unadjusted reading sensed by the Davis barometer, and R is the reduction ratio, which is determined as follows:

First, *Tv* (virtual temperature in the "fictitious column of air" extending down to sea-level) can be determined as follows. The result is in degrees Rankine, which is similar to Kelvin except it uses a Fahrenheit scale divisions rather than Celsius scale divisions:

Tv = T + 460 + L + C,

where T is the average between the current outdoor temperature and the temperature 12 hours ago (in Fahrenheit) in whole degrees. *L* is the typical lapse rate, or decrease in temperature with height (of the "fictitious column of air"), as calculated by:

L = 11 Z/8000,

where L is a constant value with units in °F. Z is elevation, which must be entered in feet.

The current dewpoint value and the station elevation are necessary to compute C. C is the correction for the humidity in the "fictitious column of air". It is determined from a lookup table (provided in the attached table). The table consists of dewpoints in °F every 4°F and elevations

in feet every 1500 feet. Linear interpolation is performed to obtain the correct reduced pressure value. For dewpoints below -76° F, C = 0; for dewpoints above 92°F, a dewpoint of 92°F is assumed.

Now, Tv can be determined. From this, the following can be computed:

Exponent = [Z/(122.8943111*Tv)]

Once this exponent is computed, R can be computed from the following:

 $R = 10^{[Exponent]}$.

Thus, $P_{SL} = P_S * (R)$ can be calculated. Pressure can be in any units (*R* is dimensionless) and still yield the correct value.

This procedure is designed to produce the correct reduced sea-level pressure as displayed. This requires the user to know their elevation to at least ± 10 feet to be accurate to every .01" Hg or ± 3 feet to be accurate to every 0.1 mb/hPa.

This is a simplified version of the official U.S. version in place now. The accepted method is to use lookup tables of ratio reduction values keyed to station temperature. These are based on station climatology. These values are unavailable for every possible location where a Davis user may have a station, thus this approach is not suitable.

It should be noted that if a sensor's pressure readings require adjustment, the user can adjust either the uncorrected or the final reading to match the user's reference, as appropriate. If the user chooses to measure uncorrected atmospheric pressure or use another reduction method, they should set their elevation to zero. Subsequently, output data using the VantageLink can be read by or exported to another application and converted as desired.

The calibration of the sensor is a separate one time function performed on the unit during the manufacturing process. It is a completely independent operation from the calculation the Vantage Pro and Vantage Pro2 console makes to display a reading corrected to sea-level. The calibration is done to ensure the sensor reads uncorrected or raw atmospheric pressure (not barometric pressure) properly. Any properly functioning unit will read the uncorrected atmospheric pressure within specifications. However, limits in the displayable range of the bar value may prevent the user from setting an incorrect elevation for their location. That is, a user at sea-level, may see a dashed reading if they set their unit to 5000' elevation or vice-versa. So, the best way to tell if a unit is functioning properly, is:

- use a reference that has been adjusted to indicate sea-level pressure and setting the Vantage Pro and Vantage Pro2 console to the proper elevation or
- use a reference that is reading the raw, uncorrected atmospheric pressure and set the Vantage Pro and Vantage Pro2 console elevation to zero

and verify that these readings are comparable.

ALTIMETER SETTING and CWOP APRS

The CWOP program in NOAA prefers to receive altimeter setting data rather than barometric pressure. This feature in WeatherLink 5.7 automatically calculates the correct altimeter setting using the user-specified elevation. Monitor II and Perception II users should set their

barometer reading to match the altimeter setting of the nearest National Weather Service (NWS) weather station. Simply enter your zip code on the NWS home page to get the nearest observation. This is usually found at the "2 Day History" (detailed observation section) link under Current Conditions section. <u>http://www.nws.noaa.gov/</u>. For users outside the United States, contact your country's national meteorological service.

Altimeter Formula, A:

 $A = (P^N + K^*Z)^{(1/N)}$, where P is the raw station pressure (in. Hg), N = 0.1903, K = 1.313E -5, Z is elevation (feet).

REFERENCE

"Smithsonian Meteorological Tables". Smithsonian Institution Press, Washington, DC, 4th Ed. 1968.

"Federal Standard Algorithms for Automated Weather Observing Systems used for Aviation Purposes". Office of the Federal Coordinator for Meteorological Services and Supporting Research, Washington, DC, 1988 RAINFALL

RAINFALL TOTAL

Unlike previous Davis systems, the Vantage Pro and Vantage Pro2 comes with only one type of rain collector. It is equipped with a 0.01" rain collector. All Vantage Pro and Vantage Pro2s physically measure in increments of 0.01 in. The system has a prevision for other types should they be added in the future.

The Vantage Pro and Vantage Pro2 is pre-configured for this type of rain collector. In the series of "Setup Screens", there is one for "Rain Collector". Simply press the DONE key to move to the next screen. By default, it should be set to ".01" Rain Collector". If it isn't, use the "+" and "-" arrow keys to select this type.

The rain display's units may be changed from inches to millimeters by pressing 2ND, then the UNITS key while in "Current Screen" mode with one of the rain fields selected. If millimeters is displayed, the console converts from inches to mm. If display millimeters is displayed, the counter will occasionally skip a reading due to rounding.

RAINFALL RATE

Parameters Used: Rain Total (actually, rain rate is a measured variable in the sense that it is measured by the ISS and transmitted to the display console, whereas all other calculated variables are determined by the console from data received from the ISS.)

Formula:

Under normal conditions, rain rate data is sent with a nominal interval of 10 to 12 seconds. Every time a rain tip or click occurs, a new rain rate value is computed (from the timer values) and the rate timers are reset to zero.

Rain rate is calculated based on the time between successive tips of the rain collector. The rain rate value is the highest rate since the last transmitted rain rate data packet. (Under most conditions, however, a rain tip will not occur every 10 to 12 seconds.)

If there have been no rain tips since the last rain rate data transmission, then the rain rate based on the time since that last tip is indicated. This results in slowly decaying rate values as a rain storm ends, instead of showing a rain rate which abruptly drops to zero. This results in a more realistic representation of the actual rain event.

If this time exceeds roughly 15 minutes, than the rain rate value is reset to zero. This period of time was chosen because 15 minutes is defined by the U.S. National Weather Service as intervening time upon which one rain "event" is considered separate from another rain "event". This is also the shortest period of time that the Umbrella will be seen on the display console after the onset of rain.

REFERENCES

"Surface Weather Observations and Reports ". Office of the Federal Coordinator for Meteorological Services and Supporting Research, Washington, DC, 1998

Parameters Used: Latitude, Longitude, Time and Date, Time Zone, Daylight Savings Time Setting

Sufficient accuracy is obtained from the following formula for *i*, the phase angle:

 $i = 180^{\circ} - D - 6.289^{\circ} \sin M' + 2.1^{\circ} \sin M - 1.274^{\circ} \sin (2D - M) - 0.658^{\circ} \sin 2D$

where

- *D* is the mean elongation of the moon (the maximum angular distance between the earth and the moon)
- *M*' is the moon's mean anomaly (angular distance, measured from where the moon is closest to the earth in its orbit, if it moved around the earth at a constant angular velocity)
- *M* is the sun's mean anomaly (angular distance, measured from where the earth is closest to the sun in its orbit, if it moved around the earth at a constant angular velocity)

and the terms in the equation provide increasing amounts of mean accuracy to calculate the phase angle as follows (hr:min):

- *D* = 20:57
- 6.289° sin M' = 8:35
- 2.1° sin M = 4:26
- 1.274° sin (2D M') = 1:56
- 0.658° sin 2D = 0:38

Note: these equations assume that the sun and moon both revolve around the earth, for simplicity. However, when addressing the positions in orbit, it is actually the earth revolving around the sun, so this should be understood when trying to understand the physical meaning described in the definitions.

The equations for *D*, *M*' and *M* are as follows:

D = 297.8501921 + 12.19074911*days M' = 134.9633964 + 13.06499295*days M = 357.52911 + 0.985600281*days,

Where *days* (in days and fractions of days) is the number of days since Jan 1st, 2000 at 12:00 UTC

Local time needs to be converted to UTC in order to be used in the formulas:

UTC = Local Time - Time Zone Offset (including adding one hour for daylight savings if and when in use)

The phase angle is modified so that it can be used to determine whether the moon is waxing (illuminated portion increasing in size) or waning (decreasing in size):

If $i \ge 180^\circ$, then k = 1 - (k / 2)

Now, the phase angle can be used to determine which phase the moon is in:

i = (i * 8) + 0.5

The result is interpreted as follows:

0 = New Moon, 1 = Waxing Crescent, 2 = First Quarter, 3 = Waxing Gibbous, 4 = Full Moon, 5 = Waning Gibbous, 6 = Last Quarter, 7 = Waning Crescent

WEATHERLINK BULLETIN GRAPHIC

k is the fraction of the moon's disk that is illuminated. It is used to draw the moon phase icon in the Bulletin.

 $k = (1 + \cos i)/2$

k is a number between zero and one that indicates how much of the moon's disk should be drawn as lit. It indicates the "terminator's" (boundary between light and dark face) position on the observed face of the moon.

k can also be interpreted as listed below 0.00 = New Moon 0.25 = First Quarter 0.50 = Full Moon 0.75 = Last Quarter

REFERENCE

Meeus, Jean: "Astronomical Algorithms". Willman-Bell, Richmond, VA, 2nd Ed, 1998.

Ò

DESCRIPTION OF EVAPOTRANSPIRATION (ET), REFERENCE ET, AND THE CROP COEFFICIENT

Evapotranspiration (ET) is the amount of water that moves from the ground (and plants on the ground) to the atmosphere through both evaporation and transpiration. It is primarily important to people who are monitoring plant growth and associated water usage.

Measuring actual ET for a given location requires the measurement of weather variables at different heights at the same location and is beyond the capabilities of the current Davis weather stations. Instead, a single set of weather data measurements (described in detail below) are used to calculate a Reference ET (ET_o). ET_o is the amount of ET that is expected at a location with specified reference conditions under the actual weather conditions. The two most common reference conditions used for agricultural purposes are the grass reference – well watered grass that completely shades the ground, is uniformly clipped to a few inches in height – and the alfalfa reference – similar to the grass reference with alfalfa instead of grass, and a different height. The Davis ET calculations all calculate ET_o for a grass reference.

To determine actual ET from a reference ET_o , multiply the ET_o by a crop coefficient (K_c). The crop coefficient accounts for the type of plant, the maturity of the plant, and may include local factors such as soil type. Davis Instruments does not supply crop coefficients. It is up to the individual user to determine what K_c is appropriate. See below for a list of some sources. It is very important, when selecting K_c to make sure that the coefficient is for use with a grass reference. Do not use coefficients that were derived from alfalfa referenced ET_o .

THE DIFFERENT DAVIS ET₀ CALCULATIONS

There are three ways that ET is calculated by Davis weather stations. They differ in how the weather data values are gathered and in how Net Radiation is calculated. The three methods are: GroWeather calculated on the console, GroWeather calculated on a PC, and Vantage Pro and Vantage Pro2 (calculated on the console). In all methods, hourly ET values are calculated from hourly averages of weather variables. The differences arise from differences in the computational abilities of the GroWeather station, Vantage Pro and Vantage Pro2 station and a PC.

DATA SAMPLING AND VARIABLES REQUIRED FOR CALCULATION

The GroWeather console calculated ET_o samples Temperature, Humidity, Wind Speed, Solar Radiation over a one hour period. This sampling is independent of sampling undertaken for the creation of archived data records. At the end of the hour, the arithmetic mean is calculated for each value by dividing the sum of the sampled data values by the number of samples taken. The number of samples is tracked for each sensor independently in case some sensors are not connected for some part of the period. In addition, the raw Barometer value (i.e. not corrected for altitude) at the end of the hour is read.

The temperature is calculated in tenths of a degree F, the humidity is calculated in tenths of a percent, wind speed is calculated in miles per hour, solar radiation is calculated in watts per square meter, and atmospheric pressure is read in thousandths of an inch of mercury. All arithmetic is in integers. Values that use fractions are represented by multiplying by an appropriate value. The formulas given below that use functions more complicated than addition, subtraction, multiplication, and division are calculated with table lookups with linear interpolation where appropriate.

The GroWeather PC calculated ET_o uses data from the historical archived data to calculate the average temperature, humidity, wind speed, solar radiation; and the final atmospheric pressure. In addition, the software uses the latitude, longitude, and time zone settings set in the Station Configuration dialog.

The Vantage calculated ET_o takes samples of Temperature, Wind Speed, and Solar Radiation over a one hour period and derives an average value in a manner similar to the GroWeather console. Instead of sampling the humidity and deriving an "average humidity" for the hour, each time the temperature is sampled, the value of the saturation vapor pressure and actual water vapor pressure are calculated from the current values of temperature and humidity and sampled. These vapor pressure values (in kPa) are used to compute the average saturation vapor pressure and the average water vapor pressure for the hour. The Vantage has the capability to perform floating point arithmetic.

GENERAL ETo CALCULATION

For the most part, these equations are applicable to all 3 calculation methods. Where they differ they are marked as follows: (GWc) applies to the GroWeather Console calculation, (GWpc) applies to the GroWeather PC calculation, and (VP) applies to the Vantage calculation

Measured Variables

mean air temperature in tenths of a degree Fahrenheit TF

- U_{MPH} mean wind speed in whole miles per hour
- R_s mean solar radiation in whole Watts per square meter

H mean humidity in percent (value is between 0 and 100). (GWc and GWpc only)

Pin atmospheric air pressure (not corrected for elevation) at the end of the hour; thousandths of inches of mercury.

Calculated Values

(unit conversions)

Tc mean temperature in Celsius $T_c = (T_F - 32) * 5/9$

 T_K mean temperature in Kelvin $T_{\kappa} = T_{C} + 273.16$

PkPa atmospheric pressure in kPa $P_{kPa} = P_{ia} * 33.864$

Um/s mean wind speed in meters per second

 $U_{m/s} = U_{MPH} * 0.44704$

average net radiation over the hour R as described in the next section. Watts per square meter

saturation water vapor pressure in kPa

$$e_a = 0.6108 * e^{\left(\frac{17.27 * T_C}{T_C + 237.3}\right)}$$

actual water vapor present ed

$$\mathbf{e}_d = \mathbf{e}_a * \frac{H}{100}$$

slope of the saturation vapor curve Δ at T_c

$$\Delta = \frac{e_a}{T_K} * \left(\frac{6790.4985}{T_K} - 5.02808 \right)$$

ea

 γ psychometric constant $\gamma = 0.000646 * (1 + 0.000946 * T_C) * P_{kPa}$

W weighting factor that expresses the relative contribution of the radiation component

$$W = \frac{\Delta}{\Delta + \gamma}$$

F the wind function indicates the amount of energy that the wind contributes towards ET. There are two functions, one for day (solar radiation > 0) and one for night.

 $F_d = 0.030 + 0.0576 * U_{m/s}$

 $F_n = 0.125 + 0.0439 * U_{m/s}$

λ latent heat of vaporization. Used to convert net radiation in Watts per square meter into the amount of water evaporated in mm

$$\lambda = 694.5 * (1 - 0.000946 * T_C)$$

ET_o the hourly potential ET in mm $ET_o = W * \frac{R_n}{\lambda} + (1 - W) * (e_a - e_d) * F$

NET RADIATION

Solar radiation is the primary source of energy that drives evapotranspiration, but what is important is the net radiation, incoming radiation minus outgoing radiation, at all wavelengths.

The Davis solar radiation sensor measures incoming radiation in the visible portion of the spectrum. From this we must subtract out the component that is reflected off the plant leaves. This value is called the albedo.

In addition to the radiation in the visible spectrum, we must also take account of the longer wavelength thermal radiation. This is modeled as black-body radiation coming from three sources at the measured air temperature. The first source is the portion of the sky that does not contain clouds, the second source is the portion of the sky containing clouds, and the third source is the ground radiating into the sky. The first two sources are incoming radiation and the third is outgoing radiation. In order to determine the relative contributions of source one and two, we need to calculate the percentage of the sky that is covered by clouds.

The cloud cover fraction is estimated by comparing the actual mean solar radiation received against the amount we would have received if the sky was clear. In order to calculate the clear sky radiation, it is necessary to calculate the height of the sun above the horizon (solar altitude angle). The altitude of the sun depends, in turn, on the latitude, longitude, day of the year, and time of the day.

The net radiation equation cited in the reference section does not represent the exact method that Davis weather stations use to calculate net radiation.

ACCURACY

These equations were modeled after the ones used by the California Irrigation Management Information System (CIMIS), a program run by the California Department of Water Resources. Therefore, the accuracy of the Davis ET_o calculations are made against the ET_o calculations made by CIMIS. Some of the differences between Davis and CIMIS ET_o calculated values are due to differences in resolution, rather than accuracy.

There are two major factors that cause differences between Davis and CIMIS ET_o calculations: differences in sensor measurements, and differences in net radiation values.

On the GroWeather, all wind averages are in one mile per hour increments, whereas CIM/S data has a higher resolution. The Vantage Pro and Vantage Pro2 measures wind speed in one mile per hour increments, but maintains a higher resolution for hourly averages.

As explained above, there are several different ways to calculate a hourly average vapor pressure and saturation vapor pressure values. The CIMIS method is to calculate and sample the vapor pressure value as described for the Vantage Pro and Vantage Pro2. However, the saturation vapor pressure is calculated from the average temperature. This method will produce a saturation vapor pressure that is equal or lower than the average of the sampled saturation pressures.

The net radiation formula given above are all approximations of the formula CIMIS uses. CIMIS either directly measures net radiation, or uses a formula that includes a provision for an empirically derived cloud cover factor. CIMIS determines this factor either from data collected at

the site over a four year period, or from other sites in the same region. Twelve factors are determined, one for each month.

REFERENCES

General reference on ET

Jensen, M.E., Burman, R. D., Allen, R. G., Editors (1990) "Evapotranspiration and irrigation water requirements." ASCE Manuals and Reports on Engineering Practice No 70.

Paper describing CIMIS' equations and methodology: Snyder, R. L., Pruitt, W. O. (1992). "Evapotranspiration Data Management in California" Irrigation & Drainage Session Proceedings/Water Forum '92 EE, HY, IR, WR, div/ASCE

Paper describing net radiation:

Dong, A, Grattan, S. R., Carroll, J. J., Prashar, C. R. K. (1992). "Estimation of net radiation over well-watered grass." *J. of Irrigation and Drainage Engineering*, Vol. 118, No. 3 ASCE

Web sites with useful information CIMIS home page <u>http://wwwdpla.water.ca.gov/cgi-bin/cimis/cimis/hg/main.pl</u>

Provides some guidelines for water requirements for growing landscape plants in California <u>http://wwwdpla.water.ca.gov/urban/conservation/landscape/wucols/index.html</u>

SUNRISE/SUNSET (Vantage Pro, Vantage Pro2, and WeatherLink only)

Parameters Used: Latitude, Longitude, Time and Date, Time Zone, Daylight Savings Time Setting

Sunrise and sunset is a matter of finding when, local time, the sun is on the horizon. The following equations describe the position of the sun in the sky:

Solar altitude, α , is the angular distance of the sun above the horizon, given by:

 $\sin \alpha = \sin \phi \sin \delta + \cos \phi \cos \delta \cos h$

 ϕ is latitude, δ is the declination angle of the sun, *h* is the hour angle

declination angle is the latitude on the earth at which the sun is directly overhead (south latitudes are indicated as a negative number)

hour angle is the non-negative angular distance east or west from directly overhead

These formulas indicate the true geometric position of the sun. When the sun is on the horizon (as in the case of sunrise and sunset), refraction by the atmosphere will alter the apparent position of the sun. Under average conditions, the sun will appear at the horizon when it is actually 34' (0.567°) below the horizon. Since sunrise and sunset is defined as when the upper half of the sun is visible on the horizon, and the radius of the sun when on the horizon is 16' (0.267°), sunrise and sunset are defined when the geometric position of the sun is 50' (0.833°) below the horizon. This is especially critical in polar regions.

The report also generates twilight times. There are three separate twilight times listed for both morning and evening:

Astronomical Twilight (Astro) is defined as the time at which the center of the sun is 18° below the horizon. At this time, stars and planets of sixth magnitude are visible directly above and generally there is no trace of twilight glow on the horizon. It's the time of complete darkness without an artificial light source.

Nautical Twilight (Naut) is defined as the time at which the center of the sun is 12° below the horizon. Distinguishing the outlines of objects on the ground is impossible past this point toward darkness, thus it marks the point at which navigation is impossible without an artificial light source.

Civil Twilight (Civil) is defined as the time at which the center of the sun is 6° below the horizon. At this time, stars and planets of first magnitude are visible and suspension of outdoor activities is required (on a clear day) without artificial lighting. Civil twilight is roughly 30 minutes long during the equinox.

The procedure to calculate any of these parameters is as follows. Details on the equations used and time convention and unit conversions follow this brief description:

1. First assume that a sunrise event occurred at 6:00 am local time, a sunset event at 6:00 pm local time. The equations used to describe the position of the sun already require a time, so we must make a first "guess" as to when the event will be.

- 2. Convert this local time to UTC time. The equations used to define the position of the sun (in this case, on the horizon) use UTC time.
- 3. Calculate the **declination** and subsequently the **hour angle** of the sun using this UTC time and the specified solar altitude of the given event.
- 4. Convert the resultant hour angle (which is in geometric coordinates) to UTC time.
- 5. Take the resultant UTC time to again *recalculate* the **declination** and subsequently the **hour angle** using this more accurate indication of the position of the sun.
- 6. Convert the resultant hour angle (which is in geometric coordinates) to UTC time.

To calculate the **hour angle** of the sun, *h*, at the given altitude (which is defined by sunrise/sunset or the twilight parameters), so rearranging the equation for the sun's altitude above for the hour angle, we get:

$$\cos h = \frac{\sin \alpha - \sin \phi \, \sin \delta}{\cos \phi \cos \delta}$$

If the result of this equation is undefined, that is, $\cos h > 1$ or h < 1, then the event did not occur.

Otherwise, we can solve for $\cos^{-1}(h)$. The value of *h* here is an angle, which must be converted to a 24 hour time base. The procedure is as follows:

Convention: h = 0 = midnight, h = 90 = 6:00 am, h = 180 = noon, h = 270 = 6:00 pm If h is determined to be a sunrise, then (180 - h)/15 is the value in hours (and fractions of hours), otherwise

If *h* is determined to be a sunset, then (180 + h)/15 is the value in hours (and fractions of hours) The result is in **solar time**, which, in this convention, at Noon, the **mean sun** is at its highest point in the sky for the day, which can differ considerably from local time.

The sun's declination angle, δ , is determined as follows:

 $\delta = \sin^{-1} (\sin T \sin \epsilon)$

$$T = L + C$$

 $L = (280.46646 + 0.98564736^* days)$

 $C = ((1.914602-0.00000013188*days)*\sin M + (0.019993-0.00000002765*days)*sin 2M)$

ϵ = 23.43929°

 $M = (357.52911 + 0.985600281^* days)$

where *days* (including fractional days) is the number of days since Jan 1st, 2000, 12:00 UTC in UTC

T is the true anomaly of the sun (the angular distance between where the earth is closest to the sun is its orbit and the actual position in orbit)

L is the mean longitude of the sun (mean angular distance measured around the earth's orbit from the position at the time of equinox)

C is the center of the sun or the difference between the true, T, and mean, M, anomalies of the sun (determines the location of the sun resolving the differences between the actual position of the sun and the position the sun would have if the earth's angular motion were uniform)

M is the mean anomaly of the sun (same as true anomaly except it assumes the earth moves around the sun at a constant angular velocity), same as mean anomaly of the earth

 ϵ is the obliquity of the earth (the amount the earth is tilted on its axis), which is constant for a century or so (It has an error in the year 2100 of only 0.013° when this constant is used.)

Note: these equations assume that the sun revolves around the earth, for simplicity. However, when addressing the positions in orbit, it is actually the earth revolving around the sun, so this should be understood when trying to understand the physical meaning described in the definitions.

Time Conversions

First, convert local mean solar time to local actual solar time. (Note: When calculating sunrise and sunset, the 6:00 am or 6:00 pm local time is considered actual solar time for simplicity. In the second iteration, when higher precision is needed, the result, local mean solar time, is corrected to actual solar time):

Actual Solar Time = Local Mean Solar Time - E

 $E = y \sin 2L - 2e \sin M + 4ey \sin M \cos 2L$

where e is eccentricity of the earth's orbit (how much of an elliptical shape it has) as described below, and M is the sun's mean anomaly and L is the sun's mean longitude as described earlier

e = 0.016708634 - 0.0000000011509*days

 $y = \tan^2(\epsilon/2)$

where e is obliquity as described earlier

The equation of time must be taken into account in order to determine the exact local time (as opposed to the local mean time). This specifies the difference between apparent time and mean time. Stated another way, it is the difference between the true position of the sun and the mean position of the sun. The mean sun assumes that its motion across the sky is uniform.

Then to convert to actual local solar time to local civil time (local civil time is refers to the time convention used by the public at large within a given time zone), take into account how far west or east of the "standard meridian" for their particular time zone. Fractions of minutes must be incorporated to avoid rounding errors. The **standard meridian** is determined as follows:

Standard Meridian = |(UTC Offset)| * 15

UTC Offset should include whether or not Daylight Savings Time is currently in use and be the absolute value or always positive value of the offset in this case.

Then, determine the offset from the standard meridian in hours:

Local Offset = (Standard Meridian - Longitude) / 15

Summarized, the formula for determining sunrise and sunset in local civil time:

Local Civil Time = Mean Solar Time - E + Local Offset

The Davis software further converts the results into UTC so a standard time base is used and thus, it is much easier to use any combination of Time Zone and latitude/longitude coordinates. Some may prefer to have the sunrise/sunset times in UTC. Others, for example, may want to determine what time it is in San Francisco when the sunrise in Tokyo occurs. Here is the relationship between UTC and local civil time:

UTC = Local Civil Time - UTC Offset

In general, UTC offsets are negative if the longitude is west, positive if east. The UTC Offset includes any corrections for Daylight Savings Time (if specified) and must be converted into hours and minutes as needed.

REFERENCES

Meeus, Jean: "Astronomical Algorithms". Willman-Bell, Richmond, VA, 2nd Ed. 1998.

"Smithsonian Meteorological Tables". Smithsonian Institution Press, Washington, DC, 4th Ed. 1968.

Phone: 510-732-9229 + Fax: 510-732-9188 sales @devianet.com • http://www.davianet.com

ATTACHMENT 2

UNSAT-H MODELING ANALYSIS INPUT AND OUTPUT DATA

UNSAT-H MODEL INPUTS

A.1 Options, Constraints & Limits

Record	Format	Variables	Selection
1	A	TITLE,	entral Maui Landfill, Maximum Rainfa
2	21	IPLANT, NGRAV	1, 1,
		IPLANT = 0, no plants	
		= 1, plants	1
		NGRAV = 0, horizontal	
		= 1. vertical	
2	21	IFDEND, IDTBEG, IDTEND,	365.1.365
3	31	IEDEND = Last day of last year	303,2,303,
		IDTREG = first day of first year	
1		IDTEND = last day of last year	1
Λ	51	IVS NYFARS ISTFAD IFLIST NELIST	11101
1 7	, J,	IVS = Vear of simultation	1,1,4,0,4,
		NVEARS = no. of years	
		ISTED = 0. transient solution	
		IFLIST = 0, met, data in input file	
		NFLIST = no. of file names	-
5	21	NPRINT.STOPHR	0,24.0
-		NPRINT = 0, daily & end-of-year summaries	
		STOPHR = stopping time	
6	3I,R	ISMETH, INMAX, ISWDIF, DMAXBA,	0,2,1,0.001
		ISMETH = 0, standard method of solution	
		INMAX = No. of iterations to solve water flow	
		ISWDIF = option for time step control	
		DMAXBA = time step control parameter	1
7	3R	DELMAX, DELMIN, OUTTIM,	0.15,1.0E-07,0.0,
	1	DELMAX = Maximum time step (hr)	
		DELMIN = minimum time step (hr)	
		OUTTIM = normal time step (hr)	
8	5R	RFACT, RAINIF, DHOTL, DHMAX, DHFACT,	2.0,1.0E-06,0.0,0.0,0.0,
		RFACT = maximum time step factor	
		RAINIF = rainfall time step factor	
1		DHOTL = iteration control parameter	
1		DHMAX = iteration control parameter	
	<u> </u>	DHFACT = time step reduction if HDMAX >0	
9	21,R	KUPI,KEST,WTF	4,3,0.0,
	1	KUP I = 4, van Genuchten properties Used	
	1	conductivity	
		WTE - weighting factor (act used)	
10	A1		0121
10	41	ITOBBC - 0 surface boundary condition - fur	U, 1, 2, 1,
	1	IFVORT = 1, evanoration allowed	1
		NEUOLID = 2 program distributor daily BET	
		IOWER = 1 unit gradientiower boundary	1
11	48	HIRRI HORY HTOP RHA	0.0.1.05+06.0.0.99
1 11		HIRRI = minimum head to which soil can wet up (cm)	0.0,1.02+00,0.0,0.33,
		HDRY = maximum head to which soil can dry out (cm)	
		HTOP = constant head value of the surface	
		whenITOPBC = 1 (cm)	1
		RHA = relative humidity of air (not used)	
12	31	IETOPT,ICLOUD,ISHOPT	0,0.0.
	1	IETOPT = 0. PET data used	-,-,-,-,
		ICLOUD = 0, no cloud cover data used	
		ISHOPT = 0, constant head surface	
13	I.R	IRAIN, HPR,	0,0.0.
		IRAIN = 0, hourly computations of rainfall	-,,
		HPR = 0, hourly rate if $iETOPT = 1$	
14	L IR A	HYS AIRTOL HYSTOL HYSMAX HYFII F	0000000
	,,,,,,,,	IHYS = 0 - no hysteresis; all others = 0	

15	21,R	IHEAT, ICONVH, DMAXHE	0,0,0.0,
		IHEAT = 0, no heat calculations, others = 0	
16	I,3R,A	UPPERH,TSMEAN,TSAMP,QHCTOP	0,0.0,0.0,0.0,
		All = 0 (no heat flow)	
17	1,2R	LOWERH,QHLEAK,TGRAD	0.0.0,0.0,
		All = 0 (no heat flow)	
18	1,3R	IVAPOR, TORT, TSOIL, VAPDIF	1,0.66,298.0,0.24,
		IVAPOR = 1, vapor flow allowed	
		TORT = tortuosity factor for soil = 0.66	
		TSOIL = average soil temp = 77 F = 298 K	
		VAPDIF = diffusion coeffiecient = 0.24 cm2/sec	
19	21	MATN, NPT	4, 84,
		MATN = 3 = no. of different soil materials	
		NPT = number of nodes 40 + 20+ 20	
20	4(I,R) per line	MAT,Z	See separate listing
		i = Material No.	1
		1 = vegetative layer, 0.5 ft = 15.2 cm	
		2 = final cover soil, 3 feet = 91.5 cm	
		3 = waste, 2 ft = 61.0 cm	
		Z = depth below surface, cm	

A.1 Options, Constraints & Limits

Record	Format	Variables	Selection
			Compost Soil Water Retention
1A	<u>A</u>	DUMMY = Soll Type title	Properties,
2A	4R	THET,THETR,VGA,VGN,	0.3464,0.0130,0.0299,1.2403,
		THET = saturated water content	
1		THTR = residual water content	1
		VGA = van Genuchten alpha coefficient	
		VGN = van Genuchten n coefficient	
3A	Α	DUMMY = Soil Type title, HC Data to follow	Compost Soll Hydraulic Conductivity,
4A	5R	RKMOD,SK,VGA,VGN,EPIT,	2,1.8,0.0299,1.2403,0.5,
1		RKMOD = 2, Mualem conductivity model	
		SK = Sat. hydraulic conductivity, cm/hr	
		VGA = van Genuchten alpha coefficient	(Note: 1.8 cm/hr =5.0E-04 cm/sec)
1		VGN = van Genuchten n coefficient	
		EPIT = 0.5, standard exponent for Mualem	
			ET Cover Soil Water Retention
1B	A	DUMMY = Soli Type title	Properties,
28	4R	THET,THETR,VGA,VGN,	0.3464,0.0130,0.0299,1.2403,
		THET = saturated water content	
		THTR = residual water content	
		VGA = van Genuchten alpha coefficient	
		VGN = van Genuchten n coefficient	
38	A	DUMMY = Soll Type title, HC Data to follow	ET Cover Soil Hydrauilc Conductivity,
4B	5R	RKMOD,SK,VGA,VGN,EPIT,,	2,0.994,0.036,1.2403,0.5,
		RKMOD = 2, Mualem conductivity model	
		SK = Sat. hydraulic conductivity, cm/hr	
		VGA = van Genuchten alpha coefficient	(Note: 0.036 cm/hr =1.0E-05 cm/sec)
		VGN = van Genuchten n coefficient	
		EPIT = 0.5, standard exponsnt for Mualem	
			Foundation Layer Soil Water
1C	Α	DUMMY = Soil Type title	Retention Properties,
2C	4R	THET, THETR, VGA, VGN,	0.3464,0.0130,0.0299,1.2403,
		THET = saturated water content	
		THTR = residual water content	
		VGA = van Genuchten alpha coefficient	
		VGN = van Genuchten n coefficient	
3C	A	DUMMY = Soil Type title, HC Data to follow	Indation Layer Soil Hydraulic Conducti
4C	5R	RKMOD,SK,VGA,VGN,EPIT,,	2,0.994,0.036,1.2403,0.5.
i		RKMOD = 2, Mualem conductivity model	
		SK = Sat. hydraulic conductivity. cm/hr	
		VGA = van Genuchten alpha coefficient	(Note: 0.036 cm/hr =1.0E-05 cm/sec)
• •		1	present crock cristing and do cristing

		VGN = van Genuchten n coefficient EPIT = 0.5, standard exponsnt for Mualem	
1D	Α	DUMMY = Soll Type title	Refuse Water Retention Properties,
2D	4R	THEY, THEYR, VGA, VGN,	0.53,0.11,0.26,2.22,
		THTR = residual water content	
		VGA = van Genuchten alpha coefficient	
		VGN = van Genuchten n coefficient	
3D	A	DUMMY = Soil Type title, HC Data to follow	Refuse Hydrauiic Conductivity,
4D	5R	RKMOD,SK,VGA,VGN,EPIT,,	2.0,0.36,0.26,2.22,0.5,
	ſ	RKMOD = 2, Mualem conductivity model	
		SK = Sat. hydraulic conductivity, cm/hr	
		VGA = van Genuchten alpha coefficient	ote: 1.00E-04 cm/sec = 3.6E-01 cm/h
		VGN = van Genuchten n coefficient	
		EPIT = 0.5, standard exponsnt for Mualem	

A.3 INITIAL CONDITIONS

Record	Format	Variables	Selection
1	i	NDAY = day for which end-of-day suction head values are specified as initial conditions	0,
2	4R per line	H(1npt	500 for soil, 300 for waste (Repeat 20 times for assumed constant initial 100 cm throughout
		Hh(1NPT) = initial suction head for each node, cm	profile of 80 nodes

A.4 Plant Information

Record	Format	Variables	Selection
1A	61	LEAF,NFROOT,NUPTAK,NFPET,NSOW,NHRVST,	1,1,1,1,365,
		LEAF = 1, leaf area index values supplied	
		NFROOT = 1, exponential relationship for root growth	Assume vegetation active year around
		NUPTAK = 1, default for plant water uptake	
		NFPET = 1, method of partitioning PET	
		NSOW = day of year seeds germinate	
		NRVST = day of year when plants stop transpiring	
2A	R	BARE = fraction of soil bare of plants	0.10,
1B	1	NDLAI = No. of changes in LAI	4,
2B	4(I,R) per line	IDLAI,VLAI	1,1.0,90,1.5,180,0.5,300,1.0
		IDLAI = day of year next LAI begins	
		VLAI = LAI corresponding to corresponding day	
1C	3R	AA,B1,B2	1.163,0.129,0.03
		AA = coefficient a in eq'n RLD=a exp(-bz) +C	
		B1 = coefficient b	ote: used default values for cheatgra
		B2 = coefficient c	
2C	101	NTROOT = growth day on which roots reach each node	See Separate data file
1D	3R	HW,HD,HN (repeat for each soil material	15000.0,1500.0,10.0,
		HW = head corresponding to wilting point (cm)	15000.0,1500.0,10.0,
		HD = head corresponding to transpiration beginning to	
		decrease	15000.0,1500.0,10.0,
		HN = head corresponding to anaerobic conditions	
1E	5R	PCA,PCB,PCC,PCD,PCE	0.0,0.52,0.5,0.0,3.7,
		PCA = coeff. A in T=PET)(a+b*LAEexp(c)	
		PCB = coeff. B	(default values)
		PCE = coeff. C	
		PCD = Lower limit	
		PCE = upper limit	

A.5 Boundary Conditions

Record	Format	Variables	Selection
1A	8R per line	PET(1:IDEND)	See separate data file
L		PET values for each day of year	·

\frown	
\bigcirc	

18	1	NWATER = total number of days of rain	61,
2B	3I,R	IRDAY, IRTYPE, NP, EFICEN	
		IRDAY = day on which rain occurs	See separate data file
		IRTYPE = 1 = rainfall event	
		NP = number of times during day when water	
		application changes	
		EFICEN = efficiency of water application	
28	2R per line	RTIME,AMOUNT,	<u> </u>
		RTIME = time of day when water rate changes	See separate data file
		AMOUNT = the amount (cm) that falls until the next	
	1	rate change	

Ì

			Nodes Analys	is – Vegetative Lay	ær			
Soil Thickn	ess	1	ft				·····	
		30.48	cm	1/2 thickness de	pth = 7.62			
No. of Nod	es	20		Bottom depth =	30.48			
Equation	$D = D_{n-1} + K$	e ^{d»-U}						
	K =	0.1	cm					
	C =	0.392665						
Node n	Depth D	Spacing	Rounded Depth					
1	0.00	0.1	0.0					
2	0.15	0.15	0.15					
3	0.37	0.22	0.37					
4	0.69	0.32	0.69					
. S	1.17	0.48	1.17					
ε	i 1.89	0.71	1.89	1,	0.00 ,1,	0.15 .1.	0.37 .1.	0.69
7	2.94	1.05	2.94	1,	1.17 ,1,	1.89 .1.	2.94 .1.	4.50
. 8	4.50	1.56	4.50	1,	6.82 .1.	10.24 .1.	15.32 .1.	20.39
5	6.82	2.31	6.82	1,	23.82 ,1,	26.13 .1.	27.69 .1.	28.75
10	10.24	3.43	10.24	1,	29.46 ,1,	29.94 .1.	30.26 .1.	30.48
1 11	15.32	5.07	15.32			•-•		
12	20.39	5.07	20.39					
13	23.82	3.43	23.82					
14	26.13	2.31	26.13					
15	27.69) 1.56	27.69					
16	28.75	1.05	28.75					
17	29.46	0.71	29.46					
14	29.94	0.48	29.94					
19	30.25	0.32	30.26					
21	30.48	0.22	30.48					
								:
ł								

Nodes Analysis – ET Cover Soil

60.96 40 0n-1 + Ke ^{c(n-1)} 0.1685233 h D Spacing 30.52 0.1 30.76 0.24 31.04 0.22 31.37 0.33 31.76 0.33 32.23 0.44 32.78 0.55 33.43 0.65 34.20 0.77 35.11 0.99 36.19 1.00 37.46 1.22 38.97 1.5 40.76 1.77 42.88 2.1 45.38 2.5 48.35 2.9	i cm Rounded Depth 30.52 30.76 31.04 31.37 31.76 32.23 532.78 533.43 734.20 35.11 336.19 337.46 337.46 33.746 33.97 940.76 242.88 45.38 748.35	1/2 thickness Bottom depth 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	depth 15.28 ,2, 31.76 ,2, 34.20 ,2, 38.97 ,2, 48.35 ,2, 65.84 ,2, 78.98 ,2, 85.67 ,2,	30.76 ,2, 32.23 ,2, 35.11 ,2, 40.76 ,2, 51.86 ,2, 70.00 ,2, 81.10 ,2, 86.75 ,2,	60.96 cm 91.44 cm 31.04 ,2, 32.78 ,2, 36.19 ,2, 42.88 ,2, 56.01 ,2, 73.51 ,2, 82.88 ,2, 87.66 2	31.37 33.43 37.46 45.38 60.93 76.47
44 0,-1 + Ke ^{c(n-1)} 0.1685233 h D Spacing 30.52 0.3 30.76 0.24 31.04 0.23 31.76 0.33 31.76 0.33 32.23 0.44 32.78 0.53 33.43 0.63 34.20 0.77 35.11 0.99 36.19 1.00 37.46 1.22 38.97 1.55 40.76 1.77 42.88 2.11 45.38 2.55 48.35 2.9	2 cm Rounded Depth 30.52 30.76 31.04 31.37 31.76 32.23 32.23 33.43 7 34.20 35.11 36.19 37.46 38.97 40.76 242.88 45.38 7	1/2 thickness Bottom depth 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	depth 15.28 ,2, 31.76 ,2, 34.20 ,2, 38.97 ,2, 48.35 ,2, 65.84 ,2, 78.98 ,2, 85.67 ,2,	30.76 ,2, 32.23 ,2, 35.11 ,2, 40.76 ,2, 51.86 ,2, 70.00 ,2, 81.10 ,2, 86.75 ,2,	60.96 cm 91.44 cm 31.04 ,2, 32.78 ,2, 36.19 ,2, 42.88 ,2, 56.01 ,2, 73.51 ,2, 82.88 ,2, 87.65 2	31.37 33.43 37.46 45.38 60.93 76.47
0.1 0.1 0.1685233 0.1 0.1685233 0.1 h D Spacing 30.52 0.1 30.76 0.24 31.04 0.23 31.37 0.33 32.23 0.44 32.78 0.55 33.43 0.63 34.20 0.7 35.11 0.99 36.19 1.00 37.46 1.22 38.97 1.5 40.76 1.77 42.88 2.11 45.38 2.5 48.35 2.9	Rounded Depth 30.52 30.76 31.04 31.37 31.76 32.23 32.78 33.43 734.20 35.11 36.19 37.46 37.46 38.97 40.76 242.88 45.38 748.35	Bottom depth 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	15.28 ,2, 31.76 ,2, 34.20 ,2, 38.97 ,2, 48.35 ,2, 65.84 ,2, 78.98 ,2, 85.67 ,2,	30.76 ,2, 32.23 ,2, 35.11 ,2, 40.76 ,2, 51.86 ,2, 70.00 ,2, 81.10 ,2, 86.75 ,2,	91.44 cm 31.04 ,2, 32.78 ,2, 36.19 ,2, 42.88 ,2, 56.01 ,2, 73.51 ,2, 82.88 ,2, 87.65 2	31.37 33.43 37.46 45.38 60.93 76.47
0.: 0.168523: h D Spacing 30.52 0.: 30.76 0.24 31.04 0.25 31.04 0.25 31.77 0.33 31.76 0.33 32.23 0.44 32.78 0.55 33.43 0.66 34.20 0.77 35.11 0.99 36.19 1.00 37.46 1.22 38.97 1.5 40.76 1.77 42.88 2.1 45.38 2.5 48.35 2.9	Rounded Depth 30.52 30.76 31.04 31.37 31.76 32.23 32.78 33.43 34.20 35.11 36.19 37.46 38.97 40.76 42.88 45.38 7 48.35	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	15.28 ,2, 31.76 ,2, 34.20 ,2, 38.97 ,2, 48.35 ,2, 65.84 ,2, 78.98 ,2, 85.67 ,2,	30.76 ,2, 32.23 ,2, 35.11 ,2, 40.76 ,2, 51.86 ,2, 70.00 ,2, 81.10 ,2, 86.75 ,2,	31.04 ,2, 32.78 ,2, 36.19 ,2, 42.88 ,2, 56.01 ,2, 73.51 ,2, 82.88 ,2,	31.37 33.43 37.46 45.38 60.93 76.47
0.1685233 D Spacing 30.52 0.1 30.76 0.24 31.04 0.24 31.04 0.24 31.04 0.24 31.37 0.33 31.76 0.33 32.23 0.44 32.78 0.53 33.43 0.66 34.20 0.7 35.11 0.99 36.19 1.00 37.46 1.22 38.97 1.5 40.76 1.77 42.88 2.5 48.35 2.9	Rounded Depth 30.52 30.76 31.04 31.37 31.37 31.76 32.23 33.43 35.11 36.19 37.46 38.97 40.76 42.88 45.38 748.35	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	15.28 ,2, 31.76 ,2, 34.20 ,2, 38.97 ,2, 48.35 ,2, 65.84 ,2, 78.98 ,2, 85.67 ,2,	30.76 ,2, 32.23 ,2, 35.11 ,2, 40.76 ,2, 51.86 ,2, 70.00 ,2, 81.10 ,2, 86.75 ,2,	31.04 ,2, 32.78 ,2, 36.19 ,2, 42.88 ,2, 56.01 ,2, 73.51 ,2, 82.88 ,2, 87.65 ,2	31.37 33.43 37.46 45.38 60.93 76.47
D Spacing 30.52 0.1 30.76 0.2 31.04 0.2 31.37 0.3 31.76 0.3 32.23 0.4 32.78 0.5 33.43 0.6 34.20 0.7 35.11 0.9 36.19 1.0 37.46 1.2 38.97 1.5 40.76 1.7 42.88 2.1 45.38 2.5 48.35 2.9	Rounded Depth 30.52 30.76 31.76 31.76 32.23 32.78 33.43 34.20 35.11 36.19 37.46 38.97 40.76 42.88 45.38 48.35	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	15.28 ,2, 31.76 ,2, 34.20 ,2, 38.97 ,2, 48.35 ,2, 65.84 ,2, 78.98 ,2, 85.67 ,2,	30.76 ,2, 32.23 ,2, 35.11 ,2, 40.76 ,2, 51.86 ,2, 70.00 ,2, 81.10 ,2, 86.75 ,2,	31.04 ,2, 32.78 ,2, 36.19 ,2, 42.88 ,2, 56.01 ,2, 73.51 ,2, 82.88 ,2,	31.37 33.43 37.46 45.38 60.93 76.47
30.52 0.1 30.76 0.2 31.04 0.2 31.37 0.3 31.76 0.3 32.23 0.4 32.78 0.5 33.43 0.6 34.20 0.7 35.11 0.9 36.19 1.0 37.46 1.2 38.97 1.5 40.76 1.7 42.88 2.1 45.38 2.5 48.35 2.9	30.52 30.76 31.04 31.37 31.37 31.37 31.37 31.37 31.37 31.37 31.37 31.37 31.37 31.37 31.37 31.37 31.37 31.37 31.37 31.37 32.23 32.23 32.23 32.23 32.23 32.23 32.23 32.23 32.23 32.23 32.23 32.23 33.43 34.20 1 35.11 36.19 37.46 38.97 40.76 2 42.88 45.38 48.35	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	15.28 ,2, 31.76 ,2, 34.20 ,2, 38.97 ,2, 48.35 ,2, 65.84 ,2, 78.98 ,2, 85.67 ,2,	30.76 ,2, 32.23 ,2, 35.11 ,2, 40.76 ,2, 51.86 ,2, 70.00 ,2, 81.10 ,2, 86.75 ,2,	31.04 ,2, 32.78 ,2, 36.19 ,2, 42.88 ,2, 56.01 ,2, 73.51 ,2, 82.88 ,2,	31.37 33.43 37.46 45.38 60.93 76.47
30.76 0.24 31.04 0.23 31.37 0.33 31.76 0.33 32.23 0.44 32.78 0.55 33.43 0.63 34.20 0.77 35.11 0.99 36.19 1.00 37.46 1.27 38.97 1.5 40.76 1.77 42.88 2.11 45.38 2.5 48.35 2.9	30.76 31.04 31.37 31.37 31.37 31.37 31.37 31.37 31.37 31.37 31.37 31.37 31.37 31.37 32.23 32.23 32.23 32.23 33.43 34.20 35.11 36.19 37.46 38.97 40.76 42.88 45.38 48.35	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	15.28 ,2, 31.76 ,2, 34.20 ,2, 38.97 ,2, 48.35 ,2, 65.84 ,2, 78.98 ,2, 85.67 ,2,	30.76 ,2, 32.23 ,2, 35.11 ,2, 40.76 ,2, 51.86 ,2, 70.00 ,2, 81.10 ,2, 86.75 ,2,	31.04 ,2, 32.78 ,2, 36.19 ,2, 42.88 ,2, 56.01 ,2, 73.51 ,2, 82.88 ,2,	31.37 33.43 37.46 45.38 60.93 76.47
31.04 0.23 31.37 0.33 31.76 0.33 32.23 0.44 32.78 0.53 33.43 0.66 34.20 0.77 35.11 0.99 36.19 1.00 37.46 1.22 38.97 1.5 40.76 1.77 42.88 2.11 45.38 2.5 48.35 2.9	3 31.04 3 31.37 3 31.76 3 31.76 3 31.76 3 31.76 3 32.23 3 32.78 3 32.78 3 34.20 4 35.11 3 36.19 3 37.46 4 38.97 4 40.76 2 42.88 4 45.38 7 48.35	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	15.28 ,2, 31.76 ,2, 34.20 ,2, 38.97 ,2, 48.35 ,2, 65.84 ,2, 78.98 ,2, 85.67 ,2,	30.76 ,2, 32.23 ,2, 35.11 ,2, 40.76 ,2, 51.86 ,2, 70.00 ,2, 81.10 ,2, 86.75 ,2,	31.04 ,2, 32.78 ,2, 36.19 ,2, 42.88 ,2, 56.01 ,2, 73.51 ,2, 82.88 ,2,	31.37 33.43 37.46 45.38 60.93 76.47
31.37 0.33 31.76 0.33 32.23 0.44 32.78 0.53 33.43 0.66 34.20 0.7 35.11 0.99 36.19 1.00 37.46 1.22 38.97 1.5 40.76 1.77 42.88 2.11 45.38 2.5 48.35 2.9	3 31.37 3 31.76 3 31.76 3 31.76 3 32.23 3 32.78 3 32.78 3 32.78 3 32.78 3 32.78 3 32.78 3 32.78 3 33.43 7 34.20 4 35.11 3 36.19 3 37.46 4 38.97 4 40.76 2 42.88 4 45.38 7 48.35	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	15.28 ,2, 31.76 ,2, 34.20 ,2, 38.97 ,2, 48.35 ,2, 65.84 ,2, 78.98 ,2, 85.67 ,2,	30.76 ,2, 32.23 ,2, 35.11 ,2, 40.76 ,2, 51.86 ,2, 70.00 ,2, 81.10 ,2, 86.75 ,2,	31.04 ,2, 32.78 ,2, 36.19 ,2, 42.88 ,2, 56.01 ,2, 73.51 ,2, 82.88 ,2,	31.37 33.43 37.46 45.38 60.93 76.47
31.76 0.31 32.23 0.41 32.78 0.51 33.43 0.61 34.20 0.77 35.11 0.91 36.19 1.01 37.46 1.22 38.97 1.55 40.76 1.77 42.88 2.11 45.38 2.55 48.35 2.9	31.76 32.23 32.78 33.43 34.20 35.11 36.19 37.46 38.97 40.76 42.88 45.38 48.35	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	15.28 ,2, 31.76 ,2, 34.20 ,2, 38.97 ,2, 48.35 ,2, 65.84 ,2, 78.98 ,2, 85.67 ,2,	30.76 ,2, 32.23 ,2, 35.11 ,2, 40.76 ,2, 51.86 ,2, 70.00 ,2, 81.10 ,2, 86.75 ,2,	31.04 ,2, 32.78 ,2, 36.19 ,2, 42.88 ,2, 56.01 ,2, 73.51 ,2, 82.88 ,2,	31.37 33.43 37.46 45.38 60.93 76.47
32.23 0.4 32.78 0.5 33.43 0.6 34.20 0.7 35.11 0.9 36.19 1.0 37.46 1.2 38.97 1.5 40.76 1.7 42.88 2.1 45.38 2.5 48.35 2.9	5 32.23 5 32.78 5 33.43 7 34.20 1 35.11 3 36.19 3 37.46 1 38.97 2 42.88 1 45.38 7 48.35	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	15.28 ,2, 31.76 ,2, 34.20 ,2, 38.97 ,2, 48.35 ,2, 65.84 ,2, 78.98 ,2, 85.67 ,2,	30.76 ,2, 32.23 ,2, 35.11 ,2, 40.76 ,2, 51.86 ,2, 70.00 ,2, 81.10 ,2, 86.75 ,2,	31.04 ,2, 32.78 ,2, 36.19 ,2, 42.88 ,2, 56.01 ,2, 73.51 ,2, 82.88 ,2,	31.37 33.43 37.46 45.38 60.93 76.47
32.78 0.5 33.43 0.6 34.20 0.7 35.11 0.9 36.19 1.0 37.46 1.2 38.97 1.5 40.76 1.7 42.88 2.1 45.38 2.5 48.35 2.9	5 32.78 5 33.43 7 34.20 1 35.11 3 36.19 3 37.46 1 38.97 2 40.76 2 42.88 1 45.38 7 48.35	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	15.28 ,2, 31.76 ,2, 34.20 ,2, 38.97 ,2, 48.35 ,2, 65.84 ,2, 78.98 ,2, 85.67 ,2,	30.76 ,2, 32.23 ,2, 35.11 ,2, 40.76 ,2, 51.86 ,2, 70.00 ,2, 81.10 ,2, 86.75 ,2,	31.04 ,2, 32.78 ,2, 36.19 ,2, 42.88 ,2, 56.01 ,2, 73.51 ,2, 82.88 ,2, 87.65 ,2	31.37 33.43 37.46 45.38 60.93 76.47
33.43 0.6. 34.20 0.7 35.11 0.9 36.19 1.0 37.46 1.2 38.97 1.5 40.76 1.7 42.88 2.1 45.38 2.5 48.35 2.9	5 33.43 7 34.20 1 35.11 3 36.19 3 37.46 1 38.97 9 40.76 2 42.88 1 45.38 7 48.35	2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	31.76 ,2, 34.20 ,2, 38.97 ,2, 48.35 ,2, 65.84 ,2, 78.98 ,2, 85.67 ,2,	32.23 ,2, 35.11 ,2, 40.76 ,2, 51.86 ,2, 70.00 ,2, 81.10 ,2, 86.75 ,2,	32.78 ,2, 36.19 ,2, 42.88 ,2, 56.01 ,2, 73.51 ,2, 82.88 ,2, 87.65 2	33.43 37.46 45.38 60.93 76.47
34.20 0.7 35.11 0.9 36.19 1.0 37.46 1.2 38.97 1.5 40.76 1.7 42.88 2.1 45.38 2.5 48.35 2.9	7 34.20 1 35.11 3 36.19 3 37.46 1 38.97 2 40.76 2 42.88 1 45.38 7 48.35	2, 2, 2, 2, 2, 2, 2, 2, 2,	34.20 ,2, 38.97 ,2, 48.35 ,2, 65.84 ,2, 78.98 ,2, 85.67 ,2,	35.11 ,2, 40.76 ,2, 51.86 ,2, 70.00 ,2, 81.10 ,2, 86.75 ,2,	36.19 ,2, 42.88 ,2, 56.01 ,2, 73.51 ,2, 82.88 ,2,	37.46 45.38 60.93 76.47
35.11 0.9 36.19 1.0 37.46 1.2 38.97 1.5 40.76 1.7 42.88 2.1 45.38 2.5 48.35 2.9	35.11 36.19 37.46 38.97 40.76 42.88 45.38 48.35	2, 2, 2, 2, 2, 2, 2, 2,	38.97 ,2, 48.35 ,2, 65.84 ,2, 78.98 ,2, 85.67 ,2,	40.76 ,2, 51.86 ,2, 70.00 ,2, 81.10 ,2, 86.75 ,2,	42.88 ,2, 56.01 ,2, 73.51 ,2, 82.88 ,2,	45.38 60.93 76.47
36.19 1.0 37.46 1.2 38.97 1.5 40.76 1.7 42.88 2.1 45.38 2.5 48.35 2.9	3 36.19 3 37.46 1 38.97 2 40.76 2 42.88 1 45.38 7 48.35	2, 2, 2, 2, 2, 2, 2,	48.35 ,2, 65.84 ,2, 78.98 ,2, 85.67 ,2,	51.86 ,2, 70.00 ,2, 81.10 ,2, 86.75 ,2,	56.01 ,2, 73.51 ,2, 82.88 ,2,	60.93 76.47
37.46 1.2 38.97 1.5 40.76 1.7 42.88 2.1 45.38 2.5 48.35 2.9	3 37.46 1 38.97 2 40.76 2 42.88 1 45.38 7 48.35	2, 2, 2, 2, 2, 2,	65.84 ,2, 78.98 ,2, 85.67 ,2,	70.00 ,2, 81.10 ,2, 86.75 ,2,	73.51 ,2, 82.88 ,2,	76.47
38.97 1.5 40.76 1.7 42.88 2.1 45.38 2.5 48.35 2.9	L 38.97 → 40.76 2 42.88 L 45.38 7 48.35	2, 2, 2, 2,	78.98 ,2, 85.67 ,2,	,2, 81.10 ,2, 86.75	82.88 ,2, 87.66 7	
40.76 1.77 42.88 2.1 45.38 2.5 48.35 2.9	40.76 2 42.88 L 45.38 7 48.35	2, 2, 2, 2,	85.67 ,2,	,2, 86.75	97 <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	84.39
42.88 2.1 45.38 2.5 48.35 2.9	2 42.88 L 45.38 7 48.35	2, 2,		00 60 0	01.00,2,	88.43
48.35 2.9	43.38 7 48.35	۷,	89.08 ,2,	89.63 ,2,	90.10 ,2,	90.49
-0.55 2.5	40.33		90.82 ,2,	91.10 ,2,	91.34 ,2,	91.44
51 96 2 5	51.96					
56.01 4.1	56.01					
60.93 4.9	5 50.01 5 60.93					
65.84 4.9	65.84					
70.00 4.1	5 70.00					
73.51 3.5	L 73.51					
76.47 2.9	7 76.47				•	
78.98 2.5	l 78.98					
81.10 2.1	2 81.10					
82.88 1.7	82.88					
84.39 1 5	84 39					•
85.67 1.2	85.67					
86.75 1.0	86.75					
87.66 0.9	87.66					
88.43 0.7	88.43					
89.08 0.6	5 89.08					
89.63 0.5	89.63					
90.10 0.4	5 90.10					
90.49 0.3	90.49					
90.82 0.3	90.82					
91.10 0.2	91 10					
91.34 0.2	91.34					
91.44 0.1) 91.44					
	78.98 2.51 81.10 2.11 82.88 1.75 84.39 1.51 85.67 1.28 86.75 1.08 87.66 0.91 88.43 0.77 89.08 0.65 90.10 0.46 90.49 0.39 90.82 0.33 91.10 0.28 91.34 0.24 91.44 0.10	76.47 2.97 76.47 78.98 2.51 78.98 81.10 2.12 81.10 82.88 1.79 82.88 84.39 1.51 84.39 85.67 1.28 85.67 86.75 1.08 86.75 87.66 0.91 87.66 88.43 0.77 88.43 89.08 0.65 89.08 89.63 0.55 89.63 90.10 0.46 90.10 90.49 0.39 90.49 90.82 0.33 90.82 91.10 0.28 91.10 91.34 0.24 91.34 91.44 0.10 91.44	76.47 2.97 76.47 78.98 2.51 78.98 81.10 2.12 81.10 82.88 1.79 82.88 84.39 1.51 84.39 85.67 1.28 85.67 86.75 1.08 86.75 87.66 0.91 87.66 88.43 0.77 88.43 89.08 0.65 89.08 89.63 0.55 89.63 90.10 0.46 90.10 90.49 0.39 90.49 90.82 0.33 90.82 91.10 0.28 91.10 91.34 0.24 91.34 91.44 0.10 91.44	76.47 2.97 76.47 78.98 2.51 78.98 81.10 2.12 81.10 82.88 1.79 82.88 84.39 1.51 84.39 85.67 1.28 85.67 86.75 1.08 86.75 87.66 0.91 87.66 88.43 0.77 88.43 89.08 0.65 89.08 89.63 0.55 89.63 90.10 0.46 90.10 90.49 0.39 90.49 90.82 0.33 90.82 91.10 0.28 91.10 91.34 0.24 91.34 91.44 0.10 91.44	76.47 2.97 76.47 78.98 2.51 78.98 81.10 2.12 81.10 82.88 1.79 82.88 84.39 1.51 84.39 85.67 1.28 85.67 86.75 1.08 86.75 87.66 0.91 87.66 88.43 0.77 88.43 89.08 0.65 89.08 89.63 0.55 89.63 90.10 0.46 90.10 90.49 0.39 90.49 90.82 0.33 90.82 91.10 0.28 91.10 91.34 0.24 91.34 91.44 0.10 91.44	76.47 2.97 76.47 78.98 2.51 78.98 81.10 2.12 81.10 82.88 1.79 82.88 84.39 1.51 84.39 85.67 1.28 85.67 86.75 1.08 86.75 87.66 0.91 87.66 88.43 0.77 88.43 89.08 0.65 89.08 89.63 0.55 89.63 90.10 0.46 90.10 90.49 0.39 90.49 90.82 0.33 90.82 91.10 0.28 91.10 91.44 0.10 91.44

Nodes Analysis -- Foundation Layer

No. of Node: Equation I	S D D Ka	30 .48 20	cm	1/2 +bicks				
No. of Node: Equation I	5 D D Ka	20		1/2 thicks	ana danah -			
Equation I	io. of Nodes Equation D = D ₂ , + K			- 4/ 4 CI II CNI	iess aeptn =	106.68 cm		
-	U = U _{n1} + N8	r(n-1)		Bottom de	eath =	121 97 cm		
	K =	0.2	cm					
	C =	0.738134						
Node n l	Depth D	Spacing	Rounded Depth					
1	91.48	0.5	91.48					
2	91.90	0.42	91.90					
3	92.77	0.88	92.77					
4	94.60	1.83	94.60					
5	98.44	3.83	98.44					
6	106.45	8.01	106.45					
7	114.46	8.01	114.46	3,	91.48 ,3,	91.90 ,3,	92.77 .3.	94.60
8	118.30	3.83	118.30	З,	98.44 ,3,	106.45 ,3,	114.46 .3.	118.30
9	120.13	1.83	120.13	3,	120.13 ,3,	121.00 ,3,	121.42 .3.	121.92
10	121.00	0.88	121.00					
11	121.42	0.42	121.42					
12	121.92	0.50	121.92					

Nodes Analysis -- Upper Waste Layer

Soil Thick	ness		1	ft										
			30.48	cm										
No. of No	des		20		1/2	thicknes	s depth =		137.16 c	: m				
Equation	D = D,	-1 + Ke	8 ^{c(n-1)}		Bot	tom dept	h =		152.40 c	:00				
	K =		0.2	cm		•								
	c =		0.738134	,										
Node n	Depth	D	Spacing	ounded De	pth									
	1 12	21.96	0.5	121.96	•									
	2 12	22.38	0.42	122.38										
	3 13	23.25	0.88	123.25										
	4 12	25.08	1.83	125.08										
	5 12	28.92	3.83	128.92										
	6 13	36.93	8.01	136.93										
	7 14	14.94	8.01	144.94		4,	121.96	4.	122.38	4.	123.25	4.	125.08	
	8 14	18.78	3.83	148.78		4,	128.92	4,	136.93	4.	144.94	4.	148.78	
	9 1!	50.61	1.83	150.61		4,	150.61	4,	151.48	4.	151.90	4.	152.40	
1	0 1	51.48	0.88	151.48				-				.,		
1	1 1!	51.90	0.42	151.90										
1	2 1	52.40	0.50	152.40										

PROCESED INPUT

```
PROCES FOR INPUT
ł
                               Program DATAINH
1
                                 Version 3.01
                               Input Filename: J:\Central Maui Landfill\Phase IV Closure\UNSAT-H\cmlrun5e.i
 Date Processed: 18 Jun 2012
 Time Processed: 13:58:49.96
 Title:
Central Maui LF - 5 Year - Maximum Rainfall
 General options:
 IPLANT =
             1
                      NGRAV =
                                  1
 IFDEND = 365
                     IDTBEG =
                                 1
                                          IDTEND =
                                                    365
    IYS =
             1
                     NYEARS =
                                  5
                                          ISTEAD =
                                                      1
 IFLIST =
             0
                     NFLIST =
                                  1
 NPRINT =
                     STOPHR = 2.400E-15
             0
 ISMETH =
             1
                     INMAX =
                                  2
                                          ISWDIF =
                                                      1
                                                              \mathsf{DMAXBA} = 0.100\mathrm{E}-02
 DELMAX = 1.500E-01
                     DELMIN = 1.000E-07
                                          OUTTIM = 1.500E-01
  RFACT = 2.000E+00
                     RAINIF = 1.000E-06
                                           DHTOL = 0.000E+00
  DHMAX = 0.000E+00
                     DHFACT = 0.000E+00
   KOPT =
             4
                       KEST =
                                  3
                                             WTF = 0.000E+00
 ITOPBC =
             0
                     IEVOPT =
                                  1
                                          NFHOUR =
                                                      2
                                                               LOWER =
                                                                           1
  HIRRI = 3.000E+00
                       HDRY = 1.000E+06
                                            HTOP = 0.000E+00
                                                                 RHA = 8.000E-01
 IETOPT =
             0
                     ICLOUD =
                                  0
                                          ISHOPT =
                                                      0
  IRAIN =
             0
                        HPR = 1.000E+00
 Hysteresis options:
   IHYS =
             0
                     AIRTOL = 0.000E+00 HYSTOL = 0.000E+00 HYSMXH = 0.000E+00
 Heat flow options:
 IHEAT =
             0
                     ICONVH =
                                  0
                                          DMAXHE = 0.000E+00
 UPPERH =
             0
                     TSMEAN = 0.000E+00
                                          TSAMP = 0.000E+00
                                                              QHCTOP = 0.000E+00
 LOWERH =
             0
                     QHLEAK = 0.000E+00
                                          TGRAD = 0.000E+00
Vapor flow options:
IVAPOR =
             0
                       TORT = 6.600E-01
                                          TSOIL = 2.980E+02 VAPDIF = 2.400E-01
Grid options:
  MATN =
             4
                        NPT =
                                 84
Soil hydraulic properties:
  KOPT = 4: van Genuchten hydraulic functions
```

SK = JATERATER Hychaulic CONORATIVITY , CIN/HOLR. Material No. 1 THETA = f(H), Compost Soil Water Retention Properties. THET = 0.47000THTR = 4.40000E-02ALPHA = 2.64000E-02N = 1.2800M = 0.21875K =f(H), Compost Soil Hydraulic Conductivity. RKMOD = 2.0000 SK = 0.36000A = 2.64000E-02N = 1.2800M = 0.21875EPIT = 0.50000Material No. 2 THETA = f(H), ET Cover Soil Water Retention Properties, THET = 0.34640THTR = 1.30000E - 02ALPHA = 2.99000E-02N = 1.2403M = 0.19374K =f(H), ET Cover Soil Hydraulic Conductivity, RKMOD = 2.0000SK = 1.80000E - 02A = 2.99000E-02N = 1.2403M = 0.19374EPIT = 0.50000Material No. 3 THETA = f(H), Foundation Layer Soil Water Retention Properties, THET = 0.34640 THTR = 1.30000E-02 ALPHA = 2.99000E-02 N = 1.2403M = 0.19374K =f(H), Foundation Layer Soil Hydraulic Conductivity, RKMOD = 2.0000 SK = 0.36000A = 2.99000E-02N = 1.2403M = 0.19374EPIT = 0.50000Material No. 4 THETA = f(H), Refuse Water Retention Properties THET = 0.53000 THTR = 0.11000ALPHA = 0.26000N = 2.2200M = 0.54955K =f(H), Refuse Hydraulic Conductivity, RKMOD = 2.0000 SK = 0.36000A = 0.26000N = 2.2200EPIT = 0.50000 M = 0.54955Surface node bounding values: HIRRI = 3.000E+00THETA = 4.665E-01 K = 9.415E-02 C = -1.478E-03HDRY = 1.000E+06THETA = 6.862E-02 K = 1.985E-14 C =-6.895E-09 Initial Conditions: NDAY = 0NODE Ζ MAT HEAD CONDUCTIVITY CAPACITY THETA TEMP _ _ _ _ ***** *** *********** --------------- -----0.00 1.0000E+03 1 1 2.4501E-06 -4.6834E-05 0.2138 298.0 0.15 1 2 1.0000E+03 2.4501E-06 -4.6834E-05 0.2138 298.0 3 0.37 1 1.0000E+03 2.4501E-06 -4.6834E-05 0.2138 298.0 0.69 1 1.0000E+03 2.4501E-06 -4.6834E-05 4 0.2138 298.0 1.17 1 1.0000E+03 2.4501E-06 -4.6834E-05 5 0.2138 298.0 1.89 1 1.0000E+03 2.4501E-06 6 -4.6834E-05 0.2138 298.0

7	2.94	1	1.0000E+03	2.4501E-06	-4.6834E-05	0.2138	298.0	
8	4.50	1	1.0000E+03	2.4501E-06	-4.6834E-05	0.2138	298 0	
9	6.82	1	1.0000E+03	2.4501E-06	-4.6834E-05	0.2138	298 0	
10	10.24	1	1.0000E+03	2.4501E-06	-4.6834E-05	0.2138	298 0	
11	15.32	1	1.0000E+03	2.4501E-06	-4.6834E-05	0 2138	298 Ø	
12	20.39	1	1.0000E+03	2.4501E-06	-4 6834F-05	0.2138	200.0	
13	23.82	1	1.0000E+03	2.4501E-06	-4 6834E-05	0.2138	208 0	
14	26.13	1	1.0000E+03	2.4501E-06	-4 6834E-05	0.2130	208 0	
15	27.69	1	1.0000E+03	2.4501E-06	-4 6834E-05	0.2130	200.0	de l
16	28.75	1	1.0000E+03	2.1501E 00 2.4501E-06	-4.68345-05	0.2130	200.0	VEG
17	29.46	1	1 0000E+03	2.4501E-00	-4.69245 05	0.2130	230.0	LATER
18	29 94	1	1 0000E+03	2.45016-06	-4.0034E-05	0.2130	298.0	*
19	30 26	1	1 000000-03	2.45016-00	-4.0034E-05	0.2138	298.0	T
20	30.20	1	1 0000000000	2.4501E-00	-4.0834E-05	0.2138	298.0	
	20.40	<u> </u>	1.0000E+03	2.4501E-06	-4.6834E-05	0.2138	298.0	
21	20.32	2	1.0000E+03	9.6304E-08	-3.4/94E-05	0.1599	298.0	
22	30.70	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.1599	298.0	
23	31.04	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.1599	298.0	
24	31.37	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.1599	298.0	
25	31.76	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.1599	298.0	V.
26	32.23	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.1599	298.0	INFIL THATCH)
27	32.78	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.1599	298.0	LANTA
28	33.43	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.1599	298.0	- 1
29	34.20	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.1599	298.0	
30	35.11	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.1599	298.0	
31	36.19	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.1599	298.0	
32	37.46	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.1599	298.0	
33	38.97	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.1599	298.0	
34	40.76	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.1599	298.0	
35	42.88	Z	1.0000E+03	9.6304E-08	-3.4794E-05	0.1599	298.0	
36	45.38	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.1599	298.0	
37	48.35	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.1599	298.0	
38	51.86	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.1599	298.0	
39	56.01	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.159 9	298.0	
40	60.93	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.159 9	298.0	
41	65.84	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.159 9	298.0	
42	70.00	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.1599	298.0	
43	73.51	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.1599	298.0	
44	76.47	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.1599	298.0	
45	78.98	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.1599	298.0	
46	81.10	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.1599	298 0	
47	82.88	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.1599	298 0	
48	84.39	2	1.0000E+03	9.6304E-08	-3.4794F-05	0 1599	298 0	
49	85.67	2	1.0000E+03	9.6304E-08	-3.4794F-05	0.1500	208 0	
50	86.75	2	1.0000E+03	9.6304E~08	-3.4794F-05	0.1500	202 0	
51	87.66	2	1.0000E+03	9.6304F-08	-3 4704F_AF	0.1500	270.0	
52	88.43	2	1.0000E+03	9.6304F-08	-3 4704E-05	0.1500	230.0	
53	89.08	2	1.0000F+03	9 63045-08	-J. TIJTE-UJ -3 4704E AF	0.1500	290.0	
54	89 63	2	1 0000F+03	9.6304E-00	2 47045 OF	0.1222	298.0	
55	90 10	2	1 0000LTUJ	0 63045 00	-3.4/341-05	0.1599	298.0	
	20.10	2	T. COMPCHIC	9.0304E-08	-3.4/94E-05	0.1599	298.0	

 \bigcirc

56	90.49	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.1599	298.0	Internet and
57	90 82	2	1.0000E+03	9.6304F-08	-3.4794F-05	0.1599	298.0	LATER
58	91.10	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.1599	298 0	*
59	91.34	2	1.0000E+03	9.6304E-08	-3.4794E-05	0.1599	298.0	1
60	91.44	2	1.0000E+03	9.6304E-08	-3,4794E-05	0.1599	298.0	
61	91.48	3	1.0000E+02	5.8024E-04	-4.6861E-04	0.2581	298.0	
62	91.90	3	1.0000E+02	5.8024E-04	-4.6861E-04	0.2581	298.0	
63	92.77	3	1,0000E+02	5.8024E-04	-4.6861E-04	0.2581	298.0	٩
64	94.60	3	1.0000E+02	5.8024E-04	-4.6861E-04	0.2581	298.0	
65	98.44	3	1.0000E+02	5.8024E-04	-4.6861E-04	0.2581	298.0	FUCEN DATIG
66	106.45	3	1.0000E+02	5.8024E-04	-4.6861E-04	0.2581	298.0	ALAEN
67	114.46	3	1.0000E+02	5.8024E-04	-4.6861E-04	0.2581	298.0	Light
68	118.30	3	1.0000E+02	5.8024E-04	-4.6861E-04	0.2581	298.0	
69	120.13	3	1.0000E+02	5.8024E-04	-4.6861E-04	0.2581	298.0	
70	121.00	3	1.0000E+02	5.8024E-04	-4.6861E-04	0.2581	298.0	<u>۲</u>
71	121.42	3	1.0000E+02	5.8024E-04	-4.6861E-04	0.2581	298.0	
72	121.92	3	1.0000E+02	5.8024E-04	-4.6861E-04	0.2581	298.0	1
73	121.96	4	1.0000E+02	7.7648E-09	-9.6129E-05	0.1179	298.0	
74	122.38	4	1.0000E+02	7.7648E-09	-9.6129E-05	0.1179	298.0	
75	123.25	4	1.0000E+02	7.7648E-09	-9.6129E-05	0.1179	298.0	\checkmark
76	125.08	4	1.0000E+02	7.7648E-09	-9.6129E-05	0.1179	298.0	DIND
77	128.92	4	1.0000E+02	7.7648E-09	-9.6129E-05	0.1179	298.0	LASTE
78	136.93	4	1.0000E+02	7.7648E-09	-9.6129E-05	0.1179	298.0	
79	144.94	4	1.0000E+02	7.7648E-09	-9.6129E-05	0.1179	298.0	
80	1 48 .78	4	1.0000E+02	7.7648E-09	-9.6129E-05	0.1179	298.0	
81	150.61	4	1.0000E+02	7.7648E-09	-9.6129E-05	0.1179	298.0	
82	151.48	4	1.0000E+02	7.7648E-09	-9.6129E-05	0.1179	298.0	
83	151.90	4	1.0000E+02	7.7648E-09	-9.6129E-05	0.1179	298.0	
84	152.40	4	1.0000E+02	7.7648E-09	-9.6129E-05	0.1179	298.0	
Total	Initial	Stor	age (cm) ⇒ 2	.772937E+01				

Plant parameters:

LEAF= 1, NFROOT= 1, NUPTAK= 1, NFPET= 1, NSOW= 1, NHRVST=365, BARE=0.100

Number of Growth Day (NDLAI) - Leaf Area Index (VLAI) pairs 3

NDLAI VLAI 1 1.000 180 1.500 364 1.000

19	1.050	20	1.053	21	1.056	22	1.059	23	1.061	24	1.064
25	1.067	26	1.070	27	1.073	28	1.075	2 9	1.078	30	1.081
31	1.084	32	1.087	33	1.089	34	1.092	35	1.095	36	1.098
37	1.101	38	1.103	39	1.106	40	1.109	41	1.112	42	1.115
43	1.117	44	1.120	45	1.123	46	1.126	47	1.128	48	1.131
49	1.134	50	1.137	51	1.140	52	1.142	53	1.145	54	1.148
55	1.151	56	1.154	57	1.156	58	1.159	59	1.162	60	1.165
61	1.168	62	1.170	63	1.173	64	1.176	65	1.179	66	1.182
67	1.184	68	1.187	69	1.190	70	1.193	71	1.196	72	1.198
73	1.201	74	1.204	75	1.207	76	1.209	77	1.212	78	1.215
79	1.218	80	1.221	81	1.223	82	1.226	83	1.229	84	1.232
85	1.235	86	1.237	87	1.240	88	1.243	89	1.246	90	1.249
91	1.251	92	1.254	93	1.257	94	1.260	95	1.263	96	1,265
97	1.268	98	1.271	99	1.274	100	1.277	101	1.279	102	1.282
103	1.285	104	1.288	105	1.291	106	1.293	107	1.296	108	1,299
109	1.302	110	1.304	111	1.307	112	1.310	113	1.313	114	1 316
115	1.318	116	1.321	117	1.324	118	1.327	119	1.330	120	1 332
121	1.335	122	1.338	123	1.341	124	1.344	125	1.346	126	1 349
127	1.352	128	1.355	129	1.358	130	1.360	131	1.363	132	1.366
133	1.369	134	1.372	135	1.374	136	1.377	137	1.380	138	1.383
139	1.385	140	1.388	141	1.391	142	1.394	143	1.397	144	1.399
145	1.402	146	1.405	147	1.408	148	1.411	149	1.413	150	1,416
151	1.419	152	1.422	153	1.425	154	1.427	155	1.430	156	1.433
157	1.436	158	1.439	159	1.441	160	1.444	161	1.447	162	1.450
163	1.453	164	1.455	165	1.458	166	1.461	167	1.464	168	1.466
169	1.469	170	1.472	171	1.475	172	1.478	173	1.480	174	1.483
175	1.486	17 6	1.489	177	1.492	178	1.494	179	1.497	180	1.500
181	1.497	182	1.495	183	1.492	184	1.489	185	1.486	186	1.484
187	1.481	188	1.478	189	1.476	190	1.473	191	1.470	192	1.467
193	1.465	1 94	1.462	195	1.459	196	1.457	197	1.454	198	1.451
19 9	1.448	200	1.446	201	1.443	202	1.440	203	1.438	204	1.435
205	1.432	206	1.429	207	1.427	208	1.424	209	1.421	210	1.418
Z11	1.416	21 2	1.413	213	1.410	214	1.408	215	1.405	216	1.402
217	1.399	218	1.397	219	1.394	220	1.391	221	1.389	222	1.386
Z23	1.383	224	1.380	225	1.378	226	1.375	227	1.372	228	1.370
229	1.367	230	1.364	231	1.361	232	1.359	233	1.356	234	1.353
235	1.351	236	1.348	237	1.345	238	1.342	239	1.340	240	1.337
241	1.334	242	1.332	243	1.329	244	1.326	245	1.323	246	1.321
247	1.318	248	1.315	249	1.312	250	1.310	251	1.307	252	1.304
253	1.302	254	1.299	255	1.296	256	1.293	257	1.291	258	1 288
25 9	1.285	260	1.283	261	1.280	262	1.277	263	1.274	264	1 272
265	1.269	266	1.266	267	1.264	268	1.261	269	1 258	270	1 255
271	1.253	272	1.250	273	1.247	274	1.245	275	1 242	276	1 239
277	1.236	278	1.234	279	1.231	280	1.228	281	1.226	282	1 223
283	1.220	284	1.217	285	1.215	286	1.212	287	1 200	202	1 207
289	1.204	290	1.201	291	1,198	292	1 196	207	1 107	200	1 100
295	1.188	296	1.185	297	1.182	298	1 170	200	1 177	200	1 171
301	1.171	302	1,168	303	1 166	304	1 163	305	1 160	200	⊥,⊥(4+ 1 1⊑0
307	1 155	302	1 157	300	1 1/0	310	1 147	211	1 1 4 4	242	1 1 4 4
501		200	T' TJC	CAC	****3	DIG	1.141	2TT	1.144	217	1.141

D

313	1.139	314	1.136	315	1.133	316	1.130	317	1.128	318	1.125
319	1.122	320	1.120	321	1.117	322	1.114	323	1.111	324	1,109
325	1.106	326	1.103	327	1.101	328	1.098	329	1.095	330	1 092
331	1.090	332	1.087	333	1.084	334	1,082	335	1.079	336	1 076
337	1.073	338	1.071	339	1.068	340	1.065	341	1.062	342	1 060
343	1.057	344	1.054	345	1.052	346	1.049	347	1.046	348	1 043
349	1.041	350	1.038	351	1.035	352	1.033	353	1 030	354	1 077
355	1.024	356	1.022	357	1.019	358	1,016	359	1 014	360	1 011
361	1.008	362	1.005	363	1.003	364	1 000	365	A 000	100	1.011
					2.000	501	1.000	505	0.000		

NFROOT = 1: Negative exponential representation of root growth
AA (intersection of curve at z=0 with abscissa) = 1.163
B1 (coefficient defining degree of curvature) = 0.129
B2 (coefficient determining the value of asymptote = 0.030

Root depth, density, and weight/node versus depth

DAY	MAX	ROOT	NORMALIZED
	ROOT DEPTH	DENSITY	DENSITY
		(cm/cm)	(1/cm)
	0.00	0 000	
1	0.15	1 171	0.0000
1	0.37	1,139	0.1058
1	0.69	1.094	0.1016
1	1.17	1.030	0.0957
1	1.89	0.941	0.0874
1	2.94	0.826	0.0767
1	4.50	0.681	0.0632
1	6.82	0.512	0.0476
1	10.24	0.340	0.0316
1	15.32	0.191	0.0178
1	20.39	0.114	0.0106
1	23.82	0.084	0.0078
1	26.13	0.070	0.0065
1	27.69	0.063	0.0058
1	28.75	0.059	0.0054
1	29.46	0.056	0.0052
1	29.94	0.054	0.0051
1	30.26	0.053	0.0050
1	30.48	0.053	0.0049
1	30.52	0.053	0.0049
1	30.76	0.052	0.0048
1	31.04	0.051	0.0048
1	31.37	0.050	0.0047
1	31.76	0.049	0.0046
1	32.23	0.048	0.0045
1	32.78	0.047	0.0044
1	33.43	0.046	0.0042

1	34.20	0.044	0.0041
1	35.11	0.043	0.0040
1	36.19	0.041	0.0038
1	37.46	0.039	0.0036
1	38.97	0.038	0.0035
1	40.76	0.036	0.0033
1	42.88	0.035	0.0032
1	45.38	0.033	0.0031
1	48.35	0.032	0.0030
1	51.86	0.031	0.0029
1	56.01	0.031	0.0029
1	60.93	0.030	0.0028

MXROOT (deepest node that roots penetrate) = 40

NUPTAK = 1: Feddes et al. 1975 moisture dependent sink term

For Material No. 1 THETAW (wilting point moisture content) 0.1238 THETAD (lower limit of optimum moisture content) = 0.1958 THETAN (upper limit of optimum moisture content) = 0.4691 For Material No. 2 THETAW (wilting point moisture content) 0.0899 THETAD (lower limit of optimum moisture content) = 0.1464 THETAN (upper limit of optimum moisture content) = 0.3456 For Material No. 3 THETAW (wilting point moisture content) 0.0899 THETAD (lower limit of optimum moisture content) = 0.1464 THETAN (upper limit of optimum moisture content) = 0.3456 For Material No. 4 THETAW (wilting point moisture content) 0.1100 THETAD (lower limit of optimum moisture content) = 0.1103 THETAN (upper limit of optimum moisture content) = 0.5188 ET parameters: NFHOUR = 2: User subroutine for hourly PET provided 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0150 0.0440 0.0699 0.0911 0.1061 0.1139 0.1139 0.1061 0.0911 0.0699 0.0440 0.0150 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 Lower Boundary Option: LOWER = 1: unit gradient

PET partitioning:

NFPET = 1:
 PET is partitioned into PT and PE according to the
 relationship developed by Ritchie (1972)
 The user-specified coefficients are:
 a = 0.000
 b = 0.520

c = 0.500 d = 0.000 (below this LAI, PT is zero) e = 3.700 (above this LAI, PT=f(e))

DAY	PET	PTRANS	PEVAPO	DAY	PET	PTRANS	PEVAPO
	0.1500	0.0702	0.0798		0.0800	0.0375	0.0425
3	0.0300	0.0141	0.0159	4	0.0000	0.0000	0.0000
5	0.1300	0.0612	0.0688	6	0.1500	0.0707	0.0793
7	0.0000	0.0000	0.0000	8	0.0000	0.0000	0.0000
9	0.0000	0.0000	0.0000	10	0.0300	0.0142	0.0158
11	0.1000	0.0474	0.0526	12	0.1800	0.0855	0.0945
13	0.1300	0.0619	0.0681	14	0.1800	0.0858	0.0942
15	0.2000	0.0954	0.1046	16	0.2000	0.0955	0.1045
17	0.2500	0.1196	0.1304	18	0.3600	0.1724	0.1876
19	0.4800	0.2302	0.2498	20	0.1500	0.0720	0.0780
21	0.2000	0.0962	0.1038	22	0.2000	0.0963	0.1037
23	0.2500	0.1205	0.1295	24	0.1300	0.0628	0.0672
25	0.1500	0.0725	0.0775	26	0.0800	0.0387	0.0413
27	0.1300	0.0630	0.0670	28	0.0800	0.0388	0.0412
29	0.2000	0.0972	0.1028	30	0.2300	0.1119	0.1181
31	0.2500	0.1218	0.1282	32	0.2500	0.1220	0.1280
33	0.3300	0.1612	0.1688	34	0.4100	0.2005	0.2095
35	0.2800	0.1371	0.1429	36	0.1500	0.0736	0.0764
37	0.0300	0.0147	0.0153	38	0.0500	0.0246	0.0254
39	0.2500	0.1231	0.1269	40	0.3000	0.1478	0.1522
41	0.1800	0.0888	0.0912	42	0.0500	0.0247	0.0253
43	0.0300	0.0148	0.0152	44	0.1500	0.0743	0.0757
45	0.1000	0.0496	0.0504	46	0.1300	0.0646	0.0654
47	0.2800	0.1392	0.1408	48	0.0800	0.0398	0.0402
49	0.1500	0.0748	0.0752	50	0.1000	0.0499	0.0501
51	0.1300	0.0649	0.0651	52	0.0300	0.0150	0.0150
53	0.1000	0.0501	0.0499	54	0.1300	0.0652	0.0648
55	0.2800	0.1406	0.1394	56	0.2300	0.1156	0.1144
57	0.1500	0.0755	0.0745	58	0.2300	0.1159	0.1141
59	0.2800	0.1413	0.1387	60	0.2300	0.1162	0.1138
61	0.2500	0.1264	0.1236	62	0.2000	0.1013	0.0987
63	0.1000	0.0507	0.0493	64	0.2500	0.1269	0.1231
65	0.2800	0.1423	0.1377	66	0.3300	0.1679	0.1621
67	0.2300	0.1171	0.1129	68	0.3300	0.1683	0.1617
69	0.3300	0.1685	0.1615	70	0.3000	0.1533	0.1467

7	1 0.250	0 0.1279	0.1221	72	0.1800	0.0922	0.0878
7	3 0.300	0 0.1539	0.1461	74	0.5100	0.2619	0.2481
7	' 5 0.430	0 0.2211	0.2089	76	0.3000	0.1544	0.1456
7	7 0.130	0 0.0670	0.0630	78	0.1800	0.0929	0.0871
7	9 0.380	0 0.1963	0.1837	80	0.3800	0.1965	0.1835
8	1 0.330	0 0.1708	0.1592	82	0.2300	0.1192	0.1108
8	3 0.050	0.0259	0.0241	84	0.3800	0.1974	0.1826
8	0.410	0.2132	0.1968	86	0.4100	0.2134	0.1966
8	87 0.300	0 0.1564	0.1436	88	0.4100	0.2139	0.1961
8	9 0.430	0.2246	0.2054	90	0.6900	0.3608	0.3292
9	91 0.710	0 0.3717	0.3383	92	0.5100	0.2673	0.2427
g	93 0.430	0 0.2256	0.2044	94	0.3600	0.1891	0.1709
ç	95 0.510	0 0.2682	0.2418	96	0.4800	0.2527	0.2273
9	0.430	0.2266	0.2034	98	0.4100	0.2163	0.1937
ç	9 0.430	0 0.2271	0.2029	100	0.4800	0.2538	0.2262
10	0.510	0.2700	0.2400	102	0.5100	0.2703	0.2397
10	03 0.460	0 0.2440	0.2160	104	0.4800	0.2549	0.2251
10	05 0.460	0 0.2446	0.2154	106	0.5100	0.2714	0.2386
10	07 0.460	0 0.2451	0.2149	108	0.3000	0.1600	0.1400
10	0.380	0 0.2029	0.1771	110	0.4800	0.2566	0.2234
11	0.530	0 0.2836	0.2464	112	0.1000	0.0536	0.0464
1]	.3 0.300	0 0.1609	0.1391	114	0.1800	0.0966	0.0834
11	.5 0.360	0 0.1935	0.1665	116	0.4100	0.2206	0.1894
11	L7 0.360	0.1939	0.1661	118	0.2500	0.1348	0.1152
1-	LY 0.410	0.2213	0.1887	120	0.5100	0.2755	0.2345
12	L 0.400	0 0.2488	0.2112	122	0.4800	0.2598	0.2202
12	25 0.400	0 0.2493	0.2107	124	0.4100	0.2224	0.1876
17	.) U.100)7 0.410	0.02721	0.0457	120	0.3000	0.1957	0.1643
12	-7 0.410 DO 0 A10	0 0.2231	0.1009	120	0.4000	0.2500	0.2094
1	21 0 530	0 0.2230	0.1004	UCL 122	0.4000	0.2020	0.2180
12	NA 0.530	0 0.2890	0.2404	134	0.0100	0.2242	0.2704
13	NS 0.500	0 0.3170	0.2024	136	0.0100	0. JJ45	0.2/3/
13	NT 0.100	0 0.3102	0.2010	130	0.3300	0.1012	0.1400
13	39 0.530	0 0.2000	0.2101	130	0.7000	0.2041	0.2139
14	1 0.660	0 0 3643	0.2300	140	0.5000	0.3536	0.2964
14	3 0.560	0 0.3097	0.2503	144	0.0400	0.3330	0.2007
14	15 0.530	0 0.2937	0.2363	146	0.4000	0.2037	0.2145
14	7 0.510	0 0.2832	0.2268	148	0.J100 0 4600	0.2029	0.22/1
14	9 0.510	0 0.2838	0 2262	150	0.7000	0.2057	0.2045
19	51 0.510	0 0.2843	0 2257	152	0.5500	0.2552	0.2340
15	53 0.130	0 0.0726	0.0574	154	0.5300	0.2040	0.2237
15	5 0.510	0 0.2854	0.7246	156	0.1800	0.2000	0.2357
15	67 0.560	0 0 3140	0.2460	158	0.6100	0 7474	0.0752
15	59 0.610	0 0.3427	0.2673	160	0 2800	0.1575	0.1070
16	51 0.300	0 0.1689	0.1311	162	0 1300	0.0733	0.1220
16	53 0.480	0 0.2707	0.2093	164	0 5600	0.0155	0.7429
16	5 0.480	0 0 2713	0.2087	166	0 4100	0 23102	0.2 JO 0 1791
16	57 0 380	0 0 2152	0 1649	160	0. 2000	0.2302	0.1/01
±(0.1040	100	0. 2000	U. JL01	0.7212

169	0.6100	0.3460	0.2640	170	0.6400	0.3634	0.2766	
1 71	0.6400	0.3637	0.2763	172	0.6600	0.3755	0.2845	
173	0.6900	0.3929	0.2971	174	0.6100	0.3477	0.2623	
175	0.6400	0.3651	0.2749	176	0.5800	0.3312	0.2488	
177	0.5800	0.3315	0.2485	178	0.5800	0.3318	0.2482	
179	0.6100	0.3493	0.2607	180	0.6100	0.3496	0.2604	
181	0.6100	0.3493	0.2607	182	0.6100	0.3490	0.2610	
183	0.6100	0.3487	0.2613	184	0.6400	0.3655	0.2745	
185	0.6100	0.3481	0.2619	186	0.6100	0.3477	0.2623	
187	0.6400	0.3645	0.2755	188	0.6400	0.3642	0.2758	
189	0.6100	0.3468	0.2632	190	0.6100	0.3465	0.2635	
191	0.6100	0.3461	0.2639	192	0.6100	0.3458	0.2642	
193	0.6400	0.3625	0.2775	194	0.6400	0.3622	0.2778	
195	0.5800	0.3279	0.2521	196	0.5600	0.3163	0.2437	
197	0.6100	0.3442	0.2658	198	0.6400	0.3608	0.2792	
199	0.6100	0.3436	0.2664	200	0.5600	0.3151	0.2449	
201	0.4600	0.2586	0.2014	202	0.6900	0.3875	0.3025	
203	0.6600	0.3703	0.2897	204	0.4800	0.2691	0.2109	
205	0.5300	0.2968	0.2332	206	0.6100	0.3413	0.2687	
207	0.6400	0.3578	0.2822	208	0.6100	0.3407	0.2693	
209	0.6100	0.3403	0.2697	210	0.5800	0.3233	0.2567	
211	0.5800	0.3230	0.2570	212	0.5800	0.3227	0.2573	
213	0.5800	0.3224	0.2576	214	0.5800	0.3220	0.2580	
215	0.5800	0.3217	0.2583	216	0.6400	0.3547	0.2853	
217	0.6100	0.3377	0.2723	218	0.5800	0.3208	0.2592	
21 9	0.5100	0.2818	0.2282	220	0.3800	0.2098	0.1702	
221	0.5300	0.2923	0.2377	222	0.4600	0.2534	0.2066	
223	0.5600	0.3082	0.2518	224	0.5100	0.2804	0.2296	
225	0.4800	0.2637	0.2163	226	0.3800	0.2085	0.1715	
227	0.4300	0.2357	0.1943	22 8	0.5100	0.2793	0.2307	
22 9	0.4800	0.2626	0.2174	230	0.5100	0.2788	0.2312	
231	0.5600	0.3058	0.2542	232	0.5600	0.3055	0.2545	
233	0.5300	0.2888	0.2412	234	0.5600	0.3049	0.2551	
235	0.4800	0.2611	0.2189	236	0.6100	0.3314	0.2786	
237	0.6600	0.3582	0.3018	238	0.6400	0.3470	0.2930	
23 9	0.6400	0.3467	0.2933	240	0.6400	0.3463	0.2937	
241	0.6400	0.3460	0.2940	242	0.5800	0.3132	0.2668	
243	0.5300	0.2859	0.2441	244	0.5300	0.2856	0.2444	
245	0.5300	0.2853	0.2447	246	0.5300	0.2850	0.2450	
247	0.5300	0.2848	0.2452	248	0.5800	0.3113	0.2687	
249	0.5800	0.3110	0.2690	250	0.5600	0.2999	0.2601	
251	0.4600	0.2461	0.2139	252	0.2300	0.1229	0.1071	
253	0.3000	0.1602	0.1398	254	0.4600	0.2454	0.2146	
255	0.4600	0.2451	0.2149	256	0.4600	0.2448	0.2152	
257	0.4300	0.2286	0.2014	258	0.3600	0.1912	0.1688	
259	0.4300	0.2282	0.2018	260	0.4300	0.2279	0.2021	
261	0.4300	0.2277	0.2023	262	0.3600	0.1904	0.1696	
263	0.2500	0.1321	0.1179	264	0.4300	0.2269	0.2031	
265	0.5100	0.2689	0.2411	266	0.4300	0.2265	0.2035	

 \bigcirc

267	0 1300	0 2262	0 2020	~~~	o 1000		
20/	0.4300	0.2262	0.2038	268	0.4600	0.2417	0.2183
269	0.4600	0.2415	0.2185	270	0.4800	0.2517	0.2283
271	0.5300	0.2776	0.2524	272	0.5600	0.2930	0.2670
273	0.3600	0.1882	0.1718	274	0.4600	0.2402	0.2198
275	0.4100	0.2138	0.1962	276	0.4100	0.2136	0.1964
277	0.4100	0.2134	0.1966	278	0.5300	0.2755	0.2545
279	0.4800	0.2492	0.2308	280	0.4600	0.2386	0.2214
281	0.3600	0.1865	0.1735	282	0.3300	0.1708	0.1592
283	0.4100	0.2119	0.1981	284	0.3600	0.1859	0.1741
285	0.3600	0.1857	0.1743	286	0.4300	0.2215	0 2085
287	0.4600	0.2367	0.2233	288	0.3600	0.1851	0 1749
289	0.1800	0.0924	0.0876	290	0.0500	0 0256	0 0744
291	0.1000	0.0512	0.0488	292	0.3000	0.0230	0.0244
293	0.2800	0.1431	0.1369	294	0.3000	0.1555	0.1403
295	0.0300	0.0153	0.0147	296	0.1500	0.000+	0.0000
297	0.0000	0.0100	0.0147	200	0.1000	0.0/04	0010.0
299	0.2500	0 1269	0.0000	200	0.1000	0.1769	0.0492
301	0 2800	0.1419	0.1387	202	0.2000	0.1416	0.1232
303	0.2000	0.1410	0.130Z	201	0.2000	0.1410	0.1384
305	0.3000	0.1510	0.1404	204	0.4500	0.21/0	0.2130
307	0.2500	0.100 7 0.1257	0.1000	000	0.2000	0.1410	0.1390
309	0.2500	0.1254	0.1245	210	0.2000	0.1005	0.0995
311	0.2500	0.1254	0.1240	212	0.1200	0.0902	0.0898
313	0.1500	0.0750	0.0743	214	0.1000	0.0050	0.0650
315	0.0500	0.02.30	0.0230	216	0.1000	0.0499	0.0501
317	0.1500	0.0777	0.1759	210	0.2300	0.1144	0.1156
319	0.2300	0.1272	0.1230	270	0.2000	0.1390	0.1410
321	0.7800	0.1385	0.2420	520	0.5100	0.1002	0.1918
323	0.2000	0.1381	0.1413	224	0.5100	0.2519	0.2581
325	0.2000	0.1772	0.1979 0 1979	224	0.2000	0.2513	0.2587
327	0.1300	0.1112	0.1020	220	0.2000	0.0983	0.1017
329	0.1500	0.0000	0.0002	220	0.2000	0.0981	0.1019
323	0.1300	0.0733	0.1176	שככ ררכ	0.1300	0.0030	0.0664
222	0.2300	0.1124	0.11/0	224	0.2500	0.1220	0.1280
332	0.2000	0.0070	0.1020	334	0.1800	0.0876	0.0924
333	0.2000	0.0972	0.1028	330	0.1500	0.0728	0.0772
220	0.1000	0.0067	0.10927	338	0.2800	0.1356	0.1444
241	0.2000	1000.0	0.1033	340	0.2300	0.1111	0.1189
242	0.2500	0.1110	0.1190	342	0.2000	0.0964	0.1036
343	0.3600	0.1732	0.1868	344	0.2000	0.0961	0.1039
343	0.2800	0.1344	0.1456	346	0.1800	0.0863	0.0937
347	0.1500	0.0/18	0.0782	348	0.1500	0.0717	0.0783
349	0.1300	0.0621	0.0679	350	0.1300	0.0620	0.0680
351	0.0500	0.0238	0.0262	352	0.1000	0.0476	0.0524
353	0.2000	0.0950	0.1050	354	0.2000	0.0949	0.1051
355	0.1500	0.0711	0.0789	356	0.1800	0.0852	0.0948
357	0.1500	0.0709	0.0791	358	0.2500	0.1179	0.1321
359	0.1300	0.0613	0.0687	360	0.1000	0.0471	0.0529
361	0.1500	0.0705	0.0795	362	0.1000	0.0469	0.0531
363	0.1000	0.0469	0.0531	364	0.1300	0.0608	0.0692
		-					

 \bigcirc

Totals: PET = 133.4200 PTRANS = 71.2862 PEVAPO = 62.1338

Precipitation/irrigation parameters:

IRAIN = 0: precipitation data provided

NWATER (number of days of rain/irrigation) = 61

Rainfall/Irrigation Details

Day	Time (hr)	Amount (cm)	Application Type	Efficiency	Changes In Rate/Head
7	16.000	0 1030		1 000	
	17.000	0.0000	-	1.000	2
9	7.000	0.2570	1	1,000	2
	12.000	0.0000	-	2.000	<i>L</i> _
27	21.000	0.0510	1	1,000	2
	22.000	0.0000			-
28	5.000	0.0510	1	1.000	2
	6.000	0.0000			
2 9	8.000	1.7440	1	1.000	2
	18.000	0.0000			
31	18.000	3.8990	1	1.000	2
	22.000	0.0000			
34	2.000	0.2570	1	1.000	2
_	4.000	0.0000			
42	2.000	0.0510	1	1.000	2
	3.000	0.0000			
49	21.000	0.1030	1	1.000	2
- 4	23.000	0.0000			
51	7.000	0.0510	1	1.000	2
	8.000	0.0000			
59	7.000	0.5130	1	1.000	2
	12.000	0.0000			
6 8	3.000	0.0510	1	1.000	2
	4.000	0.0000			
69	2.000	5.1820	1	1.000	2
	17.000	0.0000			
72	11.000	0.5640	1	1.000	2
	18.000	0.0000			
73	2.000	5.3870	1	1.000	2
	14.000	0.0000			
74	9.000	0.9750	1	1.000	2
	23,000	0.0000			

75	10.000	0.0510	1	1.000	2
	11.000	0.0000			
76	4.000	0.0510	1	1.000	2
	5.000	0.0000			
77	1.000	1.3340	1	1.000	2
	24.000	0.0000			
7 8	1.000	0.3080	1	1.000	2
	22.000	0.0000			
79	3.000	0.1030	1	1.000	2
	4.000	0.0000			
88	18.000	0.0510	1	1.000	2
	19.000	0.0000			-
91	19.000	1.3850	1	1.000	2
	21.000	0.0000			
111	5,000	0.2050	1	1,000	2
_	7.000	0.0000	-		-
113	7.000	0.5640	1	1 000	2
	24.000	0.0000	-	2.000	
120	1.000	0.0510	1	1,000	2
	2.000	0,0000	-		
129	23.000	0.0510	1	1.000	2
	24.000	0.0000	_	27000	-
139	2.000	0.0510	1	1.000	2
	3.000	0.0000			-
196	7.000	0.0510	1	1.000	2
	8.000	0.0000			-
233	1.000	0.0510	1	1.000	2
	2.000	0.0000			-
23 7	13.000	6.0540	1	1.000	2
	16.000	0.0000			-
243	15.000	0.1030	1	1.000	2
	16.000	0.0000			-
247	4.000	0.0510	1	1.000	2
	5.000	0.0000			-
279	19.000	0.2570	1	1.000	2
	21.000	0.0000			-
300	23.000	0.0510	1	1.000	2
	24.000	0.0000	-	2.200	-
304	18,000	0.3080	1	1 000	2
	24.000	0.0000	-	1.000	2
305	1.000	0.2570	1	1 000	2
	2.000	0.0000	-	1.000	E.,
308	10.000	2.3600	1	1 000	2
	23.000	0.0000	-	*.000	4
324	1.000	1.0770	1	1 000	2
	2,000	0,0000	*	1.000	2
325	1,000	1 7960	1	1 000	7
	23 000	0 0000	*	1.000	2
376	1 000	0.0000	1	1 000	-
770	T.000	U. 344U	ĩ	T.000	2

,

 $\widehat{}$

	20.000	0.0000			
327	22.000	0.0510	1	1.000	2
	23.000	0.0000			-
328	3.000	0.0510	1	1.000	2
	4.000	0.0000			-
332	10.000	1.7440	1	1.000	2
	15.000	0.0000			-
335	16.000	1.0770	1	1.000	2
	24.000	0.0000			-
336	1.000	3.3350	1	1.000	2
	17.000	0.0000			
337	1.000	5.7460	1	1.000	2
	24.000	0.0000			
33 8	18.000	2.5650	1	1.000	2
	24.000	0.0000			
339	1.000	6.9260	1	1.000	2
	18.000	0.0000			
34 0	6.000	5.5920	1	1.000	2
	24.000	0.0000			
341	1.000	8.5170	1	1.000	2
	22.000	0.0000			
342	2.000	0.4100	1	1.000	2
	11.000	0.0000			
343	3.000	0.0510	1	1.000	2
	4.000	0.0000			
347	3.000	0.2570	1	1.000	2
240	9.000	0.0000			
348	2.000	0.7700	1	1.000	2
740	20.000	0.0000	4		
549	12.000	0.1030	1	1.000	2
750	20.000	0.0000			_
שככ	21 000	0.1540	1	1.000	2
251	6 000	0.0000		4 999	_
221	7 000	0.0000	T	1.000	2
252	2 000	0.0000	4	1 000	-
222	9 000	0.1030	T	1.000	2
364	23 000	0.0000	4	1 000	_
-04	21 000	0 0000 0. 1020	T	1.000	Z
365	1 000	2 6690	1	1 000	-
	21 000	2.0000	Ŧ	T.000	2
		0.0000			
- .	•				

Total Water Applied (cm) = 7.705800E+01

Program DATAINH terminated normally.

()

FIFTH YEAR OUTPUT

÷

FITTH-YEAR OWTPUT

UNSAT-H Version 3.01 INITIAL CONDITIONS

Input File: J:\Central Maui Landfill\Phase IV Closure\UNSAT-H $\cmlrun5e.inp$ Results File: J:\Central Maui Landfill\Phase IV Closure\UNSAT-H $\mbox{cm}\mbox{run5e}0005.\mbox{re}$ Date of Run: 18 Jun 2012 Time of Run: 13:59:20.98 Title: Central Maui LF - 5 Year - Maximum Rainfall Initial Conditions Initial Conditions _____ DEPTH NODE HEAD THETA TEMP NODE DEPTH HEAD THETA TEMP (cm) (cm) (vol.) (K) (cm) (cm) (vol.) (K) -----1 0.000E+00 1.522E+01 0.4455 298.00 2 1.500E-01 1.541E+01 0.4452 298.00 3 3.700E-01 1.528E+01 0.4454 298.00 4 6.900E-01 1.491E+01 0.4460 298.00 5 1.170E+00 1.443E+01 0.4469 298.00 6 1.890E+00 1.382E+01 0.4479 298.00 7 2.940E+00 1.300E+01 0.4494 298.00 8 4.500E+00 1.195E+01 0.4512 298.00 9 6.820E+00 1.069E+01 0.4535 298.00 10 1.024E+01 9.300E+00 0.4559 298.00 11 1.532E+01 7.933E+00 0.4583 298.00 12 2.039E+01 6.769E+00 0.4604 298.00 13 2.382E+01 5.605E+00 0.4623 298.00 14 2.613E+01 4.480E+00 0.4642 298.00 15 2.769E+01 3.533E+00 0.4657 298.00 16 2.875E+01 2.803E+00 0.4667 298.00 17 2.946E+01 2.275E+00 0.4675 298.00 18 2.994E+01 1.901E+00 0.4680 298.00 19 3.026E+01 1.645E+00 0.4683 298.00 20 3.048E+01 1.466E+00 0.4686 298.00 21 3.052E+01 1.462E+00 0.3451 298.00 22 3.076E+01 2.436E+00 0.3439

	298.00	
() Y	23 3.104E+01 3.933E+00 0.3420 298	3.00 24 3.137E+01 6.300E+00 0.3388
	298.00	
	25 3.176E+01 1.013E+01 0.3334 298	3.00 26 3.223E+01 1.635E+01 0.3249
	298.00	
	27 3 278F+01 2.458F+01 0.3144 298	3.00 28 3.343E+01 3.118E+01 0.3069
	298 00	
	29 3 A20F+01 3 365F+01 0 3043 29	R 00 30 3 511E+01 3 365E+01 0 3043
	208 00	
	21 2 610E 01 2 200E 01 0 2051 20	R 00 37 3 7465+01 3 2135+01 0 3059
	21 3.0130+01 3.2300+01 0.3031 230	
	230,000 - 007E,01 2 167E,01 0 2064 20	R 00 34 4 0765 01 3 1835 01 0 3067
	35 5.8972+01 5.1072+01 0.3004 230	3.00 34 4.0/02401 3.1032401 0.3002
	298.00 25 4 2005 01 2 2105 01 0 2049 20	0 00 26 4 5295,01 2 7155,01 0 2007
	35 4.288E+01 3.318E+01 0.3048 29	5.00 50 4.5562+01 5.7152+01 0.5007
	298.00 27 4 0255.01 4 0155.01 0 2000 20	0 00 - 20 E 196E 01 2 201E 02 0 2022
	37 4.83500 4.915000 0.2090 29	5.00 56 5.180E+01 5.501E+02 0.2052
	298.00	0 00 40 C 0035.01 7 0375.03 0 1057
	39 5.601E+01 6.348E+03 0.1075 29	5.00 40 6.095c+01 7.052c+05 0.1052
	298.00 A1 C FRAF. 01 7 2085.02 0 1709 20	9 00 47 7 0005.01 5 2905.07 0 1920
	41 0.3846+01 7.3986+02 0.1708 29	0.00 42 7.000E+01 5.569E+02 0.1629
	298.00 42 7 2515.01 4 4945.02 0 1002 20	0 00 44 7 647E 01 2 067E 02 0 1054
	43 7.351E+01 4.464E+02 0.1905 29	8.00 44 7.047E+01 5.907E+02 0.1954
	45 7 9095.01 7 6745.07 0 1001 70	0 00 AC 0 1105,01 2 4045,02 0 2010
1	45 7.8500+01 5.0540+02 0.1551 25	0.00 +0 0.110C+01 3.40+C+02 0.2013
	47 0 200E 01 2 240E 02 0 2040 20	8 00 A8 8 A305,01 3 1175,02 0 2057
	47 8.2000+01 5.2400+02 0.2040 25	8.00 +0 8.433E+01 3.11/E+02 0.203/
	40 8 FC7F.01 2 077F.07 0 2071 20	9 00 50 9 6755,01 2 0405,02 0 2081
	49 8.30/E+01 3.022E+02 0.20/1 29	0.00 JU 0.07JE+01 2.549E+02 0.2001
	230,000 51 0 7000,01 2 8015,02 0 2000 20	0 00 52 0 9425,01 2 9445,02 0 2007
	200 00 21 8.700E+01 2.091E+02 0.2090 29	0.00 J2 0.84JE+01 2.844E+02 0.2057
	230.000 52 0 0005.01 2 9075.02 0 2102 20	0 00 54 0 0625,01 2 7765,02 0 2100
	22 0.900E+01 2.00/E+02 0.2103 29	0.00 34 8.905E+01 2.770E+02 0.2100
	298.00 FE 0 010F.01 2 751F.02 0 2112 20	0 00 56 0 040E 01 2 721E 02 0 211E
	55 9.010E+01 2.751E+02 0.2112 29	8.00 50 9.0492401 2.7512402 0.2115
	57 9.082E+01 2.714E+02 0.2118 29	8.00 58 9.110E+01 2.700E+02 0.2120
	59 9.134E+01 2.688E+02 0.2122 29	8.00 60 9.144E+01 2.683E+02 0.2123
	298.00	
	61 9.148E+01 2.682E+02 0.2123 29	8.00 62 9.190E+01 2.677E+02 0.2124
	298.00	
	63 9.277E+01 2.667E+02 0.2126 29	18.00 64 9.460E+01 2.645E+02 0.2129
	298.00	
	65 9.844E+01 2.601E+02 0.2137 29	08.00 66 1.065E+02 2.512E+02 0.2153
	298.00	
\sim	67 1.145E+02 2.427E+02 0.2168 29	98.00 68 1.183E+02 2.387E+02 0.2176

298.00 69 1.201E+02 2.369E+02 0.2179 298.00 70 1.210E+02 2.360E+02 0.2181 298.00 71 1.214E+02 2.356E+02 0.2182 298.00 72 1.219E+02 2.351E+02 0.2183 298.00 73 1.220E+02 2.350E+02 0.1128 298.00 74 1.224E+02 1.432E+02 0.1151 298.00 75 1.232E+02 1.163E+02 0.1166 298.00 76 1.251E+02 1.029E+02 0.1176 298.00 77 1.289E+02 1.001E+02 0.1179 298.00 78 1.369E+02 1.000E+02 0.1179 298.00 79 1.449E+02 1.000E+02 0.1179 298.00 80 1.488E+02 1.000E+02 0.1179 298.00 81 1.506E+02 1.000E+02 0.1179 298.00 82 1.515E+02 1.000E+02 0.1179 298.00 83 1.519E+02 1.000E+02 0.1179 298.00 84 1.524E+02 1.000E+02 0.1179 298.00 Initial Water Storage = 37.3358 cm NOTE: There are no temperature data when plants are modelled. ********** DAILY SUMMARY: Day = 1, Simulated Time = 24.0000 hr -----Node Number = 1 20 40 60 72 Depth (cm) = 0.00000 30.48000 60.93000 91.44000 121.92000 Water (cm3/cm3) 0.42054 = 0.46837 0.10526 0.21230 0.21824 Head (cm) = 3.05061E+01 1.61961E+00 7.00976E+03 2.68357E+02 2.35112E+02 LigWater Flow (cm)=-7.79704E-02 3.17621E-01-3.48313E-04-2.54444E-04-2.04924E-06 Plant Sink (cm) = 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 LIQUID PRESTOR INFIL RUNOFF EVAPO TRANS DRAIN NEWSTOR STORAGE 37.3358+ 0.0000+ 0.0000 - 0.0798- 0.0000- 0.0000 = 37.2559 vs.

37.2541

Mass Balance = 1.8010E-03 cm; Time step attempts = 160 and successes = 160 Evaporation: Potential = 0.0798 cm, Actual = 0.0798 cm Transpiration: Potential = 0.0702 cm, Actual = 0.0000 cm

DAILY SUMMARY: Day = 365, Simulated Time = 24.0000 hr Node Number = 1 20 40 60 72 Depth (cm) = 0.00000 30.48000 60.93000 91.44000 121.92000 Water (cm3/cm3) = 0.44548 0.46856 0.10519 0.20971 0.21525 Head (cm) = 1.52205E+01 1.46556E+00 7.03204E+03 2.84509E+02 2.51256E+02 LiqWater Flow (cm) = 2.34997E+008.11226E-02-3.43818E-04-2.19800E-04-1.80846E-06 Plant Sink (cm) = 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

LIOUID PRESTOR INFIL RUNOFF **EVAPO** TRANS DRAIN NEWSTOR STORAGE 34.8515+ 2.3556+ 0.3057 - 0.0032- 0.0000- 0.0000 = 37.2039 vs. 37.2041 Mass Balance = -1.8478E-04 cm; Time step attempts = 183 and successes = 183 Evaporation: Potential = 0.0800 cm, Actual = 0.0032 cm Transpiration: Potential = 0.0000 cm, Actual = 0.0000 cm 1 ____ UNSAT-H Version 3.01

SIMULATION SUMMARY

Title:

- 5 Year - Maximum Rainfall

Transpiration Scheme is:	=	1	
Potential Evapotranspiration	=	1.3342E+02	[cm]
Potential Transpiration	Ħ	7.1323E+01	[cm]
Actual Transpiration	×	2.6347E+01	[cm]
Potential Evaporation	=	6.2166E+01	[cm]
Actual Evaporation	-	1.2138E+01	[cm]
Evaporation during Growth	=	1.2138E+01	[cm]
Total Runoff		3.8840E+01	[cm]
Total Infiltration	H	3.8236E+01	[cm]
Total Basal Liquid Flux (drainage)	=	6.8019E-05	[cm]
Total Basal Vapor Flux (temp-grad)	=	0.0000E+00	[cm]
Total Applied Water	=	7.7058E+01	[cm]
Actual Rainfall	-	7.7076E+01	[cm]
Actual Irrigation	Ħ	0.0000E+00	[cm]
Total Final Moisture Storage	¥	3.7204E+01	[cm]
Mass Balance Error	Ξ	-1.1700E-01	[cm]
Total Successful Time Steps	-	60195	
Total Attempted Time Steps	=	60545	
Total Time Step Reductions (DHMAX)	-	0	
Total Changes in Surface Boundary	=	36733	
Total Time Actually Simulated	-	3.6500E+02	[days]

Total liquid water flow (cm) across different depths at the end of 3.6500E +02 days:

DEPTH	FLOW	DEPTH	FLOW	DEPTH	FLOW
0.000	2.6098E+01	0.075	2.6237E+01	0.260	2.5871E+01
0.530	2.5304E+01	0.930	2.4485E+01	1.530	2.3334E+01
2.415	2.1794E+01	3.720	1.9774E+01	5.660	1.7242E+01
8.530	1.4343E+01	12.780	1.1371E+01	17.855	9.0729E+00
22.105	7.6889E+00	24.975	6.9162E+00	26.910	6.4509E+00
28.220	6.1588E+00	29.105	5.9713E+00	29.700	5.8498E+00
30.100	5.7704E+00	30.370	5.7178E+00	30.500	5.6929E+00
30.640	5.6661E+00	30.900	5.6149E+00	31,205	5.5540E+00
31.565	5.4812E+00	31.995	5.3922E+00	32.505	5.2854E+00
33.105	5.1598E+00	33.815	5.0077E+00	34.655	4.8269E+00
35.650	4.6160E+00	36.825	4.3728E+00	38,215	4.0961E+00
39.865	3.7696E+00	41.820	3.3898E+00	44.130	2.9463E+00
46.865	2.4368E+00	50.105	1.8490E+00	53.935	1.1821E+00
58.470	4.3658E-01	63.385	-1.2798E-01	67.920	-1.2649E-01
71.755	-1.2348E-01	74.990	-1.1967E-01	77.725	-1.1562E-01

	80.040	-1.1165E-01	81.990	-1.0794E-01	83.635	-1.0458E-01
1 (19)	85.030	-1.0156E-01	86.210	-9.8911E-02	87.205	-9.6600E-02
	88.045	-9.4600E-02	88.755	-9.2876E-02	89.355	-9.1395E-02
	89.865	-9.0120E-02	90.295	-8.9034E-02	90.655	-8.8116E-02
	90.960	-8.7334E-02	91.220	-8.6662E-02	91.390	-8.6221E-02
	91.460	-8.6039E-02	91.690	-8.5441E-02	92.335	-8.3760E-02
	93.685	-8.0227E-02	96.520	-7.2741E-02	102.445	-5.6801E-02
	110.455	-3.4413E-02	116.380	-1.7218E-02	119.215	-8.8431E-03
	120.565	<u>-4.8209E-03</u>	121.210	-2.8914E-03	121.670	-1.5127E-03
L ENLING	121.940	-7.0156E-04	122.170	-6.5164E-04	122.815	-5.3816E-04
	124.165	-2.8104E-04	127.000	8.8228E-06	132.925	6.6238E-05
LATON	140.935	6.7992E-05	1 46.860	6.8019E-05	149.695	6.8019E-05
FLOWFU	151.045	6.8019E-05	151.690	6.8019E-05	152.150	6.8019E-05
	152.400	6.8019E-05				

Total plant water uptake (cm) at different depths:

DEPTH	WATER UPTAKE	DEPTH	WATER UPTAKE	DEPTH	WATER UPTAKE
0.000	0.0000E+00	0.150	3.8556F-01	0 370	5 7565E_01
0.690	8.2358E-01	1,170	1 1520E+00	1 800	1 5/025-01
2.940	2.0246E+00	4.500	2 5300F100	6 820	2 80505,00
10.240	2.9700E+00	15.320	2.2964F+00	20.320	1 38255+00
23.820	7.7194E-01	26.130	4.6486F-01	27 690	2 92205-01
28.750	1.8761E-01	29.460	1.2173F-01	29 940	7 9675E-02
30.260	5.2870E-02	30.480	2.5159E-02	30,520	2 7235E-02
30.760	5.1013E-02	31.040	6.0359E-02	31.370	7 1757E-02
31.760	8.6262E-02	32.230	1.0290E-01	32.780	1.2150E-01
33.430	1.4396E-01	34.200	1.7010E-01	35.110	2.0070F-01
36.190	2.3543E-01	37.460	2.7614E-01	38,970	3.2369E-01
40.760	3.7762E-01	42.880	4.3859E-01	45.380	5.0948F-01
48.350	5.8766E-01	51.860	6.7014E-01	56.010	7.4608E-01
60.930	5.6455E-01	65.840	0.0000E+00	70.000	0.0000F+00
73.510	0.0000E+00	76.470	0.0000E+00	78.980	0.0000E+00
81.100	0.0000E+00	82.880	0.0000E+00	84.390	0.0000F+00
85.670	0.0000E+00	86.750	0.0000E+00	87,660	0.0000F+00
88.430	0.0000E+00	89.080	0.0000E+00	89,630	0.0000F+00
90.100	0.0000E+00	90.490	0.0000E+00	90.820	0.0000E+00
91.100	0.0000E+00	91.340	0.0000E+00	91.440	0.0000E+00
91.480	0.0000E+00	91.900	0.0000E+00	92.770	0.0000E+00
94.600	0.0000E+00	98.440	0.0000E+00	106.450	0.0000E+00
114.460	0.0000E+00	118.300	0.0000E+00	120.130	0.0000F+00
121.000	0.0000E+00	121.420	0.0000E+00	121.920	0.0000F+00
121.960	0.0000E+00	122.380	0.0000E+00	123.250	0.0000F+00
					3.00002100

~

•

 \bigcirc

125.080	0.0000E+00	128.920	0.0000E+00	136.930	0.0000E+00
144.940	0.0000E+00	148.780	0.0000E+00	150.610	0.0000E+00
151.480	0.0000E+00	151.900	0.0000E+00	152.400	0.0000E+00

APPENDIX B

FINAL COVER SLOPE STABILITY ANALYSIS

(Please see Operations Plan Appendix C for Gross Slope Stability of The Liner System)

CML Landfill Cells Final Cover Surficial Slope Stability

Static Factor of Safety

For an infinite slope (Matasovic, 1989):

 $FS = \{c / (\gamma z \cos^2 \beta) + \tan \phi [1 - \gamma_w (z - d_w) / \gamma z] \} / \tan \beta$

Where: FS = Static factor of safety c = cohesion intercept of soil (psf) γ = total unit weight of soil (pcf) z = total depth of soil (ft) β = slope angle (degrees) ϕ = internal angle of friction of soil (degrees) γ_w = unit weight of water (pcf) d_w = depth to groundwater surface parallel to slope (ft)

Evaluate a 2-feet thick soil cover layer with water table at 0 and 2 feet below the surface, corresponding to saturated depths of 2 and 0 feet respectively.

The input values and result for each case are presented below:

Parameter	Saturated Thickness (ft)			
Falameter	0	2		
С	200 psf	200 psf		
γ	125 pcf	125 pcf		
z	2 ft	2 ft		
β	21.8° (2.5:1 slope)	21.8° (2.5:1 slope)		
φ	35 °	35°		
Υ _w	62.4 pcf	62.4 pcf		
d_w	2 ft	0 ft		
FS	4.1	3.2		

The static factor of safety for surficial slope stability exceeds 1.5 under all conditions of cover soil saturation.

Pseudo-Static Factor of Safety (PSFS) and Yield Acceleration (K_y) for Earthquake Event

For an infinite slope (Matasovic, 1989):

 $K_{y} = \frac{c}{(\gamma z \cos^{2} \beta) + \tan \phi [1 - \gamma_{w}(z - d_{w})/\gamma z] - \tan \beta} / (1 + \tan \beta \tan \phi)$

Where: $K_v =$ yield acceleration (g)

c = cohesion intercept of soil (psf)

- γ = unit weight of soil (pcf)
- z = total depth of soil (ft)
- β = slope angle (degrees)

 ϕ = internal angle of friction of soil (degrees)

 γ_w = unit weight of water (pcf)

 d_w = depth to groundwater surface parallel to slope (ft)

Evaluate a the cover with water levels at 0 and 2 feet below the surface of the cover soil, corresponding to saturated depths of 2 and 0 feet respectively.

From the USGS earthquake hazards maps, the estimated peak horizontal ground acceleration at CML Landfill is 0.36 g, with a 2% probability of occurrence in 50 years, which is approximately equivalent to a probability of 10% in 250 years, and represents an event with an average return period of approximately 2,475 years. The seismic coefficient is one half of the peak acceleration, or about 0.18g. The maximum permanent deformation of the cover is given as a function of yield acceleration as summarized in the following table. The input values and results for each case are presented below:

Baramatar	Saturated Thickness (ft)			
Falanlelei	0	2		
С	200 psf	200 psf		
γ	125 pcf	125 pcf		
Z	2 ft	2 ft		
β	21.8° (2.5:1 slope)	21.8° (2.5:1 slope)		
ϕ	35 °	35 °		
Υ _w	62.4 pcf	62.4 pcf		
d_w	2 ft	0 ft		
PSFS	2.8 > 1	2.2 > 1		
K _y	> 0.9g > 0.18g	0.68g > 0.18g		
Permanent Displacement	0 inch	0 inch		

Even under fully saturated conditions, maximum permanent displacement of the slope during the design earthquake event is estimated to be negligible, which is an acceptable deformation of final cover.

APPENDIX C

CLOSURE AND POST-CLOSURE COST ESTIMATES

CENTRAL MAUI LANDFILL CLOSURE / POST-CLOSURE PLAN COST ESTIMATE

SITE DESCRIPTION

General Site Information

Name of Facility	Central Mau					
Solid Waste Facility Permit No.	/aste Facility Permit No. LF0072-93					
Facility Operator	County of Ma	aui				
Site Owner	County of Ma	aui				
Site Address	Pulehu Road	ulehu Road, Puunene, Hawaii				
Assessors Parcel No.	TMK:(2)3-8-	MK:(2)3-8-003 :POR. of 004				
Anticipated Closure Date	Phases IV th	proximately 2024				
Site Characteristics						
Total Site Area		300	acres			
Developed Waste Footprint		Currently Clo	sed: Phase I and II (acres):	42		
		Currently Op	en: Phases IV, V, & V-B Ext	41		
Waste Footprint to be Develope	ed	28.1	acres in Phase III			
Type of Fill		Area				
Underlying Geology		Igneous rock				
Nearest Major Fault		N/A				
On-Site Faults		No known fa	ults			
Depth to Groundwater	Minimum	216 to 297	' feet			
Groundwater flow direction		Generally no	rth/northwest			
Groundwater gradient		0.0001 ft./ft.				
Waste Types and Volumes						
Waste Type		MSW & C&D				
Design Capacity		5,200,000	CY in Phases I & II			
		6,691,075	CY in Phases IV, V, V-B Ext., & I	11		
Thickness of Waste at Closure		Minimum Average	20 120			
		Maximum	160			

Average Height	Above Surroun	ding Terrain	100							
Typical Grades c	of Side Slopes		3:1	horizontal:vertical						
Quantity of Wast	e Received	Typical	770	tons/day						
Landfill Design	Characteristic	<u>cs</u>								
Unlined Waste A	rea		42	acres (Phase I & II)						
Lined Area at Clo	osure Cu	rrently Active:	41	acres (Phases IV, V, & V-B Ext)						
Maxim	I o B um Area Requ	e Developed: iring Closure:	28.1 69.1	acres (Phase III) acres						
Base Liner Desig	n Section									
	Foundation la Clay liner Geomembran	yer e	Recompacted GCL (Phase 2 ft. clay @ 2 60 mil HDPE 80 mil HDPE	Recompacted native soil GCL (Phase IV-A), 2 ft. clay @ 10-7 cm/sec (Ph. IV-B, V, V-B Ext) 2 ft. clay @ 10-7 cm/sec (Ph. III-A - Planned) 60 mil HDPE (Phase IV-A), 80 mil HDPE (Ph. VI-B, V, V-B Ext)						
	Drainage laye Operations la	er yer	Geocomposite or 1 ft. gravel, geotextile above and below 2 ft. (3 ft. above geocomposite drainage layer) native soil							
Side Slope Liner	Design Sectio	n								
	Subgrade Primary liner		Native soil/c GCL (Phase 2 ft. clay @ 2	ushion layer graded and recompacted IV-A) 10-7 cm/sec (Ph. IV-B, V, V-B Ext)						
	Geomembran	е	60 mil HDPE 80 mil HDPE	(Phase IV-A) (Phase IV-A) (Ph. IV-B, V, V-B Ext) (Ph. III-A - Planned)						
	Drainage laye Geotextile Operations la	er yer	Geotextile 16 oz. nonwo 2 ft. native se	oven oil						
Leachate Collect	ion and Treatn	nent								
	Primary Colle	ctors	Perforated p	ipes in trenches						
	Sumps		Phase I & II: Phase IV: M Phase IV-B: Phase III-A:	Manhole 4 Ianhole in Phase IV-A; Internal sump Internal sump (Planned)						
	Treatment		Reintroduce	to landifil; transport to POTW						
Landfill Gas Man	agement									
	Collection	vertical wells	s; norizontal l	trench collectors on floor of Phase V-VI cells						
	Treatment	Flare; potent	tial future ene	rgy recovery						

CENTRAL MAUI LANDFILL CLOSURE PLAN

CLOSURE COST ESTIMATE PHASES IV, V and V-B Ext.

1. Final Cover

2.

a. Area to be covered Computed surface area	41 1,785,960	acres sq. ft.		
b. Grading	<u>Quantity</u>	<u>Unit Cost</u>	<u>Amount</u>	
s.y.	198,440	\$ 4.79	\$ 950,552	_
Total			\$ 950,552	_
c. Cover Soil				
Foundation layer (in-place interim cover, none added during final closure)	1	ft. (existing 1 ft.	intermediate o	cover prior to closure)
Monolithic final cover	2.0	ft.		
Total soil thickness	2.0	ft. (in addition to	o existing 1 ft. i	intermediate cover)
Soil volume placed under final cover contract	132,293	cu. yd.		
Percent native soil	100%			
Unit cost to place & compact	\$ 15.52	per cu. yd.		
Cover soil cost			\$ 2,052,642	-
d. Vegetative Layer Thickness Volume Unit cost to supply and place	1 66,147 \$ 17.70	ft. _cu. yd per cu. yd.	• \$ 1,170,970	
e. Geosynthetics	Unit Cost	Quantity	Cost	-
None			\$ -	-
f. Engineering & Construction Quality Assurance				
Total cover construction value	#########			
Engrg. & CQA as percent of construction	15%			
CQA cost			\$ 483,542	-
Final Cover Subtotal				\$ 4,657,707
Revegetation				
a. Area to be revegetated by hydroseeding	41	acres		
b. Unit costs	\$ 11,400	per acre		

	c. Revegetation subtotal							\$	467,420
3.	Leachate Management								
	No modifications required							\$	-
4.	Landfill Gas Monitoring & Control								
	a. Monitoring System								
	2-probe nested wells at 1000-foot spacing. Depths of probes 10 & 40 ft. No. of Wells to be added		0	(To l	be develop	ed d	luring oper	ations)	
	Cost per well	\$	5,873			-			
	Cost for monitoring wells					\$	-	-	
	b. Collection System								
	Extraction Wells, each 10" Header pipe, lin. ft. Misc. Joints & Fittings Flare Station - Supplied with Phases I & II	;	51 3417 1 0	\$ \$	11,746 35.30 26,554	\$ \$ \$	599,057 120,624 26,554 -		
	Total collection system					\$	746,235	-	
	c. Subtotal Landfill Gas							\$	746,235
5.	Groundwater Monitoring Installation								
	Additional wells to install		0	well		_			
	Depth			ft.		_			
	Unit cost of drilling & installation					-			
	Cost of groundwater monitoring system additions							\$	
6.	Drainage & Roads Item & Units	Q	uantity	U	nit Cost		Amount		
	Paved drainage road (top deck), s.y. Aggregate & asphalt v-ditch on benches, l.f. Misc. Improvements, l.s.		4,600 7,550 1	\$ \$ \$	52.07 41.13 68,000	\$ \$	239,506 310,551 68,000	-	
	Total drainage cost							\$	618,057
7.	Security - no modifications required							\$	
8.	Removal of strucures							\$	-
	TOTAL CLOSURE COST							\$	6,489,419
	Contingency		20%	_				\$	1,297,884
	TOTAL INCLUDING CONTINGENCY - 2019 Doll	ars						\$	7,787,303

CENTRAL MAUI LANDFILL CLOSURE PLAN

CLOSURE COST ESTIMATE PHASE III

1. Final Cover

2.

a. Area to be covered	28.1	acres	_
Computed surface area	1,224,036	sq. ft.	-
b. Grading	<u>Quantity</u>	<u>Unit Cost</u>	Amount
Grading preparation for Monolithic Final Cover, s.y.	136,004	\$ 4.79	\$ 651,476
Total			\$ 651,476
c. Cover Soil			
Foundation layer (in-place interim cover, none added during final closure)	1	ft. (existing 1 ft.	. intermediate cover prior to clos
Monolithic final cover	2.0	ft.	
Total soil thickness	2.0	ft. in addition to	existing 1 ft. intermediate cove
Soil volume placed under final cover contract	90,669	cu. yd.	
Percent native soil	100%		_
Unit cost to place & compact	\$ 15.52	per cu. yd.	_
Cover soil cost			\$ 1,406,811
d. Vegetative Layer Thickness Volume Unit cost to supply and place	1 45,335 \$ 17.70	ft. cu. yd per cu. yd.	- - - \$ 802,543
e. Geosynthetics	Unit Cost	Quantity	Cost
None			<u>\$ -</u>
f. Engineering & Construction Quality Assurance			
Total cover construction value	\$ 2,209,354		-
Engrg. & CQA as percent of construction	15%		-
CQA cost			\$ 331,403
Final Cover Subtotal			\$ 3,192,233
Revegetation			
a. Area to be revegetated by hydroseeding	28.1	acres	-

	b. Unit costs	\$	11,400	per a	cre	-			
	c. Revegetation subtotal							\$	320,354
3.	Leachate Management								
	No modifications required							\$	-
4.	Landfill Gas Monitoring & Control								
	a. Monitoring System								
	2-probe nested wells at 1000-foot spacing. Depths of probes 10 & 40 ft. No. of Wells to be added		0	(To b	e develop	ed c	during opera	atior	าร)
	Cost per well	\$	5,873			-			
	Cost for monitoring wells					\$	-		
	b. Collection System								
	Extraction Wells, each 10" Header pipe, lin. ft. Misc. Joints & Fittings Flare Station - Supplied with Phases I & II		35 2345 1 0	\$ \$ \$	11,746 35.30 18,223 -	\$ \$ \$	411,118 82,781 18,223 -		
	Total collection system					\$	512,122		
	c. Subtotal Landfill Gas							\$	512,122
5.	Groundwater Monitoring Installation								
	Additional wells to install		0	well		-			
	Depth			ft.		-			
	Unit cost of drilling & installation					-			
	Cost of groundwater monitoring system additions							\$	-
6.	Drainage & Roads Item & Units	Q	uantity	Ur	nit Cost		Amount		
	Paved drainage road (top deck), s.y.		7,300	\$	52.07	\$	380,086		
	Aggregate & asphalt v-ditch on benches, I.f. Misc. Improvements, I.s.		3,200 1	\$ \$	41.13	\$ \$	131,624 47,770		
	Total drainage cost				,		,	\$	559,480
7.	Security - no modifications required							\$	_
8.	Removal of strucures							\$	-
	TOTAL CLOSURE COST							\$	4,584,189
	Contingency		20%					\$	916,838
	TOTAL INCLUDING CONTINGENCY - 2019 Dolla	ars		-				\$	5.501.027

CENTRAL MAUI LANDFILL POST-CLOSURE MAINTENANCE PLAN

ANNUAL POST-CLOSURE COST ESTIMATE PHASES I AND II

1. Final Cover Maintenance

a. Earthwork Repair Area assumed for repair 1 acre Unit cost for repair incl. CQA and Engr. 1.25 per sq. ft. \$ Annual cost of repairs \$ 54,432 b. Revegetation Area assumed for repair 1 acre Unit cost for repair 11,871 per acre \$ Annual cost of repairs \$ 11,871 c. Subtotal for Final Cover Maintenance 66,304 \$ 2. Leachate Management (Monitoring) a. Labor 1 hr/week b. Labor unit cost \$ 47.07 per hour c. Annual labor cost 2,448 \$ d. Annual allowance for repairs & materials \$ 5,873 e. Leachate sampling costs Number of samples per round 1 Frequency of sampling per year 1 Sampling cost per round 587 \$ Testing cost per sample \$ 1,175 Annual sampling and testing costs \$ 1,762 g. Subtotal Leachate Management \$ 10,083 3. Landfill Gas Management a. Annual Maintenance of Flare Station No. of flare stations See Phases IV, V, V-B EXT., & III Capital cost of flares and blowers Annual maintenance as % of capital cost

	Annual flare maintenance and repairs					\$	-	
b. (Collection System Maintenance							
	Annual repairs / replacements			\$	35,239			
	Annual system testing & balancing			\$	46,985			
	Total collection system maintenance					\$82	,224	
c. S	Subtotal Landfill Gas Management						_	\$ 82,224
4. Monito	pring							
a. (Gas Monitoring							
	Quarterly Surface Emissions Monitoring			\$	27,016			
	Quarterly sampling - methane & trace gase All points tested for TOC using FID/OVA 1 Bag sample collected for trace gas analys	⊧s sis using C	GC					
	Sampling cost per event	\$	2,349					
	Trace gas testing cost per event	\$	1,175					
	Annual cost for sampling & testing			\$	14,095			
	Annual cost for probe replacement			\$	587			
	Gas Monitoring Subtotal					\$ 41	,699	
b. (Groundwater Monitoring							
	Number of wells	See Phas	ses IV, V	, V-B E	EXT., & III			
	Sample events per year	\$	-					
	Sampling cost per event	\$	-					
	Testing costs per sample	\$	-					
	Annual sampling and testing costs			\$	-			
	Annual maintenance & replacement of wells	s		\$	-			
	Groundwater Monitoring Subtotal					\$	-	
d. 1	Fotal Monitoring Costs						-	\$ 41,699
5. Draina	ge and Roads - Annual maintenance cost						-	\$ 23,492
6. Securi	ty - Annual maintenance cost						-	\$ 1,175
7. Inspec	tion - Semi-annual Inspections - annual cos	st					-	\$ 5,873
	TOTAL ANNUAL COST (2019 Dollars)						-	\$ 230,849
	TOTAL COST FOR EIGHTEEN (18) YEAR	S OF PO	ST-CLOS	SURE	CARE			\$ 4,155,282

CENTRAL MAUI LANDFILL POST-CLOSURE MAINTENANCE PLAN

ANNUAL POST-CLOSURE COST ESTIMATE PHASES IV, V, V-B EXT., & III

1. Final Cover Maintenance

2.

3.

a. Earthwork Repair

	Area assumed for repair	 1.75	acre			
	Unit cost for repair incl. CQA and Engr.	\$ 1.25	per sq	. ft.		
	Annual cost of repairs				\$ 95,257	
b. R	levegetation					
	Area assumed for repair	 1.75	acre			
	Unit cost for repair	\$ 11,871	per ac	re		
	Annual cost of repairs				\$ 20,775	
c. S	ubtotal for Final Cover Maintenance					\$ 116,031
Leacha	ate Management (Monitoring)					
a. L	abor	 13	hr/wee	k		
b. L	abor unit cost	\$ 47.07	per ho	ur		
c. A	nnual labor cost				\$ 32,634	
d. A	nnual allowance for repairs & materials				\$ 7,831	
e. L	eachate sampling costs					
	Number of samples per round			4		
	Frequency of sampling per year			2		
	Sampling cost per round		\$	587		
	Testing cost per sample		\$	1,175		
	Annual sampling and testing costs				\$ 10,572	
g. S	Subtotal Leachate Management					\$ 51,036
Landfil	l Gas Management					
a. A	nnual Maintenance of Flare Station					
	No. of flare stations			1		
	Annual flare maintenance and repairs				\$ 65,129	
b. C	ollection System Maintenance					

		Annual repairs / replacements			\$	68,081	-			
		Annual system testing & balancing			\$	90,775				
		Total collection system maintenance					\$	158,856	-	
	c. S	Subtotal Landfill Gas Management							\$	223,985
4.	Monito	pring								
	a. (Sas Monitoring								
		Quarterly surface emissions monitoring			\$	54,353				
		Quarterly sampling - methane & trace gase All points tested for TOC using FID/OVA 1 Bag sample collected for trace gas analys	s sis usir	ng GC						
		Sampling cost per event	\$	2,349			-			
		Trace gas testing cost per event	\$	1,175			-			
		Annual cost for sampling & testing			\$	14,095	-			
		Annual cost for probe replacement			\$	587				
		Gas Monitoring Subtotal					\$	69,036	-	
	b. (Groundwater Monitoring								
		Number of wells		9			-			
		Sample events per year		2			-			
		Sampling cost per event	\$	2,349			-			
		Testing costs per sample	\$	2,643						
		Annual sampling and testing costs			\$	52,271	-			
		Annual maintenance & replacement of well	s		\$	2,937	-			
		Groundwater Monitoring Subtotal					\$	55,207	-	
	d. 1	otal Monitoring Costs							\$	124,243
5.	Draina	ge and Roads - Annual maintenance cost							\$	12,408
6.	Securi	ty - Annual maintenance cost							\$	1,175
7.	Inspec	tion - Semi-annual Inspections - annual cos	st						\$	5,873
		TOTAL ANNUAL COST (2017 Dollars)							\$	534,752
		TOTAL COST FOR THIRTY (30) YEARS C)F POS	ST-CLOS	URE	CARE			\$	16,042,546

TABLE 7-1 CENTRAL MAUI LANDFILL CLOSURE / POST-CLOSURE COSTS

<u>Closure</u>	Phase	IV, V, V-B Ext & III	<u>Total</u>
Final Cover	\$	7,849,940	\$ 7,849,940
Revegetation	\$	787,774	\$ 787,774
Leachate Management	\$	-	\$ -
Landfill Gas Monitoring & Control	\$	1,258,357	\$ 1,258,357
Groundwater Monitoring Installation	\$	-	\$ -
Drainage Installation	\$	1,177,538	\$ 1,177,538
Security Installation	\$	-	\$ -
Removal of Structures	\$	-	\$ -
Subtotal Closure	\$	11,073,609	\$ 11,073,609
Contingency	\$	2,214,722	\$ 2,214,722
Total Closure Cost (2019 Dollars)	\$	13,288,331	\$ 13,288,331

Post-Closure Monitoring and Maintenance - Annual Cost

	<u>P</u>	hase I & II	Pha	<u>ase IV, V, V-B Ext & III</u>	
	(C	(Closed 2007)		(Future Costs)	<u>Total</u>
Final Cover Maintenance	\$	66,304	\$	116,031	\$ 182,335
Leachate Management	\$	10,083	\$	51,036	\$ 61,119
Gas Management	\$	82,224	\$	223,985	\$ 306,208
Monitoring	\$	41,699	\$	124,243	\$ 165,942
Drainage	\$	23,492	\$	12,408	\$ 35,900
Security	\$	1,175	\$	1,175	\$ 2,349
Inspection	\$	5,873	\$	5,873	\$ 11,746
Subtotal - Annual Cost - 2019 Dollars	\$	230,849	\$	534,752	\$ 765,601
No. of Years Required / Remaining Responsibility		18		30	
Subtotal x years	\$	4,155,282	\$	16,042,546	\$ 20,197,829
Total Closure and Post-Closure Cost	\$	4,155,282	\$	29,330,877	\$ 33,486,159