PVT LANDFILL

HUMAN HEALTH RISK ASSESSMENT OF AES CONDITIONED ASH LIMITED DEMONSTRATION PROJECT

Submitted To:
PVT Landfill
87-2020 Farríngton Hwy
Waianae, Hawaii 96792

Submitted By:
AMEC Earth \& Environmental, Inc.
3049 Ualena Street, Suite 1100
Honolulu, Hawaii 96819

TABLE OF CONTENTS

SECTION	TITLE	PAGE
ES	EXECUTIVE SUMMARY	ES-1
1	INTRODUCTION	1-1
1.1	Site or Sampling Area Location	1-1
1.2	Approach	1-2
2	AIR MONITORING	2-1
3.0	HUMAN HEALTH RISK ASSESSMENT	3-1
3.1	Hazard Identification	3-2
3.2	Toxicity Assessment	3-2
3.3	Exposure Assessment	3-4
3.3.1	Identification of Receptors	3-4
3.3.2	Identification of Potential Exposure Pathways	3-4
3.3.3	Identification of Exposure Scenarios	3-5
3.3.4	Estimation of Exposure Point Concentrations in Ash	3-5
3.3.5	Estimation of Exposure Point Concentrations in Fugitive Dust	3-6
3.3.6	Exposure Dose Calculations	3-11
3.4	Risk Characterization	3-16
3.4.1	Noncarcinogenic Risk Characterization	3-16
3.4.2	Carcinogenic Risk Characterization	3-17
4	UNCERTAINTY ANALYSIS	4-1
4.1	Hazard Identification	4-1
4.2	Toxicity Assessment	4-1
4.3	Exposure Assessment	4-2
4.3.1	Estimation of Particulate Emission Factors	4-3
4.3.2	Estimation of Airborne Dust Concentrations Offsite	4-3
4.3.3	Estimation of Exposure Dose	4-4
4.4	Risk Characterization	4-5
5	REFERENCES	5-1
	LIST OF FIGURES	
1	Site Location Map	1-3
2	Sample Location Map	2-4

LIST OF APPENDICES

Appendix A: Ambient Air Monitoring Field Notes
Appendix B: Ambient Air Monitoring Photographs
Appendix C: Ambient Air Monitoring Analytical Results
Appendix D: AES Ash Analytical Results
Appendix E: Statistical Analysis
Appendix F: Air Dispersion Modeling
Appendix G: Risk Characterization Spreadsheets
Appendix H: Relative Absorption Factors Derivation

EXECUTIVE SUMMARY

The Hawaii Department of Health (DOH) has requested that a demonstration project and human health risk assessment be performed to evaluate the safety of using AES conditioned coal ash for various soil replacement operational uses at PVT Landfill. According to the DOH the demonstration project and assessment should include all uses for which ash is being considered for beneficial reuse. Beneficial reuses evaluated in this assessment include:

- Daily cover,
- Void space fill,
- Interim daily cover and;
- Liquid adsorption

The demonstration project consisted of ambient air monitoring for respirable dust during actual operational use of AES ash for void space fill and daily cover. Respirable dust concentrations (PM10) were measured by Active Air Monitoring and Real-Time Personal DataRAM (pDR). The respirable particulate data measured in the demonstration project was used in conjunction with chemical analytical data of AES ash samples collected from 2008 to 2009 to estimate chemical concentrations at specific receptor locations at the work site and in the adjacent community. Forty-two (42) composite conditioned ash samples (analyzed for antimony, arsenic, barium, beryllium, boron, cadmium, chromium, copper, iron, lead, mercury, molybdenum, nickel, selenium, silver, thallium, and zinc) were included in the analysis. The UCL 95 percentile mean concentration was assumed to be representative of future conditioned ash chemical concentrations to be used at PVT for operational uses. Utilization of such a robust historical dataset ensured that inter- and intra-batch variability was not a significant contributor to uncertainty. All respirable dust measured in this study was assumed to be ash-derived.

Potential health risks were estimated for landfill workers directly working with ash who may inhale ash-derived dust and ingest and dermally absorb metals in ash. Potential health risks via the inhalation pathway were also estimated for hypothetical adult and child
residents who live approximately $1 / 4$ mile downwind from the demonstration project site. Potential estimated lifetime cancer risks were compared to the USEPA and DOH regulatory level of concern of 1×10^{-5} for commercial and industrial workers and 1×10^{-6} for residential receptors. Estimated noncarcinogenic risks are presented as total site Hazard Indices that sum the Hazard Quotients of each Chemical of Potential Concern at the site. A total Hazard Index of 1 was considered to be the regulatory level of concern.

Although not specifically evaluated in the demonstration project and risk assessment, the use of AES conditioned ash for other operational uses such as interim cover and liquid adsorption is qualitatively addressed below and is also considered acceptable practice. The use of AES ash as interim cover was considered for analysis but was deemed Not Required because PVT standard operating procedures require that any ash used as soil replacement be covered by a minimum of 6 inches of soil within 1 month of application (i.e., there are no true interim cover scenarios anticipated). Quantitative risk evaluation of AES ash for liquid adsorption was also deemed Not Required. The addition of any liquids to coal ash was presumed to increase percent moisture and for all practical purposes reduce dust and airborne particulate generation. Any risk associated with ash further wetted for the purposes of liquid adsorption was assumed to be lower than uses evaluated in the current assessment.

WORKER RESULTS

Two worker scenarios were evaluated. The first scenario assumed a worker is in the immediate vicinity of ash dumping and ash use, 8 hours per day, 250 days a year, for 25 years and contacts ash and inhales chemicals in ash-derived dust. The second worker scenario assumed a worker is in the immediate vicinity of ash use during final daily end cap activities 1 hour per day, 250 days a year, for 25 years. Cumulative carcinogenic and noncarcinogenic risks to both worker scenarios were below regulatory levels of concern. For the 8 hour worker, the total cumulative carcinogenic risk and noncarcinogenic hazard index was $1 E-05$ and 0.8 respectively. Cumulative carcinogenic risk and noncarcinogenic hazards for the 1 hour daily end cap worker were $1 E-05$ and 0.3 , respectively.

Date: February 2010

HYPOTHETICAL RESIDENT RESULTS

The residential scenario assumed fugitive dust is generated during ash dumping, ash handling activities and wind erosion. The residential scenario assumed migration of fugitive dust ($24 \mathrm{hrs} /$ day) to residential areas located approximately $1 / 4$ mile away from the site. Residents were assumed to inhale site-derived dust $24 \mathrm{hrs} /$ day, 350 days/year for 30 years. Carcinogenic and noncarcinogenic risks due to inhalation pathways only were 5 E 08 and .01 , respectively.

SECTION 1
 INTRODUCTION

PVT Landfill has retained AMEC Earth and Environmental (AMEC) to quantify potential human health risks associated with various operational uses of AES conditioned ash at PVT Landfill. This document presents the results of the beneficial ash reuse demonstration project and corresponding human health risk assessment (HHRA). The methodology and approach to this study have been previously described in the Sampling and Analysis Plan (AMEC, 2009) and are discussed herein. Deviations from the sampling plan are noted in this report.

According to the DOH the demonstration project and assessment should include all uses for which ash is being considered for beneficial reuse. Beneficial reuses evaluated in this assessment include:

- Daily cover,
- Void space fill,
- Interim daily cover and;
- Liquid adsorption

The HHRA evaluated the impact to workers at the Site during delivery, movement and handling of coal ash. The risk assessment assumed workers would directly contact coal ash as well as inhale airborne particulates containing heavy metals present in ash generated from movement and use of AES ash. The HHRA also evaluated risks to nearby residents (in a residential scenario). Residents were assumed to be exposed to metals in fugitive dust generated by operational uses of ash.

1.1 Site and Sampling Area Location

The PVT Landfill Site is located at 87-2020 Farrington Highway on the western side of the island of O'ahu, in Nanakuli, Hawai'i (Figure 1). The PVT Landfill Site consists of an irregularly shaped 15.44-acre parcel of land (Latitude/Longitude: $21^{\circ} 23^{\prime} 50^{\prime \prime} \mathrm{N} / 158^{\circ} 09^{\prime} 00^{\prime \prime} \mathrm{W}$). The Site is bounded by residential areas at its southern and western borders.

Demonstration Project Section: 1
Date: February 2010

1.2 Approach

This investigation was performed in 2 phases:

Phase 1: Ambient Air Monitoring (Section 2)

- Respirable dust concentrations (PM10) were measured by Active Air Monitoring and Real-Time Personal Data Rams (PDR)

Phase 2: Human Health Risk Assessment (Section 3)

- Conditioned ash analytical lab data for metals were combined with fugitive dust data measured in Phase 1 to assess the potential for human health risks to workers and nearby residents.

Respirable particulate data was used in conjunction with ash analytical data (provided by PVT Landfill) to estimate COPC concentrations at specific receptor locations at the site and in the adjacent community. Ash analytical data (from AES Hawaii through PVT Landfill) provided historical metals data for AES Coal Ash. Mean historic metals concentrations were assumed to represent future ash concentrations. All dust generated was assumed to be ash-derived.

SECTION 2
 AIR MONITORING

Air monitoring was performed in order to determine the respiratory risk associated with the delivery, movement and handling of ash. AMEC utilized two monitoring methods, active air sampling and real-time air monitoring, to determine the amount of respirable particulates (PM10) generated during operational use of AES ash. Air monitoring for respirable dust was conducted at the landfill on October 26, 2009. Air sampling locations are shown on Figure 2 and in Appendix B, photos. Following is a description of the two air monitoring methods used:

Active Air Sampling

Active air sampling was utilized to collect air particulates during different landfill activities. Five (5) sets of low-flow air pumps were positioned at different areas of the landfill face. The pumps were placed at the following locations: 1) by the ash pile, 2) at the road above the ash pile, 3) high area above the ash pile, 4) east of the ash pile, and 5) during end cap activities. Pumps ran for the duration of ash handling activities during delivery and use of fresh AES coal ash. The pumps were set at an air collection rate appropriate for total dust and PM10 particulates. Air samples were submitted to the laboratory for total dust and PM10 analysis.

Real-Time Air Monitoring

Real-time air monitoring, via Personal DataRAM (pDR), was the second method used to determine if nuisance dust was being generated during specific landfill activities (delivery of ash, movement of ash in between delivery of waste, movement of ash at the end of the day). PM10 data was collected using a pDR with cyclone to determine respirable dust concentrations associated with the above listed specific activities.

Results from both the active and real-time sampling events were evaluated and the maximum concentration from either of the data sets was used in the air dispersion model, SCREEN3. SCREEN3 is a single source Gaussian plume model which provides maximum ground-level concentrations for point, area, flare, and volume sources, as well as concentrations in the cavity zone, and concentrations due to inversion break-up and shoreline fumigation. SCREEN3 is a screening version of the ISC3 model.

As previously mentioned, the active sampling data provides dust concentrations from a specific landfill activity (ash handling activities during delivery and use of fresh AES coal ash). This concentration is collected over an abbreviated period of time and does not represent an 8 -hour time weighted average (TWA). The pDR real time data better represents the 8 -hour TWA as it was collected over the course of the work day and therefore higher dust generation periods are offset by periods of lower dust generation. A summary of dust data for the active sampling event and pDR readings are presented in Tables 2-1 and 2-2. Again, in an effort to be health protective, this assessment has utilized the highest dust concentrations in evaluating potential risk.

TABLE 2-1
PM10 Active Air Monitoring Results

Sample ID - Location	Concentration $\left(\mathrm{mg} / \mathrm{m}^{3}\right)$
PVT-D1 PM10 - Ash Pile	0.3
PVT-D2 PM10 - Road Above Ash Pile	0.59
PVT-D3 PM10 - High Area Above Ash Pile	0.34
PVT-U PM10 - East of Ash Pile	0.05
PVT-End Cap PM10 - Ash Pile	1.1

TABLE 2-2
Personal DataRAM (PDR) PM10 Ambient Air Monitoring Results

Location	Maximum Concentration $\left(\mathrm{mg} / \mathrm{m}^{3}\right)$	Average Concentration $\left(\mathrm{mg} / \mathrm{m}^{3}\right)$
PDR-1 - Followed Active Samples D1-2-3-End Cap	1.67	0.044
PDR-2 - Upwind Location by PVT-U	2.88	0.055
PDR-3 - Rover	3.584	0.051

SECTION 3 HUMAN HEALTH RISK ASSESSMENT

A human health risk assessment was conducted to quantify potential risks to workers at the facility and for adult and children residents who might breathe site-related chemicals associated with ash handling activities. Chemicals of Potential Concern (COPCs) included all metals analyzed by AES. Workers were assumed to directly contact ash and inhale dust generated during operational activities, specifically, during the application of ash as daily cover and void space fill. Residential receptors were evaluated assuming they would inhale fugitive dust only.

As described in Section 2 above, AMEC collected fugitive dust data to determine realistic emission rates for specific operational uses. Emission rates were then used as inputs into SCREEN3 to conservatively estimate maximum ground-level concentrations of respirable dust at the nearest residential receptor point. Respirable particulate data was used in conjunction with ash analytical data (provided by PVT Landfill) to estimate COPC concentrations at specific receptor locations at the site and in the adjacent community. Potential health risks via the inhalation pathway were estimated for adult and child residents who reside approximately $1 / 4$ mile from disposal site. Potential health risks were also estimated for workers at the facility which may inhale ash derived dust and directly contact the ash.

The phases of the risk process are described herein. The protocol adopted is consistent with the approach recommended by the National Research Council (NRC). The NRC, established by the National Academy of Sciences (NAS) to further scientific knowledge and to advise the federal government, has established a four-step paradigm for conducting health-based risk assessments (NAS 1983). This paradigm has been adopted by USEPA as well as many federal and state regulatory agencies. In accordance with the NRC recommendations, this risk assessment is organized into the following four steps:

- Hazard Identification;
- Toxicity Assessment;
- Exposure Assessment; and
- Risk Characterization.

Each of these steps is detailed in the section below.

3.1 Hazard Identification

In this step, compounds assumed to be of concern are selected for inclusion in the quantitative risk assessment. These compounds are designated as COPCs. The selection of COPCs for this investigation is based upon historical information regarding the chemical composition of AES conditioned ash.

Analytical data for metals were provided for ash samples collected bi-monthly at AES for the years 2008 and 2009. A total of forty-two (42) composite conditioned ash samples were included in this risk assessment. Metals analyzed include antimony, arsenic, barium, beryllium, boron, cadmium, chromium, copper, iron, lead, mercury, molybdenum, nickel, selenium, silver, thallium, and zinc. Valence state of chromium was not available and was assumed present in a 1:6 chromium VI to chromium III ratio. All chemicals listed above were included as COPCs for evaluation in the human health risk assessment.

3.2. Toxicity Assessment

The USEPA states that the purpose of the Toxicity Assessment is to "weigh available evidence regarding the potential for particular contaminants to cause adverse effects in exposed individuals and to provide, where possible, an estimate of the relationship between the extent of exposure to a contaminant and the increased likelihood and/or severity of adverse effects" (USEPA 1989a)." In essence, the Toxicity Assessment can also be described as a Dose-Response Assessment. A Dose-Response Assessment is used to identify both the types of adverse health effects a COPC may potentially cause, as well as the relationship between the amount of COPCs to which receptors may be exposed (dose) and the likelihood of an adverse health effect (response). The USEPA characterizes adverse health effects as either carcinogenic or noncarcinogenic and dose-response relationships are defined for oral and inhalation routes of exposure. Dermal exposure toxicity criteria are estimated based on oral criteria. The results of the toxicity assessment, when combined with the results of the exposure assessment provide an estimate of potential risk.

The most current USEPA-verified dose-response criteria were used in this assessment. Doseresponse information was obtained from the following sources, in order of priority:
U.S. EPA's Integrated Risk Information System (IRIS) (USEPA, 2009a);
U.S. EPA's Provisional Peer Reviewed Toxicity Values (PPRTV) (USEPA, 2009b);

Agency for Toxicity Substances and Disease Registry (ASTDR, 2009)
U.S. EPA's Health Effects Assessment Summary Tables (HEAST) (USEPA, 1997);

In the case of lead, there is no U.S. EPA-verified Reference Dose. However, because lead was only detected at concentrations below Hawaii Department of Health Environmental Action Levels (EALs), and U.S. EPA Regional Screening Levels (RSLs), it was not considered for further quantitative analysis.

Noncarcinogenic dose-response information for both oral and inhalation routes of exposure were used when available. To evaluate inhalation exposure, U.S. EPA has derived reference concentrations (RfCs) for certain compounds. For use in estimating intake, these RfCs (in units of $\mathrm{mg} / \mathrm{m}^{3}$) are converted to reference doses (RfDs) (in units of $\mathrm{mg} / \mathrm{kg}$-day) by multiplying by a 20 $\mathrm{m}^{3} /$ day inhalation rate and dividing by the adult body weight of 70 kg (USEPA 1997b). This conversion allows the risk assessment to consider activity-specific inhalation rates described in the exposure assessment.

To evaluate carcinogenic risks from oral exposures, the U.S. EPA has derived cancer slope factors expressed in terms of ($\mathrm{mg} / \mathrm{kg}$-day $)^{-1}$. Carcinogenic dose-response values for inhalation exposures are generally provided as inhalation unit risk (IUR) values expressed in terms of $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)^{-1}$. For this assessment, IUR values are converted to an inhalation CSF correcting for body weight, inhalation rates, and units using the following equation:

$$
C S F_{i n h}=\frac{I U R \times 70 \mathrm{~kg}}{20 \mathrm{~m}^{3} / \text { day }} \times 1000 \mu \mathrm{~g} / \mathrm{mg}
$$

where:

CSF $_{\text {inh }}$	$=$	inhalation cancer slope factor $(\mathrm{mg} / \mathrm{kg}$-day $)-1$
IUR	$=$	inhalation unit risk $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$
70 kg	$=$	body weight

$1000 \mu \mathrm{~g} / \mathrm{mg}$	$=$	conversion factor; and
$20 \mathrm{~m}^{3} / \mathrm{day}$	$=\quad$ inhalation rate.	

3.3 Exposure Assessment

In the Exposure Assessment, the magnitude and frequency of a receptors' potential exposure to COPCs is quantified. Exposure factors including length and duration of exposure, inhalation and ingestion rates, body weights, and absorption adjustment factors are designated during this phase of work. Based on the results of above-described tasks, the final phase of the exposure assessment is the derivation of exposure point concentrations and the calculation of average daily doses. The results of the exposure assessment are described in the following subsections.

3.3.1 Identification of Receptors

Potential human receptors for this investigation are adult workers at the facility and adult and children residents who may breathe fugitive dust containing COPCs. Adult and child residents were identified based on characteristics of the site and surrounding area and the specific concerns of the neighboring community.

3.3.2 Identification of Potential Exposure Pathways

Potential exposure pathways are the mechanisms by which the receptors in the study area may be exposed to compounds emitted from the landfill during disposal events. According to U.S. EPA (1989), four elements must be present in order for a potential human exposure pathway to be complete:

- a source and mechanism of compound release to the environment ;
- an environmental transport medium;
- an exposure point, or point of potential contact with the potentially impacted medium; and
- a receptor with a route of exposure at the point of contact.

The pathways examined in this risk assessment include:

- Direct contact for the workers on site;
- Inhalation for the workers to dust onsite; and,
- Inhalation of fugitive dust offsite to neighboring communities.

3.3.3 Identification of Exposure Scenarios

Exposure scenarios describe the frequency and magnitude of exposure to chemicals as they relate to specific receptors and exposure pathways. The exposure scenarios evaluated in this risk assessment include the following:

- Industrial Workers presumed to be exposed to contaminants in ash via direct contact and onsite dust generation during ash handling operations 8 hours/day, 250 days/year for a 25 year period;
- Industrial (daily endcap) workers presumed to be exposed to contaminants in ash via direct contact and onsite dust generation during daily end capping operations 1 hour/day, 250 days/year for a 25 year period;
- Resident Adults presumed to be exposed to contaminants in ash via fugitive dust generation. Ash handling operations are assumed to occur 24 hrs/day for a 24 year period;
- Resident Children presumed to be exposed to contaminants in ash via fugitive dust generation. Ash handling operations are assumed to occur 24 hrs/day for a 6 year period;

The two residential scenarios are summed to create a total 30 year residential scenario including 6 years as a child and 24 years as an adult.

3.3.4 Estimation of Exposure Point Concentrations in Ash

Exposure point concentrations for constituents detected in the ash were estimated using all relevant analytical data provided to AMEC from AES Hawaii. Exposure point concentrations (UCL 95 ${ }^{\text {th }}$ percentile on the mean) were derived in accordance with USEPA guidance (USEPA, 2002a) using USEPA's ProUCL software (USEPA, 2004c). Results are presented in Appendix E. In calculating exposure point concentrations, a value equal to one-half the limit of detection reported by the laboratory was used as a surrogate concentration for those constituents that were not detected in a particular sample as specified by U.S. EPA (1989a). Table 2-3 presents the EPCs calculated in this assessment.

TABLE 2-3
Exposure Point Concentrations in Ash

Constituent	EPC Concentration in Ash (mg/kg)
METALS	
Antimony	0.719
Arsenic	18.17
Barium	645.2
Beryllium	3.121
Boron	769.7
Cadmium	0.606
Chromium VI (1:6 VI:III Ratio)	8.232
Copper	35.39
Iron	25350
Lead	21.64
Mercury, Divalent	0.404
Molybdenum	6.741
Nickel	95.72
Selenium	1.931
Silver	0.772
Thallium	0.651
Zinc	596.7

3.3.5 Estimation of Exposure Point Concentrations in Fugitive Dust

In order to estimate the concentration of chemicals transported by fugitive dust to resident locations it was first necessary to estimate the respirable dust concentration at receptor locations. This process required the derivation of two scenario-specific PM10 emission rates (Q). The first emission rate (hereafter called Ash Handling Activities Emission Rate) estimated via the Box Model (Stern 1984) describes the dust generating potential caused by various human activities at the landfill (i.e., dumping, pushing, compacting). The second emission rate is based on the unlimited erosion model (hereafter called the Unlimited Erosion Model Emission Rate) and estimates the PM10 emission rate due to atmospheric dispersion generated from wind erosion of site ash (assuming contaminated ash is left uncovered).

Ash Handling Activities Emission Rate

PM10 emissions would be generated by several landfill ash handling activities. The PM10 emission rate (Q) during these activities was determined using a Box Model (Stern, 1984).

Estimation of the ash handling activities PM10 emission rate could either be based on the maximum PM10 concentration at any monitoring location during active air sampling or on the maximum average PM10 concentration collected from the PDR data sets. The maximum PM10 concentration from any monitoring location ($1100 \mathrm{ug} / \mathrm{m}^{3}$) which occurred during the final end cap activities was significantly higher than the average PDR data ($55 \mathrm{ug} / \mathrm{m}^{3}$) and was conservatively chosen as the PM10 concentration for modeling purposes. Health risks estimated using the average PM10 concentration from the PDR would be significantly lower than estimated in this assessment for inhalation pathways.

The Box Model is presented as below:
or

$$
\begin{aligned}
& E_{10}=\left(L \times Q /\left(h \times u_{\text {mean }}\right)\right) \times 10^{6} \\
& Q=\left(E_{10} \times h \times u_{\text {mean }}\right) /\left(L \times 10^{6}\right)
\end{aligned}
$$

where:
Q: PM10 emission rate ($\mathrm{g} / \mathrm{s}-\mathrm{m}^{2}$)
E_{10} : PM10 concentration (ug/m)
h : mixing height
$u_{\text {mean }}$: mean wind speed (m / s), and
L: landfill length.

The PM10 concentration (E_{10}) was derived from site-specific data obtained during the air monitoring sampling. The maximum onsite PM10 concentration for any of the five monitoring locations was $1100 \mathrm{ug} / \mathrm{m}^{3}$. This occurred during the end cap activities and was used for emission rate calculations for the fugitive dust emission rates. The emission rate based on this value is $1.4 \mathrm{E}-04 \mathrm{~g} / \mathrm{s}-\mathrm{m}^{2}$. Calculations are presented below.

$$
Q=\left(E_{10} \times h \times u_{\text {mean }}\right) /\left(L \times 10^{6}\right)
$$

Parameters	Value	Reference
Q: \quad PM10 emission rate $\left(\mathrm{g} / \mathrm{s}-\mathrm{m}^{2}\right)$		calculated
E10:	PM10 concentrations $\left(\mathrm{ug} / \mathrm{m}^{3}\right)$	1100
$\mathrm{~h}:$	mixing height	2
umean:	mean wind speed $(\mathrm{m} / \mathrm{s})$	2.8
L: \quad landfill length	45	site-specific

$$
Q=
$$

1.4E-0 4

Unlimited Erosion Model Emission Rate

The second emission rate was derived using the unlimited erosion factor. The unlimited erosion factor equation is used to determine the emission rate due to atmospheric dispersion generated from wind erosion of soil (assumes ash erosion is equivalent and left uncovered). Site-specific PM10 data are not required. The equation used to estimate the emission rate assuming wind dispersion of uncovered ash is provided below.

$$
Q=0.036 \times(1-V) \times\left(u_{\text {mean }} / u_{t}\right)^{3} \times F(y) \times(1 / 3600)
$$

where:
Q: PM10 emission factor ($\mathrm{g} / \mathrm{s}-\mathrm{m}^{2}$)
V : fraction of surface vegetative cover, $\mathrm{V}=0$ (assumption)
$\mathrm{u}_{\text {mean }}$: mean annual wind speed (m / s), $\mathrm{u}_{\text {mean }}=2.8 \mathrm{~m} / \mathrm{s}$ (site-specific data)
ut: threshold value of wind speed at $7 \mathrm{~m}(\mathrm{~m} / \mathrm{s})$
$y: \quad y=0.886 u_{t} / u_{\text {mean }}$ (dimensionless ratio), and
$F(y)$: function of y (USEPA 1985).
For this equation, the fraction of surface vegetative cover was assumed to be zero. As mentioned above, the site-specific wind speed is $2.8 \mathrm{~m} / \mathrm{s}(6.2 \mathrm{mph})$. Parameters for u_{t} and $F(y)$ were obtained from USEPA (2004a) and are equal to 11.32 and $0.194 \mathrm{~m} / \mathrm{s}$, respectively. Using these variables and the above equation, the emission factor for PM10 (PM10 emission rate, or Q) was calculated as $2.9 \mathrm{E}-08 \mathrm{~g} / \mathrm{s}-\mathrm{m}^{2}$. Calculations are presented below.
$Q=0.036 \times(1-V) \times\left(u_{\text {mean }} / u_{t}{ }^{3} \times F(y) \times(1 / 3600)\right.$

Parameters	Value	Reference	
Q:	PM10 emission factor $\left(\mathrm{g} / \mathrm{s}-\mathrm{m}^{2}\right)$	0	calculated
$\mathrm{V}:$	fraction of surface vegetative cover	2.8	site-specific
umean:	mean annual wind speed $(\mathrm{m} / \mathrm{s})$	0.194	default (USEPA 2004a)
$F(\mathrm{y}):$	function of y $[0.886$ ut $/$ umean (dimensionless ratio)	default	
ut:	threshold value of wind speed at $7 \mathrm{~m} \mathrm{(m/s)}$	11.32	(USEPA 2004a)

$$
Q=\quad 2.9 \mathrm{E}-08
$$

SCREEN3 PM10 Concentrations

The SCREEN3 air dispersion model (Version 96043) (USEPA 1995) was used to predict off-site ambient PM10 concentrations for various scenarios based on the calculated emission rates for both ash handling operations and wind erosion of the landfill surface. SCREEN3 determines 1hour maximum chemical concentrations under worst-case wind conditions. It assumes that fugitive dust blows in the direction of the receptor continuously, 100% of the time. The model does not allow for an adjustment to be made to the percentage of time wind blows in the direction of the residents over a longer averaging time. To account for this, U.S. EPA states that annual average PM10 concentrations should be calculated by multiplying the 1-hour maximum concentration by a factor of 0.08 (USEPA 1992). However, this assessment utilized a Hawaii-specific value of 0.2 (Personal Communication with Dr. Barbara Brooks, HEER Office). 0.2 is a health protective adjustment factor which considers Hawaii-specific wind and meteorological conditions.

The source areas at the ash disposal area of the landfill site were modeled as ground-level sources of 45×45 square meters (0.5 acre). 0.5 acres is the USEPA Region 9 default source size as well as the approximate area of ash handling at PVT Landfill. The receptors were deployed using the SCREEN3 receptor distance array ranging from 402 meters ($1 / 4$ mile) out to 8,047 meters with a receptor height of 1.8 m . It was assumed that the entire area was an emission source.

SCREEN3 calculations were based on the following assumptions:

Parameter	Value
Source type	area
Source release height	0.1 m
Length of larger side for area	45 m
Length of smaller side of area	45 m
Receptor height above ground	1.8 m
Urban or Rural Area	Rural
Meteorology	
Stability class	Anemometer height wind
Unstable/Turbulent	

As noted above, air dispersion modeling was conducted for both dust generated in ash handling activities and due to wind erosion, in order to conservatively estimate the amount of wind blown dust to nearby residential areas.

1. SCREEN3 air dispersion modeling results for ash handling activities resulted in a maximum respirable dust concentration of $4.669 \mathrm{ug} / \mathrm{m}^{3}$ at a distance of $1 / 4$ mile away for dust generating activities. After applying the 0.2 adjustment factor, the annual average respirable dust concentration is $0.934 \mathrm{ug} / \mathrm{m}^{3}$ at a distance of $1 / 4$ mile away for dust generating activities. This annual average is significantly lower than the National Ambient Air Quality Standards (NAAQS) PM10 annual limit of $50 \mathrm{ug} / \mathrm{m}^{3}$.
2. SCREEN3 air dispersion modeling results for the wind erosion data set result in a maximum respirable dust concentration of $0.00099 \mathrm{ug}^{2} \mathrm{~m}^{3}$ at a distance of $1 / 4$ mile away for dust generating activities. After applying the 0.2 adjustment factor, the annual average respirable dust concentration is $0.0002 \mathrm{ug} / \mathrm{m}^{3}$ at a distance of $1 / 4$ mile away from the demonstration project site. This annual average is significantly lower than the National Ambient Air Quality Standards (NAAQS) PM10 annual limit of $50 \mathrm{ug} / \mathrm{m}^{3}$.

The SCREEN3 air dispersion model calculations are presented in Appendix F. Table 2-4 lists the measured pm10 concentration at the site and SCREEN3 results at $1 / 4$ mile.

TABLE 2-4
PM10 Respirable Dust Concentrations

	Measured Concentration $\left(\mathrm{ug} / \mathrm{m}^{3}\right)$	Estimated Concentration at $1 / 4$ mile* $\left(\mathrm{ug} / \mathrm{m}^{3}\right)$
Ash Handling Activities	1100	0.934
PVT- End CapPM10	NA	0.00099
Unlimited Erosion Model		

Estimation of COPC Concentrations in Dust at Offsite Locations

Estimated dust concentrations, both via ash handling activities as well as the unlimited erosion model, as determined by the SCREEN3 were multiplied by the exposure point concentration of the COPCs in the ash (Table 2-3) to estimate the concentration of COPCs in the fugitive dust which migrates to neighborhoods approximately $1 / 4$ mile offsite to the potential residential receptors.

Estimation of COPC Concentrations in Dust at Onsite Locations

Measured PM10 concentrations, the maximum measured during the course of the day and during end cap activities, were multiplied by the exposure point concentration of the COPCs in ash (Table 2-3) to estimate the concentration of COPCs in the dust for inhalation pathway to the workers onsite. Maximum PM10 concentration measured during the course of the day was 590 $\mathrm{ug} / \mathrm{m}^{3}$. Maximum PM10 concentration measured during end cap activities was $1100 \mathrm{ug} / \mathrm{m}^{3}$, which was also conservatively used in the SCREEN3 analysis for modeling dust migration off site.

3.3.6 Exposure Dose Calculations

This section describes the equations and assumptions used to evaluate a receptor's potential exposure to compounds. The equation used to calculate Chronic Average Daily Dose (CADD) estimates a receptor's potential daily intake from exposure to compounds with potential noncarcinogenic effects. According to USEPA (1989), the exposure dose is calculated by averaging over the period of time for which the receptor is assumed to be exposed. The CADD for each compound via each route of exposure is compared to the noncarcinogenic reference dose for that compound in order to estimate the potential noncarcinogenic hazard index due to exposure to that compound via that route of exposure.

For compounds with potential carcinogenic effects, the equation for Lifetime Average Daily Dose (LADD) is employed to estimate potential exposures. In accordance with USEPA (1989), the LADD is calculated by averaging the assumed exposure over the receptor's entire lifetime (assumed to be 70 years). The LADD for each compound via each route of exposure is combined with the cancer slope factor for that compound in order to estimate the potential carcinogenic risk due to exposure to that compound via that route of exposure.

The equations for estimating a receptor's average daily dose (both lifetime and chronic) are presented in the following subsections. The exposure parameters used in each potential exposure pathway are also discussed in the following subsections.

Estimation of Potential Exposure via Inhalation

Calculations of potential risk resulting from the inhalation of the respirable fraction of particulates in air (i.e., particles < 10 pm in diameter) are presented in Appendix G. The equation used to calculate the CADD and LADD due to inhalation exposure is as follows:

$$
A=\frac{B \times C \times D \times E \times F \times G \times H}{I \times J}
$$

where:

$$
\begin{array}{ll}
\mathrm{A}= & \text { Average Daily Dose following Inhalation }(\mathrm{mg} / \mathrm{kg}-\mathrm{day}) \\
\mathrm{B}= & \text { Compound Concentration in Ash(mg/kg) } \\
\mathrm{C}= & \text { Concentration of Respirable Particulates in Air }\left(\mathrm{mg} / \mathrm{m}^{3}\right) \\
\mathrm{D}= & \text { Inhalation Rate }\left(\mathrm{m}^{3} / \mathrm{hr}\right) \\
\mathrm{E}= & \text { Exposure Time (hr/day) } \\
\mathrm{F}= & \text { Exposure Frequency (days/year) } \\
\mathrm{G}= & \text { Exposure duration (years) } \\
\mathrm{H}= & \text { Inhalation Absorption Adjustment Factor (unitless) } \\
\mathrm{I}= & \text { Body Weight (kg) } \\
\mathrm{J}= & \text { Averaging Time (days) }
\end{array}
$$

Estimation of Potential Exposure via Direct Contact

Ash Ingestion

$$
A=\frac{B \times C \times D \times E \times F \times G \times H}{I \times J}
$$

where:
$A=$ Average Daily Dose Due to Ash Ingestion (mg/kg-day)
$B=$ Constituent Concentration in Ash ($\mathrm{mg} / \mathrm{kg}$)
$C=$ Unit Conversion Factor $\left(1 \times 10^{-6} \mathrm{~kg} / \mathrm{mg}\right)$
$\mathrm{D}=$ Ingestion Rate (mg/day)
$E=$ Exposure Frequency (days/year)
$F=$ Exposure Duration (years)
$G=$ Oral-Soil Absorption Adjustment Factor (unitless)
$H=$ Area Use Factor (unitless)
$1=$ Body Weight (kg)
$J=$ Averaging Time (days)

Dermal Contact with Ash

$$
A=\frac{B \times C \times D \times E \times F \times G \times H \times I}{J \times K}
$$

where:
$A=$ Average Daily Dose Due to Dermal Contact (mg/kg-day)
$B=$ Constituent Concentration in Ash ($\mathrm{mg} / \mathrm{kg}$)
$C=$ Unit Conversion Factor ($1 \times 10^{-6} \mathrm{~kg} / \mathrm{mg}$)
$D=$ Skin Adherence Factor ($\mathrm{mg} / \mathrm{cm}^{2}$)
$E=$ Skin Surface Area Exposed ($\mathrm{cm}^{2} /$ day)
F = Exposure Frequency (days/year)
$\mathrm{G}=$ Exposure Duration (years)
H = Dermal-Soil Absorption Adjustment Factor (unitless)
I = Area Use Factor (unitless)
$J=$ Body Weight (kg)
$K=$ Averaging Time (days)

Each of the parameters in these equations is described below.

Chemical Concentration in Ash

The data used in this risk assessment are provided in Appendix D. EPCs were calculated using the 95% UCL of the analytical data (Table 2-3).

Concentration of Respirable Particulates in Air

Respirable particulate concentrations in air at offsite locations for the residential scenarios were calculated in the SCREEN3 analysis. Respirable particulate concentrations in air onsite for the worker scenarios were the measured PM10 concentrations. It was assumed that 100% of the respirable particles are ash-derived.

Inhalation Rate

Inhalation of particulate matter is a function of the ambient concentration of particulate matter, inhalation rate, relative bioavailability, and human body weight.

It is assumed that the average inhalation rate is age and activity dependent. The average daily inhalation rate for children was assumed to be $10 \mathrm{~m}^{3} /$ day. The average daily inhalation rate for adults was assumed to be $20 \mathrm{~m}^{3} / \mathrm{day}$.

Exposure Time and Frequency

Assuming that dust is generated only during ash handling activities, offsite residents would be exposed to contaminants only for the duration of these operations. However, for this assessment it was assumed that ash handling operations are occurring $24 \mathrm{hrs} /$ day for the entire exposure duration period. Accordingly, offsite adult and children residents were also assumed to be continuously exposed to fugitive dust generated from the site 24 hours/day, 350 days/year. Workers were assumed to be on site for an 8 hours/day, 250 days/year. End cap workers were assumed to be exposed for only 1 hour/day, 250 days/year.

Exposure Duration

As previously described, the risk assessment assumes that potential offsite residential receptors are exposed for a 30 year period. This 30 year duration is split between 6 years as a child and 24 years as an adult. The worker receptor assumes a 25 year employment tenure.

Absorption Adjustment Factors

Absorption is assumed to be 100% via the inhalation route of exposure for all COPCs. The oral and dermal absorption adjustment factors were taken from the Hawaii Department of Health EALs, U.S. EPA RSLs, or derived by AMEC. In cases where no absorption factor was found, a default of 1 was used.

Body Weight

The body weights assumed in this risk assessment are 15 kg for the child and 70 kg for the adult receptors (USEPA 2001c).

Averaging Time

The average daily dose of COPCs used to calculate noncarcinogenic risks must be averaged over the duration which the receptor is assumed to be exposed (USEPA 1989). Therefore, in the CADD calculations, the averaging time is equal to the exposure duration (above).

The average daily dose used to determine potential carcinogenic effects, however, must be averaged over the entire lifetime (70 years), regardless of the length of time which the receptor is assumed to be exposed (USEPA 1989).

TABLE 2-5
Exposure Assumptions

Receptor	Parameter (units)	Value
Adult Resident	Exposure Duration (hr/d) Exposure Frequency (d / y) Exposure Period (y) Body Weight (kg) Averaging Period - Lifetime (d) Averaging Period - Chronic Noncancer (d) Inhalation Rate Respirable particulate concentration in air ($\mathrm{mg} / \mathrm{m}^{3}$) Fraction from Site (unitless)	24 350 24 70 25550 8760 $0.833 \mathrm{~m}^{3} / \mathrm{hr}$ $9.34 \mathrm{E}-04 \mathrm{mg} / \mathrm{m}^{3}$ 1
Child Resident	Exposure Duration (hr/d) Exposure Frequency (d / y) Exposure Period (y) Body Weight (kg) Averaging Period - Lifetime (d) Averaging Period - Noncancer (d) Inhalation Rate Respirable particulate concentration in air ($\mathrm{mg} / \mathrm{m} 3$) Fraction from Site (unitless)	24 365 6 15 25550 2190 $0.417 \mathrm{~m}^{3} / \mathrm{hr}$ $9.34 \mathrm{E}-04 \mathrm{mg} / \mathrm{m}^{3}$ 1
Worker	Exposure Duration (hr/d) Exposure Frequency (d / y) Exposure Period (y) Body Weight (kg) Averaging Period - Lifetime (d) Averaging Period - Noncancer (d) Inhalation Rate Ingestion Rate Skin Surface Area Adherence Factor Respirable particulate concentration in air ($\mathrm{mg} / \mathrm{m} 3$) Fraction from Site (unitless)	8 250 25 70 25550 9125 $0.833 \mathrm{~m}^{3} / \mathrm{hr}$ $100 \mathrm{mg} / \mathrm{day}$ $3300 \mathrm{~cm}^{2}$ $0.29 \mathrm{mg} / \mathrm{cm}^{2} / \mathrm{event}$ $5.90 \mathrm{E}-01 \mathrm{mg} / \mathrm{m}^{3}$ 1

End Cap Worker	Exposure Duration (hr/d).	1
	Exposure Frequency (d/y)	250
	Exposure Period (y)	25
	Body Weight (kg)	70
	Averaging Period - Lifetime (d)	25550
	Averaging Period - Noncancer (d)	9125
	Inhalation Rate	$0.833 \mathrm{~m}^{3} / \mathrm{hr}$
	Ingestion Rate	$100 \mathrm{mg} / \mathrm{day}$
	Skin Surface Area	$3300 \mathrm{~cm}^{2}$
	Adherence Factor	$0.29 \mathrm{mg} / \mathrm{cm}^{2} / \mathrm{event}$
	Respirable particulate concentration in air (mg/m3)	$1.10 \mathrm{E}+00 \mathrm{mg} / \mathrm{m}^{3}$
	Fraction from Site (unitless)	1

3.4 Risk Characterization

The Risk Characterization combines the results of the Exposure Assessment with the results of the Toxicity Assessment to derive quantitative estimates of the potential for adverse health effects to occur as a result of potential exposure to AES coal ash. The potential for both noncarcinogenic and carcinogenic effects are estimated for each receptor for each potential exposure pathway identified in the Exposure Assessment. The risks from each exposure pathway are summed to obtain an estimate of total risk for each receptor.

The risk characterization is the step in the risk assessment process that combines the results of the exposure assessment and the toxicity assessment for each compound of concem in order to estimate the potential for carcinogenic and noncarcinogenic human heath effects from chronic exposure to that compound. This section summarizes the results of the risk characterization for each receptor evaluated in the risk assessment.

3.4.1 Noncarcinogenic Risk Characterization

The potential for exposures to COPCs to result in adverse noncarcinogenic health effects is estimated for each receptor by comparing the Chronic Average Daily Dose (CADD) for each compound with the Reference Dose for that compound. The resulting ratio, which is unitless, is known as the Hazard Quotient (HQ) for that compound. The HQ is calculated using the following formula:

$$
A=\frac{B}{C}
$$

where:

$$
\begin{array}{ll}
A= & \text { Hazard Quotient (unitless); } \\
B= & \text { Chronic Average Daily Dose (mg/kg-day); and } \\
C= & \text { Reference Dose (mg/kg-day). }
\end{array}
$$

When the Hazard Quotient for a given compound does not exceed 1, the Reference Dose has not been exceeded, and no adverse noncarcinogenic health effects are expected to occur as a result of exposure to that compound via that route. The HQs for each compound are summed to yield the Hazard Index (HI) for that pathway. An HI is calculated for each receptor for each pathway by which the receptor is assumed to be exposed. A Total Hazard Index for a chemical is then calculated for each receptor by summing the pathway-specific HIs. A Total HI for a chemical that does not exceed 1 for a given receptor indicates that no adverse noncarcinogenic health effects are expected to occur as a result of that receptor's potential exposure to a chemical in the environmental media. The His calculated for this assessment are presented in Table 2-7. All HIs were lower than the U.S. EPA and HDOH criterion goal of 1 .

TABLE 2-7
Noncarcinogenic Risk

RECEPTOR	HAZARD QUOTIENT
Worker, 8-hour inhalation exposure	$6 \mathrm{E}-01$
Worker, 1 -hour end cap inhalation exposure	$1 \mathrm{E}-01$
Worker, dermal and ingestion exposure	$2 \mathrm{E}-01$
Adult Resident, inhalation exposure	$4 \mathrm{E}-03$
Child Resident, inhalation exposure	$9 \mathrm{E}-03$

3.4.2 Carcinogenic Risk Characterization

The purpose of carcinogenic risk characterization is to estimate the likelihood, over and above the background cancer rate, that a receptor will develop cancer in his or her lifetime as a result of facility-related exposures to COPCs in various environmental media. This likelihood is a function of
the dose of a compound and the Cancer Slope Factor (CSF) for that compound. The relationship between the Excess Lifetime Cancer Risk (ELCR) and the estimated Lifetime Average Daily Dose (LADD) of a compound may be expressed by the exponential equation:

$$
A=1-e^{-B C}
$$

where:

$$
A=\quad \text { Excess Lifetime Cancer Risk (unitless); }
$$

$B=\quad$ Cancer Slope Factor ($1 /(\mathrm{mg} / \mathrm{kg}$-day $)$); and
$\mathrm{C}=\quad$ Lifetime Average Daily Dose (mg/kg-day).

When the product of the CSF and the LADD is much greater than 1, the ELCR approaches 1 (i.e., 100% probability). When the product is less than $0.01\left(10^{-2}\right)$, the equation can be closely approximated by the linear equation:

$$
A=B \times C
$$

where:

$$
\begin{array}{ll}
A= & \text { Excess Lifetime Cancer Risk (unitless); } \\
B= & \text { Cancer Slope Factor }(1 /(\mathrm{mg} / \mathrm{kg} \text {-day })) \text {; and } \\
C= & \text { Lifetime Average Daily Dose }(\mathrm{mg} / \mathrm{kg} \text {-day }) .
\end{array}
$$

The product of the CSF and the LADD is unitless, and provides an estimate of the potential carcinogenic risk associated with a receptor's exposure to that compound via that pathway. ELCRs are calculated for each potentially carcinogenic compound. For each receptor, the ELCRs for each pathway by which the receptor is assumed to be exposed are calculated by summing the potential risks derived for each compound. A Total Excess Lifetime Cancer Risk is then calculated by summing the pathway-specific ELCRs. The ELCRs calculated for this assessment are presented in Table 2-8. All risks to the offsite residential receptors were substantially lower than the USEPA and HDOH point of departure value of 1 E-06. Risks to the two worker scenarios
exceeded the point of departure value of 1E-06, but were below the USEPA and DOH regulatory level of concern of 1E-05 for commercial and industrial workers.

TABLE 2-8
Carcinogenic Risk

RECEPTOR	CANCER RISK
Worker, 8-hour inhalation exposure	$5 \mathrm{E}-06$
Worker, 1-hour end cap inhalation exposure	$1 \mathrm{E}-06$
Worker, dermal and ingestion exposure	$5 \mathrm{E}-06$
Adult Resident, inhalation exposure	$3 \mathrm{E}-08$
Child Resident, inhalation exposure	$2 \mathrm{E}-08$

TABLE 2-9
Final Risk Results
Human Health Risk Assessment

RECEPTOR	Hazard Index	Cancer Risk
End Cap Worker Total (End Cap Inhalation + Direct Contact)	$3 \mathrm{E}-01$	$6 \mathrm{E}-06$
Worker Total (Worker Inhalation + Direct Contact)	$8 \mathrm{E}-01$	$1 \mathrm{E}-05$
Residential Total (Child Inhalation + Adult Inhalation)	$1 \mathrm{E}-02$	$5 \mathrm{E}-08$

SECTION 4
 UNCERTAINTY ANALYSIS

The risk assessment for the beneficial reuse of AES coal ash at PVT Landfill contains many assumptions that lead to significant uncertainty. The assumptions that introduce the greatest amount of uncertainty in this risk assessment are discussed in this section. They are discussed in general terms, because for most of the assumptions there is not enough information to assign a numerical value that can be factored into the calculation of risk.

Within any of the four steps of the risk assessment process, assumptions must be made due to a lack of absolute scientific knowledge. Some of the assumptions are supported by considerable scientific evidence, while others have less support. Every assumption introduces some degree of uncertainty into the risk assessment process. Conservative assumptions are made throughout the risk assessment to ensure that the health of local residents is protected. Therefore, when all of the assumptions are combined, it is much more likely that actual risks, if any, are overestimated rather than underestimated.

4.1 Hazard Identification

During the Hazard Identification step, compounds are selected for inclusion in the quantitative risk assessment. For this assessment all 17 metals analyzed for in AES coal ash were selected as COPCs. As such the level of uncertainty in selecting COPCs is also assumed low. Accordingly, little uncertainty is introduced by the Hazard Identification step.

4.2 Toxicity Assessment

Dose-response values are usually based on limited toxicological data. For this reason, a margin of safety is built into estimates of both carcinogenic and noncarcinogenic risk, and actual risks are lower than those estimated. The two major areas of uncertainty introduced in the dose-response assessment are: (1) animal to human extrapolation; and (2) high to low dose extrapolation.

Human dose-response values are often extrapolated, or estimated, using the results of animal studies. Extrapolation from animals to humans introduces a great deal of uncertainty in the risk assessment because in most instances, it is not known how differently a human may react to the chemical compared to the animal species used to test the compound. The procedures used to extrapolate from animals to humans involve conservative assumptions and incorporate several uncertainty factors that overestimate the adverse effects associated with a specific dose. As a result, overestimation of the potential for adverse effects to humans is more likely than underestimation.

Predicting potential health effects from the facility emissions requires the use of models to extrapolate the observed health effects from the high doses used in laboratory studies to the anticipated human health effects from low doses experienced in the environment. The models contain conservative assumptions to account for the large degree of uncertainty associated with this extrapolation (especially for potential carcinogens) and therefore, tend to be more likely to overestimate than underestimate the risks.

This risk assessment also took a very conservative approach regarding the bioaccessible fraction of COPCs available to be absorbed by the body. These relative absorption factors (RAFs) estimate the amount a chemical that is absorbed by the body through different routes of exposure. Hawaii Department of Health EAL Table and U.S. EPA RSL Table have recommended dermal and gastro-intestinal absorption fractions for different compounds. This risk assessment utilized these fractions for the direct contact oral and dermal pathways. For the inhalation pathway the most conservative default value of 1 was assumed for these fractions meaning the entire concentration of chemicals would be available for absorption by the body. More realistic bioaccessible fractions for this pathway could be derived and would most likely reduce the portrayed risk in this assessment.

4.3 Exposure Assessment

During the exposure assessment, exposure point concentrations are estimated, and exposure doses are calculated. Exposure point concentrations are the estimated concentrations of compounds to which humans may be exposed. Because ambient air chemical concentrations do not exist at the remote receptor locations at levels which would most likely exceed analytical detection limits, and direct measurement of would be confounded by non-relevant sources,
exposure point concentrations were estimated using models containing numerous assumptions, such as the amount of compound released from the site, the dispersion of the compound in air and its fate and transport in the environment, and the location of people potentially exposed to released compounds. Once the concentrations in an environmental medium such as air have been predicted, the calculation of human exposure and dose involves making additional assumptions. The major sources of uncertainty associated with these assumptions are discussed below.

4.3.1 Estimation of Particulate Emission Factors

Offsite concentrations of COPCs for this risk assessment were either derived from a single ambient airmonitoring event. Maximum dust monitored during this event was used to model fugitive dust concentration to offsite receptors. This assumption is extremely health-protective because it most certainly would overestimate the amount of dust that could result from ash handling operations to occur on site. For example, the particulate emission factor was derived from the PM10 concentration from the location with the maximum particulate reading. Had the average at all monitoring locations been used, PM10 concentrations would have been significantly lower. Similarly, the PM10 concentration was also monitored using real time personal data rams (PDR). The average PM10 concentration over the course of the day from the PDR was significantly lower than the measured PM10 concentration from the air pumps. To be health protective, the cassette data from the active air sampling was carried forward in the human health risk assessment. Use of the PDR data would significantly lower the quantified human health risks.

4.3.2 Estimation of Airborne Dust Concentrations Offsite

There is some uncertainty in the estimation of airbome dust concentrations, because the risk assessment does not separately consider dust concentrations on days when winds are high. This uncertainty is minimal, however, as described below. The current risk assessment utilizes an EPA screening air dispersion model that assumes winds are blowing towards residential receptors 24 hours a day, 365 days a year at $2.8 \mathrm{~m} / \mathrm{s}$ for either a 1 -year or 30 -year period. The USEPA states that a 0.08 times multiplication factor should be used to convert the $1-\mathrm{hr}$ maximum average to an annual average. This was not done in this evaluation. Instead, an adjustment factor of 0.2 was applied to estimate the annual average (personal communication with Dr. Barbara Brooks, HEER

Office). Had a more realistic air dispersion model been used, the ambient dust concentrations at remote receptor locations would have been lower.

4.3.3 Estimation of Exposure Dose

Exposure point concentrations are estimated values of what is a Reasonable Maximum Exposure across the entire site. Given that these are estimates, a significant amount of uncertainty can be introduced into the assessment. A 95\% UCL was used as the exposure point concentration in AES coal ash. Implementation of the 95% UCL estimates that the value calculated is greater than or equal to the true mean 95% of the time when calculated for a random data set. This assumption therefore introduces significant uncertainty as it relates to the true risk and almost certainly overestimates both site concentrations and risk. Additional uncertainty is also introduced by assuming non-detect laboratory results as present at $1 / 2$ the sample reporting limit. In reality this may over or under estimate the actual concentration of the contaminant in the sample. As analytical methods have a limit to their accuracy at very low concentrations, this introduces uncertainty in the assessment.

Once the concentrations of the potentially released compounds in air have been predicted through modeling, the extent of human exposure must be estimated. This requires making assumptions about the frequency and duration of human exposure.

Uncertainty may be associated with some of the assumptions used to estimate how often exposure occurs. Such assumptions include location, accessibility, and use of an area. With this in mind, the receptor, or person who may potentially be exposed, and the location of exposure were defined for this risk assessment. The locations where certain activities were assumed to take place have been purposely selected because chemical concentrations and frequency of exposure are expected to be high (i.e., use of the maximally affected areas). In this assessment, residential receptors were assumed to live in the neighboring communities for 30 years and be present 24 hours per day, 350 days per year. The workers were assumed to be present at the site 8 hours per day, 250 days per year, and have a employment tenure of 25 years. However, actual frequencies and durations of exposure are likely to be much lower than assumed, because residents are not likely to stay in one place and may, for instance, work far away or move to another location. Furthermore the remaining lifetime of the landfill will probably not approach the estimated duration of lifetime, residence, or employment. In these cases, the person's potential exposure would be reduced, and the health risks discussed in this assessment would be overestimated.

4.4 Risk Characterization

The risk of adverse human health effects depends on estimated levels of exposure and dose-response relationships. Once exposure to and risk from each of the selected compounds is calculated, the total risk posed by disposal operations is determined by combining the health risk contributed by each compound. For virtually all combinations of compounds present in chemicals evaluated in this assessment, there is little or no evidence of interaction. Hówever, in order not to understate the risk, it is assumed that the effects of different compounds may be added together.

SECTION 5 REFERENCES

Agency for Toxicity Substances and Disease Registry (ASTDR). 2009

AMEC Earth \& Environmental, Inc. (AMEC). 2009. Sampling and Analysis Plan and Human Health Risk Assessment Protocol, PVT Landfill, O'ahu, Hawai'i. January.

Anderson, E., N. Browne, S. Duletsky, J. Ramig, and T. Warn. 1985. Development of Statistical Distributions or Ranges of Standard Factors Used in Exposure Assessments. EPA Contract 68-02-3510/ 68-02-3997.

Cowherd, C., G. Muleski, P. Engelhart, and D. Gillette. 1985. Rapid Assessment of Exposure to Particulate Emissions from Surface Contamination. Prepared for U.S. EPA, Office of Health and Environmental Assessment, Washington, DC. EPA/600/8-85/002.

Land, C.E. 1975. Tables of confidence limits for linear functions of the normal mean and variance. Selected Tables in Mathematical Statistics, 3:385-419. American Mathematical Society, Providence, RI.

NRC. 1983. Risk Assessment in the Federal Government: Managing the Process. Committee on the Institutional Means for assessment of Risks to Public Health. National Research Council. National Academy Press. Washington, D.C.

Rohlf, F. James and Robert R. Sokal. 1981. Statistical Tables. W.H. Freeman and Company. San Francisco. p. 81.

Stern, Arthur C. 1984. Fundamentals of Air Pollution. Academic Press, Inc.
U.S. EPA. 1986. Superfund Public Health Evaluation Manual. Office of Emergency and Remedial Response. EPA 540/1-86/060.
U.S. EPA, 1989. Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual. Part A. Interim Final. Office of Emergency and Remedial Response.
U.S. EPA. 1991a. Human Health Evaluation Manual, Supplemental Guidance: "Standard Default Exposure Factors." OSWER Directive 9285.6-03. March 25, 1991.
U.S. EPA. 1991b. Risk Assessment Guidance for Superfund: Volume I - Human Health Evaluation Manual (Part B, Development of Risk-based Preliminary Remediation Goals). Office of Emergency and Remedial Response. Washington, DC. PB92-963333.

USEPA. 1995. SCREEN3 Model User's Guide. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards. Research Triangle Park, NC. EPA-454/B-95004. September.
U.S. EPA. 1997a. Health Effects Assessment Summary Tables. Fiscal Year 1997. Office of Health and Environmental Assessment. EPA 540/R-97/036.
U.S. EPA 1997b. Exposure Factors Handbook. Volume 1. General Factors, Office of Research and Development. Washington D.C. U.S. EPA/600/P-95/002Fa.
U.S. EPA. 2009a. Integrated Risk Information System (IRIS). Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, U.S. EPA. Cincinnati, OH.
U.S. EPA. 2009b. Provisional Peer Reviewed Toxicity Values (PPRTV)

Ambient Air Monitoring Field Notes

PVT Dust Monitoring

1050- Up wind location cassettes (PVT-U-PM10, PVT-U-TD) and dataRam set up and activated to run until EOD.
1110- Sampling cassettes PVT-D1-PM10 and PVT- D1-TD set up about 20-25 feet SE from ash pile and activated near beginning of ash dump.
1115- Rover (Amec dataRam) activated about 35 feet SE of ash pile.
1135- Ash Dump. Wind strong to east.
1145- D1 off.
1150- Moved Rover 20' east and 10' north.
1158- D2 (PVT-D2-PM10 and PVT- D2-TD) set up and awaiting ash dump.
1203- Dozer piling ash pile.
1208- Dozer pau.
****- dataRam at D2 had pump turned off after D1 sampling.
1230- dataRam at D2 pump turned on.
1245- Moved Rover $\sim 25^{\prime}$ south (wind direction a steady SE). Checked on upwind pumps-OK.
****- Debris trucks deliver and dump debris all day. Water truck waters various areas of road and debris pile all day.
1312- ash truck onsite. Samplers at D2 turned on.
1315- ash dump. Could not get attention of spotter. Other vehicles onsite continue to work while ash is dumped. Wind still towards SE.
1325- D2 samplers off.
1330- D3 (PVT-D2-PM10 and PVT- D2-TD) samplers set up. Solid SE winds.
1349- Moved Rover 20° south.
1350- ash truck onsite.
1351-pumps at D3 on.
1405-pumps off. dataRam left on. Debris trucks continue to dump and the water truck continues to make its rounds.
1428- ash truck dumps.
1431- debris pile capping begins.
1435- Debris pile capping samplers (PVT-End Cap-PM10 and PVT- End Cap-TD) turned on.
1542- Moved samplers to north side due to steady north wind.
1545- Upwind samplers uprighted.
1547- Rover to north side
1555- capping is pau. Samplers off. MB de-mobs and offsite.

On October 26, 2009, Amec performed air monitoring and sampling for Total Dust and Respirable Dust (PM10) at the PVT Land Company Landfill, Nanakuli, Hawaii. Inalab Laboratory of Honolulu provided Amec with pre-weighed 37 mm PVC cassettes installed with 0.8um MCE filters. Sampling consisted of two (2) pre-weighed cassettes, each attached by tubing to a personal pump. One of the two cassettes was fitted into a Gilian Cyclone cassette holder that separates respirable dust from particulate matter of 10 microns or more and the other cassette drew unfiltered air to collect total dust. Both samples were collected at a rate of $1.7 \mathrm{~L} / \mathrm{min}$. Monitoring of respirablc dust consisted of a personal pump attached to a Thermo Electro Corporation personal DataRam 1200 (pDR 1200) with cyclone attachment. Air was pumped through the pDR 1200 at the rate of $1.2 \mathrm{~L} / \mathrm{min}$. per manufacturer's instructions for PM10 monitoring. Sampling and monitoring coincided with 3 ash deliveries and the capping of the debris pile at EOD. Samples and air monitoring data were collected at five (5) pre-determined locations:

1. Upwind of the ash pile, approximately 500^{\prime} E side. (Samples PVT-U-TD, PVT-U-PM10)
2. Adjacent to the ash pile, SE side. (Samples PVT-D1-TD, PVT-D1-PM10)
3. Approximately 20^{\prime} above the debris pile, W side. (Samples PVT-D2-TD, PVT-D2-PM10)
4. Approximately 100^{\prime} above the debris pile on upper soil plateau, W side. (Samples PVT-D3-TD, PVT-D3-PM10)
5. Adjacent to the ash pile during EOD capping of the debris pile, SE and N side. (Samples PVT-End Cap-TD, PVT-End Cap-PM10)

In addition to the 5 pre-determined locations, a pDR 1200 monitor measured the concentration of respirable dust from various downwind locations onsite.

Sample collection times are as follows:

1. Upwind: 1050-1555
2. D1: 1110-1145
3. D2: 1158-1208
4. D3: 1351-1405
5. End Cap: 1435-1555

The End Cap sample was collected from two locations according to the wind direction.
The pictures are provided and show sampling locations

Appendix \mathbf{B}

Ambient Air Monitoring Photographs

Page 1 of 9

Page 2 of 9

Page 3 of 9

Page 4 of 9

Page 5 of 9

Page 7 of 9

Page 8 of 9

Page 9 of 9

Appendix C

Ambient Air Monitoring Analytical Results

Mr. Russell Okoji	Phone Number	(808) $545-2462$
AMEC Earth \& Environmental	Facsimile:	(808) $528-5379$
3049 Ualena Street		
Suite 1100		
Honolulu H H $\quad 96819$		

Analytical Results	
INALAB JOB NO: $\quad 20092608$	
CLIENT REFERENCE:	PVT Landfill -947/000002.0002 (10/26/09) - Total Dust

INALAB, Inc. is an AIHA IHLAP ACCREDITED LABORATORY (Accreditation No. 101812) with scope of accreditation including metals, solvents, fiber counts and bulk asbestos. INALAB, Inc. is a participant in the Compressed Air Proficiency Test (CAPT) program.

3049 Ualena Street Suite 1100
Honolulu HI 96819

Analytical Results

INALAB JOB NO:	20092608
CLIENT REFERENCE:	PVT Landfill -947/000002.0002 (10/26/09) - Total Dust

All analysts participate in interlaboratory quality control testing to continueously document profiency. *The samples) analysis(ses) subject of this analytical report was (were) conducted in general accordance with the procedures associated with the"analytical method" referenced above. Modifications to this methodology may have been made based upon the analyst's professional judgment and / or sample matrix effects encountered. 1. The analysis of sample relates only to the sample analyzed, and may or may not be representative of the original source of the material submitted for our analysis. 2. UNK refers to the sample submitted for this evaluation/ analysis. 3. DUP means a duplicate analysis of the Unk sample. 4. REP refers to a second preparation of the Ink sample. 5. Tr means TRACE, i.e., the analyte of interest was, to a reasonable degree of scientific certainty present, but was BELOW the quantifiable limits of this determination (stated). 6. " $>$ " means greater than the numerical value listed. 7. "<" means less than the numerical value listed. 8. ND = NOT DETECTED which means the analyte, if present below our stated detection limit/ level. 9. RPD $=$ Relative Percent Deviation [unk-dup]/ave(unk,dup)*100. 10. This report is not to be duplicated except in full without the expressed written permission of INALAB, Inc. 11. This report should not be construed as an endorsement for a product or a service by the AHA or any affiliated organizations. 12. Sample and associated sampling/ collection data is reported as provided by client. 13. For air samples, results are calculated based on the reported air volumes. 14. Analytical methods marked with an "\#" are not within our AltA Scope of Accreditation. 15. Results have not been corrected for blank determinations unless noted in remarks.

DID INALAB FORENSIC DIVISION COLLECT THESE SAAPLES? No

Approved Signatory Laboratory Manager

INALAB, Inc. is an AIHA IHLAP ACCREDITED LABORATORY (Accreditation No. 101812) with scope of accreditation including metals, solvents, fiber counts and bulk asbestos. INALAB, Inc. is a participant in the Compressed Air Proficiency Test (CAPT) program.

Analysis Company Name: INALAB, inc.
Street Address: 3615 Harding Avenue, Suite 308
City/State/Zip: Honolulu, HI 96816
Telephone No: (808) 735-0422 FAK: (808) 735-0047
Were Do Not White in Shaded Areas. Thank you:-)
INALAB JOB \#: 2009

INALAB, Inc.
Experts in Environmental, Forensic, Occupational and Laboratory Services
OFFICIAL LABORATORY CHAIN OF CUSTODY

INALAB CLIENT ID. 4 :

Date:
Inalab's CLIENT/Co. Name:
Telephone Number:
Project Name / Job \#:
Delivered By (print name):
$\frac{10-27-09}{4 m 06 E+E}$
$\frac{808783-6840}{11919401711}$
$\frac{\text { mask Big9lon }}{800002002}$

\qquad of \qquad 1
pDR-1000 S/N: 06082
User ID: 6114
Tag Number: 01
Number of logged points: 577
Start time and date: 18:08:09 07-Mar
Elapsed time: 04:48:30
bgging period (sec): 30
Glibration Factor (\%): 100
Max Display Concentration: $1.670 \mathrm{mg} / \mathrm{m}^{3}$
Time at maximum: 18:44:10 Mar 07
Max STEL Concentration: $0.138 \mathrm{mg} / \mathrm{m}^{3}$
Time at max STET: 18:46:09 Mar 07
Overall Avg Conc: $0.044 \mathrm{mg} / \mathrm{m}^{3}$
Logged Data:
Point, Date , Time , Avg. (mg/ma
1, 07 Mar, 18:08:39, 0.027
2, 07 Mar, 18:09:09, 0.022
3, 07 Mar, 18:09:39, 0.021
4, $07 \mathrm{Mar}, 18: 10: 09,0.038$
5, 07 Mar, $18: 10: 39$, 0.034
6, 07 Mar, 18:11:09, 0.029
7, 07 Mar, 18:11:39, 0.025.
8, $07 \mathrm{Mar}, 18: 12: 09,0.022$
9, 07 Mar, 18:12:39, 0.022
10, 07 Mar, 18:13:09, 0.023
11, 07 Mar, 18:13:39, 0.019
12, 07 Mar, 18:14:09, 0.020
13, 07 Mar, 18:14:39, 0.023
14, 07 Mar, $18: 15: 09,0.030$
15, 07 Mar, 18:15:39, 0.027
16, 07 Mar, $18: 16: 09$, 0.023
17, 07 Mar, $18: 16: 39,0.024$
18, 07 Mar, $18: 17: 09,0.030$
19, 07 Mar, 18:17:39, 0.023
20, 07 Mar, $18: 18: 09,0.061$
21, 07 Mar, 18:18:39, 0.041
22, 07 Mar, 18:19:09, 0.026
23, 07 Mar, $18: 19: 39,0.037$
24, 07 Mar, $18: 20: 09,0.134$
25, 07 Mar, $18: 20: 39$, 0.052

26, 07 Mar, 18:21:09, 0.038
27, 07 Mar, $18: 21: 39$, 0.056
28, 07 Mar, $18: 22: 09,0.049$
29, 07 Mar, 18:22:39, 0.054
30, 07 Mar, 18:23:09, 0.044
31, 07 Mar, 18:23:39, 0.052
32, 07 Mar, 18:24:09, 0.055
33, 07 Mar, $18: 24: 39,0.042$
34,07 Mar, $18: 25: 09,0.065$
35, 07 Mar, 18:25:39, 0.112
36, 07 Mar, $18: 26: 09,0.095$
37, 07 Mar, $18: 26: 39,0.142$
38, 07 Mar, $18: 27: 09,0.116$
39, 07 Mar, 18:27:39, 0.145
40, 07 Mar, $18: 28: 09,0.168$
41, 07 Mar, 18:28:39, 0.121
42, 07 Mar, 18:29:09, 0.030
43, 07 Mar, 18:29:39, 0.022
44, 07 Mar, 18:30:09, 0.023
45, 07 Mar, $18: 30: 39,0.063$
46, 07 Mar, $18: 31: 09,0.050$
47, 07 Mar, 18:31:39, 0.023
48, 07 Mar, $18: 32: 09,0.029$
49, 07 Mar, $18: 32: 39, \quad 0.043$
50, 07 Mar, 18:33:09, 0.023
51, 07 Mar, $18: 33: 39,0.026$
52, 07 Mar, 18:34:09, 0.075
53, 07 Mar, 18:34:39, 0.062
54, 07 Mar, 18:35:09, 0.028
55, 07 Mar, 18:35:39,. 0.094
56. 07 Mar, 18:36:09, 0.133

57, 07 Mar, $18: 36: 39,0.059$

58 ,	07 Mar,	18:37:09,	0.173
59,	07 Max,	18:37:39,	0.080
60,	07 Mar,	18:38:09,	0.047
61.	07 Mar,	18:38:39,	0.152
62,	07 Mar,	18:39:09,	0.196
63 ,	07 Mar,	18:39:39,	0.079
64 ,	07 Mar,	18:40:09,	0.159
65 ,	07 Mar,	18:40:39r	0.307
66 ,	07 Mar,	18:41:09,	0.294
67.	07 Mar,	18:41:39,	0.250
68,	07 Mar,	18:42:09,	0.098
69.	07 Mar ,	18:42:39,	0.026
70,	07 Mar,	18:43:09,	0.023
71 r	07 Mar,	18:43:39,	0.122
72.	07 Mar,	18:44:09,	0.816
73,	07 Mar,	18:44:39,	0.191
74,	07 Mar,	18:45:09,	0.073
75,	07 Mar,	18:45:39,	0.126
76,	07 Mar ,	18:46:09,	0.330
77,	07 Mar ,	18:46:39,	0.025
78.	07 Mar,	18:47:09,	0.024
79,	07 Mar,	18:47:39,	0.030
80,	07 Mar ,	18:48:09,	0.011
81,	07 Mar,	18:48:39,	0.014
82,	07 Mar,	18:49:09,	0.009
83,	07 Mar ,	18:49:39,	0.035
84 ,	07 Mar,	18:50:09,	0.011
85.	07 Mar,	18:50:39,	0.010
86,	07 Mar ,	18:51:09,	0.017
87.	07 Max,	18:51:39,	0.012
88.	07 Mar,	18:52:09,	0.016
89 ,	07 Mar,	18:52:39,	0.015
90,	07 Mar,	18:53:09,	0.011
91,	07 Mar ,	18:53:39,	0.012
92.	07 Mar,	18:54:09,	0.010
93.	07 Mar,	18:54:39,	0.015
94,	07 Mar ,	18:55:09,	0.013
95,	07 Mar,	18:55:39,	0.024
96,	07 Mar,	18:56:09,	0.076
97,	07 Mar,	18:56:39,	0.053
98,	07 Mar ,	18:57:09,	0.027
99,	07 Mar,	18:57:39,	0.011
100,	07 Mar,	18:58:09,	0.022
101,	07 Mar,	18:58:39,	0.043
102,	07 Mar ,	18:59:09,	0.034
103,	07 Mar,	18:59:39,	0.046
104,	07 Mar ,	19:00:09,	0.019
105,	07 Mar,	19:00:39,	0.064
106,	07 Mar ,	19:01:09,	0.041
107,	07 Mar ,	19:01:39,	0.016
108,	07 Mar,	19:02:09,	0.039
109,	07 Mar,	19:02:39,	0.035
110,	07 Mar,	19:03:09,	0.055
111,	07 Mar,	19:03:39,	0.038
112,	07 Mar,	19:04:09,	0.025
113,	07 Mar,	19:04:39,	0.013
114 ,	07 Mar,	19:05:09,	0.022
115.	07 Mar,	19:05:39,	0.013
116.	07 Mar,	19:06:09,	0.033
117,	07 Mar,	19:06:39,	0.045
118,	07 Mar,	19:07:09,	0.046
119,	07 Mar,	19:07:39,	0.035
120,	07 Mar,	19:08:09,	0.028
121,	07 Mar .	19:08:39,	0.007
122,	07 Mar,	19:09:09,	0.006
123,	07 Mar ,	19:09:39,	0.014
124,	07 Mar,	19:10:09,	0.014
125,	07 Mar ,	19:10:39,	0.017
126 ,	07 Mar,	19:11:09,	0.036
127,	07 Mar,	19:11:39,	0.008
128,	07 Mar ,	19:12:09,	0.009
129,	07 Mar,	19:12:39,	0.007

130,	07 Ma	19:13:09,	0.
131	07 Mar,	19:13:39,	0.007
132,	07 Mar ,	19:14:09,	0.009
133,	07 Mar,	19:14:39,	0.007
134,	07 Mar,	19:15:09,	0.005
135,	07 Mar,	19:15:39,	0.023
136.	07 Mar,	19:16:09,	0.026
137	07 Mar	19:16:39,	0.032
138,	07 Mar	19:17:09,	0.037
139,	07 Mar ,	19:17:39,	0.032
140,	07 Mar,	19:18:09,	0.033
141,	07 Mar,	19:18:39,	0.035
142,	07 Mar ,	19:19:09,	0.028
143,	07 Mar ,	19:19:39,	0.012
144,	07 Mar ,	19:20:09,	0.038
145,	07 Mar	19:20:39,	0.035
146,	07 Mar,	19:21:09,	0.037
147,	07 Mar,	19:21:39,	0.035
148,	07 Mar,	19:22:09,	0.062
149	07 Mar,	19:22:39,	0.027
150,	07 Mar,	19:23:09,	0.032
151,	07 Mar,	19:23:39,	0.018
152.	07 Mar ,	19:24:09,	0.023
153,	07 Mar,	19:24:39,	46
154,	07 Mar ,	19:25:09,	0.022
155,	07 Mar ,	19:25:39,	0.028
156,	07 Mar,	19:26:09,	11
157,	07 Mar ,	19:26:39,	0.035
158,	07 Mar ,	19:27:09,	0.046
159,	07 Mar ,	19:27:39,	0.042
160,	07 Mar,	19:28:09,	0.049
161,	07 Mar	19:28:39,	0.034
162,	07 Mar,	19:29:09,	0.026
163,	07 Mar ,	19:29:39,	0.029
164 ,	07 Mar	19:30:09	0.033
165,	07 Mar,	19:30:39,	0.029
166 ,	07 Mar,	19:31:09,	0.029
167.	07 Ma	19:31:39,	. 092
168,	07 Mar ,	19:32:09,	0.081
169,	07 Mar ,	19:32:39,	0.045
170,	07 Mar	19:33:09,	0.040
171,	07 Mar,	19:33:39,	0.033
172,	07 Mar,	19:34:09,	0.056
173,	07 Mar,	19:34:39,	0.051
174,	07 Mar,	19:35:09,	0.076
175,	07 Mar,	19:35:39,	0.054
176,	07 Mar,	19:36:09,	0.045
177 r	07 Mar,	19:36:39,	0.042
178,	07 Mar,	19:37:09,	0.041
179,	07 Mar,	19:37:39,	40
180,	07 Mar,	19:38:09,	0.019
181	07 Mar ,	19:38:39,	0.019
18	07 Mar ,	19:39:09,	0.026
183,	07 Mar,	19:39:39,	0.052
184,	07 Mar,	19:40:09,	0.040
185,	07 Mar,	19:40:39,	0.025
186,	07 Max,	19:41:09,	0.047
187,	07 Mar,	19:41:39,	0.041
188,	07 Mar,	19:42:09	0.046
189,	07 Mar,	19:42:39,	0.056
190,	07 Mar,	19:43:09,	0.022
191,	07 Mar,	19:43:39r	0.020
192,	07 Mar ,	19:44:09,	0.018
193,	07 Max,	19:44:39,	0.020
194,	07 Mar.	19:45:09,	0.054
195,	07 Mar,	19:45:39,	0.046
196,	07 Mar ,	19:46:09,	0.038
197,	07 Mar,	19:46:39,	0.063
198,	07 Mar,	19:47:09,	0.036
199,	07 Mar ,	19:47:39,	0.045
200,	07 Mar ,	19:48:09,	0.141
201	07 Mar	19:48:39	0.124

202,	07 Mar,	19:49:09,	0.042
203,	07 Mar,	19:49:39,	0.046
204,	07 Mar,	19:50:09,	0.041
205,	07 Mar,	19:50:39,	0.045
206,	07 Mar,	19:51:09,	0.034
207,	07 Mar,	19:51:39,	0.052
208,	07 Mar,	19:52:09,	0.083
209,	07 Mar,	19:52:39,	0.037
210,	07 Mar,	19:53:09r	0.030
211.	07 Mar,	19:53:39,	0.044
212,	07 Mar,	19:54:09,	0.043
213,	07 Mar,	19:54:39,	0.044
214,	07 Mar ,	19:55:09,	0.078
215,	07 Mar ,	19:55:39,	0.050
216,	07 Mas,	19:56:09,	0.051
217,	07 Mar ,	19:56:39,	0.031
218,	07 Mar ,	19:57:09,	0.064
219,	07 Mar,	19:57:39,	0.069
220,	07 Mar,	19:58:09,	0.027
221,	07 Mar ,	19:58:39,	0.061
222,	07 Mar,	19:59:09,	0.027
223,	07 Mar,	19:59:39,	0.052
224,	07 Mar ,	20:00:09,	0.033
225,	07 Mar,	20:00:39,	0.061
226,	07 Mar,	20:01:09,	0.034
227,	07 Mar,	20:01:39,	0.056
228,	07 Mar,	20:02:09,	0.034
229,	07 Mar ,	20:02:39,	0.067
230,	07 Mar,	20:03:09,	0.070
231,	07 Mar,	20:03:39,	0.044
232,	07 Mar,	20:04:09,	0.032
233,	07 Mar,	20:04:39,	0.014
234,	07 Mar,	20:05:09,	0.058
235,	07 Mar,	20:05:39,	0.031
236,	07 Mar,	20:06:09,	0.030
237,	07 Mar,	20:06:39,	0.038
238,	07 Mar ,	20:07:09,	0.028
239,	07 Mar,	20:07:39,	0.063
240,	07 Mar,	20:08:09,	0.052
241,	07 Mar ,	20:08:39,	0.028
242,	07 Mar,	20:09:09,	0.054
243,	07 Mar,	20:09:39,	0.033
244,	07 Mar,	20:10:09,	0.037
245,	07 Mar,	20:10:39,	0.030
246,	07 Mar,	20:11:09,	0.061
247,	07 Mar ,	20:11:39,	0.239
248,	07 Mar,	20:12:09,	0.050
249,	07 Mar,	20:12:39,	0.055
250,	07 Mar,	20:13:09,	0.054
251,	07 Mar,	20:13:39,	0.039
252,	07 Mar,	20:14:09,	0.049
253,	07 Mar,	20:14:39,	0.017
254,	07 Mar,	20:15:09,	0.041
255.	07 Mar,	20:15:39,	0.062
256,	07 Mar ,	20:16:09	0.049
25?,	07 Mar,	20:16:39,	0.157
258,	07 Mar,	20:17:09,	0.033
259,	07 Mar ,	20:17:39,	0.028
260 ,	07 Mar,	20:18:09,	0.025
261,	07 Mar,	20:18:39,	0.052
262,	07 Mar,	20:19:09,	0.028
263,	07 Mar,	20:19:39,	0.024
264,	07 Mar,	20:20:09,	0.021
265 ,	07 Mar,	20:20:39,	0.021
266,	07 Mar,	20:21:09,	0.021
267 ,	07 Mar,	20:21:39,	0.027
268,	07 Mar,	20:22:09,	0.025
269,	07 Mar,	20:22:39,	0.020
270,	07 Mar,	20:23:09,	0.023
271,	07 Mar,	20:23:39,	0.021
272,	07 Mar,	20:24:09,	0.059
273,	07 Max	20:24:39,	0.063

	07 Mar,	20:25:09,	0.018
275,	07 Ma		0.028
76,	07 Mar	20:26:09,	41
7	07 Mar,	20:26:39,	0.023
78,	07 Mar	20:27:09	5
279,	07 Mar	20:27:39,	0.076
280	07 Ma	20:28:09,	0.024
81	07 Ma	20:28:39	23
282,	07 Mar	20:29:09,	0.055
3.	07 Mar	20:29:39,	0.023
,	07 Mar	20:30:09	0.085
5,	07 Mar,	20:30:39,	0.027
,	07 Ma	20:31:09,	0.025
7,	07 Ma	20:31:39,	0.022
288,	07 Mar,	20:32:09,	0.022
	07 Ma	20:32:39	0.022
90,	07 Mar,	20:33:09	0.022
291,	07 Mar,	20:33:39	0.023
	07 Ma	20:34:09,	0.024
93,	07 Mar,	20:34:39,	0.023
94,	07 Mar,	20:35:09,	0.023
	07 Ma	20:35:39,	0.022
296,	07 Mar,	20:36:09,	0.023
297.	07 Mar,	20:36:39,	2
298,	07 Ma	20:37:09,	0.023
299,	07 Mar	20:37:39,	0.022
300,	07 Mas,	20:38:09,	2
	07 Mar	20:38:39	0.020
302,	07 Mar,	20:39:09	0.024
303,	07 Mar	20:39:39,	1
,	07 Ma	20:40:09,	0.023
5,	07 Mar,	20:40:39,	0.026
306,	07 Mar,	20:41:09,	. 31
307 ,	07 Mar	20:41:39,	0.023
308,	07 Mar	20:42:09	. 21
309,	07 Mar	20:42:39,	0.021
310,	07 Mar	20:43:09,	. 22
311,	07 Mar,	20:43:39,	4
312,	07 Mar ,	20:44:09,	0.024
3,	07 Mar,	20:44:39,	0.024
14	07 Mar	20:45:09,	0.026
315,	07 Mar,	20:45:39,	0.024
	07 Mar,	20:46:09,	0.025
7	07 Ma	20:46:39,	25
318,	07 Mar,	20:47:09,	0.023
319,	07 Mar,	20:47:39,	0.029
20,	07 Mar,	20:48:09	0.023
221,	07 Mar,	20:48:39,	0.022
2	07 Mar,	20:49:09	0.021
323,	07 Mar,	20:49:39	0.025
324,	07 Mar,	20:50:09,	0.025
5	07 Mar	20:50:39,	0.026
326,	07 Mar,	20:51:09	0.022
327.	07 Mar,	20:51:39,	0.027
28	07 Mar	20:52:09	0.025
329,	07 Mar,	20:52:39,	21
330,	07 Mar,	20:53:09,	23
	07 Mar	20:53:39,	0.026
332,	07 Mar,	20:54:09,	0.024
333,	07 Mar,	20:54:39,	0.024
334	07 Mar,	20:55:09,	4
335,	07 Mar,	20:55:39,	0.024
336.	07 Mar	20:56:09,	0.023
337,	07 Mar.	20:56:39,	0.024
338,	07 Mar,	20:57:09,	0.026
339,	07 Mar,	20:57:39,	0.028
340,	07 Mar,	20:58:09,	0.021
41.	07 Mar	20:58:39	0.029
342,	07 Mar,	20:59:09,	0.031
43,	07 Mar,	20:59:39,	0.024
	07 Mar,	21:00:09,	0.038
345,	07 Mar,	21:00:39,	7

6	07 Mar,		0.044
347,	07 Mar,	21:01:39,	0.032
48	07 Mar,	21:02:09,	0.039
49,	07 Mar,	21:02:39,	0.037
350,	07 Mar,	21:03:09,	0.025
51,	07 Mar,	21:03:39,	0.040
352,	07 Mar ,	21:04:09,	0.037
353,	07 Mar,	21:04:39,	0.033
354,	07 Mar	21:05:09,	0.149
55	07 Mar,	21:05:39,	0.026
356 ,	07 Mar,	21:06:09,	0.031
357 ,	07 Mar,	21:06:39,	0.039
358 ,	07 Mar,	21:07:09,	0.026
359,	07 Mar,	21:07:39,	0.032
,	07 Mar	21:08:09,	0.053
361,	07 Mar,	21:08:39,	0.098
362,	07 Mar,	21:09:09,	0.079
3	07 Ma	21:09:39,	0.080
364	07 Mar,	21:10:09,	0.074
65	07 Mar,	21:10:39,	0.051
366,	07 Ma	21:11:09r	0.070
367,	07 Mar ,	21:11:39,	0.100
368,	07 Mar ,	21:12:09,	0.088
69,	07 Mar ,	21:12:39,	0.058
370,	07 Mar,	21:13:09,	0.422
371,	07 Mar,	21:13:39,	0.032
	07 Mar,	21:14:09,	0.071
373,	07 Mar,	21:14:39,	0.053
374,	07 Mar,	21:15:09,	0.056
5.	07 Mar,	21:15:39,	0.062
376 ,	07 Mar,	21:16:09,	0.062
377,	07 Mar,	21:16:39,	0.063
8 ,	07 Mar,	21:17:09,	0.051
379,	07 Mar,	21:17:39,	0.045
380,	07 Mar,	21:18:09,	0.043
381.	07 Mar ,	21:18:39,	0.038
382,	07 Mar ,	21:19:09,	0.017
383,	07 Mar ,	21:19:39,	0.027
384,	07 Mar ,	21:20:09,	0.021
385,	07 Mar,	21:20:39,	015
386,	07 Mar,	21:21:09,	0.016
87 ,	07 Mar ,	21:21:39,	0.024
388,	07 Mar,	21:22:09,	0.019
389,	07 Mar,	21:22:39,	0.019
390,	07 Mar,	21:23:09,	0.026
391,	07 Mar,	21:23:39,	. 020
392,	07 Mar.	21:24:09,	0.036
393r	07 Mar ,	21:24:39,	0.061
394,	07 Mar,	21:25:09,	0.200
395,	07 Mar,	21:25:39,	0.040
396,	07 Mar,	21:26:09,	0.032
397,	07 Mar ,	21:26:39,	0.027
398,	07 Mar,	21:27:09,	0.031
399,	07 Mar,	21:27:39,	0.030
400,	07 Mar,	21:28:09,	0.028
401.	07 Mar,	21:28:39,	0.026
402,	07 Mar ,	21:29:09,	0.064
403.	07 Mar,	21:29:39r	0.032
404,	07 Mar,	21:30:09,	0.039
05,	07 Mar,	21:30:39,	0.040
406 ,	07 Mar,	21:31:09,	0.046
407,	07 Mar,	21:31:39,	0.049
408,	07 Mar,	21:32:09,	0.149
409,	07 Mar,	21:32:39,	. 0.255
10,	07 Mar,	21:33:09,	0.169
411 ,	07 Mar,	21:33:39,	0.084
412,	07 Mar,	21:34:09,	0.043
413,	07 Mar,	21:34:39,	0.046
414,	07 Mar,	21:35:09,	0.031
415,	07 Mar,	21:35:39,	0.024
416,	07 Mar,	21:36:09 ${ }_{\text {r }}$	0.019
417.	07 Mar	21:36:39,	0.060

	07		0.099
19 ,	07 Mar ,	21:37:39,	0.042
420,	07 Mar,	21:38:09,	0.036
1.	07 Mar,	21:38:39,	0.020
422,	07 Mar,	21:39:09,	0.034
423,	07 Mar,	21:39:39,	0.023
424,	07 Mar,	21:40:09,	0.035
425	07 Mar,	21:40:39,	0.040
26	07 Mar,	21:41:09,	0.216
27	07 Mar,	21:41:39	0.229
28,	07 Mar,	21:42:09,	0.149
9	07 Mar,	21:42:39,	0.071
430,	07 Mar	21:43:09,	0.115
31,	07 Mar,	21:43:39,	0.065
32.	07 Mar,	21:44:09,	0.0 .60
33	07 Mar ,	21:44:39	0.046
34,	07 Mar,	21:45:09,	0.038
435,	07 Mar,	21:45:39,	0.078
436,	07 Mar,	21:46:09,	0.023
437.	07 Mar,	21:46:39,	0.115
38	07 Mar	21:47:09,	0.079
439,	07 Mar	21:47:39,	0.103
440,	07 Mar,	21:48:09,	3
441,	07 Mar,	21:48:39,	0.054
442,	07 Mar,	21:49:09,	0.015
443,	07 Mar	21:49:39,	0.017
	07 Mar	21:50:09,	0.071
445,	07 Mar	21:50:39,	0.031
446 ,	07 Mar,	21:51:09,	0.037
447,	07 Mar ,	21:51:39,	0.110
448 ,	07 Mar,	21:52:09,	0.137
449,	07 Mar,	21:52:39,	70
450,	07 Mar ,	21:53:09,	0.037
51,	07 Mar,	21:53:39,	0.071
452,	07 Mar,	21:54:09,	0.137
53,	07 Mar ,	21:54:39,	0.150
454 ,	07 Mar	21:55:09,	0.277
455,	07 Mar ,	21:55:39,	0.542
456,	07 Mar,	21:56:09,	0.093
457,	07 Mar,	21:56:39,	0.019
458,	07 Mar,	21:57:09,	0.040
459,	07 Mar,	21:57:39,	0.024
460,	07 Mar,	21:58:09,	41
461,	07 Mar,	21:58:39r	1
62,	07 Mar ,	21:59:09,	0.019
3	07 Mar	21:59:39,	0.018
64.	07 Mar ,	22:00:09,	0.017
65,	07 Mar ,	22:00:39,	0.018
466,	07 Mar,	22:01:09,	. 67
67.	07 Mar,	22:01:39,	0.046
68.	07 Mar,	22:02:09,	0.019
69.	07 Mar ,	22:02:39,	0.024
$70^{\text {, }}$	07 Mar,	22:03:09,	0.017
471,	07 Mar,	22:03:39,	0.019
472,	07 Mar,	22:04:09,	0.030
473,	07 Mar,	22:04:39,	0.016
74	07 Mar ,	22:05:09,	0.034
75.	07 Mar,	22:05:39,	0.019
76,	07 Mar,	22:06:09,	0.022
	07 Mar,	22:06:39,	0.018
78 ,	07 Mar,	22:07:09,	0.025
479,	07 Mar,	22:07:39,	0.021
480,	07 Mar,	22:08:09,	0.022
481,	07 Mar,	22:08:39,	0.036
82,	07 Mas ,	22:09:09,	0.028
483,	07 Mar,	22:09:39,	0.140
484,	07 Mar ,	22:10:09,	0.065
485,	07 Mar,	22:10:39,	0.082
486,	07 Mar,	22:11:09r	0.077
487,	07 Mar.	22:11:39,	0.016
88,	07 Mar,	22:12:09,	0.020
489 ,	07 Mar,	22:12:39,	0.018

490,	07 Mar,	22:13:09,	0.022
491,	07 Mar,	22:13:39,	0.032
492.	07 Mar,	22:14:09,	0.020
493,	07 Mar,	22:14:39,	0.017
494.	07 Mar ,	22:15:09,	0.019
495.	07 Mar,	22:15:39,	0.020
496,	07 Mar,	22:16:09,	0.022
497.	07 Mar,	22:16:39,	0.020
498,	07 Mar ,	22:17:09,	0.023
499 ,	07 Mar,	22:17:39,	0.037
500 ,	07 Mar,	22:18:09,	0.019
501.	07 Mar,	22:18:39,	0.028
502 ,	07 Mar,	22:19:09,	0.019
503.	07 Mar,	22:19:39,	0.021
504 ,	07 Mar,	22:20:09,	0.017
505,	07 Mar,	22:20:39,	0.022
506,	07 Mar ,	22:21:09,	0.015
507 ,	07 Mar,	22:21:39,	0.020
508,	07 Mar,	22:22:09,	0.019
509,	07 Mar ,	22:22:39,	0.029
510,	07 Mar,	22:23:09,	0.017
511,	07 Mar,	22:23:39,	0.135
512,	07 Mar,	22:24:09,	0.034
513,	07 Mar,	22:24:39,	0.018
514,	07 Mar,	22:25:09,	0.025
515,	07 Mar,	22:25:39,	0.022
516,	07 Mar,	22:26:09,	0.021
517,	07 Mar,	22:26:39,	0.020
518;	07 Mar,	22:27:09,	0.019
519,	07 Mar,	22:27:39,	0.021
520,	07 Mar,	22:28:09,	0.019
521,	07 Mar,	22:28:39,	0.019
522,	07 Mar,	22:29:09,	0.015
523,	07 Mar,	22:29:39,	0.013
524,	07 Mar,	22:30:09,	0.017
525,	07 Mar,	22:30:39,	0.013
526,	07 Mar,	22:31:09,	0.017
527,	07 Mar ,	22:31:39,	0.015
528.	07 Mar,	22:32:09,	0.013
529,	07 Mar,	22:32:39,	0.017
530,	07 Mar,	22:33:09,	0.016
531,	07 Mar,	22:33:39,	0.016
532,	07 Mar	22:34:09,	0.013
533,	07 Mar ,	22:34:39,	0.018
534,	07 Mar ,	22:35:09,	0.016
535,	07 Mar,	22:35:39,	0.014
536,	07 Mar,	22:36:09,	0.013
537,	07 Mar,	22:36:39,	0.014
538,	07 Mar ,	22:37:09,	0.026
539,	07 Mar,	22:37:39,	0.024
540,	07 Mar,	22:38:09,	0.025
541,	07 Mar,	22:38:39,	0.090
542,	07 Mar,	22:39:09,	0.081
543,	07 Mar,	22:39:39,	0.117
544,	07 Mar,	22:40:09,	0.176
545,	07 Mar ,	22:40:39,	0.211
546,	07 Mar,	22:41:09,	0.345
547,	07 Mar,	22:41:39,	0.141
548,	07 Mar,	22:42:09,	0.117
549,	07 Mar,	22:42:39,	0.190
550,	07 Mar,	22:43:09,	0.141
551,	07 Mar,	22:43:39,	0.112
552,	07 Mar ,	22:44:09,	0.061
553,	07 Mar ,	22:44:39,	0.032
554,	07 Mar,	22:45:09,	0.042
555.	07 Mar,	22:45:39,	0.041
556,	07 Mar,	22:46:09,	0.074
557.	07 Mar,	22:46:39,	0.063
558.	07 Mar,	22:47:09,	0.060
559,	07 Mar,	22:47:39,	0.053
560,	07 Mar,	22:48:09,	0.042
561,	07 Mar,	22:18:39,	0.050

	07	Ma	22:49:09,	0.040
563,	07	Mar,	22:49:39,	0.025
564,	07	Mar,	22:50:09,	0.033
565,	07	Mar,	22:50:39r	0.070
566.	07	Mar,	22:51:09,	0.018
567,	07	Mar,	22:51:39,	0.038
568,	07	Mar,	22:52:09,	0.078
569,	07	Mar,	22:52:39,	0.047
570,	07	Mar,	22:53:09,	0.090
571,	07	Mar,	22:53:39,	0.032
572,	07	Mar,	22:54:09,	0.032
573,	07	Mar,	22:54:39,	0.063
574,	07	Mar,	22:55:09,	0.035
575,	07	Mar,	22:55:39,	0.027
576,	07	Mar,	22:56:09,	0.059
577,	07	Mar,	22:56:39,	0.080

pDR-1000 S/N: 06082 / Tag \# $01 /$ Start time: Mar 07, 18:08:09

Time ($p D R$)

PDR-1000 S/N: 06082
User ID: 6082
Tag Number: 01
Number of logged points: 620
Start time and date: 19:02:25 07-Mar
Elapsed time: 05:10:00
pgging period (sec): 30
alibration Factor (\%): 100
Max Display Concentration: $2.880 \mathrm{mg} / \mathrm{m}^{3}$
Time at maximum: 21:30:52 Mar 07
Max STEL Concentration: $0.105 \mathrm{mg} / \mathrm{m}^{3}$
Time at max STEL: 21:42:55 Mar 07
Overall Avg Conc: $0.055 \mathrm{mg} / \mathrm{m}^{3}$
Logged Data:
Point, Date , Time , Avg. ($\mathrm{mg} / \mathrm{m}^{3}$)
1, 07 Mar, 19:02:55, 0.011
2, 07 Mar, 19:03:25, 0.023
3, 07 Mar, 19:03:55, 0.009
4, 07 Mar, $19: 04: 25_{\text {r }} 0.018$
5, 07 Mar, 19:04:55, 0.020
6, $07 \mathrm{Mar}, 19: 05: 25,0.038$
7, 07 Mar, 19:05:55, 0.047
8, 07 Mar, 19:06:25, 0.040
9, 07 Mar, 19:06:55, 0.028
10, 07 Mar, 19:07:25, 0.020
11, 07 Mar, 19:07:55, 0.016
12, 07 Mar, 19:08:25, 0.017
13, 07 Mar, $19: 08: 55,0.018$
14, 07 Mar, 19:09:25, 0.019
15, 07 Mar, 19:09:55, 0.015
16, 07 Mar, $19: 10: 25,0.014$
17, 07 Mar, 19:10:55, 0.013
18, 07 Mar, 19:11:25, 0.014
19, 07 Mar, 19:11:55, 0.015
20, 07 Mar, $19: 12: 25,0.012$
21, 07 Mar, 19:12:55, 0.013
22, 07 Mar, 19:13:25, 0.011
23, 07 Mar, 19:13:55, 0.012
24, 07 Mar, 19:14:25, 0.013
25, $07 \mathrm{Mar}, 19: 14: 55,0.017$
26, 07 Mar, 19:15:25, 0.020
27, 07 Mar, $19: 15: 55,0.015$
28, 07 Mar, $19: 16: 25,0.011$
29, 07 Mar, 19:16:55, 0.014
30, 07 Mar, 19:17:25, 0.013
31, 07 Mar, 19:17:55, 0.011
32, 07 Mar, 19:18:25, 0.016
33, $07 \mathrm{Mar}, 19: 18: 55, \quad 0.015$
34, 07 Mar, 19:19:25, 0.022
35, 07 Mar, 19:19:55, 0.036
36. 07 Mar, 19:20:25, 0.014

37, 07 Mar, 19:20:55, 0.013
38, $07 \mathrm{Mar}, 19: 21: 25,0.018$
39, 07 Mar, $19: 21: 55,0.012$
40, 07 Mar, $19: 22: 25,0.013$
41, 07 Mar, $19: 22: 55,0.010$
42, 07 Mar, 19:23:25, 0.013
43, 07 Mar, $19: 23: 55,0.011$
44, 07 Mar, $19: 24: 25,0.016$
45, 07 Mar, 19:24:55, 0.050
46, 07 Mar, 19:25:25, 0.076
47, 07 Mar, 19:25:55, 0.031
48, 07 Mar, $19: 26: 25,0.020$
49, 07 Mar, $19: 26: 55,0.016$
50, 07 Mar, 19:27:25, 0.011
51, 07 Mar, $19: 27: 55,0.017$
52, 07 Mar, 19:28:25, 0.016
53, 07 Mar, 19:28:55, 0.022
54, 07 Mar, 19:29:25, 0.023
55, 07 Mar, $19: 29: 55,0.012$
56, 07 Mar, $19: 30: 25,0.009$
57, 07 Mar, $19: 30: 55,0.014$

	07 Mar,	19:31:25,	0.010
59,	07 Mar ,	19:31:55,	0.091
60,	07 Mar,	19:32:25,	0.054
61 ,	07 Mar ,	19:32:55,	0.023
62.	07 Mar,	19:33:25,	0.016
63.	07 Mar,	19:33:55,	0.014
64.	07 Mar,	19:34:25,	0.023
65.	07 Mar ,	19:34:55,	0.054
66,	07 Mar,	19:35:25,	0.045
67.	07 Mar,	19:35:55,	0.070
68,	07 Mar,	19:36:25,	0.074
69,	07 Mar,	19:36:55,	0.020
70,	07 Mar	19:37:25,	0.011
71,	07 Mar,	19:37:55,	0.012
72,	07 Max,	19:38:25,	0.021
73,	07 Mar,	19:38:55,	0.030
74,	07 Mar,	19:39:25,	0.015
75,	07 Max,	19:39:55,	0.024
76,	07 Mar ,	19:40:25,	0.021
77.	07 Mar,	19:40:55,	0.016
78,	07 Mar,	19:41:25,	0.011
79,	07 Mar ,	19:41:55,	0.021
80 ,	07 Mar ,	19:42:25,	0.053
81,	07 Mar ,	19:42:55,	0.030
82,	07 Mar ,	19:43:25,	0.029
83 ,	07 Mar ,	19:43:55,	0.081
84,	07 Mar ,	19:44:25,	0.056
85,	07 Mar,	19:44:55,	0.028
86,	07 Mar,	19:45:25,	0.112
87,	07 Mar,	19:45:55,	0.031
88,	07 Mar,	19:46:25,	0.059
89,	07 Mar,	19:46:55,	0.092
90,	07 Mar ,	19:47:25,	0.108
91.	07 Mar ,	19:47:55,	0.026
92.	07 Mar ,	19:48:25,	0.038
93,	07 Mar,	19:48:55,	0.076
94,	07 Mar,	19:49:25,	0.104
95,	07 Mar ,	19:49:55,	0.073
96,	07 Mar ,	19:50:25,	0.030
	07 Mar,	19:50:55,	0.018
98,	07 Mar,	19:51:25,	0.036
99,	07 Mar,	19:51:55,	0.055
100,	07 Mar,	19:52:25,	0.273
101,	07 Mar,	19:52:55,	0.216
102,	07 Max ,	19:53:25,	0.050
103,	07 Mar,	19:53:55,	0.154
104,	07 Mar,	19:54:25,	0.203
105,	07 Mar,	19:54:55,	0.113
106,	07 Mar,	19:55:25,	0.076
107,	07 Mar ,	19:55:55,	0.175
108,	07 Mar,	19:56:25,	0.068
109,	07 Max,	19:56:55,	0.098
110,	07 Mar,	19:57:25,	0.017
111,	07 Mar ,	19:57:55,	0.029
112.	07 Mar ,	19:58:25,	0.065
113,	07 Mar,].9:58:55,	0.061
114,	07 Mar,	19:59:25,	0.041
115,	07 Mar,	19:59:55,	0.055
116,	07 Mar,	20:00:25,	0.070
117,	07 Mar,	20:00:55,	0.071
118,	07 Mar,	20:01:25,	0.151
119.	07 Mar,	20:01:55,	0.150
120,	07 Mar,	20:02:25,	0.029
121,	07 Mar,	20:02:55,	0.064
122,	07 Max,	20:03:25,	0.026
123,	07 Mar,	20:03:55,	0.225
124,	07 Mar,	20:04:25,	0.035
125,	07 Mar,	20:04:55,	0.024
126,	07 Mar,	20:05:25,	0.019
127,	07 Mar,	20:05:55,	0.096
128,	07 Mar ,	20:06:25,	0.043
129,	07 Mar,	20:06:55,	0.067

130,	07 Mar,	20:07:25,	0.087
131,	07 Mar,	20:07:55,	0.017
132	07 Mar ,	20:08:25,	0.095
133,	07 Mar ,	20:08:55,	0.038
134,	07 Mar,	20:09:25,	0.052
135,	07 Mar ,	20:09:55,	0.109
136,	07 Mar,	20:10:25,	0.100
137,	07 Mar,	20:10:55,	0.032
138	07 Mar	20:11:25,	0.175
139.	07 Mar ,	20:11:55,	0.149
140,	07 Mar,	20:12:25,	0.135
141	07 Mar ,	20:12:55,	0.025
142,	07 Mar,	20:13:25,	0.021
143,	07 Mar,	20:13:55,	0.022
144	07 Mar	20:14:25,	0.028
145,	07 Max,	20:14:55,	0.028
146,	07 Mar,	20:15:25,	0.089
147,	07 Mar,	20:15:55,	0.051
148,	07 Mar,	20:16:25,	0.018
149,	07 Mar,	20:16:55,	0.028
150,	07 Mar,	20:17:25,	0.040
151,	07 Mar,	20:17:55,	0.088
152,	07 Mar,	20:18:25,	0.261
153,	07 Mar,	20:18:55,	0.135
154,	07 Mar ,	20:19:25,	0.101
155,	07 Mar,	20:19:55,	0.189
156.	07 Mar,	20:20:25,	0.086
157,	07 Mar,	20:20:55,	0.122
158,	07 Mar,	20:21:25,	0.079
159,	07 Mar,	20:21:55,	0.038
160,	07 Mar,	20:22:25,	0.096
161,	07 Mar ,	20:22:55,	0.050
162,	07 Mar,	20:23:25,	0.071
163,	07 Mar,	20:23:55,	0.085
164,	07 Mar,	20:24:25,	0.045
165,	07 Mar,	20:24:55,	0.048
166,	07 Mar ,	20:25:25,	0.016
167,	07 Mar ,	20:25:55,	0.020
168,	07 Mar,	20:26:25,	0.015
169,	07 Mar,	20:26:55,	0.036
170,	07 Mar,	20:27:25,	0.022
171,	07 Mar,	20:27:55,	0.024
172,	07 Mar,	20:28:25,	0.019
173,	07 Mars	20:28:55,	0.017
174,	07 Mar ,	20:29:25,	0.017
175,	07 Mar ,	20:29:55,	0.045
176,	07 Mar,	20:30:25,	0.102
177,	07 Mar ,	20:30:55,	0.069
178,	07 Mar,	20:31:25,	0.056
179,	07 Mar,	20:31:55,	0.113
180,	07 Mar,	20:32:25,	0.033
181,	07 Mar,	20:32:55,	0.094
182,	07 Mar,	20:33:25,	0.066
183,	07 Mar,	20:33:55,	0.071
184,	07 Max,	20:34:25,	0.025
185,	07 Mar,	20:34:55,	0.024
186,	07 Mar ,	20:35:25,	0.036
187,	07 Mar,	20:35:55,	0.023
188,	07 Mar,	20:36:25,	0.021
189,	07 Mar,	20:36:55,	0.039
190,	07 Mar,	20:37:25,	0.055
191,	07 Mar,	20:37:55,	0.021
192,	07 Mar,	20:38:25,	0.021
193.	07 Mar,	20:38:55,	0.023
194,	07 Mar;	20:39:25,	0.040
195,	07 Mar,	20:39:55,	0.031
196,	07 Mar,	20:40:25,	0.038
197,	07 Mar ,	20:40:55,	0.066
198,	07 Mar,	20:41:25,	0.050
199,	07 Mar,	20:41:55,	0.031
200,	07 Mar ,	20:42:25,	0.023
201,	07 Mar ,	20:42:55,	0.032

2	07 Mar,	20:43:25,	0.058
203,	07 Mar,	20:43:55,	0.019
204,	07 Mar,	20:44:25,	0.032
205,	07 Mar,	20:44:55,	0.019
206,	07 Mar,	20:45:25,	0.100
207,	07 Mar,	20:45:55,	0.118
208,	07 Mar,	20:46:25,	0.083
209,	07 Mar,	20:46:55,	0.091
210,	07 Mar,	20:47:25,	0.056
211,	07 Mar,	20:47:55,	0.064
212,	07 Mar,	20:48:25,	0.077
213,	07 Mar,	20:48:55,	0.046
214,	07 Mar,	20:49:25,	0.019
215,	07 Mar,	20:49:55,	0.123
216 ,	07 Mar,	20:50:25,	0.073
217	07 Mar,	20:50:55,	0.123
218.	07 Mar .	20:51:25,	0.044
219,	07 Mar,	20:51:55,	0.054
220,	07 Mar,	20:52:25,	0.050
221,	07 Mar,	20:52:55,	0.049
222,	07 Mar ,	20:53:25,	0.061
223,	07 Mar,	20:53:55,	0.046
224.	07 Mar,	20:54:25,	0.052
225,	07 Mar ,	20:54:55,	0.032
226,	07 Mar,	20:55:25,	0.046
227,	07 Mar,	20:55:55,	0.055
228,	07 Mar,	20:56:25,	0.178
229,	07 Mar,	20:56:55,	0.022
230,	07 Mar,	20:57:25,	0.134
231,	07 Mar,	20:57:55,	0.063
232,	07 Mar,	20:58:25,	0.052
233,	07 Mar,	20:58:55,	0.023
234,	07 Mar,	20:59:25,	0.023
235,	07 Mar ,	20:59:55,	0.021
236.	07 Mar,	21:00:25;	0.023
237 ,	07 Mar,	21:00:55,	0.026
238.	07 Mar,	21:01:25,	0.022
239,	07 Mar,	21:01:55,	0.082
240,	07 Mar,	21:02:25,	0.042
241,	07 Mar,	21:02:55,	0.043
242,	07 Mar ,	21:03:25,	0.058
243.	07 Mar ,	21:03:55,	0.077
244,	07 Mar,	21:04:25,	0.137
245,	07 Mar,	21:04:55,	0.052
246,	07 Mar ,	21:05:25,	0.040
247,	07 Mar,	21:05:55,	0.037
248,	07 Mar,	21:06:25,	0.085
249,	07 Mar,	21:06:55,	0.037
250,	07 Mar,	21:07:25,	0.107
251,	07 Mar,	21:07:55,	0.057
252,	07 Mar,	21:08:25,	0.066
253,	07 Mar,	21:08:55,	0.421
254,	07 Mar.	21:09:25,	0.217
255,	07 Mar ,	21:09:55,	0.076
256,	07 Mar,	21:10:25,	0.212
257 ,	07 Mar ,	21:10:55,	0.073
258,	07 Mar,	21:11:25,	0.085
259,	07 Mar ,	21:11:55,	0.046
260,	07 Mar,	21:12:25,	0.032
261,	07 Mar,	21:12:55,	0.030
262,	07 Mar,	21:13:25,	0.040
263,	07 Mar ,	21:13:55,	0.081
264,	07 Mar ,	21:14:25,	0.063
265,	07 Mar ;	21:14:55,	0.135
266,	07 Mar,	21:15:25,	0.139
267,	07 Mar,	21:15:55,	0.039
268,	07 Mar,	21:16:25,	0.035
269,	07 Mar,	21:16:55,	0.059
270,	07 Mar,	21:17:25,	0.033
271,	07 Mar,	21:17:55,	0.042
272,	07 Mar,	21:18:25,	0.070
273,	07 Mar;	21:18:55,	0.066

274,	07 Mar,	21:19:25,	0.037
275,	07 Mar,	21:19:55,	0.042
276 ,	07 Mar,	21:20:25,	0.041
277.	07 Mar.	21:20:55,	0.040
278,	07 Mar,	21:21:25,	0.036
279 .	07 Mar,	21:21:55,	0.046
280,	07 Max,	21:22:25,	0.111
281	07 Mar,	21:22:55,	0.051
282,	07 Mar,	21:23:25,	0.032
283,	07 Mar,	21:23:55,	0.035
284,	07 Mar,	21:24:25,	0.034
285,	07 Mar,	21:24:55,	0.040
286,	07 Mar ,	21:25:25,	0.036
287	07 Mar,	21:25:55,	0.031
288,	07 Mar ,	21:26:25,	0.027
289,	07 Mar,	21:26:55,	0.032
290,	07 Mar,	21:27:25,	0.031
291,	07 Mar ,	21:27:55,	0.043
292,	07 Mar,	21:28:25,	0.172
293,	07 Mar ,	21:28:55,	0.056
294,	07 Mar,	21:29:25,	0.031
295,	07 Mar,	21:29:55,	0.025
296,	07 Mar,	21:30:25,	0.044
297,	07 Mar,	21:30:55,	1.087
298,	07 Mar,	21:31:25,	0.063
299,	07 Mar,	21:31:55,	0.033
300,	07 Mar,	21:32:25,	0.047
301,	07 Mar,	21:32:55,	0.076
302,	07 Mar,	21:33:25,	0.036
303,	07 Mar ,	21:33:55,	0.083
304,	07 Mar,	21:34:25,	0.063
305,	07 Mar,	21:34:55,	0.094
306,	07 Mar,	21:35:25,	0.083
307.	07 Mar,	21:35:55,	0.086
308,	07 Mar,	21:36:25,	0.040
309,	07 Mar,	21:36:55,	0.030
310,	07 Mar,	21:37:25,	0.069
311,	07 Mar ,	21:37:55,	0.088
312,	07 Mar	21:38:25,	0.051
313,	07 Mar,	21:38:55,	0.080
314 ,	07 Mar,	21:39:25,	0.055
315,	07 Mar ,	21:39:55,	0.066
316,	07 Mar ,	21:40:25,	0.042
317.	07 Mar,	21:40:55,	0.045
318.	07 Mar ,	21:41:25,	0.033
319,	07 Mar ,	21:41:55,	0.030
320 ,	07 Mar,	21:42:25,	0.226
321,	07 Mar,	21:42:55,	0.216
322,	07 Mar,	21:43:25,	0.033
323.	07 Mar,	21:43:55,	0.032
324,	07 Mar ,	21:44:25,	0.035
325,	07 Mar,	21:44:55,	0.194
326,	07 Mar,	21:45:25,	0.047
327,	07 Mar,	21:45:55,	0.039
328,	07 Mar ,	21:46:25,	0.074
329,	07 Mar,	21:46:55,	0.036
330 ,	07 Mar ,	21:47:25,	0.032
331,	07 Mar,	21:47:55,	0.225
332,	07 Mar,	21:48:25,	0.041
333,	07 Mar,	21:48:55,	0.037
334 ,	07 Mar ,	21:49:25,	0.032
335,	07 Mar,	21:49:55,	0.030
336,	07 Mar,	21:50:25,	0.032
337,	07 Mar,	21:50:55,	0.078
338,	07 Mar,	21:51:25,	0.036
339,	07 Mar,	21:51:55,	0.034
340,	07 Mar,	21:52:25,	0.029
341 ,	07 Mar ,	21:52:55,	0.028
342,	07 Mar,	21:53:25,	0.028
343,	07 Mar,	21:53:55,	0.029
344,	07 Mar,	21:54:25,	0.031
345,	07 Mar,	21:54:55,	0.030

418,	07 Mar,	22:31:25,	0.043
419,	07 Mar,	22:31:55,	0.073
420,	07 Mar,	22:32:25,	0.070
421,	07 Mar,	22:32:55,	0.043
422.	07 Mar,	22:33:25,	0.037
423.	07 Mar,	22:33:55,	0.044
424,	07 Mar,	22:34:25,	0.041
425 ,	07 Mar,	22:34:55,	0.046
426,	07 Mar,	22:35:25,	0.051
427,	07 Mar,	22:35:55,	0.150
428,	07 Mar,	22:36:25,	0.040
429,	07 Mar,	22:36:55,	0.146
430,	07 Mar,	22:37:25,	0.091
431,	07 Mar,	22:37:55,	0.063
432,	07 Mar,	22:38:25,	0.082
433.	07 Mar,	22:38:55,	0.107
434,	07 Mar,	22:39:25,	0.062
435,	07 Mar,	22:39:55,	0.106
436 ,	07 Mar,	22:40:25,	0.094
437,	07 Mar,	22:40:55,	0.054
438 ,	07 Mar,	22:41:25,	0.049
439,	07 Mar,	22:41:55,	0.038
440,	07 Mar,	22:42:25,	0.053
441,	07 Max,	22:42:55,	0.070
442 ,	07 Mar,	22:43:25,	0.048
443,	07 Mar,	22:43:55,	0.651
444,	07 Mar,	22:44:25,	0.157
445,	07 Mar,	22:44:55,	0.043
446,	07 Mar,	22:45:25,	0.077
447.	07 Mar,	22:45:55,	0.054
448,	07 Mar,	22:46:25,	0.048
449 ,	07 Mar,	22:46:55,	0.048
450,	07 Mar,	22:47:25,	0.039
451,	07 Mar,	22:47:55,	0.036
452,	07 Mar,	22:48:25,	0.042
453,	07 Mar,	22:48:55,	0.064
454,	07 Mar,	22:49:25,	0.117
455,	07 Mar,	22:49:55,	0.132
456,	07 Mar,	22:50:25,	0.037
457,	07 Mar,	22:50:55,	0.066
458,	07 Mar,	22:51:25,	0.114
459,	07 Mar,	22:51:55,	0.069
460,	07 Mar ,	22:52:25,	0.048
461,	07 Mar,	22:52:55,	0.061
462,	07 Mar ,	22:53:25,	0.079
463,	07 Mar,	22:53:55,	0.076
464,	07 Max,	22:54:25,	0.041
465,	07 Mar,	22:54:55,	0.071
466,	07 Mar,	22:55:25,	0.061
467 ,	07 Mar,	22:55:55,	0.091
468,	07 Mar,	22:56:25,	0.045
469,	07 Mar,	22:56:55,	0.046
470,	07 Mar,	22:57:25,	0.035
471.	07 Mar ,	22:57:55,	0.035
472,	07 Mar,	22:58:25,	0.047
473,	07 Mar,	22:58:55,	0.035
474,	07 Mar,	22:59:25,	0.055
475,	07 Mar,	22:59:55,	0.073
476,	07 Mar,	23:00:25,	0.069
477,	07 Mar,	23:00:55,	0.067
478,	07 Mar,	23:01:25,	0.040
479,	07 Max,	23:01:55,	0.041
480,	07 Mar,	23:02:25,	0.046
481,	07 Mar,	23:02:55,	0.059
482,	07 Mar,	23:03:25	0.154
483,	07 Mar,	23:03:55,	0.138
484,	07 Mar,	23:04:25,	0.040
485,	07 Mar,	23:04:55,	0.036
486,	07 Mar,	23:05:25,	0.120
487,	07 Mar,	23:05:55,	0.115
488,	07 Mar,	23:06:25,	0.202
489,	07 Mar,	23:06:55,	0.033

562,	07 Mar,	23:43:25,	0.037
563,	07 Mar,	23:43:55,	0.036
564,	07 Mar,	23:44:25,	0.059
565 r	07 Mar,	23:44:55,	0.130
566 ,	07 Mar,	23:45:25,	0.032
567,	07 Mar,	23:45:55,	0.029
568 ,	07 Mar,	23:46:25,	0.030
569 ,	07 Mar ,	23:46:55,	0.032
570,	07 Mar,	23:47:25,	0.051
571	07 Mar .	23:47:55,	0.035
572,	07 Mar,	23:48:25,	0.034
573;	07 Mar,	23:48:55,	0.031.
574,	07 Mar,	23:49:25,	0.028
575,	07 Mar,	23:49:55,	0.029
576,	07 Mar,	23:50:25,	0.029
577,	07 Mar,	23:50:55,	0.031
578,	07 Mar,	23:51:25,	0.031
579,	07 Mar,	23:51:55,	0.046
580,	07 Mar,	23:52:25,	0.067
581,	07 Mar,	23:52:55,	0.047
582,	07 Mar,	23:53:25,	0.051
583,	07 Mar,	23:53:55,	0.047
584,	07 Max,	23:54:25,	0.041
585,	07 Mar ,	23:54:55,	0.041
586,	07 Mar,	23:55:25,	0.039
587,	07 Mar ,	23:55:55,	0.046
588,	07 Mar ,	23:56:25,	0.042
589,	07 Mar,	23:56:55,	0.040
590,	07 Mar ,	23:57:25,	0.042
591.	07 Mar,	23:57:55,	0.038
592.	07 Mar,	$23: 58: 25$,	0.042
593,	07 Mar ,	23:58:55,	0.042
594,	07 Mar,	23:59:25,	0.037
595,	07 Mar ,	23:59:55,	0.040
596,	08 Mar ,	00:00:25,	0.044
597,	08 Mar,	00:00:55,	0.037
598,	08 Mar ,	00:01:25,	0.050
599,	08 Mar ,	00:01:55,	0.078
600 ,	08 Mar,	00:02:25,	0.039
601.	08 Mar,	00:02:55,	0.061
602,	08 Mar,	00:03:25,	0.041
603.	08 Mar,	00:03:55,	0.033
604 ,	08 Mar,	00:04:25,	0.035
605,	08 Mar ,	00:04:55,	0.035
606,	08 Mar ,	00:05:25,	0.035
607,	08 Mar ,	00:05:55,	0.041
608,	08 Mar ,	00:06:25,	0.032
609,	08 Mar.	00:06:55,	0.037
610,	08 Mar,	00:07:25,	0.034
611,	08 Mar,	00:07:55,	0.031
612,	08 Mar,	00:08:25,	0.032
613,	08 Mar,	00:08:55,	0.032
614,	08 Mar,	00:09:25,	0.039
615.	08 Mar,	00:09:55,	0.409
616,	08 Mar,	00:10:25,	0.065
617,	08 Mar,	00:10:55,	0.064
618,	08 Mar,	00:11:25,	0.053
619,	08 Mar ,	00:11:55,	0.048
620,	08 Mar,	00:12:25,	0.040

$m g / m^{3}$
$m g / m^{3}$

7-Mar 22:55

Date \& Time ($p D R$)

$m g m m^{3}$

pDR-1000 S/N: 05567 RoV CS	
User ID: 5338	
Tag Number: 01	
Number of logged points: 569	
Start time and date: 19	18:59 07-Mar
Elapsed time: 04:44:30	
Lalibration Factor (\%): 100	
Max Display Concentratio	. $3.584 \mathrm{mg} / \mathrm{m}^{3}$
Time at maxirmum 21:47:01 Mar 07	
Max STEL Concentration: $0.164 \mathrm{mg} / \mathrm{m}^{3}$	
Time at max STEL: 20:03:29 Mar 07	
Overall Avg Conc: $0.051 \mathrm{mg} / \mathrm{m}^{3}$	
Logged Data:	
Point, Date , Time	Avg. (mg/m ${ }^{3}$)
1, 07 Mar, 19:19:29,	0.014
2, 07 Mar, 19:19:59,	0.012
3, 07 Mar, 19:20:29,	0.012
4, 07 Mar, 19:20:59,	0.011
5, 07 Mar, 19:21:29,	0.011
6, 07 Mar, 19:21:59,	0.010
7, 07 Mar, 19:22:29,	0.011
8, 07 Mar, 19:22:59,	0.015
9, 07 Mar, 19:23:29,	0.013
10, 07 Mar, 19:23:59,	0.011
11, $07 \mathrm{Mar}, 19: 24: 29$,	0.010
12, 07 Mar, 19:24:59,	0.013
13, 07 Mar, 19:25:29,	0.013
14, 07 Mar , 19:25:59,	0.040
15, 07 Mar, 19:26:29,	0.030
16, 07 Mar, 19:26:59,	0.010
17, 07 Mar, 19:27:29,	0.024
18, 07 Max, 19:27:59,	0.022
19, 07 Mar, 19:28:29,	0.011
20, 07 Mar, 19:28:59,	0.050
21, 07 Mar, 19:29:29,	0.055
22, 07 Mar, 19:29:59,	0.032
23, 07 Mar, 19:30:29,	0.029
24, 07 Mar, 19:30:59,	0.020
25, 07 Mar, 19:31:29,	0.026
26, 07 Mar, 19:31:59,	0.027
27, 07 Mar, 19:32:29,	0.024
28, 07 Mar, 19:32:59,	0.030
29, 07 Mar, 19:33:29,	0.043
30, 07 Mar, 19:33:59,	0.062
31, 07 Mar, 19:34:29,	0.070
32, 07 Mar, 19:34:59,	0.065
33, 07 Mar, 19:35:29,	0.105
34, 07 Mar, 19:35:59,	0.085
35, 07 Mar, 19:36:29,	0.069
36, 07 Mar, 19:36:59,	0.016
37, 07 Mar, 19:37:29,	0.009
38, 07 Mar, 19:37:59,	0.017
39, 07 Mar, 19:38:29,	0.036
40, 07 Mar, 19:38:59,	0.032
41, $07 \mathrm{Mar}, 19: 39: 29$,	0.012
42, 07 Mar, 19:39:59,	0.015
43, 07 Mar, 19:40:29,	0.015
44, 07 Mar, 19:40:59,	0.011
45, 07 Mar, 19:41:29,	0.014
46, 07 Max, 19:41:59,	0.036
47, 07 Mar, 19:42:29,	0.035
48, 07 Mar, 19:42:59,	0.013
49, 07 Mar, 19:43:29,	$0.044{ }^{\text {a }}$
50, 07 Mar, 19:43:59,	0.078°
51, 07 Mar, 19:44:29,	0.050
52, 07 Mar, 19:44:59,	0.117
53, 07 Mar, 19:45:29,	0.058
54, 07 Mar, 19:45:59,	0.030
55, 07 Mar, 19:46:29,	0.094
56, 07 Mar, 19:46:59,	0.134
57, 07 Mar, 19:47:29,	0.050

	07 Ma	19:47:59,	0.146
59,	07 Mar,	19:48:29,	0.182
60,	07 Mar,	19:48:59,	0.194
61,	07 Mar	19:49:29,	0.132
62.	07 Mar,	19:49:59,	0.043
63.	07 Mar,	19:50:29,	0.013
64,	07 Mar,	19:50:59,	0.019
65,	07 Mar,	19:51:29,	0.092
66,	07 Mar,	19:51:59,	0.577
67.	07 Mar,	19:52:29,	0.186
68,	07 Mar,	19:52:59,	0.046
69,	07 Mar,	19:53:29,	0.088
70,	07 Mar,	19:53:59,	0.210
71.	07 Mar,	19:54:29,	0.544
72	07 Max,	19:54:59,	0.101
73	07 Mar,	19:55:29,	0.196
74.	07 Mar,	19:55:59r	0.130
75	07 Mar,	19:56:29,	0.133
76,	07 Mar,	19:56:59,	0.250
77.	07 Mar,	19:57:29,	0.058
78.	07 Mar,	19:57:59,	0.081
79,	07 Mar,	19:58:29,	0.080
80 ,	07 Mar,	19:58:59,	0.050
81,	07 Max,	19:59:29,	0.028
82,	07 Mar,	19:59:59,	0.254
83,	07 Mar,	20:00:29,	0.053
84,	07 Mar ,	20:00:59,	0.289
85 ,	07 Mar,	20:01:29,	0.417
86,	07 Mar,	20:01:59,	0.083
87,	07 Mar ,	20:02:29,	0.127
88,	07 Mar,	20:02:59,	0.208
89,	07 Mar,	20:03:29,	0.234
90,	07 Mar ,	20:03:59,	0.020
91,	07 Mar,	20:04:29,	0.026
92,	07 Mar ,	20:04:59,	0.021
93,	07 Mar,	20:05:29,	0.031
94,	07 Mar,	20:05:59,	0.030
95,	07 Mar,	20:06:29,	0.107
96 ,	07 Mar,	20:06:59,	0.078
97.	07 Mar ,	20:07:29,	0.087
98.	07 Mar,	20:07:59,	0.026
99,	07 Mar,	20:08:29,	0.010
100,	07 Mar,	20:08:59,	0.047
101,	07 Mar,	20:09:29,	0.050
102,	07 Mar,	20:09:59,	0.123
103,	07 Mar,	20:10:29,	0.696
104,	07 Mar,	20:10:59,	0.119
105,	07 Mar,	20:11:29,	0.017
106,	07 Mar,	20:11:59,	0.049
107,	07 Mar,	20:12:29,	0.090
108,	07 Mar,	20:12:59,	0.076
109,	07 Mar,	20:13:29	0.030
110,	07 Mar,	20:13:59,	0.034
111,	07 Mar,	20:14:29,	0.018
112,	07 Mar,	20:14:59,	0.027
113,	07 Mar,	20:15:29,	0.108
114,	07 Mar,	20:15:59,	0.091
115,	07 Mar,	20:16:29,	0.201
116,	07 Mar,	20:16:59,	0.058
117 ,	07 Mar,	20:17:29,	0.071
118,	07 Mar,	20:17:59,	0.063
119,	07 Mar,	20:18:29,	0.171
120,	07 Mar,	20:18:59,	0.019
121,	07 Mar,	20:19:29,	0.132
122.	07 Mar,	20:19:59,	0.468
123,	07 Mar,	20:20:29,	0.091
124,	07 Mar,	20:20:59,	0.123
125,	07 Mar,	20:21:29,	0.132
126.	07 Mar,	20:21:59,	0.132
127.	07 Max ,	20:22:29,	0.131
128,	07 Max ,	20:22:59,	0.078
129,	07 Mar,	20:23:29,	0.056

	07 Ma	20:23:59,	0.058
131,	07 Mar,	20:24:29,	0.039
132,	07 Mar,	20:24:59,	0.048
133,	07 Mar,	20:25:29,	0.042
134,	07 Mar,	20:25:59,	0.085
135,	07 Mar,	20:26:29,	0.081
136,	07 Mar,	20:26:59,	0.018
137.	07 Mar,	20:27:29,	0.020
138,	07 Mar,	20:27:59,	0.069
139,	07 Mar	20:28:29,	0.053
140,	07 Mar,	20:28:59,	0.038
$1{ }^{1}$	07 Mar,	20:29:29,	0.066
2	07 Mar	20:29:59,	0.156
143,	07 Mar	20:30:29,	0.1 .23
144,	07 Mar.	20:30:59,	0.122
5	07 Mar	20:31:29,	0.157
146 r	07 Mar,	20:31:59,	0.045
147 r	07 Mar,	20:32:29,	0.081
148,	07 Mar,	20:32:59,	0.053
149,	07 Mar,	20:33:29,	0.012
150,	07 Mar,	20:33:59,	0.065
151	07 Mar,	20:34:29,	0.041
152.	07 Mar,	20:34:59,	0.024
153.	07 Mar,	20:35:29r	0.019
154,	07 Mar,	20:35:59,	0.017
155,	07 Mar,	20:36:29,	0.041
156,	07 Mar,	20:36:59,	0.078
157.	07 Mar,	20:37:29,	0.049
158,	07 Mar,	20:37:59,	0.036
159,	07 Mar,	20:38:29r	0.020
160,	07 Mar,	20:38:59,	0.014
161,	07 Mar	20:39:29,	0.021
162,	07 Mar,	20:39:59,	0.033
163,	07 Mar,	20:40:29,	0.067
164 ,	07 Mas	20:40:59,	0.035
165 ,	07 Mar,	20:41:29,	0.099
166 r	07 Mar,	20:41:59,	0.036
167,	07 Mar	20:42:29,	0.053
168,	07 Mar,	20:42:59,	0.024
169,	07 Mar,	20:43:29,	0.020
0,	07 Mar	20:43:59,	0.019
71.	07 Mar,	20:44:29,	0.068
72,	07 Mar ,	20:44:59,	0.087
3	07 Mar ,	20:45:29,	0.087
174,	07 Mar,	20:45:59,	0.098
175,	07 Mar,	20:46:29,	0.123
6,	07 Mar	20:46:59,	0.088
177,	07 Mar,	20:47:29,	0.089
178,	07 Mar,	20:47:59,	0.062
79	07 Mar,	20:48:29,	0.143
80,	07 Mar,	20:48:59,	0.065
181,	07 Mar,	20:49:29,	0.070
182,	07 Mar,	20:49:59,	0.013
183,	07 Mar,	20:50:29,	0.010
184,	07 Mar,	20:50:59,	0.008
185,	07 Mar ,	20:51:29,	0.027
186,	07 Mar,	20:51:59,	0.116
187.	07 Mar,	20:52:29,	0.024
188,	07 Mar,	20:52:59,	0.014
189,	07 Mar,	20:53:29,	0.080
190,	07 Mar,	20:53:59,	0.048
191,	07 Mar,	20:54:29,	0.055
192,	07 Mar,	20:54:59,	0.101
193.	07 Mar.	20:55:29,	0.037
194,	07 Mar,	20:55:59,	0.024
195,	07 Mar,	20:56:29,	0.025
196,	07 Mar,	20:56:59,	0.037
197.	07 Mar,	20:57:29,	0.034
198,	07 Mar,	20:57:59,	0.024
199,	07 Mar,	20:58:29,	0.008
200,	07 Mar,	20:58:59,	0.009
201	07 Mar	20:59:29	0.008

	07 Ma	21:35:59,	0.011
275,	07 Mar,	21:36:29,	0.011
276,	07 Mar,	21:36:59,	0.012
277,	07 Mar,	21:37:29,	0.018
278,	07 Mar,	21:37:59,	0.047
279,	07 Mar ,	21:38:29,	0.041
280,	07 Mar ,	21:38:59,	0.062
281,	07 Mar,	21:39:29,	0.044
282,	07 Mar,	21:39:59,	0.063
283,	07 Mar ,	21:40:29,	0.064
284,	07 Mar,	21:40:59,	0.029
285,	07 Mar,	21:41:29,	0.013
286,	07 Mar,	21:41:59,	0.035
287,	07 Mar,	21:42:29,	0.042
288,	07. Mar,	21:42:59,	0.056
289,	07 Mar,	21:43:29,	0.010
290,	07 Mar,	21:43:59,	0.056
291,	07 Mar,	21:44:29,	0.139
292,	07 Mar,	21:44:59,	0.205
293.	07 Mar,	21:45:29,	0.017
294 ,	07 Mar,	21:45:59,	0.090
295,	07 Max,	21:46:29,	0.020
296,	07 Mar,	21:46:59,	1.268
297,	07 Mar,	21:47:29,	1.440
298,	07 Mar,	21:47:59,	0.272
299,	07 Mar,	21:48:29,	0.118
300,	07 Mar,	21:48:59,	0.086
301,	07 Mar,	21:49:29,	0.035
302,	07 Mar ,	21:49:59,	0.036
303,	07 Mar,	21:50:29,	0.038
304,	07 Mar,	21:50:59,	0.047
305,	07 Mar,	21:51:29,	0.016
306,	07 Mar,	21:51:59,	0.012
307,	07 Mar,	21:52:29,	0.013
308,	07 Mar,	21:52:59,	0.013
309,	07 Mar,	21:53:29,	0.010
310,	07 Mar,	21:53:59,	0.011
311 r	07 Mar,	21:54:29,	0.009
312,	07 Mar,	21:54:59,	0.010
313,	07 Mar,	21:55:29,	0.013
314,	07 Mar ,	21:55:59,	0.010
315,	07 Mar,	21:56:29,	0.016
316,	07 Mar,	21:56:59,	0.011
317,	07 Mar,	21:57:29,	0.009
318,	07 Mar,	21:57:59,	0.086
319,	07 Mar,	21:58:29,	0.049
320,	07 Mar,	21:58:59,	0.024
321,	07 Mar,	21:59:29,	0.014
322,	07 Mar,	21:59:59,	0.014
323,	07 Mar,	22:00:29,	0.014
324,	07 Mar,	22:00:59,	0.030
325 ,	07 Mar,	22:01:29,	0.026
326 ,	07 Mar,	22:01:59,	0.011
327.	07 Mar,	22:02:29,	0.016
328,	07 Mar,	22:02:59,	0.011
329,	07 Mar,	22:03:29,	0.012
330,	07 Mar ,	22:03:59,	0.012
331.	07 Mar,	22:04:29,	0.008
332,	07 Mar,	22:04:59,	0.009
333,	07 Mar,	22:05:29,	0.010
334,	07 Mar,	22:05:59,	0.007
335,	07 Mar,	22:06:29,	0.013
336,	07 Mar,	22:06:59,	0.006
337,	07 Mar,	22:07:29,	0.008
338,	07 Mar,	22:07:59,	0.011
339,	07 Mar,	22:08:29,	0.010
340 ,	07 Mar,	22:08:59,	0.276
341,	07 Mar,	22:09:29,	0.152
342,	07 Mar,	22:09:59,	0.010
343,	07 Mar,	22:10:29,	0.013
344,	07 Mar,	22:10:59,	0.024
345,	07 Mar,	22:11:29,	0.016

	07 Ma	22:11:59,	0.009
47 ,	07 Mar,	22:12:29,	0.008
348,	07 Mar,	22:12:59,	0.007
49	07 Mar	22:13:29,	0.008
350,	07 Mar,	22:13:59,	0.008
351,	07 Mar,	22:14:29,	0.008
352,	07 Mar	22:14:59	0.008
353,	07 Mar,	22:15:29,	0.011
354 ,	07 Mar,	22:15:59,	0.007
355,	07 Mar	22:16:29,	0.006
356,	07 Mar,	22:16:59,	0.034
57,	07 Mar,	22:17:29,	0.019
358,	07 Mar	22:17:59,	0.009
359,	07 Mar,	22:18:29,	0.030
60,	07 Mar	22:18:59,	0.020
361,	07 Mar	22:19:29,	0.016
362,	07 Mar,	22:19:59,	0.059
363,	07 Mar,	22:20:29,	0.031
364,	07 Mar	22:20:59,	0.016
365 ,	07 Mar,	22:21:29,	0.018
366,	07 Mar,	22:21:59,	0.033
367,	07 Mar	22:22:29,	0.042
368 ,	07 Mar,	22:22:59,	16
369,	07 Mar ,	22:23:29,	0.004
370,	07 Mar,	22:23:59,	0.005
371,	07 Mar,	22:24:29,	7
372,	07 Mar,	22:24:59,	0.006
373,	07 Mar ,	22:25:29,	0.008
374 ,	07 Max,	22:25:59,	09
375,	07 Mar,	22:26:29,	0.007
376,	07 Mar,	22:26:59,	0.02 .7
377 ,	07 Mar,	22:27:29,	0.014
378 ,	07 Mar ,	22:27:59,	0.015
379,	07 Mar	22:28:29,	0.035
380,	07 Mar ,	22:28:59,	0.012
381 r	07 Mar,	22:29:29,	0.017
382 ,	07 Ma	22:29:59,	0.108
383.	07 Mar,	22:30:29,	66
384,	07 Mar,	22:30:59,	0.008
385 ,	07 Mar	22:31:29,	10
386,	07 Mar,	22:31:59,	0.015
387,	07 Mar,	22:32:29,	0.008
388,	07 Mar	22:32:59,	0.009
389.	07 Mar,	22:33:29,	0.006
390,	07 Mar.	22:33:59,	0.009
,	07 Max,	22:34:29,	0.009
392,	07 Mar,	22:34:59,	0.009
393,	07 Mar ,	22:35:29,	0.011
394,	07 Mar,	22:35:59,	014
395,	07 Mar,	22:36:29,	0.038
396,	07 Mar,	22:36:59,	0.038
397,	07 Mar,	22:37:29,	0.034
398,	07 Mar.	22:37:59,	0.041
399,	07 Mar,	22:38:29,	0.028
,	07 Mar	22:38:59,	0.041
01 ,	07 Mar,	22:39:29,	0.022
402 r	07 Mar,	22:39:59,	0.018
403,	07 Mar,	22:40:29;	0.011
404,	07 Mar,	22:40:59,	0.010
405,	07 Mar	22:41:29,	0.008
406,	07 Mar,	22:41:59,	0.020
407,	07 Mar,	22:42:29,	0.014
408,	07 Mar,	22:42:59,	0.013
409,	07 Mar.	22:43:29,	0.009
410,	07 Mar,	22:43:59,	0.012
411,	07 Mar,	22:44:29,	0.014
412,	07 Mar,	22:44:59,	0.079
413,	07 Mar,	22:45:29,	0.027
414,	07 Mar,	22:45:59,	0.016
415,	07 Mar,	22:46:29,	0.009
416,	07 Mar,	22:46:59,	0.008
417,	07 Mar,	22:47:29,	0.007

	07 Max, 22	0.012
419,	07 Mar, 22:48:29,	0.015
420,	07 Mar, 22:48:59,	0.009
421,	07 Mar, 22:49:29,	0.052
422,	07 Mar, 22:49:59,	0.079
423,	07 Mar, 22:50:29,	0.036
4.	07 Mar, 22:50:59,	0.048
425,	07 Mar, 22:51:29,	0.033
426,	07 Mar, 22:51:59,	0.023
42	07 Mar, 22:52:29,	0.016
428,	07 Mar, 22:52:59,	0.009
429,	07 Mar, 22:53:29,	0.023
10	07 Mar, 22:53:59,	0.011
431,	07 Mar, 22:54:29,	0.042
432,	07 Mar, 22:54:59,	0.052
33	07 Mar, 22:55:29,	0.062
434,	07 Mar, 22:55:59,	0.039
435,	$07 \mathrm{Mar}, 22: 56: 29$,	0.022
	07 Mar, 22:56:59,	0.010
437,	07 Mar, 22:57:29,	0.008
438,	07 Mar , 22:57:59,	0.011
439,	07 Mar, 22:58:29,	0.012
440,	07 Mar, 22:58:59,	0.013
441,	07 Mar, 22:59:29,	0.038
	07 Mar, 22:59:59,	0.078
443,	07 Mar, 23:00:29,	0.040
444,	07 Mar, 23:00:59,	0.028
45,	07 Mar, 23:01:29,	0.023
446 ,	$07 \mathrm{Mar}, 23: 01: 59$,	0.045
447 ,	07 Mar, 23:02:29,	0.047
448,	07 Mar, 23:02:59,	0.111
449,	07 Mar, 23:03:29,	0.173
450,	07 Mar, 23:03:59,	0.023
451.	07 Mar, 23:04:29,	0.011
452,	07 Mar, 23:04:59,	0.037
453;	07 Mar, 23:05:29,	0.013
454,	07 Mar, 23:05:59,	0.034
455,	$07 \mathrm{Mar}, 23: 06: 29$,	0.009
456,	07 Mar, 23:06:59,	0.010
457,	07 Mar, 23:07:29,	0.009
458,	07 Mar, 23:07:59,	0.010
459,	$07 \mathrm{Mar}, 23: 08: 29$,	0.011
460,	$07 \mathrm{Mar}, 23: 08: 59$,	0.013
461,	$07 \mathrm{Mar}, 23: 09: 29$ r	0.015
462,	07 Mar, 23:09:59,	0.012
463,	07 Mar, 23:10:29,	0.011
464,	07 Mar, 23:10:59,	0.010
465,	$07 \mathrm{Mar}, 23: 11: 29$,	0.007
466,	07 Mar, 23:11:59,	0.009
467,	07 Mar, 23:12:29,	0.011
468,	07 Mar, 23:12:59,	0.013
469,	$07 \mathrm{Mar}, 23: 13: 29$,	0.013
470,	07 Mar, 23:13:59,	0.012
471,	$07 \mathrm{Mar}, 23: 14: 29$,	0.007
72,	07 Mar 23:14:59,	0.015
473,	$07 \mathrm{Mar}, 23: 15: 29$,	0.012
474,	07 Mar, 23:15:59,	0.011
ブ,	$07 \mathrm{Mar}, 23: 16: 29$,	0.010
476 ,	$07 \mathrm{Mar}, 23: 16: 59$,	0.019
477 ,	07 Mar, 23:17:29,	0.024
478.	07 Mar, 23:17:59,	0.024
479,	07 Mar, 23:18:29,	0.014
480,	07 Mar, 23:18:59,	0.021
481,	$07 \mathrm{Mar}, 23: 19: 29$,	0.012
482,	07 Mar, 23:19:59,	0.010
483,	07 Mar, 23:20:29,	0.011
484,	$07 \mathrm{Mar}, 23: 20: 59$,	0.014
485,	07 Mar, 23:21:29,	0.016
486,	07 Mar, 23:21:59,	0.011
487,	$07 \mathrm{Mar}, 23: 22: 29$,	0.009
488,	07 Mar, 23:22:59,	0.011
489,	$07 \mathrm{Mar}, 23: 23: 29$,	0.012

	07 M	23:23:59,	0.012
491,	07 Mar,	23:24:29,	0.014
492,	07 Mar ,	23:24:59,	0.009
493	07 Mar,	23:25:29,	0.015
494,	07 Mar,	23:25:59,	0.015
495,	07 Mar,	23:26:29,	0.009
496,	07 Mar	23:26:59,	0.011
497 ,	07 Mar,	23:27:29,	0.015
498,	07 Mar,	23:27:59,	0.011
499.	07 Mar,	23:28:29,	0.009
500 ,	07 Mar,	23:28:59,	0.009
501.	07 Mar ,	23:29:29,	0.009
502,	07 Mar ,	23:29:59,	0.039
503,	07 Mar ,	23:30:29,	0.031
504,	07 Mar ,	23:30:59,	0.007
505,	07 Mar ,	23:31:29,	0.051
506,	07 Mar ,	23:31:59,	0.062
507,	07 Mar,	23:32:29,	0.011
508,	07 Mar ,	23:32:59,	0.012
509,	07 Mar .	23:33:29,	0.012
510,	07 Mar,	23:33:59,	0.012
511,	07 Max ,	23:34:29,	0.010
512,	07 Mar,	23:34:59,	0.013
513,	07 Mar,	23:35:29,	0.013
514,	07 Mar,	23:35:59,	0.015
515,	07 Mar,	23:36:29,	0.011
516,	07 Mar,	23:36:59,	0.008
517.	07 Mar,	23:37:29,	0.008
518,	07 Mar,	23:37:59,	0.008
519,	07 Mar ,	23:38:29,	0.011
520,	07 Mar,	23:38:59,	0.013
521,	07 Mar,	23:39:29,	0.009
522,	07 Mar,	23:39:59,	0.012
523,	07 Mar,	23:40:29,	0.009
524,	07 Mar,	23:40:59,	0.008
525,	07 Mar,	23:41:29,	0.009
526 ,	07 Mar	23:41:59,	0.007
527,	07 Mar,	23:42:29,	0.007
528,	07 Mar,	23:42:59,	0.008
529,	07 Mar	23:43:29,	0.008
530,	0.7 Mar,	23:43:59,	0.007
531,	07 Mar ,	23:44:29,	0.012
532,	07 Mar,	23:44:59,	0.014
533,	07 Mar,	23:45:29,	0.007
534,	07 Mar,	23:45:59,	0.010
535.	07 Mar	23:46:29,	0.013
536,	07 Mar,	23:46:59,	0.020
537,	07 Mar,	23:47:29,	0.007
538.	07 Mar,	23:47:59,	0.005
539.	07 Mar,	23:48:29,	0.007
540,	07 Mar ,	23:48:59,	0.008
541,	07 Mar,	23:49:29,	0.008
542,	07 Mar,	23:49:59,	0.009
543,	07 Mar,	23:50:29,	0.006
544 ,	07 Mar,	23:50:59,	0.006
545,	07 Mar,	23:51:29,	0.008
546 ,	07 Mar ,	23:51:59,	0.008
547 ,	07 Mar,	23:52:29,	0.014
548,	07 Mar,	23:52:59,	0.011
549,	07 Mar,	23:53:29,	0.123
550,	07 Mar,	23:53:59,	0.038
551,	07 Mar,	23:54:29,	0.034
552,	07 Mar,	23:54:59,	0.133
553,	07 Mar,	23:55:29,	0.008
554,	07 Mar,	23:55:59,	0.013
555,	07 Mar,	23:56:29,	0.021
556,	07 Max,	23:56:59,	0.010
557 ,	07 Mar,	23:57:29,	0.015
558,	07 Mar,	23:57:59,	0.016
559,	07 Mar,	23:58:29,	0.012
560,	07 Mar,	23:58:59,	0.016
561,	07 Mar,	23:59:29,	0.028

562, 07 Mar, 23:59:59, 0.006
563, 08 Mar, 00:00:29, 0.011
564, 08 Mar, 00:00:59, 0.017
565, 08 Mar, 00:01:29, 0.007
566, 08 Mar, 00:01:59, 0.008
567, $08 \mathrm{Mar}_{\mathrm{r}} 00: 02: 29,0.016$
568, 08 Mar, 00:02:59, 0.014
569, 08 Mar, $00: 03: 29,0.010$

Appendix D

AES Ash Analytical Results Table

AES Hawaii, Inc. Conditioned Ash Results and Statistics

AES Hawaii, Inc. Conditioned Ash Results and Statistics

Composite Sample Limit	$\begin{gathered} \mathrm{Cr} \text { (Chromium) } \\ \mathrm{mg} / \mathrm{kg} \\ 58 \end{gathered}$	Cu (Copper) $\mathrm{mg} / \mathrm{kg}$ 3100	Fe (Iron) $\mathrm{mg} / \mathrm{kg}$ N/A	Pb (Lead) $\mathrm{mg} / \mathrm{kg}$ 400	Hg (Mercury) $\mathrm{mg} / \mathrm{kg}$ 13		Mo (Molybdenum) $\mathrm{mg} / \mathrm{kg}$ 390	
17-3-1-1	36.5	32.8	26300	18.2		0.292		9.88
17-3-1-2	30.2	39.3	26000	28.6	ND	0.0913		12.0
17-3-2-1	27.7	24.1	28800	14.9		0.376		6.01
17-3-2-2	29.2	21.1	31800	14.8		0.430	ND	3.16
17-3-3-1	25.7	16.2	31000	10.0		0.423		4.67
17-3-3-2	35.3	31.9	28500	16.3		0.329		7.20
17-4-4-1	35.3	25.8	27300	17.1		0.244		6.84
17-4-4-2	17.1	14.5	22400	9.85		0.335		4.28
17-4-5-1	33.1	29.9	18800	18.1		0.366		7.84
17-4-5-2	23.3	20.9	10900	17.2		0.303		6.84
17-4-6-1	16.5	14.8	17900	7.1		0.348		3.83
17-4-6-2	22.8	22.2	17700	13.0		0.472		7.87
18-1-7-1	19.0	18.6	19600	11.0		0.418		6.56
18-1-7-2	32.9	28.5	15800	12.8		0.282		3.29
18-1-8-1	33.4	42.1	17200	18.0	ND	0.117	ND	31.3
18-1-8-2	36.9	41.5	18500	15.1	ND	0.117	ND	32.3
18-1-9-1	33.9	40.0	27100	20.3		0.586		4.94
18-1-9-2	34.7	36.8	34500	24.7		0.613		5.43
18-2-10-1	32.4	30.0	38000	23.5		0.589		4.71
18-2-10-2	32.6	33.5	30900	25.7		0.305		4.01
18-2-11-1	37.8	37.3	29700	21.2	ND	0.125		6.86
18-2-11-2	31.4	34.8	32600	16.7		0.262		6.95
18-2-12-1	34.6	49.1	28700	33.3		0.278		9.37
18-2-12-2	32.2	50.4	21000	33.9		0.336		6.19
18-3-1-1	47.1	59.8	17000	18.5		0.327		2.28
18-3-1-2	36.5	54.1	16200	36.2	ND	1.150		4.82
18-3-2-1	50.3	34.0	12400	15.1	ND	1.080		4.03
18-3-2-2	25.5	35.8	11300	35.4	ND	0.856		4.53
18-3-3-1	45.8	34.3	13400	12.9	ND	0.856		4.36
18-3-3-2	73.3	25.7	16000	14.9	ND	1.100		4.00
18-4-4-1	33.2	28.5	21000	20.5		0.355		3.93
18-4-4-2	36.0	39.2	16900	25.1		0.438		2.68
18-4-5-1	22.1	30.9	12600	15.1		0.296		2.84
18-4-5-2	22.0	30.0	11700	17.5		0.337		0.98
18-4-6-1	41.4	37.6	10600	17.5		0.448		3.57
18-4-6-2	36.5	27.5	12000	11.6		0.261		3.50
19-1-7-1	57.8	29.2	24600	19.0		0.352		4.19
19-1-7-2	240.0	54.1	58600	51.5		0.939		10.50
19-1-8-1	85.2	23.3	23700	14.0		0.301		4.27
19-1-8-2	40.4	28.1	30400	17.1	ND	0.287		6.87
19-1-9-1	43.1	47.3	31200	20.1		0.307		7.50
19-1-9-2	14.3	17.8	19900	13.7		0.332		3.12
Mean $+95 \%$ Confidence	50.6	36.1	25795	22.1				

Composite Sample Limit	$\begin{gathered} \text { Ni (Nickel) } \\ \text { mg/kg } \\ 1600 \end{gathered}$	$\begin{gathered} \mathrm{Se} \text { (Selinium) }) \\ \mathrm{mg} / \mathrm{kg} \\ 390 \end{gathered}$	Ag (Silver) $\mathrm{mg} / \mathrm{kg}$ 390	$\begin{gathered} \mathrm{TI}(\text { Thallium }) \\ \mathrm{mg} / \mathrm{kg} \\ 5.2 \end{gathered}$	Zn (Zinc) $\mathrm{mg} / \mathrm{kg}$ 23000
17-3-1-1	50.2	1.88	ND 0.608	0.614	800
17-3-1-2	28.7	2.42	ND 0.678	ND 0.678	659
17-3-2-1	34.3	1.60	ND 0.490	ND 0.490	463
17-3-2-2	32.7	1.66	ND 0.631	ND 0.631	212
17-3-3-1	30.2	1.17	ND 0.515	ND 0.515	105
17-3-3-2	44.7	2.84	ND 0.727	ND 0.727	98
17-4-4-1	38.8	2.60	ND 0.634	ND 0.634	502
17-4-4-2	22.5	1.50	ND 0.661	ND 0.661	301
17-4-5-1	47.3	4.82	0.212	0.750	315
17-4-5-2	24.5	3.56	ND 0.515	0.603	84.8
17-4-6-1	21.6	1.90	ND 0.706	0.360	93.1
17-4-6-2	28.3	3.62	ND 0.495	0.837	293
18-1-7-1	23.7	2.30	ND 0.485	0.704	379
18-1-7-2	43.8	1.48	ND 0.628	ND 0.628	276
18-1-8-1	51.4	ND 6.25	ND 6.25	0.563	414
18-1-8-2	53.0	ND 6.47	ND 6.47	ND 0.388	607
18-1-9-1	48.5	2.30	ND 0.678	ND 0.407	959
18-1-9-2	45.2	2.38	ND 0.698	0.559	787
18-2-10-1	41.0	2.07	ND 0.695	ND 3.47	688
18-2-10-2	39.3	2.16	ND 0.661	0.727	330
18-2-11-1	50.5	2.83	ND 0.64	0.514	143
18-2-11-2	44.3	1.89	ND 0.68	ND 0.68	565
18-2-12-1	54.7	2.23	0.259	0.49	707
18-2-12-2	64.8	1.78	ND 0.134	0.46	457
18-3-1-1	69.2	ND 0.12	ND 0.115	0.97	88.3
18-3-1-2	45.8	2.07	2.280	1.190	465
18-3-2-1	81.1	ND $\quad 1.08$	ND 1.08	ND 1.080	287
18-3-2-2	28.4	1.89	ND 0.86	ND 0.86	176
18-3-3-1	122	ND 0.86	ND 0.856	ND 0.86	370
18-3-3-2	134.0	ND 1.10	ND 1.100	ND $\quad 1.10$	177
18-4-4-1	54.5	0.30	2.280	0.61	905
18-4-4-2	40.7	0.09	ND 1.395	0.682	479
18-4-5-1	35.5	0.43	0.41	0.422	830
18-4-5-2	40.6	0.45	0.27	0.53	272
18-4-6-1	60.7	0.53	0.402	0.47	331
18-4-6-2	49.0	0.40	0.528	0.33	263
19-1-7-1	116.0	0.61	ND 0.262	0.63	871
19-1-7-2	609	ND 0.29	1.050	1.650	1630
19-1-8-1	236.0	ND 0.29	0.41	0.524	146
19-1-8-2	63.3	0.88	ND 0.29	0.47	895
19-1-9-1	122	0.78	ND 0.288	0.54	1670
19-1-9-2	29.8	0.86	ND 0.233	0.53	779
Mean +95\% Confidence	98.4	1.99	0.796	0.66	612

AES Hawaii, Inc. Conditioned Ash Results and Statistics

Composite Sample Limit	$\begin{gathered} \mathrm{Sb} \text { (Antimony) } \\ \mathrm{mg} / \mathrm{kg} \\ 31 \end{gathered}$	As (Arsenic) $\mathrm{mg} / \mathrm{kg}$ 75	Ba (Barium) $\mathrm{mg} / \mathrm{kg}$ 5400	Be (Berylium) $\mathrm{mg} / \mathrm{kg}$ 150	B (Boron) 12000	$\begin{gathered} \mathrm{Cd} \text { (Cadmium) } \\ \mathrm{mg}_{37} \mathrm{~kg} \end{gathered}$
17-3-1-1	0.741	23.8	1060	2.25	1030	0.30
17-3-1-2	1.200	27.1	1450	3.33	716	0.34
17-3-2-1	0.519	16.3	462	2.45	1100	0.25
17-3-2-2	0.316	18.5	517	6.30	1020	0.32
17-3-3-1	0.258	18.1	326	1.29	766	0.26
17-3-3-2	0.364	13.9	797	1.54	1170	0.36
17-4-4-1	0.317	16.4	873	1.62	830	0.32
17-4-4-2	0.331	10.6	442	1.02	660	0.33
17-4-5-1	0.219	14.7	806	2.16	863	0.54
17-4-5-2	0.258	11.7	1250	1.48	297	0.60
17-4-6-1	0.353	11.5	535	0.96	513	0.35
17-4-6-2	0.248	16.0	893	1.24	528	0.52
18-1-7-1	0.243	14.9	587	1.22	521	0.24
18-1-7-2	0.314	9.9	400	3.14	385	0.31
18-1-8-1	3.125	10.8	424	3.13	534	3.13
18-1-8-2	3.235	16.4	560	3.24	515	3.24
18-1-9-1	0.780	14.4	540	0.34	562	0.34
18-1-9-2	0.349	18.1	556	3.49	596	0.35
18-2-10-1	0.348	17.9	485	3.48	653	0.35
18-2-10-2	0.331	14.1	445	1.63	616	0.33
18-2-11-1	0.318	21.7	431	2.53	490	0.32
18-2-11-2	0.675	21.4	495	2.20	859	0.34
18-2-12-1	0.506	28.8	421	5.06	659	0.06
18-2-12-2	0.184	23.7	318	4.90	451	0.07
18-3-1-1	0.990	9.2	1310	1.73	151	0.06
18-3-1-2	1.200	29.2	735	6.80	492	0.58
18-3-2-1	1.330	23.5	791	4.20	404	0.54
18-3-2-2	0.428	15.0	193	3.59	188	0.43
18-3-3-1	0.428	14.9	333	3.19	488	0.43
18-3-3-2	0.550	9.9	407	2.45	372	0.55
18-4-4-1	0.395	10.9	369	1.05	500	0.10
18-4-4-2	0.178	12.0	386	2.71	528	0.14
18-4-5-1	0.127	6.7	288	1.39	426	0.13
18-4-5-2	0.102	2.5	334	1.24	360	0.10
18-4-6-1	0.141	7.6	493	4.05	921	0.14
18-4-6-2	0.344	11.3	347	1.41	658	0.12
19-1-7-1	0.131	14.9	446	2.02	955	0.13
19-1-7-2	0.313	45.0	908	7.86	2190	0.14
19-1-8-1	0.143	12.5	280	2.37	699	0.14
19-1-8-2	0.144	22.7	484	3.55	1140	0.14
19-1-9-1	0.144	13.2	470	2.72	1200	0.14
19-1-9-2	0.117	11.3	317	1.24	574	0.12
Mean	0.541202	16.26262	570.5714	2.703548	680.4762	0.421321
Standard Error	0.103257	1.150265	44.86308	0.253415	54.53046	0.099213
Standard Deviation	0.669181	7.454568	290.746	1.642315	353.3977	0.642974
Sample Variance	0.447803	55.57058	84533.23	2.697197	124890	0.413415
Range	3.1335	42.46	1257	7.521	2039	3.1775
Minimum	0.1015	2.54	193	0.339	151	0.0575
Maximum	3.235	45	1450	7.86	2190	3.235
Count	42	42	42	42	42	42
Confidence Level(95.0\%)	0.208532	2.323007	90.60283	0.511781	110.1265	0.200365

AES Hawaii, Inc. Conditioned Ash Results and Statistics

Composite Sample	$\mathrm{Cr} \text { (Chromium) }$ $\mathrm{mg} / \mathrm{kg}$	Cu (Copper) $\mathrm{mg} / \mathrm{kg}$	Fe (Iron) $\mathrm{mg} / \mathrm{kg}$	Pb (Lead) $\mathrm{mg} / \mathrm{kg}$	Hg (Mercury) $\mathrm{mg} / \mathrm{kg}$	Mo (Mołybdenum) $\mathrm{mg} / \mathrm{kg}$
Limit	58	3100	N/A	400	13	390
17-3-1-1	36.5	32.8	26300	18.2	0.292	9.88
17-3-1-2	30.2	39.3	26000	28.6	0.046	12.00
17-3-2-1	27.7	24.1	28800	14.9	0.376	6.01
17-3-2-2	29.2	21.1	31800	14.8	0.430	1.58
17-3-3-1	25.7	16.2	31000	10.0	0.423	4.67
17-3-3-2	35.3	31.9	28500	16.3	0.329	7.20
17-4-4-1	35.3	25.8	27300	17.1	0.244	6.84
17-4-4-2	17.1	14.5	22400	9.9	0.335	4.28
17-4-5-1	33.1	29.9	18800	18.1	0.366	7.84
17-4-5-2	23.3	20.9	10900	17.2	0.303	6.84
17-4-6-1	16.5	14.8	17900	7.1	0.348	3.83
17-4-6-2	22.8	22.2	17700	13.0	0.472	7.87
18-1-7-1	19.0	18.6	19600	11.0	0.418	6.56
18-1-7-2	32.9	28.5	15800	12.8	0.282	3.29
18-1-8-1	33.4	42.1	17200	18.0	0.059	15.65
18-1-8-2	36.9	41.5	18500	15.1	0.059	16.15
18-1-9-1	33.9	40.0	27100	20.3	0.586	4.94
18-1-9-2	34.7	36.8	34500	24.7	0.613	5.43
18-2-10-1	32.4	30.0	38000	23.5	0.589	4.71
18-2-10-2	32.6	33.5	30900	25.7	0.305	4.01
18-2-11-1	37.8	37.3	29700	21.2	0.063	6.86
18-2-11-2	31.4	34.8	32600	16.7	0.262	6.95
18-2-12-1	34.6	49.1	28700	33.3	0.278	9.37
18-2-12-2	32.2	50.4	21000	33.9	0.336	6.19
18-3-1-1	47.1	59.8	17000	18.5	0.327	2.28
18-3-1-2	36.5	54.1	16200	36.2	0.575	4.82
18-3-2-1	50.3	34.0	12400	15.1	0.540	4.03
18-3-2-2	25.5	35.8	11300	35.4	0.428	4.53
18-3-3-1	45.8	34.3	13400	12.9	0.428	4.36
18-3-3-2	73.3	25.7	16000	14.9	0.550	4.00
18-4-4-1	33.2	28.5	21000	20.5	0.355	3.93
18-4-4-2	36.0	39.2	16900	25.1	0.438	2.68
18-4-5-1	22.1	30.9	12600	15.1	0.296	2.84
18-4-5-2	22.0	30.0	11700	17.5	0.337	0.98
18-4-6-1	41.4	37.6	10600	17.5	0.448	3.57
18-4-6-2	36.5	27.5	12000	11.6	0.261	3.50
19-1-7-1	57.8	29.2	24600	19.0	0.352	4.19
19-1-7-2	240.0	54.1	58600	51.5	0.939	10.50
19-1-8-1	85.2	23.3	23700	14.0	0.301	4.27
19-1-8-2	40.4	28.1	30400	17.1	0.144	6.87
19-1-9-1	43.1	47.3	31200	20.1	0.307	7.50
19-1-9-2	14.3	17.8	19900	13.7	0.332	3.12
Mean	39.88095	32.69762	22869.05	19.45333	0.361182	5.879095
Standard Error	5.306354	1.693958	1448.955	1.318392	0.02588	0.506329
Standard Deviation	34.3891	10.9781	9390.303	8.54416	0.16772	3.281389
Sample Variance	1182.61	120.5188	88177799	73.00266	0.02813	10.76751
Range	225.7	45.3	48000	44.41	0.89335	15.188
Minimum	14.3	14.5	10600	7.09	0.04565	0.982
Maximum	240	59.8	58600	51.5	0.939	16.15
Count	42	42	42	42	42	42
Confidence Level(95.0\%)	10.7164	3.421018	2926.225	2.662548	0.052265	1.022553

AES Hawail, Inc. Conditioned Ash Results and Statistics

Composite Sample	Ni (Nickel) mg/kg	Se (Selinium) mg/kg	Ag (Silver) mg/kg	Tl (Thallilum) Limit	1600

Page 6 of 6

Appendix E

Statistical Analysis

General UCL Statistics for Full Data Sets

User Selected Options

From File C:IDocuments and Settingsivincent.yanagitalMy Documents\Projectslpvt|Risk Assessmentl2008-2009 Condition
Full Precision OFF
Confidence Coefficient 95\%
Number of Bootstrap Operations 2000

General Statistics

Number of Valid Observations 42

Raw Statistics
 Minimum 0.102
 Maximum 3.235
 Mean 0.541
 Median 0.331
 SD 0.669
 Coefficient of Variation 1.236
 Skewness 3.169

Number of Distinct Observations 38

Log-transformed Statistics

Minimum of Log Data -2.288
Maximum of Log Data 1.174
Mean of \log Data - 1.013
SD of \log Data 0.817

Relevant UCL Statistics

Normal Distribution Test

Shapiro Wilk Test Statistic 0.571
Shapiro Wilk Critical Value 0.942
Data not Normal at 5\% Significance Level

Assuming Normal Distribution

95\% Student's-t UCL 0.715
95\% UCLs (Adjusted for Skewness)
95\% Adjusted-CLT UCL 0.765 95\% Modified-t UCL 0.723

Gamma Distribution Test

k star (bias corrected) 1.312
Theta Star 0.412 nu star 110.2

Approximate Chi Square Value (.05) 87.01
Adjusted Level of Significance 0.0443
Adjusted Chi Square Value 86.28

Anderson-Darling Test Statistic 2.106
Anderson-Darling 5\% Critical Value 0.769
Kolmogorov-Smirnov Test Statistic 0.205
Kolmogorov-Smirnov 5\% Critical Value 0.139
Data not Gamma Distributed at 5\% Significance Level

Assuming Gamma Distribution

95\% Approximate Gamma UCL 0.686
95\% Adjusted Gamma UCL 0.692

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.898
Shapiro Wilk Critical Value 0.942
Data not Lognormal at 5\% Significance Level

Assuming Lognormal Distribution

95\% H-UCL 0.668
95\% Chebyshev (MVUE) UCL 0.81
97.5\% Chebyshev (MVUE) UCL 0.944

99\% Chebyshev (MVUE) UCL 1.206

Data Distribution
Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics
95\% CLT UCL 0.711
95\% Jackknife UCL 0.715
95\% Standard Bootstrap UCL 0.711
95\% Bootstrap-t UCL 0.871
95\% Hall's Bootstrap UCL 1.515
95% Percentile Bootstrap UCL 0.719
95\% BCA Bootstrap UCL 0.778
95\% Chebyshev(Mean, Sd) UCL 0.991
97.5\% Chebyshev(Mean, Sd) UCL 1.186
99\% Chebyshev(Mean, Sd) UCL 1.569

Use 95\% Chebyshev (Mean, Sd) UCL 0.991

General Statistics
Number of Valid Observations 42
Number of Distinct Observations 37

| Raw Statistics | Log-transformed Statistics |
| ---: | ---: | ---: |
| Minimum 2.54 | Minimum of Log Data 0.932 |
| Maximum 45 | Maximum of Log Data 3.807 |
| Mean 16.26 | Mean of log Data 2.689 |
| Median 14.9 | SD of log Data 0.474 |
| SD 7.455 | |
| Coefficient of Variation 0.458 | |

Skewness 1.535

Relevant UCL Statistics

Normal Distribution Test

Shapiro Wilk Test Statistic 0.871
Shapiro Wilk Critical Value 0.942
Data not Normal at 5\% Significance Level

Assuming Normal Distribution

95\% Student's-t UCL 18.2
95\% UCLs (Adjusted for Skewness)
95\% Adjusted-CLT UCL 18.45
95\% Modified-t UCL 18.24

Gamma Distribution Test

k star (bias corrected) 4.808
Theta Star 3.382 nu star 403.9

Approximate Chi Square Value (.05) 358.3
Adjusted Level of Significance 0.0443
Adjusted Chi Square Value 356.8

Anderson-Darling Test Statistic 0.483
Anderson-Darling 5\% Critical Value 0.752
Kolmogorov-Smirnov Test Statistic 0.101
Kolmogorov-Smirnov 5\% Critical Value 0.137
Data appear Gamma Distributed at 5\% Significance Level

Assuming Gamma Distribution

95\% Approximate Gamma UCL 18.33
95\% Adjusted Gamma UCL 18.41

Data Distribution

Data appear Gamma Distributed at 5\% Significance Level

\author{

Lognormal Distribution Test

 Shapiro Wilk Test Statistic 0.911
 Shapiro Wilk Critical Value 0.942
 Data not Lognormal at 5\% Significance Level
 \section*{Assuming Lognormal Distribution}
 95\% H-UCL 18.92
 95\% Chebyshev (MVUE) UCL 21.89
 97.5\% Chebyshev (MVUE) UCL 24.25
 99\% Chebyshev (MVUE) UCL 28.9}

Nonparametric Statistics
95\% CLT UCL 18.15
95\% Jackknife UCL 18.2
95\% Standard Bootstrap UCL 18.14
95\% Bootstrap-t UCL 18.58
95\% Hall's Bootstrap UCL 18.93
95\% Percentile Bootstrap UCL 18.17
95\% BCA Bootstrap UCL 18.59
95\% Chebyshev(Mean, Sd) UCL 21.28
97.5\% Chebyshev(Mean, Sd) UCL 23.45

99\% Chebyshev(Mean, Sd) UCL 27.71

Use 95\% Approximate Gamma UCL 18.33

Ba (Barium)

General Statistics

Number of Valid Observations 42
Number of Distinct Observations 42
Raw Statistics

\[\)| Minimum 193 | Log-transformed Statistics |
| :---: | ---: |
| Maximum 1450 | Minimum of Log Data 5.263 |
| Mean 570.6 | Maximum of Log Data 7.279 |
| Median 477 | Mean of log Data 6.241 |
| SD of log Data 0.45 | |

\]

SD 290.7
Coefficient of Variation 0.51
Skewness 1.485

Relevant UCL Statistics

Normal Distribution Test

Shapiro Wilk Test Statistic 0.809
Shapiro Wilk Critical Value 0.942
Data not Normal at 5\% Significance Level

Assuming Normal Distribution

95\% Student's-t UCL 646.1
95\% UCLs (Adjusted for Skewness)
95\% Adjusted-CLT UCL 655.3
95\% Modified-t UCL 647.8

Gamma Distribution Test

k star (bias corrected) 4.573
Theta Star 124.8
nu star 384.1
Approximate Chi Square Value (.05) 339.7
Adjusted Level of Significance 0.0443
Adjusted Chi Square Value 338.2

Anderson-Darling Test Statistic 1.234
Anderson-Darling 5\% Critical Value 0.752
Kolmogorov-Smirnov Test Statistic 0.17
Kolmogorov-Smirnov 5\% Critical Value 0.137
Data not Gamma Distributed at 5\% Significance Level

Assuming Gamma Distribution

95\% Approximate Gamma UCL 645.2 95\% Adjusted Gamma UCL 648

Potential UCL to Use
Use 95\% Student's-t UCL 646.1
or 95\% Modified-t UCL 647.8

Raw Statistics	Minimum
	0.339
Maximum	7.86
Mean	2.704
Median	2.41
SD	1.642
Coefficient of Variation	0.607

Skewness 1.326

Relevant UCL Statistics

[^0]Potential UCL to Use
Use 95\% Approximate Gamma UCL 3.167

Raw Statistics | Minimum 151 |
| ---: |
| Maximum 2190 |
| Mean 680.5 |
| Median 585 |
| SD 353.4 |
| Coefficient of Variation 0.519 |

Skewness 2.022

Relevant UCL Statistics

Normal Distribution Test

Shapiro Wilk Test Statistic 0.823
Shapiro Wilk Critical Value 0.942
Data not Normal at 5\% Significance Level

Assuming Normal Distribution

95\% Student's-t UCL 772.2
95\% UCLs (Adjusted for Skewness)
95\% Adjusted-CLT UCL 788.3
95\% Modified-t UCL 775.1

Gamma Distribution Test

k star (bias corrected) 4.198
Theta Star 162.1
nu star 352.7
Approximate Chi Square Value (.05) 310.2
Adjusted Level of Significance 0.0443
Adjusted Chi Square Value 308.7

Anderson-Darling Test Statistic 0.513
Anderson-Darling 5\% Critical Value 0.752
Kolmogorov-Smirnov Test Statistic 0.106 Kolmogorov-Smirnov 5\% Critical Value 0.137

Data appear Gamma Distributed at 5\% Significance Level

Assuming Gamma Distribution

95\% Approximate Gamma UCL 773.8 95\% Adjusted Gamma UCL 777.3

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.935
Shapiro Wilk Critical Value 0.942
Data not Lognormal at 5\% Significance Level

Assuming Lognormal Distribution

95\% H-UCL 791.5
95\% Chebyshev (MVUE) UCL 918.8
97.5\% Chebyshev (MVUE) UCL 1021

99\% Chebyshev (MVUE) UCL 1222

Data Distribution

Data appear Gamma Distributed at 5\% Significance Level
Nonparametric Statistics
95\% CLT UCL 770.2
95\% Jackknife UCL 772.2
95% Standard Bootstrap UCL 766.9
95\% Bootstrap-t UCL 799.9
95\% Hall's Bootstrap UCL 831.3
95% Percentile Bootstrap UCL 769.7
95\% BCA Bootstrap UCL 790.7
95% Chebyshev(Mean, Sd) UCL 918.2
97.5% Chebyshev(Mean, Sd) UCL 1021
99% Chebyshev(Mean, Sd) UCL 1223

Use 95\% Approximate Gamma UCL 773.8

Cd (Cadmium)

General Statistics

Raw Statistics

Minimum 0.0575
Maximum 3.235
Mean 0.421
Median 0.316
SD 0.643
Coefficient of Variation 1.526
Skewness 4.007

Relevant UCL Statistics

Normal Distribution Test

Shapiro Wilk Test Statistic 0.434
Shapiro Wilk Critical Value 0.942
Data not Normal at 5\% Significance Level

Assuming Normal Distribution

95\% Student's-t UCL 0.588
95\% UCLs (Adjusted for Skewness)
95\% Adjusted-CLT UCL 0.65
95\% Modified-t UCL 0.599

Gamma Distribution Test

k star (bias corrected) 1.166
Theta Star 0.361
nu star 97.92
Approximate Chi Square Value (.05) 76.09
Adjusted Level of Significance 0.0443
Adjusted Chi Square Value 75.4

Anderson-Darling Test Statistic 2.634
Anderson-Darling 5\% Critical Value 0.773
Kolmogorov-Smirnov Test Statistic 0.204
Kolmogorov-Smirnov 5\% Critical Value 0.14
Data not Gamma Distributed at 5\% Significance Level

Assuming Gamma Distribution

95\% Approximate Gamma UCL 0.542
95\% Adjusted Gamma UCL 0.547
Lognormal Distribution Test
Shapiro Wilk Test Statistic 0.875
Shapiro Wilk Critical Value 0.942
Data not Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95\% H-UCL 0.512
95% Chebyshev (MVUE) UCL 0.623
97.5\% Chebyshev (MVUE) UCL 0.728

99\% Chebyshev (MVUE) UCL 0.935

Data Distribution

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

95\% CLT UCL 0.585
95\% Jackknife UCL 0.588
95\% Standard Bootstrap UCL 0.578
95\% Bootstrap-t UCL 1.032
95\% Hall's Bootstrap UCL 1.548
95\% Percentile Bootstrap UCL 0.606
95\% BCA Bootstrap UCL 0.649
95\% Chebyshev(Mean, Sd) UCL 0.854
97.5\% Chebyshev(Mean, Sd) UCL 1.041

99\% Chebyshev(Mean, Sd) UCL 1.408

General Statistics
Number of Valid Observations 42
Number of Distinct Observations 39

Raw Statistics

Minimum 14.3
Maximum 240
Mean 39.88
Median 33.65
SD 34.39
Coefficient of Variation 0.862
Skewness 5.08

Log-transformed Statistics

Minimum of Log Data 2.66
Maximum of Log Data 5.481
Mean of \log Data 3.538
SD of \log Data 0.47

Relevant UCL Statistics

Normal Distribution Tes

Shapiro Wilk Test Statistic 0.464
Shapiro Wilk Critical Value 0.942
Data not Normal at 5% Significance Level

Assuming Normal Distribution
95\% Student's-t UCL 48.81

95\% UCLs (Adjusted for Skewness)

95\% Adjusted-CLT UCL 53.05
95\% Modified-t UCL 49.5

Lognormal Distribution Test
Shapiro Wilk Test Statistic 0.85
Shapiro Wilk Critical Value 0.942 Data not Lognormal at 5\% Significance Level

Assuming Lognormal Distribution

95\% H-UCL 44.08
95\% Chebyshev (MVUE) UCL 50.94
97.5\% Chebyshev (MVUE) UCL 56.41

99\% Chebyshev (MVUE) UCL 67.15

Data Distribution
Data do not follow a Discernable Distribution (0.05)
Theta Star 12.07
nu star 277.4
Approximate Chi Square Value (.05) 239.9
Adjusted Level of Significance 0.0443
Adjusted Chi Square Value 238.6

Anderson-Darling Test Statistic 2.897
Anderson-Darling 5\% Critical Value 0.754
Kolmogorov-Smirnov Test Statistic 0.23
Kolmogorov-Smirnov 5\% Critical Value 0.137
Data not Gamma Distributed at 5\% Significance Level

Assuming Gamma Distribution

95\% Approximate Gamma UCL 46.13
95\% Adjusted Gamma UCL 46.37

Cu (Copper)

General Statistics

Raw Statistics	Log-transformed Statistics	
\qquad	Minimum 14.5	Minimum of Log Data 2.674
Maximum 59.8	Maximum of Log Data 4.091	
Mean 32.7	Mean of log Data 3.43	
Median 31.4	SD of log Data 0.349	
SD 10.98		
Coefficient of Variation 0.336		

Skewness 0.504

Relevant UCL Statistics

Normal Distribution Test

Shapiro Wilk Test Statistic 0.927
Shapiro Wilk Critical Value 0.942
Data not Normal at 5\% Significance Level

Assuming Normal Distribution

95\% Student's-t UCL 35.55
95\% UCLs (Adjusted for Skewness)
95\% Adjusted-CLT UCL 35.62
95\% Modified-t UCL 35.57

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.934
Shapiro Wilk Critical Value 0.942
Data not Lognormal at 5\% Significance Level

Assuming Lognormal Distribution

95\% H-UCL 36.19
95\% Chebyshev (MVUE) UCL 40.64
97.5\% Chebyshev (MVUE) UCL 44.05 99\% Chebyshev (MVUE) UCL 50.74

Data Distribution

Data appear Gamma Distributed at 5\% Significance Level

Nonparametric Statistics

95\% CLT UCL 35.48
95\% Jackknife UCL 35.55
95\% Standard Bootstrap UCL 35.39
95\% Bootstrap-t UCL 35.73
95\% Hall's Bootstrap UCL 35.69
95\% Percentile Bootstrap UCL 35.37
95\% BCA Bootstrap UCL 35.51
95\% Chebyshev(Mean, Sd) UCL 40.08
97.5\% Chebyshev(Mean, Sd) UCL 43.28

99\% Chebyshev(Mean, Sd) UCL 49.55
95\% Approximate Gamma UCL 35.79
95\% Adjusted Gamma UCL 35.91

Potential UCL to Use

General Statistics

| Raw Statistics | Log-transformed Statistics |
| ---: | ---: | ---: |
| Minimum 10600 | Minimum of Log Data 9.269 |
| Maximum 58600 | Maximum of Log Data 10.98 |
| Mean 22869 | Mean of \log Data 9.961 |
| Median 21000 | SD of log Data 0.396 |
| SD 9390 | |
| Coefficient of Variation 0.411 | |

Skewness 1.317

Relevant UCL Statistics

Normal Distribution Test
Shapiro Wilk Test Statistic 0.857
Shapiro Wilk Critical Value 0.942
Data not Normal at 5\% Significance Level

Assuming Normal Distribution

95\% Student's-t UCL 25307
95\% UCLs (Adjusted for Skewness)
95\% Adjusted-CLT UCL 25567
95\% Modified-t UCL 25357

Gamma Distribution Test

k star (bias corrected) 6.232
Theta Star 3669
nu star 523.5
Approximate Chi Square Value (.05) 471.5
Adjusted Level of Significance 0.0443
Adjusted Chi Square Value 469.7

Anderson-Darling Test Statistic 0.472
Anderson-Darling 5\% Critical Value 0.751
Kolmogorov-Smirnov Test Statistic 0.0846
Kolmogorov-Smirnov 5\% Critical Value 0.137
Data appear Gamma Distributed at 5\% Significance Level

Assuming Gamma Distribution

95\% Approximate Gamma UCL 25394
95\% Adjusted Gamma UCL 25489

Potential UCL to Use
Use 95\% Approximale Gamma UCL 25394

General Statistics

Number of Valid Observations 42

Raw Statistics

Minimum 7.09
Maximum 51.5
Mean 19.45
Median 17.35
SD 8.544
Coefficient of Variation 0.439
Skewness 1.732

Relevant UCL Statistics

Normal Distribution Test

Shapiro Wilk Test Statistic 0.83
Shapiro Wilk Critical Value 0.942
Data not Normal at 5% Significance Level

Assuming Normal Distribution

95\% Student's-t UCL 21.67
95\% UCLs (Adjusted for Skewness)
95\% Adjusted-CLT UCL 22
95\% Modified-t UCL 21.73

Gamma Distribution Test

k star (bias corrected) 6.099
Theta Star 3.19
nu star 512.3
Approximate Chi Square Value (.05) 460.8
Adjusted Level of Significance 0.0443
Adjusted Chi Square Value 459.1

Anderson-Darling Test Statistic 0.878
Anderson-Darling 5\% Critical Value 0.751
Kolmogorov-Smirnov Test Statistic 0.141
Kolmogorov-Smirnov 5\% Critical Value 0.137
Data not Gamma Distributed at 5\% Significance Level

Assuming Gamma Distribution

95\% Approximate Gamma UCL 21.63
95\% Adjusted Gamma UCL 21.71

Log-transformed Statistics

Minimum of Log Data 1.959
Maximum of Log Data 3.942
Mean of log Data 2.89 SD of \log Data 0.39

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.943
Shapiro Wilk Critical Value 0.942
Data appear Lognormal at 5\% Significance Level

Assuming Lognormal Distribution

95\% H-UCL 21.69
95\% Chebyshev (MVUE) UCL 24.61
97.5\% Chebyshev (MVUE) UCL 26.87

99\% Chebyshev (MVUE) UCL 31.32

Data Distribution

Data appear Lognormal at 5\% Significance Level

Nonparametric Statistics

95\% CLT UCL 21.62
95\% Jackknife UCL 21.67
95\% Standard Bootstrap UCL 21.58
95\% Bootstrap-t UCL 22.21
95\% Hali's Bootstrap UCL 22.57
95\% Percentile Bootstrap UCL 21.64
95\% BCA Bootstrap UCL 22.1
95\% Chebyshev(Mean, Sd) UCL 25.2
97.5\% Chebyshev(Mean, Sd) UCL 27.69

99\% Chebyshev(Mean, Sd) UCL 32.57

Use 95\% Student's-t UCL 21.67
or 95% Modified-t UCL 21.73
or 95% H-UCL 21.69

General Statistics

Number of Valid Observations 42
Number of Distinct Observations 40
Raw Statistics

\[\)| Minimum 0.0457 |
| ---: |
| Maximum 0.939 |
| Mean 0.361 |
| Median 0.337 |
| SD 0.168 |

\]

Coefficient of Variation 0.464
Skewness 0.695

Log-transformed Statistics

Minimum of Log Data -3.087
Maximum of Log Data -0.0629
Mean of \log Data -1.169
SD of \log Data 0.647

Relevant UCL Statistics

Normal Distribution Test

Shapiro Wilk Test Statistic 0.903
Shapiro Wilk Critical Value 0.942
Data not Normal at 5\% Significance Level

Assuming Normal Distribution

95\% Student's-t UCL 0.405
95\% UCLs (Adjusted for Skewness)
95\% Adjusted-CLT UCL 0.407 95\% Modified-t UCL 0.405

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.777
Shapiro Wilk Critical Value 0.942
Data not Lognormal at 5\% Significance Level

Assuming Lognormal Distribution

95\% H-UCL 0.469
95\% Chebyshev (MVUE) UCL 0.559
97.5\% Chebyshev (MVUE) UCL 0.636

99\% Chebyshev (MVUE) UCL 0.788

Data Distribution

Data do not follow a Discernable Distribution (0.05)
Theta Star 0.111
nu star 273
Approximate Chi Square Value (.05) 235.7
Adjusted Level of Significance 0.0443
Adjusted Chi Square Value 234.5

Anderson-Darling Test Statistic 2.062
Anderson-Darling 5\% Critical Value 0.754
Kolmogorov-Smirnov Test Statistic 0.205
Kolmogorov-Smirnov 5\% Critical Value 0.137
Data not Gamma Distributed at 5\% Significance Level

Assuming Gamma Distribution

95\% Approximate Gamma UCL 0.418 95\% Adjusted Gamma UCL 0.42

Potential UCL to Use

Mo (Molybdenum)

General Statistics
Number of Valid Observations 42
Number of Distinct Observations 41

Raw Statistics	Log-transformed Statistics
Minimum 0.982	Minimum of Log Data -0.0182
Maximum 16.15	Maximum of Log Data 2.782
Mean 5.879	Mean of \log Data 1.63
Median 4.765	SD of \log Data 0.553
SD 3.281	
Coefficient of Variation 0.558	
Skewness 1.486	
Relevan	stics
Normal Distribution Test	Lognormal Distribution Test
Shapiro Wilk Test Statistic 0.842	Shapiro Wilk Test Statistic 0.935
Shapiro Wilk Critical Value 0.942	Shapiro Wilk Critical Value 0.942
Data not Normal at 5\% Significance Level	Data not Lognormal at 5\% Significance Level
Assuming Normal Distribution	Assuming Lognormal Distribution
95\% Student's-t UCL 6.731	95\% H-UCL 7.024
95\% UCLs (Adjusted for Skewness)	95\% Chebyshev (MVUE) UCL 8.251
95\% Adjusted-CLT UCL 6.836	97.5\% Chebyshev (MVUE) UCL 9.26
95\% Modified-t UCL 6.751	99\% Chebyshev (MVUE) UCL 11.24
Gamma Distribution Test	Data Distribution
k star (bias corrected) 3.438	Data appear Gamma Distributed at 5\% Significance Level
Theta Star 1.71	
nu star 288.8	
Approximate Chi Square Value (.05) 250.4	Nonparametric Statistics
Adjusted Level of Significance 0.0443	95\% CLT UCL 6.712
Adjusted Chi Square Value 249.1	95\% Jackknife UCL 6.731
	95\% Standard Bootstrap UCL 6.714
Anderson-Darling Test Statistic 0.482	95\% Bootstrap-t UCL 6.89
Anderson-Darling 5\% Critical Value 0.753	95\% Hall's Bootstrap UCL 6.931
Kolmogorov-Smirnov Test Statistic 0.106	95\% Percentile Bootstrap UCL 6.706
Kolmogorov-Smirnov 5\% Critical Value 0.137	95\% BCA Bootstrap UCL 6.795
Data appear Gamma Distributed at 5\% Significance Level	95\% Chebyshev(Mean, Sd) UCL 8.086
	97.5\% Chebyshev(Mean, Sd) UCL 9.041
Assuming Gamma Distribution	99\% Chebyshev(Mean, Sd) UCL 10.92
95\% Approximate Gamma UCL 6.78	
95\% Adjusted Gamma UCL 6.814	
Potential UCL to Use	Use 95\% Approximate Gamma UCL 6.78

General Statistics

Raw Statistics

Minimum 21.6
Maximum 609
Mean 69.09
Median 45.5
SD 93.96
Coefficient of Variation 1.36
Skewness 4.99

Relevant UCL Statistics

Normal Distribution Test

Shapiro Wilk Test Statistic 0.428
Shapiro Wilk Critical Value 0.942
Data not Normal at 5\% Significance Level

Assuming Normal Distribution

95\% Student's-t UCL 93.48
95\% UCLs (Adjusted for Skewness)
95\% Adjusted-CLT UCL 104.9
95\% Modified-t UCL 95.34

Gamma Distribution Test

k star (bias corrected) 1.67
Theta Star 41.38
nu star 140.3
Approximate Chi Square Value (.05) 113.9
Adjusted Level of Significance 0.0443
Adjusted Chi Square Value 113

Anderson-Darling Test Statistic 3.554
Anderson-Darling 5\% Critical Value 0.763
Kolmogorov-Smirnov Test Statistic 0.255
Kolmogorov-Smirnov 5\% Critical Value 0.138
Data not Gamma Distributed at 5\% Significance Level

Assuming Gamma Distribution

95\% Approximate Gamma UCL 85.08
95\% Adjusted Gamma UCL 85.72

Lognormal Distribution Test
Shapiro Wilk Test Statistic 0.835
Shapiro Wilk Critical Value 0.942
Data not Lognormal at 5\% Significance Level

Assuming Lognormal Distribution

95\% H-UCL 76.65
95\% Chebyshev (MVUE) UCL 91.4
97.5\% Chebyshev (MVUE) UCL 104 99\% Chebyshev (MVUE) UCL 128.8

Data Distribution

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

95\% CLT UCL 92.93
95\% Jackknife UCL 93.48
95\% Standard Bootstrap UCL 93.11
95\% Bootstrap-t UCL 139.2
95\% Hall's Bootstrap UCL 186.3
95\% Percentile Bootstrap UCL 95.72
95\% BCA Bootstrap UCL 109.6
95\% Chebyshev(Mean, Sd) UCL 132.3
97.5\% Chebyshev(Mean, Sd) UCL 159.6

99\% Chebyshev(Mean, Sd) UCL 213.3

Use 95\% Chebyshev (Mean, Sd) UCL 132.3

Se (Selinium)

General Statistics

Number of Valid Observations 42
Number of Distinct Observations 39
Raw Statistics

\[\)	
Minimum 0.0575	
Maximum 4.82	
Mean 1.631	
Median 1.72	
SD 1.142	
Coefficient of Variation 0.7	
Skewness 0.539	

\]

Log-transformed Statistics

Minimum of Log Data -2.856
Maximum of Log Data 1.573
Mean of \log Data 0.103
SD of \log Data 1.064

Relevant UCL Statistics

Normal Distribution Test

Shapiro Wilk Test Statistic 0.892
Shapiro Wilk Critical Value 0.942
Data not Normal at 5\% Significance Level

Assuming Normal Distribution

95\% Student's-t UCL 1.927
95\% UCLs (Adjusted for Skewness)
95\% Adjusted-CLT UCL 1.936
95\% Modified-t UCL 1.93
Lognormal Distribution Test
Shapiro Wilk Test Statistic 0.848
Shapiro Wilk Critical Value 0.942
Data not Lognormal at 5% Significance Level

Assuming Lognormal Distribution

95\% H-UCL 2.916
95\% Chebyshev (MVUE) UCL 3.535
97.5\% Chebyshev (MVUE) UCL 4.237

99\% Chebyshev (MVUE) UCL 5.616

Data Distribution
Data do not follow a Discernable Distribution (0.05)
Theta Star 1.205
nu star 113.6
Approximate Chi Square Value (.05) 90.04
Adjusted Level of Significance 0.0443
Adjusted Chi Square Value 89.29

Anderson-Darling Test Statistic 0.965
Anderson-Darling 5\% Critical Value 0.768
Kolmogorov-Smirnov Test Statistic 0.162
Kolmogorov-Smirnov 5\% Critical Value 0.139
Data not Gamma Distributed at 5\% Significance Level

Assuming Gamma Distribution

95\% Approximate Gamma UCL 2.059 95\% Adjusted Gamma UCL 2.076

Potential UCL to Use

General Statistics

Number of Valid Observations 42
Number of Distinct Observations 37

Raw Statistics

Minimum 0.0575
Maximum 3.235
Mean 0.564
Median 0.334
SD 0.745
Coefficient of Variation 1.321
Skewness 2.795

Log-transformed Statistics

Minimum of Log Data -2.856
Maximum of Log Data 1.174
Mean of \log Data -1.019
SD of \log Data 0.854

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.869
Shapiro Wilk Critical Value 0.942
Data not Lognormal at 5\% Significance Level

Assuming Lognormal Distribution

95\% H-UCL 0.697
95\% Chebyshev (MVUE) UCL 0.848
97.5\% Chebyshev (MVUE) UCL 0.992

99\% Chebyshev (MVUE) UCL 1.275

Data Distribution

Data do not follow a Discernable Distribution (0.05)

Nonparametric Statistics

95\% CLT UCL 0.753
95\% Jackknife UCL 0.757
95\% Standard Bootstrap UCL 0.755
95\% Bootstrap-t UCL 0.864
95\% Hall's Bootstrap UCL 0.768
95\% Percentile Bootstrap UCL 0.772
95\% BCA Bootstrap UCL 0.828
95\% Chebyshev(Mean, Sd) UCL 1.065
97.5\% Chebyshev(Mean, Sd) UCL 1.281

99\% Chebyshev(Mean, Sd) UCL 1.707
95\% Approximate Gamma UCL 0.723
95\% Adjusted Gamma UCL 0.73
Lognormal Distribution Test
Shapiro Wilk Test Statistic 0.869
Shapiro Wilk Critical Value 0.942
Data not Lognormal at 5% Significance Level
Assuming Lognormal Distribution
95\% H-UCL 0.697
95\% Chebyshev (MVUE) UCL 0.848
97.5\% Chebyshev (MVUE) UCL 0.992
99\% Chebyshev (MVUE) UCL 1.275
Data Distribution
95\% Jackknife UCL 0.757
Nonparametric Statistics
95\% CLT UCL 0.753
95\% Standard Bootstrap UCL 0.755
95\% Bootstrap-t UCL 0.864

TI (Thallium)

General Statistics
Number of Valid Observations 42
Number of Distinct Observations 41

Raw Statistics	Log-transformed Statistics
Minimum 0.194	Minimum of Log Data -1.64
Maximum 1.735	Maximum of Log Data 0.551
Mean 0.562	Mean of \log Data -0.697
Median 0.519	SD of \log Data 0.479
SD 0.325	
Coefficient of Variation 0.578	
Skewness 2.219	
Relevant UCL Statistics	
Normal Distribution Test	Lognormal Distribution Test
Shapiro Wilk Test Statistic 0.751	Shapiro Wilk Test Statistic 0.926
Shapiro Wilk Critical Value 0.942	Shapiro Wilk Critical Value 0.942
Data not Normal at 5\% Significance Level	Data not Lognormal at 5\% Significance Level
Assuming Normal Distribution	Assuming Lognormal Distribution
95\% Student's-t UCL 0.647	95\% H-UCL 0.643
95\% UCLs (Adjusted for Skewness)	95\% Chebyshev (MVUE) UCL 0.744
95\% Adjusted-CLT UCL 0.663	97.5\% Chebyshev (MVUE) UCL 0.826
95\% Modified-t UCL 0.65	99\% Chebyshev (MVUE) UCL 0.985
Gamma Distribution Test	Data Distribution
k star (bias corrected) 3.974	Data Follow Appr. Gamma Distribution at 5\% Significance Level
Theta Star 0.142	
nu star 333.8	
Approximate Chi Square Value (.05) 292.5	Nonparametric Statistics
Adjusted Level of Significance 0.0443	95\% CLT UCL 0.645
Adjusted Chi Square Value 291.1	95\% Jackknife UCL 0.647
	95\% Standard Bootstrap UCL 0.643
Anderson-Darling Test Statistic 0.911	95\% Bootstrap-t UCL 0.682
Anderson-Darling 5\% Critical Value 0.753	95\% Hall's Bootstrap UCL 0.682
Kolmogorov-Smirnov Test Statistic 0.128	95\% Percentile Bootstrap UCL 0.651
Kolmogorov-Smirnov 5\% Critical Value 0.137	95\% BCA Bootstrap UCL 0.661
Data follow Appr. Gamma Distribution at 5\% Significance Level	95\% Chebyshev(Mean, Sd) UCL 0.781
	97.5\% Chebyshev(Mean, Sd) UCL 0.876
Assuming Gamma Distribution	99\% Chebyshev(Mean, Sd) UCL 1.061

95\% Approximate Gamma UCL 0.642
95\% Adjusted Gamma UCL 0.645

General Statistics
Number of Valid Observations 42
Number of Distinct Observations 42

Raw Statistics	Minimum 84.8
Maximum 1670	
Mean 497	
Median 396.5	
SD 369	
Coefficient of Variation 0.743	
Skewness 1.478	

Log-transformed Statistics

Minimum of Log Data 4.44
Maximum of Log Data 7.421
Mean of \log Data 5.937
SD of \log Data 0.782

Relevant UCL Statistics

Normal Distribution Test
Shapiro Wilk Test Statistic 0.823
Shapiro Wilk Critical Value 0.942
Data not Normal at 5% Significance Level

Assuming Normal Distribution

95\% Student's-t UCL 592.8
95\% UCLs (Adjusted for Skewness)
95\% Adjusted-CLT UCL 604.5
95\% Modified-t UCL 595

Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.912
Shapiro Wilk Critical Value 0.942
Data not Lognormal at 5\% Significance Level

Assuming Lognormal Distribution

95\% H-UCL 666.5
95\% Chebyshev (MVUE) UCL 806.9
97.5\% Chebyshev (MVUE) UCL 935.6

99\% Chebyshev (MVUE) UCL 1189

Data Distribution

Data appear Gamma Distributed at 5\% Significance Level
Theta Star 266.8
nu star 156.5
Approximate Chi Square Value (.05) 128.6
Adjusted Level of Significance 0.0443
Adjusted Chi Square Value 127.7

Anderson-Darling Test Statistic 0.303
Anderson-Darling 5\% Critical Value 0.76
Kolmogorov-Smirnov Test Statistic 0.067
Kolmogorov-Smirnov 5\% Critical Value 0.138
Data appear Gamma Distributed at 5\% Significance Level

Assuming Gamma Distribution

95\% Approximate Gamma UCL 604.9
95\% Adjusted Gamma UCL 609.1

Nonparametric Statistics

95\% CLT UCL 590.6
95\% Jackknife UCL 592.8
95\% Standard Bootstrap UCL 589.5
95\% Bootstrap-t UCL 604.4
95\% Hall's Bootstrap UCL 613.9
95\% Percentile Bootstrap UCL 596.7
95\% BCA Bootstrap UCL 603.6
95\% Chebyshev(Mean, Sd) UCL 745.2
97.5\% Chebyshev(Mean, Sd) UCL 852.6

99\% Chebyshev(Mean, Sd) UCL 1064

Use 95\% Approximate Gamma UCL 604.9

Appendix F

Air Dispersion Modeling

Emission Rate Calculations - Sample PVT-EndCap-PMIO
Soil Disposal Emission Rate

Unlimited Erosion Model Emission Rate

USEPA 1996 Soil Screening Guidance: User's Guide. Office of Emergency and Remedial Response. Washington, DC. OSWER No. 9355.4-23

Appendix

Risk Characterization Spreadsheets

Summary of Dose-Response Information
Activity Description

NA - Not Applicable
(a) U.S. EPA (2009). IRIS
(c) DEAvived from Inhalation RfC
(d) Derived from Oral RTD.
(e) ASTDR
(f) Cal EPA
) derived from Inhalation URF
(w) RAIS
(x) AMEC Derived
(z) Hawaii DOHEAL Table H (2009)

WORKER - DUST INHALATION - ASH EXPOSURES
RISK CHARACTERIZATION
PVT LANDFILL

Scenario:
Receptor:
Medium:
Exposure Pathway:

Subactivity name
Worker
Dust from ash
Inhalation

Chemical Concentration in Air $=$ CS * RF

$\mathrm{ADD}(\mathrm{mg} / \mathrm{kg} / \mathrm{day})=$	$\frac{\text { Cdust } \times \mathbb{R} \times \mathrm{RAF} \times \mathrm{ET} \times E F \times E D}{\mathrm{AT} \times \mathrm{BW}}$
Hazard Quotient $(\mathrm{HQ})=$ $\mathrm{ADD}(\mathrm{mg} / \mathrm{kg} / \mathrm{day}) / \mathrm{RfDi}(\mathrm{mg} / \mathrm{kg} / \mathrm{day})$ Cancer Risk $(E L C R)=$ $\mathrm{ADD}(\mathrm{mg} / \mathrm{kg} / \mathrm{day}) * \mathrm{CSFi}[1 /(\mathrm{mg} / \mathrm{kg} / \mathrm{day})]$	

WORKER - DUST INHALATION - 1 HR END CAP ASH EXPOSURES
RISK CHARACTERIZATION
PVT LANDFILL

Scenario: Receptor: Medium: Exposure Pathway:	Subactivity name
	Worker
	Dust from ash
	Inhalation
Chemical Concentration in Air $=$ CS * RP	
ADD ($\mathrm{mg} / \mathrm{kg} / \mathrm{day}$) $=$	$\frac{\text { Cdust } \times \mathbb{R} \times R A F \times E T \times E F \times E D}{A T \times B W}$
Hazard Quotient (HQ) =	ADD (mg/kg/day) / RfDi (mg/kg/day)
Cancer Risk (ELCR) $=$	ADD (mg/kg/day) * CSFi [1/(mg/kg/day)]

Parameter (units)			Value							
ADD: Average Daily Dose ($\mathrm{mg} / \mathrm{kg} / \mathrm{day}$)			See Below Chemical-Specific							
CS: Chemical Concentration in Soil ($\mathrm{mg} / \mathrm{kg}$)										
Cdust: Concentration of dust-bound chemical in air ($\mathrm{mg} / \mathrm{m} 3$)			Chemical-Specific Calculated							
RAF: Relative Absorption Factor (Inhalation) (unitless)			Chemical-Specific							
ET: Exposure Time - dust (hr/d)			11							
EF: Exposure Frequency (days/year)			250							
ED: Exposure Duration (years)			25							
IR: Inhalation Rate ($\mathrm{m} 3 / \mathrm{hr}$)			0.833							
AT: Averaging Time (days) (ED $\times 365$ days/yr, noncancer)			9125							
AT: Averaging Time (days) ($75 \mathrm{yr} . \times 365$ days/yr, cancer)			25550							
BW: Body Weight (kg)			70							
RfDi: Reference Dose Inhalation (mg/kg/day)			Chemical-Specific	(End Cap PM10 Concentration)						
CSFi: Cancer Slope Factor Inhalation [1/(mg/kg/day)]			Chemical-Specific							
RP: Respirable particulate conc. in air ($\mathrm{mg} / \mathrm{m} 3$) CF: Conversion Factor ($\mathrm{kg} / \mathrm{mg}$)			$1.10 \mathrm{E}+00$							
			$1.00 \mathrm{E}-06$							
Compound	Soil Concentration ($\mathrm{mg} / \mathrm{kg}$)	Chemical Concentration in Air ($\mathrm{mg} / \mathrm{m} 3$)	Noncancer Hazard Quotient				Excess Lifetime Cancer Risk			
			Inhalation RAF (noncancer)	ADD (noncancer) (mg/kg/day)	RFDi (non-cancer) (mg/kg/day)	Soil-Dust HQ	Inhalation RAF (cancer)	$\begin{gathered} \text { ADD } \\ \text { (cancer) } \\ \text { (mg/kg/day) } \end{gathered}$	$\begin{gathered} \mathrm{CSFi} \\ 1 /(\mathrm{mg} / \mathrm{kg} / \mathrm{day})] \end{gathered}$	Soil- Dust Risk
Antimony	$7.19 \mathrm{E}-01$	7.91E-07	1	6.45E-09	$4.00 \mathrm{E}-04$	1.61E-05	1	NA	NA	NA
Arsenic	$1.82 \mathrm{E}+01$	$2.00 \mathrm{E}-05$	1	$1.63 \mathrm{E}-07$	4.29E-06	3.80E-02	1	5.82E-08	$1.51 \mathrm{E}+01$	8.76E-07
Barium	$6.45 \mathrm{E}+02$	7.10E-04	1	5.78E-06	1.43E-04	4.05E-02	1	NA	NA	NA
Beryllium	$3.12 \mathrm{E}+00$	3.43E-06	1	$2.80 \mathrm{E}-08$	5.71E-06	$4.90 \mathrm{E}-03$	1	9.99E-09	$8.40 \mathrm{E}+00$	8.39E-08
Boron	7.70E+02	8.47E-04	1	6.90E-06	$5.71 \mathrm{E}-03$	1.21E-03	1	NA	NA	NA
Cadmium	$6.06 \mathrm{E}-01$	6.67E-07	1	5.43E-09	$2.86 \mathrm{E}-07$	$1.90 \mathrm{E}-02$	1	1.94E-09	$6.62 \mathrm{E}+00$	1.28E-08
Chromium VI (1:6 VI:1II Ratio)	$8.23 \mathrm{E}+00$	$9.05 \mathrm{E}-06$	1	7.38E-08	$2.86 \mathrm{E}-05$	2.58E-03	1	NA	NA	NA
Copper	3.54E+01	3.89E-05	1	NA	NA	NA	1	NA	NA	NA
Iron	$2.54 \mathrm{E}+04$	$2.79 \mathrm{E}-02$	1	NA	NA	NA	1	NA	NA	NA
Lead	$2.16 \mathrm{E}+01$	$2.38 \mathrm{E}-05$	1	NA	NA	NA	1	NA	NA	NA
Mercury, Divalent	4.04E-01	$4.44 \mathrm{E}-07$	1	3.62E-09	8.57E-05	4.23E-05	1	NA	NA	NA
Molybdenum	$6.74 \mathrm{E}+00$	7.42E-06	1	6.04E-08	$5.00 \mathrm{E}-03$	$1.21 \mathrm{E}-05$	1	NA	NA	NA
Nickel	$9.57 \mathrm{E}+01$	1.05E-04	1	$8.58 \mathrm{E}-07$	$2.57 \mathrm{E}-05$	3.34E-02	1	3.07E-07	9.10E-01	2.79E-07
Selenium	$1.93 \mathrm{E}+00$	2.12E-06	1	$1.73 \mathrm{E}-08$	$5.71 \mathrm{E}-03$	3.03E-06	1	NA	NA	NA
Silver	7.72E-01	8.49E-07	1	$6.92 \mathrm{E}-09$	$5.00 \mathrm{E}-03$	1.38E-06	1	NA	NA	NA
Thallium	6.51E-01	7.16E-07	,	NA	NA	NA	1	NA	NA	NA
Zinc	$5.97 \mathrm{E}+02$	6.56E-04	1	5.35E-06	$3.00 \mathrm{E}-01$	1.78E-05	1	NA	NA	NA

WORKER - DIRECT CONTACT - ASH EXPOSURES
RISK CHARACTERIZATION
PVT LANDFILL
Scenario:
Receptor:
Medium:
Exposure Pathway:

Subactivity name
Industrial Worker
Ash
Ingestion and Dermal Contact

$\operatorname{ADD}(\mathrm{mg} / \mathrm{kg}-\mathrm{day})=$
$\frac{C S \times[([R \times F(\times R A F)+[S A \times A F \times F A \times R A F \times E F D)] \times E F \times E D \times C F}{B W \times A T}$ BW \times AT

Hazard Quotient $(H Q)=$
Cancer Risk (ELCR) =

ADD (mg/kg-day) / RfD (mg/kg-day) ADD ($\mathrm{mg} / \mathrm{kg}$-day) ${ }^{*}$ CSF [1/(mg/kg-day) $]$

Parameter (units)	Value
ADD: Average Daily Dose (mg/kg-day)	See Below
CS: Chemical Concentration in Soil (mg/kg)	Chemical-Specific
IR: Ingestion Rate (mg/day)	100
RAF: Relative Absorption Factor (Oral-Soil) (unitless)	Chemical-Specific
FI: Fraction Ingested from Site (unitless)	1
SA: Skin Surface Area (cm2)	3300
AF: Adherence Factor (mg/cm2/event)	0.29
RAF: Relative Absorption Factor (Dermal-Soil) (unitless)	Chemical-Specific
FA: Fraction Absorbed from Site (unitless)	1
EFD: Exposure Frequency - Dermal (event/day)	1
EF: Exposure Frequency (days/year)	250
ED: Exposure Duration (years)	25
BW: Body Weight (kg)	70
AT: Averaging Time (days) (ED $\times 365$ days/yr, noncancer)	9125
AT: Averaging Time (days) (75 yr. \times 365 days/yr, cancer)	25550
CF: Conversion factor (kg/mg)	$1.00 \mathrm{E}-06$
RfD: Reference Dose (mg/kg-day)	Chemical-Specific
CSF: Cancer Slope Factor [1/(mg/kg-day)]	Chemical-Specific

Compound	\qquad	Noncancer Hiazard Quotient					Excess Lifetime Cancer Risk				
		Oral-Soil RAF (noncancer)	Dermal-Soil RAF (noncancer)	ADD (noncancer) (mg/kg-day)	Chronic TDI/RfD (mg/kg-day)	Soil HQ	Oral-Soil RAF (cancer)	Dermal-Soil RAF (cancer)	ADD (cancer) (mg/kg-day)	$\begin{gathered} \text { CSF } \\ {[1 /(\mathrm{mg} / \mathrm{kg}-\mathrm{day})]} \end{gathered}$	Soil Risk
METALS											
Antimony	7.19E-01	0.15	1	6.84E-06	4.00E-04	1.71E-02	NA	NA	NA	NA	NA
Arsenic	$1.82 \mathrm{E}+01$	0.51	0.0004	9.14E-06	$3.00 \mathrm{E}-04$	3.05E-02	0.51	0.0004	$3.26 E-06$	$1.50 \mathrm{E}+00$	4.89E-06
Barium	$6.45 \mathrm{E}+02$	0.07	1	$6.09 \mathrm{E}-03$	$2.00 \mathrm{E}-01$	3.04E-02	NA	NA	NA	NA	NA
Beryllium	$3.12 \mathrm{E}+00$	0.007	0.14	4.11E-06	$2.00 \mathrm{E}-03$	$2.06 \mathrm{E}-03$	NA	NA	NA	NA	NA
Boron	$7.70 \mathrm{E}+02$	1	1	7.96E-03	$2.00 \mathrm{E}-01$	3.98E-02	NA	NA	NA	NA	NA
Cadmium	6.06E-01	0.025	0.001	$2.05 \mathrm{E}-08$	$1.00 \mathrm{E}-03$	2.05E-05	NA	NA	NA	NA	NA
Chromium VI (1:6 VI:III Ratio)	$8.23 \mathrm{E}+00$	0.025	0.04	3.28E-06	3.00E-03	1.09E-03	NA	NA	NA	NA	NA
Copper	$3.54 \mathrm{E}+01$	1	1	NA							
Iron	$2.54 \mathrm{E}+04$	1	1	NA							
Lead	2.16E+01	1	NA								
Mercury, Divalent	4.04E-01	0.07	0.01	NA							
Molybdenum	$6.74 \mathrm{E}+00$	1	1	$6.97 \mathrm{E}-05$	5.00E-03	1.39E-02	NA	NA	NA	NA	NA
Nickel	9.57E+01	0.04	1	9.00E-04	$2.00 \mathrm{E}-02$	$4.50 \mathrm{E}-02$	NA	NA	NA	NA	NA
Selenium	$1.93 \mathrm{E}+00$	1	1	2.00E-05	$5.00 \mathrm{E}-03$	3.99E-03	NA	NA	NA	NA	NA
Silver	7.72E-01	0.04	1	7.26E-06	$5.00 \mathrm{E}-03$	1.45E-03	NA	NA	NA	NA	NA
Thallium	$6.51 \mathrm{E}-01$	1	1	NA							
Zinc	5.97E+02	1	0.003	6.01E-04	$3.00 \mathrm{E}-01$	2.00E-03	NA	NA	NA	NA	NA

CHILD RESIDENT - DUST INHALATION - ASH EXPOSURES
RISK CHARACTERIZATION
PVT LANDFILL

Scenario:	Subactivity name
Receptor:	Child Resident
Medium:	Dust from ash
Exposure Pathway:	Inhalation

Chemical Concentration in $\mathrm{Air}=\mathrm{CS}$ * RP

$A D D(\mathrm{mg} / \mathrm{kg} /$ day $)=$	$\frac{\text { Cdust } \times \mathbb{R} \times R A F \times E T \times E F \times E D}{A T \times B W}$
Hazard Quotient (HQ) =	ADD (mg/kg/day) / RfDi (mg/kg/day)
Cancer Risk (ELCR) =	$\operatorname{ADD}(\mathrm{mg} / \mathrm{kg} / \mathrm{day})^{*} \mathrm{CSFi}[1 /(\mathrm{mg} / \mathrm{kg} / \mathrm{day})$]

ADULT RESIDENT - DUST INHALATION - ASH EXPOSURES
RISK CHARACTERIZATION
PVT LANDFILL

Scenario:	Subactivity name
Receptor:	Adult Resident
Medium:	Dust from ash
Exposure Pathway:	Inhalation

Chemical Concentration in Air $=C S$ * RP * CF

Appendix \boldsymbol{H}

Relative Absorption Factors Derivation

Abstract

ARSENIC The oral reference dose for noncarcinogenic effects of arsenic is $3 \mathrm{E}-04 \mathrm{mg} / \mathrm{kg}-\mathrm{day}$, and the oral cancer slope factor for carcinogenic effects is 1.5 per $\mathrm{mg} / \mathrm{kg}$-day (IRIS-U.S. EPA, 2001). Both values are based on epidemiological studies that characterized health effects in a large population of Taiwanese who consumed drinking water containing arsenic. The exact form of the ingested arsenic is unknown.

Estimation of Absorption in the Dose-Response Study

The relevant dose-response study characterized health effects in a large population of Taiwanese who consumed drinking water containing arsenic. Several studies investigating the absorption of arsenic have been performed in humans and various animal species. Human studies are sufficiently extensive to strongly suggest that close to 100% of soluble inorganic arsenic in water is absorbed from the gastrointestinal tract. These human studies are reviewed in detail here.

One direct indication of absorption of an orally administered dose of a chemical is its urinary excretion. Several studies show that urinary excretion can account for the majority of an orally administered dose of arsenic. Buchet et al. (1981a) administered aqueous sodium arsenite (NaAsO 2) as a single dose to three human volunteers. An average of 45% of the dose was excreted in the urine in four days. In a second study (Buchet et al., 1981b), four individuals given $125,250,500$, or 1000 Ug As/day orally for five days excreted $54,73,74$, and 64% of the dose in urine, respectively, over 14 days. The average urinary excretion of arsenic for the four subjects was 66% of the administered dose. Crecelius (1977) reports that approximately 50% and 80% of orally administered aqueous arsenic was excreted in urine within 61 hours by a single individual in two experiments. The results of these studies represent the minimum amount of arsenic absorbed since the balance of the dose was not accounted for.

Data for human fecal excretion of arsenic do exist. Pomroy et al. (1980) gave 6 male subjects radiolabelled arsenic acid ($\left[{ }^{74} \mathrm{As}\right] \mathrm{H}_{3} \mathrm{AsO}_{4}$) in gelatin capsules followed by a glass of water. The presence of arsenic in the body, urine, and feces was measured using a whole body radiation counter. The authors report that for the six subjects the average total excretion over 7 days was $6.1 \pm 2.8 \%$ in feces. It is not possible to determine how much of this arsenic was first absorbed and then excreted. The total recovery of arsenic (urine plus feces) was $68.4 \pm 4.0 \%$ of the single oral dose. The remaining arsenic was reported to be present in the body tissues; virtually the entire dose could be accounted for. This suggests a minimum absorption of $94 \%(100 \%-6 \%)$ of orally ingested arsenic.

A study by Bettley and O'Shea (1975) also reports excretion of arsenic in both urine and feces. Three subjects were exposed to 8.52 mg As (as 1.25 ml of Liq. Arsenicalis B.P.) in three portions 8 hours apart on one day. They found that at most 3.5% of the dose was excreted in feces over ten days. This suggests a minimum absorption of 96%. Urinary excretion averaged $52 \pm 4 \%$ of the exposure dose over 10 days ($n=3$). The remaining half of the dose was unaccounted for, although small amounts of arsenic were found in blood and hair.

In the Coulson study (Coulson et al., 1935), results from two humans each ingesting two forms of arsenic are reported. Less than 5% of an oral dose was excreted in feces whether the arsenic was taken as arsenic trioxide $\left(\mathrm{As}_{2} \mathrm{O}_{3}\right)$ or as natural arsenic present in shrimp.

The remainder of the dose, more than 95%, was recovered in urine in three experiments where total recoveries ranged from 74 to 115%. Based on the fecal excretion data from this study, it can be estimated that at least 95% of the ingested arsenic was absorbed. The fecal excretion data are consistent with those of Pomroy et al. (1980) and Bettley and O'Shea (1975).

Fecal excretion data from oral studies provide a minimum estimate of absorption, because it cannot be determined how much of the dose was first absorbed and then excreted into the feces. However, a study in humans injected intravenously with arsenic suggests that absorbed arsenic may be excreted, presumably from bile, into the feces. Mealy et al. (1959) administered radiolabelled arsenic by intravenous injection. Between 57% and 90% of the injected dose was recovered in urine in 10 days. Fecal excretion accounted for 1.3% of the dose after seventeen days in one individual. A second subject excreted 0.2% of the intravenous dose into the feces in one week. Both results indicate some excretion of arsenic into the feces. Virtually all of the remaining dose was recovered in the urine. Biliary excretion of arsenic has been demonstrated in rats, rabbits, and dogs (Klaassen, 1974; Gregus and Klaassen, 1986). This indicates that a portion of the arsenic found in feces in studies using oral dosing may have been first absorbed and then excreted.

The urinary excretion data from the oral studies discussed above provide minimum estimates of arsenic absorption ranging from 45% to 95%. The fecal excretion data suggest that, at a minimum, $95-96 \%$ of an orally administered dose of arsenic is absorbed. The study of intravenously administered arsenic suggest that biliary excretion can occur. Therefore, it can conservatively be concluded from the above studies that virtually 100% of an orally administered dose of soluble inorganic arsenic can be absorbed in humans.

RAF (Oral-Soil)

The oral-soil RAF for arsenic is defined as: (absorption of arsenic in humans from ingested soil) / (absorption of arsenic in humans in the epidemiological study from ingested water). There are many forms of inorganic arsenic, and these have widely varying solubilities. While it is appropriate to assume that arsenic present in water would be a soluble form of arsenic, this is not necessarily the case for arsenic present in soil or ash. Arsenic present in soils can either be in a relatively insoluble mineral form, such as would be expected in slags, mine tailings, and ash; or, the arsenic can be present in a more soluble form such as might be present at hazardous waste sites where arsenic salts were either disposed of or accidentally released. Even soluble species, however, become bound tightly to soils after years of weathering.

Ruby et al. (1999) Literature Review

Ruby et al. (1999) have recently summarized the available bioavailability studies from arsenic-containing media from metal mining and processing sites. Twenty two Relative Absorption Factors have been summarized from studies in swine, rats, rabbits and monkeys. The RAFs range from 0.03 to 0.51 . It should be noted that two samples from Aspen, CO were rejected because the arsenic levels were too low to produce reliable estimates of the RAF by the method used. The mean value for arsenic RAF from these 22 studies was 0.26 . The values are summarized below.

TABLE 1
SUMMARY OF ORAL-SOIL RAFS FOR ARSENIC FROM THE LITERATURE

Source of Sample	Study Type	Arsenic Level ($\mathrm{mg} / \mathrm{kg}$)	RAF
Aspen soil (berm)	EPA Region VIII Swine Study	67	Rejected as unreliable
Aspen soil (residential)	EPA Region VIII Swine Study	17	Rejected as unreliable
Bingham Creek tailings (channel)	EPA Region VIII Swine Study	149	0.37
Butte soil	EPA Region VIII Swine Study	239	0.10
Leadville soil (residential)	EPA Region VIII Swine Study	203	0.08
Leadville soil (Fe-$\mathrm{Mn}-\mathrm{Pb}$ oxide)	EPA Region VIII Swine Study	110	0.28
Leadville soil (AV)	EPA Region VIII Swine Study	1050	0.15
Midvale slag	EPA Region VIII Swine Study	591	0.18
Murray Smelter (slag)	EPA Region VIII Swine Study	695	0.51
Murray Smelter (soil)	EPA Region VIII Swine Study	310	0.34
Palmerton soil (location 2)	EPA Region VIII Swine Study	110	0.39
Palmerton soil (location 4)	EPA Region VIII Swine Study	134	0.52
Clark Fork tailings (GK)	EPA Region VIII Swine Study	181	0.49
Oklahoma calcine/soil 1	U. MO. Swine Study	11300	0.03
Oklahoma calcine/soil 2	U. MO. Swine Study	17500	0.03
Oklahoma calcine/soil 3	U. MO. Swine Study	13500	0.08
Oklahoma calcine/soil 4	U. MO. Swine Study	11500	0.22
Oklahoma calcine/soil 5	U. MO. Swine Study	6250	0.30
Oklahoma iron slag 3	U. MO. Swine Study	1180	0.29
Oklahoma Iron slag 4	U. MO. Swine Study	5020	0.30
Oklahoma Iron slag 5	U. MO. Swine Study	4650	0.16
Anaconda soil	Battelle Rabbit Study	3900	0.48
Anaconda soil	Battelle Monkey	410	0.20

(residential)	Study		
Anaconda House Dust	Battelle Monkey Study	170	0.28
Pure arsenic trioxide in rat food	Harrison et al. (1956) Rat Study	Not known	0.11
Soil in vicinity of historical sheep dip	Ng et al. (1998) Rat Study	$32-295$	0.10

There are few studies in the literature of the bioavailability of arsenic from aged soil matrices into which soluble arsenic compounds were historically released. It is known that such compounds bind to soil. For instance, WHO (1981) states:

Arsenate ions are readily sorbed by hydrous oxides of iron and aluminum and thus leaching of arsenate is slow. Absorption appears to be a major factor in the retention of arsenic in soils. Similarly, Hindmarsh and McCurdy (1986) state:

These arsenicais form very insoluble and stable complexes in soil systems which contribute to their long residence time (9400 years). Organic and inorganic arsenicals in soil behave similarly. They react with iron in conjunction wit clay and other particles or with various cations in soil to form insoluble complexes.

Only four studies were found in the literature. As presented below, RAFs are derived from each.

Harrison et al. (1956) Study

Harrison et al. (1956) determined the LD_{50} in albino rats of crude arsenic trioxide (97.7\% pure) and purearsenic trioxide ($99.999+\%$ pure). In one experiment, the arsenic trioxide was dissolved in water and given by gavage to 40 animals in four dose groups of ten animals each. In another experiment, the arsenic trioxide was given in dry form as a supplement to the food in 140 animals in seven dose groups of twenty each. The 96hour LD_{50} was determined for each of the four experiments. As shown below, the LD_{50} was markedly reduced when given in food as compared to aqueous solution. All animals in the highest dose groups were dead at 96 hours, so sufficient time was allowed for the acute toxic effects of trivalent arsenic to manifest.

TABLE 2
COMPARISON OF LETHAL DOSES TO RATS OF ARSENIC TRIOXIDE

Compound Tested	LD_{50} Aqueous Solution	LD_{50} Food Supplement
Crude Arsenic Trioxide	$23.6 \mathrm{mg} / \mathrm{kg}$	$214 \mathrm{mg} / \mathrm{kg}$
Pure Arsenic Trioxide	$15.1 \mathrm{mg} / \mathrm{kg}$	$145.2 \mathrm{mg} / \mathrm{kg}$

Because the dose-response values for arsenic are based on ingestion of dissolved arsenic in drinking water, estimates of relative bioavailability of trivalent arsenic can be made from the above data. For the crude arsenic trioxide, the ratio of the lethal dose for food administration versus administration of an aqueous solution is 0.11 . For the pure arsenic, the ratio is similar, 0.10 . Accordingly, the estimate of the RAF for pure trivalent arsenic compounds is 0.11 .

In this experiment, no soil was used, but the addition of the soluble arsenic species to food and administered immediately to animals without aging greatly overestimates the binding that would be expected to soil after years of ageing. Accordingly, this estimate is appropriate to use for the RAF of soluble arsenicals in soil.

Ng et al. (1998) Study
Ng et al. (1998) measured the absolute absorption of arsenic in soils near a former sheep dip. Five soil samples near the sheep dip site contained arsenic at concentrations of $55,32,165,295$, and $67 \mathrm{mg} / \mathrm{kg}$ total arsenic. It should be noted that native soils in this area may also be naturally high in arsenic due to the presence of specific geological formations that are known to occur elsewhere in Australia.

Male Wistar rats were given soil suspended in water by gavage in groups of five rats at a dose of 0.5 mg As $/ \mathrm{kg}$ body weight. As positive controls, groups of four rats were given the equivalent dose of arsenic by intravenous injection of 0.5 mg As $/ \mathrm{kg}$ body weight in the form od a solution of sodium arsenite (As III) or sodium arsenate (As III). All animals were given water and food ad libitum. 24- hour urine samples free from fecal contamination were collected daily for four days post dosing. Absolute absorption was determined by calculating the area under the urinary arsenic curve (AUC) for measurements taken at $0,24,48,72$ and 96 hours. The absolute absorption was determined as:
$\%$ Absolute Absorption (Bioavailabilty) $=100 \times$ AUC $_{\text {oral }} /$ AUC $_{\text {intravenous }}$

TABLE 3
ABSOLUTE ABSORPTION OF ARSENIC IN SOIL NEAR SHEEP DIP

Soil Sample Near Sheep Dip	Absolute Absorption (\%)
C1	10.81
C2	5.57
C3	12.55
C4	7.00
C5	12.56

The average absolute absorption (absolute bioavailability) of arsenic from soils near a former sheep dip site is 10%. Because the estimated absolute absorption of arsenic in humans from drinking water in the dose-response studies is 100%, the RAF is $10 \% / 100 \%=0.10$.

This RAF is based on an animal study of aged soils in which soluble trivalent arsenic compounds were released due to the former use of the area as a sheep dip. However, it cannot be ruled out that some of the arsenic present in the soil was naturally present from rock and soil formations.

Roberts, et al. (2002) Study

Roberts, et al. (2002) measured arsenic bioavailability from soils affected by releases of soluble arsenic salts in Cebus apella monkeys in a study for the Florida Department of Environmental Protection. Soil samples were taken from five sites with arsenic contaminated soil from different sources, but all from arsenical salts: (1) electrical substation, (2) cattle dip site, (3) pesticide site \#1, (4) wood treatment site, and (5) pesticide site \#2. Relative bioavailability was assessed based on urinary excretion following an oral dose in solution. Relative bioavailability for the five sites was: (1) 0.146 +/ 0.05, (2) $0.247+/-0.03$, (3) $0.107+/-0.05$, (4) $0.163+/-0.07$, and (5) $0.17+/-0.10$. The mean of these five soil types was 0.17 . Relative bioavailability of the soil from the wood treatment site was 0.16 .

Casteel et al. (2001) Study

Casteel et al. measured the relative bioavailability of arsenic in soils affected by a release of the arsenical herbicide PAX in swine in a study for the U.S. EPA. The relative bioavailability compared to arsenic salts in water varied from 0.18 to 0.45 in five samples.

Summary

RAFs presented above range from 0.03 to 0.51 . The most health-protective use of the above data is to use the maximum value listed above, 0.51 , as a conservative default oralsoil RAF.

RAF (Dermal-Soil)

The RAF (dermal-soil) for this chemical is defined as: (absorption in humans from dermal contact with soil) / (absorption of arsenic in humans in the epidemiological study from ingested water). The RAF (dermal-soil) of 0.009 is derived below.

To derive the RAF (dermal-soil), AMEC uses the estimates of the fractional dermal absorption of arsenic from soil reported by Wester et al. (1993). Wester et al. (1993) measured the skin uptake of soluble arsenic $\left(\mathrm{H}_{3} \mathrm{AsO}_{4}\right)$ from soil in monkey skin in vivo and in human skin in vitro. Radiolabelled arsenic was mixed with Yolo County 65-California-57-8 soil at two concentrations: $0.001 \mathrm{mg} / \mathrm{kg}$ and $15 \mathrm{mg} / \mathrm{kg}$. The soil retained by an 80 -mesh sieve was 26% sand, 26% clay, 48% silt, and 0.9% organic matter. Soil load on the skin was $40 \mathrm{mg} / \mathrm{cm}^{2}$. For each dose of arsenic, four female Rhesus monkeys were administered the arsenic containing soil on abdominal skin. The area was covered with a nonocclusive cover. After 24 hours, the soil was removed from the skin, and the area was washed with soap and water. Urine was collected for 7 days. In vivo percutaneous absorption was determined by the ratio of urinary excretion following topical administration to that following intravenous administration. Percutaneous absorption of arsenic from soil was $4.5+/-3.2 \%$ from the low dose and $3.2+/-1.9 \%$ from the high dose. Soap and water washes removed most of the admistered dose after the 24 hour exposure period.

Percutaneous absorption was also measured in viable human cadaver skin dermatomed to 500 um . The skin was preserved and used within five days of collection.
Measurements were taken in triplicate for each of three skin samples. The arsenic dose
was $0.001 \mathrm{mg} / \mathrm{kg}$ and the soil loading was $40 \mathrm{mg} / \mathrm{cm}^{2}$. After a 24 -hour exposure period, the amount of arsenic present in the receptor fluid (phosphate buffered saline) plus the amount in the skin that was not removed by a surface wash was 0.76% of the administered dose.

The dermal-soil RAF is calculated by using all three results from Wester et al. (1993):
4.5\% monkey in vivo, low dose
3.2\% monkey in vivo, high dose
0.8% human in vitro, low dose
The average fractional absorption over 24 hours is 2.8%. Typical exposures at industrial sites are not 24 hours in length. Thus, the above data are prorated to a more reasonable exposure period of 8 hours. The average fractional absorption over 8 hours is 0.94%. The dermal-soil RAF is calculated as follows:

$$
\operatorname{RAF}(\text { Dermal-Soil })=(0.944 \%) /(100 \%)=0.009 .
$$

Summary of Derived RAFs for Arsenic

Oral-Soil 0.51
Dermal-Soil 0.009

References

Bettley, F.R. and J.A. O'Shea. 1975. The Absorption of Arsenic and Its Relation to Carcinoma. British Journal of Dermatology. (92):563-568.

Buchet, J.P., R. Lauwerys, and H. Roels. 1981a. Comparison of the Urinary Excretion of Arsenic Metabolites After a Single Oral Dose of Sodium Arsenite, Monomethylarsonate, or Dimethylarsinate in Man. Int Arch Occup Environ Health. (48):71-79.

Buchet, J.P., R. Lauwerys, and H. Roels. 1981b. Urinary Excretion of Inorganic Arsenic and Its Metabolites After Repeated Ingestion of Sodium Metaarsenite by Volunteers. Int Arch Occup Environ Health. (48):111-118.

Casteel, S.W., T, Evans, M.E. Dunsmore, C.P. Weis, B. Lavelle, W.J. Brattin, T.L. Hammon. Relative bioavailability of arsenic in soils from the VBI170 site. Final Report. U.S. Environmental Protection Agency, Region 8, Denver, Co. (as cited in Roberts, et al. 2002).

Coulson, E.J., R.E. Remington and K.M. Lynch. 1935. Metabolism in the Rat of the Naturally Occurring Arsenic of Shrimp as Compared With Arsenic Trioxide. The Journal of Nutrition. (10):255-270.

Crecelius, E.A. 1977. Changes in the Chemical Speciation of Arsenic Following Ingestion by Man. Environmental Health Perspectives. (19):147-150.

Gregus, Z. and C.D. Klaassen. 1986. Disposition of Metals in Rats: A Comparative Study of Fecal, Urinary, and Biliary Excretion and Tissue Distribution of Eighteen Metals. Toxicol Appl Pharmacol. (85):24-38.

Harrisson, J.W.E., E.W. Packman, and D.D. Abbott. 1956. Acute Oral Toxicity and Chemical and Physical Properties of Arsenic Trioxides. A.M.A. Archives of Indistrial Health 17:118-123.

Hindmarsh, J.T. and R.F. McCurdy. 1986. Clinical and Environmental Aspects of Arsenic Toxicity. CRC Critical Reviews in Clinical Laboratory Sciences 23(4):315-347.

Klaassen, C.D. 1974. Biliary Excretion of Arsenic in Rats, Rabbits, and Dogs. Toxicol Appl Pharmacol. (29):447-457.

Mealey, J. Jr., G.L. Brownell, and W.H. Sweet. 1959. Radioarsenic in Plasma, Urine, Normal Tissues, and Intracranial Neoplasms: Distribution and Turnover after Intravenous Injection in Man. Am Med Assoc Arch Neurol Psychiat. (81):310-320.

Ng, J.C., S.M. Kratzmann, L.Qi, H. Crawlwy, B. Chiswell, and M.R. Moore. 1998. Speciation and absolute bioavailability: risk assessment of arsenic-contaminated sites in a residential suburb in Canberra. Analyst 123:889-892.

Pomroy, C., S.M. Charbonneau, R.S. McCullough and G.K.H. Tam. 1980. Human Retention Studies with ${ }^{74}$ As. Toxicol Appl Pharmacol. (53):550-556.

Roberts, S.M., W.R. Weiman, J.R.T. Vinson, J.W. Munson and R.J. Bergeron. 2002. Measurement of Arsenic Bioavailability in Soil Using a Primate Model. Toxicological Sciences (67): 303-311.

Ruby, M.V., R. Schoof, W. Brattin, M.Goldade, G. Post, M. Harnois, D.E. Mosby, S.W. Casteel, W. Berti, M. Carpenter, D. Edwards, D. Cragin, and W. Chappell. 1999. Advances in Evaluating the Oral Bioavaioability of Inorganics in Soil for Use in Human Health Risk Assessment. EST 33:3697-3705.
U.S. EPA. 2001. Integrated Risk Information System (IRIS). Environmental Criteria and Assessment Office. Cincinnati, OH.

Wester, R.C., H. I. Maibach, L. Sedik, J. Melendres, and M. Wade. 1993. In Vivo and In Vitro Percutaneous Absorption and Skin Decontmination of Arsenic from Water and Soil. Fundamental and Applied Toxicology 20:336-340.

World Health Organization (WHO). 1981. IARC Mongraphs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans: Volume 25, Wood, Leather, and Associated Industries.

[^0]: Normal Distribution Test
 Shapiro Wilk Test Statistic 0.853
 Shapiro Wilk Critical Value 0.942
 Data not Normal at 5\% Significance Level

 ## Assuming Normal Distribution

 95\% Student's-t UCL 3.13
 95\% UCLs (Adjusted for Skewness)
 95\% Adjusted-CLT UCL 3.176
 95\% Modified-t UCL 3.139

 ## Gamma Distribution Test

 k star (bias corrected) 2.819
 Theta Star 0.959
 nu star 236.8
 Approximate Chi Square Value (.05) 202.2
 Adjusted Level of Significance 0.0443
 Adjusted Chi Square Value 201

 Anderson-Darling Test Statistic 0.356
 Anderson-Darling 5\% Critical Value 0.755
 Kolmogorov-Smirnov Test Statistic 0.0865
 Kolmogorov-Smirnov 5\% Critical Value 0.137
 Data appear Gamma Distributed at 5\% Significance Level

 ## Assuming Gamma Distribution

 95\% Approximate Gamma UCL 3.167
 95\% Adjusted Gamma UCL 3.184

