

ONSITE WASTEWATER TREATMENT & DISPOSAL

Roger Babcock Civil & Environmental Engineering Water Resources Research Center University of Hawaii at Manoa

DOH 4th Joint Gov't Water Conference Wailuku Maui, August 7, 2018 & Hilo Hawaii, August 15, 2018

Topics

- Background
 Background
- Previous efforts
 - OSDS Innovative systems survey (2005)
 - OSDS Survey and Assessment (2008)
 - OSDS Management Program Development (2010)
 - OSDS Inspection & Sampling Study (2012)
 - OSDS Selection tool (2013)
 - ATU testing/certification (1998-99, 2004-05, 2013-14, 2015-16)
 - Gray water recycling (2009)
 - Urine diverting toilets, water recycling, fate & transport in local soils
- Current efforts
 - Upcountry Maui study
- Future plans
 - Pilot-test/permanent installation monitoring
 - Development/testing of innovative systems

Background: On site disposal systems (OSDS)

• Hawaii has plenty of OSDSs

- Approximately 30%
- 130,000 systems (cesspool [88k], septic tanks, ATUs)
- Connection to centralized sewers and WWTPs generally very costly
- Disposal into the ground
- Risks:
 - Hawaii drinking water = mostly groundwater from unconfined aquifers
 - Surface waters
 - Nearshore waters
- Cesspool ban/replacement by 2050 (Act 125, 2017)
 - Cesspools provide only solids removal, possibly absorption
 - 43,000 pose risk to water resources (priority 1 [8140], 2 [15800], 3 [18790], 4)
- Septic tanks (ST) provide solids removal, anaerobic treatment plus soil absorption system
- Aerobic Treatment Units (ATU) meet secondary trt in tank and can include DN and disinfection, rely less/not-at-all on soil
- Projects: develop tools and systems to allow safe treatment and disposal on-site

Innovative Onsite Systems Survey (2005)

- National Conference on Affordable Housing in High Cost Areas (Honolulu)
- Conventional systems
- Many types of ATUs available at that time
- Recirculating & single pass sand filters (post ST)
- Peat filters (post ST)
- Denitrifying trenches (post ST)
- Mound and ET systems (post ST)
 - Tafgard, Waialua Pioneer Seed Corn, monitoring 2000-2001
- Constructed wetlands (Lauren Roth)
 - UH West Hawaii
 - Kaiser Med Bldg Kona
- Disinfection, recycling/reuse, drip irrigation, gray water

Onsite Treatment Survey & Assessment (2008)

- No guidance document existed
- Needed to show if/when ATU or DN in high-risk areas
- To assist homeowners, developers, engineers/architects to:
 - Identify feasible alternatives
 - Describe constraints, including costs
 - Help to select
- With: DBEDT/DOH, June Nakamura, Kyle Okino, Russ Brain
- DOH website: hawaii.gov/health/environmental/water/wastewater/forms.html

Guidance Document

- Introduces wastewater treatment and regulatory framework
- Describe factors affecting OSDS performance
- Systematic method to select treatment and disposal technologies
 - Quantity and quality
 - Show which viable for each site condition; get options
 - Show costs & advantages/disadvantages; selection
 - Give design criteria
 - Examples
- Fact sheets
 - Treatment, disposal, O&M guides
- Vendor lists

Suitability of <u>Disposal</u> methods to various site conditions

Onsite Disposal Method	High Water Table	Impermeable Soil	Steep Terrain	Flood Zone	Inland Surface Water	Coastal Water	High Cesspool Density	Protection of Groundwater	Protection of Drinking Water (CWDA)	Hydrogeology
Holding Tank	Р	Р	Р	NR	Р	R	Р	R	R	Р
Injection Well	Р	Р	Р	NR	Р	Р	Р	Р	Р	Р
Seepage Pit	NR	Р	R	NR	NR	Р	NR	Р	NR	Р
Adsorption Trenches	NR	NR	NR	NR	Р	Р	Р	Р	NR	Р
Adsorption Beds	NR	NR	NR	NR	Р	Р	Р	Р	NR	Р
Elevated Mounds	Р	Р	Р	NR	Р	Р	Р	Р	Р	Р
Evapotranspiration	Р	R	NR	NR	Р	Р	Р	R	R	Р
Water Reuse	R	R	R	NR	R	R	R	R	R	R
L a manali										

Legend

R – Recommended

P – Possible

NR – Not Recommended

Suitability of onsite <u>Treatment</u> systems to varying site conditions

Onsite Treatment Method	High Water Table	Impermeable Soil	Steep Terrain	Flood Zone	Inland Surface Water	Coastal Water	High Cesspool Density	Protection of Groundwater	Protection of Drinking Water (CWDA)	Hydrogeology
Septic Tank	Р	Р	Р	NR	NR	Р	Р	Р	Р	Р
Low water/Waterless Toilets	R	R	R	NR	R	R	R	R	R	R
Continuous Flow, Suspended Growth	R	R	R	NR	R	R	R	R	R	R
Continuous Flow w/ Fixed Integral Packing	R	R	R	NR	R	R	R	R	R	R
Sequencing Batch Reactor ATU	R	R	R	NR	R	R	R	R	R	R
Single Pass Sand Filter	R	R	R	NR	R	R	R	R	R	R
Recirculating Sand Filter	R	R	R	NR	R	R	R	R	R	R
Enhanced Phosphorus Removal	R	Р	Р	NR	R	R	Р	Р	Р	Р
Enhanced Nitrogen Removal	R	Р	Р	NR	R	R	Р	Р	Р	Р
Emerging Trace Contaminant Removal	Р	Р	Р	NR	Р	Р	Р	Р	Р	Р
Chlorine Disinfection	Р	Р	Р	NR	NR	NR	Р	R	R	R
UV Disinfection	Р	Р	Р	NR	R	R	Р	R	R	R
Legend:										

R – Recommend

P – Possible

NR – Not Recommended

Fact Sheets

Elevated Mounds Fact Sheet D-6

Figure 4-4 Elevated Mound System

Elevated mound systems are engineered mounds of sand/soil used to create acceptable soil conditions for effluent disposal and/or to create vertical separation from groundwater. The land on which the mound will sit is tilled, and a layer of sand and distribution system is placed over the tilled surface. The top of the mound is covered with surrounding soil and aesthetically landscaped.

Considerations and Restrictions

Mounds are commonly used in areas where absorption trenches and beds cannot be used, such as when the terrain is excessively steep, when there is a high groundwater table, or when the soil is not conducive for a SWIS. Landscaping is required as the mounds could reach a height of three feet. As shown in the figure above, the disposal point is higher than the septic tank, therefore a pump system will be required.

Effluent Quality

Effluent quality for an elevated mound system is similar to that of an absorption trench or bed (see D-4).

Typical Installed Costs (2007)

Construction costs range from \$10,000 to \$15,000, but can go as high as \$25,000 per 1,000 gpd of treated wastewater in Hawaii.

Operation and Maintenance Costs

Since the elevated mound system requires a pump to lift the effluent to the specific elevation, the pump's power costs need to be budgeted. The estimated power consumption is approximately 100 – 300 kW-h per year. The same care must be provided to the mound as would be provided to trenches or beds. See Appendix A for tips on maintenance.

Elevated Mounds Summary Use in Steep Terrain Yes Use in High Ground Water Areas Yes Percolation Rate All Relative Footprint When Compared To Conventional Drainfield Large Maintenance Level: Medium Power Required: Yes Typical Installed Cost: up to \$25,000 /1,000 gallons

Onsite Wastewater Treatment Survey and Assessment Study January 2008

REF-1

OSDS Management Program Development (2010)

- Currently little management after building permit (no inspections, permits, etc)
- Establish minimum maintenance, performance, and inspection standards for OSDSs
- Issue, monitor and enforce OSDS operating permits (2-yr cycle)
- Certify and license OSDS Service Providers and OSDS Inspectors
- With: Sean Ogata, MS

Documents Created

- Model law, framework, roles
- Homeowner education fact sheets
 - Cesspools, septic tanks, ATUs, Absorption fields, seepage pits, ET beds, Inspection expectations, self inspection
- Minimum maintenance requirements
 - Pumping frequency septic
 - O&M for ATUs
- Inspection checksheets & protocols
 - Cesspools/Septic tanks
 - ATUs
 - Disposal units
- Application/renewal forms

8	Hawaii State Department of Health	OSDS Insp I	ection Checksheet: Form #1	Inspection Number:
l. Owner Inform	ration	2		25
Overs	1.36230.02			Phone
Representative				Please
Sole Address:				
Mail Address				
Interest	Retail	Kessi Lani	Mas Melskai	Outo
2. Records				
Inspection Appli	cation: Tyo	- DNe	Operating Permit:	No. No
Wat	ar Bill: Yes	Ne		
Prosping Ro	acantic Ver	Ne	Operating Permit 4:	
System Dra	wings: Yes	Ne	Efferitve Franc:	Tic
Certificate of Control	incline: Ver	Ne	Date Isomest:	
Maintenance Ro	icarda: Yes	Ne		
3. Facility Descri	ption			
B	formul occupation Commencial	Vacant		Prod Vict Turb
Condex Type: Campool Holding Task	Septe Taik		Taali Material:	Therglass Sher:
Manufacturiers			Volume	pilter
Modeli			Capacity:	and a second
Date Installed:			Last Prespect	1
4. Cesspool/Tank	Inspection			
Water Case			Manuf	
Pumping Red. for In	ot: Yas	Ne	Nater	
Tauk Con	er: Sundacurs	Usustafactors	Notes	
Him	re: Satisfactory	Unabladety	Notas	
Tank lategri	ty: Satisfacion	Usuandaning	Notes	
Signs of Lookay	get Yau	No	Notes	
Decamb	er: Settellatory	Ussatisfactory	Notes	
8-01	si Schilatory	Usuatelanney	Natur	
Taker D	iei Seticliesory	Unsetidanta	Notes	
Oatlet B	H Sataliatory	Usuatidictory	Notasi	

4. System Inspection	(cont.)		
Inspection Poets:	Saturhatory Unsaturfactory	Netos	
Disinfection Unit:	Saturboury Unorthitacum	Notice	
Lift Parage	Satisfactory Unsatisfactory	News	
Shadge Depth (in):	Inches from Ballie		
irum Heicht (in)	Inches from Battle	m Oter Nami	Farming
Contracting of Backies From	inclusion and a state state state.		
The set of solving the	inter rates		
Additional Notesi			
Disperal System	Wheat all that and by	tat Materia	5
Type: Absorption	n Turuh Absorption Bal	Erapetrangication Beat Scopage FinDry Well	
Observations:	Not Experimentative surface even on Not Supple address present, possible Prior Large plants or more senses.	el alexentene voleres. For Serpage g, heart regenerates, ar lade parches proses. Serb sear nel alexentene vytan. Serb e ches sona d'accercit ene suit alexencies sonare	FitDry Well a of excellent de Nigra of adult procett
Vos Additional Notes	No there denote a configuration of Not Core of a composition rep	f ever will deception costine.	orer is Mack
6. Additional Inspec	tion Notes (Observations, Find	ings, Reccommutations)	
7. Results	Conditional Pass	Fail Verson	
6. Inspector Inform	ition		
Taspector #	Carputy:	frapection D	4F
hipeda	Netre (Print)	Impecter Signature	Duty
6. Homeowner Sign	iture		
- Dame N	an Print	Owner Semanare	Date
5.5 P. Harris 1. 1			

X	Hawaii State Department of Health	OSDS	Inspect Fo	tion Ch rm #2	eckshee	t:
10. Aerobic Tre	atment Unit					2
Manufactures					Sector Co.	
Made					Service Car	
Data Installada					E altractor:	
Volume.	-722				Fin Date	6
Contraction		ATT IN			e.sp. marci	
Last Farment	the			sere	er mertan:	
	c 1 <u>a e</u> l	e				
Tank Materiali	Cencrete Fib	cryfani er			ATU Type	r Supended Growth
	7			_		
Tank Covert	Satisfactory	Almatiufactory	Notest -			
Tank Integrity:	Satisfactory	Unsatisfictory	Notes: _			
Battles/Wiers:	Satisfactory	Unaminteesory	Notes:			
Decanter:	Satisfactory	Constitution	y Noter _			
Compressor	Satisticnory	Unathilation	V Notes			
Diffesers:	Satisfactory	Unartializetory	Notes:			
Effurnt Screen:	Satisfactory	Unametachery	V Noles:			
Distafaction:	Satisfactory	Unatufactory	Neter _			
Control Panel:	Satisfactors	Unatisfactory	Notes'			
Alarmo:	Satisfactory	Unsatisfactory	y Notes:			
Timer:[Satisfactory	Unsatisfactory	y Notas:			
Mixed Liquary						
Dissived Oxyg	en: ma	£	Acration	Uneren.	Uniters	Notes:
	di:		Other:	Anotaic	Ambie	Notes
Settability (34 mi	48 Ti 1	olume	Cohor:	Hlack	lines	Nature
Temperatu	ne F		Surface	Scutt	Foun	Notes:
Notes:						
i Maria da						
II. Effluent Anal	lysis (if necessar	y or nequined)				
Sampling Date:		Tim:		Somp	ir Taken By:	
Analysis Date:		Tenr:		Sample /	Analyzed By:	
= 0						
Effecti BODS	(mg/L):		TENO	ng/L)		FOG trigit.)
TSS	tregrL):		Nimte (ng(L)		Total P (mg/L):
Fizal Colifornis (#1	Olival.y		Amminia (rig(L)		Phosphane P (mg/L)
Disselved Oxygen	(rig/L);	Settabil	ity Test (% ye	lumit		MLSS.trog/Ly.
	pH					

AEROBIC TREATMENT UNITS

Homeowners Guide: Fact Sheet #3

ATU's in Hawaii

ATU's all an alternative varient form of results

to treatment and are used by in Hannail. Compared to

ventional septic tank or it is a much more complex

tem that prod-

ATL: are re

How Does Your Aerobic Treatment Unit Work?

Department of Health

Kinou Hale

1250 Punctibosel St.

Pionolulus, HE 96815

Phone - 28083 586-4400

Fex - (808) 123-1234

Figure 1. Three compariment suspendial growth sensible treatment and

antilizera. efficiently and effectively then in oxygen enters the disposal system. deficient systems such as septic tanks and

cesspools. In the ATU, air is bubbled through accobic treatment units, however all ATUs the wastewater in the arration chamber by a function on the same basic principle, to blower or most. This provides stygen as provide an oxygenated environment for well as theroughly mixes the microbes and microbes to consume organic matter. Two wrwage. Here the microorganisms uptake common systems are the suspended oxygon and dograde organics to starify the growth aeration system, so described Wastewater.

aeration chamber, another settling chamber disinfection units (such as chiorination) often exists to allow remaining solids and commonly accompany an ATU

Aerobic Treatment units (ATUs) microbes to settle out and be returned to auration to enhance microbial the aeration chamber. This is estremely degradation of sewage. In the presence of important as it maintains the microbe oxygen, microorganisms are able to break population in the aeration chamber and down organics and clarify wastewater more further clarities the wastewater before it

There are different types of above, and the fixed-film growth system. Proceeding the aerution chamber, the The latter uses plastic, styndoam, or wastewater may be pre-treated by a septic gravel in the aeration chamber, which tank or a settling chamber. This separates and provide a medium for microorganism to netarits the larger solids, which take longer to grow on. In addition to the different types be degraded by microorganisms. After the of systems, additional leatures such as

Typical Signs of a Failing System

1. Alarm triggered. The alarm signals any millionction in the system. Know where to call before the event of a triggered alarm. The fatter a problem is fixed, the character it will be

.... Unasual changes in 2. Sewage back-up. servinge is not draining property or odoes are present ATU operation. Changes is sound, smill, or newage mode the home, a dag in the system is likely. Report immediately since contact characteristics are telltale signs of a failing system. Notify a service provider with sewage is hazardous. trouvaliately

Produced In: The Naval State Department of Health & the Heiversity of Hawaii, Marcia Water Resources Research Center

Hawaii Department of Health

Figure 3. Installed ATU

Do's & Don'ts

Acrobic treatment arets atilize biological processes and as an owner there are things you need to do to ensure the health of your system. Are terpertant characteristic of ATUs is that improper care has the system will several ineff laster then correctional systems. Follow their single De's and Deti'ts to protect your ATU from harm and abuse

De this

- To keep a service contract peopled by the system manufacturer or a licensed service presider. ATDs are maintenance intenance
- ed its operation is highly dependent on proper maintenance Do become familiar with your ATU and how it works. Know incer yourr ATU sounds, article like, and looks like when it is properly functioning, so that non-may be able to recognize when it
- in net working property. Do conserve reater in your household and divert other water sources such as norf drainage and samp pumps away from your ATU. Overleading your unit with larger flows will burt your
- Do constantly be aware of your alarm system. Alarm systems en part in place to notify you of any malfunctions. Know where your
- alains system is located and what to do when it is activated. Do keep all general information and detailed recentls of your 1.4 ATU so hand. Service compacts, system manuals, instillation processition, and pust maintenance are just a few fittings you
- should always have really available it called upon. Do check before using chemical additions in your ATU Typically chemical additions are not proven to toork and may actually lumn your system. Cluck with the DOH or a centiled service provider before using a demical additive.

Dee'l du this

- Do not drive or park over any part of your ATU and its drainfield. This can cause demage to piping, the ATU tank, and the drainfield.
- Do not attempt self-repairs or allow usualtenized repairs or maintenance on your ATU. Acrobic meatment with bary many mechanical parts and sheald only be maintained by a professional.
- Do not allow themselve an prison to enter your ATU. Aread finding down household interfaces or positions/hethickles because they can hall the bacteria used in the ATU.
- Do not searne year gabage dispend. Wate from participal dispende can everland year ATU and increase degging and
- the bears frequent paraphing.

2

Do not allese non-biodogradable items such as cigarette bath, disposable diagrees, or coffee grounds to enter your system.

Aerobic Treatment Units

Maintenance and Inspections

Aerobic instanent units have many mechanical parts and therefore require diligent inspections and maintenance. In an ATU, even the smallest of malfunctions can startificantly inhibit the wastewater treatment. However, if properly maintained ATUs will produce a very high level of wastewater treatment and are designed to last for a long time

There are many types and brands of ATUs on the starket and each contains specific demands for its maintenance and upkeep, therefore it is not always possible for the owner to provide the required impections, repairs, and maintenance. Nevely installed ATUs are required to have a service contract provided by the manufacturer, Operating permits issued by the DOH are else required and will stipulate the frequency of impections and maintenance. Professional impections consist of impecting wastescates quality, the mechanical parts, and overall system functions. If any maintenance is required, always have a cartified service provider. An up-to-date list of certified service provides may be obtained from the DOH.

Figure 4. Actuation in an ATLL

More Information

For more information see "Divertminant livelens Technology East Sheet Accesse Transment" by the US EPA. Available at:

www.spauow/epds/pubs/amotia_treatment.odf

Additional information may also be found at http://renc.www.adu/pdf/ww//pdf/katawa/pq/iee/P0, SUII pdf

More Fact Storts and reasons may be found on the Hawaii State Department of Health OSDS website: www.dnh.com/TBD

Hawaii Department of Health

Soil Absorption Fields

Soil absorption fields are ensite wastewater disposal systems commonly found at the backend of many septic systems. They twoically consist of a distribution box and a subsurface, perforated piping system. The absorption field may also be referred to as the drainfield or soil absorption field, and two common types of absorption fields are the absorption hed and the absorption trench. Nevertheless: all absorption fields function on the same basic principle as they utilize the soil to treat and effectively dispose of wastewater effluent.

Absorption fields are designed and chosen hased on the characteristics of the spil and groundwater, surrounding terrain, and climate conditions. High groundwater tables, steep slopes, and wet climates are typical factors that limit the use and effectiveness of absorption fields. Maintaining the field is very important and greatly affects the performance of the system. Maintenance begins with maintaining the preceding treatment unit and includes being able to identify obvious warning signs and following a few simple rules. The absorption field is a simply maintained yet estremely important component of your unsite arreage disposal system.

ABSORPTION FIELDS

Homeowners Guide: Fact Sheet #4

Figure 1. Self absorption bed.

How Does It Work?

Absorption systems are a type of subsurface wastewater infiltration systems (SWIS). The main function of the absorption field is to receive treated wastewater effluent from the septic tank (or any preceding treatment unit) and distribute the effluent into the subsurface soil. As the effluent seeps through the soil, microbial actions and filtration further breaks down pollutant organics and removes infectious bacteria from the effluent. If properly designed and maintained, this allows the wastewater effluent to be safely disposed of onsite without contamination or pollution of the receiving groundwater table,

This first component of an absorption system is the distribution hox (D-box). The D-box receives wastewater effluent from a wastewater treatment unit and evenly distributes the effluent into the piping system. The piping system is typically a network of subsurface, perforated pipes overlain by gravel and soil. The main job of the piping system is to evenly distribute the effluent into the surrounding soil where it can be further purified and finally incorporated into the groundwater. Commonly a biological mat of microorganisms may grow under the absorption field and this is beneficial to the continued treatment of the wastewater efficient as it leaches through the soil.

More Information

A. Dermanner set a Consider to Distribution and Materian and "Description international community of a / problem from the problem back anges 19 – 12 (2011)

The absorption field is the fast component of your ensite sewage disposal system. It is essential to maintain your absorption field to ensure the proper disposal of your treated seatowater. A fulling atturption field can lead to surfacing of wastewater or contamination of groundwater and pose health hazards to both your family and the public. The following are a few maintenance tips to keep your field running properly and safely.

it will help you protect it from harmfall

activities and identify reportant

Avoid driving, digging, or construction over the field. These

activities may compact the soil or save-

papeng which will lead to system

1. Have your absorption field inspected the same time your treatment unit is inspected. This will ensure the proper nctioning of your absorption field.

Hawaii Department of Health

2. Maintain your wastewater treatment unit. The sublity of effaunt an absorption field receives in a shreet factor to the health of the Table Mannakong a healthy meatment anit, whether it is a septe task, seruble troubnest unit, or any other type of enable sephewater treatment, will ensure the highest quality officent possible and in tam protect your dispensed field.

1. Know where year absorption field is

(*1). (1) -84

· Eprimer alward.

located. By knowing where you septic system and absorption field is located.

fatherer and salety henergy. Do not allow trees or large shrubs to

worming signs.

- grow on or near the field. Roats can presentate pipes causing backs or class and prevent the proper distribution of -Waster-
- Cover your disputal field with small 6. regetation. Graun# cover such as gross will protect your absorption field from scoular. However, da net plant trees or

Divert surface water away from the disposal field. Roof drains.

plants with invasive rook systemis.

π.

Aburptum Fielda

- samp pamps, or ranoff should be kept away from the field as much as possible. Economy water flowing over or late the absorption field may over saturate the soli and reduce the ability of the almorphism field to property dispute of the effluent.
- the stater efficiently. Using last seasor will increase the treatment efficiency of your applic systems and consequently prolong the health of your alteration field.

			Contract of the local division of the local					
Common Failures and their Causes								
Newage penality or evolved of possibility in card, ther key partners	Disections relate these in manufacture for factors	Passarre backerd-spins denning dowle	Sector or greatherer organized with bacants					
The mark water is naming the optic assess Sammarking only over summark the is roleg growth care tables or excession ratio excession ratio exce	 H minh, humare are likely backing op the training of the syste control. H versick control. H versick, scienge mer he surfacing and peopleg. 	Chapter to occurring secondaria in the appre- station. Polacy waves insequenced designed or encoursed to second encourse applied waves. The second secondary description second secondary description second field.	Septi soten falling and ingroperty discharging soatsyster falls entirements Suptic optimisation appopuly commention placent. Source is other them languages of means					

· Life station paper lakel

OSDS Inspection Project (2012)

• Statewide effort

- Asked for voluntary inspections statewide
- Provided free inspection using protocols and sheets developed previously – updated
- Also collected data (sludge judge) and samples
- Provided Homeowner Education Fact Sheets
- Provided Maintenance requirements
- Goals
 - Find distribution of OSDS condition
 - Get better transport model inputs
 - Feed into Risk Analysis
 - Help to develop management program
- With: Mike Cummings, Bob Whittier, Aly El-Kadi
- On DOH website

Inspection Results

Participation Rates for Five Hawaiian Islands

		OSDS category			
Island	Visited	Contacted	Inspected	Island total ^µ	Accessed
Kauai	45	31	63	139 (31)	58
Oahu	21	44	59	124 (28)	56
Molokai	15	5	7	27 (6)	6
Maui	34	13	29	76 (17)	17
Big Island	11	11	55	77 (18)	44
Category total ^µ	126 (28)	104 (24)	213 (48)	443 (100)	181 (41)

Numbers shown represent the number of sites and numbers in parenthesis are percent of total

Inspection Results

OSDS Condition Assessment Scores

	A	Assessment score and color coding (inspected)							
Island	1	2	3	4		Couldn't	Total		
(location)	Pass	Sludge/Scum	Potential failure	Fail	Total Accessed	access			
Kauai	37 (64%)	3 (5%)	7 (12%)	11 (19%)	58	5	63		
Oahu	33 (59%)	3 (5%)	12 (21%)	8 (14%)	56	3	59		
Molokai	4 (67%)	1 (17%)	0 (0%)	1 (17%)	6	1	7		
Maui	12 (71%)	1 (6%)	1 (6%)	3 (18%)	17	12	29		
Big Island	37 (84%)	1 (2%)	0 (0%)	6 (14%)	44	11	55		
Total	123 (68%)	9 (5%)	20 (11%)	29 (16%)	181	32 ^Ω	213		

<sup>
Ω</sup> Breakdown of 32 sites that could not be accessed (sites that had portable toilets but were previously served by OSDS - 4, an attempt was made but the location could not be determined -12, OSDS that were located but the covers for access could not be removed because of obstructions - 8, sites were presumed to be OSDS but further investigation revealed that it was served by a sewer - 8)

Inspection Results

Self-reported pumping frequencies for septic tanks in the State of Hawaii

Pumping interval	Count	Percentage
Never	81	28.1
Unknown	150	52.1
Once or twice	11	3.8
Once or more per year	16	5.6
Contracted	30	10.4
Total	288	100

Effluent Samples

72 systems (40%): 58 Septic 14 ATU

	Septic tank effluent characteristics						
	Expected	(EPA) values	Actual measured values				
Component	Concentration range	Typical concentration	Fraction that fall within range	Fraction exceeding typical concentration			
TSS (mg/l)	36 - 85	60	40 %	43%			
BOD5 (mg/l)	118 - 189	120	25 %	40%			
Total N (mg/l)	29.5 - 63.4	60	19 %	74%			
Total P (mg/l)	8.1 - 8.2	8.1	2 %	69%			

Inspection Survey summary

- 80% of 181 systems not receiving basic maintenance
- 2/3 of systems rated as passing
- 1/6 are in need of service and could fail
- 1/6 are considered failing
- Unmaintained ATUs do not perform better than septic tanks, and do not meet 30/30
- 70% of effluent samples exceeded typical values of TN & TP
- 40% of samples exceeded typical values for TSS and BOD
- Honor system for ATU maintenance not effective
- A more managed program is needed

Selection Tool (2013)

• Four step process:

- 1) Preliminary site analysis (location, topography, soil type, separation distances)
- 2) Site conditions (high WT, soil perm, steepness, flood zone, proximity, density)
- 3) Wastewater characterization
- 4) Estimate costs
- Tables for applicability
- Cost tables
- Examples provided
- With: Terry Chan MS

	HAR 11-62 ("Recommended Standards")					
	Cesspool	Treatment Unit	Seepage Pit	Soil Absorption System		
Wall line of any structure	5	5 (10)	5	5		
Property line	9	5 (10)	9	5		
Stream, ocean (taken from the vegetation line), pond, lake or other surface water body	50	50 (50)	50	50		
Large tree	10	5	10	10		
Treatment unit	5	5	5	5		
Seepage pit	18	5	12	5		
Cesspool	18	5	18	5		
Soil absorption system	5	5	5	5		
Potable water source serving public water systems (potable wells)	1,000	500 (50)	1,000	1,000		

Minimum Horizontal Distance From (ft) HAR 11-62 ("Recommended Standards")

Soil Texture	Percolation Rate (min/in)	Application Rate (gpd/ft ²)
Coarse sand or coarser	<1	Not suitable
Medium sand	1-5	1.2
Porous, well-developed structure in silt and silt loams	31-60	0.45
Other silt loams, silty loams, clay loams	61-120	0.2

Treatment selection

	High Water Table (<3' below point of discharge)	Low Permeable Soil (<1 or >10 min/in)	Steep Terrain (>8% slope)	Flood zone (100-yr flood)	Proximity to Inland Surface Water (<50' to	Proximity to Coastal Waters (<50' to oceans)	High OSDS Density (>40 OSDS/acre)	Protection of Groundwater	Lateral Movemen t
Onsite Treatment Metho	d discharge)	11111/111)			streams, takes)				
Septic Tank	u No ¹	No ¹	Yes	No ¹	No ¹	No ¹	No ¹	No ¹	No ¹
Continuous Flow ATU w/ Fixed Integral Packing	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No ¹
Sequencing Batch Reactor ATU	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No ¹
Sand Filter	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes ²
Recirculating Sand Filter	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes ²
Enhanced Phosphorus Removal	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²
Enhanced Nitrogen Removal	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²
Emerging Trace Contaminant Removal	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²
Chlorine Disinfection	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²
UV Disinfection	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²

¹ Additional treatment required

² Treatment supplement

Disposal selection

	High Water Table (<3' below point of discharge)	Low Permeable Soil (<1 or >10 min/in)	Steep Terrain (>8% slope)	Flood zone (100-yr flood)	Proximity to Inland Surface Water (<50' to streams, lakes)	Proximity to Coastal Waters (<50' to oceans)	High OSDS Density (>40 OSDS/acre)	Protection of Groundwater	Lateral Movement
Onsite Disposal System	n								
Holding Tank	No	No	No	No	No	No	No	No	No
Cesspool	No	No	No	No	No	No	No	No	No
Seepage Pit	No	No	Yes	No	No	No	No	No	No
Adsorption Trenches	No	No	No	No	No	No	No	No	No
Adsorption Beds	No	No	No	No	No	No	No	No	No
Elevated Mounds	Yes	Yes	No	Yes	No	No	No	No	No
Evapotranspiration	Yes ³	Yes ³	Yes ³	Yes ³	Yes ³	Yes ³	Yes ³	Yes ³	Yes ³
Water Reuse	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Stand Alone Facilities									
Waterless toilets	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

³ Contained with no percolation into subsurface

Costs

	Typical Installation Costs (\$/Unit)	Annual Maintenance Fees (\$/yr) (Including pumping and labor)	Energy Consumption (kW-h/yr)	Energy Costs (\$/yr) (Assuming 35 cents per kW-h)	Annual Replacement Parts (\$/yr) (Including chemicals)	Annual Amo 5 years (\$/m 6% annua compound	rtized Cost over on) (At nominal l interest rate, ded monthly)
Treatment System							
Septic Tank	6,000-14,000	60-250	0	0	0		100-300
Sequenced Batch Reactor ATU	24,000-36,000	250-350	915-3,650	315-1280	0		500-800
Recirculating Sand Filter	18,000-36,000	200-250	110-300	35-105	350-750 (media every 4-5	replacement years)	350-750
Enhanced Phosphorus Removal	6,000-13,000	-	-	-	500-900 (media every 4-5	replacement years)	130-280
UV Disinfection	1,000-3,000	50-150	307	105-115	80-95	5	40-70
Disposal System							
Seepage Pit	>10,000	-	-	-	-	>	230
Absorption Trenches	8,000-22,000	-	-	-	-	16	0-420
Elevated Mounds	12,000-30,000	-	110-365	35-130	-	23	0-590
Evapotranspiration	18,000-30,000	-	-	35-130	-	35	0-680
Water Reuse	Varies (assume 6,000-7,000)	-	-	-	-	V	aries

Testing ATUs

- Tested 4 HI-produced ATUs
- NSF Std-40 protocol, Class I
- NSF Std-245 protocol, N-removal
- Feasibility for recycling
 - R-3 = Class I
 - R-2 = disinfected (23 CFU/100mL)
 - R-1 = Title 22 (+ sand filter & UV)

Acknowledgements

- The work of several students over the past 20 years
 - Best OESIS 400 1998-99: Daniel McNair, Lance Edling, Beth Florendo, Keith Oshiro
 - IWT CBT 800 2004-05: Atiim Senthill, Tieshi Huang, Yingyot Chanthawornsawat, Sumon Kanpirom, Jing Hu
 - Envirocycle ECR 600 2013-14: Gloria Cheong, Branden Santiano, Yanling Li, Krishna Lamichhane
 - WaiponoPure 800 2015-16: Collin Nguyen, Stanley Taguchi, Jeremy DeGracia, Xavier Visaya
- The City and County of Honolulu, ENV T&D has given access/power and let us do this

Sample data

Sample data

		Avg.	Std.	Min.	Max.	Med.	Data
			Dev.				Points
Dosed Volume (Gallons/	day)	600	NA	600	600	600	NA
Dissolved Oxygen	Aeration Chamber	6.84	1.64	0.2	8.70	7.45	125
(mg/L)							
Ambient Temperature	Aeration Chamber	29.05	1.18	25.00	31.60	29.10	130
(°C)							
pH (SU)	Aeration Chamber	6.52	0.39	5.40	7.61	6.57	128
BOD₅ (mg/L)	Influent	303	92	101	550	284	133
BOD₅ (mg/L)	Effluent	7	5	0	22	6	132
Total	Influent	257	80	32	571	239	129
Suspended Solids	Effluent	4	4	0	30	3	131
(mg/L)							
Settleable Solids (mL/L)	Effluent	0	0	0	0	0	0
Ammonia (mg/L)	Effluent	14.8	12	0.02	49.4	12.2	71
Nitrate (mg/L)	Effluent	50.8	27	4.58	126	51.4	117
Nitrite (mg/L)	Effluent	3.27	4	0.01	21.36	2.24	67
Total Nitrogen	Influent	38	11	8	96	37.50	66
(mg/L)	Effluent	18	13	1	76	18	66
Total Phosphorus	Influent	15	10	1.5	44.5	15.3	56
(mg/L)	Effluent	12	6	0.05	25.50	13.50	56

Approvals & Nitrogen Removal

DOH Approvals

- O Best Industries OESIS-750 APPROVED 1999
- O International WW Technologies CBT 0.8KF-210 APPROVED 2005
- O Envirocycle ECR 600 APPROVED 2014
- WaiponoPure 800 APPROVED 2016 (NSF 245 pending)

• BOD & TSS Average in Effluents

		CBOD	155
	O OESIS-750	13.9	13.1
	O CBT 0.8KF-210	4.6	2.7
	O Envirocycle ECR 600	7.0	4.0
	O WaiponoPure 800	14.4	9.1
C	Nitrogen Removals	% M	eets CZARA/245
	O OESIS-750	19	No
	 OESIS-750 IWT CBT 0.8KF-210 	19 81	No Yes
	 OESIS-750 IWT CBT 0.8KF-210 Envirocycle ECR 600 	19 81 53	No Yes Yes
	 OESIS-750 IWT CBT 0.8KF-210 Envirocycle ECR 600 WaiponoPure 800 	19 81 53 74	No Yes Yes Yes

Gray Water Reuse

- Guidelines for the Reuse of Gray Water, DOH, June 2009 (on-line at: hawaii.gov)
- Blackwater: toilets, kitchen sinks
- Gray water: showers/tubs, lavatories, clotheswashing machines
 - 50-80% of generated residential wastewater
- Uses
 - Irrigation subsurface only
 - Plant lists
- Treatment none
- System requirements, design considerations, and maintenance
- Example calculations
 - Gray water volume
 - Sizing the Tank
 - Sizing the Irrigation area

Prepared by Hawaii State Department of Health Wastewater Branch June 22, 2009

CURRENT: Investigation of Cesspool Upgrade Alternatives for Upcountry Maui

DOH-SDWB: Babcock, Oleson, Barnes, (student: Adrienne Fung)

Identify replacement alternatives

- On-site treatment and disposal options, incl. new
- Sewers and WWTPs
- Site conditions, siting rules
- Costs (capital, O&M)
- Management program
- Analyze environmental benefits
 - Modeling transport of N
 - Goal: TN < 5 mg/L
- Cost/Benefit decision-making analysis
 - Replacement costs, O&M costs, Management costs
 - Benefits quantification
- Stakeholder engagement

Cesspool Upgrades

- Non-priority areas
 - Conventional septic tank with absorption trenches/bed
 - ATU with absorption trenches/bed
 - Advanced ATU with disinfection and seepage pit or drip irrigation
- Priority areas (risks to public health, drinking water, sensitive surface/ocean waters)
 - ATU w/DN with absorption trenches/bed
 - Advanced ATU w/DN with disinfection and seepage pit or drip irrigation
 - Septic tank with DN absorption bed

FUTURE:

- Pilot testing MBR ATUs
- Bench+field testing glass foam absorption beds
- Field test Presby system
- Bench+field test denitrifying absorption beds (wood chips/sawdust)
- Issues/Research:
 - Local conditions, locally sourced materials
 - Low vs high tech, operation cost vs reliability
 - Inspection/Maintenance needs and lifespan
 - Management program, permits, design stds/manual
 - "pressure" to innovate and reduce costs

Ships Easily! 1 Englig Film" System Fits in 1 Box (~50 lbs)

Stony Brook University

Unlined, unsaturated NRB

New York

Florida

Questions