EPSCOR Merging the Data Needs of the State Agencies with those of the Scientific Community

A Proposal for a Collaborative Resource (Re-)Analysis

Don Thomas &
The EPSCOR Team

(To State the Obvious)

- The quality of Hawai'i's groundwater resources is among the best in the world
- We all recognize these resources as critical assets for our communities
- For most communities, the available resource is adequate to meet current needs.... BUT

The resource is under varying degrees and urgencies of threat from multiple stressors:

- Over production in some locations
- Contamination
 - Red Hill (headlines)
 - Pesticide use (headlines)
 - Wastewater spills (headlines)
 - OSDS (no headlines????)
- Climate Change
 - Manmade or Not headlines (see Anasazi & overproduction...)

- These threats are managed by
 - CWRM overproduction, protection of the resource
 - DOH Point and Non-Point source contamination
 - DWS quality delivered to the user

All over committed and under-resourced to fully manage the complete spectrum of threats that the resource is subject to...

There is a further threat that compounds all the others:

We don't yet fully understand how water flows, or how it is stored, inside Hawai'i's volcanoes

Map ID: 1010

Later drilling, in the Keauhou aquifer, on Hualalai, found a system similar to that found in Hilo

- The Kamakana Well encountered a thin basal lens, underlain by salt water saturated rock down to ~1000' below sea level and then a second freshwater saturated interval below that
- We believe that the Keopu Deep Monitor Well farther south in Kona may have encountered a similar aquifer

Depth versus Time

Proposal

- A collaborative effort among the UH and CWRM, DOH, and county DWS to:
- Better define the distribution and extent of groundwater aquifers (in 3-Dimensions) on each of the islands
- Develop better models for groundwater flow that can more reliably project the rates and direction of flow of the groundwater (and potential contaminants)

-2 - 0 -5 - -2 -10 - -5 -20 - -10

-45 - -20

II Temperature

How Do We Propose To Do This

- Develop innovative downhole monitoring instruments that can provide better, more timely, and more robust water level and chemistry data for selected monitoring and production wells
- Develop better estimates of coastal discharge of groundwater that can help us constrain the overall disposition of the recharge into the islands
- Use these legacy and new data sets to test and refine existing conceptual and numerical models for groundwater storage and flow inside the islands

How Do We Propose To Do Thi\$\$\$

- We currently have a proposal submitted to National Science Foundation that would allow us to cover the costs of conducting a targeted effort to accomplish our goals in the Keauhou/Kiholo and Pearl Harbor/Honolulu aquifers
- Provide funding for interns, field work, development of the visualization software, development of the monitoring tools, model development etc.
- Now working on development of a proposal to DOD for site specific work in the Pearl Harbor area

Cooperation from our Collaborators

- Provide access to the legacy data and clear guidance on (C.I.) access restrictions
- Provide guidance on the types of monitoring that would be most beneficial to operating needs and access to a subset of wells that can be monitored
- Provide guidance on what mapping or sorting capabilities would be most useful to potential users (e.g. highest chlorides; greatest change in chloride, hits on criteria pollutants, greatest deviation from prior set point, etc.
- Provide us with feedback on areas of interest for conducting active or passive geophysical surveys and tests

What is the Desired End State

- A better understanding of the groundwater flow and storage inside the islands
- A suite of useful, user-friendly tools for agency staff to monitor the condition, and highlight significant changes, in groundwater quality and availability
- A set of tools that can allow the agencies to better convey the condition of our groundwater resources (and the threats thereto) to the public and decision-makers
- More robust modeling capabilities that can reliably reflect storage and transport processes and can support agency needs (e.g. SWAP, contaminant plume definition)

What is the Desired End State

 Guidance on how to best access the needed water resources – sustainably – while minimizing costs and adverse impacts on natural hydrologic processes

Old Joke - With A (sharp) Point

I've got good news and bad news:

The good news: In 20 years we'll all be drinking recycled wastewater

The bad news: There's not going to be enough to go around

