Final Second Quarter 2016 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells

Red Hill Bulk Fuel Storage Facility Joint Base Pearl Harbor-Hickam, Oahu, Hawaii

DOH Facility ID No.: 9-102271 DOH Release ID Nos.: 990051, 010011, 020028, and 140010

July 2016

Contract Number N62742-14-D-1884, CTO 0014

This Page Intentionally Left Blank.

Final Second Quarter 2016 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells

Red Hill Bulk Fuel Storage Facility Joint Base Pearl Harbor-Hickam, Oahu, Hawaii

DOH Facility ID No.: 9-102271 DOH Release ID Nos.: 990051, 010011, 020028, and 140010

July 2016

Prepared for:

Naval Supply Systems Command Fleet Logistics Center Pearl Harbor 1942 Gaffney Street, Building 475 JBPHH, HI 96860-4549

Prepared by:

Element Environmental, LLC 98-030 Hekaha Street, Unit 9 Aiea, HI 96701

Prepared under:

Contract Number N62742-14-D-1884, CTO 0014

This Page Intentionally Left Blank.

Red Hill Bulk Fuel Storage Facility

Final Second Quarter 2016 - Quarterly Groundwater Monitoring Report, Outside Tunnel Wells

DOH Facility ID No.: 9-102271 DOH Release ID Nos.: 990051, 010011, 020028, and 140010

Prepared for:

Naval Supply Systems Command Fleet Logistics Center Pearl Harbor 1942 Gaffney Street, Building 475 JBPHH, HI 96860-4549

Prepared by:

Element Environmental, LLC 98-030 Hekaha Street, Suite 9 Aiea, HI 96701

Contract Number N62742-14-D-1884, CTO 0014

July 2016

Marthoughed

Approval Signature:

13 July 2016

Matthew Neal, E2 Project Manager

Date

1D.R

Approval Signature:

13 July 2016

Marvin Heskett, E2 QA Manager

Date

This Page Intentionally Left Blank.

TABLE OF CONTENTS

Section	<u>Title</u>	<u>Page</u>
ES	EXECUTIVE SUMMARY	ES-1
1	INTRODUCTION	1-1
1.1	Site Description	1-1
1.2	Physical Setting	1-2
1.3	Background	1-4
2	GROUNDWATER SAMPLING	2-1
2.1	Groundwater Sampling	2-1
2.2	Analytical Results	2-2
2.3	Groundwater Contaminant Trends	2-3
2.4	Waste Disposal	2-3
3	DATA QUALITY ASSESSMENT	3-1
3.1	Data Validation and Assessment	3-1
3.2	Data Assessment and Usability Conclusions	3-5
4	SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	4-1
5	FUTURE WORK	5-1
6	REFERENCES	6-1
	LIST OF TABLES	

<u>Number</u>	<u>Title</u>	Page Page
1.1	Current Status of the USTs	1-2
2.1	Analytical Results for Groundwater Sampling (19 April 2016)	2-5
3.1	Quality Control Results for Groundwater Sampling (19 April 2016)	3-7

LIST OF APPENDICES

Appendix <u>Title</u>

А	Groundwater Sampling Logs
В	Field Notes
С	Laboratory Report
D	Data Validation Report
E	EPA/DOH Letter, Enclosure A, Analytes and Action Levels, February 4, 2016
F	Fact Sheet, Quantitation & Detection
G	Historical Groundwater Exceedance Trends
Н	IDW Disposal Manifest

ACRONYMS AND ABBREVIATIONS

ACRONYMS/ ABBREVIATIONS	DEFINITION / MEANING
bgs	below ground surface
COC	Chain-of-Custody
COPC	Contaminant of Potential Concern
CTO	Contract Task Order
DLNR	State of Hawaii Department of Land and Natural Resources
DoD	Department of Defense
DOH	State of Hawaii Department of Health
DON	Department of the Navy
DQO	Decision Quality Objective
DVR	Data Validation Report
E2	Element Environmental, LLC
EAL	Environmental Action Level
EPA	Environmental Protection Agency
ER	Environmental Restoration
ESI	Environmental Science International, Inc.
F-76	Marine Diesel Fuel
ID	Identification
JBPHH	Joint Base Pearl Harbor-Hickam
JP-5	Jet Fuel Propellant-5
JP-8	Jet Fuel Propellant-8
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection
LOQ	Limit of Quantitation
μg/L	microgram per liter
MDL	Method Detection Limit
MBL	Matrix Spike
MSD	Matrix Spike Duplicate
NAVFAC	Naval Facilities Engineering Command
NAVSUP FLC	Naval Supply Systems Command Fleet Logistics Center
ND	ND
PAH	Polycyclic Aromatic Hydrocarbon
pH	potential of hydrogen
QC	Quality Control
QSM	Quality Systems Manual
RHSF	Red Hill Bulk Fuel Storage Facility
RPD	Relative Percent Difference
SAP	Sampling and Analysis Plan
SIM	Selective Ion Monitoring
TEC	The Environmental Company, Inc.
TPH	Total Petroleum Hydrocarbons
TPH-d	Total Petroleum Hydrocarbons as diesel
TPH-g	Total Petroleum Hydrocarbons as gasoline
TPH-o	Total Petroleum Hydrocarbons as oil
U.S.	United States
UST	Underground Storage Tank

VOC WP Volatile Organic Compound Work Plan

This page intentionally left blank.

EXECUTIVE SUMMARY

This quarterly groundwater monitoring report presents the results of the Second Quarter 2016 groundwater sampling event, conducted on 19 April 2016, at the outside tunnel wells of the Red Hill Bulk Fuel Storage Facility (RHSF), Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The RHSF is located in Halawa Heights on the island of Oahu. There are 18 active and 2 inactive underground storage tanks (USTs) located at the RHSF. The State of Hawaii Department of Health (DOH) Facility Identification (ID) number is 9-102271. The DOH Release ID numbers are 990051, 010011, 020028, and 140010.

The groundwater sampling was conducted as part of the long-term groundwater and soil vapor monitoring program at the RHSF and concurrent with release response activities initiated at Tank 5 in January 2014, for Naval Supply Systems Command Fleet Logistics Center (NAVSUP FLC) Pearl Harbor (formerly Fleet and Industrial Supply Center), under Naval Facilities Engineering Command (NAVFAC) Contract Number N62742-14-D-1884, Contract Task Order (CTO) 0014. The sampling was conducted in accordance with the approved *Work Plan/Sampling and Analysis Plan (WP/SAP)* prepared by Element Environmental, LLC (E2) with the following exceptions:

- The low-flow sampling technique was implemented during this, April 2016 event for wells OWDFMW01 and HDMW2253-03 and will continue to be used for collection of groundwater samples from all wells during future monitoring events.
- Third party data validation was conducted for laboratory analyses.

The analyte list for the RHSF groundwater monitoring has been reduced to ten contaminants of potential concern (COPCs) as documented in the United States (U.S.) Environmental Protection Agency (EPA)/DOH letter, Enclosure A, Analytes and Action Levels, dated February 4, 2016 (Appendix E). Groundwater samples from existing wells are no longer going to be analyzed for analytes that have not been detected at significant concentrations during previous events, including lead scavengers 1,2-dibromoethane and 1,2-dichloroethane.

On 19 April 2016, E2 personnel collected groundwater samples from the five outside tunnel monitoring wells (OWDFMW01, HDMW2253-03, RHMW04, RHMW06, and RHMW07). In addition, one duplicate groundwater sample was collected from well OWDFMW01. All groundwater samples were analyzed for petroleum constituents. Analytical results were compared to the DOH Tier 1 Environmental Action Levels (EALs) listed in the U.S. EPA/DOH letter, Enclosure A, Analytes and Action Levels, dated February 4, 2016 (Appendix E). A summary of the analytical results is provided below.

• **OWDFMW01** – No analytes were detected in groundwater above the laboratory limits of quantification (LOQ) or the applicable DOH Tier 1 EALs. Total petroleum hydrocarbons as gasoline (TPH-g), TPH as diesel (TPH-d) and TPH as oil (TPH-o) were positively identified

by the laboratory at levels below the LOQ but are considered not detected (ND) at these concentrations due to the presence of these contaminants in the associated source blank and, subsequently equipment rinseate (TPH-g) and laboratory method blank (TPH-d and TPH-o). No other contaminants were detected above the laboratory detection limits. Though elevated potential of hydrogen (pH) has historically been detected in well OWDFMW01 (approximately 11), the pH level measured during this round was not as elevated (approximately 8). The sampling method was revised to low-flow sampling using a bladder pump during this sampling event, while prior to this event, samples had been collected using hand bailers.

- HDMW2253-03 No analytes were detected in groundwater above the laboratory LOQs or the applicable DOH Tier 1 EALs. TPH-g, TPH-d and TPH-o were positively identified by the laboratory at levels below the LOQ but are considered ND at these concentrations due to the presence of these contaminants in the associated source blank and, subsequently equipment rinseate (TPH-g) and laboratory method blank (TPH-d and TPH-o). No other contaminants were detected above the laboratory detection limits. The sampling method was revised to low-flow sampling using a bladder pump during this sampling event, while prior to this event, samples had been collected using hand bailers.
- **RHMW04** No analytes were detected in groundwater above the laboratory LOQs or the applicable DOH Tier 1 EALs. TPH-d and TPH-o were both positively identified by the laboratory at levels below the LOQ but are considered ND at these concentrations due to the presence of these contaminants in the associated laboratory method blank. No other contaminants were detected above the laboratory detection limits.
- **RHMW06** No analytes were detected in groundwater above the laboratory LOQs or the applicable DOH Tier 1 EALs. TPH-d and TPH-o were positively identified by the laboratory at levels below the LOQ but are considered ND at these concentrations due to the presence of these contaminants in the associated laboratory method blank. No other contaminants were detected above the laboratory detection limits.
- **RHMW07** No analytes were detected in groundwater above the laboratory LOQs or the applicable DOH Tier 1 EALs. TPH-d, TPH-o and 2-methylnaphthalene were positively identified by the laboratory at levels below the LOQ but are considered ND at these concentrations due to the presence of these contaminants in the associated laboratory method blank (TPH-d and TPH-o) and the source blank and, subsequently equipment rinseate (2-methylnaphthalene). No other contaminants were detected above the laboratory detection limits.

During the April 2016 sampling event, the TPH-d and TPH-o concentrations found in well OWDFMW01 were their lowest since April 2015. Contaminants detected in the other four wells remained at low concentrations and did not change significantly compared to the previous sampling event (January 2016), or were ND. No COPCs were detected at concentrations above their respective laboratory LOQs or DOH Tier 1 EALs in any of the wells sampled.

Based on a suspected 2014 release at the RHSF and the results of the recent groundwater sampling and analysis, continued groundwater monitoring at the RHSF is recommended. If the TPH-d concentrations significantly increase, the monitoring frequency should be increased to monthly, even though wells OWDFMW01, HDMW2253-03, RHMW04, RHMW06 and RHMW07 are not included in the *RHSF Groundwater Protection Plan (HDR, 2014)*.

This page intentionally left blank.

SECTION 1 – INTRODUCTION

This quarterly groundwater monitoring report presents the results of the Second Quarter 2016 groundwater sampling event conducted on 19 April 2016, at the outside tunnel wells of the Red Hill Bulk Fuel Storage Facility (RHSF), Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The RHSF is located in Halawa Heights on the island of Oahu. The purpose of the sampling is to (1) assess the condition of groundwater beneath and in the vicinity of the RHSF with respect to chemical constituents associated with jet fuel propellant and marine diesel fuel, and (2) to ensure the Navy remains in compliance with State of Hawaii Department of Health (DOH) underground storage tank (UST) release response requirements as described in Hawaii Administrative Rules 11-281 Subchapter 7, *Release Response Action* (DOH, 2013). The DOH Facility identification (ID) number for the RHSF is 9-102271. The DOH Release ID numbers are 990051, 010011, 020028, and 140010.

The groundwater sampling was conducted as part of the long-term groundwater and soil vapor monitoring program at the RHSF for the Naval Supply Systems Command Fleet Logistics Center (NAVSUP FLC) Pearl Harbor, under Naval Facilities Engineering Command (NAVFAC) Contract Number N62742-14-D-1884, Contract Task Order (CTO) 0014. The sampling was conducted in accordance with the approved *Work Plan/Sampling and Analysis Plan (WP/SAP)* prepared by Element Environmental, LLC (E2) (E2, 2015) with the following exceptions:

- The project Work Plan indicates that groundwater samples will be collected from wells OWDFMW01 and HDMW2252-03 with disposable bailers. During this, April 2016, sampling event, the sampling technique for wells OWDFMW01 and HDMW2253-03 was changed to the low-flow technique, as per the DOH Hazard Evaluation and Emergency Response (HEER) *Technical Guidance Manual For The Implementation Of The Hawai'i State Contingency Plan* (TGM) (2009).
- Analytical data generated during the April 2016 event was validated by a professional third party data validator.

1.1 SITE DESCRIPTION

The RHSF is located on federal government land (zoned F-1 Military and Federal Preservation), located in Halawa Heights, approximately 2.5 miles northeast of Pearl Harbor. It is located on a low ridge on the western edge of the Koolau Mountain Range that divides Halawa Valley from Moanalua Valley. The RHSF is bordered on the north by Halawa Correctional Facility and private businesses, on the southwest by the United States (U.S.) Coast Guard reservation, on the south by residential neighborhoods, and on the east by Moanalua Valley. A quarry is located less than a quarter mile away to the northwest. The RHSF occupies 144 acres of land and the majority of the site is at an elevation ranging from approximately 200 to 500 feet above mean sea level.

The RHSF contains 18 active and 2 inactive USTs, which are operated by NAVSUP FLC Pearl Harbor. Each UST has a capacity of approximately 12.5 million gallons. The RHSF is located approximately 100 feet above the basal aquifer. The USTs contain Jet Fuel Propellant-5 (JP-5), Jet Fuel Propellant-8 (JP-8), and Marine Diesel Fuel (F-76). The current status of each of the USTs is summarized in Table 1.1.

Tank Identification	Fuel Type	Status	Capacity
F-1	None	Inactive	12.5 million gallons
F-2	JP-8	Active	12.5 million gallons
F-3	JP-8	Active	12.5 million gallons
F-4	JP-8	Active	12.5 million gallons
F-5	JP-8	Active	12.5 million gallons
F-6	JP-8	Active	12.5 million gallons
F-7	JP-5	Active	12.5 million gallons
F-8	JP-5	Active	12.5 million gallons
F-9	JP-5	Active	12.5 million gallons
F-10	JP-5	Active	12.5 million gallons
F-11	JP-5	Active	12.5 million gallons
F-12	JP-5	Active	12.5 million gallons
F-13	F-76	Active	12.5 million gallons
F-14	F-76	Active	12.5 million gallons
F-15	F-76	Active	12.5 million gallons
F-16	F-76	Active	12.5 million gallons
F-17	JP-5	Active	12.5 million gallons
F-18	JP-5	Active	12.5 million gallons
F-19	None	Inactive	12.5 million gallons
F-20	JP-5	Active	12.5 million gallons

TABLE 1.1 Current Status of the USTs Red Hill Bulk Fuel Storage Facility

F-76 Marine Diesel Fuel

JP-5 Jet Fuel Propellant-5

JP-8 Jet Fuel Propellant-8

Five groundwater monitoring wells (OWDFMW01, HDMW2253-03, RHMW04, RHMW06, and RHMW07) are located outside of the RHSF tunnel system. Well HDMW2253-03 is located at the Halawa Correctional Facility (outside the RHSF); well OWDFMW01 is located at the former Oily Waste Disposal Facility near Adit 3; and wells RHMW04, RHMW06, and RHMW07 are located on the north side of the RHSF along the road to the Navy Firing Range. Four groundwater monitoring wells (RHMW01, RHMW02, RHMW03, and RHMW05) are located within the RHSF lower access tunnel, and one sampling point (RHMW2254-01) is located at the Red Hill Shaft. Monitoring data for the four wells located inside the tunnel and one sampling point at Red Hill Shaft are included in a separate report.

As noted, monitoring wells RHMW01, RHMW02, RHMW03, and RHMW05 are located inside the underground tunnels. Sampling point RHMW2254-01 is located inside the infiltration gallery

of the Department of the Navy (DON) drinking water supply Well 2254-01, which is located approximately 2,400 feet down-gradient of the USTs. It provides potable water to the JBPHH Water System, which serves approximately 65,200 military customers. NAVFAC Hawaii Public Works Department operates and maintains the infiltration gallery and DON Well 2254-01.

1.2 PHYSICAL SETTING

Climatological conditions in the area of the RHSF consist of warm to moderate temperatures and low to moderate rainfall. The RHSF is leeward of the prevailing northeasterly trade winds. The average annual precipitation is approximately 40 inches, which occurs mainly between November and April (State of Hawaii Department of Land and Natural Resources (DLNR), 1986). Annual pan evaporation is approximately 75 inches (DLNR, 1985). Average temperatures range from the low 60s to high 80s (degrees Fahrenheit) (Atlas of Hawaii, 1983).

Oahu consists of the eroded remnants of two shield volcanoes, Waianae and Koolau. The RHSF is located on the southwest flank of the Koolau Volcanic Shield. Lavas erupted during the shield-building phase of the volcano belong to the *Koolau Volcanic Series* (Stearns and Vaksvik, 1935). Following formation of the Koolau Shield, a long period of volcanic quiescence occurred, during which the shield was deeply eroded. Following this erosional period, eruptive activity resumed. Lavas and pyroclastic material erupted during this period belong to the *Honolulu Volcanic Series* (Stearns and Vaksvik, 1935).

In the immediate area of the RHSF, Koolau Volcanic Series lavas dominate, although there are consolidated and unconsolidated non-calcareous deposits in the vicinity that consist of alluvium generated during erosion of the Koolau Volcanic Shield. South-southwest of the RHSF, and in isolated exposures to the west, are pyroclastic deposits formed during eruptions from three *Honolulu Volcanic Series* vents – Salt Lake, Aliamanu, and Makalapa (Stearns and Vaksvik, 1935). Based on established geology and records of wells drilled at the RHSF (Stearns and Vaksvik, 1938), the RHSF is underlain by *Koolau Volcanic Series* basalts. The area of the RHSF is classified as *Rock Land*, where 25 to 90% of the land surface is covered by exposed rock and there are only shallow soils (Foote, et al., 1972).

Groundwater in Hawaii exists in two principal aquifer types. The first and most important type, in terms of drinking water resources, is the basal aquifer. The basal aquifer exists as a lens of fresh water floating on and displacing seawater within the pore spaces, fractures, and voids of the basalt that forms the underlying mass of each Hawaiian island. In parts of Oahu, groundwater in the basal aquifer is confined by the overlying caprock and is under pressure. Waters that flow freely to the surface from wells that tap the basal aquifer are referred to as *artesian*.

The second type of aquifer is the caprock aquifer, which consists of various kinds of unconfined and semi-confined groundwater. Commonly, the caprock consists of a thick sequence of nearly

impermeable clays, coral, and basalt that separates the caprock aquifer from the basal aquifer. The impermeable nature of these materials and the artesian nature of the basal aquifer severely restrict the downward migration of groundwater from the upper caprock aquifer. However, in the area of the RHSF, there is no discernible caprock.

Groundwater in the area of the RHSF is primarily part of the *Moanalua Aquifer System* of the *Pearl Harbor Aquifer Sector*. The aquifer is classified as a basal, unconfined, flank-type; and is currently used as a drinking water source. The aquifer is considered fresh, with less than 250 milligrams per liter of chloride, and is considered an irreplaceable resource with a high vulnerability to contamination (Mink and Lau, 1990).

The nearest drinking water supply well is the Red Hill Shaft Well 2254-01, located in the infiltration gallery within the RHSF. The Well 2254-01 is located approximately 2,400 feet down-gradient of the USTs.

The nearest body of surface water is Halawa Stream, an ephemeral stream that is present along the north side of the RHSF. Except for the portion to the east of the Halawa Correctional Facility, the stream is contained by a concrete culvert. The stream is usually dry, but flows after periods of significant rainfall.

1.3 BACKGROUND

The RHSF, consisting of twenty USTs and a series of tunnels, was constructed by the U.S. Government in the early 1940s to supply fuel to the Navy. The USTs were constructed of steel and they currently contain JP-5, JP-8, and F-76. Several tanks in the past have stored DON special fuel oil, DON distillate, aviation gasoline, and motor gasoline (Environet, 2010). The fueling system is a self-contained underground unit that was installed into native rock comprised primarily of basalt with some interbedded tuffs and breccias (Environet, 2010). Each UST measures approximately 250 feet in height and 100 feet in diameter. The upper domes of the tanks lie at depths varying between 100 feet and 200 feet below ground surface (bgs).

In response to increasing concentrations of contaminants of potential concern (COPCs) in the groundwater monitoring wells within the facility (specifically RHMW02) during the 2008 sampling events, quarterly groundwater monitoring was initiated in 2009 at the outside tunnel wells.

In 2009, groundwater samples were collected from wells RHMW04, OWDFMW01, and HDMW2253-03. Samples were collected in August and October 2009. None of the COPCs were detected at concentrations exceeding the current gross contamination or drinking water toxicity DOH Environmental Action Levels (EALs).

In 2010, groundwater samples were collected from wells RHMW04, OWDFMW01, and HDMW2253-03. Samples were collected from well RHMW04 in January and April 2010. Samples were collected from well OWDFMW01 in January, April, and October 2010. Samples

were collected from well HDMW2253-03 in January, April, July, and October 2010. The COPCs with concentrations that exceeded current DOH EALs are summarized below.

- HDMW2253-03 Total petroleum hydrocarbons as diesel (TPH-d) was detected at a concentration above the DOH EALs for gross contamination and drinking water toxicity in January 2010 (The Environmental Company, Inc. [TEC], 2010a).
- **OWDFMW01** TPH-d was detected at concentrations above the DOH EALs for gross contamination and drinking water toxicity in January and April 2010 (TEC, 2010a; TEC, 2010b).

In 2011, groundwater samples were collected from wells OWDFMW01 and HDMW2253-03. Samples were collected in January, April, July, and October 2011. None of the COPCs were detected at concentrations exceeding the current DOH EALs for gross contamination or drinking water toxicity. In Fall 2011, the DOH EALs were revised. The drinking water toxicity EAL for TPH-d decreased from 210 to 190 micrograms per liter (μ g/L).

In 2012, groundwater samples were collected from wells OWDFMW01 and HDMW2253-03. Samples were collected in January, April, July, and November 2012. TPH-d was detected at a concentration above the DOH EALs in samples collected from wells HDMW2253-03 and OWDFMW01 (Environet, 2012; Environmental Science International, Inc. [ESI], 2013a). The COPCs with concentrations that exceeded current DOH EALs are summarized below.

- **HDMW2253-03** TPH-d was detected at concentrations above the DOH EALs for gross contamination and drinking water toxicity in April and November 2012.
- **OWDFMW01** TPH-d was detected at a concentration above the DOH EALs for gross contamination and drinking water toxicity in April 2012.

In 2013, groundwater samples were collected from wells OWDFMW01 and HDMW2253-03. Samples were collected in January, April, July, and October 2013. TPH-d was detected at a concentration above the DOH EALs in samples collected from wells OWDFMW01 and HDMW2253-03 (ESI, 2013b, 2013c, 2013d, and 2014a). The COPCs with concentrations that exceeded current DOH EALs are summarized below.

- **HDMW2253-03** TPH-d was detected at a concentration above the DOH EALs for gross contamination and drinking water toxicity in January 2013.
- **OWDFMW01** TPH-d was detected at concentrations above the DOH EALs for gross contamination and drinking water toxicity in all four quarters during 2013.

In 2014, groundwater samples were collected from wells OWDFMW01 and HDMW2253-03. Samples were collected in January, April, July, and October 2014. Well RHMW04 was also sampled in July and October 2014. TPH-d was detected at concentrations above the DOH EALs in samples collected from well OWDFMW01 in January and April 2014. TPH-d was also

detected at a concentration above the DOH EALs in a sample collected from well HDMW2253-03 in April 2014; however, this was likely an erroneous result due to a switched sample (ESI, 2014c, 2014d, 2014e, and 2015a). The COPCs with concentrations that exceeded current DOH EALs are summarized below.

- HDMW2253-03 TPH-d was detected at a concentration above the DOH EALs for both gross contamination and drinking water toxicity in April 2014. However, as discussed above, this was likely an erroneous result.
- OWDFMW01 TPH-d was detected at a concentration above the DOH EALs for gross contamination and drinking water toxicity in April 2014 and above only the EAL for gross contamination in January 2014.

In January 2014, an additional groundwater sampling was conducted at HDMW2253-03 in response to a suspected release from Tank 5. None of the COPC concentrations exceeded the current DOH EALs (ESI, 2014b).

Between August and October 2014, wells RHMW06 and RHMW07 were installed at the RHSF in order to develop a more robust groundwater monitoring network at the site (Battelle, 2015a). Both wells were sampled in October 2014. The polycyclic aromatic hydrocarbon (PAH) 2-methylnaphthalene was detected in the sample collected from well RHMW06. TPH-d, 2-methylnaphthalene, and acetone were detected in the sample collected from well RHMW07. None of the COPC concentrations exceeded the current DOH EALs for gross contamination or drinking water toxicity. In the well installation report, it was speculated that these detections may have been related to the drilling foam used during the installation of the wells.

In 2015, groundwater samples were collected from wells OWDFMW01, HDMW2253-03, RHMW04, RHMW06 and RHMW07. In January, none of the COPC concentrations exceeded the current DOH EALs for drinking water toxicity or gross contamination. The COPCs with concentrations that exceeded current DOH EALs are summarized below.

• **OWDFMW01** – TPH-d and TPH as oil (TPH-o) were detected at concentrations above their respective DOH EALs during the April, July and October 2015 events.

In January 2016, groundwater samples were collected from wells OWDFMW01, HDMW2253-03, RHMW04, RHMW06, and RHMW07 (E2, 2016). The COPCs with concentrations that exceeded current DOH EALs are summarized below.

• **OWDFMW01** – TPH-d was detected above its respective DOH Tier 1 EAL.

1.3.1 Previous Reports

The following groundwater monitoring reports for wells located outside the RHSF tunnel system were previously submitted to DOH:

- 1. Groundwater Monitoring Report, August 2009 (submitted September 2009).
- 2. Groundwater Monitoring Report, October 2009 (submitted December 2009).
- 3. Groundwater Monitoring Report, January 2010 (submitted April 2010).
- 4. Groundwater Monitoring Report, April 2010 (submitted May 2010).
- 5. Groundwater Monitoring Report, July 2010 (submitted August 2010).
- 6. Groundwater Monitoring Report, October 2010 (submitted December 2010).
- 7. Groundwater Monitoring Report, January 2011 (submitted March 2011).
- 8. Groundwater Monitoring Report, April 2011 (submitted June 2011).
- 9. Groundwater Monitoring Report, July 2011 (submitted September 2011).
- 10. Groundwater Monitoring Report, October 2011 (submitted December 2011).
- 11. Groundwater Monitoring Report, January 2012 (submitted March 2012).
- 12. Groundwater Monitoring Report, April 2012 (submitted July 2012).
- 13. Groundwater Monitoring Report, July 2012 (submitted August 2012).
- 14. Groundwater Monitoring Report, November 2012 (submitted January 2013).
- 15. Groundwater Monitoring Report, January 2013 (submitted April 2013).
- 16. Groundwater Monitoring Report, April 2013 (submitted July 2013).
- 17. Groundwater Monitoring Report, July 2013 (submitted September 2013).
- 18. Groundwater Monitoring Report, October 2013 (submitted January 2014).
- 19. Groundwater Monitoring Report for Additional Sampling of HDMW2253-03, January 2014 (submitted February 2014).
- 20. Groundwater Monitoring Report, January 2014 (submitted April 2014).
- 21. Groundwater Monitoring Report, April 2014 (submitted June 2014).
- 22. Groundwater Monitoring Report, July 2014 (submitted September 2014).
- 23. Groundwater Monitoring Report, October 2014 (submitted January 2015).
- 24. Groundwater Monitoring Report, January 2015 (submitted March 2015).
- 25. Draft Monitoring Well Installation Report for RHMW06 and RHMW07, March 2015 (submitted March 2015).
- 26. Draft Technical Memorandum, Groundwater Sampling Event for RHMW06 and RHMW07, April 2015 (submitted April 2015).
- 27. Groundwater Monitoring Report, April 2015 (submitted August 2015).
- 28. Groundwater Monitoring Report, July 2015 (submitted November 2015).
- 29. Groundwater Monitoring Report, October 2015 (submitted February 2016).

30. Groundwater Monitoring Report, January 2016 (submitted March 2016).

SECTION 2 – GROUNDWATER SAMPLING

On 19 April 2016, E2 personnel collected groundwater samples from five monitoring wells (OWDFMW01, HDMW2253-03, RHMW04, RHMW06, and RHMW07). In addition, a duplicate groundwater sample was collected from well OWDFMW01.

The samples were collected in accordance with the approved *WP/SAP*, with the following exceptions:

- The project Work Plan indicates that groundwater samples will be collected from wells OWDFMW01 and HDMW2252-03 with disposable bailers. During this, April 2016, sampling event, the sampling technique for wells OWDFMW01 and HDMW2253-03 was changed to the low-flow technique, as per the DOH HEER TGM (2009).
- Third party data validation was conducted on analytical data generated during this event.

The *WP/SAP* is consistent with DOH UST release response requirements (DOH, 2000); DON Procedure I-C-3, *Monitoring Well Sampling* (DON, 2007); and the *Interim Update, Final RHSF Groundwater Protection Plan* (HDR, 2014). Prior to purging and sampling, the depths to groundwater in the wells were measured by E2 using a Geotech oil/water interface probe as well as visual observations. The measurements are included in the groundwater sampling logs. No measurable product, sheen, or petroleum hydrocarbon odor was observed in any of the wells.

2.1 GROUNDWATER SAMPLING

Prior to collecting groundwater samples, the monitoring wells were purged using the low-flow sampling technique, as per the DOH HEER TGM. Wells OWDFMW01 and HDMW2253-03 were purged and sampled using a portable submersible bladder pump with dedicated bladders. Wells RHMW04, RHMW06, and RHMW07 contain dedicated bladder pumps, which were used to conduct the low-flow purge to collect samples. The monitoring wells were purged at rates of approximately 0.37 to 0.47 liters per minute.

Well HDMW2253-03 is not constructed as an environmental monitoring well and, as such, is not cased to its full depth (1,575 feet below ground surface [bgs]). The casing in well HDMW2253-03 extends to a depth of 250 feet bgs but does not include any screened section to allow the groundwater to flow into the casing. Subsequently, the portable bladder pump was lowered to a depth of 255 feet bgs in order to ensure that the sample was collected from the uncased portion of the well and representative formation water.

To operate the pump, a portable air compressor with an in-line filter was connected to a QED MP50 MicroPurge[®] Basics Controller box, which was then connected to the pump. The

compressor was turned on to power the pump and the controller was used to adjust the pumping rate to less than one liter of water per minute.

Water quality parameters were monitored periodically during well purging. Water quality parameters that were measured included potential of hydrogen (pH), temperature, conductivity, dissolved oxygen, turbidity, salinity, total dissolved solids and oxidation-reduction potential. The water quality parameters were evaluated to demonstrate that the natural characteristics of the aquifer formation water were present within the monitoring well before collecting the sample. Purging was considered complete when water quality measurements stabilized within approximately 10%. For each monitoring well, groundwater samples were collected immediately after (no more than two hours after) purging was completed to prevent groundwater interaction with the monitoring well casing and atmosphere. The readings were recorded on Groundwater Sampling Logs, which are included in Appendix A. The field notes for the event are included in Appendix B.

All samples were labeled and logged on the Sample Inventory Log, placed in resealable bags and sealed, custody sealed, sealed with tape, placed in a cooler with wet ice, and logged onto the Chain-of-Custody (COC) Form. The samples were labeled and logged in accordance with DON Procedure III-E, *Record Keeping, Sample Labeling, and Chain-of-Custody Procedures* (DON, 2007). All samples were shipped under COC to the analytical laboratory and analyzed for the COPCs as described below in Section 2.2.

2.2 ANALYTICAL RESULTS

Groundwater samples were analyzed for TPH as gasoline (TPH-g), TPH-d, and TPH-o using EPA Method 8015M; volatile organic compounds (VOCs) using EPA Methods 8260C, 8260C-selective ion monitoring (SIM), and 8011; and PAHs using EPA Method 8270C SIM. A copy of the laboratory report is included as Appendix C and the third party data validation report (DVR) is included in Appendix D.

Analytical results were compared to the EALs listed in the EPA/DOH letter, Enclosure A, dated February 4, 2016. A copy of Enclosure A (including the list of COPCs and their respective EALs) is included in Appendix E. The results of the second quarter groundwater sampling event are summarized in Table 2.1 and described below. A description of laboratory data qualifiers, definitions of the terms Method Detection Limit (MDL), Limit of Detection (LOD), and Limit of Quantitation (LOQ), and basic concepts of those terms are presented as Appendix F.

• **OWDFMW01** – No analytes were detected in groundwater above the laboratory LOQ or the applicable DOH Tier 1 EALs. TPH-g, TPH-d and TPH-o were positively identified by the laboratory at levels below the LOQ but are considered not detected (ND) at these concentrations due to the presence of these contaminants in the associated source blank and, subsequently equipment rinseate (TPH-g) and laboratory method blank (TPH-d and TPH-o). No other contaminants were detected above the laboratory detection limits.

Though elevated potential of hydrogen (pH) has historically been detected in well OWDFMW01 (approximately 11), the pH level measured during this round was not as elevated (approximately 8). The sampling method was revised to low-flow sampling using a bladder pump during this sampling event, while prior to this event, samples had been collected using hand bailers.

- HDMW2253-03 No analytes were detected in groundwater above the laboratory LOQs or the applicable DOH Tier 1 EALs. TPH-g, TPH-d and TPH-o were positively identified by the laboratory at levels below the LOQ but are considered ND at these concentrations due to the presence of these contaminants in the associated source blank and, subsequently equipment rinseate (TPH-g) and laboratory method blank (TPH-d and TPH-o). No other contaminants were detected above the laboratory detection limits. The sampling method was revised to low-flow sampling using a bladder pump during this sampling event, while prior to this event, samples had been collected using hand bailers.
- **RHMW04** No analytes were detected in groundwater above the laboratory LOQs or the applicable DOH Tier 1 EALs. TPH-d and TPH-o were both positively identified by the laboratory at levels below the LOQ but are considered ND at these concentrations due to the presence of these contaminants in the associated laboratory method blank. No other contaminants were detected above the laboratory detection limits.
- **RHMW06** No analytes were detected in groundwater above the laboratory LOQs or the applicable DOH Tier 1 EALs. TPH-d and TPH-o were positively identified by the laboratory at levels below the LOQ but are considered ND at these concentrations due to the presence of these contaminants in the associated laboratory method blank. No other contaminants were detected above the laboratory detection limits.
- **RHMW07** No analytes were detected in groundwater above the laboratory LOQs or the applicable DOH Tier 1 EALs. TPH-d, TPH-o and 2-methylnaphthalene were positively identified by the laboratory at levels below the LOQ but are considered ND at these concentrations due to the presence of these contaminants in the associated laboratory method blank (TPH-d and TPH-o) and the source blank and, subsequently equipment rinseate (2-methylnaphthalene). No other contaminants were detected above the laboratory detection limits.

2.3 GROUNDWATER CONTAMINANT TRENDS

The historical groundwater contaminant concentration trends for COPCs that exceeded the DOH Tier 1 EALs are illustrated in Appendix G. A summary of groundwater contaminant trends is provided below.

• **OWDFMW01** – TPH-o concentrations have been trending downward since a high in July 2015, while TPH-d concentrations remained similar to the previous event. Overall, concentrations of both TPH-d and TPH-o were the lowest they have been since April 2015. Detections of TPH-o and TPH-d identified during this April 2016 event are most likely the result of lab contamination and were flagged as ND by the data validators. During several

previous events dating back to 2010, TPH-d has been detected in this well exceeding the DOH Tier 1 EAL. Concentrations of all other COPCs detected during this round of quarterly sampling were consistent with historical data.

- HDMW2253-03 TPH-g, TPH-d and TPH-o were detected in this well at concentrations below the laboratory LOQ and the respective DOH Tier 1 EALs. These detections, however, are most likely the result of source water contamination (TPH-g) and lab contamination (TPH-d and TPH-o) and were flagged as ND by the data validators. With the exception of one possibly erroneous result obtained during the event in April 2014, TPH-d concentrations have not exceeded the DOH Tier 1 EAL in this well since January 2013.
- **RHMW04** Concentrations of TPH-d and TPH-o were detected in this well below the laboratory LOQs and the respective DOH Tier 1 EALs. These detections are most likely the result of lab contamination and were flagged as ND by the data validators. Concentrations of all other COPCs detected during this round of quarterly sampling were below the laboratory detection limits.
- RHMW06 This well was installed in September 2014 and first sampled in October 2014. Concentrations of TPH-d and TPH-o were detected in this well below the laboratory LOQs and the respective DOH Tier 1 EALs. These detections are most likely the result of lab contamination and were flagged as ND by the data validators. Concentrations of all other COPCs detected during this round of quarterly sampling were below the laboratory detection limits. To date, no COPCs have been detected at concentrations exceeding the DOH Tier 1 EALs.
- RHMW07 This well was installed and first sampled in October 2014. Concentrations of TPH-d, TPH-o and 2-methylnaphthalene were detected in this well below the laboratory LOQs and the respective DOH Tier 1 EALs. These detections, however, are most likely the result of source water contamination (TPH-g) and lab contamination (TPH-d and TPH-o) and were flagged as ND by the data validators. Concentrations of all other COPCs detected during this round of quarterly sampling were below the laboratory detection limits. To date, no COPCs have been detected at concentrations exceeding the DOH Tier 1 EALs.

2.4 WASTE DISPOSAL

The purged groundwater and decontamination water generated during sampling of the wells were placed in two 55-gallon drums along with the purged water and decontamination water generated during sampling of the inside tunnel wells. The drums will be properly profiled and manifested following the next quarterly sampling event, or when they reach 90% full.

Purge water generated during the October 2015 and January 2016 sampling events was transported and disposed on April 19, 2016. A copy of the disposal manifest is included in Appendix H.

TABLE 2.1 Analytical Results for Groundwater Sampling (19 April 2016) Red Hill Bulk Storage Facility April 2016 Quarterly Monitoring Report

Method	Chemical	DOH EAL	OWDFMW01 (ERH030)				OWDFMW01 (ERH031-Duplicate of ERH030)				HDMW2253-03 (ERH029)				RHMW04 (ERH034)					RHMW06 (ERH033)					RHMW07 (ERH032)							
			Result	Q	LOQ	LOD	DL	Result	Q	LOQ	LOD	DL	Result	Q	LOQ	LOD	DL	Result	Q	LOQ	LOD	DL	Result	Q	LOQ	LOD	DL	Result	Q	LOQ	LOD	DL
	TPH-g	100	13	B,U	50	25	8.3	9.0	B,U	50	25	8.3	21	B,U	50	25	8.3	ND	U	50	25	8.3	ND	U	50	25	8.3	ND	U	50	25	8.3
EPA 8015C	TPH-d	100	38	B,U	51	21	12	36	B,U	53	21	12	25	B,U	55	22	12	20	B,U	53	21	12	28	B,U	53	21	12	26	B,U	53	21	12
	ТРН-о	100	56	B,U	110	51	20	67	B,U	110	52	20	48	B,U	110	55	21	33	B,U	110	53	20	48	B,U	110	51	20	52	B,U	110	53	20
PAHs by 8270C	1-Methylnaphthalene	4.7	ND>LOD	U	0.020	0.0050	0.0035	ND>LOD	U	0.020	0.0050	0.0035	ND>LOD	U	0.020	0.0050	0.0035	ND>LOD	U	0.020	0.0050	0.0035	ND>LOD	U	0.020	0.0050	0.0035	ND>LOD	U	0.019	0.0050	0.0035
SIM	2-Methylnaphthalene	10	ND>LOD	U	0.020	0.0050	0.0023	ND>LOD	U	0.020	0.0050	0.0023	ND>LOD	U	0.020	0.0050	0.0023	ND>LOD	U	0.020	0.0050	0.0023	ND>LOD	U	0.020	0.0050	0.0023	0.0036	B,U	0.019	0.0050	0.0023
51141	Naphthalene	17	ND>LOD	U	0.020	0.0050	0.0038	ND>LOD	U	0.020	0.0050	0.0038	ND>LOD	U	0.020	0.0050	0.0038	ND>LOD	U	0.020	0.0050	0.0038	ND>LOD	U	0.020	0.0050	0.0038	ND>LOD	U	0.019	0.0050	0.0038
	Benzene	5	ND>LOD	U	0.50	0.10	0.062	ND>LOD	U	0.50	0.10	0.062	ND>LOD	U	0.50	0.10	0.062	ND>LOD	U	0.50	0.10	0.062	ND>LOD	U	0.50	0.10	0.062	ND>LOD	U	0.50	0.10	0.062
EPA 8260C	Ethylbenzene	30	ND>LOD	U	0.50	0.10	0.050	ND>LOD	U	0.50	0.10	0.050	ND>LOD	U	0.50	0.10	0.050	ND>LOD	U	0.50	0.10	0.050	ND>LOD	U	0.50	0.10	0.050	ND>LOD	U	0.50	0.10	0.050
	Toluene	40	ND>LOD	U	0.50	0.10	0.054	ND>LOD	U	0.50	0.10	0.054	ND>LOD	U	0.50	0.10	0.054	ND>LOD	U	0.50	0.10	0.054	ND>LOD	U	0.50	0.10	0.054	ND>LOD	U	0.50	0.10	0.054
	Xylenes, Total	20	ND>LOD	U	0.50	0.20	0.074	ND>LOD	U	0.50	0.20	0.074	ND>LOD	U	0.50	0.20	0.074	ND>LOD	U	0.50	0.20	0.074	ND>LOD	U	0.50	0.20	0.074	ND>LOD	U	0.50	0.20	0.074

Data are reported in micrograms per liter (µg/L).

Compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be В considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). DL Detection limit

DOH EAL DOH Tier 1 Environmental Action Levels for groundwater where groundwater is a current drinking water source. (DOH, Fall 2011).

LOD Limit of Detection

LOQ Limit of Quantitation

ND>LOD Not Detected above the LOD

Q Qualifiers

U The analyte was analyzed for, but was not detected ("Non-detect") at or above the LOD and/or LOQ.

This Page Intentionally Left Blank.

SECTION 3 – DATA QUALITY ASSESSMENT

A data quality assessment, which consists of a review of the overall groundwater sample collection and analysis process, was performed in order to determine whether the analytical data generated met the decision quality objectives (DQOs) for the project and if the data is usable for the intended purpose. The data quality assessment was performed in accordance with the approved *WP/SAP* (E2, 2015). The field Quality Control (QC) program consisted of standardized sample collection and management procedures, and the collection of field duplicate samples, equipment rinseate samples, source blank samples and matrix spike (MS)/MS duplicate (MSD) samples. Trip blank samples were also collected by the laboratory and accompanied the sample container shipment from the laboratory, during sample collection and back to the laboratory. The laboratory quality assurance program consisted of the use of standard analytical methods and the preparation and analyses of MS/MSD samples, surrogate spikes, blanks, Laboratory Control Samples (LCSs)/Laboratory Control Sample Duplicates (LCSDs).

3.1 DATA VALIDATION AND ASSESSMENT

The objective of data validation is to ensure the data provided is of known quality for project decisions. For this project, data validation was performed by a professional, third party data validator following Level D Validation Guidelines. Analytical data was assessed using the following documents, as applicable to each method:

- U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Version 5.0, July 2013
- Project Procedures Manual, U.S. Naval Facilities Engineering Command, Environmental Restoration Program, NAVFAC Pacific, DON 2015
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, Update 1, August 1993; Update IIA, January 1994; Update II, January 1995; Update IIB, April 1995; Update III, June 1997; Update IIIA, May 1999; IIIB, June 2005; Update IV, January 2008; Update V, August 2015

A number of factors may affect the quality of data, including: sample collection methods, sample analysis methods, and adherence to established procedures for sample collection, preservation, management, shipment, and analysis.

Data validation for this project was performed in accordance with the U.S. DoD Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013) and the Project Procedures Manual, U.S. NAVFAC Environmental Restoration (ER) Program, NAVFAC Pacific (DON 2015). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience. All sample results were subjected to Level D data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification. The DVR detailing the results of the data validation is included as Appendix D.

Data Validation Items of Concern

- The fairly large error inherent to the analysis of TPH-d and TPH-o by EPA Method 8015 should be considered when results are compared to each other, to action levels, and to results from previous sampling events. Any comparative analysis of the results should take into consideration the fairly wide method acceptance limits (36-132%) as per DoD Quality Systems Manual (QSM) Version 5.0 (DoD, 2013).
- TPH-d and TPH-o were detected in the method blank at concentrations below their respective LOQs. Presence of these compounds at comparable levels in project samples likely indicate positive interference from laboratory procedures (laboratory contamination). Subsequently, detections for compounds identified in the method blank were flagged "B,U" by the data validators and in project sample summaries provided in Tables 2.1 and 3.1. The data validation report indicates that samples associated with this method blank should be considered as ND. The U flag added to the data by the data validator indicates that "the compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered an on-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s)".
- The source blank water (ozonated, micro-filtered bottled drinking water) used for decontamination of the portable bladder pump was found to contain trace levels of PAHs and VOCs. Subsequently, similar levels of PAHs and VOCs were found in the rinseate sample as well as several primary samples. Details are included in the DVR report in Appendix D.
- The consistently high pH (11 to 13) observed over several sampling events in well OWDFMW01 was not observed during the April 2016 sampling event. The difference in pH may be attributed to the change in sampling technique from collection of samples with bailers to collection via the low-flow technique.
- The significantly improved reporting limits should be considered when results are compared to data from previous events. Additionally, during the April 2015 event, TPH-o was added to the analyte list. There are very few previous TPH-o results to compare this data to.

3.2 DATA ASSESSMENT AND USABILITY CONCLUSIONS

It should be noted that analytical MDLs, LODs, and LOQs decreased beginning with the April 2015 sampling event compared to monitoring data from previous events due to a change of laboratories and the utilization of alternative methods. Analytes that were detected during the current event and were ND at or above the higher MDLs during past events include 1-methylnaphthalene, 2-methlynaphthelene and toluene in OWDFMW01; and

2-methlynaphthelene, in RHMW07. Consequently, these analytes may have been present at the currently detected concentrations during previous events without being detected and do not necessarily indicate any trend. These compounds were also identified in the method blank and may indicate that at these very low levels, laboratory contamination may lead to false low level hits. Furthermore, it should be noted that, in general, detections below the LOQ in primary samples, laboratory method blanks and trip blanks should be subject to scrutiny as they could be false low level hits resulting from positive interference from laboratory analytical processes (i.e., laboratory contamination).

The data assessment concludes that all data generated during this event are usable for the intended purpose, with the limitations described above.

This Page Intentionally Left Blank.

TABLE 3.1 Quality Control Results for Groundwater Sampling (19 April 2016) **Red Hill Bulk Storage Facility** April 2016 Quarterly Monitoring Report

Method	Chemical	DOH EAL	(OWDF	MW01 (ERH030)	(OWDF	MW01 (E	ERH031)		RPD Duplicate	Trip Blank					
			Result	Q	LOQ	LOD	DL	Result	Q	LOQ	LOD	DL	%	Result	Q	LOQ	LOD	DL	
	TPH-g	100	13	B,U	50	25	8.3	9.0	B,U	50	25	8.3	9.1%	-	-	-	-	-	
EPA 8015C	TPH-d	100	38	B,U	53	21	12	36	B,U	53	21	12	1.4%	-	-	-	-	-	
	ТРН-о	100	56	B,U	110	51	20	67	B,U	110	52	20	4.5%	-	-	-	-	-	
	1-Methylnaphthalene	4.7	ND>LOD	U	0.020	0.0050	0.0035	ND>LOD	U	0.020	0.0050	0.0035	NA	-	-	-	-	-	
EPA 8270D SIM	2-Methylnaphthalene	10	ND>LOD	U	0.020	0.0050	0.0023	ND>LOD	U	0.020	0.0050	0.0023	NA	-	-	-	-	-	
	Naphthalene	17	ND>LOD	U	0.020	0.0050	0.0038	ND>LOD	U	0.020	0.0050	0.0038	NA	-	-	-	-	-	
	Benzene	5	ND>LOD	U	0.50	0.10	0.062	ND>LOD	U	0.50	0.10	0.062	NA	ND	U	0.50	0.10	0.062	
EPA 8260C	Ethylbenzene	30	ND>LOD	U	0.50	0.10	0.050	ND>LOD	U	0.50	0.10	0.050	NA	ND	U	0.50	0.10	0.05	
EPA 82000	Toluene	40	ND>LOD	U	0.50	0.10	0.054	ND>LOD	U	0.50	0.10	0.054	NA	ND	U	0.50	0.10	0.054	
	Xylenes, Total	20	ND>LOD	U	0.50	0.20	0.074	ND>LOD	U	0.50	0.20	0.074	NA	ND	U	1.0	0.20	0.18	

Data are reported in micrograms per liter (μ g/L).

В Compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s). DL Detection Limit

DOH EAL DOH Tier 1 Environmental Action Levels for groundwater where groundwater is a current drinking water source (DOH, Fall 2011).

LOD Limit of Detection

LOQ Limit of Quantitation

ND>LOD Not Detected above the LOD

Q Qualifiers

RPD Relative Percent Difference

LOD and/or LOQ

U The analyte was analyzed for, but was not detected ("Non-detect") at or above the

This Page Intentionally Left Blank.

SECTION 4 – SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Summary

The groundwater sampling was conducted as part of the long-term groundwater and soil vapor monitoring program at the RHSF for NAVSUP FLC Pearl Harbor, under NAVFAC Contract Number N62742-14-D-1884, CTO 0014.

This quarterly monitoring report presents the results of groundwater sampling conducted on 19 April 2016, from five monitoring wells (OWDFMW01, HDMW2253-03, RHMW04, RHMW06, and RHMW07) at the RHSF, JBPHH, Hawaii. The sampling was conducted in accordance with the approved *WP/SAP* and *Technical Addendum* (E2, 2015). A summary of the analytical results is provided below.

- OWDFMW01 No analytes were detected in groundwater above the laboratory LOQ or the applicable DOH Tier 1 EALs. TPH-g, TPH-d and TPH-o were positively identified by the laboratory at levels below the LOQ but are considered ND at these concentrations due to the presence of these contaminants in the associated source blank and, subsequently equipment rinseate (TPH-g) and laboratory method blank (TPH-d and TPH-o). No other contaminants were detected above the laboratory detection limits. Though elevated pH has historically been detected in well OWDFMW01 (approximately 11), the pH level measured during this round was not as elevated (approximately 8). The sampling method was revised to low-flow sampling using a bladder pump during this sampling event, while prior to this event, samples had been collected using hand bailers.
- HDMW2253-03 No analytes were detected in groundwater above the laboratory LOQs or the applicable DOH Tier 1 EALs. TPH-g, TPH-d and TPH-o were positively identified by the laboratory at levels below the LOQ but are considered ND at these concentrations due to the presence of these contaminants in the associated source blank and, subsequently equipment rinseate (TPH-g) and laboratory method blank (TPH-d and TPH-o). No other contaminants were detected above the laboratory detection limits. The sampling method was revised to low-flow sampling using a bladder pump during this sampling event, while prior to this event, samples had been collected using hand bailers.
- RHMW04 No analytes were detected in groundwater above the laboratory LOQs or the applicable DOH Tier 1 EALs. TPH-d and TPH-o were both positively identified by the laboratory at levels below the LOQ but are considered ND at these concentrations due to the presence of these contaminants in the associated laboratory method blank. No other contaminants were detected above the laboratory detection limits.
- RHMW06 No analytes were detected in groundwater above the laboratory LOQs or the applicable DOH Tier 1 EALs. TPH-d and TPH-o were positively identified by the laboratory at levels below the LOQ but are considered ND at these concentrations due to the presence of these contaminants in the associated laboratory method blank. No other contaminants were detected above the laboratory detection limits.

RHMW07 – No analytes were detected in groundwater above the laboratory LOQs or the applicable DOH Tier 1 EALs. TPH-d, TPH-o and 2-methylnaphthalene were positively identified by the laboratory at levels below the LOQ but are considered ND at these concentrations due to the presence of these contaminants in the associated laboratory method blank (TPH-d and TPH-o) and the source blank and, subsequently equipment rinseate (2-methylnaphthalene). No other contaminants were detected above the laboratory detection limits.

4.1 GROUNDWATER CONTAMINANT TRENDS

The historical groundwater contaminant concentration trends for COPCs that exceeded the DOH Tier 1 EALs are illustrated in Appendix G. A summary of groundwater contaminant trends is provided below.

- OWDFMW01 TPH-o concentrations have been trending downward since a high in July 2015, while TPH-d concentrations remained similar to the previous event. Overall, concentrations of both TPH-d and TPH-o were the lowest they have been since April 2015. Detections of TPH-o and TPH-d identified during this April 2016 event are most likely the result of lab contamination and were flagged as ND by the data validators. During several previous events dating back to 2010, TPH-d was detected at concentrations that exceeded the DOH Tier 1 EAL. Concentrations of all other COPCs detected during this round of quarterly sampling were consistent with historical data.
- HDMW2253-03 TPH-g, TPH-d and TPH-o were detected in this well at concentrations below the laboratory LOQ and the respective DOH Tier 1 EALs. These detections, however, are most likely the result of source water contamination (TPH-g) and lab contamination (TPH-d and TPH-o) and were flagged as ND by the data validators. With the exception of one possibly erroneous result obtained during the event in April 2014, TPH-d concentrations have not exceeded the DOH Tier 1 EAL in this well since January 2013.
- RHMW04 Concentrations of TPH-d and TPH-o were detected in this well below the laboratory LOQs and the respective DOH Tier 1 EALs. These detections are most likely the result of lab contamination and were flagged as ND by the data validators. Concentrations of all other COPCs detected during this round of quarterly sampling were below the laboratory detection limits.
- RHMW06 This well was installed in September 2014 and first sampled in October 2014. Concentrations of TPH-d and TPH-o were detected in this well below the laboratory LOQs and the respective DOH Tier 1 EALs. These detections are most likely the result of lab contamination and were flagged as ND by the data validators. Concentrations of all other COPCs detected during this round of quarterly sampling were below the laboratory detection limits. To date, no COPCs have been detected at concentrations exceeding the DOH Tier 1 EALs.

RHMW07 – This well was installed and first sampled in October 2014. Concentrations of TPH-d, TPH-o and 2-methylnaphthalene were detected in this well below the laboratory LOQs and the respective DOH Tier 1 EALs. These detections, however, are most likely the result of source water contamination (TPH-g) and lab contamination (TPH-d and TPH-o) and were flagged as ND by the data validators. Concentrations of all other COPCs detected during this round of quarterly sampling were below the laboratory detection limits. To date, no COPCs have been detected at concentrations exceeding the DOH Tier 1 EALs.

Conclusions and Recommendations

During the April 2016 sampling event, TPH-d was ND at a concentration above the DOH Tier 1 EAL in OWDFMW01. TPH-d was present in well OWDFMW01 at concentrations exceeding the DOH Tier 1 EAL during the previous four events. The varied result during this April 2016 event may be attributed to the change in sampling methods, from hand bailing to the low-flow sampling technique. In addition, the historically high pH observed in this well (11-13) was observed to be lower (8) during this April event.

The groundwater contaminant concentrations in wells HDMW2253-03, RHMW04, RHMW06, and RHMW07 remained low and did not change significantly since the previous sampling event (January 2015), or were ND. No COPCs were detected at concentrations above their respective laboratory LOQs or DOH Tier 1 EALs in any of the five wells.

Detections of TPH-d, TPH-o, and PAHs below the LOQ were likely a result of low level laboratory contamination as seen in the laboratory method blank.

Lead scavengers 1,2-dibromoethane and 1,2-dichloroethane have not been detected at concentrations above their respective DOH Tier 1 EALs for four consecutive quarters. Subsequently, and in accordance with the EPA/DOH letter, Enclosure A, Analytes and Action Levels dated February 4, 2016, analysis for lead scavengers and all but the ten COPCs listed in Enclosure A, has been discontinued.

Based on a suspected 2014 release at the RHSF and the results of the recent groundwater sampling and analysis, continued groundwater monitoring at the RHSF is recommended. If the TPH-d concentrations significantly increase, the monitoring frequency should be increased to monthly, even though wells OWDFMW01, HDMW2253-03, RHMW04, RHMW06, and RHMW07 are not included in the *RHSF Groundwater Protection Plan*.

SECTION 5 – FUTURE WORK

Future work includes the Third Quarter 2016 groundwater monitoring, which is tentatively scheduled for July 2016. A quarterly groundwater monitoring report will be prepared to document the sampling.

SECTION 6 – REFERENCES

Atlas of Hawaii, 1983, Department of Geography, University of Hawaii Press.

Battelle, 2015a, Draft Monitoring Well Installation Report, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, Hawaii, March 2015.

Battelle, 2015b, Draft Technical Memorandum, Groundwater Sampling Event for RHMW06 and RHMW07 – January 2015, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl Harbor-Hickam, Hawaii, April 2015.

DLNR, 1985, Pan Evaporation: State of Hawai'i 1894-1983: Report R74, Division of Water and Land Development, August 1995.

DLNR, 1986, Rainfall Atlas of Hawaii: Report R76, Division of Water and Land Development, June 1986.

DoD, 2013, Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0. July 2013

DOH, 2000, Hawaii Department of Health, Technical Guidance Manual for Underground Storage Tank Closure and Release Response, March 2000.

DOH, 2011, Screening for Environmental Hazards at Sites with Contaminated Soil and Groundwater, Hawai'i Department of Health, Hazard Evaluation and Emergency Response, December 2011.

DOH, 2013, Hawaii Administrative Rules Title 11, Department of Health, Chapter 281 Underground Storage Tanks (HAR 11-281), Subchapter 7, Release Response Action.

DON, 2007, Project Procedures Manual, U.S. Navy Installation Restoration Program, NAVFAC Pacific, Prepared for Pacific Division, Naval Facilities Engineering Command (NAVFAC Pacific), February 2007.

E2, 2015, Work Plan/Sampling and Analysis Plan, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, September 2015.

E2, 2016, Fourth Quarter 2015 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, January 2016.

E2, 2016, First Quarter 2016 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, March 2016.

Environet, 2010, Work Plan, Long-Term Monitoring, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, September 2010.

Environet, 2012, Quarterly Groundwater Monitoring Report-Outside (Non-Tunnel Wells), Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, July 2012.

ESI, 2012, Work Plan/Sampling and Analysis Plan, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, October 2012.

ESI, 2013a, Fourth Quarter 2012 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, January 2013.

ESI, 2013b, First Quarter 2013 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, April 2013.

ESI, 2013c, Second Quarter 2013 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, July 2013.

ESI, 2013d, Third Quarter 2013 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, September 2013.

ESI, 2014a, Fourth Quarter 2013 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, January 2014.

ESI, 2014b, Groundwater Sampling Report for Additional Sampling of HDMW2253-03, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, February 2014.

ESI, 2014c, First Quarter 2014 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, April 2014.

ESI, 2014d, Second Quarter 2014 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, June 2014.

ESI, 2014e, Third Quarter 2014 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, September 2014.

ESI, 2015a, Fourth Quarter 2014 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, January 2015.

ESI, 2015b, First Quarter 2015 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, March 2015.

ESI, 2015c, Work Plan/Sampling and Analysis Plan, Second Technical Addendum, Long-Term Groundwater and Soil Vapor Monitoring, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, April 2015.

ESI, 2015d, Second Quarter 2015 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, August 2015.

ESI, 2015e, Third Quarter 2015 - Quarterly Groundwater Monitoring Report Outside Tunnel Wells, Red Hill Bulk Fuel Storage Facility, Pearl Harbor, Oahu, Hawaii, November 2015.

Foote et al., 1972, Soil Survey of the Islands of Kauai, Oahu, Maui, Molokai, and Lanai, State of Hawaii.

HDR, Inc., 2014, Interim Update, Red Hill Bulk Fuel Storage Facility, Final Groundwater Protection Plan, Prepared for Naval Facilities Engineering Command, Pacific, Pearl Harbor, Hawaii, August 2014.

Mink, J.F. and Lau, L.S., 1990, Aquifer Identification and Classification for Oahu: Groundwater Protection Strategy for Hawaii: Water Resources Research Center Technical Report No. 179, February 1990.

Stearns, H.T. and Vaksvik, K.N., 1935, Geology and Groundwater Resources of the Island of Oahu, Hawaii: Hawaii Div. Hydro. Bull.

Stearns, H.T. and Vaksvik, K.N., 1938, Records of the Drilled Wells on the Island of Oahu, Hawaii: Hawaii Div. Hydrogr. Bull. 4, 213 p.

TEC, 2008, Final Groundwater Protection Plan, Red Hill Fuel Storage Facility, Prepared for Navy Region Hawaii, Pearl Harbor, Hawaii, January 2008.

TEC, 2010a, Quarterly Groundwater Monitoring Report – Outside (Non-Tunnel) Wells, Prepared for Navy Region Hawaii, Pearl Harbor, Hawaii, April 2010.

TEC, 2010b, Quarterly Groundwater Monitoring Report – Outside (Non-Tunnel) Wells, Prepared for Navy Region Hawaii, Pearl Harbor, Hawaii, May 2010.

APPENDIX A

Groundwater Sampling Logs

		C Pacific ng Well S	ER Program Sampling					Procedu Revisio Page:	ויפ Number ז:	Ma					
	GROU	J NDW A	ATER SAM	PLING	G LOC	r r									
	WELL NO.	1\$4	LOCAT	FION:	RHFS	Ĩ	PROJECT NO.								
	DATE:	4/19/20	16 TIME:	141	5		FIC CONDITI	ONS: 82°	, Sunny,	clear st	ies, NG				
	TIDAL C	CONDITIO	ONS:	Rising [Falling			H TIDE: N TIDE:	CURRENT TIDE:							
	STATIC and TIM		LEVEL (FT.)	293.5	1	1422		EPTH (FT.):							
	WELL PURGIN	NG:	LENGTHOF	SATURA	TED ZO	DNE:		LINEAR	FT.	-					
	а		VOLUME OF EVACUATED		TO BE				als/Linear fi X 3-casing		May 2015 7 of 15 7 of 15 637) car stills, NE [5] TDE: TIDE: ORP SAL (mV) (ppt) 54.1 0.21 37.3 0.21 37.2 0.21 37.2 0.21 37.2 0.21 37.2 0.21 37.4 0.21 37.3 0.21 37.4 0.21 35.4 0.21 5.6				
			METHOD O	F REMO	VAL: _P	SLADDER	римр	PUMPING	RATE:	500 ml	_/min				
	WELL PURGE DATA:														
- I.	DATE/ TIME	DTW	GALLONS REMOVED	TDS (g/L)	pН	SP. COND. (fmS/cm)	D.O. (mg/L)	TURB. (NTU)	(°C)	(mV)	(ppt)				
19/16	<u>C1438</u> 1440	293.21	0,1	0.29	6.76 6.92	440.5	7.90	1.7	<u>- 23.1</u> 22.9	·	In the second				
	442	293,21	0.50	0.29	7.03	440,0	8.45	- <u>I.C</u>	$-\frac{22.9}{22.9}$						
	1444	293.21	0.75	0,29	7.08	44 0 .0	8.55	1.6	22.9	37.2					
	1446	293.21	1.60	0.29	<u>7.11</u>	440,7	8.59	_1.5	22,9	35.4	0.21				
	SAMPI				BLACO	EP PUMB		· · · · · · · · · · · · · · · · · · ·							
	SAMPLE WITHDRAWAL METHOD: BIAODER PUMP APPEARANCE OF SAMPLE: COLOR:														
				SEDIN	IENT:	NONE					¥				
	OTHER: NONE														
	LABOR	ATORY	ANALYSIS PA	RAMETE	RS ANI	D PRESER	VATIVES	TPH-016.		X, NAP	Η,				
									-NAPH.						
	NUMBER AND TYPES OF SAMPLE CONTAINERS USED: LXIL KMBER (\$), 1×500mL AMBER (HCI)														
	$\frac{4 \times 40 \text{ mL VOAs CHCI) TOTAL=6}{2 \times 40 \text{ mL VOAs CHCI) TOTAL=6}$														
	SAMPLE IDENTIFICATION NUMBER(S) RH-RHMW \$4-6W416 / EFH \$34 @ 1457 DECONTAMINATION PROCEDURES: NANY I-F														
	NOTES		Inom Root	DOILO.	141	1 1									
	SAMPL BY:	.ED	IN/MH												
	SAMPLES DELIVERED TO: ALS, KELSO, WA TRANSPORTER:														
	DATE:				TİM										
							LLONS/LINE								
							2.61•10"-4.08 vater Sampli								

	WELL		LOCATION:		PF	ROJECT NO.			
		WØG		RHFS		NO. 0-0-	/50037		
	DATE: 4/19/20		1334			•	,	<u>In skies,</u> NE	ГЛМРН
	TIDAL CONDITI	ONS:	Rising □ Falling □		H TIDE: V TIDE:		CURRENT TIE)E:	
	STATIC WATER and TIME:	LEVEL (FT.)	240.35 @1	338	TOTAL DE				
	WELL PURGING:	LENGTH OF	SATURATED ZO	ONE:					
	а	VOLUME OF	WATER TO BE		· · · ·	near feet of mes)			
		METHOD O	F REMOVAL:	BLADDER	Pump F	PUMPING RA		mL/min	
	WELL PURGE	DATA:					~ 500		
4/19/16	DATE/ TIME DTW @1240 240.35 1242 240.35 1242 240.35 1346 240.35 1346 240.35 1346 240.35 1350 240.3 SAMPLE WITHI APPEARANCE	0, 25 0,50 0,75 1,00 1,25	COLOR: SEDIMENT:	1630 1635 1637 ER PUMP CLEAR NONE	D.O. (mg/L) 98.7 9.9.7 86.6 6.65 6.55 6.55	TURB. (NTU) 13.2 2.4 16.5 10.& 4,7 4,5	$\begin{array}{c} (^{\circ}C) & (r) \\ 25, 9 & -7, \\ \hline 24, 4 & -8, \\ \hline 23, 9 & -3, \\ \hline 73, 6 & -3, \\ \hline 73, 6 & -3, \\ \hline 7, 9 & -4, \\ \hline \end{array}$	RP SAL nV) (ppt) $5:3$ 0.79 $5:2$ 0.79 $6:2$ 0.79 $6:2$ 0.81 $8:7$ 0.82 4.6 0.82 3.7 0.83	
			OTHER:	NONE		1.2.1			
	LABORATORY	ANALYSIS PA	RAME LERS ANI	D PRESERV	17	<u>РН- </u>	1	АРН,	
	NUMBER AND			FRSUSED		-MCTHYL (d) 1×3		3FR (UN)	
					**) TOTAL = (
	SAMPLE IDENT	TIFICATION NU	JMBER(S) R	H- RH MW	106-GNA		H \$33 @1		
	DECONTAMINA	ATION PROCE	DURES: N	IANY PPM	I-F				
	NOTES:							,	
	SAMPLED BY:	4N / MY				<u> </u>		·	
	SAMPLES DEL	IVERED TO:	ALS, KELS		TRAN				
	DATE:		TIM						
			APACITY OF C 2"-0.16•4"-0.65•						
					ater Sampling				

Procedure Number:I-C-3Revision:May 2015Page:7 of 15

	WELL NO. RHM	wd7	LOCATION:	RHFS	F	PROJECT NO	0. 150037									
	DATE: 4/19/2	DIL TIME:	1302		LIC CONDITI	ONS:	Sunny , cl	ear ski	25							
	TIDAL CONDITI		Rising □ Falling □		H TIDE: N TIDE:	-	CURRENT	TIDE:								
	STATIC WATER LEVEL (FT.) and TIME:		197.76'E	2 1307	TOTAL D	EPTH (FT.):	-									
	WELL PURGING:	LENGTH OF \$	SATURATED ZO	DNE:		LINEAR FT.										
	а	VOLUME OF	WATER TO BE :		GALS. (Gals/Linear ft. X linear feet of saturation X 3-casing volumes)											
		METHOD O	F REMOVAL:	LADDER	PUMP	PUMPING R	ATE: <u>~40</u>)0 mL/	/min							
	WELL PURGE	DATA:														
4/19/160	1316 19776 8#50.75 1318 19776 1.0			SP. COND. (\$15/cm) 1794 1848 1853 1851	D.O. (mg/L) 7. p7 <u>3. 41</u> <u>2. 49</u> 2.30	TURB. (NTU) .6 .6 .9 2.0	TEMP. (°C) 23.7 23.2 23.2 23.6	ORP (mV) -84.6 -51.4 -70.4 -75.9	SAL (ppt) 0.91 0.94 0.94 0.94							
	1320 197.76	• • • • • • • • • • • • • • • • • • • •	1.20 7.54	1846	2.24	2.3	22.8 -	78.4	0.94							
	1324 197.71	1.75	1.20 7,55	1843	2.20	2.3	22.9	-79.6	0.93							
	SAMPLE WITH APPEARANCE		HOD: <u>Burph</u> COLOR: SEDIMENT: OTHER:	DER PUN CLEAR NONE NONE	чр											
	LABORATORY	ANALYSIS PAI	- RAMETERS ANI		VATIVES	TPH-10/6/	O BTE	X NA	PH.							
					•	1/2-METH										
	NUMBER AND	TYPES OF SAM	MPLE CONTAIN	ERS USED				4MBBR	<u>е Снсі</u>),							
						. VOAS (HC		AL= G.)							
	SAMPLE IDEN				\$7-6w4	16/ERH	\$32@1	332	<u> </u>							
	DECONTAMIN	ATION PROCE	DURES: <u>N</u>	XVY PPN	\I-F											
	NOTES:						<u></u>									
	SAMPLED BY:															
	SAMPLES DEL	IVERED TO:	ALS, KELSD,		1R/	ANSPORTER										
	DATE:		TIM													
			2"-0.16•4"-0.65•	-												
			Figure I-C-3-1													

Procedure Number:	I-C-3
Revision:	May 2015
Page:	7 of 15

	WELL			LOCA [.]	TION:		PROJECT NO.									
	NO.	HOMW	2253-03		_	HALAWA			150037							
	DATE: 4	119/20	ッし TIME:	08	40		TIC CONDITI	ONS:	Sunny, of	1, olcar spies, no wind						
	TIDAL C	ONDITIC	DNS:	Rising I			H TIDE:		CURRENT TIDE:							
				Falling		LO	N TIDE:									
	STATIC and TIM		LEVEL (FT.)	106	.97' 0	<u>e 0855</u>	TOTAL E	DEPTH (FT.):	1575'							
	WELL PURGIN	IG:	LENGTH OF S	SATURA	TED ZO	ONE:	LINEAR FT.									
	а		VOLUME OF VEVACUATED:		TO BE			feet of								
	METHOD OF			REMO	VAL: 8	LADDER	PUMP	PUMPING	RATE: ~4(00 mL	./min					
	WELL P	URGE D	ATA:						66972247							
	DATE/ TIME	DTW	GALLONS REMOVED	TDS (g/L)	рH	SP. COND. (#as/cm)	D.O. (mg/L)	TURB. (NTU)		ORP (mV)	SAL (ppt)					
4/19/160		206.97	0.1	0,32	6.12	484.8	5.25	60.4	23.4	-2.2	0.23					
	0940 0944 20697 0944 20697 0500,75 0948 206.97 1.25			0.32	617	485.5	2.62	55.9	23,0	-17.4	0.23					
				0.32	6.12	486.5	1.63	53,6	22.9	-8.0	0.23					
				0,32	6.11	485.6	1.25	49.2	22.8	<u>-5.6</u>	0.23					
	2952	206.97	هو مند :		<u></u>		•	• <u> </u>	25	<u> </u>	0.23					
								-								
				100. 0		0 00 00	• • • • • • • • • • • • • • • • • • •	•								
			RAWAL METH			R PUMP										
	APPEA	RANCE	OF SAMPLE:		MENT:	CLEAR					. <u> </u>					
					-		CE OF LIG									
							E OF ALE		(ral (Loi	(A METELINGIAGH)					
	LABOR	ATORY	ANALYSIS PAF	RAIVIETE	RS AN	D PRESER	80156 PK	o KRO, G	RO AND	VOC5	1,2-METHYDONAPH) 1BTEX)					
	NUMBE	RAND	TYPES OF SAM	APLE CO	ONTAIN	IERS USED										
							····	NL VOAS (,							
	SAMPL	E IDENT	IFICATION NU	MBER(5) RH	1-MW225?	5-6W416	/ERH\$2	9 C 095	2						
	DECON	ITAMINA	TION PROCE	OURES:	N	ANY PPM	I-F									
	NOTES	:				<u> </u>										
	SAMPL BY:	ed Mn	MH													
	SAMPL			ALS, K	ELSO,	NA	TR	ANSPORTE	R: TRACIE	SOBER	,Ats-					
	DATE:				TIN											
		u				•	LLONS/LINE									
							2.61•10"-4.0									
				Figur	e I-C-3-	1: Groundv	vater Sampl	ing Log								

Procedure Number:	<i>I-C</i>
Revision:	May 20
Page:	7 of

C-3 015 f 15

	WELL		LOCATION:		PRC	JECT NO).							
	NO. OWDE	=MWØI		RHFS			150037	. *						
	DATE: 4/19/	1201G TIME:	1025		C CONDITION	/-	SUNNY, CLEAR	SKIES,	NNE IO MPH					
	TIDAL CONDITI	ONS:	Rising 🛙											
			Falling 🗆	LOW										
	STATIC WATEF and TIME:		119.28° @ 10		TOTAL DEP	-								
	WELL PURGING:	LENGTH OF	SATURATED ZC	DNE: _		LINEAR F	Т.							
	а	VOLUME OF EVACUATED	WATER TO BE				ls/Linear ft. X linea K 3-casing yolume							
		METHOD O	F REMOVAL:	EMOVAL: BLADDER PUMP PUMPING RATE: ~ 200 r										
	WELL PURGE DATA:													
4/19/160	1214 179.28 121C /19.28 1218 /19.28 1220 /19.28 1220 /19.28 SAMPLE WITH APPEARANCE	0.1 0.25 0.5 0.75 1.00 DRAWAL MET	TDS (g/L) pH 2.56 7.28 2.56 8.06 2.55 8.14 2.55 7.97 2.55 7.97 2.55 7.93 HOD: 13LADD COLOR: SEDIMENT: OTHER: RAMETERS ANI	SLIGHT NONE		TURB. (NTU) 30.0 49.9 49.6 46.4 46.9	TEMP. ORP (°C) (mV) <u>28.2</u> -104. <u>29.4</u> -134.3 <u>25.5</u> -137.7 <u>25.1</u> -124.1 <u>25.1</u> 7 <u>22.8</u> 	(ppt) 2.02 2.08 2.07 2.07 2.07 2.07	- - -					
	LABOILATOIL			DIRECTION	,			<u>тех)</u>	-					
	NUMBER AND	TYPES OF SA	MPLE CONTAIN	ERS USED:	<u>.</u>	· · · · · · · · · · · · · · · · · · ·	X500mL AM		(1)					
					<u></u>	. /	CI) CTOTAL =		-					
	SAMPLE IDENTIFICATION N DECONTAMINATION PROCE			H-OWDFMN	vØ1-GW41	G /ERH	1 \$ 3 \$ \$ 1228 \$ \$ 1 \$ 1308		nso					
	NOTES:			tvy ppm :	L-r »		<u> </u>		-					
	SAMPLED BY: M	N/MH				-			_					
	SAMPLES DEL	IVERED TO:	ALS, KELSO	, W A	TRANS	SPORTER	: TRACIE SOB	OR ALS						
	DATE:		TIM	IE:				,						
			CAPACITY OF C	•		-								
			2"-0.16•4"-0.65•						_					
			Figure I-C-3-1	I: Groundwa	ter Sampling	год								

APPENDIX B

Field Notes

THESDAY 4-19-2016

Ċ

C

C

¢

C

¢

C

C

E

C

C

C

C

¢

¢

C

¢

¢

C

C

C

C

C

Ç

¢

¢

	THESDAY 4-19-2016
ACTIVITY:	GW MONITORING COUTSIDE WELLS)
TEAM:	MATTHEW NEAL CMN), MARVIN HESKETT CMH), BERNICE BALETE (BB) WES
4	FOBERT "BOD" CHENET, HAWAII DUNK CWRM
PPE LEVEI	
WENTHE	R: 73°F, 71% HUMIDITY, WINDS NNW 5 MPH, CLEAR SHES
REFEREN	ICES: WHARP, HSP, NAVY PPM
0828	MN/MH MEET BB & HALAWA PRISON PARKING LOT
0830	EZ MEETS RC COLNR) AND CHECK IN W/ PRISON GUARD
0835	ARRIVE @ WELL MW 2253-03 IN LOCKED GATED FENCE ENCLOSURE
	CONDUCT HAS BRIEFING
0840	SET UP EQUIPMENT & CALIBRATE YSI WATER QUALITY METER
0855	WL = 206.97' LNO PRODUCT OBSERVED)
0851	START TO LOWER PUMP
0918	START PURGING
0930	FIRST WATER OBSERVED
	PUMP- PRESSURE 140PS1
	- DISCHARGE TIME 20 SEC
	- FILL TIME 20 SEC
	CO2 TANK - PRESSURE 200 PSI
0952	COLLECT SAMPLE ERHO29
	BREAKDOWN EQUIPMENT LLEFT TUBING IN BLACK GARBAGE BAG IN SHEP.)
1015	LEAVE WELL
	RC CHECKS OUT W/ PRISON GUARD
1025	KRRIVE @ IDW STORAGE W/PCS, WHO TAKE DRUMS (DRUM- dd1 AND - dd2)
	SETUP EQUIPMENT C WELL OWOF MW Ø1
1030	WL = 119.28'
1032	START TO LOWER PUMP
1038	START PURGING BE START PUMPING INOTHING RELOWER PUMP
1100	RELOWER PUMP FTRST-WATER-OBSERVED 3B
	PUMP-PRESSURE 80 PSI
	- DISCHARGE TIME 20 SEC
	- FILL TIME 20 SEC
	CO2 TANK- PRESSURE 250 PSI
llio	PCS LEAVES, WILL RETURN W/ 2 EMPTY DRUMS
1130	CHANGE OUT BLADDER, SINCE PIRST WAS PLATENED IRE LOWER DUMP
1150	PULL UP PUMP AND CHANGE OUT EVERYTHING CHOSE / BLADDER)

¢

TUESDAY 4-19-2016

AMPLE (-06.				
PA 10:		SAMPLE ID:	DATE:	TIME:	# CONT.
		RD Ø3 Q			1/1/1/10/00/00/10/1/10/10/00/00/00/00/00
ERHØ20	a period of the contract of the complementation of the second	HD RH-MW2253,-GW#16 RH-OWDFMWØ1-GW#16	04-19-16	0952	5
$ERH \phi 3$	D MS/MGD	RH-OWDFMWØ1-GW#16	04-19-16	1228	BO × 18
ERH Ø3		RH-OWDFMW Ø1-GW&16-DUP	04-19-16	1308	6
ERH Ø3	2	RH-RHMW67-GW21G	04-19-16	1732	6
ERH Ø3	3	RH-RHMWØ6-GWZ16	04-19-16	i405 .	ý
ERH \$3	4	RH- RH MW \$ 4- GW \$ 1 C	04-19-16-	1	6
ERHO	35 +>	KH-ERB-GWA1G	04-19-16		. 6
ERHØ	36 4	RH-SB-GW#1C	04-19-16	1515	6
		00 Vico-			
* R	efreshe	ozanated, R. Hued dr.	they we	te-	
+ BL	HDDER PUMP	LAST USED @ OWDFMWØ1	1		
				•	
	•				
			1999		
				·	
•					

TUESDAY 4-19-2016

	419-2016
1200	RELOWER PUMP "Sou BELOW WATER TABLE
	FIRST WATER OBSERVED
1228	COLLECT SAMPLE ERHØ30 AND MS/MSD
(1308)	TIME GIVEN TO DUPLICATE SAMPLE ERHØ31
	CLEANUP (STORE TUBING IN BLACK TRASH BAG)
1300	LEAVE WELL
1302	ARRIVE @ WELL AND SETUP EQUIPMENT (RHMWG7)
1307	WL = 197.76' - PRESSURE 110 PS1
1.309	START PUMP LUSE LAST QUARTER'S PUMP SETTINGS)-DISHCHARGE 40SEC
(1332)	COLLECT SAMPLE FRHØ32 -FILL BOSEC
1353 BB	CLEANUP
1333	LEAVE WELL
1334	ARRIVE & WELL AND SETUP EQUIPMENT (RHMWØG)
1338	WL = 240.35' - PRESSURE 130.PSI
1339	START PUMP LUSE LAST QUARTER'S PUMP SETTINGS) - PISCHARGE 30 SEC
(1405)	CALLECT SAMPLE ERHOLZZ -FILL 20 SEC
	CLEANUP
1404	LEAVE WELL
1407	REQUEST ACCESS THROUGH CATE (FOR NEXT WELL) FROM GUARD
1415	ARRIVE @ WELL AND SETUP EQUIPMENT (RHMW 04), SOME WATER IN ANNULUS
1422	WL = 293.21' - PRESSURE 170 PSI
1425	START PUMP (USE LAST QUARTER'S PUMP SETTINGS - DISCHARGE 30 SEC
(1457)	FOUTOT SAMPLE FOUDZA - FUL 40SEC
	CLEANIE GOTH TANKS ARE EMPTY)
· ·	
1457	REDEONTAMINATE BLADDER PUMP USED @ MW-OWDFMWØ1
1500	COLLECT EQUIPMENT RINSATE SAMPLE ERHØ35
1515	COLLECT SOURCE BLANK SAMPLE ERIØ36
	LEAVE WELL
1517	ENTER TUNNEL CADIT 5 TO PLUG IN GOLF CART FOR TOMORROW
	LEAVE TUNNEL
	TELL GUARD WE ARE DONE @ RHMW\$4
· · ·	LEAVE SITE "
	6-pricer 00 Co Co 4/19/20/16
·····	77/17/22/6

APPENDIX C

Laboratory Report (included on attached CD)

APPENDIX D

Laboratory Data Third Party Validation Report

Element Environmental LLC 98-030 Hekaha Street, Unit 9 Aiea, Hawaii 96701 ATTN: Mr. Marvin Heskett

May 26, 2016

SUBJECT: Red Hill Bulk Fuel Storage Facility, Data Validation

Dear Mr. Heskett,

Enclosed is the final validation report for the fractions listed below. This SDG was received on May 6, 2016. Attachment 1 is a summary of the sample that was reviewed for the analysis.

LDC Project #36302:

SDG # Fraction

K1604068 Volatiles, PAHs, Gasoline Range Organics, Diesel Range Organics & Residual Range Organics

The data validation was performed under Level D Validation guidelines. The analyses were validated using the following documents, as applicable to each method:

- U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Version 5.0, July 2013
- Project Procedures Manual, U.S. Naval Facilities Engineering Command, Environmental Restoration Program, NAVFAC Pacific, DON 2015
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; Update IV, February 2007; Update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely.

Christina Rink Project Manager/Chemist

	1149 Pages-El							āng .								nen				<u>.</u>		<u></u>															
evel D	DQAR		LDC #3	630)2 (Ele	me	nt I	En	/iro	nm	ien	tal,	LLO	C, /	\iea	a, H	117	Rec	H	ill E	Bul	k F	uel	Sto	ora	ge	Fac	ilit	y)		Pro	ject #	#1500	027		
.DC	SDG#	DATE REC'D	(3) DATE DUE	ВТ (826	EX 50B)	-	M)	(801	5C)	<u> </u>	80 (5C)								1		.				-				- 								
Matrix:	Water/Soil		r	W				W				W	s	w	S	W	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s	w	s
<u>A</u>	K1604068	05/06/16	05/27/16	8	0	8	0	8	0	8	0										┼──		\vdash	┼──		╂		-	-		+	-	+		╇		╞
	<u> </u>		l	┼──	 				-			+							1			\vdash	┢─	\vdash	†	†	┼──			+-	+	╉──	+-	+	+	+	\vdash
																																			\square		
					<u> </u>		<u> </u>			L_									<u> </u>										 		\bot		\Box	\square	\Box		
				<u> </u>		<u> </u>	 				_								_		\vdash	<u> </u>	_	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 	 		4_	4		4	–		_
	<u> </u>									├	┣	\vdash	├							┣—		┢	┼─					<u> </u>	<u> </u>	+-	+	+	+	+	+	┼	╞
		-		<u> </u>	<u> </u>			\square				†	<u> </u>								<u> </u>	+	†	<u> </u>	<u> </u>	†—	1			╂	+		+-	+	+	+	┢
			 		_		<u> </u>	<u> </u>	 	<u> </u>		 									<u> </u>		<u> </u>			 		<u> </u>		_	\bot	4	₋	\bot	\perp	 	
							┣—	 		┣	<u> </u>												┼─-	╂──		┼──						╋	╂	╂—	\vdash	┢	
				 				{─-		 	-	┼─								<u> </u>	┼──		+-			╂──		-		┢╌	\vdash	╀	+	\vdash	+	╉──	┢
				+	-		┢╴	1		†	┢	1							1			1	1	\square	1	1	†			-	\uparrow	┼	+-	+	+	†—	\uparrow
																															\Box		\Box				
				<u> </u>	<u> </u>	<u> </u>			ļ		<u> </u>	<u> </u>							 					┣		<u> </u>		<u> </u>		_	\vdash		╄─	╞	\vdash		<u> </u>
	<u> </u>	_ <u></u>			\vdash	\vdash	┣—		-	╂──				-					┼──		╂		┼─	┼──	\vdash	┼──		-		┢	┼	┝	┾	┢	–	╂—	-
<u>-</u>		+	<u> </u>	┼──		+	<u> </u>		<u> </u>	†—			┼──						\vdash	<u> </u>		+	\dagger				┼─	<u> </u>		+	+	+	┼─	+	+		
	<u> </u>																																				
												1					<u> </u>		<u> </u>						<u> </u>								\bot				
	<u> </u>		<u> </u>	+-	┣	_	ļ	ļ	<u> </u>	_	<u> </u>	<u> </u>					<u> </u>		<u> </u>	┣—			┼──		ļ	<u> </u>	<u> </u>	<u> </u>		┣-	╞	-	╄—	╞	\vdash	┼—	
				<u> </u>	<u> </u>			╞					-						+	├—			╂──							-	+	-	+	┢	+	<u> </u>	┢─
	<u> </u>	+			<u> </u>		\vdash	1			-	\square	<u> </u>			-			1	<u> </u>			†—		$\left \right $		-			†	\vdash	╞	+	\vdash	+	†—	-
												1											1														
																					<u> </u>		<u> </u>								\bot		\bot	\vdash	\bot		L
				+	-	+	-	<u> </u>	-	<u> </u>	$\left \right $	-	-			0	<u> </u>	\vdash	<u> </u>	-	0	$\frac{1}{2}$	$\frac{1}{2}$	-	<u> </u>		<u> </u>	-		<u> </u>	$\frac{1}{2}$	-	+	+	\vdash	-	
Total	A/CR	<u> </u>	<u> </u>	8	0		0	8	0	8	<u> </u>	0	0					<u> </u>	0		10	10	0	0	0	0	0	0	0	0	0	0	<u> </u>	<u> </u>	0	0	32
	Shaded cells	s indicate Stag	ge 4 validatio	on (all	other	cells	are S	itage 2	2B va	lidatio	on). T	hese	samp	le cou	ints di	o not	includ	de MS	S/MSE), and	1 DUF	s						L:\	Elem	ent\R	Red Hi	11\363	02ST	.wpd			

LDC Report# 36302A1

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Fuel Storage Facility
--------------------	-------------------------------------

LDC Report Date: May 21, 2016

Parameters: Volatiles

Validation Level D Level D

Laboratory: ALS Environmental

Sample Delivery Group (SDG): K1604068

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
ERH029	K1604068-001	Water	04/19/16
ERH030	K1604068-002	Water	04/19/16
ERH031	K1604068-003	Water	04/19/16
ERH032	K1604068-004	Water	04/19/16
ERH033	K1604068-005	Water	04/19/16
ERH034	K1604068-006	Water	04/19/16
ERH035	K1604068-007	Water	04/19/16
ERH036	K1604068-008	Water	04/19/16
ERH030MS	K1604068-002MS	Water	04/19/16
ERH030MSD	K1604068-002MSD	Water	04/19/16

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013) and the Project Procedures Manual, U.S. Naval Facilities Engineering Command (NAVFAC) Environmental Restoration (ER) Program, NAVFAC Pacific (DON 2015). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Volatile Organic Compounds (VOCs) which are Benzene, Toluene, Ethylbenzene and Xylenes (BTEX) by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Level D data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- H Holding times were exceeded.
- S Surrogate recovery was outside QC limits.
- C Calibration %RSD, r, r^2 or %D were noncompliant.
- R Calibration RRF was <0.05.
- B Presumed contamination from preparation (method blank).
- L Laboratory Control Sample/Laboratory Control Sample Duplicate %R or RPD was not within control limits.
- Q MS/MSD recovery was poor.
- E MS/MSD or Duplicate RPD was high.
- I Internal standard performance was unsatisfactory.
- M Instrument Performance Check (BFB or DFTPP) was noncompliant.
- T Presumed contamination from trip blank.
- F Presumed contamination from FB or ER.
- D The analysis with this flag should not be used because another more technically sound analysis is available.
- P Instrument performance for pesticides was poor.
- V Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all compounds.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the ending CCVs were less than or equal to 50.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample ERH035 was identified as an equipment rinsate. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Compound	Concentration	Associated Samples
ERH035	04/19/16	Toluene Ethylbenzene m,p-Xylenes o-Xylene	0.060 ug/L 0.85 ug/L 2.3 ug/L 1.6 ug/L	ERH029 ERH030 ERH031 ERH032 ERH033 ERH034

Sample ERH036 was identified as a source blank. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Compound	Concentration	Associated Samples
ERH036	04/19/16	Toluene Ethylbenzene m,p-Xylenes o-Xylene	0.060 ug/L 1.1 ug/L 2.9 ug/L 2.1 ug/L	ERH035

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly than the concentrations found in the associated field blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
ERH035	Toluene	0.060 ug/L	0.060U ug/L
	Ethylbenzene	0.85 ug/L	0.85U ug/L
	m,p-Xylenes	2.3 ug/L	2.3U ug/L
	o-Xylene	1.6 ug/L	1.6U ug/L

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

X. Field Duplicates

Samples ERH030 and ERH031 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations met validation criteria.

XIII. Target Compound Identifications

All target compound identifications met validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to source blank contamination, data were qualified as not detected in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Based upon the data validation all other results are considered valid and usable for all purposes.

Red Hill Bulk Fuel Storage Facility Volatiles - Data Qualification Summary - SDG K1604068

No Sample Data Qualified in this SDG

Red Hill Bulk Fuel Storage Facility Volatiles - Laboratory Blank Data Qualification Summary - SDG K1604068

No Sample Data Qualified in this SDG

Red Hill Bulk Fuel Storage Facility Volatiles - Field Blank Data Qualification Summary - SDG K1604068

Sample	Compound	Modified Final Concentration A or P		Code
ERH035	Toluene Ethylbenzene m,p-Xylenes o-Xylene	0.060U ug/L 0.85U ug/L 2.3U ug/L 1.6U ug/L	A	F

ALS Group USA, Corp. dba ALS Environmental

Analytical Results

Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Volatile Organic Compounds

Sample Name:	ERH029	Units:	0
Lab Code:	K1604068-001	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260C	Level:	Low

· · · ·				Dilution	Date	Date	Extraction		
Analyte Name	Result Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
Benzene	ND U V	0.50	0.10	0.062	1	05/02/16	05/02/16	KWG1603424	
Toluene	ND U	0.50	0.10	0.054	1	05/02/16	05/02/16	KWG1603424	
Ethylbenzene	ND U	0.50	0.10	0.050	1	05/02/16	05/02/16	KWG1603424	
m,p-Xylenes	ND U	0.50	0.20	0.11	1	05/02/16	05/02/16	KWG1603424	
o-Xylene	ND U	0.50	0.20	0.074	1	05/02/16	05/02/16	KWG1603424	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	96	81-118	05/02/16	Acceptable	
Dibromofluoromethane	91	80-119	05/02/16	Acceptable	
Toluene-d8	104	89-112	05/02/16	Acceptable	
4-Bromofluorobenzene	95	85-114	05/02/16	Acceptable	

NAVFAC PACIFIC VALIDATED LEVEL D

.

The second s

MAY 2 3 2016

Initials: CR

Comments:

Printed: 05/03/2016 16:19:31 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

Page 67 of 1149

Page 1 of 1 SuperSet Reference: RR188021

Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Volatile Organic Compounds

Sample Name:	ERH030	Units: ug/L	
Lab Code:	K1604068-002	Basis: NA	
Extraction Method: Analysis Method:	EPA 5030B 8260C	Level: Low	

Analyte Name	Result Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzene	ND UY	0.50	0.10	0.062	1	05/02/16	05/02/16	KWG1603424	
Toluene	ND U	0.50	0.10	0.054	1	05/02/16	05/02/16	KWG1603424	
Ethylbenzene	ND U	0.50	0.10	0.050	1	05/02/16	05/02/16	KWG1603424	
m,p-Xylenes	ND U	0.50	0.20	0.11	1	05/02/16	05/02/16	KWG1603424	
o-Xylene	ND U	0.50	0.20	0.074	1	05/02/16	05/02/16	KWG1603424	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	99	81-118	05/02/16	Acceptable	
Dibromofluoromethane	92	80-119	05/02/16	Acceptable	
Toluene-d8	103	89-112	05/02/16	Acceptable	
4-Bromofluorobenzene	94	85-114	05/02/16	Acceptable	

A NEW YORK AND A REAL PROPERTY OF A DESCRIPTION OF A DESC

MAY 2 3 2016

Initials: CR

Comments:

Printed: 05/03/2016 16:19:35 u:\Stealth\Crystal.rpt\FormImNew.rpt

Merged

Form 1A - Organic

Page 68 of 1149

Page 1 of 1 SuperSet Reference: RR188021

Analytical Results

Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Volatile Organic Compounds

Sample Name:	ERH031	Units: u	ıg/L
Lab Code:	K1604068-003	Basis: N	NA
Extraction Method: Analysis Method:	EPA 5030B 8260C	Level: L	.0W

Analyte Name	Result Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzene	NDUŲ	0.50	0.10	0.062	1	05/02/16	05/02/16	KWG1603424	
Toluene	ND U	0.50	0.10	0.054	1	05/02/16	05/02/16	KWG1603424	
Ethylbenzene	ND U	0.50	0.10	0.050	1	05/02/16	05/02/16	KWG1603424	
m,p-Xylenes	ND U	0.50	0.20	0.11	1	05/02/16	05/02/16	KWG1603424	
o-Xylene	ND U 🗸	0.50	0.20	0.074	1	05/02/16	05/02/16	KWG1603424	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	98	81-118	05/02/16	Acceptable	
Dibromofluoromethane	90	80-119	05/02/16	Acceptable	
Toluene-d8	103	89-112	05/02/16	Acceptable	
4-Bromofluorobenzene	94	85-114	05/02/16	Acceptable	

NAVFAC PACIFIC VALIDATED LEVEL D

Initials: CR

Comments:

Printed: 05/03/2016 16:19:39 u:\Stealth\Crystal.rpt\Form1mNew.rpt

MAY 2 3 2016

Analytical	Results
------------	---------

Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Volatile Organic Compounds

Sample Name:	ERH032	Units: U	ug/L
Lab Code:	K1604068-004	Basis: 1	NA
Extraction Method: Analysis Method:	EPA 5030B 8260C	Level: I	Low

Analyte Name	Result Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzene	ND U 🔰	0.50	0.10	0.062	1	05/02/16	05/02/16	KWG1603424	
Toluene	ND U	0.50	0.10	0.054	1	05/02/16	05/02/16	KWG1603424	
Ethylbenzene	ND U	0.50	0.10	0.050	1	05/02/16	05/02/16	KWG1603424	
m,p-Xylenes	ND U	0.50	0.20	0.11	1	05/02/16	05/02/16	KWG1603424	
o-Xylene	ND U $$	0.50	0.20	0.074	1	05/02/16	05/02/16	KWG1603424	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	98	81-118	05/02/16	Acceptable	
Dibromofluoromethane	90	80-119	05/02/16	Acceptable	
Toluene-d8	104	89-112	05/02/16	Acceptable	
4-Bromofluorobenzene	93	85-114	05/02/16	Acceptable	

NAVFAC PACIFIC VALIDATED LEVEL D

MAY 2 3 2016

Initials: CR

Comments:

Printed: 05/03/2016 16:19:43 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Analytical Results

Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Volatile Organic Compounds

Sample Name:	ERH033	Units: ug	0
Lab Code:	K1604068-005	Basis: N	
Extraction Method: Analysis Method:	EPA 5030B 8260C	Level: Lo	ow

Analyte Name	Result Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzene	ND U V	0.50	0.10	0.062	1	05/02/16	05/02/16	KWG1603424	
Toluene	ND U	0.50	0.10	0.054	1	05/02/16	05/02/16	KWG1603424	
Ethylbenzene	ND U	0.50	0.10	0.050	1	05/02/16	05/02/16	KWG1603424	
m,p-Xylenes	ND U	0.50	0.20	0.11	1	05/02/16	05/02/16	KWG1603424	
o-Xylene	ND U 🗸	0.50	0.20	0.074	1	05/02/16	05/02/16	KWG1603424	

Cuuragata Nama	%Rec	Control Limits	Date	Note	
Surrogate Name	70KCC	Ennits	Analyzed		
1,2-Dichloroethane-d4	98	81-118	05/02/16	Acceptable	
Dibromofluoromethane	90	80-119	05/02/16	Acceptable	
Toluene-d8	103	89-112	05/02/16	Acceptable	
4-Bromofluorobenzene	92	85-114	05/02/16	Acceptable	

NAVFAC PACIFIC VALIDATED LEVEL D

MAY 2 3 2016

Initials: CR

Comments:

Printed: 05/03/2016 16:19:47 u:\Stealth\Crystal.rpt\FormImNew.rpt

Analytical	Results
------------	---------

Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Volatile Organic Compounds

Sample Name:	ERH034	Units:	0
Lab Code:	K1604068-006	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260C	Level:	Low

Analyte Name	Result Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzene	ND U Q	0,50	0.10	0.062	1	05/02/16	05/02/16	KWG1603424	
Toluene	ND U	0.50	0.10	0.054	1	05/02/16	05/02/16	KWG1603424	
Ethylbenzene	ND U	0.50	0.10	0.050	1	05/02/16	05/02/16	KWG1603424	
m,p-Xylenes	ND U /	0.50	0.20	0.11	1	05/02/16	05/02/16	KWG1603424	
o-Xylene	ND U Ψ	0.50	0.20	0.074	1	05/02/16	05/02/16	KWG1603424	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	97	81-118	05/02/16	Acceptable	
Dibromofluoromethane	91	80-119	05/02/16	Acceptable	
Toluene-d8	103	89-112	05/02/16	Acceptable	
4-Bromofluorobenzene	92	85-114	05/02/16	Acceptable	

NAVFAC PACIFIC VALIDATED LEVEL D

MAY 2 3 2016

Initials: CR

Page

Comments:

Printed: 05/03/2016 16:19:51 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

Page 72 of 1149

SuperSet Reference: RR188021

1 of 1

Ana	lvtical	Results
ппа	ryucar	Results

Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Volatile Organic Compounds

Sample Name:	ERH035	Units:	Ŭ
Lab Code:	K1604068-007	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260C	Level:	Low

Analyte Name	Result Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzene	ND U U	0.50	0.10	0.062	1	05/03/16	05/03/16	KWG1603424	
Toluene	0.060 JU(P)	0.50	0.10	0.054	1	05/03/16	05/03/16	KWG1603424	
Ethylbenzene	0.85	0.50	0.10	0.050	1	05/03/16	05/03/16	KWG1603424	
m,p-Xylenes	2.3	0.50	0.20	0.11	1	05/03/16	05/03/16	KWG1603424	
o-Xylene	1.6	0.50	0.20	0.074	1	05/03/16	05/03/16	KWG1603424	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	99	81-118	05/03/16	Acceptable	
Dibromofluoromethane	91	80-119	05/03/16	Acceptable	
Toluene-d8	103	89-112	05/03/16	Acceptable	
4-Bromofluorobenzene	95	85-114	05/03/16	Acceptable	

NAVFAC PACIFIC VALIDATED LEVEL D

MAY 2 5 2016

Initials: CR

Comments:

Printed: 05/03/2016 16:19:55 u:\Stealth\Crystal.rpt\Form1mNew.rpt Form 1A - Organic

Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Volatile Organic Compounds

Sample Name:	ERH036	Units:	v
Lab Code:	K1604068-008	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260C	Level:	Low

Analyte Name	Result Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Benzene	NDUU	0.50	0.10	0.062	1	05/03/16	05/03/16	KWG1603424	
Toluene	J U 030.0	0.50	0.10	0.054	1	05/03/16	05/03/16	KWG1603424	
Ethylbenzene	1.1	0.50	0.10	0.050	1	05/03/16	05/03/16	KWG1603424	
m,p-Xylenes	2.9	0.50	0.20	0.11	1	05/03/16	05/03/16	KWG1603424	
o-Xylene	2.1	0.50	0.20	0.074	1	05/03/16	05/03/16	KWG1603424	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,2-Dichloroethane-d4	97	81-118	05/03/16	Acceptable	
Dibromofluoromethane	90	80-119	05/03/16	Acceptable	
Toluene-d8	103	89-112	05/03/16	Acceptable	
4-Bromofluorobenzene	95	85-114	05/03/16	Acceptable	

NAVFAC PACIFIC VALIDATED LEVEL D

4.

MAY 2 3 2016

initials: CR

Page

Comments:

Printed: 05/03/2016 16:19:59 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

Page 74 of 1149

SuperSet Reference: RR188021

1 of 1

LDC #: 36302A1 SDG #: K1604068 Laboratory: ALS Environmental

Level IV

Date Page Reviewer 2nd Reviewer:

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

(BTEK) The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		C	omments
١.	Sample receipt/Technical holding times	D/A		
П.	GC/MS Instrument performance check	<u> </u>		
III.	Initial calibration/ICV	A/A	515	101520
IV.	Continuing calibration / ending	Å	=======================================	
V.	Laboratory Blanks	Å	1	
VI.	Field blanks	4W	ER= 213-7	SB=8
VII.	Surrogate spikes	Ϋ́Α	,,)
VIII.	Matrix spike/Matrix spike duplicates	A		
IX.	Laboratory control samples	A	LCS	
X .	Field duplicates	ND	D=2+3	
XI.	Internal standards	A		
XII.	Compound quantitation RL/LOQ/LODs	A		
XIII.	Target compound identification	A		
XIV.	System performance	Á		
XV.	Overall assessment of data	A		
Note:	A = Acceptable N	D = No compounds	detected D = Duplicate	SB=Source blank

N = Not provided/applicable

R = Rinsate FB = Field blank

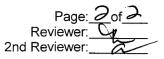
D = Duplicat	e
TB = Trip bla	ank
EB = Equipn	nent blank

OTHER:

SW = See worksheet

	Client ID	Lab ID	Matrix	Date
1	ERH029	K1604068-001	Water	04/19/16
2	ERH030	K1604068-002	Water	04/19/16
2 3	ERH031	K1604068-003	Water	04/19/16
4	ERH032	K1604068-004	Water	04/19/16
5	ERH033	K1604068-005	Water	04/19/16
6	ERH034	K1604068-006	Water	04/19/16
7	ERH035	K1604068-007	Water	04/19/16
8	ERH036	K1604068-008	Water	04/19/16
9	ERH030MS	K1604068-002MS	Water	04/19/16
10	ERH030MSD	K1604068-002MSD	Water	04/19/16
11				
13	KWG1603424-4			

Notes:


VALIDATION FINDINGS CHECKLIST

Page: 1 of 2 Reviewer: 777 2nd Reviewer: 777

Method: Volatiles (EPA SW 846 Method 8260B)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?	/			
II. GC/MS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?				
IIIa: Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?	/			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?		/		
Were all percent relative standard deviations (%RSD) $\leq \times$ %/15% and relative response factors (RRF) \geq 0.05?				
IIIb. Initial Calibration Verification	- 12. 			
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (%D) \leq 20% or percent recoveries (%R) 80-120%?				
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Were all percent differences (%D) \leq 20% and relative response factors (RRF) \geq 0.05?	/			
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	\leq			
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?	/			
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Field blanks	\triangle			
Were field blanks were identified in this SDG?	K	\sim		
Were target compounds detected in the field blanks?	V		$\left \times \right $	
VII. Surrogate spikes	/			
Were all surrogate percent recovery (%R) within QC limits?	arrho		ļ,	
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
VIII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	/			
Was a MS/MSD analyzed every 20 samples of each matrix?	/			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?	/			
IX. Laboratory control samples				
Was an LCS analyzed for this SDG?	/			
Was an LCS analyzed per analytical batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			
X. Field duplicates				
Were field duplicate pairs identified in this SDG?	/			
Were target compounds detected in the field duplicates?		/		
XI:Internal standards				
Were internal standard area counts within -50% to +100% of the associated calibration standard?	/			
Were retention times within ± 30 seconds of the associated calibration standard?	/			
XII. Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	/			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
XIII. Target compound identification			a in that The second	
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?	/			
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	1			
Were chromatogram peaks verified and accounted for?	1			
XIV. System performance				
System performance was found to be acceptable.	/			
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

.

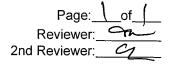
METHOD: VOA

VIETHOD: VOA				
A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-Isopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	11. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	jJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	0000.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methyl cyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	VV. Isopropylbenzene	VVV. 4-Ethyltoluene	VVVV. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1.
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

LDC #:	36302A1
--------	---------

VALIDATION FINDINGS WORKSHEET Field Blanks

	Page:_	of
	Reviewer:	On_
2nd	Reviewer:	à
	Code;	F


	lanks identifie	ethod 8260B) ed in this SDG detected in the)					Cod	e:F
Blank units: <u>Agl</u> Asso Field blank type: (circle one	ciated samp) Field Blank	le units://g / / Rinsate / Tri	p Blank / Oth	er. <u>) EP</u>	Assoc	iated Sample	s:	(NA)		
Compound	Blank ID 7	Blank ID				Sample Ide	entification			
Sampling Date	04/19/16									
CC EE RRR SSS	0.060									
EE	0.85									
RRR	<i>z</i> .3									
555	1.6									
	·		<u> </u>							
Blank units: <u>Agl</u> Asso Field blank type: (circle one	ociated samp) Field Blank	le units:/u / Rinsate / Tri	g/L p Blank / Oth	er:)5B	Assoc	iated Samples	s: <u>7</u>	Ģ	hal U	
Compound	Blank ID 8	Blank ID	3			Sample Ide	entification			
Sampling Date	04/19/16		7							
CC EE PPR	0.060		0.040							
EE	1.		0.85							
RER	2.9		<i>a.</i> 3							
55S	2.1		1.6							

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as Methylene chloride, Acetone, 2-Butanone and Carbon disulfide that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

LDC #: 36302A)

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $\label{eq:RRF} \begin{array}{l} \mathsf{RRF} = (\mathsf{A}_{\mathsf{x}})(\mathsf{C}_{\mathsf{is}})/(\mathsf{A}_{\mathsf{is}})(\mathsf{C}_{\mathsf{x}}) \\ \mathsf{average} \; \mathsf{RRF} = \mathsf{sum} \; \mathsf{of} \; \mathsf{the} \; \mathsf{RRFs}/\mathsf{number} \; \mathsf{of} \; \mathsf{standards} \\ \ensuremath{\%\mathsf{RSD}} = 100 \; * \; (\mathsf{S}/\mathsf{X}) \end{array}$

 A_x = Area of compound, C_x = Concentration of compound, S = Standard deviation of the RRFs X = Mean of the RRFs

A_{is} = Area of associated internal standard

C_{is} = Concentration of internal standard

		n - Series An Series		Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF ()〇 std)	RRF ([() std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	CAL14682	04/13/16	Towere (1st internal standard)	0.679	0.679	0.700	0,700	4.	41
	CAL14687 (GC-MS 18)	שוןטוריי	Ethyllenze-e(2nd internal standard)	1.00	1.00	0.998	0.997	6.7	6.6
	GC-MS18)		(3rd internal standard)						
2			(1st internal standard)						
			(2nd internal standard)						
			(3rd internal standard)						
3			(1st internal standard)						
			(2nd internal standard)						
			(3rd internal standard)						
4			(1st internal standard)					<u></u>	
			(2nd internal standard)						
			(3rd internal standard)						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:	of (
Reviewer:	Qn
2nd Reviewer:	9

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

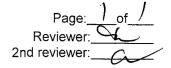
The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF	
$RRF = (A_{x})(C_{is})/(A_{is})(C_{x})$	

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF A_x = Area of compound,

 $C_x = Concentration of compound,$


 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

#	Standard ID	Calibration Date	Compound (Reference internal Standard)	Average RRF (initial)	Reported RRF (CC)	Recalculated RRF (CC)	Reported %D	Recalculated %D
1	0502F008	and I.	Toluene (1st internal standard)	0.700	0.635	0.635	9	9
		05/02/16	Ethylbungene (2nd internal standard)	0.998	0.957	0.957	4	4
			0 0 (3rd internal standard)					,
2			(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)					
3			(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)					
4			(1st internal standard)					
			(2nd internal standard)					
	<u> </u>		(3rd internal standard)					
5			(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)					

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

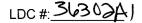
Sample ID:

Percent Percent Surrogate Surrogate Recovery Recovery Percent Spiked Recalculated Found Reported Difference 9.08 9 10.000 91 Dibromofluoromethane 1 Ø 9.90 99 90 1,2-Dichloroethane-d4 Ø 10.33 03 ĺŇ Toluene-d8 n 2 9.53 9 \leq 9 Bromofluorobenzene

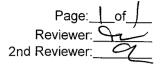
Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:


	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene			<u> </u>		

Sample ID:_____


	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:_____

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene	·				

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u>

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added SC = Sample concentration

RPD = | MSC - MSC | * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD sample:

9/10

Compound	Ad	bike Ided AL)	Sample Concentration (MU)	Spiked S Concen (MQ	tration	Matrix Percent R		Matrix Spike			S/MSD
	MS	MSD		/3	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
1,1-Dichloroethene											
Trichloroethene											
Benzene	10.0	100	ND	9.52	9.19	95	95	92	92	4	4
Toluene	\checkmark	\mathbf{V}	ND	9.60	9.41	96	96	94	94	à	à
Chlorobenzene											

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

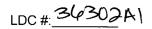
VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added


RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)

LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

LCS ID: ____KWG1603424-3

		pike	Spiked S	•	i	:s		SD	LCS/	
Compound		Ided	Concen		Percent F	Recovery	Percent F	lecovery	R	PD
	LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
1,1-Dichloroethene										
Trichloroethene										
Benzene	10.0	NA	8.42	NA	84	84				
Toluene	$\overline{\mathcal{N}}$		8.55		86	85				
Chlorobenzene										

Comments: Refer to Laboratory Control Sample findings worksheet for list of gualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	
Reviewer:	The
2nd reviewer:	a

(AN I	OD: N/A N/A	GC/MS VOA (EPA SW 846 Method 8260B) Were all reported results recalculated and Were all recalculated results for detected	verified for all level IV samples? target compounds agree within 10.0% of the reported results?
Conce	ntratio	n = <u>(A,)(I_)(DF)</u> (A ₁₅)(RRF)(V ₀)(%S)	Example:
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D. 7, Joluano
A _{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	
I _s	=	Amount of internal standard added in nanograms (ng)	Conc. = (2584) (10.00) (1)
RRF	=	Relative response factor of the calibration standard.	
V。	=	Volume or weight of sample pruged in milliliters (ml) or grams (g).	= 0.057245651 × 0.06pg/L
Df	=	Dilution factor.	
%S	=	Percent solids, applicable to soils and solid matrices only.	

#	Sample ID	Compound	Reported Concentration	Calculated Concentration	Qualification
	Sample ID	compound		<u> </u>	Quanication
				1	
			····		
					······
		······································			
			······································		
	·····				
					····
					·
			<u> </u>		l

LDC Report# 36302A2b

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Fuel Storage Facility
LDC Report Date:	May 21, 2016
Parameters:	Polynuclear Aromatic Hydrocarbons
Validation Level:	Level D
Laboratory:	ALS Environmental

Sample Delivery Group (SDG): K1604068

.

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
ERH029	K1604068-001	Water	04/19/16
ERH030	K1604068-002	Water	04/19/16
ERH031	K1604068-003	Water	04/19/16
ERH032	K1604068-004	Water	04/19/16
ERH033	K1604068-005	Water	04/19/16
ERH034	K1604068-006	Water	04/19/16
ERH035	K1604068-007	Water	04/19/16
ERH036	K1604068-008	Water	04/19/16
ERH030MS	K1604068-002MS	Water	04/19/16
ERH030MSD	K1604068-002MSD	Water	04/19/16

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013) and the Project Procedures Manual, U.S. Naval Facilities Engineering Command (NAVFAC) Environmental Restoration (ER) Program, NAVFAC Pacific (DON 2015).Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Polynuclear Aromatic Hydrocarbons (PAHs) by Environmental Protection Agency (EPA) SW 846 Method 8270C in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Level D data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- H Holding times were exceeded.
- S Surrogate recovery was outside QC limits.
- C Calibration %RSD, r, r^2 or %D were noncompliant.
- R Calibration RRF was <0.05.
- B Presumed contamination from preparation (method blank).
- L Laboratory Control Sample/Laboratory Control Sample Duplicate %R or RPD was not within control limits.
- Q MS/MSD recovery was poor.
- E MS/MSD or Duplicate RPD was high.
- I Internal standard performance was unsatisfactory.
- M Instrument Performance Check (BFB or DFTPP) was noncompliant.
- T Presumed contamination from trip blank.
- F Presumed contamination from FB or ER.
- D The analysis with this flag should not be used because another more technically sound analysis is available.
- P Instrument performance for pesticides was poor.
- V Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.

All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 15.0% for all compounds.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the ending CCVs were less than or equal to 50.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample ERH035 was identified as an equipment rinsate. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Compound	Concentration	Associated Samples
ERH035	04/19/16	Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene	0.15 ug/L 0.016 ug/L 0.0085 ug/L	ERH029 ERH030 ERH031 ERH032 ERH033 ERH034

Sample ERH036 was identified as a source blank. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Compound	Concentration	Associated Samples
ERH036	04/19/16	Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene	0.14 ug/L 0.015 ug/L 0.0085 ug/L	ERH035

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated field blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
ERH032	2-Methylnaphthalene	0.0036 ug/L	0.0036U ug/L
ERH035	Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene	0.15 ug/L 0.016 ug/L 0.0085 ug/L	0.15U ug/L 0.016U ug/L 0.0085U ug/L

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples ERH030 and ERH031 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations were within validation criteria.

XIII. Target Compound Identifications

All target compound identifications were within validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to equipment rinsate contamination, data were qualified as not detected in one sample.

Due to source blank contamination, data were qualified as not detected in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Based upon the data validation all other results are considered valid and usable for all purposes.

Red Hill Bulk Fuel Storage Facility Polynuclear Aromatic Hydrocarbons - Data Qualification Summary - SDG K1604068

No Sample Data Qualified in this SDG

Red Hill Bulk Fuel Storage Facility

Polynuclear Aromatic Hydrocarbons - Laboratory Blank Data Qualification Summary - SDG K1604068

No Sample Data Qualified in this SDG

Red Hill Bulk Fuel Storage Facility

Polynuclear Aromatic Hydrocarbons - Field Blank Data Qualification Summary - SDG K1604068

Sample	Compound	Modified Final Concentration	A or P	Code
ERH032	2-Methyinaphthalene	0.0036U ug/L	A	F
ERH035	Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene	0.15U ug/L 0.016U ug/L 0.0085U ug/L	A	F

Analytical Results

Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Polynuclear Aromatic Hydrocarbons

Sample Name:	ERH029	Units:	0
Lab Code:	K1604068-001	Basis:	
Extraction Method: Analysis Method:	EPA 3520C 8270D SIM	Level:	Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND UY	0.020	0.0050	0.0038	1	04/26/16	05/02/16	KWG1603185	
2-Methylnaphthalene	ND U	0.020	0.0050	0.0023	1	04/26/16	05/02/16	KWG1603185	
l-Methylnaphthalene	ND UV	0.020	0.0050	0.0035	1	04/26/16	05/02/16	KWG1603185	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	104	46-114	05/02/16	Acceptable

NAVFAC PACIFIC VALIDATED LEVEL D

MAY 2 3 2016

Initials: CR

Comments:

Merged

Form 1A - Organic

Page

Analytical Results

Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Polynuclear Aromatic Hydrocarbons

Sample Name:	ERH030	Units:	Ū.
Lab Code:	K1604068-002	Basis:	
Extraction Method: Analysis Method:	EPA 3520C 8270D SIM	Level:	Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U 🗸	0.020	0.0050	0.0038	1	04/26/16	05/02/16	KWG1603185	
2-Methylnaphthalene	ND U	0.020	0.0050	0.0023	1	04/26/16	05/02/16	KWG1603185	
1-Methylnaphthalene	ND U	0.020	0.0050	0.0035	1	04/26/16	05/02/16	KWG1603185	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	98	46-114	05/02/16	Acceptable

NAVFAC PACIFIC VALIDATED LEVEL D

an in the second second second second

MAY 2 3 2016

Initials: CR

Page

Comments:

Merged

Form 1A - Organic

Analytical Results

Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Polynuclear Aromatic Hydrocarbons

Sample Name:	ERH031	Units:	•
Lab Code:	K1604068-003	Basis:	
Extraction Method: Analysis Method:	EPA 3520C 8270D SIM	Level:	Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	NDU	0.020	0.0050	0.0038	1	04/26/16	05/02/16	KWG1603185	
2-Methylnaphthalene	ND U	0.020	0.0050	0.0023	1	04/26/16	05/02/16	KWG1603185	
1-Methylnaphthalene	ND U	0.020	0.0050	0.0035	1	04/26/16	05/02/16	KWG1603185	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	103	46-114	05/02/16	Acceptable	

NAVFAC PACIFIC VALIDATED LEVEL D

MAY 2 3 2016

Initials: CR

Comments:

Merged

RR188019

Analytical F	Results
--------------	---------

Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Polynuclear Aromatic Hydrocarbons

Sample Name:	ERH032	Units:	0
Lab Code:	K1604068-004	Basis:	
Extraction Method: Analysis Method:	EPA 3520C 8270D SIM	Level:	Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U (0.019	0.0050	0.0038	1	04/26/16	05/02/16	KWG1603185	
2-Methylnaphthalene	0.0036 JUCP)	0.019	0.0050	0.0023	1	04/26/16	05/02/16	KWG1603185	
1-Methylnaphthalene	ND U	0.019	0.0050	0.0035	1	04/26/16	05/02/16	KWG1603185	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	99	46-114	05/02/16	Acceptable	

NAVFAC PACIFIC VALIDATED LEVEL D

• .

•

MAY 2 5 2016

Initials: CR

Comments:

Analytical Results

Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Polynuclear Aromatic Hydrocarbons

Sample Name:	ERH033	Units:	2
Lab Code:	K1604068-005	Basis:	
Extraction Method: Analysis Method:	EPA 3520C 8270D SIM	Level:	Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	NDUY	0.020	0.0050	0.0038	1	04/26/16	05/02/16	KWG1603185	
2-Methylnaphthalene	ND U	0.020	0.0050	0.0023	1	04/26/16	05/02/16	KWG1603185	
l-Methylnaphthalene	ND U 🗸	0.020	0.0050	0.0035	1	04/26/16	05/02/16	KWG1603185	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	100	46-114	05/02/16	Acceptable

NAVFAC PACIFIC VALIDATED LEVEL D

MAY 2 3 2016

Initials: CR

Page

Comments:

Page 96 of 1149

Analytical Results

Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Polynuclear Aromatic Hydrocarbons

Sample Name:	ERH034	Units:	e
Lab Code:	K1604068-006	Basis:	
Extraction Method: Analysis Method:	EPA 3520C 8270D SIM	Level:	Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	ND U V	0.020	0.0050	0.0038	1	04/26/16	05/02/16	KWG1603185	
2-Methylnaphthalene	ND U	0.020	0.0050	0.0023	1	04/26/16	05/02/16	KWG1603185	
1-Methylnaphthalene	ND U 🗸	0.020	0.0050	0.0035	1	04/26/16	05/02/16	KWG1603185	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	94	46-114	05/02/16	Acceptable	

NAVFAC PACIFIC VALIDATED LEVEL D

MAY 2 3 2016

Initials: CR

Page

Comments:

Form 1A - Organic

Analytical Re	esults
---------------	--------

Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Polynuclear Aromatic Hydrocarbons

Sample Name:	ERH035	Units:	0
Lab Code:	K1604068-007	Basis:	
Extraction Method: Analysis Method:	EPA 3520C 8270D SIM	Level:	Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	0.15 UCP	0.020	0.0050	0.0038	1	04/26/16	05/02/16	KWG1603185	
2-Methylnaphthalene	0.016 J	0.020	0.0050	0.0023	1	04/26/16	05/02/16	KWG1603185	
l-Methylnaphthalene	0.0085 J 🗸	0.020	0.0050	0.0035	1	04/26/16	05/02/16	KWG1603185	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Fluorene-d10	100	46-114	05/02/16	Acceptable	

NAVFAC PACIFIC VALIDATED LEVEL D

MAY 2 5 2016

Initials: CR

Comments:

Form 1A - Organic

Page

Analytical Results

Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Polynuclear Aromatic Hydrocarbons

Sample Name:	ERH036	Units:	e
Lab Code:	K1604068-008	Basis:	
Extraction Method: Analysis Method:	EPA 3520C 8270D SIM	Level:	Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
Naphthalene	0.14	0.019	0.0050	0.0038	1	04/26/16	05/02/16	KWG1603185	
2-Methylnaphthalene	0.015 J 🏹	0.019	0.0050	0.0023	1	04/26/16	05/02/16	KWG1603185	
1-Methylnaphthalene	0.0085 J J	0.019	0.0050	0.0035	1	04/26/16	05/02/16	KWG1603185	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	101	46-114	05/02/16	Acceptable

NAVFAC PACIFIC VALIDATED LEVEL D

MAY 2 3 2016

Initials: CR

Page

Comments:

LDC #: <u>36302A2b</u>	VALIDATION COMPLETENESS WORKSHEET
SDG #: <u>K16</u> 04068	Level IV

SDG #: K1604068 Laboratory: ALS Environmental

Date: Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS Polynucear Aromatic Hydrocarbons (EPA SW 846 Method 8270C-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
١.	Sample receipt/Technical holding times	A,A	
11.	GC/MS Instrument performance check	A	
111.	Initial calibration/ICV	A,A	515 ICVE20
IV.	Continuing calibration Ending	A	520/350
V.	Laboratory Blanks	A	
VI.	Field blanks	GN	ER = 7, $SB = 8$
VII.	Surrogate spikes	ĽÀ	
VIII.	Matrix spike/Matrix spike duplicates	A	
IX.	Laboratory control samples	A	LCS/D
Х.	Field duplicates	ND	D=2+3
XI.	Internal standards	A	
X11.	Compound quantitation RL/LOQ/LODs	A	
XIII.	Target compound identification	A	
XIV.	System performance	A	
XV.	Overall assessment of data	<u> </u>	

Note:

56

ND = No compounds detected R = Rinsate FB = Field blank

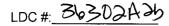
D = Duplicate TB = Trip blank EB = Equipment blank

SB=Source blank OTHER:

Ð

A = Acceptable N = Not provided/applicable SW = See worksheet

	Client ID	Lab ID	Matrix	Date
1	ERH029	K1604068-001	Water	04/19/16
2	ERH030	K1604068-002	Water	04/19/16
3	ERH031	K1604068-003	Water	04/19/16
4	ERH032	K1604068-004	Water	04/19/16
5	ERH033	K1604068-005	Water	04/19/16
6	ERH034	K1604068-006	Water	04/19/16
7	ERH035	K1604068-007	Water	04/19/16
8	ERH036	K1604068-008	Water	04/19/16
9	ERH030MS	K1604068-002MS	Water	04/19/16
10	ERH030MSD	K1604068-002MSD	Water	04/19/16
11				
12				
13				


ALIDATION COMPLETENESS WORKSHEET	AL	IDATIO		_ETENESS	WORKSHEET
----------------------------------	----	---------------	--	----------	-----------

Level IV

LDC #: <u>36302A2b</u> V/ SDG #: <u>K1604068</u> Laboratory: <u>ALS Environmental</u> Date: 05 20 16 Page: 20f 2 Reviewer: Th 2nd Reviewer:

METHOD: GC/MS Polynucear Aromatic Hydrocarbons (EPA SW 846 Method 8270C-SIM)

	Client ID		 		Lab ID	 Matrix	 Date	
14			 	ļ				
15		 	 	 			 	
Note	S:	 	 	 		 	 	
	KWG1603185-7							

VALIDATION FINDINGS CHECKLIST

Page: _] of <u></u> Reviewer: _ Im 2nd Reviewer: _ _ _ _

Method: Semivolatiles (EPA SW 846 Method 8270C-SIM)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?				
II. GC/MS Instrument performance check (Not required)				
Were the DFTPP performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?	$\lfloor /$			
IIIa. Initial calibration		<u> </u>		
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) \leq 15% and relative response factors (RRF) \geq 0.05?	/			
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of \geq 0.990?				
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	/			
Were all percent differences (%D) ≤20% or percent recoveries (%R) 80-120%?	/			
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (%D) \leq 20% and relative response factors (RRF) \geq 0.05?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?	/			· · · · · · · · · · · · · · · · · · ·
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Field blanks				
Were field blanks identified in this SDG?	\square	$ \times$		
Were target compounds detected in the field blanks?	\mathbb{V}	<u>}</u>	$ \times$	
VII. Surrogate spikes				
Were all surrogate percent differences (%R) within QC limits?				
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm %R?				
If any percent recoveries (%R) was less than 10 percent, was a reanalysis performed to confirm %R?			/	

VALIDATION FINDINGS CHECKLIST

Page: dof dof Reviewer: v 2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
VIII. Matrix spike/Matrix spike duplicates		· · ·		
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	/			
Was a MS/MSD analyzed every 20 samples of each matrix?	1			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?	/			
IX. Laboratory control samples				
Was an LCS analyzed for this SDG?	/			
Was an LCS analyzed per analytical batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			
X. Field duplicates				
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?				
XI. Internal standards				
Were internal standard area counts within -50% or +100% of the associated calibration standard?	/			
Were retention times within ± 30 seconds of the associated calibration standard?	/			
XII. Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	/			
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?	/			
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	/			
Were chromatogram peaks verified and accounted for?	/			
XIV. System performance				
System performance was found to be acceptable.	/			
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS SVOA

A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthaiate	AAAA. Dibenzothiophene	A1.
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1.
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1.
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1.
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1.
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1.
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1.
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1.
I. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	11.
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1.
K. Hexachloroethane	KK. 2,4-Dinitrotoluene	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	К1.
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1.
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1.
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1.
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	OOOO. 1,2-Diphenylhydrazine	01.
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1.
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3&4-Methylphenol	Q1.
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1.
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1.
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1.
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	ບບບບ.	U1.
V. 4-Chloro-3-methylphenol	VV. Anthracene	VVV.Benzonaphthothiophene	VVVV.	V1.
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	www.	W1.
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX.	X1.
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY.	Y1.
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ.	Z1.

VALIDATION FINDINGS WORKSHEET Field Blanks

Page:_	<u>of_</u>)
Reviewer:	m
2nd Reviewer:	A

METHOD: GC/MS BNA (EP	A SW 846 Me	thod 8270C)								
	lanks identifie	d in this SDG		~						0
<u>Y N N/A</u> Were target	compounds c	letected in the	e field blanks	?						Code: F
Blank units: <u>NG/L</u> Asso Sampling date: <u>D-119</u>								6		
Field blank type: (circle one	e) Field Blank	/ Rinsate / Ot	her ER	Associa	ted Samples:	1-6		Quel	U	
Compound	Blank ID Sample Identification									
	Ŧ	4								
5	0.15									
N	0.016	0.0036								
TTT	0.0085									
PL Lawrence Lall	• • •									
Blank units: <u>Market</u> Asso Sampling date: <u>04/19/1</u>	bclated samp	le units: μg					\wedge	0.		
Field blank type: (circle one) Field Blank	/ Rinsate / Øt	her:) <u>5</u> B	Associa	ted Samples:_	7	<u> </u>	<u>al U</u>	_	
Compound	Blank ID				Sa	ample Identifica	tion			
	8	7								
S	0.14	0.15								
S W	0.015	0.016								
TTT	0.0085	0.0085					<u></u>			
		-								

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Common contaminants such as the phthalates and TICs noted above that were detected in samples within ten times the associated field blank concentration were qualified as not detected, "U". Other contaminants within five times the field blank concentration were also qualified as not detected, "U".

VALIDATION FINDINGS WORKSHEET **Initial Calibration Calculation Verification**

Page:_	<u>of</u>
Reviewer:	9n
2nd Reviewer:	a

METHOD: GC/MS BNA (EPA SW 846 Method 8270C) - SIM

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $\mathsf{RRF} = (\mathsf{A}_{\mathsf{x}})(\mathsf{C}_{\mathsf{is}})/(\mathsf{A}_{\mathsf{is}})(\mathsf{C}_{\mathsf{x}})$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

		Calibration		Reported RRF	RRF	Reported Average RRF	Recalculated	Reported	Recalculated
#	Standard ID	Date	Compound (Reference Internal Standard)	(100 std)	(100 std)	(initial)	(initial)		
1	CAL14530		(1st internal standard)	1.06	1.06	1.01	1.01	7.3	7.2
		1 1	Naphthalene (2nd internal standard)						
		01/11/16							
	(MSIH)								
	C								
2			(1st internal standard).						
			Naphthalene (2nd internal standard)						
3			(1st internal standard)-						
			Naphthalene (2nd internal standard)						
			······································						

Comments: Refer to Initial Calibration findings worksheet for list of gualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:_	of
Reviewer:	Q_
2nd Reviewer:	0_

METHOD: GC/MS BNA (EPA SW 846 Method 8270C) - STM

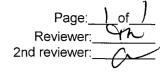
The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF	
$RRF = (A_{x})(C_{is})/(A_{is})(C_{x})$	

Where: ave. RRF = initial calibration average RRF

RRF = continuing calibration RRF A_v = Area of compound,

 $C_x = Concentration of compound,$


A_{is} = Area of associated internal standard

C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	0502F002.D	05/02/16	(1st internal standard)	1.01	1.17	1.17	16	16
			(1st internal standard) IST Naphthalene (2nd internal standard)				· · ·	
2			(1st internal standard)					
			Naphthalene (2nd internal standard)					
				· · · · · · · · · · · · · · · · · · ·			······································	
		······						
3			(1st internal standard) 1 3 +					
			Naphthalene (2nd internal standard)					

Comments: <u>Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

VALIDATION FINDINGS WORKSHEET **Surrogate Results Verification**

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C) - Stm

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

ł

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:		· · · · · · · · · · · · · · · · · · ·			
	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-do Fluorene-cho	400	414.80	104	104	Ø
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page: <u>|</u>of_) Reviewer: <u>____</u> 2nd Reviewer: _____

METHOD: GC/MS PAH (EPA SW 846 Method 8270C) - STW

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSC - SC)/SA

Where: SSC = Spiked sample concentration SA = Spike added SC = Sample concentation

RPD = I MSC - MSC I * 2/(MSC + MSDC)

MSC = Matrix spike concentration

MSDC = Matrix spike duplicate concentration

MS/MSD samples: _____9)10

Compound	Ad	ike ded JL)	Sample Concentration (NGL)	Spiked Sample Concentration (ハロル)		Matrix Spike Percent Recovery		Matrix Spike Duplicate Percent Recovery		MS/MSD RPD	
	MS	MSD		MS	MSD	Reported	Recalc	Reported	Recalc	Reported	Recalculated
Naphthalene	2.36	2.45	ND	1.88	2.01	80	80	82	82	7	7
····											
									:		
										····	
			·								
 											
	·	· · · · ·									· · ·

Comments: <u>Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

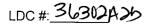
VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: ______ Reviewer: ______ 2nd Reviewer: ______

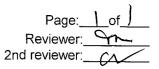
METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C) - SIM

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SC/SA)


Where: SSC = Spike concentration SA = Spike added

RPD = I LCSC - LCSDC I * 2/(LCSC + LCSDC)


LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration

	Sp	oike	Sp	oike		s		SD	LCS/	LCSD
Compound	Ad (N 9	ded		ntration	Percent I	Recovery	Percent I	Recovery	RI	PD
		LCSD		LCSD	Reported	Recaic	Reported	Recalc	Reported	Recalculated
Naphthalene	2.50	2.50	2.06	2.01	82	82	81	81	a	2
1										
									· · · · · · · · · · · · · · · · · · ·	
					····.					

Comments: <u>Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

METHOD: GC/MS SVOA (EPA SW 846 Method 8270C) - SIM

9 N N/A N N/A

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

- Concentration = $(A_{1})(I_{2})(V_{1})(DF)(2_{2})$ Example: $(A_{is})(RRF)(V_o)(V_i)(\%S)$ Sample I.D. _7___, Maphtholene: Area of the characteristic ion (EICP) for the A, = compound to be measured A_{is} = Area of the characteristic ion (EICP) for the specific internal standard l, = Amount of internal standard added in nanograms (ng) Volume or weight of sample extract in milliliters (ml) or V, = grams (g). = 0.151418699 2 0.15 pg/L V, = Volume of extract injected in microliters (ul) Volume of the concentrated extract in microliters (ul) V, = Df = Dilution Factor. %S = Percent solids, applicable to soil and solid matrices
- only. 2.0 Factor of 2 to account for GPC cleanup

Reported Calculated Concentration Concentration # Sample ID Compound Qualification 1) (-)

LDC Report# 36302A7

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Fuel Storage Facility
--------------------	-------------------------------------

LDC Report Date: May 24, 2016

Parameters: Gasoline Range Organics

Validation Level D Level D

Laboratory: ALS Environmental

Sample Delivery Group (SDG): K1604068

	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
ERH029	K1604068-001	Water	04/19/16
ERH030	K1604068-002	Water	04/19/16
ERH031	K1604068-003	Water	04/19/16
ERH032	K1604068-004	Water	04/19/16
ERH033	K1604068-005	Water	04/19/16
ERH034	K1604068-006	Water	04/19/16
ERH035	K1604068-007	Water	04/19/16
ERH036	K1604068-008	Water	04/19/16
ERH030MS	K1604068-002MS	Water	04/19/16
ERH030MSD	K1604068-002MSD	Water	04/19/16

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013) and the Project Procedures Manual, U.S. Naval Facilities Engineering Command (NAVFAC) Environmental Restoration (ER) Program, NAVFAC Pacific (DON 2015). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Gasoline Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8015C

All sample results were subjected to Level D data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- H Holding times were exceeded.
- S Surrogate recovery was outside QC limits.
- C Calibration %RSD, r, r^2 or %D were noncompliant.
- R Calibration RRF was <0.05.
- B Presumed contamination from preparation (method blank).
- L Laboratory Control Sample/Laboratory Control Sample Duplicate %R or RPD was not within control limits.
- Q MS/MSD recovery was poor.
- E MS/MSD or Duplicate RPD was high.
- I Internal standard performance was unsatisfactory.
- M Instrument Performance Check (BFB or DFTPP) was noncompliant.
- T Presumed contamination from trip blank.
- F Presumed contamination from FB or ER.
- D The analysis with this flag should not be used because another more technically sound analysis is available.
- P Instrument performance for pesticides was poor.
- V Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0%.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0%.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample ERH035 was identified as an equipment rinsate. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Compound	Concentration	Associated Samples
ERH035	04/19/16	Gasoline range organics	13 ug/L	ERH029 ERH030 ERH031 ERH032 ERH033 ERH034

Sample ERH036 was identified as a source blank. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Compound	Concentration	Associated Samples
ERH036	04/19/16	Gasoline range organics	14 ug/L	ERH035

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated field blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
ERH029	Gasoline range organics	21 ug/L	21U ug/L
ERH030	Gasoline range organics	13 ug/L	13U ug/L
ERH031	Gasoline range organics	9.0 ug/L	9.0U ug/L
ERH035	Gasoline range organics	13 ug/L	13U ug/L

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples ERH030 and ERH031 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentr	ration (ug/L)	
Compound	ERH030	ERH031	RPD
Gasoline range organics	13	9.0	36

X. Compound Quantitation

All compound quantitations met validation criteria.

XI. Target Compound Identifications

All target compound identifications were within validation criteria.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to equipment rinsate contamination, data were qualified as not detected in three samples.

Due to source blank contamination, data were qualified as not detected in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

Red Hill Bulk Fuel Storage Facility Gasoline Range Organics - Data Qualification Summary - SDG K1604068

No Sample Data Qualified in this SDG

Red Hill Bulk Fuel Storage Facility

Gasoline Range Organics - Laboratory Blank Data Qualification Summary - SDG K1604068

No Sample Data Qualified in this SDG

Red Hill Bulk Fuel Storage Facility

Gasoline Range Organics - Field Blank Data Qualification Summary - SDG K1604068

Sample	Compound	Modified Final Concentration	A or P	Code
ERH029	Gasoline range organics	21U ug/L	A	F
ERH030	Gasoline range organics	13U ug/L	А	F
ERH031	Gasoline range organics	9.0U ug/L	A	F
ERH035	Gasoline range organics	13U ug/L	А	F

Analytical Results							
Client:	Element Environmental, LLC	Service Request:	K1604068				
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016				
Sample Matrix:	Water	Date Received:	04/21/2016				

Gasoline Range Organics

Sample Name:	ERH029	Units:	0
Lab Code:	K1604068-001	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8015C	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	21 J UCF)	50	8.3	1	04/27/16	04/27/16	KWG1603412	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	101	80-107	04/27/16	Acceptable	

NAVFAC PACIFIC VALIDATED LEVEL D

MAY 2 5 2016

Initials: CR

Comments:

Printed: 05/03/2016 14:06:40 u:\Stealth\Crystal.rpt\Form1mNew.rpt Form 1A - Organic

	Analytical Results		
Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Gasoline Range Organics

Sample Name:	ERH030	Units:	0
Lab Code:	K1604068-002	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8015C	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	13 JUCP)	50	8.3	1	04/27/16	04/27/16	KWG1603412	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	 _
1,4-Difluorobenzene	103	80-107	04/27/16	Acceptable	

NAVFAC PACIFIC VALIDATED LEVEL D

Receiver a construction of the

MAY 2 5 2016

Initials: CR

Comments:

Printed: 05/03/2016 14:06:44 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

	Analytical Results		
Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Gasoline Range Organics

Sample Name:	ERH031	Units:	0
Lab Code:	K1604068-003	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8015C	Level:	Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	9.0 J U(P)	50	8.3	1	04/27/16	04/27/16	KWG1603412	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,4-Difluorobenzene	103	80-107	04/27/16	Acceptable

NAVFAC PACIFIC VALIDATED LEVEL D

· •••

.

MAY 2 5 2016

Initials: CR

Comments:

Printed: 05/03/2016 14:06:48 u:\Stealth\Crystal.rpt\Form1mNew.rpt Form 1A - Organic Page 16 of 1149

	Analytical Results		
Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Gasoline Range Organics

Sample Name:	ERH032	Units: ug/L
Lab Code:	K1604068-004	Basis: NA
Extraction Method: Analysis Method:	EPA 5030B 8015C	Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND U 🗸	50	8.3	1	04/27/16	04/27/16	KWG1603412	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	102	80-107	04/27/16	Acceptable	

NAVFAC PACIFIC VALIDATED LEVEL D

MAY 2 3 2016

Initials: CR

Comments:

Form 1A - Organic

	Analytical Results		
Client:	Element Environmental, LLC	Service Request: 1	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected: (04/19/2016
Sample Matrix:	Water	Date Received: (04/21/2016

Gasoline Range Organics

Sample Name:	ERH033	Units: ug/L
Lab Code:	K1604068-005	Basis: NA
Extraction Method: Analysis Method:	EPA 5030B 8015C	Level: Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Gasoline Range Organics (GRO)	ND U 🗸	50	8.3	1	04/27/16	04/27/16	KWG1603412	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	102	80-107	04/27/16	Acceptable	

NAVFAC PACIFIC VALIDATED LEVEL D

MAY 2 3 2016

Initials: CR

Comments:

Printed: 05/03/2016 14:06:56 u:\Stealth\Crystal.rpt\Form1mNew.rpt Form 1A - Organic

	Analytical Results		
Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Gasoline Range Organics

Sample Name: Lab Code:	ERH034 K1604068-006				Units: ug/L Basis: NA
Extraction Method: Analysis Method:	EPA 5030B 8015C				Level: Low
		Dilution	Data	Data	Extraction

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	ND UV	50	8.3	1	04/27/16	04/27/16	KWG1603412	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	101	80-107	04/27/16	Acceptable	

NAVFAC PACIFIC VALIDATED LEVEL D

MAY 2 3 2016

Initials: CR

Comments:

Printed: 05/03/2016 14:07:00 u:\Stealth\Crystal.rpt\Form1mNew.rpt Form 1A - Organic Page 19 of 1149

	Analytical Results		
Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Gasoline Range Organics

Sample Name:	ERH035	Units: ug/L
Lab Code:	K1604068-007	Basis: NA
Extraction Method: Analysis Method:	EPA 5030B 8015C	Level: Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Gasoline Range Organics (GRO)	13 J U(P	50	8.3	1	04/27/16	04/27/16	KWG1603412	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	102	80-107	04/27/16	Acceptable	

NAVFAC PACIFIC VALIDATED LEVEL D

1

MAY 2 5 2016

Initials: CR

Comments:

Printed: 05/03/2016 14:07:04 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic Page 20 of 1149 Page] of] SuperSet Reference: RR188005

	Analytical Results		
Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Gasoline Range Organics

Sample Name:	ERH036	Units: ug/L
Lab Code:	K1604068-008	Basis: NA
Extraction Method: Analysis Method:	EPA 5030B 8015C	Level: Low

Analyta Nama	Result O	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Analyte Name	Kesun Q	WIKL	WIDL	Factor	Extracteu	Anaryzeu	LUI	Note
Gasoline Range Organics (GRO)	14 J J	50	8.3	1	04/27/16	04/27/16	KWG1603412	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
1,4-Difluorobenzene	101	80-107	04/27/16	Acceptable	

NAVFAC PACIFIC VALIDATED LEVEL D

and the second se

MAY 2 3 2016

Initials: CR

Comments:

Printed: 05/03/2016 14:07:07 u:\Stealth\Crystal.rpt\Form1mNew.rpt

Merged

Form 1A - Organic

Page 21 of 1149

Page [of] SuperSet Reference: RR188005

LDC #: <u>36302A7</u>	VALIDATION COMPLETENESS WORKSHEET	Date:05/20/16
SDG #: <u>K1604068</u>	Level IV	Page:] of]

SDG #: Laboratory: ALS Environmental

LevelIV

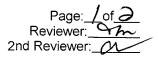
Page: Reviewer: 2nd Reviewer:

GRO C Has Gasoline (EPA SW 846 Method 8015) METHOD: GC TH

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

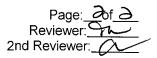
	Validation Area		Comments
١.	Sample receipt/Technical holding times	A'A	
11.	Initial calibration/ICV	AIA	520 101520
<u> </u>	Continuing calibration	A	520
IV	Laboratory Blanks	<u> </u>	
<u>V.</u>	Field blanks	HN	ER=7 SB=8
VI.	Surrogate spikes	A	
VII.	Matrix spike/Matrix spike duplicates	A	
VIII.	Laboratory control samples	A	LCS/D
IX.	Field duplicates	SW	D=2+3
<u> </u>	Compound quantitation RL/LOQ/LODs	A	
XI.	Target compound identification	Á	
XII.	System performance	A	
	Overall assessment of data		

A = Acceptable N = Not provided/applicable Note: SW = See worksheet


ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	ERH029	K1604068-001	Water	04/19/16
2	ERH030	K1604068-002	Water	04/19/16
3	ERH031	K1604068-003	Water	04/19/16
4	ERH032	K1604068-004	Water	04/19/16
5	ERH033	K1604068-005	Water	04/19/16
6	ERH034	K1604068-006	Water	04/19/16
7	ERH035	K1604068-007	Water	04/19/16
8	ERH036	K1604068-008	Water	04/19/16
9	ERH030MS	K1604068-002MS	Water	04/19/16
10	ERH030MSD	K1604068-002MSD	Water	04/19/16
11				
12				
13				
Note	S:			


KW616034

VALIDATION FINDINGS CHECKLIST

Method: X GC HPLC	Ī		1	
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.				
Cooler temperature criteria was met.	/	<u> </u>		
II. Initial calibration		<u> </u>	T	
Did the laboratory perform a 5 point calibration prior to sample analysis?		L		
Was a linear fit used for evaluation? If yes, were all percent relative standard deviations (%RSD) < <u>20%?</u>	/	[
Was a curve fit used for evaluation? If Yes, what was the acceptance criteria used?		/		
Did the initial calibration meet the curve fit acceptance criteria?		ļ	1	
Were the RT windows properly established?		<u> </u>		
IV. Initial calibration				
What type of initial calibration verification calculation was performed?%D or%R				
Was an initial calibration verification standard analyzed after each ICAL for each instrument?	Ĺ,			
Were all percent differences (%D) \leq 20%.0 or percent recoveries 80-120%?	γ			
V: Continuing calibration				
What type of continuing calibration calculation was performed?				
Was a continuing calibration analyzed daily?				
Were all percent differences (%D) < 20%.0 or percent recoveries 80-120%?				
Were all the retention times within the acceptance windows?				
VI. Blanks				
Was a method blank associated with every sample in this SDG?	17	Î	T	
Was a method blank analyzed for each matrix and concentration?	1	1		
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		/		
VII. Surrogate spikes				
Were all surrogate %R within the QC limits?				
If the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?			1	
If any %R was less than 10 percent, was a reanalysis performed to confirm %R?		<u> </u>	/	-
VIII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.		•		
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?	/			

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
IX. Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			
X. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?		/		
Were the performance evaluation (PE) samples within the acceptance limits?				{
XI. Target compound identification				
Were the retention times of reported detects within the RT windows?	/	<u></u>		
XII. Compound quantitation/CRQLs				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. System performance				
System performance was found to be acceptable.				
XIV. Overall assessment of data.				
Overall assessment of data was found to be acceptable.				
XVI. Field duplicates				
Field duplicate pairs were identified in this SDG.	1			
Target compounds were detected in the field duplicates.	/			
XVII. Field blanks	\sim			
Field blanks were identified in this SDG.	6	$\langle \times$		
Target compounds were detected in the field blanks.	\mathbb{Z})	×	

VALIDATION FINDINGS WORKSHEET **Field Blanks**

Page:_	<u></u>
Reviewer:	Qr_
2nd Reviewer:	a

METHOD: <u>></u> GC __ HPLC

XAN N/A Were field blanks identified in this SDG?

 Y N N/A
 Were target compounds detected in the field blanks?

 Blank units:
 Associated sample units:

 Sampling date:
 04/19/16

Field blank type: (circle one) Field Blank / Trip Blank / Atmospheric Blank / Ambient Blank Rinsate / Equipment Rinsate/ Equipment Blank / Source Blank / Other:

Associated	Samples:

Associated Samples:

Code: F 1-4 Qual U

Quall

Blank ID				- · · ·			
				Sample Id	entification		
7		ん	3				
13	21	13	9.0				
	,						
	13				13 21 17 60	13 21 17 60	

Blank units: Ng/L Associated sample units: Ng/LSampling date: Dg/1g/1g

Field blank type: (circle one) Field Blank / Trip Blank/ Atmospheric Blank/ Ambient Blank Rinsate / Equipment Rinsate / Equipment Blank / Source Blank / Other:

Blank ID Sample Identification Compound 3 CRQL

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

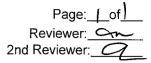
Samples with compound concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U".

VALIDATION FINDINGS WORKSHEET **Field Duplicates**

Page:_	
Reviewer:_	On
2nd reviewer:	01

METHOD: Y GC __ HPLC

<u>PNN/A</u> Were field duplicate pairs identified in this SDG?


Were target compounds detected in the field duplicate pairs?

	Concentration	(Ng/L)	%RPD Limit (≤%)	Qualification (Parent only)
Compound	2	3		(Falent Only)
GRO	13	9.0	36	

	Concent	ration ()	%RI		Qualification
Compound			Limit (≤	%)	(Parent only)

Compound	Concentration	()	%RPD Limit (≤%))	Qualification (Parent only)
Computin			////	

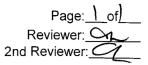
VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

METHOD: GC ______ HPLC_____

The calibration factors (CF) and relative standard deviation (%RSD) were recalculated using the following calculations:

CF = A/C Average CF = sum of the CF/number of standards %RSD = 100 * (S/X) Where: A = Area of compound

C = Concentration of compound


S = Standard deviation of calibration factors

X = Mean of calibration factors

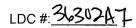
				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound	CF (500 std)	CF (507) std)	CF (initial)	CF (intial)	%RSD	%RSD
1	CAL14201	08/06/15	6R0	1.09e5	1.09e5	113000	113000	4.5	4.5
	CAL14201 (GC39)	104(13							
	``								
2									
3					-				
					- · · · · · · · · · · · · · · · · · · ·				
4									
								·····	

Comments: <u>Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

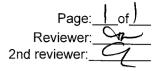
VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. CF -CF)/ave.CF


Where: ave. CF = initial calibration average CF

CF = continuing calibration CF


A = Area of compound

C = Concentration of compound

	Standard	Calibration			Reported	Recalculated	Reported	Recalculated
#	ID	Date	Compound	Average(CF(ICAL)/ CCV Conc.	(CF) Conc. CCV	CFP Conc. CCV	%D	%D
1	0426F029	04/26/16	620	113000	112000	111845		
-	0-124F024	04124114						
2			GRO	113000	111000	110946	a	2
	0426F050	04/27/16						
 								
3								
						<u> </u>		
4								
			I bration findings worksheet	for list of qualifications a	nd associated sam	ples when reported	results do not agr	ee within 10.0% of
the re	ecalculated resu	lts						

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

METHOD: 🛧 GC __ HPLC

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
F			101.161	101	102	0.3

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	

	Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound
А	Chlorobenzene (CBZ)	G	Octacosane	м	Benzo(e)Pyrene	s	1-Chloro-3-Nitrobenzene	Y	Tetrachloro-m- xylene
В	4-Bromofluorobenzene (BFB)	Н	Ortho-Terphenyl	N	Terphenyi-D14	т	3,4-Dinitrotoluene	Z	2-Bromonaphthalene
C.	a,a,a-Trifluorotoluene		Fluorobenzene (FBZ)	0	Decachlorobiphenyl (DCB)	υ	Tripentyltin	AA	Chloro-octadecane
D	Bromochlorobenene	Ŀ	n-Triacontane	Р	1-methylnaphthalene	V	Tri-n-propyltin	вв	2,4-Dichlorophenylacetic acid
E	1,4-Dichlorobutane	к	Hexacosane	Q	Dichlorophenyl Acetic Acid (DCAA)	w	Tributyl Phosphate	cc	2,5-Dibromotoluene
F	1,4-Difluorobenzene (DFB)	L	Bromobenzene	R	4-Nitrophenol	x	Triphenyl Phosphate		

VALIDATION FINDINGS WORKSHEET <u>Matrix Spike/Matrix Spike Duplicates Results Verification</u>

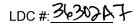
Page: 1 of 1 Reviewer: 0 2nd Reviewer: 0

The percent recoveries (%R) and relative percent differences (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

SA = Spike added

%Recovery = 100 * (SSC - SC)/SA

Where


SSC = Spiked sample concentration SC = Sample concentration MS = Matrix spike MSD = Matrix spike duplicate

RPD =(({SSCMS - SSCMSD} * 2) / (SSCMS + SSCMSD))*100

MS/MSD samples:_

 $\frac{1}{100} = \frac{1}{100} = \frac{1}$

			ike	Sample		Sample	Matrix	spike	Matrix Spik	e Duplicate	MS/I	VISD
Сотро	und		ded	Conc. (NAL)	Concer کریے)	tration	Percent I	Recovery	Percent I	Recovery	RF	סי
		MS	MSD		MS	MSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Gasoline	(8015)	500	580	IB	453	44	88	88	80	80	9	9
Diesel	(8015)											
Benzene	(8021B)											
Methane	(RSK-175)											
2,4-D	(8151)											
Dinoseb	(8151)											
Naphthalene	(8310)											
Anthracene	(8310)											
нмх	(8330)											
2,4,6-Trinitrotoluen	e (8330)											
Phorate	(8141A)											
Malathion	(8141A)											
Formaldehyde	(8315A)											
Aroclor 1260	(8082)											
Comments: <u>Refer</u> recalculated result		Matrix Spike	Duplicates fi	ndings works	Lsheet for list c	of qualification	s and associa	ated samples	when reported	d results do no	t agree within	<u>ו 10.0% of th</u>

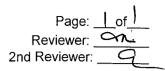
VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: of / Reviewer: 2nd Reviewer: 2

METHOD: <u>______</u> GC ____HPLC

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:


%Recovery = 100 * (SSC/SA) RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100 Where SSC = Spiked sample concentration LCS = Laboratory Control Sample SA = Spike added LCSD = Laboratory Control Sample duplicate

LCS/LCSD samples: KWG1603412 - 3 - 4

		S	pike		Sample		cs	LC	SD	LCS/	_CSD
Compo	und		ded し)		ntration	Percent	Recovery	Percent	Recovery	RI	סי
			LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Gasoline	(8015)	500	500	471	492	94	94	98	98	4	4
Diesel	(8015)						,				
Benzene	(8021B)										
Methane	(RSK-175)										
2,4-D	(8151)										
Dinoseb	(8151)										
Naphthalene	(8310)					-					
Anthracene	(8310)										
НМХ	(8330)										
2,4,6-Trinitrotoluen	e (8330)										
Phorate	(8141A)										
Malathion	(8141A)										
Formaldehyde	(8315A)										
Aroclor 1260	(8082)										
Comments: <u>Refer</u> ot agree within 10				Control Sampl	e Duplicate find	ings workshee	t for list of qual	ifications and a	associated sam	ples when repo	rted results dc

LDC #:	6307A7
--------	--------

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

METHOD: <u>}</u> GC __ HPLC

N N/A

N/A

Were all reported results recalculated and verified for all level IV samples? Were all recalculated results for detected target compounds within 10% of the reported results?

(Concei	ntration= (A)(Fv)(Df)	Example:			
Å	A= Ar	(RF)(Vs or Ws)(%S/100 ea or height of the compound to be r	Sample ID	Comp	bound Name <u>GRO</u>	
[F	Df= Di RF= Av	nal Volume of extract lution Factor erage response factor of the compou the initial calibration tial volume of the sample	und Concentratio	m = (2352977) (113000) ((10)(1)	=
١	Ns= Ini	itial weight of the sample ercent Solid			276106 2 21N	9/2
	#	Sample ID	Compound	Reported Concentrations ()	Recalculated Results Concentrations ()	Qualifications

#	Sample ID	Compound	Concentrations	Concentrations ()	Qualifications
		<u> </u>			
				···	
			····		
	and the second sec				

Comments: _____

LDC Report# 36302A8

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	Red Hill Bulk Fuel Storage Facility
LDC Report Date:	May 24, 2016
Parameters:	Diesel Range Organics & Residual Range Organics
Validation Level:	Level D
Laboratory:	ALS Environmental

Sample Delivery Group (SDG): K1604068

Comple Identification	Laboratory Sample		Collection
Sample Identification	Identification	Matrix	Date
ERH029	K1604068-001	Water	04/19/16
ERH030	K1604068-002	Water	04/19/16
ERH031	K1604068-003	Water	04/19/16
ERH032	K1604068-004	Water	04/19/16
ERH033	K1604068-005	Water	04/19/16
ERH034	K1604068-006	Water	04/19/16
ERH035	K1604068-007	Water	04/19/16
ERH036	K1604068-008	Water	04/19/16
ERH030MS	K1604068-002MS	Water	04/19/16
ERH030MSD	K1604068-002MSD	Water	04/19/16

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013) and the Project Procedures Manual, U.S. Naval Facilities Engineering Command (NAVFAC) Environmental Restoration (ER) Program, NAVFAC Pacific (DON 2015). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Diesel Range Organics and Residual Range Organics by Environmental Protection Agency (EPA) SW 846 Method 8015C

All sample results were subjected to Level D data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:

- J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.
- U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).
- UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
- R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.
- NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

Qualification Code Reference

- H Holding times were exceeded.
- S Surrogate recovery was outside QC limits.
- C Calibration %RSD, r, r^2 or %D were noncompliant.
- R Calibration RRF was <0.05.
- B Presumed contamination from preparation (method blank).
- L Laboratory Control Sample/Laboratory Control Sample Duplicate %R or RPD was not within control limits.
- Q MS/MSD recovery was poor.
- E MS/MSD or Duplicate RPD was high.
- I Internal standard performance was unsatisfactory.
- M Instrument Performance Check (BFB or DFTPP) was noncompliant.
- T Presumed contamination from trip blank.
- F Presumed contamination from FB or ER.
- D The analysis with this flag should not be used because another more technically sound analysis is available.
- P Instrument performance for pesticides was poor.
- V Unusual problems found with the data not defined elsewhere. Description of the problem can be found in the validation report.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.

The percent relative standard deviations (%RSD) were less than or equal to 20.0% for all compounds.

The percent differences (%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

III. Continuing Calibration

Continuing calibration was performed at the required frequencies.

The percent differences (%D) were less than or equal to 20.0% for all compounds.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Extraction Date	Compound	Concentration	Associated Samples
KWG1603188-4	04/26/16	Diesel range organics Residual range organics	20 ug/L 75 ug/L	All samples in SDG K1604068

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated laboratory blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
ERH029	Diesel range organics	25 ug/L	25U ug/L
	Residual range organics	48 ug/L	48U ug/L
ERH030	Diesel range organics	38 ug/L	38U ug/L
	Residual range organics	56 ug/L	56U ug/L

Sample	Compound	Reported Concentration	Modified Final Concentration
ERH031	Diesel range organics	36 ug/L	36U ug/L
	Residual range organics	67 ug/L	67U ug/L
ERH032	Diesel range organics	26 ug/L	26U ug/L
	Residual range organics	52 ug/L	52U ug/L
ERH033	Diesel range organics	28 ug/L	28U ug/L
	Residual range organics	48 ug/L	48U ug/L
ERH034	Diesel range organics	20 ug/L	20U ug/L
	Residual range organics	33 ug/L	33U ug/L
ERH035	Diesel range organics	27 ug/L	27U ug/L
	Residual range organics	35 ug/L	35U ug/L
ERH036	Diesel range organics	28 ug/L	28U ug/L
	Residual range organics	26 ug/L	26U ug/L

V. Field Blanks

Sample ERH035 was identified as an equipment rinsate. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Compound	Concentration	Associated Samples
ERH035	04/19/16	Diesel range organics Residual range organics	27 ug/L 35 ug/L	ERH029 ERH030 ERH031 ERH032 ERH033 ERH034

Sample ERH036 was identified as a source blank. No contaminants were found with the following exceptions:

Blank ID	Collection Date	Compound	Concentration	Associated Samples
ERH036	04/19/16	Diesel range organics Residual range organics	28 ug/L 26 ug/L	ERH035

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater than the concentrations found in the associated field blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
ERH029	Diesel range organics	25 ug/L	25U ug/L
	Residual range organics	48 ug/L	48U ug/L
ERH030	Diesel range organics	38 ug/L	38U ug/L
	Residual range organics	56 ug/L	56U ug/L
ERH031	Diesel range organics	36 ug/L	36U ug/L
	Residual range organics	67 ug/L	67U ug/L
ERH032	Diesel range organics	26 ug/L	26U ug/L
	Residual range organics	52 ug/L	52U ug/L
ERH033	Diesel range organics	28 ug/L	28U ug/L
	Residual range organics	48 ug/L	48U ug/L
ERH034	Diesel range organics	20 ug/L	20U ug/L
	Residual range organics	33 ug/L	33U ug/L
ERH035	Diesel range organics	27 ug/L	27U ug/L
	Residual range organics	35 ug/L	35U ug/L

VI. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (%R) were within QC limits.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (%R) were within QC limits.

IX. Field Duplicates

Samples ERH030 and ERH031 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

	Concentration (ug/L)		
Compound	ERH030	ERH031	RPD
Diesel range organics	38	36	5

	Concentration (ug/L)		
Compound	ERH030	ERH031	RPD
Residual range organics	56	67	18

X. Compound Quantitation

All compound quantitations were within validation criteria.

XI. Target Compound Identifications

All target compound identifications met validation criteria.

XII. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to laboratory blank contamination, data were qualified as not detected in eight samples.

Due to equipment rinsate contamination, data were qualified as not detected in six samples.

Due to source blank contamination, data were qualified as not detected in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Based upon the data validation all other results are considered valid and usable for all purposes.

Red Hill Bulk Fuel Storage Facility

Diesel Range Organics & Residual Range Organics - Data Qualification Summary - SDG K1604068

No Sample Data Qualified in this SDG

Red Hill Bulk Fuel Storage Facility

Diesel Range Organics & Residual Range Organics - Laboratory Blank Data Qualification Summary - SDG K1604068

Sample	Compound	Modified Final Concentration	A or P	Code
ERH029	Diesel range organics Residual range organics	25U ug/L 48U ug/L	A	В
ERH030	Diesel range organics Residual range organics	38U ug/L 56U ug/L	A	В
ERH031	Diesel range organics Residual range organics	36U ug/L 67U ug/L	A	В
ERH032	Diesel range organics Residual range organics	26U ug/L 52U ug/L	A	В
ERH033	Diesel range organics Residual range organics	28U ug/L 48U ug/L	A	В
ERH034	Diesel range organics Residual range organics	20U ug/L 33U ug/L	A	В
ERH035	Diesel range organics Residual range organics	27U ug/L 35U ug/L	A	В
ERH036	Diesel range organics Residual range organics	28U ug/L 26U ug/L	A	В

Red Hill Bulk Fuel Storage Facility Diesel Range Organics & Residual Range Organics - Field Blank Data Qualification Summary - SDG K1604068

Sample	Compound	Modified Final Concentration	A or P	Code
ERH029	Diesel range organics Residual range organics	25U ug/L 48U ug/L	A	F
ERH030	Diesel range organics Residual range organics	38U ug/L 56U ug/L	A	F

Sample	Compound	Modified Final Concentration	A or P	Code
ERH031	Diesel range organics Residual range organics	36U ug/L 67U ug/L	A	F
ERH032	Diesel range organics Residual range organics	26U ug/L 52U ug/L	A	F
ERH033	Diesel range organics Residual range organics	28U ug/L 48U ug/L	A	F
ERH034	Diesel range organics Residual range organics	20U ug/L 33U ug/L	A	F
ERH035	Diesel range organics Residual range organics	27U ug/L 35U ug/L	A	F

Analytical Results

Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Diesel and Residual Range Organics

Sample Name:	ERH029	Units:	•
Lab Code:	K1604068-001	Basis:	
Extraction Method: Analysis Method:	EPA 3510C 8015C	Level:	Low

Analyte Name	Result Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	25 J U(B)	P) 55	22	12	1	04/26/16	04/29/16	KWG1603188	
Residual Range Organics (RRO)	48 J 🖌	110	55	21	1	04/26/16	04/29/16	KWG1603188	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	74	56-125	04/29/16	Acceptable
n-Triacontane	76	54-136	04/29/16	Acceptable

NAVFAC PACIFIC VALIDATED LEVEL D

MAY 2 5 2016

....

Initials: CR

1 of 1

Comments:

Merged

Page SuperSet Reference: RR187997

Analytical Results

Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Diesel and Residual Range Organics

Sample Name:	ERH030	Units:	0
Lab Code:	K1604068-002	Basis:	
Extraction Method: Analysis Method:	EPA 3510C 8015C	Level:	Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	38 J UG),F) 51	21	12	1	04/26/16	04/29/16	KWG1603188	
Residual Range Organics (RRO)	56 J 🖌	- 110	51	20	1	04/26/16	04/29/16	KWG1603188	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	85	56-125	04/29/16	Acceptable	
n-Triacontane	86	54-136	04/29/16	Acceptable	

NAVFAC PACIFIC VALIDATED LEVEL D

MAY 2 5 2016

Initials: CR

Comments:

Merged

Page

Analytical Results

Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Diesel and Residual Range Organics

Sample Name:	ERH031	Units:	e
Lab Code:	K1604068-003	Basis:	
Extraction Method: Analysis Method:	EPA 3510C 8015C	Level:	Low

Analyte Name	Result Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	36 J UCB	F) 52	21	12	1	04/26/16	04/29/16	KWG1603188	
Residual Range Organics (RRO)	67 J	110	52	20	1	04/26/16	04/29/16	KWG1603188	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	84	56-125	04/29/16	Acceptable
n-Triacontane	88	54-136	04/29/16	Acceptable

NAVFAC PACIFIC VALIDATED LEVEL D

MAY 2 5 2016

Initials: CR

Page

Comments:

Analytical Results

Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Diesel and Residual Range Organics

Sample Name:	ERH032	Units:	÷
Lab Code:	K1604068-004	Basis:	
Extraction Method: Analysis Method:	EPA 3510C 8015C	Level:	Low

					Dilution	Date	Date	Extraction	
Analyte Name	Result Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	26 J UCB	P) 53	21	12	1	04/26/16	04/29/16	KWG1603188	
Residual Range Organics (RRO)	52 J L	110	53	20	1	04/26/16	04/29/16	KWG1603188	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	83	56-125	04/29/16	Acceptable	
n-Triacontane	84	54-136	04/29/16	Acceptable	

NAVFAC PACIFIC VALIDATED LEVEL D

MAY 2 5 2016

Initials: CR

Page

Comments:

Merged

Analytical Results

Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Diesel and Residual Range Organics

Sample Name:	ERH033	Units:	0
Lab Code:	K1604068-005	Basis:	
Extraction Method: Analysis Method:	EPA 3510C 8015C	Level:	Low

Analyte Name	Result Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	28 J UCB	,F) 51	21	12	1	04/26/16	04/29/16	KWG1603188	
Residual Range Organics (RRO)	48 J 👤	110	51	20	1	04/26/16	04/29/16	KWG1603188	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	93	56-125	04/29/16	Acceptable	
n-Triacontane	93	54-136	04/29/16	Acceptable	

NAVFAC PACIFIC VALIDATED LEVEL [

MAY 2 5 2016

Initials: CR

Page

Comments:

Merged

Analytical Results

Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Diesel and Residual Range Organics

Sample Name:	ERH034	Units:	U
Lab Code:	K1604068-006	Basis:	
Extraction Method: Analysis Method:	EPA 3510C 8015C	Level:	Low

Analyte Name	Result Q	LOQ	LOD	MÐL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	20 J UB	F) 53	21	12	1	04/26/16	04/29/16	KWG1603188	
Residual Range Organics (RRO)	33 J L	110	53	20	1	04/26/16	04/29/16	KWG1603188	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	90	56-125	04/29/16	Acceptable	
n-Triacontane	91	54-136	04/29/16	Acceptable	

NAVFAC PACIFIC VALIDATED LEVEL D

٠.

MAY 2 5 2016

. ----

~32312

Initials: CR

Page

Comments:

Merged

SuperSet Reference: RR187997

Analytical Results

Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Diesel and Residual Range Organics

Sample Name:	ERH035	Units:	•
Lab Code:	K1604068-007	Basis:	
Extraction Method: Analysis Method:	EPA 3510C 8015C	Level:	Low

Analyte Name	Result Q	LOQ	LOD	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Diesel Range Organics (DRO)	27 J U(B	F) 54	22	12	1	04/26/16	04/29/16	KWG1603188	
Residual Range Organics (RRO)	35 J	110	54	21	1	04/26/16	04/29/16	KWG1603188	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	87	56-125	04/29/16	Acceptable	
n-Triacontane	89	54-136	04/29/16	Acceptable	

NAVFAC PACIFIC VALIDATED LEVEL D

MAY 2 5 2016

Initials: CR

Comments:

Merged

Form 1A - Organic

SuperSet Reference: RR187997

Page

Analytical Results

Client:	Element Environmental, LLC	Service Request:	K1604068
Project:	Red Hill Bulk Fuel Storage Facility/150027	Date Collected:	04/19/2016
Sample Matrix:	Water	Date Received:	04/21/2016

Diesel and Residual Range Organics

Sample Name:	ERH036	Units: ug/L
Lab Code:	K1604068-008	Basis: NA
Extraction Method: Analysis Method:	EPA 3510C 8015C	Level: Low

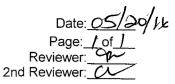
					Dilution	Date	Date	Extraction	
Analyte Name	Result Q	LOQ	LOD	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	28 J U(B)	52	21	12	1	04/26/16	04/29/16	KWG1603188	
Residual Range Organics (RRO)	26 J J (B)	110	52	20	1	04/26/16	04/29/16	KWG1603188	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
o-Terphenyl	89	56-125	04/29/16	Acceptable	
n-Triacontane	92	54-136	04/29/16	Acceptable	

NAVFAC PACIFIC VALIDATED LEVEL D

MAY 2 3 2016

Initials: CR


Page

Comments:

Merged

.

Level IV

METHOD: GC TPH as Extractables (EPA SW 846 Method 8015B)

LDC #: 36302A8

SDG #: K1604068

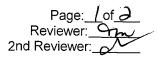
Laboratory: ALS Environmental

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area			Comments	
<u>I.</u>	Sample receipt/Technical holding times	AIA			
11.	Initial calibration/ICV	AA	520	101520	
111.	Continuing calibration	A	520		
IV.	Laboratory Blanks	SW			
V.	Field blanks	SW	ER=7	<u>SB-8</u>	
VI.	Surrogate spikes	A)	
VII.	Matrix spike/Matrix spike duplicates	A			
VIII.	Laboratory control samples	A	LCS		
IX.	Field duplicates	SW	D=2+3		
X.	Compound quantitation RL/LOQ/LODs	A			
XI.	Target compound identification	A			
XII.	System performance	A			
хш	Overall assessment of data	LA			

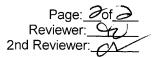
Note:

A = Acceptable N = Not provided/applicable SW = See worksheet ND = No compounds detected R = Rinsate FB = Field blank D = Duplicate TB = Trip blank EB = Equipment blank


SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	ERH029	K1604068-001	Water	04/19/16
2	ERH030	K1604068-002	Water	04/19/16
3	ERH031	K1604068-003	Water	04/19/16
4	ERH032	K1604068-004	Water	04/19/16
5	ERH033	K1604068-005	Water	04/19/16
6	ERH034	K1604068-006	Water	04/19/16
7	ERH035	K1604068-007	Water	04/19/16
8	ERH036	K1604068-008	Water	04/19/16
9	ERH030MS	K1604068-002MS	Water	04/19/16
10	ERH030MSD	K1604068-002MSD	Water	04/19/16
11		····		
12				
Vote	S:			

KWG1603188-4			


LDC #: 36302A8

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
. Technical holding times		,		
All technical holding times were met.	/			
Cooler temperature criteria was met.				
Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Nas a linear fit used for evaluation? If yes, were all percent relative standard deviations (%RSD) $\leq 20\%$?				
Nas a curve fit used for evaluation? If Yes, what was the acceptance criteria used?		/		
Did the initial calibration meet the curve fit acceptance criteria?	ļ,			
Vere the RT windows properly established?	/	L		
V. Initial calibration verification				
What type of initial calibration verification calculation was performed?%D or%R				
Was an initial calibration verification standard analyzed after each ICAL for each instrument?	/			
Nere all percent differences (%D) \leq 20%.0 or percent recoveries 80-120%?	/			
/ Continuing calibration				
What type of continuing calibration calculation was performed?%D or%R				
Was a continuing calibration analyzed daily?				
Vere all percent differences (%D) < 20%.0 or percent recoveries 80-120%?				
Vere all the retention times within the acceptance windows?	1			
/I, Blanks				
Vas a method blank associated with every sample in this SDG?				
Vas a method blank analyzed for each matrix and concentration?				
Vas there contamination in the method blanks? If yes, please see the Blanks alidation completeness worksheet.	/			
/II. Surrogate spikes				and the provide the state of the
Vere all surrogate %R within the QC limits?				
f the percent recovery (%R) of one or more surrogates was outside QC limits, was a reanalysis performed to confirm %R?				· · · · · · · · · · · · · · · · · · ·
f any %R was less than 10 percent, was a reanalysis performed to confirm %R?		<u> </u>	/	
/III. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each natrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	/			
Was a MS/MSD analyzed every 20 samples of each matrix?	1			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?	/			

VALIDATION FINDINGS CHECKLIST

Validation Area	Yes	No	NA	Findings/Comments
IX. Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per extraction batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			
X. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?		/		
Were the performance evaluation (PE) samples within the acceptance limits?				ł
XI: Target compound identification			r T	
Were the retention times of reported detects within the RT windows?				
XII. Compound quantitation/CRQLs				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	/			
XIII: System performance				
System performance was found to be acceptable.	/			
XIV. Overall assessment of data				
Overall assessment of data was found to be acceptable.	/			
XVI. Field duplicates				
Field duplicate pairs were identified in this SDG.				
Target compounds were detected in the field duplicates.	/			
XVII. Field blanks		<u>} }</u>		
Field blanks were identified in this SDG.				/
Target compounds were detected in the field blanks.		\mathcal{V}_{-})	

LDC #:_36307A8

VALIDATION FINDINGS WORKSHEET

Blanks

Page:	_of_/	
Reviewer:	-yr	_
2nd Reviewer:	CL	-

METHOD: Y GC __ HPLC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N N/A Were all samples associated with a given method blank?

WN N/A Was a method blank performed for each matrix and whenever a sample extraction procedure was performed?

N N/A Was a method blank performed with each extraction batch?

<u>N N/A</u> Were any contaminants found in the method blanks? If yes, please see findings below.

N/A (Gasoline and aromatics only)Was a method blank analyzed with each 24 hour batch? N/A Was a method blank analyzed for each analytical / extraction batch of \leq 20 samples?

Compound	Blank ID			<u></u>	Sample Identificat	ion		
	KWG1603188-4		2	3	4	5	6	7
DRO	20	25	38	36	26	28	20	27
PRO	75	48	56	67	52	48	33	35
								_

Blank extraction date:_____ Blank analysis date:_____

Associated samples:

Conc. units:

Compound	Blank ID		 	Sample Identification	on	
	(continued)	8				
		98				
		26				

ALL CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

VALIDATION FINDINGS WORKSHEET **Field Blanks**

Page: <u></u> of_	
Reviewer:	
2nd Reviewer	

METHOD: YGC __ HPLC

<u>(X) N/A</u> Were field blanks identified in this SDG?

 Y) N N/A
 Were target compounds detected in the field blanks?

 Blank units:
 Associated sample units:

 Sampling date:
 D4/19/16

Field blank type: (circle one) Field Blank / Trip Blank / Atmospheric Blank / Ambient Blank

Rinsate / Equipment Rinsate/ Equipment Blank / Source Blank / Other:

Code:BF Qualy

Associated Samples: 1-6

Associated Samples:

Qual U

Compound	Blank ID		Sample Identification						
	7		2	3	4	5	6		
DRO	27	25	38	36	26	28	20		
2RO	35	48	56	67	52	48	33		
					_				
CRQL			<u> </u>		<u> </u>				

Blank units: <u>Mg/L</u> Associated sample units: <u>Mg/L</u> Sampling date: <u>D41916</u>

Field blank type: (circle one) Field Blank / Trip Blank/ Atmospheric Blank/ Ambient Blank Rinsate / Equipment Rinsate / Equipment Blank / Source Blank) Other:

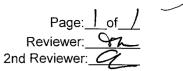
Blank ID Sample Identification Compound 2 28 27 35 210 CRQL

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

Samples with compound concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U".

VALIDATION FINDINGS WORKSHEET **Field Duplicates**

Page:	$\int \frac{1}{2}$
Reviewer:	m
2nd reviewer:	0


LDC #: 36302A VALIDATION FINE **METHOD:** 4 GC ______ HPLC Were field duplicate pairs identified in this SDG? Were target compounds detected in the field duplicate pairs?

Compound	Concentration 2	ing/L,	%RPD Limit (≤%)	Qualification (Parent only)
DEO	38	36	5	
PRO	56	67	18	
				/

Compound	Concentration	()	%RPD Limit (≤%)	Qualification (Parent only)	
Compound				(Parent Only)	

Company	Concentration	()	%RPD Limit (≤%))	Qualification	
Compound			Limit (≤%))	(Parent only)	
		·····			

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

METHOD: GC HPLC

The calibration factors (CF) and relative standard deviation (%RSD) were recalculated using the following calculations:

CF = A/C Average CF = sum of the CF/number of standards %RSD = 100 * (S/X) Where: A = Area of compound

C = Concentration of compound

S = Standard deviation of calibration factors

X = Mean of calibration factors

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound	CF (<u>500</u> std)	CF (5700 std)	CF (initial)	CF (intial)	%RSD	%RSD
1	CAL14548	01/20/16	DRO	1070	1073	1170	1170	6.9	6.9
	CAL 14548 GCZI	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
2			·						
3		· · · · · · · · · · · · · · · · · · ·							
4									
				· · · · · · · · · · · · · · · · · · ·					

Comments: <u>Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.</u>

LDC #: 36302 AB

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

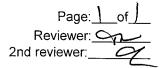
Page:_	<u> of /</u>
Reviewer:	Orn,
2nd Reviewer:	ä

METHOD: GC ______ HPLC _____

The percent difference (%D) of the initial calibration average Calibration Factors (CF) and the continuing calibration CF were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. CF -CF)/ave.CF

Where: ave. CF = initial calibration average CF


CF = continuing calibration CF

A = Area of compound

C = Concentration of compound

	Standard	Calibration			Reported	Recalculated	Reported	Recalculated	
#	ID	Date	Compound	Average (CEICAL)/ CCV Conc.	CF Conc. CCV	CFY Conc. CCV	%D	%D	
1	0428F008/14		DRO	1170	1080	1081	8	8	
	07201000119	04/28/16		· · · · · · · · · · · · · · · · · · ·					
2			DRO	(170	1210	1910	3	3	
	0439F044/46	04/29/16							
							······································		
3									
4									
	Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of								
the re	ecalculated resu	its					·		

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

METHOD: $\angle \mathbf{G}\mathbf{G}\mathbf{C}$ _ HPLC

The percent recoveries (%R) of surrogates were recalculated for the compounds identified below using the following calculation:

% Recovery: SF/SS * 100

Where: SF = Surrogate Found SS = Surrogate Spiked

Sample ID:

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	
4		50.000	37.03	74	74	Ø
5		V	37.79	76	75.5	0.7
						·····

Sample ID:_____

Surrogate	Column/Detector	Surrogate Spiked	Surrogate Found	Percent Recovery	Percent Recovery	Percent Difference
				Reported	Recalculated	

	Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound		Surrogate Compound
A	Chlorobenzene (CBZ)	G	Octacosane	м	Benzo(e)Pyrene	S	1-Chloro-3-Nitrobenzene	Y	Tetrachloro-m- xylene
в	4-Bromofluorobenzene (BFB)	H	Ortho-Terphenyl	N	Terphenyl-D14	Т	3,4-Dinitrotoluene	Z	2-Bromonaphthalene
C,	a,a,a-Trifluorotoluene		Fluorobenzene (FBZ)	0	Decachlorobiphenyl (DCB)	υ	Tripentyltin	AA	Chloro-octadecane
D	Bromochlorobenene	(\cup)	n-Triacontane	Р	1-methyinaphthalene	v	Tri-n-propyltin	BB	2,4-Dichlorophenylacetic acid
E	1,4-Dichlorobutane	к	Hexacosane	Q	Dichlorophenyl Acetic Acid (DCAA)	w	Tributyl Phosphate	cc	2,5-Dibromotoluene
F	1,4-Difluorobenzene (DFB)	L	Bromobenzene	R	4-Nitrophenol	x	Triphenyl Phosphate		

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page:_	<u>of_/</u>
Reviewer:	In
2nd Reviewer:_	CL

The percent recoveries (%R) and relative percent differences (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

SA = Spike added

%Recovery = 100 * (SSC - SC)/SA

Where

SSC = Spiked sample concentration SC = Sample concentration MS = Matrix spike MSD = Matrix spike duplicate

RPD =(({SSCMS - SSCMSD} * 2) / (SSCMS + SSCMSD))*100

MS/MSD samples:_____

9/10

Compound			oike ded	Sample Conc.		Sample	Matrix	Matrix spike		e Duplicate	MS/N	MS/MSD	
		Added (MQL)		(ng/L)	Concentration		Percent Recovery		Percent Recovery		RPD		
		MS	MSD		MS	MSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.	
Gasoline	(8015)										·		
Diesel	(8015)	3330	3230	38	2510	2460	74	74	75	75	み	Э	
Benzene	(8021B)							,					
Methane	(RSK-175)												
2,4-D	(8151)												
Dinoseb	(8151)												
Naphthalene	(8310)												
Anthracene	(8310)												
НМХ	(8330)												
2,4,6-Trinitrotoluene	e (8330)												
Phorate	(8141A)												
Malathion	(8141A)												
Formaldehyde	(8315A)												
Aroclor 1260	(8082)												
Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of gualifications and associated samples when reported results do not agree within 10.0% of the ecalculated results.													

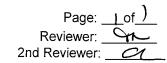
VALIDATION FINDINGS WORKSHEET

Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: _____of ____ Reviewer: ______ 2nd Reviewer: ______

METHOD: K GC HPLC

The percent recoveries (%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:


%Recovery = 100 * (SSC/SA) RPD =(({SSCLCS - SSCLCSD} * 2) / (SSCLCS + SSCLCSD))*100 Where SSC = Spiked sample concentration LCS = Laboratory Control Sample SA = Spike added LCSD = Laboratory Control Sample duplicate

LCS/LCSD samples: KWG/603/88-3

Spike Spike Sample Added Concentration Compound (ルスーレ) (ルスーレ)		L	cs	LC	SD	LCS/	LCSD				
		$(\mu q l \tilde{L})$				Percent Recovery		Percent Recovery		RPD	
		LCS	LCSD	LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
Gasoline	(8015)										
Diesel	(8015)	1600	NA	1190	NA	74	74				
Benzene	(8021B)						1				
Methane	(RSK-175)										
2,4-D	(8151)										
Dinoseb	(8151)										
Naphthalene	(8310)						· · · · · · · · · · · · · · · · · · ·				
Anthracene	(8310)										
НМХ	(8330)										-
2,4,6-Trinitrotolue	ne (8330)										
Phorate	(8141A)										
Malathion	(8141A)										
Formaldehyde	(8315A)										
Aroclor 1260	(8082)										
omments: <u>Refe</u> ot agree within 1				Control Sample	e Duplicate find	dings workshee	et for list of qua	lifications and a	associated san	ples when repo	rted results o

LDC #: 36302A8

VALIDATION FINDINGS WORKSHEET **Sample Calculation Verification**

METHOD: KGC HPLC Were all reported results recalculated and verified for all level IV samples? N N/A Were all recalculated results for detected target compounds within 10% of the reported results? N/A Concentration= (A)(Fv)(Df) Example: (RF)(Vs or Ws)(%S/100)

A= Area or height of the compound to be measured

Fv= Final Volume of extract

Df= Dilution Factor

RF= Average response factor of the compound

In the initial calibration

Vs= Initial volume of the sample

Ws= Initial weight of the sample

%S= Percent Solid

- Pe	ercent Solid		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	5413FT = 25M	912
#	Sample ID	Compound	Reported Concentrations ()	Recalculated Results Concentrations ()	Qualifications

Comments:

Compound Name Concentration =

 $\frac{(13274)(1)(1)}{(170)(0.460)} = 24.66369379 \sim 25.001$

Sample ID.

APPENDIX E

EPA/DOH Letter, Enclosure A, Analytes and Action Levels, February 4, 2016

This Page Intentionally Left Blank.

ENCLOSURE A ANALYTES AND ACTION LEVELS

L

TABLE 1

ANALYTES AND ACTION LEVELS FOR RED HILL MONITORING WELLS RHMW01, RHMW02, AND RHMW03

ANALYTE	Environmental Action Level µg/L	SSRBL µg/L
TPH-g	100	NA
TPH-d	100	4500
TPH-o	100	NA
Benzene	5	750
Ethylbenzene	30	NA
Toluene	40	NA
Total Xylenes	20	NA
Naphthalene	17	NA
1-Methylnaphthalene	4.7	NA
2-Methylnaphthalene	10	NA
NA – Not Applicable		

TABLE 2 ANALYTES AND ACTION LEVELS FOR RED HILL MONITORING WELLS RHMW04, RHMW05, RHMW06, RHMW07, RHMW2254-01, HDMW2253, AND OWDFMW01

ANALYTE	Environmental Action Level µg/L
TPH-g	100
TPH-d	100
TPH-o	100
Benzene	5.0
Ethylbenzene	30
Toulene	40
Total Xylenes	20
Naphthalene	17
1-MethyInaphthalene	4.7
2-MethyInaphthalene	10

ENCLOSURE A ANALYTES AND ACTION LEVELS

L

TABLE 3

ANALYTES AND ACTION LEVELS FOR FUTURE RED HILL MONITORING WELLS RHMW08, RHMW09, RHMW10, AND RHMW11

ANALYTE	Environmental Action Level µg/L
TPH-g	100.0
TPH-d	100.0
TPH-o	100.0
Benzene	5.0
Ethylbenzene	30.0
Toulene	40.0
Total Xylenes	20.0
Naphthalene	17.0
1-Methylnaphthalene	4.7
2-Methylnaphthalene	10.0
1,2 Dichloroethane*	5.0
1,2 Dibromoethane*	0.04

*Lead Scavengers can be discontinued after one year of sampling if all samples result in non-detection.

APPENDIX F

Fact Sheet, Quantitation & Detection

This Page Intentionally Left Blank.

As a Project Manager or decision-maker, you may use environmental data to accomplish one or more of the following tasks:

- Determine whether a chemical substance is present in an environmental sample at or above some threshold value or action level;
- Verify that a pollutant concentration remains below a permit limit;
- Evaluate potential risks to human health or the environment;
- Monitor changes in concentrations of contaminants; or
- Determine the effectiveness of remediation activities.

Making correct decisions in these cases often depends on the ability of an analytical method to detect and measure extremely low concentrations of a substance.

This fact sheet has been prepared to: 1) provide Project Managers and data users with basic information about detection and quantitation concepts; and 2) acquaint the reader with detection and quantitation terminology and requirements contained in the *DoD Quality Systems Manual for Environmental Laboratories (DoD QSM)*, Version 4.1. This information should help clarify the uncertainty associated with reporting low-concentration data. It should also help project teams understand the importance of selecting analytical methods that are sensitive enough for their intended uses, i.e., capable of generating reliable data (data of known precision and bias) at the project-specific decision levels.

Measures of Sensitivity — Basic Concepts

The following terms are used to describe the routine sensitivity of analytical procedures:

- DL Detection Limit
- LOD Limit of Detection
- LOQ Limit of Quantitation

All measures of sensitivity are specific to the analyte, sample matrix, test method, instrumentation, and analyst/laboratory performance. Therefore, analytical performance must be demonstrated for each variable (e.g., it is possible that two "identical" instruments from the same manufacturer may exhibit different sensitivities).

The Detection Limit (DL) is the smallest analyte concentration that can be demonstrated to be different from zero or a blank concentration at the 99% level of confidence. In other words, if a substance is detected at or above the DL, it can be reliably stated (with 99% confidence) that the analyte is present (there is a 1% chance that the analyte is not present (a false positive)). Note that for reporting purposes, any result at or above the DL must also meet qualitative identification criteria required by the test method. Although a result at or above the DL indicates that the analyte is present, the absence of a result at or above the DL is inconclusive (i.e., one cannot confidently state whether the analyte is present or absent), because the false negative rate at the DL is 50%.

The Limit of Detection (LOD) is the smallest amount or concentration of a substance that must be present in a sample in order to be detected at a 99% confidence level. In other words, if a sample has a true concentration at the LOD, there is a minimum probability of 99% of reporting a "detection" (a measured value \geq DL) and a 1% chance of reporting a non-detect (a false negative).

The failure to obtain a "detection" should be reported as "<LOD," because the false negative rate at the LOD is 1%. Reporting the sample result as "<DL" is inappropriate because, as stated above, the false negative rate at the DL is 50%.

Fact Sheet: Detection and Quantitation — What Project Managers and Data Users Need to Know

The Limit of Quantitation (LOQ) is the lowest concentration of a substance that produces a quantitative result within specified limits of precision and bias. The LOQ is typically larger than the LOD (but may be equal to the LOD, depending upon the acceptance limits for precision and bias); therefore, the following is true:

$DL < LOD \leq LOQ$

Quantitative results can only be achieved at or above the LOQ. Measurements between the DL and the LOQ assure the *presence* of the analyte with confidence, but their numeric values are estimates.

Types of Procedures for Estimating Sensitivity

Numerical estimates of the DL LOD, or LOQ for a specific analyte, matrix, and method can be calculated using various statistical procedures, which involve spiking reagent water or other specific matrix with low concentrations of the analyte of interest. At this time, unfortunately, universally accepted statistical procedures do not exist.

The estimator that has been most commonly used by environmental laboratories is the EPA Method Detection Limit (MDL), which is an approximation of the DL. EPA has defined the MDL as the "minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero, and is determined from analysis of a sample in a given matrix containing the analyte."¹ Calculating the MDL at 99% confidence means there is a 1% probability that a sample having a result at or above the MDL is a false positive. The EPA MDL was designed to protect against <u>false positives</u>.

Uses and Limitations of the MDL

When performed correctly and consistently, MDLs determined using the EPA procedure can be useful for comparing different laboratories' performance using the same methods, or the performance of different methods within the same laboratory. Laboratories typically determine the MDL in reagent water, resulting in a "best-case" MDL, which provides limited information about method performance on real-world samples.

The EPA MDL procedure has been criticized as a poor estimator of the DL for the following reasons:

- **1**. It is a single laboratory, short-term estimator that fails to account for analytical bias, changing instrument conditions, or analyst skill.
- 2. It assumes uniform variance across all possible spike concentrations, failing to account for the fact that variance increases at higher concentrations.
- 3. It assumes that measured values at the spike concentration are normally distributed. By using this procedure and spiking at very low concentrations, laboratories have been able to calculate MDLs that cannot be achieved in practice.

DoD QSM Requirements

For the reasons discussed in the previous paragraph, the DoD QSM requires that laboratories verify measures of method sensitivity, in terms of the LOD and LOQ, at least quarterly. Requirements for the LOD and the LOQ are contained in DoD QSM Boxes D-13 and D-14, respectively, which follow:

¹ 40 Code of Federal Regulations (CFR) Part 136, Appendix B, rev. 1.11.

Box D-13

Limit of Detection (LOD): Determination and Verification (Requirement)

A laboratory shall establish a detection limit (DL) using a scientifically valid and documented procedure for each suite of analyte-matrix-method, including surrogates. The detection limit shall be used to determine the LOD for each analyte and matrix as well as for all preparatory and cleanup methods routinely used on samples, as follows:

After each detection limit determination, the laboratory must immediately establish the LOD by spiking a quality system matrix at approximately two to three times the detection limit (for a single-analyte standard) or one to four times the detection limit (for a multi-analyte standard). This spike concentration establishes the LOD. It is specific to each combination of analyte, matrix, method (including sample preparation), and instrument configuration. The LOD must be verified quarterly. The following requirements apply to the initial detection limit/LOD determinations and to the quarterly LOD verifications.

- The apparent signal to noise ratio at the LOD must be at least three and the results must meet all method requirements for analyte identification (e.g., ion abundance, second-column confirmation, or pattern recognition.) For data systems that do not provide a measure of noise, the signal produced by the verification sample must produce a result that is at least three standard deviations greater than the mean method blank concentrations.
- If a laboratory uses multiple instruments for a given method the LOD must be verified on each.
- If the LOD verification fails, then the laboratory must repeat the detection limit determination and LOD verification at a higher concentration or perform and pass two consecutive LOD verifications at a higher concentration and set the LOD at the higher concentration.
- The laboratory shall maintain documentation for all detection limit determinations and LOD verifications.

Box D-14

Limit of Quantitation (LOQ): Establishment and Verification of LOQ (Requirement)

For DoD projects, the LOQ must be set within the calibration range prior to sample analysis. At a minimum, the LOQ must be verified quarterly.

The laboratory procedure for establishing the LOQ must empirically demonstrate precision and bias at the LOQ. The LOQ and associated precision and bias must meet client requirements and must be reported. If the method is modified, precision and bias at the new LOQ must be demonstrated and reported.

Establishing Project-Specific Requirements for Method Sensitivity

Project teams should establish their project-specific requirements for method sensitivity in terms of a Reporting Limit (RL) for each analyte and matrix. As defined in the DoD QSM, the RL is the lowest concentration value <u>specified by the client</u> that meets project requirements for reporting quantitative data with known precision and bias for a specific analyte in a specific matrix. The LOQ cannot be greater than the RL, if precision and bias of the RL and LOQ are the same. If the LOQ for a particular analytical method or laboratory cannot meet the RL, then a project team has three options:

- **1**. Improve analyst performance or modify the method to achieve a lower LOQ.
- 2. Select a different method with an LOQ less than or equal to the RL.
- 3. Raise the RL.

Please note that precision and bias must be taken into consideration when assessing the LOQ versus the RL. Also note that data below the RL can be reported; however they are estimated values if less than the LOQ.

Fact Sheet: Detection and Quantitation — What Project Managers and Data Users Need to Know

Reporting and Flagging Analytical Data

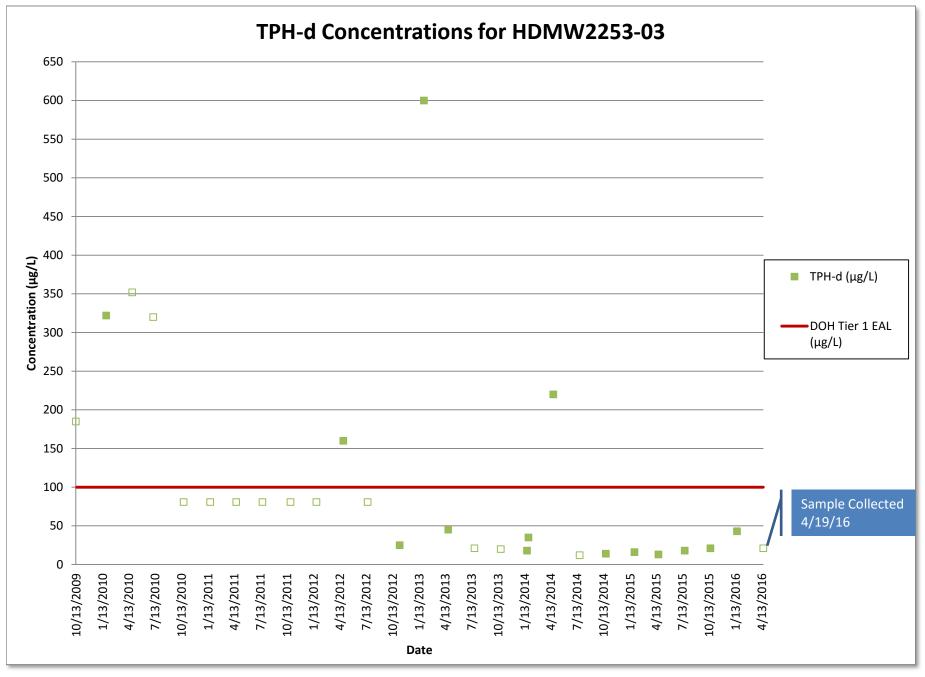
Although data reporting and flagging requirements are project-specific, all reported LOD and LOQ shall be adjusted for the size of sample aliquots, concentration/dilution factors, and percent solids. In addition, the following example (based on Box 47 of DoD QSM Version 4.1) illustrates the proper use of the "U" and "J" data qualifier flags for non-detect and estimated analytical results, respectively.

- U Analyte was not detected and is reported as less than the LOD or as defined by the client. The LOD has been adjusted for any dilution or concentration of the sample (* see Example, below).
- J The reported result is an estimated value (e.g., matrix interference was observed or the analyte was detected at a concentration outside the quantitation range, see Box 33).

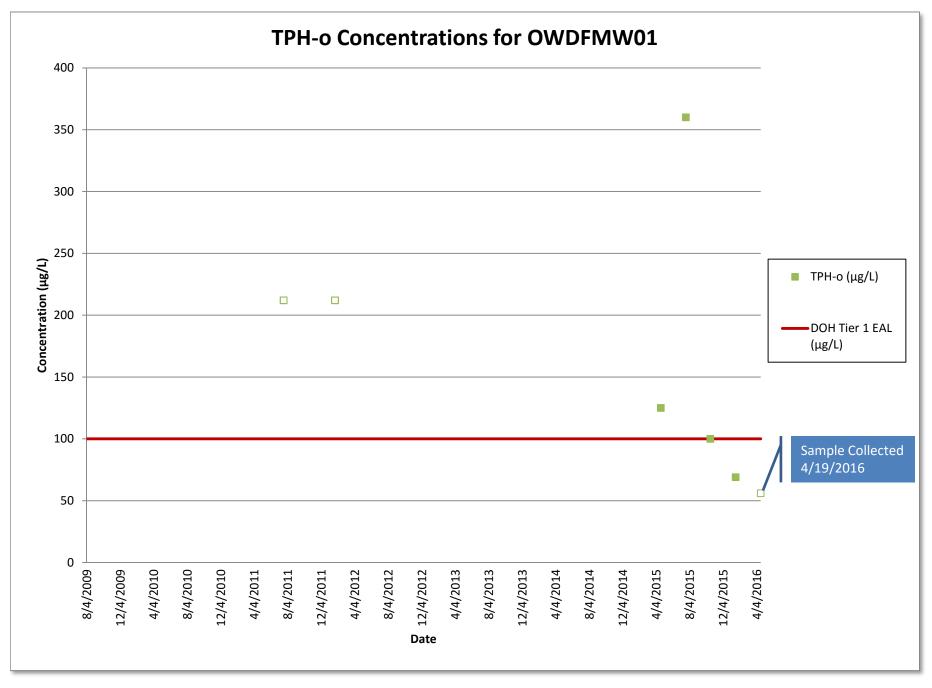
Example: DL = 2, LOD = 4, LOQ = 20, and RL = 30 with the precision and bias of the LOQ meeting those of the RL and all samples are undiluted.

Sample #1: Analytical result: Non-detect	Reported result: <4 U
Sample #2: Analytical result: 3	Reported result: 3 J
Sample #3: Analytical result: 10	Reported result: 10 J
Sample #4: Analytical result: 20	Reported result: 20
Sample #5: Analytical result: 30	Reported result: 30

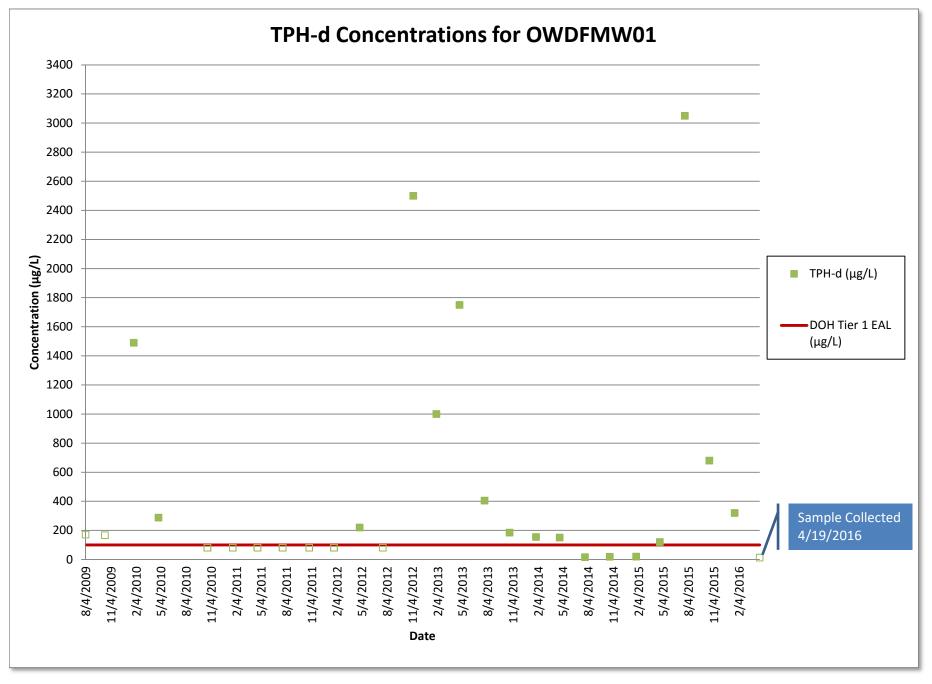
Understanding and Documenting Uncertainty for Low-Concentration Data

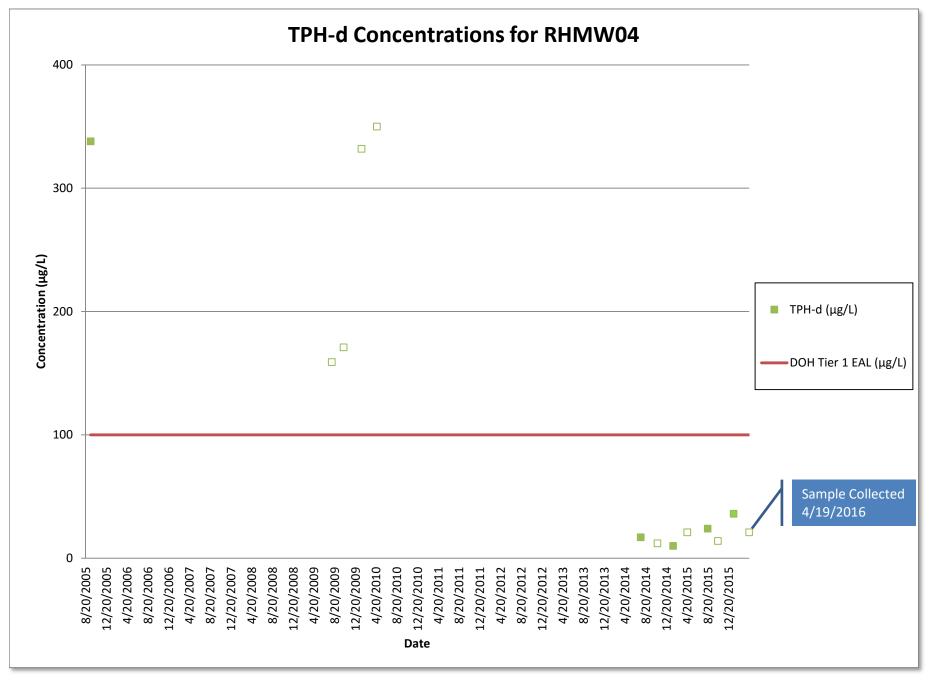

As mentioned above, detection and quantitation limits are laboratory specific. Following are some steps Project Managers can take to document measurement uncertainty for low concentration data.

- As part of the laboratory selection process, provide the laboratory with project-specific RLs, including precision and bias, for each analyte and matrix. Ask the laboratory to provide its DL, LOD, and LOQ with associated precision and bias for each target analyte, in each matrix of concern (e.g., reagent water, clean sand, etc.), and verify that these values meet project-specific RLs. Request laboratory SOPs for establishing the DL and for establishing and verifying the LOD and LOQ.
- Ask the laboratory to verify the LOD by processing an LOD verification check sample with each batch of samples. This is a quality control sample that is spiked at a concentration at or slightly above the LOD to evaluate whether the analyte of interest is in fact "detectable" in the matrix of interest. To confidently report non-detects, set the reporting for non-detects to less than the LOD.
- If the project involves the collection of unusual or difficult matrices, or if the project-specific RL is near the LOQ, ask the laboratory to verify the LOQ in the project-specific matrix by analyzing a minimum of four replicate samples with known concentrations at the LOQ.
- Review the raw data (e.g., chromatograms) for low-concentration data. If a result is reported above the DL, make sure that the signal-to-noise ratio is at least 3.
- Compare sample results with blank results. If sample results (including chromatograms) cannot be distinguished from blank results, then they are not meaningful.


APPENDIX G

Historical Groundwater Exceedance Trends


This page intentionally left blank.


Unfilled boxes indicate non-detections. Numerous sample results had a chromatographic pattern that did not match the calibration standard.

Unfilled boxes indicate non-detections. Several sample results had a chromatographic pattern that did not match the calibration standard.

Unfilled boxes indicate non-detections. Numerous sample results had a chromatographic pattern that did not match the calibration standard.

Unfilled boxes indicate non-detections. Several sample results had a chromatographic pattern that did not match the calibration standard.

APPENDIX H

IDW Disposal Manifest

This page intentionally left blank.

4	NON-HAZARDOUS	1. Generator ID Number		2. Page 1 of	3. Emergency Response	Phone	4. Waste Tra	acking Nur	nber		
Î	WASTE MANIFEST	NOT APPLICABLE		1 808-206-9989			000027497				
	5. Generator's Name and Mailing Address COMNAVREG HAWAII, C/O NAVFAC HAWAII, CODE PRJ42 400 MARSHALL ROAD, ATTN: TROY KANESHIRO JBPHH, HI 96860-3139 2009 471 1227 301344-01 RED HILL BULK FUEL STORAGE FACILITY AIEA, HI 96701										
	Generator's Phone: 808-471-1227 6. Transporter 1 Company Name U.S. EPA ID Number PACIFIC COMMERCIAL SERVICES, LLC. 808-545-4599 HID 982 040 578									578	
	7. Transporter 2 Company Name UNITEK SOLVENT SERVICES, INCOAHU			808-682-8284			U.S. EPA ID Number H I D 9 8 2 4 4 3 7 1 5 .				
	8. Designated Facility Name and Site Address UNITEK SOLVENT SERVICES, INC. -91-125 KAOMI LOOP						U.S. EPAID Number HID 982443715				
	KAPOLEI, HI 96707 Facility's Phone: 808-682-8284									.	
	9. Waste Shipping Name	e and Description			10. Conta No.	ainers Type	11. Total Quantity	12. Unit Wt./Vol.			
GENERATOR		L NOT REGULATED TORING AND DECOM		WATER)	2	SS DM	00055	G		NON-R	CRA
CENE	2.										
	3.										
	4.		-					lci't			
ISOBJERIEN Handling Instructions and Additional Information Hour With With With 2012 901 C Sport WC TOTAL HALOGEN GENERATOR'S CERTIFICATION: I HEREBY DECLARE THAT THE CONTENTS OF THIS CONSIGNMENT ARE FULLY AND ACCURATELY DESCRIBED ABOVE BY PROPER SHIPPING NAME (WHERE APPLICABLE) AND ARE CLASSIFIED, PACKED, MARKED, AND LABELED AND ARE IN ALL RESPECTS IN PROPER CONDITION FOR TRANSP BY HIGHWAY ACCORDING TO APPLICABLE GOVERNMENT REGULATIONS. I FURTHER CERTIFY THAT IF THIS IS USED OIL IT IS SUBJECT TO REGULATION UNDER CFR PART 279; THAT IT DOES NOT CONTAIN FCBS GREATER THAN OR EQUAL TO 2 PEM; AND THAT IT HAS NOT BEEN CONTAMINATED WITH CARBURATOR CLEANE BRAKE SPRAY, FRECN, HALOGENATED SOLVENTS, OR OTHER HAZARDOUS MATERIALS AND/OR HAZARDOUS MASTES.											
14. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, a marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations.											
¥	Generator's/Offeror's Printed/Ty		of The No		nature	stre	rl		Month	Day	Year 16
INT'L	15. International Shipments Transporter Signature (for expo			Export from U		ntry/exit: ving U.S.:					
RTER	16. Transporter Acknowledgme Transporter 1 Printed/Typed Na			Sig	nature				Month	Day	Year
TRANSPORTER	Transporter 2 Printed/Typed Na			Sig	nature 1	1 - C	Au		4 Month	<u>19</u> Day	Year 76
1	17. Discrepancy 17a. Discrepancy Indication Sp	ace Quantity	Туре		Residue		Partial Rej	ection		Full Reject	on
 E	17b. Alternate Facility (or Generator)				Manifest Reference	Number:	U.S. EPA ID Number				
DESIGNATED FACILITY	Facility's Phone: 17c. Signature of Alternate Fac	sliity (or Generator)							Month	Day	Year
- DESIGN	SEE CA	NSO-LOHE) 6-43						l	<u> </u>	
	18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the manifest except as noted in Item 47a										
¥	Printed/Typed Name	tetthably	<u></u>	Sig	inature	¥			Month D	por J	Year Loj
169-BLC-O 6 10498 (Rev. 9/09) DESIGNATED FACILITY TO GENERATOR											ATOR

.

--

•