
USE OF DECISION UNIT AND MULTI-INCREMENT SOIL SAMPLE INVESTIGATION APPROACHES TO CHARACTERIZE A SUBSURFACE SOLVENT PLUME

SITE CG110 HICKAM AIR FORCE BASE, HONOLULU, HAWAI'I

Hawai'i Department of Health

Hazard Evaluation and Emergency Response Office

Site Discovery, Assessment, and Remediation Section

919 Ala Moana Blvd., #206

Honolulu, HI 96814

March 2011

ACKNOWLEDGEMENTS

This project was funded under a USEPA grant to the Hawai'i Department of Health (HDOH), Hazard Evaluation and Emergency Response Office (HEER). The USEPA's continued support of HEER office efforts to develop improved guidance for the investigation, evaluation and remediation of contaminated sites is invaluable. The design and implementation of the project represents the collaborative effort of multiple private entities, individuals and government agencies. The individuals involved in early discussions of the project in Hawai'i and on the mainland US are too numerous to fully acknowledge. Their input was critical, however, and they will recognize many of the ideas discussed over phone calls, emails and during environmental conferences in the details of the study.

In particular, the HEER office wishes to acknowledge the following individuals for their input and assistance in the final design, field implementation and interpretation of the final project:

Chuck Ramsey (EnviroStat, Inc.; project co-manager; design, implementation and evaluation),

Alan Hewitt (Army Corps of Engineers; investigation design),

Bill Grannis (Hickam Air Force Base, Honolulu; project point of contact and field documentation),

Pete Lee (Hickam Air Force Base, Honolulu; legal support for Right-of-Entry Agreement),

Fenix Grange (HEER Office SDAR Supervisor, overall project support),

Lynn Bailey (HEER Office; field logistics, design, implementation and evaluation),

Eric Jensen (Tetra Tech, Inc.; project design and contract management),

Marvin Heskett (Test America-Honolulu; sample collection and laboratory analysis),

Kevin Rogers (Geo-Tek Hawai`i, Inc.; borehole installation and sample collection),

Scott Duzan and Rosiland Selbach (Tetra Tech, Inc.; field logistics and implementation),

Tomas Hernandez (Prudent Technologies, Inc.; field assistance).

We would also like to acknowledge the previous investigations conducted at the site by CH2M HILL and other consultants, and discussions with their staff on the design of the study. Roger Brewer and John Peard co-managed the project on behalf of the HEER office. They can be contacted at roger.brewer@doh.hawaii.gov or john.peard@doh.hawaii.gov for additional information on this project.

Hawai'i DOH March 2011

Executive Summary

Study Overview

A shallow area of trichloroethylene (TCE)-contaminated soil was investigated using Decision Unit (DU) and Multi-Increment Sampling (MIS) techniques. The targeted soil is situated at and below the water table and coincides with a plume of TCE and related contaminants in both groundwater and soil gas. The study was designed to help develop more efficient, accurate and cost-effective approaches for the investigation and ultimately *in situ* remediation of subsurface contamination. Although the study focuses on the investigation of volatile organic compounds (VOCs), the approaches described could be applied to non-VOC contamination as well.

In practice, a DU-MIS subsurface investigation would consist of the following steps:

- 1. Identify the area of concern (e.g., lateral and vertical estimation of the primary release area);
- 2. Divide the Decision Unit into appropriately sized, subsurface DU layers (e.g., based on the subsurface geology, suspected contamination distribution and/or optimization of planned, *in situ* remedial actions);
- 3. Install a large number (ideally 30 or more) of borings spaced in a stratified random manner within the DU area, assuming tabular-shaped DUs that are longer and wider than they are thick;
- Collect individual, core increments from targeted DU layers in each boring, subsampling each increment at a spacing deemed appropriate for the project (e.g., 5-gram plugs collected every 2 to 12 inches) and preserving the extracted soil in methanol;
- 5. Combine subsampled core increments into MI samples for individual boreholes and targeted DU layers, either in the field or in the laboratory;
- 6. Use Specific Ion Monitoring (SIM) to analyze MI samples and reduce the method reporting level for targeted VOCs;
- 7. Use MIS data for individual boreholes and DU layers to identify the lateral and vertical location of subsurface contamination:
- 8. Use MIS data to estimate the total contaminant mass for the DU volume of soil within selected subareas of the plume (e.g., 100%, 95% and 80% contaminant mass areas);
- 9. In cases where individual core increments are preserved in methanol, consider alternative combinations of increment extracts to provide more focused data for key areas of the subsurface plume (e.g., use to further optimize design of *in situ* remedial actions).

As described in this report, determining the mean concentration of targeted contaminants in both boreholes and DU layers allows the lateral and vertical location of the plume core to be quickly identified. Testing of individual core increments collected within each borehole (and by analogy within each DU layer), as might be done in a traditional, discrete sample investigation,

is not necessary, since only the *mean* concentration of VOCs within the boreholes and DU layers is needed to determine this information. The resulting MIS data also allow estimation of the mass of VOCs present for the plume as a whole or for smaller, core areas of the plume. This type of information is key to the success of *in situ* remedial actions.

Making both discrete data and MI data available for select sites is very useful for research and training purposes, however. Doing so allows the reader to evaluate the pros and cons of each approach, as well as compare the time and effort required in the field and ultimately the total cost. In the approach described above, each core increment can be thought of as an individual, discrete sample. Although not necessary for the ultimate goal of this project—identifying the location and mass of subsurface contaminants—a decision was made to analyze each core increment separately and generate a comparative set of discrete sample data. The discrete sample data could then be used to both generate "synthetic" MI sample data (i.e., by averaging discrete sample data for individual boreholes and DU layers) and to compare to MI sample data that was actually collected for the site. Actual MI samples were in fact only prepared for select boreholes and DU layers. The resulting data set should in particular help understand the pitfalls of using too few discrete data points to design *in situ* remediation of subsurface contamination.

Decision Unit Designation and Sample Collection

Soil from the top of the water table (approximately 6 feet below ground surface) to the top of an underlying volcanic tuff formation that forms the base of the plume 15 to 25 feet below ground surface was designated as the Decision Unit. DU soils were further subdivided into seven layers. The presence and thickness of lower DU layers varies across the site due to variations in the depth to the top of the tuff formation. The layers represent sub-portions of the DU volume of soil that were to be investigated separately, but combined to make decisions about the DU as a whole.

DU Investigation and MI Sample Preparation

Twenty-nine borings were ultimately installed at the project study site within an area of approximately 100,000 square feet. A planned 30th boring was not completed due to a subsurface obstruction. The section of the core that corresponds to a specific DU layer represents an "increment" ("core increment") for that layer, in the same manner as an increment collected from a designated DU of surface soil. DU layer increments were too large for individual preservation or combination and had to be subsampled in the field. An increment was subsampled by collecting a series of 5-gram plugs of soil from the core borings at a spacing or "vertical resolution" of 2 inches. Plugs collected from an individual increment were placed in methanol in the field. The core increments for 2-foot-thick DU layers consisted of approximately 12 5-gram plugs of soil collected at a 2-inch spacing, for a total approximate sample mass of 60 grams. Soil plugs were collected at a similar spacing for thicker DU layers, with resulting sample masses up to 120 grams or more.

A total of 164 core increments were subsampled and collected from the targeted DU layers. Replicate sets of increments were collected from three boreholes. This approach allowed for very good, three-dimensional sample coverage of the plume. Use of a small plug spacing and preservation of individual core increments in methanol allowed for the extraction and analysis of very large masses of soil from targeted DU boreholes and DU layers in comparison to traditional, discrete samples. The mass of preserved and extracted soil for individual core increments ranged from 60 to 130 grams. This compares to a standard, 5-gram aliquot mass for a traditional discrete soil sample to be tested for VOCs. The average mass of preserved and

extracted soil for boreholes where all seven DU layers were encountered is just over 500 grams. The average mass of preserved and extracted soil for DU layers was approximately 1,000 grams.

MI Sample Preparation, Analysis and Evaluation

In practice, individual core increments would be combined in the field, or extracts of preserved increments would be combined in the laboratory to prepare a single, MI sample for each DU layer and each borehole (total of 7 DU layer samples and 29 borehole samples). The Mi samples would then be analyzed for TCE, *cis* and *trans* dichloroethylene and vinyl chloride. The resulting DU layer and borehole data would then be evaluated to identify the location of the core of the subsurface contamination as well as the concentration, mass and vertical distribution of contaminants within the plume core.

For the purposes of this study, however, each individual core increment was analyzed, and MI sample data were computed by averaging core increment data for targeted boreholes and DU layers. This enables the generation of both "discrete" sample data points and correlative MI sample data for comparison and training purposes. As noted above, the analysis of individual core increments would generally not be necessary, since the objective is to determine the mean concentration of VOCs in the core of each borehole and for the targeted DU layers. This can be most efficiently done by combining individual increments associated with a borehole or DU layer into a single MI sample and then testing the resulting sample.

For this study, borehole and DU layer MI sample data were computed by calculating the arithmetic average of the individual core increment points. The computed borehole and DU layer MI sample data were then used to identify the lateral (borehole data) and vertical (DU layer data) location and mass of the subsurface contamination. Individual borehole MI data were further used to identify portions of the plume that contained 100%, 95% and 80% of the total VOC mass present. In practice, this information could then be passed on to those tasked with *in situ* treatment of the contamination in order to optimize the design of the remediation system (e.g., *in situ* chemical oxidation or thermal treatment).

Related Issues

As discussed in this report, the study included a number of other tasks that were used to evaluate the use of DU and MIS techniques for the investigation of subsurface contamination. These included:

- Preparation of lab-based MI samples for targeted DU layers by combining subsampled methanol extracts of individual core increments, as well as documentation of these laboratory procedures;
- Collection of *field* MI samples (including replicates) for targeted DU layers and DU boreholes for comparison to MI samples computed from individual core increment analyses and to lab-generated MI samples (field MI samples were also used to evaluate optimal vertical resolution of soil plug spacing);
- Collection of replicate core increments to evaluate the precision of methanol extraction for target analytes and evaluate the precision of lab subsampling of methanol extracts;

- Collection of grain-size and total organic carbon data for individual DU layers in order to better understand VOC distribution and partitioning in the subsurface;
- Evaluation of the use of SIM laboratory methods to reduce method reporting limits for samples preserved in methanol;
- Evaluation of laboratory methods for calculation of soil moisture.

Investigation Results

The borehole MIS data were used to define the aerial portions of the plume that contain 100%, 95% and 80% of the total VOC mass. The DU layer MIS data indicate a progressive increase of VOCs mass downward, with the majority of the mass distributed in the more silty and clayey deeper units of the DU. The total mass of VOCs present within the plume area is estimated to be between 10 and 15 kilograms.

The DU and MIS investigation approaches employed were able to identify the location, vertical distribution, representative concentration and core mass of VOCs associated with the TCE plume in a single investigation. This is a substantial improvement over traditional, discrete sample investigations, which typically require multiple mobilizations over an extended period of time and even then tend to significantly underestimate the mass of contaminant present. The use of well-thought-out DUs and provision of a high-quality, three-dimensional network of MIS data allow for a cost-effective and significantly more accurate characterization of subsurface soil contamination. Use of these approaches is anticipated to significantly improve the efficiency and cost effectiveness of subsurface characterizations and remedial actions ultimately conducted at a site.

Table of Contents

Exec	utive S	ummary	/	ES-i		
1.0	Introduction1					
2.0	STUDY SITE1					
3.0	INVESTIGATION OBJECTIVES2					
4.0	DECISION UNIT AND DU LAYER DESIGNATION					
5.0	BORING INSTALLATION AND SAMPLE COLLECTION					
	5.1	.1 Boring Location and Spacing				
	5.2	Sample Collection				
		5.2.1	DU Layer Core Increment Samples	5		
		5.2.2	Field Preservation of CI Samples	6		
		5.2.3	Collection of CI Samples from Bottom-Most Layer	6		
		5.2.4	Core Increment Replicates	7		
		5.2.5	Field DU Layer and Borehole MI Samples	7		
		5.2.6	Field MI Samples for TOC and Grain-size analysis	7		
		5.2.7	Field MI Samples for Soil Moisture analysis	8		
		5.2.8	Laboratory MI Samples	8		
6.0	0 SAMPLE ANALYSIS					
7.0	DATA RESULTS					
	7.1	Field Core Increment Sample Data9				
	7.2	DU Layer MI Data (Field, Laboratory and Computed from Core Increments) 9				
	7.3	Borehole MI Data (Field and Computed from Core increments)10				
	7.4	TOC a	and Grain-size Data	10		
	7.5	Soil Moisture Data11				
8.0	EVAL	UATIO	UATION OF REPLICATE DATA			
9.0	Сна	CHARACTERIZATION OF SUBSURFACE PLUME				
	9.1	Project Design Review13				
	9.2	Total DU VOC Mass and Vertical Distribution13				
	9.3	Distribution of VOCs in 100% VOC Mass Area14				
	9.4	Distribution of VOCs in 95% and 80% VOC Mass Areas15				
	9.5	Addit	ional Investigation and Remedial Actions	16		
	9.6	Partiti	ioning of Contaminants Between Sorbed and Dissolved Phases	17		
	9.7	Predicted Dissolved-Phase Contaminants within Primary Plume Area18				

i

	9.8	Predicted Vapor-Phase Contaminants within Primary Plume Area	19
10.0		LESSONS LEARNED	19
	10.1	Use of DU-MIS for Characterization of Subsurface Contamination	.19
	10.2	Cost-Benefit Analysis of DU-MIS Investigations	. 20
	10.3	Characterization of Targeted Depths Versus Targeted Layers	21
	10.4	Designation of Subsurface DU Layers	22
	10.5	DU Layer Increment Subsample Spacing	.22
	10.6	Preservation of Field Samples or Increments in Methanol	23
	10.7	Use of Specific Ion Monitoring (SIM)	23
	10.8	Field- Versus Laboratory-Prepared MI Samples	. 23
	10.9	Use of Borehole and DU Layer MI Data to Locate and Characterize Plume Core	
	10.10	Collection of Soil Samples Below Groundwater	.24
	10.11	Use of Grain-Size and Total Organic Carbon Data	. 25
	10.12	Laboratory Procedures for Grain-Size Analysis	. 25
	10.13	Lab Subsampling Procedure for Soil Moisture	. 25
	10.14	Additional Observations	. 25
11.0		REFERENCES	27

Tables

- Table 1. DU layers encountered in borings and estimated DU layer volume.
- Table 2. Summary of sampling scheme for each borehole.
- Table 3a. Summary of field and laboratory MI sample mass.
- Table 3b. Average mass of subsample collected from borehole core increment samples across noted DU layer.
- Table 3c. Borehole core increment mass (wet weight, two-inch plug spacings).
- Table 4. Summary of core increment sample data (ug/kg, wet weight).
- Table 5. Summary of MI sample VOC data for targeted DU layers (ug/kg, wet weight).
- Table 6. Summary of MI VOC sample data for targeted borings (ug/kg, wet weight).
- Table 7a. DU layer grain-size distribution and TOC (dry weight) originally reported by TestAmerica Burlington lab for subsampled DU layer MIS samples.
- Table 7b. Mass of particle size groups (dry weight) and total organic carbon and estimated concentration of TOC in fines, based on TestAmerica Burlington data.
- Table 7c. Particle size distribution based on analysis performed at TestAmerica Burlington using MI subsamples from original samples (dry weight).
- Table 7d. Relative proportions of fines to total fines reported by TestAmerica Burlington lab.
- Table 8a. Grain-size distribution of original MI samples by mass (dry weight) minus subsample sent to Burlington lab.
- Table 8b. Particle size distribution of original MI samples, minus subsample sent to Burlington lab
- Table 9a. Revised MI sample mass (dry weight) and grain-size distribution based on combined TestAmerica Burlington and TestAmerica Honolulu data.
- Table 9b. Adjusted particle size distribution and total organic carbon concentration based on combined TestAmerica Burlington and TestAmerica Honolulu data.
- Table 10. Soil moisture data.
- Table 11a. Replicate data for borehole core increment samples.
- Table 11b. Evaluation of borehole CI sample replicate data (see Table 11a, Total VOCs, in ug/kg).
- Table 12. Replicate data for laboratory-prepared MI samples.
- Table 13. Comparison of field, laboratory and computed MI data for total VOCs.

- Table 14. Estimated mass of soil and total VOCs in each DU layer.
- Table 15. Borehole MIS data for total VOCs calculated as weighted average of corresponding borehole core increments.
- Table 16. DU layer VOC concentrations across full investigation area in comparison to the 100%, 95%, and 80% mass primary plume areas (based on computed core increment MIS data for DU layers).
- Table 17. Volume of DU layer soil represented by 80%, 95%, and 100% VOC mass areas (see also Figure 13).
- Table 18. Predicted partitioning of VOC between sorbed phase (organic carbon only) and dissolved phase (i.e., groundwater) in noted combinations of DU layers.
- Table 19. Predicted VOC concentrations in DU layer groundwater based on corresponding sediment VOC data and total organic carbon data (see Table 15).
- Table 20. Predicted VOC concentrations in borehole groundwater based on corresponding soil VOC data and total organic carbon data (see Table 6).
- Table 21a. Measured concentrations of total VOCs in groundwater within primary plume area (USAF 2007, see Figure 14).
- Table 21b. Predicted concentrations of total VOCs in groundwater within primary plume area based on average-weighted soil data from nearby borings (see Table 6 and text).
- Table 22. Predicted VOC concentrations in groundwater in DU Layer A (first 4 feet of saturated zone) at borehole locations within primary plume area.
- Table 23. Predicted VOC concentrations in shallow soil gas within primary plume area (based on predicted VOC concentrations in groundwater).
- Table 24a. Measured concentrations of total VOCs in soil gas within primary plume area (see Figure 3).
- Table 24b. Predicted concentrations of total VOCs in soil gas immediately above the groundwater interface within primary plume area, based on soil data from nearby borings.

Figures

- Figure 1a. Location of CG110 study site at Hickam Air Force Base in Honolulu, Hawaii.
- Figure 1b. Location of CG110 study site at Hickam Air Force Base in Honolulu, Hawaii.
- Figure 2. Reported concentrations of TCE in groundwater above 360 ug/L (USAF 2007).
- Figure 3. Reported concentrations of TCE in soil gas (USAF 2007).
- Figure 4a. Cross Section A-A' from 2007 USAF RI with superimposed DU layers designated for HDOH study.

- Figure 4b. Cross Sections B-B' and C-C' from 2007 USAF RI with superimposed DU layers designated for HDOH study.
- Figure 5. Core area of TCE plume based on previous soil, groundwater and soil gas data summarized in 2007 USAF RI (HDOH interpretation).
- Figure 6. HDOH study borehole locations (approximate 70-foot grid).
- Figure 7. NW-SE cross section of DU layers based on depth to tuff unit identified in this study.
- Figure 8. Depiction of borehole core increments collected from targeted, decision unit layers.
- Figure 9. Preparation of core increment samples by subsampling targeted DU layer intervals.
- Figure 10a. Vertical distribution of total VOCs in DU layers across total study area (see Table 14).
- Figure 10b. Vertical distribution of total VOCs within DU layers within 95% mass area (nine borings; see Table 14).
- Figure 10c. Vertical distribution of total VOCs within DU layers within 80% mass area (five borings; see Table 14).
- Figure 10d. Vertical distribution of total VOCs between adjacent boreholes in core area of contamination, depicting heterogeneous distribution of contaminants at the scale of a single core increment sample (refer to data in Table 4).
- Figure 11. Aerial distribution of total VOCs within study area, depicting areas that incorporate 80%, 95%, and 100% of contaminant mass (aerial view).
- Figure 12. Schematic of aerial distribution of total VOCs within study area, depicting areas that incorporate 80%, 95% and 100% of contaminant mass (mass cutoffs are arbitrary but typical of remedial projects).
- Figure 13. Predicted contour map of total VOCs in groundwater based on borehole MI sediment and total organic carbon data (See Table 20).
- Figure 14. Simplified map of total VOCs in groundwater reported in 2007 RI report (approximate locations of key wells noted; see USAF 2007).
- Figure 15. Effect of heterogeneous distribution of contaminant concentrations at the scale of a discrete sample point (or aliquot) on interpretation of DU volume of sediment (or soil) as a whole.

Appendices

Appendix 1 Boring Logs

Appendix 2 Borehole GPS Locations

Appendix 3 Laboratory Reports

1.0 Introduction

An accurate estimation of the location, concentration, mass and partitioning of subsurface contamination can be very time consuming and expensive to achieve, yet this type of information is critical for environmental hazard evaluations (aka "risk assessment") and proper design of *in situ* cleanup actions. An inadequate understanding of these factors can lead to failed remediation and additional time and expense needed to fully treat a contaminated site.

This study looks at the use of "Decision Unit (DU)" and "Multi-Increment Sample" ("MI Sample" or "MIS," also referred to as "Incremental Sampling") investigation approaches to expedite and improve the characterization of subsurface contamination. *Multi Increment*® is a registered trademark of EnviroStat, Inc. Although the study focuses on the investigation of volatile organic contaminants (VOCs), the approaches discussed could be applied to nonvolatile and inorganic contaminants as well. Similar but less intensive studies have been conducted in the recent past (e.g., Hewitt et al 2008). The *Sampling and Analysis Plan* prepared for the study provides a detailed overview of the study design and implementation (HDOH 2010).

As discussed below, a relatively small and isolated plume of VOC-contaminated soil located below the shallow groundwater level at Hickam Air Force Base in Honolulu, Hawai'i was selected for the study. No remedial actions are planned for the site in the near future. The study was designed to address a hypothetical scenario where *in situ* remediation of the core area of the plume was to be conducted. Consequently, the key objectives of the study included: 1) Identify the core area of the plume (i.e., the area that contains 95% of the contaminant mass), 2) Estimate the mean concentration and mass of contaminants present within this area and 3) Evaluate the partitioning of contaminants between dissolved and sorbed phases within the plume. This information would then in theory be used to help design and optimize *in situ* remediation of the plume in the most cost-effective and efficient manner possible.

2.0 STUDY SITE

A shallow, approximately 2-acre plume of solvent-contaminated soil and groundwater at Hickam Air Force Base in Honolulu was selected as the study site (Figure 1). The site is referred to as "CG110" in the Air Force database. The CG110 site was used in the past for aircraft refueling, carburetor cleaning, and other routine aircraft maintenance and is currently used for maintenance and storage purposes.

The water table is situated approximately 6 feet below ground surface (bgs). Groundwater is not considered to be a current or potential source of drinking water. The subsurface is characterized by recent (Holocene) marine sediments (referred to in subsequent sections as "soil" for the purposes of this report), and volcanic units (refer to boring logs in Appendix 1). The upper vadose zone appears to be composed primarily of coralline, dredged fill material. This overlies a coarsening upwards sequence of unconsolidated, fine-grained silts and muds and coralline sands and gravels. The sediment ranges from 10 to 20+ feet in thickness, with a shallow, northeast-southwest trough passing through one area of the site. These units overlie a dense, lithified volcanic tuff. The top of the tuff unit is marked in most areas by a medium-grained, tuffaceous sand layer.

A summary of previous investigations at the CG110 site is provided in the Air Force document *Remedial Investigation Report for Site CG 110* (USAF 2007). Trichloroethylene (TCE) contamination was identified in shallow soil and groundwater. Reported concentrations of TCE and related chemicals in soil, groundwater and soil gas are not indicative of Dense, Non-

Aqueous-Phase Liquid (DNAPL) or "free product" in the immediate vicinity of the site. The release appears instead to be related to past discharges of TCE-contaminated wastewater from cleaning operations into the subsurface (e.g., via breaks in sewer lines or disposal of wastewater on the ground surface).

The primary contaminants of concern are as follows:

- Trichloroethylene (TCE),
- 1,2 cis dichloroethylene (DCE), and
- Vinyl chloride.

The breakdown chemical 1,2 trans DCE has only been reported in a small number of samples across the site and is not considered to be a primary contaminant.

Summaries of previous investigation data for groundwater, soil gas and soil are provided in Figures 2, 3 and 4 (after USAF 2007). Figure 5 depicts the primary area of contamination based on the previous data. TCE has been reported in groundwater at concentrations up to 1.9 mg/L (Tier 1 Environmental Action Level [EAL] 360 ug/L), in soil up to 3.9 mg/kg (Tier 1 EAL 0.21 mg/kg) and in soil gas up to 31,000 micrograms per square meter (ug/m³) (Tier 1 EAL 1,300 ug/m³). [Tier 1 EALs noted are for unrestricted land use and groundwater that is not a source of drinking water]. Figure 5 depicts the approximate core area of contamination based on previous data. Previous data suggest that the main mass of solvent contamination is situated in the lower half of the sediment and immediately above the tuff unit (see cross sections in Figure 4). Slightly higher levels of VOCs were reported in deeper samples from one boring. The area of deeper contamination is at this point believed to be limited, however.

The reported concentrations of TCE in groundwater and soil gas exceed HDOH EALs for potential vapor intrusion hazards. TCE in the groundwater also exceeds action levels intended to be protective of groundwater discharges to aquatic habitats (e.g., via natural springs or during construction-related dewatering operations). The building most likely to be impacted by vapor emissions from the subsurface is a large, open-ended hangar, however, and actual vapor intrusion hazards under current site conditions are considered to be minimal (refer to USAF 2007). Contaminants in groundwater likewise do not appear to be migrating away from the site at concentrations above levels of concern for potential impacts to aquatic habitats. No further actions are currently recommended for the site, although institutional controls imposed on the site require proper management of soil and groundwater if encountered during future, subsurface construction or utility work. A more detailed vapor intrusion study is also required prior to the construction of new buildings in the plume area.

Estimation of total contaminant mass at the site based on existing subsurface data has been problematic due to limited subsurface soil data and an overreliance on groundwater data. The DU and MIS investigation methods described in this study are intended to explore approaches that can be used to help address these types of problems.

3.0 Investigation Objectives

The purpose of the study is to evaluate the use of DU and MIS approaches to investigate and characterize subsurface soils contaminated with VOCs. The primary objectives of the study include: 1) Evaluate use of DU boring MIS data and DU layer MIS data to identify the primary

area(s) of concentrated contamination and total contaminant mass present (aka "row and column" approach); 2) Evaluate field subsampling of core increments by collection of regularly spaced plugs from cores; 3) Evaluate advantages and disadvantages of field versus laboratory preparation of methanol-preserved, MI samples; 4) Evaluate use of methanol to preserve relatively large field samples and prepare MI samples for targeted DU layers and DU boreholes; 5) Evaluate the use of specific ion monitoring (SIM) laboratory methods to reduce method reporting limits for samples preserved in methanol; 6) Generate a three-dimensional set of corresponding MI sample data and discrete sample (core increment) data for future training and demonstration purposes; and 7) Use grain-size and total organic carbon data from DU layers to help evaluate the partitioning of contaminants between dissolved and sorbed phases within the plume.

As described below, soil from the water table (approximately 6 feet bgs) to the top of an underlying, volcanic tuff formation was designated as the vertical dimension of the DU. The DU soil was further subdivided into seven layers. The DU layers represent portions of DUs that are investigated separately but combined to make decisions about DU soil as a whole. Twenty-nine borings, located across the site in a stratified random manner, were installed through the DU layers. Soil increments were collected across each targeted DU layer in each boring.

There are three ways to estimate the mean contaminant concentration and ultimately the contaminant mass within a targeted DU layer of soil. These include: 1) Collection of approximately 30 or more increments of soil from the targeted DU layer and combination of the increments in methanol in the field to prepare a MIS for analysis, 2) Collection and preservation of approximately 30 or more individual core increments of soil from the targeted DU layer, followed by combination of subsamples of methanol extracts from individual core increment sample containers at the laboratory to prepare a MIS for analysis, and 3) Collection and preservation of approximately 30 or more individual increments of soil from the targeted DU layer, followed by the analysis of each individual increment at the laboratory and use of statistical methods to estimate a representative mean.

From an investigation standpoint, the latter approach is not cost effective nor recommended, since the stated objective of the study is to estimate a mean contaminant concentration for targeted DU layers and DU boreholes. By definition, the concentration of a contaminant at any given, individual point within a DU does not need to be determined, nor does the variability of concentrations between individual points (refer to Section 3 of the HEER office TGM; HDOH 2009). As described in this study, properly designed DUs and the field- or lab-based preparation of MI samples, will most cost-effectively meet the stated investigation objectives. An evaluation of the advantages and disadvantages of the field versus laboratory preparation of MI samples was therefore one of the primary objectives of this study.

The use of MIS versus discrete sample approaches to investigate subsurface contamination is a newly evolving field, however, and the project team anticipated the need for comparison of MI and discrete data for future discussion and training purposes. Due to the desire to provide a comparable set of "discrete" sample data, each individual core increment collected during the study was in fact tested (Appendix 1). This negated the need to prepare MI samples for every DU layer and borehole, since MI samples could be generated by computing the arithmetic average of corresponding, individual increments. Field and lab-based MI samples were prepared for selected DU layers, however, in order to gain experience and obtain data regarding their anticipated use for future investigations. This assumes that the laboratory evaluation of multiple, discrete samples (i.e., core increments) will be comparable to a single sample

prepared by combining the same increments. As discussed in this report, data for Field MI samples, laboratory-prepared MI samples and MI data calculated as the averaged individual core increment samples for the same, target DU layer were in good agreement.

The results of the project will be used to update and expand HDOH guidance for the investigation of subsurface contamination. In particular, it is anticipated that the use of DU and MI sampling approaches will help increase the quality and reduce the cost of subsurface investigations, improve the accuracy of site-specific environmental hazard evaluations, and help optimize the design of remedial options.

4.0 DECISION UNIT AND DU LAYER DESIGNATION

The study area DU encompasses the primary extent of TCE contamination previously identified at the CG110 site (Figure 2; approximately 100,000-square-foot area). Soil from the top of the groundwater (approximately 6 feet bgs) to the top of an underlying, volcanic tuff formation is designated as the vertical dimension of the DU. Contamination in the vadose zone that could be associated with primary release areas was not identified in previous investigations. Soil samples were only collected in the vadose zone as part of a soil moisture evaluation in the study. Based on cross sections provided in previous reports, the total volume of soil included in the DU is estimated to be 70,000 cubic yards (see Table 1).

The DU soil was subdivided into seven DU layers that range in thickness from 2 to 4+ feet (refer to cross sections in Figure 4):

- Layer A (DUL-A): 6 to 10 feet bgs;
- Layer B (DUL-B): 10 to 12 feet bgs;
- Layer C (DUL-C): 12 to 14 feet bgs;
- Layer D (DUL-D): 14 to 16 feet bgs;
- Layer E (DUL-E): 16 to 18 feet bgs;
- Layer F (DUL-F): 18 to 20 feet bgs;
- Layer G (DUL-G): 20+ feet bgs to top of volcanic tuff unit (anticipated maximum depth 25 feet bgs).

As discussed in the next section, investigation of the DU layers was conducted by the installation of direct-push borings.

5.0 Boring Installation and Sample Collection

5.1 Boring Location and Spacing

The target media is subsurface soil. From a three-dimensional perspective, the DU layers are very thin tablets, up to 400 feet long and 200 feet wide but only 2 to 4 feet thick. The investigation of tablet-shaped DUs requires good lateral coverage of sampling points in order to adequately capture the distribution of contaminants within the targeted soil. From an MIS perspective, this would ideally be accomplished through the collection of individual soil

increments from 30 to 50+ sampling locations laterally dispersed across each DU layer in the decision unit (HDOH 2009).

For the purposes of this study, the investigation of DU layers and the DU as a whole was conducted through the installation of 29 borings distributed across the site in a systematic, random fashion (Figure 6; GPS locations of borings provided in Appendix 2). A 30th boring was abandoned due to refusal. Separate core increments were collected from each DU layer within each boring (total four to seven core increments per boring). The type and location of field samples collected from each borehole is summarized in Table 2.

Field activities were conducted from June 14 through June 17, 2010. Twenty-nine borings were successfully installed into the DU layers using a Geoprobe push rig. A planned 30th boring encountered refusal at 2 feet and was abandoned. The depth of each boring, DU layers intercepted, and volume of soil represented by each boring (and DU layer) is summarized in Table 2. A refined cross section that more accurately depicts the top of the tuff unit is provided in Figure 7. The borings confirmed that the top of the tuff unit slopes downward from a shallow platform in the northwest to a localized, 3- to 4-foot-deep depression (possibly representing a small paleo-channel) in the vicinity of Borings 2, 3, 5, 6 and 7. The full set of seven DU layers was only encountered in the northwest portion of the site, within the area of the depression. DU Layers A through D were encountered in all borings (depth to volcanic tuff unit >16 feet bgs across entire study area). DU Layer E was encountered in Borings 1-20, in the northwest half of the site (depth to tuff >18 feet bgs). DU layer G was encountered only in Borings 1-12, in the area of the localized depression (depth to tuff >20 feet bgs).

The upper 6 feet of soil from each boring was described and then discarded, unless used for the soil moisture study. Continuous cores were then collected from a depth of 6 feet to the top of the underlying tuff unit in 4-foot lengths, using a push-drive drill rig and core barrels with acetate liners.

5.2 SAMPLE COLLECTION

The following types of samples were collected from one or more of the boreholes (Table 2):

- DU layer core increment samples (primary);
- DU layer core increment samples (replicate);
- DU layer soil moisture samples;
- Borehole field MI samples;
- DU layer field MI samples; and
- Total organic carbon (TOC) and grain size field MI samples.

The collection of these samples is discussed below.

5.2.1 DU Layer Core Increment Samples

From an MIS perspective, the core retrieved from a targeted, DU layer in a single boring represents the "increment" for the DU layer, similar to increments collected from a surface soil decision unit (Figure 8). Note that increments do not necessarily need to be collected from the

same depth *within* a designated DU layer or across the full thickness of the DU layer. Use of a direct-push rig allowed collection of continuous cores and collection of the full interval of targeted DU layers. Ideally, the entire core section of the DU layer would be preserved for preparation of a layer-wide (or borehole) MI sample. As discussed below, this was not practical in this study due to soil volume constraints and the need to preserve the sample in methanol. Core increments were instead subsampled in the field through the collection of regularly spaced, five-gram plugs of soil from the targeted DU layer interval exposed in the core ("core increment (CI) sample"). Soil plugs for individual core increments were combined in methanol in the field (Figure 9).

For the primary CI samples, 5-gram plugs of soil were collected at an interval of one plug per every 2 inches (e.g., total 24 plugs for Layer A for a CI sample mass of ~120 grams; 12 plugs for Layers B through F for a core increment mass of ~60 grams; and 24 plugs for Layer G for a core increment mass of ~120 grams). The plugs of soil were extracted from an exposed core with a modified Terra Core sampling tube by cutting the forward end of the tube at an angle (see Figure 9). Modification of the Terra Core sampling tube was necessary due to the presence of large fragments of coral in the cores, especially in the shallower DUs. Soil plugs for each individual core increment were placed in a jar with an approximately equal mass of methanol. A scale was used in the field to ensure that an adequate mass of soil had been placed in each sample jar.

Field logs for each boring are provided in Appendix 1. A total of 164 core increment samples were collected from the 29 borings, plus replicates. Samples were stored on ice and submitted to the laboratory for preparation and analysis at the end of each day, with the exception of field MI samples that were held on ice until increments from the final boring were collected and added on the fourth and final day of the project. An open-sided tent was set up to provide shade and minimize heating of samples during collection.

5.2.2 Field Preservation of CI Samples

Each separate CI sample from a borehole was field-preserved in methanol in a separate bottle. A premeasured volume/mass of methanol was placed in each bottle by the laboratory, based on the anticipated mass of soil to be collected from each targeted DU layer interval. For example, sample jars for CI samples to be collected from DU Layers B through F contained 60 grams of methanol. Sample jars for CI samples to be collected from DU Layers A and G contained 120 grams of methanol.

As part of this study, each individual CI sample was analyzed for targeted contaminants of concern. This allows for comparison of MIS data versus "discrete" data (i.e., data for single core increments) for future training and research purposes.

5.2.3 Collection of CI Samples from Bottom-Most Layer

The thickness of the lowermost DU layer is noted in the boring logs in Appendix 1 and can be inferred from Table 1. The thickness of the bottom-most layer varied with respect to the depth to the top of the volcanic tuff unit at each individual boring. A targeted layer was considered "present" and sampled only if a minimum of 1 foot of soil was present. A consistent mass of soil was collected from the bottom-most layer, regardless of its actual thickness. This simplified subsampling of the core increments in the field and avoided the need for different sample bottle setups in the field. While this potentially over-weighted the influence of VOC concentrations in core increments from thinner areas of the layers, the resulting bias is not considered to be significant.

5.2.4 Core Increment Replicates

Triplicate core increments were collected from borings 5, 7 and 8 (see Table 1). The second and third replicate samples were collected in the same manner as discussed above for the primary core increment used to compute MI sample concentrations (i.e., 5-gram plugs collected at a 2-inch spacing, with individual samples preserved in methanol; refer to Table 3).

5.2.5 Field DU Layer and Borehole MI Samples

Multi-increment samples were prepared *in the field* for Layers E, F and G, which were anticipated to be the most contaminated layers in the decision unit. MI samples were prepared for DU Layers E and F using cores from Borings 1 through 16. The MI sample prepared for DU Layer G used increments collected from Borings 1-12 (DU Layer G was not encountered in Borings 13-16). Field MI samples were also prepared for the entire core length of Borings 5, 7 and 8 (i.e., combined DU Layers A-G).

Two sets of field MIS samples were collected for these targeted DU layers (E, F and G) and borings (5, 7 and 8). Borehole increments were subsampled in a similar fashion as described above, although alternative plug spacings were used. A plug spacing of 6 inches was used to collect the first set of MI samples. A spacing of 1 foot was used to collect the second set of samples. The 6- and 12-inch spacing for core increment samples were also collected for all borehole sections making up DU Layers E, F and G. Soil plugs collected from corresponding DU layers across boreholes or from targeted boreholes were combined in a single jar containing methanol. This was done to help evaluate the density (i.e., spacing) of soil plugs needed to adequately capture the vertical heterogeneity of contaminant distribution within the targeted DU layers and boreholes, and estimate mean contaminant concentrations and total mass. An increasingly closer spacing of soil plugs should provide an increasingly more representative subsample of a core increment with vertical contaminant heterogeneity. At some point, however, added time and effort (and cost) required to collect additional increments from a core increment will no longer provide significant added value to the resulting data quality. Based on professional judgment for the type of soil (i.e., layered sediment deposited in an aquatic environment), the ideal plug spacing was estimated to be between 2 inches and 1 foot.

The field MI samples were preserved in amber glass, narrow-mouthed sample jars containing a premeasured volume and mass of methanol approximately equal to the anticipated sample mass. This resulted in an average sample mass of 467 grams for each 6-inch-spaced MI sample from DU Layers E, F and G (see Table 3a). The average MI sample mass of the second set of DU layer MI samples, collected at a plug spacing of 12 inches, was 252 grams. The average mass of the individual MI samples collected in Boreholes 5, 7 and 8 was approximately 224 grams for samples collected at a plug spacing of 6 inches and 110 grams for samples collected at a spacing of 12 inches.

5.2.6 Field MI Samples for TOC and Grain-size analysis

An additional set of MI samples was collected for each targeted DU layer and analyzed for TOC (total seven samples). A grain-size analysis was also conducted on each sample. The resulting data were used to help determine how VOCs are partitioned in the soil (e.g., dissolved in groundwater versus sorbed to organic carbon or clay particles). This type of information is especially useful for *in situ* remediation of VOC-contaminated soil and groundwater but is not traditionally collected as a part of site investigations.

5.2.7 Field MI Samples for Soil Moisture analysis

Five MIS samples were collected in the vadose zone (just above the saturated zone) to evaluate laboratory subsampling procedures for soil moisture (see Table 2). The total mass of soil samples collected was between 50 and 100 grams (12 plugs of approximately 5 to 10 grams). The soil plugs were taken from 2-foot lengths of core collected at the vadose zone.

Fourteen samples were also collected to determine moisture content of soils in the saturated zone (see Table 2). Two samples were collected, similar to core increments for VOCs, for each of the seven DU layers. Samples consisted of approximately 5- to 10-gram plugs at 2-inch intervals over the 2-foot length of the selected core increments, for a total mass of approximately 65 to 130 grams.

5.2.8 Laboratory MI Samples

MI samples were prepared in the laboratory for the DU Layers E, F and G and Borings 5, 7 and 8 by combining methanol extracts from individual, CI samples that corresponded to the targeted layers and boreholes. Approximately 20-ml aliquots of methanol were collected and combined from each CI sample associated with the targeted DU Layer A and then analyzed as a single MI sample. As discussed above, the CI-based extracts reflect a vertical plug density/resolution of 2 inches. This resulted in an equivalent aliquot mass of approximately 60 grams per CI sample for DU Layers E and F and 120 grams per CI sample for DU G, a significant improvement over the default mass of 5 grams used for traditional, discrete samples (see Table 3b). The combined aliquots for lab-generated DU Layer E (Boreholes 1-20), F (Boreholes 1-16) and G (Boreholes 1-12) represent an MI sample mass of 1,236 grams, 997 grams and 1,101 grams, respectively (see Table 3a).

The lab-prepared DU layer MI samples were tested for TCE, *cis* DCE, *trans* DCE and vinyl chloride. Observations on the advantages and disadvantages of methods used by the lab to prepare these MI samples will be documented and incorporated into future updates of the HDOH Hazard Evaluation and Emergency Response (HEER) Office *Technical Guidance Manual* (TGM).

Triplicate MI samples were prepared in the lab as described above for the three targeted DU layers (i.e., two additional separate sets of 20-ml methanol aliquots collected and combined from respective CI samples for the selected DU layers). The resulting data was used to evaluate the precision of combining extracts from individual CI sample jars in the laboratory to prepare DU layer MI samples.

6.0 SAMPLE ANALYSIS

Samples tested for VOCs were analyzed for the following target chemicals:

- Trichloroethylene;
- Cis and trans DCE; and
- Vinyl chloride.

Samples were tested using Method 8260 and SIM. The SIM method requires that a very small number of chemicals be targeted for quantification. This allows an order-of-magnitude reduction in reporting limits in comparison to standard Method 8260 analysis (e.g., 50 ug/kg to 5 ug/kg). Data are reported in wet weight and were not adjusted with respect to the soil moisture analysis results of the project.

Soil moisture analyses were conducted in accordance with Appendix 1 of the *Sampling and Analysis Plan*. Three separate 5-gram subsamples were collected from each of five samples collected for soil moisture and analyzed for soil moisture content using Method SM 2540G. The lab then analyzed all the remaining soil (total remaining mass of each sample, approximately 55 to 80 grams) from each of the five samples as a single sample for comparison.

7.0 DATA RESULTS

7.1 FIELD CORE INCREMENT SAMPLE DATA

A summary of data for individual, field CI samples is presented in Table 4. Laboratory reports are provided in Appendix 3. Data are presented in wet weight. As discussed in the introduction, individual CI samples would not be recommended for analysis as part of a normal subsurface MIS investigation. Individual samples were tested in this study primarily for research and training purposes. Under a typical subsurface MIS investigation, CI samples would be combined in the field and/or in the laboratory to prepare MI samples for targeted DU layers and boreholes. The MI sample data would then be used for decision making purposes. This might include locating the main mass of subsurface contamination for removal or remediation or using alternative combinations of field-preserved CI samples at the lab for better resolution of areas targeted for remediation or further investigation.

A total of 164 primary CI samples were collected and analyzed (see Table 4; replicate CI data presented in the following section). One or more target VOCs was identified in 15 of the 29 borings. Data for 1,2 *trans* DCE are not included in the tables, since this chemical was only identified in a single sample and only marginally above the method reporting limit (MRL) (refer to laboratory reports in Appendix 3). Reported concentrations of total VOCs ranged from less than the reporting limit of 5 to 25 ug/kg (the higher MRL reflects vinyl chloride) to a maximum of 2,750 ug/kg (Sample B5 Layer E). Total VOC concentrations noted in Table 4 were calculated using one-half the MRL for borings where individual VOCs were not detected.

Total VOC concentrations were not calculated for borings where no VOCs were identified above the method reporting limit, since the total would simply represent the sum of one-half of the MRLs and would suggest contamination where no contamination had been definitively identified. Total VOCs were not calculated for Borings 8 and 16, which had detections of only a single VOC marginally above the MRL. The calculated total VOC concentrations for Borings 14, 17 and 20 reflect MRL contributions of 18%, 40% and 22%, respectively (i.e., the estimated total concentrations would be 18%, 40% and 22% lower if non-detects were not considered). The use of one-half the MRL does not significantly affect estimated total VOC concentrations for the remainder of the borings.

7.2 DU LAYER MI DATA (FIELD, LABORATORY AND COMPUTED FROM CORE INCREMENTS)

A summary of VOC data for field- and laboratory-prepared MI samples is presented in Table 5. Field MI samples were collected for DU Layers E, F and G using subsampled core increments from Borings B1-20, B1-16 and B1-12, respectively. Two sets of soil samples were collected for each DU layer, the first utilizing a 6-inch plug spacing and the second utilizing a 12-inch plug spacing.

For comparison, laboratory MI samples were prepared for the same three DU layers by combining and analyzing 20-milliliters aliquots from all individual, methanol-preserved, CI samples. Triplicate MI samples were prepared and tested for each DU layer.

Computed MIS data were calculated for all seven DU layers as the arithmetic average of CI sample data associated with each layer (refer to Table 4). In theory, combination and analysis of aliquots from the same CI increments would have yielded the same data. As discussed earlier, individual CI samples were analyzed primarily for research and training purposes. Averages for DU Layers E through G were calculated using CI sample data for the same borings that the field- and laboratory-based MI samples were collected or prepared from. In general, reported concentrations of VOCs were higher in the laboratory-based and computed MI samples than the field-based MI samples. As discussed later in this report, this may reflect the closer (2-inch) plug spacing used for the CI samples in the lab and computed MI samples, and a resulting better ability to capture contaminant heterogeneity within the cores.

7.3 BOREHOLE MI DATA (FIELD AND COMPUTED FROM CORE INCREMENTS)

A summary of field-based MI sample data for borings B5, B7 and B8 and computed MI sample data for all borings is presented in Table 6. Laboratory-based MI samples were not prepared for boreholes, based on anticipated use of CI sample data to generate computed MI data. Two sets of field samples were collected, the first utilizing a 6-inch plug spacing and the second utilizing a 12-inch plug spacing. The computed MIS data reflect the arithmetic average of individual CI sample data associated with each boring, reflecting a 2-inch plug spacing for subsampling of individual core increments (refer to Table 4). As discussed in the following section, the cause of the variance between VOCs reported in field-based MI samples (6-inch and 12-inch plug spacing) and CI-based samples (2-inch plug spacing) for Borings 5, 7 and 8 is uncertain.

7.4 TOC AND GRAIN-SIZE DATA

Table 7a summarizes grain-size and TOC data for MI subsamples submitted to the TestAmerica Burlington lab for analysis. Table 7b presents the actual mass of particle-size groups (dry weight) for each DU layer with fine-grained sand-, silt- and clay-size particles lumped under a single category for "fines." The concentration of TOC is also recalculated in terms of the fines fraction of the soil only (used in revised data discussed below). Table 7c shows the relative proportions of "gravel" vs "sand" vs "fines." Table 7d summarizes the relative proportions of fine sand vs silt vs clays fines with respect to the total fraction of fines in the Burlington lab DU layer data.

A discrepancy between the grain-size distribution reported in the TestAmerica Burlington lab data and observations made in the field was immediately obvious. In the field, the DU layers exhibited a distinct and relatively sharp although transitional increase in fines from the shallow to deeper layers in all borings, with DU Layers A and B dominated by gravels and sand and DU Layers E, F and G containing a significant component of fines. The DU Layers C and D reflected the transition between the upper and lower portions of the sequence. The Burlington lab data, in contrast, suggests a relatively consistent proportion of coarse versus fine material throughout the vertical extent of the DU layers. The data also suggest a much higher proportion of fines in the upper layers than observed in the field.

Based on these observations, HDOH requested that the TestAmerica Honolulu lab conduct a second grain-size distribution sieve analysis on the original MI samples. The results of these analyses are presented in Tables 8a and 8b.

The gain-size distribution masses for the original MI samples were then calculated by adding the DU layer data reported by the Burlington and Honolulu labs (Table 9a). The revised, relative

proportion of grain-size distributions is presented in Table 9b. The revised data more accurately reflect boring observations made in the field and are considered to be representative of the overall decision unit. The estimated breakdown of "fines" included in the table is based on the relative proportions of fine sand, silt and clay reported by the Burlington lab (see Table 9b). A revised concentration of TOC in each DU layer was calculated as the concentration of TOC in fines fraction noted in Table 8b times the corrected percentage of fines in each sample (see Table 9b).

As discussed in the next section, the revised grain-size distribution and TOC data are used to help evaluate the partitioning of VOCs between the groundwater, organic carbon and clays within the solvent plume. This type of information can be used to better understand the fate and transport of VOCs in the subsurface as well as optimize *in situ* remedial options. An improved and more accurate laboratory approach for grain-size distribution analysis is also discussed.

7.5 SOIL MOISTURE DATA

A summary of soil moisture data for field MI samples is presented in Table 10. Nineteen large samples (75 to 100 grams) were collected for percent moisture analysis: 14 of these were from subsurface core increments, and 5 were from a vadose zone core increment (4 to 6 feet bgs) just above the water table. For each of the five samples collected in the vadose zone, three 5-gram subsamples were collected for percent moisture analysis. The remaining material for each of these five samples (55 to 80 grams) was analyzed in its entirety to determine the "true" percent moisture determination. The purpose of analyzing three 5-gram subsamples was to measure the precision of percent moisture based on 5-gram subsamples. The purpose of analyzing the remaining material from the five samples was to measure any bias from collecting 5-gram subsamples, when compared to sampling a significantly larger mass.

The precision of the 5-gram subsamples was quite good, with the largest precision error being 11.4% and the average precision error being 9.0%. The bias was also quite good, with the largest individual bias being 18% and the average bias being -0.05%. The bias was not consistent in direction or magnitude (see Table 10).

The results are better than what would be predicted with sampling theory. The predicted relative standard deviation (RSD) for a particle size of 2 millimeters (mm) would be about 17%. It is difficult to make definite conclusions from five samples, and repeating this experiment at another location would be recommended for additional evaluation of the sample mass needed for accurate soil moisture analyses.

8.0 EVALUATION OF REPLICATE DATA

Four types of replicate samples were prepared and evaluated as part of the project (see Table 2):

- DU borehole core increment sample replicates;
- Laboratory DU layer MI sample replicates;
- DU borehole field MI sample replicates;
- DU layer field MI sample replicates.

The DU borehole CI samples and laboratory DU layer MI samples were true replicates, with each replicate sample collected in the same manner as the others. The field MI replicate samples were collected at different increment plug spacings in order to evaluate the effects and added benefit of using a smaller plug spacing. The resulting data are compared to MI sample

concentrations computed from the average of individual CI samples collected from the same boreholes and DU layers.

Triplicate CI samples were collected from Boreholes 5, 7 and 8 and individually preserved. All samples were prepared by extracting 5-gram plugs from exposed cores across targeted DU layers at a 2-inch spacing. Replicate CI samples were collected from different areas of the exposed core using the same 2-inch plug spacing as the primary CI sample. A summary of the resulting data is provided in Table 11. The replicate samples displayed very good precision, with the RSD ranging between 2% and 20% in the most heavily contaminated portions of the plume (Table 11b).

Multi-increment samples were prepared in the laboratory for DU Layers E, F and G by combining extracts of methanol from preserved CI samples for corresponding DU layers. To determine the precision of creating the MI samples in the laboratory, the process of combining extracts from individual CI samples was repeated three times for each layer. For data analysis, the sum of all the individual analytes was used. The data for the laboratory-prepared MI samples are presented in Table 12. The replicate samples displayed a very good precision error, with a maximum RSD that ranged from 1.3% to 3.3%.

A comparison of field MI sample data, laboratory MI sample data and computed MI sample data for targeted DU layers and boreholes is provided in Table 13. Replicate field MI samples were collected from DU Layers E, F and G across multiple boreholes. This included Boreholes 1-20 for Layer E, Boreholes 1-6 for Layer F and Boreholes 1-12 for Layer G. An initial MI sample was prepared combining increment plugs from the targeted DU layer across the noted borings at a 2-inch spacing. Two additional MI samples were collected from each layer, one with a subsample plug spacing of 6 inches and one with a plug spacing of 12 inches. Replicate field MI samples were collected from Boreholes 5, 6 and 8. An initial MI sample was prepared combining increment plugs across all DU layers encountered in the borings at a 2-inch spacing (Layers A-G). Two samples were again collected from each borehole, one with a plug spacing of 6 inches and one with plug spacing of 12 inches.

A comparison of data for 6-inch plug spacing field MI samples, 12-inch plug spacing field MI samples, laboratory-prepared MI samples and computed MI samples (representing a 2-inch plug spacing) is presented in Table 13. Laboratory-based MI samples were not prepared for the boreholes. The RSD is used to measure the precision error across all the estimates (except for Borehole 8, due to the low analyte levels). Most of the RSDs are in the 10% range except for Layer E, which is 22.4%. For Layer E, the two samples with greater increment spacing have lower values. This may indicate that for Layer E the greater spacing was not able to capture the distributional heterogeneity and therefore underestimated the true mean concentration. From a risk and even a remediation standpoint, however, the data are considered to be very comparable.

The RSD relative standard difference between the laboratory-prepared MI samples and the computed MI samples for DU Layers E, F, and G is 7.1%, 8.9%, 8.5% respectively. The precision error for laboratory-prepared MI samples, which includes the analytical error, is very good. The computed MI data reflect the combined analytical error for up to 29 analyses and therefore reflect a higher degree of uncertainty than data for the laboratory-based MI samples, which were prepared by combining aliquots from the same sets of CIs. Higher concentrations of TCE (15% to 20%) were reported for lab-prepared MI samples for DU Layers E and F in comparison to computed averages for the same DU layers. In contrast, vinyl chloride was not detected in the lab-based MI samples, while the average concentration reported for the

individual CIs was well above reporting limits. The CI-based averages for DU Layer G were very similar to lab-based MI samples, but again vinyl chloride was much lower in the latter. It is feasible that vinyl chloride was lost during the preparation of the lab-based MI samples, but the reason for an apparent increase in TCE is less clear, beyond a combined lab error from the individual CI samples (i.e., TCE consistently under-reported in discrete CI samples).

The close similarity of the field versus laboratory replicate data suggest that preparation of MI samples in the field versus the laboratory will be largely a site-by-site basis, depending on the nature and needs of the subject investigation. The added time and cost of collecting and managing individual CI samples may be desirable if the need for additional combination of samples is anticipated (e.g., to optimize remedial design) or if management of large field MI samples preserved in methanol will be unwieldy. If a recombination of CI samples is not anticipated and field MI samples can be reasonably managed, then the time and effort saved by preparing MI samples in the field will be advantageous. The acceptable range of plug spacing to subsample CIs will also be a site-specific decision, based on the stratigraphy of the targeted subsurface soil and the anticipated distribution of contaminants. If the soil does not contain significant gravel then a thin wedge could also be cut from the entire length of the wedge for 100% vertical coverage of the increment. This approach was not feasible at the subject site due the prevalence of gravel throughout the sediment.

9.0 CHARACTERIZATION OF SUBSURFACE PLUME

9.1 Project Design Review

The objective of this investigation was to estimate the mean concentration and mass of TCE, DCE and vinyl chloride for the targeted DU volume of soil and to evaluate the vertical distribution of VOCs within the DU. This was accomplished by vertically subdividing the DU into seven layers and installing 29 continuous core borings into the soil. *Core increment* (CI) samples were collected from each DU layer encountered in each boring.

Multi-increment sample data was prepared by combining CI samples for individual DU layers across boreholes. This was accomplished by combining subsampled core increments in methanol the field, by combing extracts of methanol of individually preserved CI samples for specific DU layers in the laboratory, or by computing equivalent MI sample concentrations as the average of individually preserved and tested CI samples. In practice, preparation of DU layer MI samples would be directly conducted in the field or the laboratory and subsequently analyzed. Individual CI samples were tested as part of this study purely for research purposes and to generate a three-dimensional set of both MI and discrete sample data for comparison.

Total VOCs rather than individual compounds were selected for evaluation due to previous, *in situ* treatment of some areas of the plume that converted some of the TCE to DCE and vinyl chloride. Computed Core Increment MIS data for DU layers are referred to, although in practice data for actual MI samples prepared for each DU Layer either in the field or in the laboratory would be used (see discussions in *Investigation Objectives* [Section 3.0] and *DU Layer MI Data* [Section 7.2]).

9.2 TOTAL DU VOC MASS AND VERTICAL DISTRIBUTION

Table 14a summarizes the estimated mean concentration and mass of total VOCs in each DU layer volume of soil. Total VOC mass is calculated as the estimated mass of the DU layer (in kilograms) multiplied by the estimated mean concentration of total VOCs for that layer (in mg/kg

with total mass converted to kilograms; see footnotes at bottom of Table 14). The mean concentration of total VOCs in the DU soil is 153 ug/kg. The total mass of VOCs present is estimated to be 13 kilograms.

As depicted in Figure 10a, total VOC concentrations increase downwards, with the highest mean concentration reported for DU Layer G (476 ug/kg), in the low point of the central trough area and immediately above the underlying tuff unit. Total VOC *mass* is likewise concentrated in DU Layers E through G, corresponding to the more clay-rich sequence of the DU sediments. As noted in Table 14a, 63% of the total VOC mass is present within these DU layers even though they comprise only 26% of the total DU volume. (Note that this estimate of total VOC mass may not fully account for the dissolved-phase mass in DU layers, due to partial drainage of groundwater from cores during sample collection; see the following section.)

Based on this initial DU-MIS evaluation, treatment of DU Layers E through G within the DU area would address the majority of the contaminant mass present. This would restrict the area of treatment to Boreholes 1-20, since these deeper DU layers were not encountered outside of this area. The overlying DU layers within this narrower area of borings most likely contain a significant proportion of the remaining VOC mass, but this cannot be discerned by the MIS data for DU layers alone. As discussed below, a closer look at the borehole MIS data helps to further characterize and isolate the main mass of contamination within the DU area.

9.3 DISTRIBUTION OF VOCS IN 100% VOC MASS AREA

The aerial distribution of contaminants in the subsurface soil can be further refined by reviewing the borehole MIS data for total VOCs. Table 15 summarizes borehole MIS data, sorted with respect to total estimated VOC mass (computed from individually tested CI samples). Again, in practice the MI samples would have been prepared and directly analyzed in the field or in the laboratory, rather than testing of individual increments.

As summarized in Figure 11, 100% of the total VOC mass in soil is captured within an area represented by Boreholes 1-20. This includes the upper four DU layers as suspected, suggesting (based purely on the results of this study) that releases of VOCs to the subsurface were restricted to this area. Based on MI data computed from CI sample for DU layers in these boreholes, the vertical distribution of VOCs within this area is identical to the distribution indicated in Figure 10a with VOC mass again concentrated in the lower, clay-rich sediment. In practice, preserved CI samples could be combined in the laboratory to prepare additional MI sample data for a project. Treatment of DU Layers A through G within this area would address 100% of soil-related VOCs.

Note that that the presence or absence of VOCs in borehole MI samples becomes more sporadic along the perimeter of the 100% plume area (see Figure 11), with isolated, borehole-size "hot spots" adjacent to boreholes with minimal contamination. This reflects the heterogeneity of contaminant distribution within the plume area and especially along the perimeter. Individual, core-size samples from this area may or may not identify contaminants above laboratory detection levels. The same observation is typical of surface soil samples.

Twenty borings were installed within the area of soil that contains 100% of the total VOC mass. Each boring represents a single "increment" collected from either an individual DU layer *or* the full area and volume of DU layers (see Figure 8). Twenty increments of soil, representing the twenty boreholes, were therefore extracted from each DU layer. *A total of 20 increments of soil were likewise collected from the full volume of soil represented by the combined DU layers*

across Boreholes 1-20. This might seem confusing at first, since a total of 128 CI samples were collected from the individual DU layers within these boreholes (12 to 20 CI samples per DU layer; see Table 2). Individual CI samples cannot be added across DU layers to generate a sum of increments for the total volume of DU soil, however; since one of the requirements of MIS investigations is that multiple increments cannot be collected from the same point within the targeted soil. Each boring represents a single increment within the individual DU layers or within the combined volume of DU layer soil. Collecting multiple increments at depth from a targeted volume of soil within a single borehole is no more valid than collecting multiple increments from a single location within a surface soil decision unit.

This study used fewer than the 30+ borings recommended in HEER office guidance for MIS investigations (HDOH 2009). The recommendation for 30+ increments per DU (or DU layer) is based primarily on experience with contaminant distribution heterogeneity in surface soils, with a focus on particulate contaminants (e.g., explosives). A smaller number of increments could be adequate for subsurface soil investigations associated with dissolved-phase dispersal of contaminants via groundwater, as is the suspected case for this study. This hypothesis has not been evaluated in detail, however.

9.4 DISTRIBUTION OF VOCS IN 95% AND 80% VOC MASS AREAS

The use of a smaller number of boreholes (and consequently, increments) to characterize subsurface soil impacted by dissolved-phase dispersal of contaminants has not been studied in detail at this time. At least for a screening-level evaluation, however, the borehole and DU layer MI data from this study are useful to further focus in on the core area of contamination.

As noted in Table 15 and Figure 11, 95% of the total VOC mass is captured by 16 borings and includes just half the volume of soil required to capture 100% of the contamination. 80% of the total VOC mass is captured in just five borings and just 30% of the total volume of impacted soil.

In practice, the vertical distribution of VOCs within the 95% and 80% VOC mass areas could be more closely evaluated by asking the laboratory to prepare additional DU layer MI samples from individually preserved CI samples collected from corresponding boreholes (i.e., by combining aliquots from associated CI samples). All of the CI samples were analyzed as part of this study. MIS data for DU layers within subsets of boreholes associated with the 95% and 80% VOC mass areas were therefore computed as the average of corresponding CI samples. The data for DU layers that varied in thickness between boreholes are weighted with respect to the representative DU layer volume and mass (i.e., CI samples from thicker areas of Layer G are weighted more heavily than CI samples from thinner areas). This did not make a significant difference in the resulting data (refer to table footnotes and discussion under *Lessons Learned* [Section 10.0]).

Table 16 and Figures 10a,b and c summarize the variance in DU layer VOC concentrations with respect to the full investigation area and progressively smaller plume areas (i.e., 100%, 95% and 80% contaminant mass areas; see Figure 11). Contaminants are again concentrated within the lower three DU layers, as was the case for the DU soil as a whole. Contaminants appear to be somewhat more concentrated in DU Layer G within the 80% VOC mass area, although the difference is not significant.

Contaminant distribution becomes significantly heterogeneous at the scale of individual CI samples, similar to what is typically observed in discrete samples of surface soil. Figure 10d depicts the vertical distribution of total VOCs between adjacent boreholes in the core area of

contamination (Borings 2, 6 and 10). As expected, individual increments from single borings are poor indicators of contaminant distribution for the targeted volume of soil as a whole. A very limited number of borings, and consequently of increments of soil collected from individual DU layers within these areas, can lead to a false interpretation of contaminant distribution. As is the case for MI samples in general, a minimum of 30 increments is desirable to adequately capture contaminant heterogeneity and mean concentration within a targeted DU volume of soil.

As expected, total VOC concentrations in the targeted DU layers increase within the core of the plume (compare the estimates for 100% contaminant mass area to 80% contaminant mass area in Table 16). This is especially apparent by comparing representative VOC concentrations for the combined DU Layers A through G across the study area as a whole versus the core plume area that contains 80% of the total contaminant mass.

9.5 ADDITIONAL INVESTIGATION AND REMEDIAL ACTIONS

The type of DU-MIS investigation described in this study might prove to be a very useful step for initial identification of a subsurface "spill area," as defined in the HEER office *Technical Guidance Manual* (HDOH 2009). Once the spill area or some targeted portion of the spill area has been defined, a second DU-MIS investigation within that area might be needed to optimize the design of the remedial action. The need to remediate the full volume of contaminated soil identified at a site versus some subset of the soil will be based on a number of factors, including the type of environmental hazards posed by the contamination (e.g., impacted drinking water aquifer versus more localized, vapor intrusion hazards), the urgency of the treatment (currently used versus potential future use), and the alternative use of engineered or institutional controls, as well as cost.

The resolution of the data collected within the area targeted for treatment—i.e., the number and spacing of increments collected—should be matched to the requirements of the proposed remedial action. For example, *in situ* oxidation or injection of hydrogen-releasing compounds may require a tighter spacing of borings and associated borehole MI samples than thermal treatment, where a single treatment point can affect a very large area. While the *relative* mass distribution of total VOCs across the study site as described above is likely to be accurate, the small number of increments collected within the 80%, 95% and even 100% VOC mass areas risks underestimating the *actual* mass of VOCs present. In addition, and unlike surface soil DUs designated for evaluation of direct-exposure concerns, the actual distribution of contaminants *within* a DU (i.e., heterogeneity) that is designated for *in situ* remediation might be very important.

Once the subsurface area of contamination has been initially delineated, preparation of a comparison table of the estimated, lateral and vertical distribution of VOCs in terms of percent total mass (e.g., 80%, 95% and 100%), with the volumes of soil represented by DU layers, provides a very useful tool for determining (or negotiating) the scope of removal or *in situ* treatment options (Table 17). For example, increasing the targeted treatment area to incorporate 95% versus 80% of the contaminant mass increases the volume of soil to be treated by approximately 70%. This would presumably be accompanied by a similarly significant increase in treatment cost. Further expanding the treatment area to address 100% of the contamination identified increases the volume of soil by another 56% and more than doubles the volume of soil associated with 80% of the contaminant mass. With respect to the vertical distribution of contaminants, focusing on only the most heavily contaminated DU layers (Layers D, E, F and G) would address 77% of the VOC mass within any of the targeted core areas,

while reducing the volume of soil that requires treatment by almost 50% in comparison to full treatment of DU Layers A though G.

9.6 PARTITIONING OF CONTAMINANTS BETWEEN SORBED AND DISSOLVED PHASES

Contaminants are assumed to be partitioned within the soil in three states: 1) Sorbed to organic carbon, 2) Sorbed or otherwise bound to clay particles and 3) Dissolved into pore waters (i.e., groundwater). Total organic carbon data as well as data on the clay fraction of the targeted DU layers was collected as part of this study in order to further evaluate this issue (see Tables 9a and 9b). Vapor-phase contaminants are assumed to be not present, since the study DU layers are all below the water table. Reported concentrations of VOCs in soil samples as well as groundwater samples are not indicative of free product or DNAPL at the site (e.g., reported concentrations in groundwater are well below 10% of solubility).

A simple set of partitioning equations can then be used to estimate the sorbed-phase concentration and mass of the contaminant in comparison to the dissolved-phase concentration and mass (e.g., refer to USEPA 2002):

Conc.total (mg/kg) = Conc.dissolved(mg/kg) + Conc.sorbed(mg/kg) + Conc.vapor(mg/kg)

Conc.dissolved (mg/kg) = [Conc.dissolved(mg/L)/soil bulk density(kg/L)] x water-filled porosity

Conc.sorbed (mg/kg) = Conc.dissolved(mg/L)/soil bulk density(kg/L)] x koc x foc

Percent Dissolved = Conc.dissolved/Conc.total

Percent Sorbed = Conc.sorbed/Conc.total

Table 18 summarizes the theoretical partitioning of VOCs in the study site DU layers based on the reported fraction of organic carbon (foc) in the soil (see Table 9b), and the published sorption coefficient (koc) for the target chemical (see Table 18 footnotes) and assuming that vapor-phase VOCs are not present, since the DUs are below the water table. As noted in the table, the majority of the VOC mass is predicted to be present as dissolved-phase contaminants in the groundwater. The proportion of dissolved-phase VOC mass in the groundwater increases as the TOC decreases, especially for more volatile and less sorptive chemicals such as vinyl chloride.

The partitioning of contaminant mass within the soil plays an important role in the selection and design of remedial options. If the majority of the contaminant mass is present in the groundwater, for example, extracting the contaminated groundwater for treatment at the surface might be the most time- and cost-effective action. Experience with pump-and-treat systems has shown, however, that the simplistic partitioning equations used in fate-and-transport models significantly underpredict the proportion of sorbed-phase contaminant mass. This is a root cause of many failed *in situ* remedial actions. A key factor is the hidden sorption of contaminants in aged plumes to clay particles in soil.

This issue would ideally be evaluated through the use of a Synthetic Precipitation Leaching Procedure (SPLP) test to estimate the true sorption of the targeted chemical in the soil, including sorption to both organic carbon and clay particles (HDOH 2007). Unfortunately, SPLP tests were not included as part of this study. An alternative is to use the reported VOC data for soil to predict concentrations of VOCs in groundwater (see the following section), using a similar equilibrium partitioning equation as noted above. A model prediction of significantly higher

concentrations of VOCs in groundwater than actually observed at the site would indicate the potential sorption and storage of VOC mass in clays.

9.7 Predicted Dissolved-Phase Contaminants within Primary Plume Area

The following equilibrium partition equation was used to predict concentrations of VOCs in groundwater based on the reported concentrations of VOCs in DU layers and boreholes:

Conc. groundwater = Conc.soil x {soil density/[total porosity + (koc x (TOC x (1kg/1,000,000ug)) x soil density)]},

Where "koc" is the published sorption coefficient for the targeted VOC (see Table 18 footnotes) and TOC is the study-generated TOC for the targeted DU layer, or the average organic carbon within the screened interval of a hypothetical monitoring well. The soil density is assumed to be 1.5, and the total porosity of the soil is assumed to be 0.43 (HDOH 2009, defaults in USEPA screening level models, USEPA 2009).

The predicted concentrations of VOCs in the groundwater in specific DU layers or groups of layers across the study site as a whole are presented in Table 19. This includes data from the southern portion of the study area where VOCs were not detected in soil samples (Borings 21-30). The predicted concentrations of VOCs in groundwater for the full extent of DU layers as well as combined shallow and deep DU layers within the 100%, 95% and 80% contaminant mass areas are also presented.

Concentrations of VOCs in groundwater were also predicted for hypothetical monitoring wells installed at individual boreholes within the primary plume area, based on the average, measured concentration of VOCs in soil for all DU layers encountered in a boring (Table 20; see Computed MI sample data in Table 6, weighted to relative thickness of individual DU layer). This allowed a synthetic groundwater VOC map to be generated (Figure 13).

In general, the predicted concentrations of VOCs in groundwater based on the MI soil data agreed reasonably well with nearby groundwater data actually collected at the site (see Figure 14), with maximum total VOC approaching 4.0 mg/L. A closer comparison is provided in Table 21. Data for six monitoring wells are compared to the estimated concentrations of VOCs in groundwater for those well locations based on nearby, hypothetical monitoring wells.

Although the difference is not large, the estimated concentration of VOCs in groundwater based on soil boring data is, however, consistently higher than that identified in the monitoring wells in five out of six cases. This suggests that VOCs could be binding to clays in the soils rather than partitioning into groundwater in accordance with the standard equilibrium-partitioning equation noted above. The difference could also be due in part to a patchy and heterogeneous distribution of contaminants in the subsurface. This is observed in the discrepancy between heavy contamination identified at Monitoring Well BH-22 from the US Air Force study and the relatively light contamination identified in nearby Borehole 1 from this study. The fact that VOC concentrations in groundwater are lower than predicted in five out of the six monitoring wells seems to support some role for binding of contamination to clays, however. This would need to be confirmed with SPLP tests on soil samples collected from the most contaminated areas of the site.

9.8 Predicted Vapor-Phase Contaminants within Primary Plume Area

As discussed in the *Remedial Investigation* (RI) report (USAF 2007), the primary, potential environmental hazard posed by the study area solvent plume is vapor intrusion to existing or future buildings. Soil gas sampling and a risk assessment included in the RI report indicate that vapor intrusion is not a concern under current site conditions. Predicted concentrations of VOCs in groundwater can be used to predict concentrations of VOCs in shallow soil gas across the site. This can be compared to actual site data to help evaluate the accuracy of the groundwater vapor intrusion model used in the risk assessment.

The concentration of VOCs in soil gas immediately above the water table can be determined by multiplying the concentration in groundwater by the Henry's Law constant of the target chemical:

Conc.soil gas = Conc.groundwater x H'.

Vapor emissions are controlled by the uppermost layer of groundwater, in this case DU Layer A (see Figure 7). The predicted concentrations of VOCs in groundwater associated with DU Layer A at the study borehole locations are summarized in Table 22. Note that the concentrations are significantly lower than predicted for the boreholes based on the combined DU layers (Table 19). This is because most of the contamination in the soil is at depth, with only a few exceptions (e.g., Boreholes 1, 3 and 20).

Predicted concentrations of VOCs in soil gas are summarized in Table 23 and compared to actual soil gas data presented in the Air Force's RI report (USAF 2007, 2008). The groundwater vapor intrusion model used by USEPA assumes very limited upward attenuation of VOCs in vadose-zone soil gas. In-house use of the model on the study area site suggested an attenuation of only 1.3 from the top of the water table to the ground surface. As indicated in Table 24, an attenuation of at least one order-of-magnitude is suggested by the actual site data. (Note that the predicted increase in DCE and vinyl chloride in groundwater and soil gas in comparison to the 2007 RI report most likely reflects the result of the *in situ*, reductive dechlorination pilot test conducted at the site in 2008 to 2009 [USAF 2010].)

An over-prediction of vapor-phase VOCs could be due to a flaw in the model, for example a failure to adequately take into account an immediate reduction in VOC concentrations away from the water table due to an increase in effective diffusivity and upward dispersion of VOCs in the vadose zone, in comparison to the much slower rate of diffusion and migration through groundwater (increase estimated to be approximately 50-fold for the study area). Like cars speeding up and spreading out after passing through a toll booth, the concentration of VOCs would be expected to rapidly drop immediately above the top of the water table as they speed upward toward the ground surface. Other potential causes include capillary-zone effects on vapor emission and biodegradation. The observation of lower-than-predicted concentrations of VOCs in vadose-zone soil gas is persistent across sites in the experience of the authors of this study, however. This reinforces the TGM recommendation to collect soil gas data at sites where potential vapor intrusion hazards exist.

10.0 LESSONS LEARNED

10.1 Use of DU-MIS for Characterization of Subsurface Contamination

The use of DU and MIS investigation approaches proved to be highly effective for characterization of subsurface contamination at the site. The study focused on VOCs in soil

(and groundwater) below the water table. Similar approaches could, however, be used for vadose-zone contamination as well as for semivolatile or nonvolatile contaminants.

As discussed below, DU-MIS data can provide a significant improvement on data quality and added cost-benefit over traditional, discrete sample approaches for characterization of subsurface contamination, especially at sites where *in situ* remediation is planned. The study highlights the need to install a large number (e.g., 30+) of borings within a targeted area in order to gain an accurate understanding of the extent and magnitude of contamination present.

Although data from a smaller number of borings is perhaps useful for delineating subsurface contamination that is easily recognizable in the field, reliance on a small number of borings to estimate representative contaminant concentrations and contaminant mass results in very low confidence of actual site conditions due to the heterogeneous distribution of contaminants in soil and the risk of false negatives. The use of individual borings to define the boundaries of subsurface contamination requires that those boundaries be sharp and easily recognizable, which may or may not be the case depending on contaminant distribution. As was the case for this study, initial screening-level soil data are very useful for designing a full-scale MIS investigation. This issue is discussed in more detail in a HEER office technical memorandum that presents updates and comments on the 2009 *Technical Guidance Manual* (HDOH 2011).

10.2 Cost-Benefit Analysis of DU-MIS Investigations

Subsurface DU-MIS investigations similar to the one described in this study could prove very cost effective at sites where extensive *in situ* remedial actions are planned. The total field and laboratory cost of the investigation was approximately \$70,000, including the assistance of three consultants to assist in the project design and field implementation. At medium-size and larger sites, this might represent only a fraction of *in situ* remedial costs, which can easily run several hundred thousand dollars or higher. A thorough DU-MIS investigation should significantly increase the likelihood of a successful remediation.

The field cost includes upfront expenses for utility clearance, permits, field equipment and supplies and other incidentals, drilling, two field contractors and sample preparation and analysis. It does not include the cost for report preparation (prepared in-house by the HEER office). This study benefited from previous investigations that identified the approximate extent of subsurface contamination, which significantly assisted in the final design of the DU-MIS investigation. In practice, at sites that had not been previously investigated, a DU-MIS study would likely be preceded by smaller-scale, exploratory investigations.

The combined use of direct-push drilling methods and field-preserved multi-increment samples resulted in high-quality data at a reasonable cost. Twenty-nine borings were installed to a depth of 15 to 25 feet bgs over a period of three-and-a-half days. Subsurface soils were characterized by unconsolidated, marine clays and gravels with blocks of coral. This allowed for relatively easy drilling (average of 1 hour start-to-finish per boring). Note that drilling costs vary significantly depending on site conditions.

A total of 192 core increment samples were collected from cores and preserved in the field. A minimum of two field staff were required to keep up with the drillers, one to collect the samples and a second to prepare, log and store the containers. Three field staff would be ideal, in order to ensure that sample collection and handling did not impede the speed of drilling. (A second team of samplers was on hand for this study to collect additional sets of MI samples as part of the research aspect of the project.)

In practice, these increments would have been combined in the field and/or laboratory to produce one MI sample per DU layer (7 total) and one MI sample per borehole (29 total), plus replicates (approximately 4), for a total of 40 samples to be initially analyzed by the laboratory for VOCs using SIM methods. Following a review of the initial MIS data to locate the core of the contamination, the laboratory would have been asked to prepare a minimum of one to two additional MI samples from the preserved core increments (e.g., combined DU Layers A, B, C and D and DU Layers E, F and G within the 95% contaminant mass area). The total number of samples to be tested by the laboratory in practice would therefore have been no greater than 50. Individual testing of the entire set of 192 core increment samples in order to generate a comparative set of discrete data at the same field coverage and quality increased the project laboratory cost from approximately \$4,000 to \$14,000. As is the case for MIS investigations of surface soil, the savings in laboratory costs by moving from discrete samples to MIS samples is significant. Just as important, the use of MI samples in combination with methanol preservation allows a 10- to 100-fold or more increase in the mass of soil extracted for analysis, greatly improving data quality.

In situ treatment of a subsurface VOC plume similar to the one investigated is likely to cost several hundreds of thousands of dollars. The ability to use high-quality MIS data to optimize *in situ* remediation is expected to make investigations similar to the one described in this report very cost effective.

10.3 CHARACTERIZATION OF TARGETED DEPTHS VERSUS TARGETED LAYERS

Traditional, discrete sample investigations typically target specific sample point depths for characterization of subsurface contamination (e.g., every 5 feet). This approach is only valid if the distribution of contaminants at the targeted depth is relatively homogenous at the scale of the discrete sample aliquot (e.g., 5 grams for VOCs). In other words, if the drill were moved over a few feet then the difference in contaminant concentrations collected from another sample would be minimal. The use depth-specific, discrete sample data in this manner also presumes that the sample point is representative of above or below that point. Contaminant concentrations at this scale could easily vary by one to two or more orders of magnitude at this scale for both VOCs and non-VOCs (e.g., Schumacher 2000, Feenstra 2003). The same is true laterally as well.

Significant variations in contaminant levels may not matter in the core of a plume, where contaminant concentrations are significantly above target action levels anyway (Figure 15a, assuming a lognormal distribution of contaminant concentrations at the scale of a discrete sample aliquot). If this is the case then any given sample point will *exceed* the action level and even a small number of discrete samples will identify contamination, although they are likely to underestimate the mean.

If the variance of concentrations at the scale of an individual sample point (or more specifically aliquot mass) straddles the target action level, however, then the chance of a false negative at any given sample point could be very high (see Figure 15b). This leads to a false negative hazard for discrete samples, since a significant proportion of individual sample points are *below* the action level even though the targeted volume of soil as a whole (the mean) exceeds the action level. This helps explain why discrete samples often fail to accurately delineate the boundaries of contaminated soil prior to excavation, resulting in the need for repeated over-excavations based on additional, and often more numerous confirmation samples. This is likely to be the case at moderately contaminated sites or in moderately contaminated soil around the perimeter of a core of heavy contamination, where the mean concentration of contaminants

within the targeted volume of soil exceeds action levels but a large percentage of individual points within the volume of soil may be below action levels.

At the other end of the spectrum, the presence of isolated, sample-size "hot spots" outside of the primary area of contamination could lead to the false impression that soil in this area on the whole is contaminated above action levels when in fact the mean concentration of a contaminant in the soil is well below action levels (see Figure 15c). This leads to a false positive hazard for discrete samples, since a significant proportion of individual sample points could fall above the action level even though the targeted soil as a whole (mean level) is less than the action level. The potential presence of sample-size, outlier "hot spot" sample points can cause unnecessary confusion over the risk posed by contaminants in the soil, however. This sometimes leads to a misguided attempt to excavate and remove individual sample points.

The above issues highlight the need to base subsurface investigations on targeted DU layers and volumes of soil using MI samples rather than targeted depths using discrete samples. (Note that the same pitfalls of discrete soil samples also apply to surface soil investigations.) With respect to Figure 15, the sample collected from the DU should be representative of the mean of all potential sample points under the distribution curve. A vertical "resolution" of 2 to 4 feet for designation of subsurface DU layers worked well. Designation of DU layers is a very site-specific process, however, and will generally require one or more initial, exploratory investigations to gain a basic understanding of subsurface conditions before a full DU-MIS investigation can be conducted.

10.4 Designation of Subsurface DU Layers

Information from previous investigations was critical for the designation of subsurface DU layers. The earlier studies suggested that contamination was heaviest in the lower half of the sediments and immediately above the underlying tuff unit. There was no indication of contamination in the vadose zone. Subdividing the sediment into seven layers allowed good vertical resolution of contaminant distribution within the main area of contamination. This also allowed a large number of increments to be collected from the core of the plume (95% contaminant mass area, total nine borings and nine core increments per layer). Preparation of a (computed) MI sample from these core increments allowed for a more precise estimate of contaminant mass within the main part of the plume. The number of increments per layer was adequate to refine the vertical distribution of contaminants at the scale of several combined layers (e.g., Layers A through D and E through G; 36 and 27 increments, respectively). This is still sufficient to help optimize remedial options at these types of sites.

10.5 DU LAYER INCREMENT SUBSAMPLE SPACING

The spacing of plugs extracted during subsampling of a core increment could have a significant effect on reported concentration of target contaminants (see also *Comparison of Targeted Depths versus Targeted Layers* [Section 10.3] above). Increasing the density of the increment plug spacing reduces the grouping and segregation error. For this study, there was little difference in data based on 2-inch, 6-inch and 12-inch spacing. This was most likely due to dispersion of TCE in the subsurface as a dissolved-phase contaminant in wastewater released at the site.

As is the case for surface DU-MIS investigations, subsampling of core increments (versus surface soil DUs) is a function of the site investigation objectives and associated data quality objectives (refer to Section 3 of the HEER office TGM). Designation of DU layers for

characterization within a core with associated *decision statements* for the anticipated data is an important first step. Core increments extracted from borings should be subsampled in a manner that captures the contaminant heterogeneity within the targeted interval of the core. For example, if the objective of the investigation is to estimate representative contaminant concentration and mass in a targeted DU volume of soil, as was the case for this study, then increment plugs should be evenly spaced within a core and not be biased to areas suspected to be more heavily contaminated (e.g., layers with increased organic carbon and clay content). Doing so would incorrectly bias the resulting data upwards. If the objective of the investigation is to characterize thin zones of suspected heavy contamination (e.g., suspected subsurface layers of ash, tar or other waste), then these specific zones should be designated as DU layers (individual or combined) and cores intentionally subsampled with a bias toward these layers. An understanding of the site history, geology, contaminant fate and transport and other site-related issues is especially necessary to design sampling plans for decision units where access is limited, as in the case of subsurface investigations.

10.6 Preservation of Field Samples or Increments in Methanol

Preservation of MI core increments in methanol is a significant improvement over traditional discrete soil sampling methods for VOCs. Traditional methods ultimately rely on analysis of a very small, 5-gram mass of soil (enough to fill a soda bottle cap) collected from a single point within a borehole to draw conclusions about contaminant concentrations in a length of core up to 5 feet long. This provides very poor coverage and representation of the targeted interval of soil. Preservation of MI samples for core increments in methanol allowed for the extraction of sample masses exceeding 500 grams and up to several kilograms. This significantly improved the quality and representativeness of the data and overall characterization of subsurface contamination.

10.7 Use of Specific Ion Monitoring (SIM)

A drawback of the preservation of soil samples (or core increments) in methanol is the accompanying increase in laboratory detection limits and MRLs. For example, a typical MRL for VOCs using Method 8260 for soil is 5 ug/kg. Dilution of a sample with an equal mass of methanol will raise the MRL by a factor of ten under normal analysis procedures. Using the GC/MS in specific ion monitoring mode allows the equipment to focus on a very narrow range of chemicals, however, resulting in a reduction of detection and reporting limits of a similar magnitude. In this study, the laboratory was generally able to achieve a detection level of VOCs in soil between 5 and 10 ug/kg and a reporting limit between 10 and 20 ug/kg, well within the desirable range for detailed characterization of the subsurface contamination.

10.8 FIELD- VERSUS LABORATORY-PREPARED MI SAMPLES

During preparation of the investigation there was significant discussion in regard to whether MI samples (for an entire DU borehole or DU layer) should be prepared in the field or in the laboratory. If analysis of alternative combinations of increments collected in the field is not anticipated, then preparation of MI samples in the field is clearly more efficient. If analysis of alternative combinations of increments may be desired at some point to improve the resolution of the investigation to areas of heaviest contamination, then preservation of individual core increments in the field (e.g., using methanol for VOCs) followed by combination of increments and preparation of MI samples at the laboratory is required. Additional potential advantages of preparation of MIS in the laboratory include:

- Permits the inclusion of a large mass of soil into the final MIS sample extract without requiring very large sample containers in the field;
- Reduces the chance that spillage, breakage or accidental mixing of a single sample container in the field or laboratory will significantly impact the overall investigation (e.g., breakage of the single MI sample container for a targeted DU layer);
- Allows for a more controlled preparation of MI samples in the laboratory.

Potential disadvantages of preparing MI samples in the lab include added laboratory cost (e.g., typically \$75-100 for preparation of an MI sample, in addition to analysis fees), as well as an increased field cost due to the number of samples to store, label, track, ship, etc. Preparation of MI samples from individual core increments must also be weighted with respect to relative thickness and mass of increments if this varies between or within boreholes (i.e., larger extract volume taken from increments that represent longer intervals of strata). Standard methods for preparation of MI samples from methanol-preserved core increments have not been developed. A summary of the approach used for this study will be included in future updates of the HEER Office TGM.

10.9 Use of Borehole and DU Layer MI Data to Locate and Characterize Plume Core

Comparing borehole and DU layer MI samples provides a very powerful and relatively inexpensive method to identify the core area of subsurface contamination. Simply put, the volume of soil encompassed by relatively higher levels of target contaminants in borehole MI samples and DU layer MI samples represents the core of the plume. The borehole data identify the aerial location of the core, while the DU layer data identify the vertical location. The MI data can be further used to define core areas of contamination in terms of the percent of total contaminant mass.

Such an approach should prove especially useful for *in situ* remedial actions. A more refined evaluation of the distribution of contaminants within the core area of the plume might also be possible by the preparation of additional MI samples from preserved core increments at the laboratory.

10.10 COLLECTION OF SOIL SAMPLES BELOW GROUNDWATER

Groundwater fate and transport models and remedial actions for *in situ* treatment of contaminated groundwater rely on an accurate estimate of the total mass of contaminant present. Standard approaches to estimate total mass based on groundwater data and assumed or measured soil TOC data, in conjunction with standard equilibrium partitioning models, can significantly underestimate the total mass of contaminant present. This is seen in the field by constant rebound of contaminants in groundwater following the cessation of pump-and-treat or *in situ* remedial actions. A likely explanation for this problem is the sorption of a significant proportion of the contaminant mass to clay particles in the unit containing the groundwater.

This problem can be overcome by the collection and analysis of MI soil samples directly within a plume of contaminated groundwater. The bulk soil samples, with consideration of groundwater data, will provide a much more accurate estimate of the total contaminant mass present as well as provide information on the partitioning of contaminants between sorbed and dissolved phases. This information can then be used to design and optimize potential remedial actions. For example, if the bulk of the contaminants is in the dissolved phase (i.e., in the groundwater),

then pump-and-treat may be the most cost-effective manner to treat the soil. If the bulk of the contaminants are sorbed to soil particles, then *in situ* treatment is likely to be more effective (e.g., injection of oxygen- or hydrogen-releasing compounds). Obtaining grain-size and TOC data is an important part of this process.

10.11 USE OF GRAIN-SIZE AND TOTAL ORGANIC CARBON DATA

Grain-size and TOC data can be very useful for evaluating the distribution of chemicals within a plume of contaminated groundwater (keeping in mind that >65% of a groundwater plume is actually soil). TOC data can be used to initially estimate the proportion of sorbed-phase vs. dissolved-phase contaminant mass in the soil. As described in this report, TOC data can be used in conjunction with soil data to turn soil borings into hypothetical monitoring wells.

Comparison of this data to actual groundwater data, if available, may shed some light on the mass of contaminants that are bound up in clay particles. If the estimated concentration of contaminants in groundwater is significantly less than that measured, then a comparable portion of the contaminants is likely to be bound up in clays. This can be an important factor in the selection and design of remedial actions. Note that standard laboratory methods can also be ineffective for extraction of chemicals that are tightly bound to clay particles, resulting in an underestimation of total contaminant concentrations in soil.

10.12 LABORATORY PROCEDURES FOR GRAIN-SIZE ANALYSIS

The primary laboratory subsampled bulk MI samples for each DU layer in order to prepare aliquots for grain-size analysis. The results proved to be significantly biased toward the finer-grained fraction of the bulk sample. This was due in part to submittal of an inadequately small subsample mass (<100 grams) to the subcontracted lab for analysis. The method used, ASTM D422, calls for a minimum of 500 to 5,000 grams of soil for a sieve analysis, depending on the maximum size of particles (ASTM 1998). A minimum aliquot mass of 65 grams is required for separation of fines into fine-grained sand, silt and clays.

A better approach would be to dry and sieve the *entire* bulk sample into separate gravel (>2 mm), sand (<2 mm to >250 micrometers [um]) and fines (<250 um) fractions at the primary lab. The separated, fines fraction of the sample should then be submitted for further separation into fine sand, silt and clays. If initial sieving yields a fines mass greater than 65 grams, then the fines should be subsampled using MI techniques to prepare a 65-gram aliquot for analysis. This approach will avoid potential error associated with subsampling of the bulk MI sample.

10.13 LAB SUBSAMPLING PROCEDURE FOR SOIL MOISTURE

The results of the limited testing regarding the soil sample mass required for a precise measure of soil moisture revealed that the result of three 5-gram subsamples from each of five vadose zone soil samples agreed quite well with results for a much larger soil mass of the same sample (54 to 88 grams). The RSD of the 5-gram subsamples had an average precision error of 9%. This is a better than expected result based on sampling theory predictions. Repeating this testing on a larger number of samples at other sites is recommended to gain additional data.

10.14 ADDITIONAL OBSERVATIONS

Monitoring Wells and Soil Gas Samples

Monitoring wells should generally not be used for the collection of soil gas samples if the data are to be used to evaluate potential vapor intrusion hazards. Soil gas samples for this purpose

should reflect vapors emitted from VOCs in groundwater at the water table. As demonstrated in this study, VOC concentrations in both soil and groundwater can vary significantly with depth. Mixing of groundwater within a monitoring well will result in a concentration of VOCs that reflects all of the groundwater zones crossed by the well screen (e.g., Britt 2005, Britt et. al 2010). The resulting concentration of VOCs within the well water is unlikely to not be representative of the concentration of VOCs at the top of the water table in general.

For example, if the well screen crosses deeper zones of heavier contamination, then the concentration of VOCs in the water at the top surface could be significantly elevated in comparison to the surrounding water table, with a correlative increase in VOC concentrations in the soil gas within the well casing. If this is the case, then the soil gas within the well casing will not be representative of the vapors being emitted from groundwater across the site as a whole and will overestimate potential vapor intrusion hazards.

11.0 REFERENCES

ASTM, 1998, Standard Test Method for Particle-Size Analysis of Soils: ASTM Designation: D422–63.

Britt, S. L., 2005, Testing the In-Well Horizontal Laminar Flow Assumption with a Sand-Tank Well Model: Ground Water Monitoring and Remediation, Vol. 25, no. 3, p73-81.

Britt, S.L., Parker, B.L. ad J.A. Cherry, A Downhole Passive Sampling System to Avoid Bias and Error from Groundwater Sample Handling: Environmental Science and Technology, Vol. 44, no 13, p.4917-4923.

Feenstra, S., 2003, Spatial Variability of Non-Aqueous Phase Liquid Chemicals in Soil-Implications for Source Zone Mass Estimates: Environmental & Engineering Geoscience, Vol. IX, No. 1, February 2003, pp. 19–23.

Hewitt, A. D., Ramsey, C. and S. Bigl, 2008, Multi-Increment TCE Vadose-Zone Investigation: Remediation. Winter 2008, p. 125-140.

HDOH, 2007, Use of laboratory batch tests to evaluate potential leaching of contaminants from soil (April 2007): Hawai'i Department of Health, Office of Hazard Evaluation and Emergency Response, http://www.hawaii.gov/health/environmental/hazard/eal2005.html

HIDOH, 2009, *Technical Guidance Manual*: Hawai'i Department of Health, Office of Hazard Evaluation and Emergency Response, http://www.hawaiidoh.org/

HDOH, 2010, Sampling and Analysis Plan, Subsurface Investigation of VOC Contamination, Site CG110, Hickam Air Force Base, Honolulu, Hawai'i (June 10, 2010): Hawai'i Department of Health, Office of Hazard Evaluation and Emergency Response.

HDOH, 2011, Technical Guidance Manual Notes: Decision Unit and Multi-Increment Sample Investigations (February 2011): Hawai'i Department of Health, Office of Hazard Evaluation and Emergency Response, http://www.hawaiidoh.org/

Schumacher, B.A. and M.M. Minnich, 2000, Extreme Short-Range Variability in VOC-Contaminated Soils: Environmental Science and Technology, Vol. 34, No. 17, pp 3611-3616.

USAF, 2007, Final Remedial Investigation Report for CG110, Hickam Air Force Base (March 9, 2007): U.S. Air Force, 15th Airlift Wing, Environmental Restoration Program (prepared by CH2M HILL, Honolulu, Hawai'i).

USAF, 2010, Summary of Bioaugmentation Monitoring, September 2009, Site CG110 (April 2010): U.S. Air Force, 15th Airlift Wing, Environmental Restoration Program (prepared by CH2M HILL, Honolulu, Hawai'i).

USEPA, 2002, Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites: U.S. Environmental Protection Agency, Solid Waste and Emergency Response, OSWER 9355.4-24, December 2002, http://www.epa.gov/superfund/resources/soil/ssg_main.pdf

USAF, 2008, Final Remedial Investigation Report for CG110, Hickam Air Force Base (May 8, 2008): U.S. Air Force, 15th Airlift Wing, Environmental Restoration Program (prepared by CH2M HILL, Honolulu, Hawai'i).

USEPA, 2009, Screening Levels for Chemical Contaminants: U.S. Environmental Protection Agency, prepared by Oak Ridge National Laboratories, http://www.epa.gov/region09/waste/sfund/prg/

TABLES

Hawaiʻi DOH March 2011

Table 1. DU layers encountered in borings and estimated DU layer volume.

		Approximate	Decision Unit Layers Encountered and Sampled ("1" = "Yes")							
Boring #	Total Depth Sampled (feet bgs)	Volume of Soil Represented by Boring (yds ³)	Layer A (6-10'bgs)	Layer B (10-12' bgs)	Layer C (12-14'bgs)	Layer D (14-16'bgs)	Layer E (16-18'bgs)	Layer F (18-20'bgs)	Layer G (20'+ bgs)	Total Number of CI Samples
B1	22	2,904	1	1	1	1	1	1	1	7
B2	24	3,267	1	1	1	1	1	1	1	7
B3	22	2,904	1	1	1	1	1	1	1	7
B4	22	2,904	1	1	1	1	1	1	1	7
B5	24	3,267	1	1	1	1	1	1	1	7
B6	23	3,085	1	1	1	1	1	1	1	7
B7	25	3,448	1	1	1	1	1	1	1	7
B8	22	2,904	1	1	1	1	1	1	1	7
B9	22	2,904	1	1	1	1	1	1	1	7
B10	22	2,904	1	1	1	1	1	1	1	7
B11	22	2,904	1	1	1	1	1	1	1	7
B12	21	2,722	1	1	1	1	1	1	1	7
B13	20	2,541	1	1	1	1	1	1		6
B14	20	2,541	1	1	1	1	1	1		6
B15	20	2,541	1	1	1	1	1	1		6
¹ B16	20	2,541	1	1	1	1	1	1		6
B17	18	2,178	1	1	1	1	1			5
² B18	18	2,178	1	1	1	1	1			5
B19	18	2,178	1	1	1	1	1			5
B20	18	2,178	1	1	1	1	1			5
³ B21	16	1,815	1	1	1	1		•		4
B22	15	1,633	1	1	1	1				4
B23	15	1,633	1	1	1	1				4
B24	16	1,815	1	1	1	1				4
B25	16	1,815	1	1	1	1				4
⁴ B26	(abandoned)	-	-	-	-	-				0
B27	15	1,633	1	1	1	1				4
³ B28	16	1,815	1	1	1	1				4
³ B29	16	1,815	1	1	1	1				4
B30	16	1,815	1	1	1	1				4
Tot		e Increment Samples:	29	29	29	29	20	16	12	164
	DU	Layer Volume (yds ³):	21,052	10,526	10,526	9,981	7,259	5,807	5,626	70,778
Table 2 Notes:										

Table 2 Notes:

- 1. Boring 16: Less than one-foot thickness of DU Layer G encountered below 20' bgs to collect separate sample.
- 2. Boring 18: Less than one-foot thickness of DU Layer F encountered below 18' bgs to collect separate sample.
- 3. Borings 21 & 28: Less than one-foot thickness of DU Layer E encountered below 16' bgs to sample. Isolated pocket of deeper sediment in Boring 29 not sampled.
- 4. Borehole 26 abandoned due to obstruction at two-feet bgs.

Table 2. Summary of sampling scheme for each borehole.

Boring #	¹ DU Layer Core Increment (primary)	² DU Layer Core Increment (replicates)	³ Soil Moisture Analysis Samples	⁴ Borehole Field MI Samples (6" & 12" spacing)	⁵ DU Layer Field MI Samples (6" & 12" spacing)	⁶ TOC & Grain Size Field MI Sample
B1	X	, ,	•		X	Х
B2	X				X	X
B3	X				X	X
B4	Х				X	X
B5	X	X		X	X	X
B6	X		X		X	X
B7	X	X	Х	X	X	X
B8	Х	X		X	X	X
B9	X				X	X
B10	X				X	X
B11	X				X	X
B12	X				X	X
B13	X				X	X
B14	Х				X	X
B15	X				X	X
B16	X		X		X	X
B17	X		Х			X
B18	X					X
B19	X					X
B20	X					X
B21	X					X
B22	Х					X
B23	Х					X
B24	Х					X
B25	X					X
⁷ B26	-					
B27	X		Х			X
B28	X					X
B29	X					X
B30	X					X

Notes:

- 1. One primary, Core Increment (CI) sample collected from each DU Layer encountered in each borehole using two-inch plug spacing.
- 2. Triplicate DU Layer core increment subsamples collected from Borings 5, 7 and 8 using two-inch plug spacing.
- 3. Core increments collected for soil moisture determination in saturated zone from each DU layer in Boreholes B6 and B7. Core increments from vadose zone at 4-6 ft. bgs (immediately above the water table) collected from B6, B7, B16, B17, and B27.
- 4. Two sets of MI samples representing combined DU layers within a borehole prepared in field for boreholes 5, 7 and 8. First set with six-inch plug spacing, second set with twelve-inch plug spacing per borehole.
- 5. DU Layer plugs from noted borings combined in methanol from Layers E, F, and G to prepare a single MI sample for that layer. Refer to Table 2 for specific borings included in each DU Layer Field MI sample. Two separate MI samples prepared per layer; first set with six-inch plug spacing and second set with twelve-inch plug spacing.
- 6. Field MI samples collected from each DU layer using two-inch plug spacing. Grain-size analysis and Total Organic Carbon tests carried out on each bulk DU Layer MI sample.
- 7. Borehole 26 abandoned due to obstruction at two-feet bgs.

Table 3a. Summary of field and laboratory MI sample mass (wet weight).

*Field-Prepared DU Layer MI Samples	Sample Mass (grams)
Layer E-FMIS-VOC6	508
Layer E-FMIS-VOC12	283
Layer F-FMIS-VOC6	453
Layer F-FMIS-VOC12	234
Layer G-FMIS-VOC6	441
Layer G-FMIS-VOC12	238

^{*}Number at end of ID name indicates plug spacing in inches.

*Lab-Prepared DU Layer MI Samples	Sample Mass (grams)
Layer E lab composite B1-B20 (Rep1)	1,236
Layer F lab composite B1-B16 (Rep1)	997
Layer G lab composite B1-B12 (Rep1)	1,101

^{*}Total mass of individual core increments included in MI sample.

Field-Prepared Borehole MIS Samples	Sample Mass (grams)
B5MIS-VOC6	219
B5MIS-VOC12	100
B7MIS-VOC6	265
B7MIS-VOC12	143
B8MIS-VOC6	188
B8MIS-VOC12	86

^{*}Number at end of ID name indicates plug spacing in inches.

Table 3b. Average mass of subsample collected from borehole core Increment samples across noted DU layer.

DU Layer	*Average CI Sample Mass (grams)
DU Layer A	127
DU Layer B	61
DU Layer C	63
DU Layer D	61
DU Layer E	62
DU Layer F	62
DU Layer G	92

Table 3c. Borehole core increment mass (wet weight, two-inch plug spacings).

Borehole	Increment
Core Increment	Mass
Sample ID	(grams)
B1-A-(MIC-VOC)	132
B1-B-(MIC-VOC)	61
B1-C-(MIC-VOC)	63
B1-D-(MIC-VOC)	64
B1-E-(MIC-VOC)	54
B1-F-(MIC-VOC)	59
B1-G-(MIC-VOC)	56
B2-A-(MIC-VOC)	116
B2-B-(MIC-VOC)	77
B2-C-(MIC-VOC)	87
B2-D-(MIC-VOC)	57
B2-E-(MIC-VOC)	60
B2-F-(MIC-VOC)	54
B2-G-(MIC-VOC)	63
B3-A-(MIC-VOC)	143
B3-B-(MIC-VOC)	76
B3-C-(MIC-VOC)	63
B3-D-(MIC-VOC)	64
B3-E-(MIC-VOC)	58
B3-F-(MIC-VOC)	74
B3-G-(MIC-VOC)	117
B4-A-(MIC-VOC)	119
B4-B-(MIC-VOC)	59
B4-C-(MIC-VOC)	65
B4-D-(MIC-VOC)	72
B4-E-(MIC-VOC)	60
B4-F-(MIC-VOC)	74
B4-G-(MIC-VOC)	76
B5-A-(MIC-VOC)	122
B5-B-(MIC-VOC)	57
B5-C-(MIC-VOC)	62
B5-D-(MIC-VOC)	63
B5-E-(MIC-VOC)	59
B5-F-(MIC-VOC)	72
B5-G-(MIC-VOC)	125
B6-A-(MIC-VOC)	129
B6-B-(MIC-VOC)	50
B6-C-(MIC-VOC)	60
B6-D-(MIC-VOC)	65
B6-E-(MIC-VOC)	64
B6-F-(MIC-VOC)	61
B6-G-(MIC-VOC)	142

t

Borehole	Increment
Core Increment	Mass
Sample ID	(grams)
B13-A-(MIC-VOC)	140
B13-B-(MIC-VOC)	69
B13-C-(MIC-VOC)	73
B13-D-(MIC-VOC)	75
B13-E-(MIC-VOC)	67
B13-F-(MIC-VOC)	58
B14-A-(MIC-VOC)	154
B14-B-(MIC-VOC)	60
B14-C-(MIC-VOC)	59
B14-D-(MIC-VOC)	60
B14-E-(MIC-VOC)	60
B14-F-(MIC-VOC)	64
B15-A-(MIC-VOC)	182
B15-B-(MIC-VOC)	55
B15-C-(MIC-VOC)	59
B15-D-(MIC-VOC)	56
B15-E-(MIC-VOC)	59
B15-F-(MIC-VOC)	63
B16-A-(MIC-VOC)	126
B16-B-(MIC-VOC)	61
B16-C-(MIC-VOC)	76
B16-D-(MIC-VOC)	58
B16-E-(MIC-VOC)	61
B16-F-(MIC-VOC)	56
B17-A-(MIC-VOC)	147
B17-B-(MIC-VOC)	65
B17-C-(MIC-VOC)	63
B17-D-(MIC-VOC)	54
B17-E-(MIC-VOC)	66
B18-A-(MIC-VOC)	139
B18-B-(MIC-VOC)	57
B18-C-(MIC-VOC)	57
B18-D-(MIC-VOC) B18-E-(MIC-VOC)	62 67
B19-A-(MIC-VOC) B19-B-(MIC-VOC)	128 72
B19-C-(MIC-VOC)	62 57
B19-D-(MIC-VOC)	57 60
B19-E-(MIC-VOC) B20-A-(MIC-VOC)	60 147
B20-A-(MIC-VOC)	58
B20-C-(MIC-VOC)	63
B20-D-(MIC-VOC)	
	63
B20-E-(MIC-VOC)	62

Borehole	Increment	
Core Increment	Mass	
Sample ID	(grams)	
B21-A-(MIC-VOC)	113	
B21-B-(MIC-VOC)	65	
B21-C-(MIC-VOC)	59	
B21-D-(MIC-VOC)	60	
B22-A-(MIC-VOC)	59	
B22-B-(MIC-VOC)	70	
B22-C-(MIC-VOC)	55	
B22-D-(MIC-VOC)	54	
B23-A-(MIC-VOC)	136	
B23-B-(MIC-VOC)	58	
B23-C-(MIC-VOC)	59	
B23-D-(MIC-VOC)	58	
B24-A-(MIC-VOC)	130	
B24-B-(MIC-VOC)	68	
B24-C-(MIC-VOC)	65	
B24-D-(MIC-VOC)	63	
B25-A-(MIC-VOC)	125	
B25-B-(MIC-VOC)	51	
B25-C-(MIC-VOC)	60	
B25-D-(MIC-VOC)	60	
B27-A-(MIC-VOC)	131	
B27-B-(MIC-VOC)	62	
B27-C-(MIC-VOC)	55	
B27-D-(MIC-VOC)	62	
B28-A-(MIC-VOC)	105	
B28-B-(MIC-VOC)	52	
B28-C-(MIC-VOC)	60	
B28-D-(MIC-VOC)	58	
B29-A-(MIC-VOC)	90	
B29-B-(MIC-VOC)	60	
B29-C-(MIC-VOC)	51	
B29-D-(MIC-VOC)	74	
B30-A-(MIC-VOC)	111	
B30-B-(MIC-VOC)	39	
B30-C-(MIC-VOC)	56	
B30-D-(MIC-VOC)	61	

Borehole	Increment		
Core Increment	Mass		
Sample ID	(grams)		
B31-A-(MIC-VOC)	121		
B31-B-(MIC-VOC)	64		
B31-C-(MIC-VOC)	58		
B31-D-(MIC-VOC)	54		
B31-D-(MIC-VOC) B31-E-(MIC-VOC)	58		
B31-F-(MIC-VOC)	67		
B31-G-(MIC-VOC)	50		
B32-A-(MIC-VOC)	174		
B32-B-(MIC-VOC)	56		
B32-C-(MIC-VOC)	73		
B32-D-(MIC-VOC)	55		
B32-E-(MIC-VOC)	68		
B32-F-(MIC-VOC)	61		
B32-G-(MIC-VOC)	55		
B33-A-(MIC-VOC)	125		
B33-B-(MIC-VOC)	61		
B33-C-(MIC-VOC)	52		
B33-D-(MIC-VOC)	58		
B33-E-(MIC-VOC)	66		
B33-F-(MIC-VOC)	61		
B33-G-(MIC-VOC)	134		
B34-A-(MIC-VOC)	119		
B34-B-(MIC-VOC)	56		
B34-C-(MIC-VOC)	56		
B34-D-(MIC-VOC)	54		
B34-E-(MIC-VOC)	67		
B34-F-(MIC-VOC)	58		
B34-G-(MIC-VOC)	106		
B35-A-(MIC-VOC)	149		
B35-B-(MIC-VOC)	60		
B35-C-(MIC-VOC)	65		
B35-D-(MIC-VOC)	53		
B35-E-(MIC-VOC)	59		
B35-F-(MIC-VOC)	55		
B35-G-(MIC-VOC)	127		
B36-A-(MIC-VOC)	129		
B36-B-(MIC-VOC)	58		
B36-C-(MIC-VOC)	65		
B36-D-(MIC-VOC)	72		
B36-E-(MIC-VOC)	59		
B36-F-(MIC-VOC)	58		
B36-G-(MIC-VOC)	154		

Notes

Replicate Sets: (B5-B35-B36); (B7-B33-B34); (B8-B31-B32)

Sample ID	Jore morement san	ipie data (dg/k	g, wet weight).	1
(Boring, DU Layer)	Total VOCs	TCE	1,2 DCE(cis)	Vinyl Chloride
B1 Layer A	204	<11.4	187	<22.7
B1 Layer B	335	21	271	43
B1 Layer C	133	13	111	<18.9
B1 Layer D	32	<9.30	18.3	<18.6
B1 Layer E	22	<11.0	<11.0	<22.0
B1 Layer F	20	<10.2	<10.2	<20.3
B1 Layer G	22	<10.8	<10.8	<21.5
B2 Layer A	251	<12.9	232	<25.8
B2 Layer B	335	241	86	<15.6
B2 Layer C	658	613	39	<13.7
B2 Layer D	759	663	85	<21.0
B2 Layer E	526	452	64	<20.0
B2 Layer F	22	<11.0	<11.0	<22.0
B2 Layer G	19	<9.47	<9.47	<18.9
B3 Layer A	60	<8.39	<8.39	52
B3 Layer B	45	<7.85	<7.85	37
B3 Layer C	52	<9.51	<9.51	43
B3 Layer D	50	<9.32	<9.32	40
B3 Layer E	55	<10.3	<10.3	45
B3 Layer F	46	<8.07	<8.07	38
B3 Layer G	47	<10.2	<10.2	36
B4 Layer A	-	<10.1	<10.1	<20.2
B4 Layer B	-	<10.2	<10.2	<20.4
B4 Layer C	-	<9.25	<9.25	<18.5
B4 Layer D	-	<8.37	<8.37	<16.7
B4 Layer E	-	<10.1	<10.1	<20.1
B4 Layer F	-	<8.13	<8.13	<16.3
B4 Layer G	-	<7.87	<7.87	<15.7
B5 Layer A	35	<9.87	20.3	<19.7
B5 Layer B	35	<10.4	<10.4	24
B5 Layer C	48	<9.61	18.2	25
B5 Layer D	1,362	180	997	185
B5 Layer E	2,750	1400	1260	90
B5 Layer F	2,728	1770	888	70
B5 Layer G	1,467	868	559	40
B6 Layer A	109	<9.32	85	19
B6 Layer B	119	<12.0	101	<23.9
B6 Layer C	86	32	44	<20.1
B6 Layer D	25	11	<9.18	<18.4
B6 Layer E	42	18	14	<18.7
B6 Layer F	20	<9.77	<9.77	<19.5
B6 Layer G	1,472	486	977	<17.0
B7 Layer A	49	16	<8.11	29
B7 Layer B	786	675	103	<15.3
B7 Layer C	1,378	1190	179	<18.9
B7 Layer D	1,190	1010	171	<18.7
B7 Layer E	905	766	131	<16.1

Sample ID	l l l l l l l l l l l l l l l l l l l	impic data (dg/kg	J, Wet Weight).	1
(Boring, DU Layer)	Total VOCs	TCE	1,2 DCE(cis)	Vinyl Chloride
B7 Layer F	64	46	<11.4	<22.8
B7 Layer G	12	<5.90	<5.90	<11.8
B8 Layer A	14	5.9	<5.66	<11.3
B8 Layer B	10	<5.12	<5.12	<10.2
B8 Layer C	9	<4.48	<4.48	<8.97
B8 Layer D	12	<5.91	<5.91	<11.8
B8 Layer E	10	<4.81	<4.81	<9.62
B8 Layer F	18	<8.77	<8.77	<17.5
B8 Layer G	26	<8.31	<8.31	18
B9 Layer A	37	<12.3	19	<24.6
B9 Layer B	75	<10.9	58	<21.7
B9 Layer C	113	<9.25	99	<18.5
B9 Layer D	242	130	100	<23.9
B9 Layer E	61	41	<9.64	<19.3
B9 Layer F	129	108	<10.5	<21.1
B9 Layer G	157	137	<10.2	<20.4
B10 Layer A	17	<8.25	<8.25	<16.5
B10 Layer B	145	<11.0	116	24
B10 Layer C	207	14	143	51
B10 Layer D	381	<9.88	57	319
B10 Layer E	748	<9.89	306	437
B10 Layer F	993	<9.87	786	202
B10 Layer G	1,450	<8.79	1230	216
B11 Layer A	14	<4.54	7.3	<9.07
B11 Layer B	82	<9.10	47.6	29.6
B11 Layer C	20	<9.84	<9.84	<19.7
B11 Layer D	21	<10.7	<10.7	<21.4
B11 Layer E	45	<10.5	<10.5	34.5
B11 Layer F	134	<9.87	21.7	107
B11 Layer G	470	<9.63	217	248
B12 Layer A	-	<15.2	<15.2	<30.4
B12 Layer B	-	<10.3	<10.3	<20.7
B12 Layer C	-	<8.98	<8.98	<18.0
B12 Layer D	-	<9.69 <9.63	<9.69 <9.63	<19.4
B12 Layer E	-	<9.63 <9.68	<9.68 <9.68	<19.3 <19.4
B12 Layer F	-	<9.88 <10.5	<9.68 <10.5	<19.4
B12 Layer G B13 Layer A	-	<10.5	<10.5	<21.1
B13 Layer A B13 Layer B	-	<10.7 <8.75	<10.7 <8.75	<21.5 <17.5
B13 Layer C	-	<8.25	<8.25	<16.5
B13 Layer D	-	<7.96	<7.96	<15.9
B13 Layer E	-	<8.97	<8.97	<17.9
B13 Layer F	-	<10.3	<10.3	<20.5
B14 Layer A	29	<9.72	<9.72	19
B14 Layer B	27	12	<9.99	<20.0
B14 Layer C	58	42	<10.2	<20.4
B14 Layer D	129	114	<9.98	<20.0

Table 4. Summary of c	core increment sa	impie data (ug/kg	<u>, wet weight).</u>	1
•	TatalNOOs	TOF	4.0.005(aia)	Viscol Oblasida
(Boring, DU Layer)	Total VOCs	TCE	1,2 DCE(cis)	Vinyl Chloride
B14 Layer E	161	146	<9.97	<19.9
B14 Layer F	55	41	<9.38	<18.8
B15 Layer A	29	16	<8.25	<16.5
B15 Layer B	41	25	<11.0	<21.9
B15 Layer C	30	15	<10.2	<20.3
B15 Layer D	123	107	<10.8	<21.6
B15 Layer E	514	484	19	<20.3
B15 Layer F	1,108	1070	29	<19.2
B16 Layer A	37	19	<11.9	<23.9
B16 Layer B	20	<9.79	<9.79	<19.6
B16 Layer C	16	<7.89	<7.89	<15.8
B16 Layer D	21	<10.3	<10.3	<20.6
B16 Layer E	20	<9.86	<9.86	<19.7
B16 Layer F	22	<10.8	<10.8	<21.5
B17 Layer A	46	<10.2	<10.2	36
B17 Layer B	42	<9.24	<9.24	33
B17 Layer C	34	<9.50	<9.50	25
B17 Layer D	41	<11.2	<11.2	30
B17 Layer E	18	<9.11	<9.11	<18.2
B18 Layer A	-	<10.8	<10.8	<21.6
B18 Layer B	-	<10.6	<10.6	<21.1
B18 Layer C	-	<10.6	<10.6	<21.2
B18 Layer D	-	<9.72	<9.72	<19.4
B18 Layer E	-	<8.92	<8.92	<17.8
B19 Layer A	-	<11.7	<11.7	<23.4
B19 Layer B	-	<8.36	<8.36	<16.7
B19 Layer C	-	<9.74	<9.74	<19.5
B19 Layer D	-	<10.5	<10.5	<21.1
B19 Layer E	-	<10.0	<10.0	<20.0
B20 Layer A	57	10.8	<10.2	41
B20 Layer B	57	<10.3	<10.3	47
B20 Layer C	54	<9.51	<9.51	44
B20 Layer D	63	<9.45	<9.45	54
B20 Layer E	51	<9.76	<9.76	41
B21 Layer A	-	<13.2	<13.2	<26.5
B21 Layer B	-	<9.24	<9.24	<18.5
B21 Layer C	-	<10.2	<10.2	<20.4
B21 Layer D	-	<10.0	<10.0	<20.1
B22 Layer A	-	<10.2	<10.2	<20.4
B22 Layer B	-	<8.53	<8.53	<17.1
B22 Layer C	-	<10.9	<10.9	<21.7
B22 Layer D	-	<11.0	<11.0	<22.1
B23 Layer A	-	<8.82	<8.82	<17.6
B23 Layer B	-	<10.4	<10.4	<20.8
B23 Layer C	-	<10.2	<10.2	<20.4
B23 Layer D	-	<10.4	<10.4	<20.8
B24 Layer A	-	<9.22	<9.22	<18.4

Sample ID (Boring, DU Layer)	Total VOCs	TCE	1,2 DCE(cis)	Vinyl Chloride
B24 Layer B	-	<8.85	<8.85	<17.7
B24 Layer C	=	<9.20	<9.20	<18.4
B24 Layer D	-	<9.55	<9.55	<19.1
B25 Layer A	-	<4.81	<4.81	<9.62
B25 Layer B	-	<5.90	<5.90	<11.8
B25 Layer C	-	<4.96	<4.96	<9.93
B25 Layer D	-	<4.99	<4.99	<9.98
B27 Layer A	-	<9.17	<9.17	<18.3
B27 Layer B	-	<9.75	<9.75	<19.5
B27 Layer C	-	<10.8	<10.8	<21.6
B27 Layer D	-	<9.70	<9.70	<19.4
B28 Layer A	-	<5.69	<5.69	<11.4
B28 Layer B	-	<5.83	<5.83	<11.7
B28 Layer C	-	<9.92	<9.92	<19.8
B28 Layer D	-	<10.3	<10.3	<20.6
B29 Layer A	-	<6.65	<6.65	<13.3
B29 Layer B	-	<5.01	<5.01	<10.0
B29 Layer C	-	<5.87	<5.87	<11.7
B29 Layer D	-	<4.07	<4.07	<8.14
B30 Layer A	-	<5.42	<5.42	<10.8
B30 Layer B	-	<7.77	<7.77	<15.5
B30 Layer C	-	<5.35	<5.35	<10.7
B30 Layer D	-	<4.90	<4.90	<9.79

Notes

^{1.} MRL noted in parentheses if VOC was not detected in sample. Total VOCs calculated using 1/2 the MRL for borings where one or more VOCs were detected above the MRL.

^{2. 1,2} DCE *trans* data not considered; only reported in one sample and only marginally above the method reporting limit.

Table 5. Summary of MI sample VOC data for targeted DU layers (ug/kg, wet weight).

	Sample ID	Total VOCs	TCE	1,2 DCE(cis)	Vinyl Chloride	
DU Layer	Field-Based MI Sample Data					
Lover E	LAYER E-FMIS-VOC6	193	120	65	8.3	
Layer E	LAYER E-FMIS-VOC12	218	141	63	14	
Lover E	LAYER F-FMIS-VOC6	287	160	101	26	
Layer F	LAYER F-MIS-VOC12	273	179	94	<10	
LoverC	LAYER G-FMIS-VOC6	450	176	251	23	
Layer G	LAYER G-FMIS-VOC12	402	94	308	<10	
		Laboratory	y-Based MI Sample	Data		
	Layer E lab (Rep1)	312	215	97	<6.6	
Layer E	Layer E lab (Rep2)	304	209	95	<6.6	
	Layer E lab (Rep3)	307	210	97	<6.6	
	Layer F lab (Rep1)	366	236	130	<6.5	
Layer F	Layer F lab (Rep2)	343	221	122	<6.5	
	Layer F lab (Rep3)	352	227	125	<6.5	
	Layer G lab (Rep1)	383	127	249	7.0	
Layer G	Layer G lab (Rep2)	375	125	243	6.9	
	Layer G lab (Rep3)	398	131	257	10	
		Comp	ited MI Sample Data	a		
Layer A	-	34	4	20	10	
Layer B	-	74	35	28	11	
Layer C	-	100	67	23	9	
Layer D	-	154	78	51	25	
Layer E	-	297	167	92	37	
Layer F	-	335	192	111	32	
Layer G	-	476	170	263	43	

Notes

- 1. Field-based MI samples collected and prepared in field by combining soil plugs from targeted DU layers across boreholes in methanol. Samples collected for Layers E, F and G only. Duplicate samples collected using a six-inch (VOC6) and twelve-inch plug spacing (VOC12).
- 2. Laboratory-based MI samples prepared by combining 20 microliter aliquots of methanol from individual CI samples for targeted DU Layers. Samples collected for Layers E, F and G only. Triplicate samples prepared for each layer.
- 3. MI Samples for DU Layers E , F and G collected from Borings B1-20, B1-16 and B1-12, respectively.
- 4. MI data computed as average of individual Core Increment samples collected in targeted DU layers and reflect two-inch plug spacing. Averages calculated for all layers. Averages for DU Layers E-G calculated using same borings as noted above to allow comparison with field-based and laboratory-based sample data.

Table 6. Summary of MI VOC sample data for targeted borings (ug/kg, wet weight).

	Sample ID	Total VOCs	TCE	1,2 DCE(cis)	Vinyl Chloride
DU Layer			Based MI Sample Da		•
	B5MIS-VOC6	1,424	698	656	70
Boring 5	B5MIS-VOC12	1,463	749	638	76
Paring 7	B7MIS-VOC6	526	436	74	16
Boring 7	B7MIS-VOC12	522	436	75	11
4D 0	B12MIS-VOC6	32	<6.4	<6.4	26
⁴ Boring 8	B12MIS-VOC12	30	<7.0	<7.0	23
		^{2,3} Comp	outed MI Sample Dat	ta	
Boring 1	-	110	8.5	86	15
Boring 2	-	367	284	74	10
Boring 3	-	51	4.5	4.5	41
Boring 4	-	54	5.1	5.1	44
Boring 5	-	1,203	605	535	63
Boring 6	-	267	80	176	11
Boring 7	-	626	529	85	12
⁴ Boring 8	-	14	3.5	3.1	7.5
Boring 9	-	116	62	44	11
Boring 10	-	563	6.1	377	180
Boring 11	-	112	4.6	44	63
Boring 12	-	nd	nd	nd	nd
Boring 13	-	nd	nd	nd	nd
Boring 14	-	76	60	4.9	11
Boring 15	-	307	286	11	10
Boring 16	-	22	7.3	5.0	10.1
Boring 17	-	36	5	4.9	27
Boring 18	-	nd	nd	nd	nd
Boring 19	-	nd	nd	nd	nd
Boring 20	-	12	2.0	2.0	7.8
Boring 21	-	nd	nd	nd	nd
Boring 22	-	nd	nd	nd	nd
Boring 23	-	nd	nd	nd	nd
Boring 24	-	nd	nd	nd	nd
Boring 25	-	nd	nd	nd	nd
Boring 27	-	nd	nd	nd	nd
Boring 28	-	nd	nd	nd	nd
Boring 29	-	nd	nd	nd	nd
Boring 30	-	nd	nd	nd	nd

Notes

- 1. Field-based MI samples collected and prepared in field by combining soil plugs from targeted boreholes in methanol. Duplicate samples collected using a six-inch (VOC6) and twelve-inch plug spacing (VOC12).
- 2. MI data computed as average of individual core increments collected in targeted DU layers and reflect two-inch plug spacing. Averages calculated for all layers. Averages for DU Layers E-G calculated using same borings as noted above to allow comparison with field-based and laboratory-based sample data.
- 3. Total VOCs calculated using 1/2 the MRL for borings where VOCs were detected. Refer to Table 4 for MRLs used in synthetic MI sample calculations. Non-Detect ("nd") generally MRLS <10 ug/kg for TCE and DCE and <20 ug/kg for vinyl chloride.

Table 7a. DU layer grain-size distribution and TOC (dry weight) originally reported by TestAmerica Burlington lab for subsampled DU layer MIS samples. Reported distribution did not correlate with a finer soil sequence at deeper layers that was observed in the field, prompting an analysis of the original MI samples. Refer to Tables 8 and 9 for corrected data and text for discussion.

				Fin	es Subgroups Bre	eakdown	
DU Layer	Gravel (>2mm)	Sand (<2mm)	Fines (<250um)	Fine Sand (<250um)	Silt (<50um)	Clay (<2um)	Total Organic Carbon (mg/kg)
Layer A	50.5%	16.9%	32.6%	8.1%	15.5%	9.0%	2,250
Layer B	46.1%	17.6%	36.3%	7.3%	17.1%	11.9%	1,690
Layer C	45.2%	14.4%	40.4%	7.7%	18.4%	14.3%	1,570
Layer D	43.7%	16.0%	40.3%	7.3%	16.2%	16.8%	1,500
Layer E	41.1%	12.2%	46.7%	6.5%	19.8%	20.4%	1,710
Layer F	46.7%	10.1%	43.2%	8.7%	19.4%	15.1%	2,610
Layer G	43.7%	15.1%	41.3%	16.5%	15.0%	9.8%	1,900

Table 7b. Mass of particle size groups (dry weight) and total organic carbon and estimated concentration of TOC in fines, based on TestAmerica Burlington data.

Sample ID	Total Mass (grams)	Gravel (>2mm)	Sand (<2mm)	Fines (<250um)	Total Organic Carbon (mg)	Concentration of TOC in Fines (mg/kg)
Layer A	110	56	19	36	248	6,902
Layer B	70	32	12	25	118	4,656
Layer C	114	52	16	46	179	3,886
Layer D	102	45	16	41	153	3,722
Layer E	83	34	10	39	142	3,662
Layer F	86	40	9	37	224	6,042
Layer G	59	26	9	24	112	4,600

^{1.} Assumes 100% of reported Total Organic Carbon in fines.

Table 7c. Particle size distribution based on analysis performed at TestAmerica Burlington using MI subsamples from original samples (dry weight).

DU Layer	MI Subsample Mass (grams)	Gravel (>2mm)	Sand (<u><</u> 2mm to >250um)	Fines (<u><</u> 250um)
Layer A	110	51%	17%	33%
Layer B	70	46%	18%	36%
Layer C	114	45%	14%	40%
Layer D	102	44%	16%	40%
Layer E	83	41%	12%	47%
Layer F	86	47%	10%	43%
Layer G	59	44%	15%	41%

Fines = Fine sand + Silt + Clay

Table 7d. Relative proportions of fines to total fines reported by TestAmerica Burlington lab.

	-	Proportions of Subgroups Relative to Total Fines					
Sample ID	Total Fines	Fine Sand Silt Clay (<250um) (<50um) (<2um)					
Layer A	33%	25%	48%	28%			
Layer B	36%	20%	47%	33%			
Layer C	40%	19%	46%	35%			
Layer D	40%	18%	40%	42%			
Layer E	47%	14%	42%	44%			
Layer F	43%	20%	45%	35%			
Layer G	41%	40%	36%	24%			

Table 8a.Grain-size distribution of original MI samples by mass (dry

weight) minus subsample sent to Burlington lab.

Sample ID	¹ MI Sample Mass (grams)	Gravel (>2mm)	Sand (<2mm)	Fines (<250um)
Layer A	957	769	97	92
Layer B	910	698	117	95
Layer C	926	602	208	117
Layer D	1,005	601	265	139
Layer E	1,103	651	330	122
Layer F	1,064	543	290	231
Layer G	1,173	587	248	337

^{1.} Minus subsample mass sent to Burlington lab for grain-size analysis.

Table 8b. Particle size distribution of original MI samples, minus subsample sent to Burlington lab.

DU Layer	Gravel (>2mm)	Sand (≤2mm to >250um)	Fines (<u><</u> 250um)
Layer A	80%	10%	10%
Layer B	77%	13%	10%
Layer C	65%	22%	13%
Layer D	60%	26%	14%
Layer E	59%	30%	11%
Layer F	51%	27%	22%
Layer G	50%	21%	29%

Table 9a. Revised MI sample mass (dry weight) and grain-size distribution based on combined TestAmerica Burlington and TestAmerica Honolulu data.

Sample ID	Total Mass (grams)	Gravel (>2mm)	Sand (<2mm)	Fines (<250um)
Layer A	1,067	824	115	128
Layer B	980	730	130	120
Layer C	1,040	653	224	163
Layer D	1,107	646	282	180
Layer E	1,186	685	340	161
Layer F	1,150	583	299	268
Layer G	1,232	613	257	362

Table 9b. Adjusted particle size distribution and total organic carbon concentration based on combined TestAmerica Burlington and TestAmerica Honolulu data.

				¹ Fines	Subgroups Brea	kdown	
DU Layer	Gravel (>2mm)	Sand (<2mm)	Fines (<250um)	Fine Sand (<250um)	Silt (<50um)	Clay (<2um)	² Total Organic Carbon (mg/kg)
Layer A	77%	11%	12%	3%	6%	3%	829
Layer B	75%	13%	12%	2%	6%	4%	570
Layer C	63%	22%	16%	3%	7%	6%	610
Layer D	58%	25%	16%	3%	7%	7%	605
Layer E	58%	29%	14%	2%	6%	6%	496
Layer F	51%	26%	23%	5%	10%	8%	1,409
Layer G	50%	21%	29%	13%	4%	12%	1,350

^{1.} Based on relative proportions of fines subgroups reported by TestAmerica Burlington lab (see Table 8c).

^{2.} Calculated as: Concentration of TOC in Fines (Table 8a) x Corrected Percentage of Fines in Sample (this table).

Table 10. Soil moisture data.

					Weighted	
Sample			Average of five	RSD (%) of five	average of all	
Number	Mass (g)	Percent Moisture	gram aliquots	gram aliquots	samples (%)	Bias
B27-4-6	5.53	25%				-0.03
B27-4-6	5.55	28%				0.09
B27-4-6	6.79	29%	27%	8%	25%	0.14
B27-4-6	80.46	25%				
B7-4-6	5.68	14%				-0.07
B7-4-6	5.14	17%				0.12
B7-4-6	5.85	17%	26%	11%	15%	0.16
B7-4-6	88.8	15%				
B6-4-6	5.77	18%				0.03
B6-4-6	5.16	17%				-0.04
B6-4-6	5.1	17%	17%	4.0%	17%	-0.03
B6-4-6	56.78	17%				
B17-4-6	5.57	19%				-0.18
B17-4-6	5.66	19%				-0.16
B17-4-6	5.6	23%	20%	10%	23%	-0.01
B17-4-6	62.71	24%				
B16-4-6	5.84	17%				0.01
B16-4-6	6.07	20%				0.15
B16-4-6	5.52	16%	18%	11%	17%	-0.08
B16-4-6	54.21	17%				

Table 11a. Replicate data for borehole core increment samples.

Sample ID	Total VOCs	TCE	1,2 DCE(cis)	Vinyl Chloride
B5 Layer A	35	<9.87	20	<19.7
B5 Layer B	35	<10.4	<10.4	24
B5 Layer C	48	<9.61	18	25
B5 Layer D	1,362	180	997	185
B5 Layer E	2,750	1,400	1,260	90
B5 Layer F	2,728	1,770	888	70
B5 Layer G	1,467	868	559	40
B35 Layer A	42	<8.04	21	17
B35 Layer B	37	<10.1	<10.1	27
B35 Layer C	64	<9.25	27	32
B35 Layer D	1,652	271	1,150	231
B35 Layer E	3,511	1,750	1,500	261
B35 Layer F	4,031	2,610	1,310	111
B35 Layer G	1,526	892	591	43
B36 Layer A	44	<9.33	21	19
B36 Layer B	21	<10.3	<10.3	<20.5
B36 Layer C	50	<9.2	25	21
B36 Layer D	1,315	175	942	198
B36 Layer E	4,327	2,660	1,510	157
B36 Layer F	3,151	2,080	998	73
B36 Layer G	1,524	885	561	<156

Sample ID	Total VOCs	TCE	1,2 DCE(cis)	Vinyl Chloride
B7 Layer A	49	16	<8.11	29
B7 Layer B	786	675	103	<15.3
B7 Layer C	1,378	1,190	179	<18.9
B7 Layer D	1,190	1,010	171	<18.7
B7 Layer E	905	766	131	<16.1
B7 Layer F	64	46	<11.4	<22.8
B7 Layer G	12	<5.90	<5.90	<11.8
B33 Layer A	47	18	<9.56	24
B33 Layer B	781	662	109	<19.7
B33 Layer C	1,207	1,030	166	<22.9
B33 Layer D	1,263	1,070	179	<27
B33 Layer E	954	801	144	<18.1
B33 Layer F	65	50	<9.89	<19.8
B33 Layer G	18	<8.95	<8.95	<17.2
B34 Layer A	37	22	<10.1	<20.1
B34 Layer B	776	663	102	<21.4
B34 Layer C	1,025	876	138	<21.3
B34 Layer D	1,123	956	156	<22.4
B34 Layer E	903	773	121	<17.8
B34 Layer F	48	<32.8	<10.4	<20.8
B34 Layer G	23	<11.3	<11.3	<22.7

Table 11a (cont.) Replicate data for Borehole Core Increment samples.

Sample ID	Total VOCs	TCE	1,2 DCE(cis)	Vinyl Chloride
B8 Layer A	14	5.9	<5.66	<11.3
B8 Layer B	10	<5.12	<5.12	<10.2
B8 Layer C	9	<4.48	<4.48	<8.97
B8 Layer D	12	<5.91	<5.91	<11.8
B8 Layer E	10	<4.81	<4.81	<9.62
B8 Layer F	18	<8.77	<8.77	<17.5
B8 Layer G	26	<8.31	<8.31	18
B31 Layer A	13	5.27	<4.95	<9.9
B31 Layer B	10	<4.7	<4.7	<9.7
B31 Layer C	10	<5.18	<5.18	<10.4
B31 Layer D	11	<5.51	<5.51	<11
B31 Layer E	10	<5.19	<5.19	<10.4
B31 Layer F	18	<8.94	<8.94	<17.9
B31 Layer G	48	<11.9	<11.9	36
B32 Layer A	10	4.64	<3.45	<6.9
B32 Layer B	11	<5.37	<5.37	<10.7
B32 Layer C	8	<4.09	<4.09	<8.17
B32 Layer D	11	<5.44	<5.44	<10.9
B32 Layer E	18	<8.95	<8.95	<17.7
B32 Layer F	20	<9.91	<9.91	<19.8
B32 Layer G	53	<11	<11	42

Table 11b. Evaluation of borehole CI sample replicate data (see Table 11a, Total VOCs, in ug/kg).

¹ Sample	B5	B35	B36	Avorago	² RSD
	БЭ	D33	D30	Average	KSD
DU Layer A	35	42	44	40	12%
DU Layer B	35	37	21	31	28%
DU Layer C	48	64	50	54	16%
DU Layer D	1,362	1,652	1,315	1,443	13%
DU Layer E	2,750	3,511	4,327	3,529	22%
DU Layer F	2,728	4,031	3,151	3,303	20%
DU Layer G	1,467	1,526	1,524	1,506	2.2%

¹ Sample	B7	B33	B34	Average	² RSD
DU Layer A	49	47	37	44	15%
DU Layer B	786	781	776	781	0.01%
DU Layer C	1,378	1,207	1,025	1,203	15%
DU Layer D	1,190	1,263	1,123	1,192	5.9%
DU Layer E	905	954	903	921	3.1%
DU Layer F	64	65	48	59	16%
DU Layer G	12	18	23	18	31%

¹ Sample	B8	B31	B32	Average	² RSD
DU Layer A	14	13	10	12	17%
DU Layer B	10	10	11	10	5.6%
DU Layer C	9	10	8.2	9.0	11%
DU Layer D	12	11	11	11	5.1%
DU Layer E	10	10	18	13	36%
DU Layer F	18	18	20	19	6.2%
DU Layer G	26	48	53	42	34%

^{1.} Based on testing of individual core increment samples for noted borehole and target DU Layer.

^{2.} Relative Standard Deviation.

Table 12. Replicate data for laboratory-prepared MI samples (Total VOCs, in ug/kg).

¹ Sample	Α	В	С	Average	² RSD
DU Layer E	312	304	307	308	1.3%
DU Layer F	366	343	352	354	3.3%
DU Layer G	383	375	398	385	3.0%

^{1.} Prepared by combination of extracts from preserved, core increment samples for noted DU layers (see Table 11).

Table 13. ¹Comparison of field, laboratory and computed MI data for total VOCs (Total VOCs, in ug/kg).

Sample	^{2,3} Computed MI (2 inch)	^{2,4} Laboratory MI (2 inch)	⁵ Computed vs Laboratory MI RPD (2 inch)	² Field MI (6 inch)	² Field MI (12 inch)	⁶ Computed vs Laboratory vs Field MI SD
DULayer E	297	308	7.1%	193	218	22.4%
DU Layer F	335	354	8.9%	287	273	12.3%
DU Layer G	476	385	8.5%	450	402	9.8%
Borehole 5	1,203	-		1,415	1,463	10.2%
Borehole 7	626	-		525	522	10.6%
Borehole 8	14	-		26	23	-

^{1.} See Tables 5 (DU layers) and 6 (Boreholes).

^{2.} Relative Standard Deviation.

^{2.} Increment subsampling plug spacing noted.

^{3.} Computed MI sample data based on average of individually analyzed CI samples for noted DU layers and Boreholes.

^{4.} Average of three Laboratory MI sample replicates prepared by combination of extracts from preserved, core increment samples for noted DU layers (see Table 11b).

^{5.} Relative Percent Difference between computed and laboratory-prepared MI sample data for noted DU layers.

^{6.} Relative Standard Deviation between field, laboratory and computed MI data for Total VOCs.

Table 14. Estimated mass of soil and total VOCs in each DU layer.

a. Total Study DU Area (Boreholes 1-30).

	¹ DU Layer Volume	² DU Layer Mass	³ Mean Total VOC Concentration	⁴Total VOC Mass	Percent	Percent Total DU	Cumulative
DU Layer	(cubic yards)	(kg)	(ug/kg)	(Kg)	Total Mass	Volume	VOC Mass
Layer A	21,052	25,262,222	34	0.86	6.6%	30%	6.6%
Layer B	10,526	12,631,111	74	0.94	7.2%	15%	14%
Layer C	10,526	12,631,111	100	1.3	10%	15%	23%
Layer D	9,981	11,977,778	153	1.8	14%	14%	38%
Layer E	7,259	8,711,111	296	2.6	20%	10%	57%
Layer F	5,807	6,968,889	335	2.3	18%	8.2%	75%
Layer G	5,626	6,751,111	476	3.2	25%	7.9%	100%
		0.4.000.000	450	10.0	1000/	1000/	

Total: 70,778 84,933,333 153 13.0 100% 100%

b. 95% VOC Mass area (Boreholes 1-2, 5-7, 9-11, 15).

DU Layer	¹ DU Layer Volume (cubic yards)	² DU Layer Mass (kg)	³ Mean Total VOC Concentration (ug/kg)	⁴Total VOC Mass (Kg)	Percent Total Mass	Percent Total DU Volume	Cumulative VOC Mass
Laver A	6.533	7,840,000	83	0.65	5.2%	24%	5.2%
Layer B	3,267	3,920,000	217	0.85	6.8%	12%	12%
Layer C	3,267	3,920,000	297	1.2	9.3%	12%	21%
Layer D	3,267	3,920,000	460	1.8	14%	12%	36%
Layer E	3,267	3,920,000	623	2.4	20%	12%	55%
Layer F	3,267	3,920,000	580	2.3	18%	12%	73%
Layer G	4,356	5,226,667	638	3.3	27%	16%	100%

Total: 27,222 32,666,667 383 12.5 100% 100%

c. 80% VOC Mass area (Boreholes 2, 5, 6, 7, 10).

DU Layer	¹ DU Layer Volume (cubic yards)	² DU Layer Mass (kg)	³ Mean Total VOC Concentration (ug/kg)	⁴Total VOC Mass (Kg)	Percent Total Mass	Percent Total DU Volume	Cumulative VOC Mass
Layer A	3,630	4,355,556	92	0.40	3.7%	23%	3.7%
Layer B	1,815	2,177,778	284	0.62	5.6%	11%	9%
Layer C	1,815	2,177,778	476	1.0	9.4%	11%	19%
Layer D	1,815	2,177,778	743	1.6	15%	11%	33%
Layer E	1,815	2,177,778	994	2.2	20%	11%	53%
Layer F	1,815	2,177,778	765	1.7	15%	11%	68%
Layer G	3,267	3,920,000	884	3.5	32%	20%	100%

Total: 15,970 19,164,444 572 11.0 100% 100%

Notes:

- 1. See Table 2.
- 2. Assumes soil density of 1,200 kg/cubic yard (100 lbs/ft or 2,700 lbs/cy³).
- 3. See Table 5; based on synthetic MIS data for DU layers. Estimated mean VOC concentration and total VOC mass for Layers E-G weighted in order to address the variance in thickness between boreholes (i.e., higher concentration in thin DU layer at one borehole weighted against lower concentration in thicker DU layer in another borehole): [(Borehole #1 CI Sample Concentration x Borehole #1 DU Layer Mass + (Borehole #2 CI Sample Concentration x Borehole #2 DU Layer Mass ...] Divided By Total DU Layer Mass. Weighting would not be necessary if field MI samples using consistent plug spacings were collected.
- 4. Total VOC concentration times DU layer mass, converted to kilograms. May not fully account for the dissolved-phase mass in DU Layers, due to partial drainage of groundwater from cores during sample collection

Table 15. Borehole MIS data for total VOCs calculated as weighted average of corresponding borehole core increments.

Boring ID	¹ DU Layer Volume Represented by Boring (cubic yards)	² DU Layer Mass Represented by Boring (kg)	³ Total VOCs (ug/kg)	Total VOC Mass (Kg)	Percent Total VOC Mass	Cumulative Total VOC Mass	Cumulative DU Volume Represented (cy)
5	3,267	3,920,000	1,103	4.32	32.9%	33%	3,267
7	3,448	4,137,778	469	1.94	14.8%	48%	6,715
10	2,904	3,484,444	495	1.72	13.1%	61%	9,619
2	3,267	3,920,000	316	1.24	9.4%	70%	12,885
6	3,085	3,702,222	320	1.18	9.0%	79%	15,970
15	2,541	3,048,889	268	0.82	6.2%	85%	18,511
1	2,904	3,484,444	122	0.42	3.2%	89%	21,415
9	2,904	3,484,444	106	0.37	2.8%	92%	24,319
11	2,904	3,484,444	100	0.35	2.7%	94%	27,222
14	2,541	3,048,889	70	0.21	1.6%	96%	29,763
3	2,904	3,484,444	52	0.18	1.4%	97%	32,667
20	2,178	2,613,333	56	0.15	1.1%	98%	34,844
17	2,178	2,613,333	38	0.10	0.8%	99%	37,022
16	2,541	3,048,889	25	0.07	0.6%	99.6%	39,563
8	2,904	3,484,444	14	0.05	0.4%	100%	42,467
4	2,904	3,484,444	-	-	-	-	45,370
12	2,722	3,266,667	-	-	-	-	48,093
13	2,541	3,048,889	-	-	-	-	50,633
18	2,178	2,613,333	-	-	-	-	52,811
19	2,178	2,613,333	-	-	-	-	54,989
21	1,815	2,177,778	-	-	-	-	-
22	1,633	1,960,000	-	-	-	-	-
23	1,633	1,960,000	-	-	-	-	-
24	1,815	2,177,778	-	-	-	-	-
25	1,815	2,177,778	-	-	-	-	-
26	-	-	-	-	-	-	-
27	1,633	1,960,000	-	-	-	-	-
28	1,815	2,177,778	-	-	-	-	-
29	1,815	2,177,778	-	-	-	-	-
30	1,815	2,177,778	-	-	-	-	•

Total Volume: 70,778 84,933,333 13 100%

^{1.} Approximate volume of soil represented by borehole based on borehole spacing and total thickness of DU layers encountered in the subject boring (see Table 2 and Figure 6; boreholes spacing approximately 70 ft).

^{2.} Assumes soil density of 1,200 kg/cubic yard (100 lbs/ft3 or 2,700lbs/cy³).

^{3.} See Table 5; based on MIS data for Boreholes layers computed from core increment samples. Estimated mean VOC concentration and total VOC mass weighted with respect to mean VOC concentration for individual DU Layer vs thickness of DU Layer: [(DU Layer A Concentration x DU Layer A Mass + (DU Layer B Concentration x DU Layer B Mass ...] Divided By Total Combined DU Layer Mass represented by borehole. This was necessary in order to address the variance in thickness of DU layers within a borehole (i.e., higher concentration in thin DU layer weighted against lower concentration in thicker DU layer). Weighting would not be necessary if field MI samples using consistent plug spacings were collected.

^{4.} Total VOC concentration times DU layer mass, converted to kilograms. May not fully account for the dissolved-phase mass in DU Layers, due to partial drainage of groundwater from cores during sample collection

Table 16. DU layer VOC concentrations across full investigation area in comparison to the 100%, 95%, and 80% mass primary plume areas (based on computed core increment MIS data for DU layers).

A. Total Investigation Area

DU Layer	Total VOCs (ug/kg)	TCE (ug/kg)	1,2 DCE(cis) (ug/kg)	Vinyl Chloride (ug/kg)
Layer A	34	4	20	10
Layer B	74	35	28	11
Layer C	100	67	23	9
Layer D	153	78	51	25
Layer E	296	167	92	37
Layer F	335	192	111	32
Layer G	476	170	263	43
Layers A through G	198	93	83	23
Layers A+B+C+D	78	37	28	13
Layers E+F+G	379	176	165	38

Includes Borings 1-30 (total twenty nine borings - see Table 2; Borehole 26 abandoned). Layers E, F and G identified only in Borings 1-20, Borings 1-16 and Borings 1-12, respectively. Concentrations reported identical to 100% contaminant mass area noted below for same borings.

Individual DU Layers: Total 29 increments.

Combined DU Layers A+B+C+D+E+F+G: Total 164 increments.

B. Primary Plume Area - 100% Contaminant Mass

DU Layers	Total VOCs (ug/kg)	TCE (ug/kg)	1,2 DCE(cis) (ug/kg)	Vinyl Chloride (ug/kg)
Layers A through G	219	103	90	26
Layers A+B+C+D	114	54	41	19
Layers E+F+G	379	176	165	38

Includes Borings 1-20 (total twenty borings, see Table 2).

Combined DU Layers A+B+C+D: Total 80 increments.

Combined DU Layers E+F+G: Total 48 increments.

Combined DU Layers A+B+C+D+E+F+G: Total 128 increments.

C. Primary Plume Area - 95% Contaminant Mass

DU Layers	Total VOCs (ug/kg)	TCE (ug/kg)	1,2 DCE(cis) (ug/kg)	Vinyl Chloride (ug/kg)
Layers A through G	381	181	160	40
Layers A+B+C+D	225	113	88	24
Layers E+F+G	616	284	268	63

Includes Borings: 1,2,5,6,7,9,10,11 & 15 (total nine borings, see Table 2).

Combined DU Layers A+B+C+D: Total 36 increments.

Combined DU Layers E+F+G: Total 25 increments.

Combined DU Layers A+B+C+D+E+F+G: Total 61 increments.

D. Primary Plume Area - 80% Contaminant Mass

DU Layers	Total VOCs	TCE	1,2 DCE(cis)	Vinyl Chloride
	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Layers A through G	552	264	238	50

Includes Borings: 2,5,6,7 & 10 (total five borings, see Table 2). Combined DU Layers A+B+C+D+E+F+G: Total 35 increments.

Table 17. Volume of DU layer soil represented by 80%, 95%, and 100% VOC mass areas (see also Figure 13).

		80% VOC	Mass Area	95% VOC Mass Area		100% VOC Mass Area	
DU Layer	Cumulative VOC Mass (from base)	Soil Volume (cy)	Cumulative Percent	Soil Volume (cy)	Cumulative Percent	Soil Volume (cy)	Cumulative Percent
Layer A	100%	3,630	100%	6,533	100%	14,519	100%
Layer B	93%	1,815	77%	3,267	76%	7,259	74%
Layer C	86%	1,815	66%	3,267	64%	7,259	60%
Layer D	76%	1,815	55%	3,267	52%	7,259	47%
Layer E	62%	1,815	43%	3,267	40%	7,259	34%
Layer F	43%	1,815	32%	3,267	28%	5,807	21%
Layer G	25%	3,267	20%	4,356	16%	5,626	10%
Totals:		15,970		27,222		54,989	

Notes (see Table 15)

80% VOC mass captured by Borings 2,5,6,7 and 10.

95% VOC mass captured by Borings 1,2,5,6,7,9,10,11 and 15.

100% VOC mass captured by Borings 1-20.

Table 18. Predicted partitioning of VOC between sorbed phase (organic carbon only) and dissolved phase (i.e., groundwater) in noted combinations of DU layers.

	Total Organic Carbon	TCE (ug/L)		1,2 DCE(cis) (ug/L)		Vinyl Chloride (ug/L)	
DU Layer	(mg/kg)	Dissolved	Sorbed to OC	Dissolved	Sorbed to OC	Dissolved	Sorbed to OC
Layers A+B+C+D	689	72%	28%	92%	8%	96%	4%
Layers E+F+G	1,109	61%	39%	88%	12%	93%	7%
Layers A through G	857	67%	33%	90%	10%	95%	5%

^{1.} Based on noted concentration of organic carbon in soil and published sorption coefficient (koc in L/kg) for targeted chemicals (HDOH 2009, TCE = 166, 1,2 DCEcis = 36, vinyl chloride = 19).

Table 19. Predicted VOC concentrations in DU layer groundwater based on corresponding sediment VOC data and total organic carbon data (see Table 15).

Total Investigation Area

DU Layer	Total Organic Carbon (mg/kg)	Total VOCs (ug/L)	TCE (ug/L)	1,2 DCE(cis) (ug/L)	Vinyl Chloride (ug/L)
Layer A	829	106	12	62	32
Layer B	570	234	108	90	36
Layer C	610	310	205	73	31
Layer D	605	481	237	161	83
Layer E	496	943	522	297	124
Layer F	1,409	915	503	313	99
Layer G	1,350	1,334	451	748	135
Layers A through G	857	596	269	253	74
Layers A+B+C+D	689	243	112	89	42
Layers E+F+G	1,109	1,092	487	485	121

Includes Borings 1-30 (total twenty-nine borings; see Figure 11; Borehole 26 abandoned).

Core Plume Area - 100% Contaminant Mass

DU Layers	Total Organic Carbon	Total VOCs (ug/L)	TCE (ug/L)	1,2 DCE(cis) (ug/L)	Vinyl Chloride (ug/L)
Layers A through G	857	660	298	276	85
Layers A+B+C+D	689	352	162	129	61
Layers E+F+G	1,109	1,092	487	485	121

Includes Borings 1-20 (total twenty borings; see Figure 11).

Core Plume Area - 95% Contaminant Mass

DU Layers	Total Organic Carbon	Total VOCs (ug/L)	TCE (ug/L)	1,2 DCE(cis) (ug/L)	Vinyl Chloride (ug/L)
Layers A through G	857	1,145	526	489	130
Layers A+B+C+D	689	695	338	276	81
Layers E+F+G	1,109	1,778	786	790	202

Includes Borings: 1,2,5,6,7,9,10,11 & 15 (total nine borings; see Figure 11).

Core Plume Area - 80% Contaminant Mass

DU Layers	Total Organic	Total VOCs	TCE	1,2 DCE(cis)	Vinyl Chloride
	Carbon	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Layers A through G	857	1,656	765	727	163

Includes Borings: 2,5,6,7 & 10 (total five borings; see Figure 11).

Table 20. ¹Predicted VOC concentrations in borehole groundwater based on corresponding soil VOC data and total organic carbon data (see Table 6).

		<u> </u>	1	
Boring ID	Total VOCs (ug/L)	TCE (ug/L)	1,2 DCE(cis) (ug/L)	Vinyl Chloride (ug/L)
Boring 1	337	25	263	49
Boring 2	1,080	823	225	32
Boring 3	162	13	14	135
Boring 4	175	15	15	145
Boring 5	3,595	1,754	1,634	206
Boring 6	806	233	537	36
Boring 7	1,834	1,536	260	38
Boring 8	44	10	9	25
Boring 9	348	179	133	35
Boring 10	1,755	18	1,152	585
Boring 11	355	13	135	207
Boring 12	nd	nd	nd	nd
Boring 13	nd	nd	nd	nd
Boring 14	227	174	15	37
Boring 15	897	830	35	33
Boring 16	69	21	15	33
Boring 17	116	14	15	86
Boring 18	nd	nd	nd	nd
Boring 19	nd	nd	nd	nd
Boring 20	37	5.9	6.2	25

^{1.} Hypothetical well screened from water table to top of tuff unit. Reflects weighted average concentration of VOCs across all DU layers encountered in borehole.

Table 21a. Measured concentrations of total VOCs in groundwater within primary plume area (USAF 2007, see Figure 14).

		¹ Measured (ug/L)			
Monitoring Well	Screened Interval	Total VOCs	TCE	1,2 DCE(cis)	Vinyl Chloride
MW012	14-24' bgs	2,274	1,948	324	1.7
BH017	10-20' bgs	195	170	25	nd
BH019	10-20' bgs	692	526	166	0.2
BH022	11.5-21.5' bgs	2,707	835	1,840	32
BH023	11-21'bgs	165	5.1	157	3
BH024	15-25' bgs	666	439	226	1.4

^{1.}Based on last-measured concentration as presented in 2007 remedial investigation report.

Table 21b. Predicted concentrations of total VOCs in groundwater within primary plume area based on average-weighted soil data from nearby borings (see Table 6 and text).

		² Predicted (ug/L)				
Nearest Monitoring Well	¹ Corresponding DU Layers	Total VOCs	TCE	1,2 DCE(cis)	Vinyl Chloride	Referenced Boreholes
MW012	D-G	3,311	1,122	1,773	416	B5,B6,B10
BH017	B-F	681	90	499	93	B3,B4
BH019	B-F	1,894	686	926	282	B5,B6,B10
BH022	B-G	50	4.7	4.7	40	B1
BH023	B-F	1,384	672	634	79	B5
BH024	D-G	1,398	19	795	583	B9

^{1.} DU Layers corresponding to screening interval in noted monitoring well.

^{2.} Predicted VOC concentrations in DU Layer groundwater based on weighted average of corresponding soil VOC data and Total Organic Carbon data (see Tables 9b and 16).

Table 22. ^{1,2}Predicted VOC concentrations in groundwater in DU Layer A (first 4 feet of saturated zone) at borehole locations within primary plume area.

-				
Boring ID	Total VOCs (ug/L)	TCE (ug/L)	1,2 DCE(cis) (ug/L)	Vinyl Chloride (ug/L)
Boring 1	595	17	546	33
Boring 2	733	19	677	38
Boring 3	175	12	12	151
Boring 4	nd	nd	nd	nd
Boring 5	102	14	59	29
Boring 6	318	14	248	57
Boring 7	144	47	12	85
Boring 8	42	17	8	16
Boring 9	108	18	54	36
Boring 10	48	12	12	24
Boring 11	41	7	21	13
Boring 12	nd	nd	nd	nd
Boring 13	nd	nd	nd	nd
Boring 14	85	14	14	57
Boring 15	84	48	12	24
Boring 16	109	57	17	35
Boring 17	134	15	15	104
Boring 18	nd	nd	nd	nd
Boring 19	nd	nd	nd	nd
Boring 20	165	32	15	119

^{1.} Hypothetical well screened across DU Layer A. Predicted VOC concentrations in DU Layer A groundwater (6-10' bgs) based on corresponding soil VOC data and measured, average Total Organic Carbon concentration of 829 mg/kg (see Table 4 and 9b).

^{2.} One-half of MRL used for "ND"s if one or more VOCs detected above laboratory MRL. All VOCs in soil gas assumed to be "nd" if no individual VOCs detected above MRL in original soil Borehole CI sample.

Table 23. ¹Predicted VOC concentrations in shallow soil gas within primary plume area (based on predicted VOC concentrations in

groundwater).

Boring ID	Total VOCs (ug/m³)	TCE (ug/m³)	1,2 DCE(cis) (ug/m³)	Vinyl Chloride (ug/m³)
Boring 1	238,120	6,652	218,223	13,245
Boring 2	293,317	7,527	270,736	15,054
Boring 3	70,006	4,895	4,895	60,216
Boring 4	nd	nd	nd	nd
Boring 5	40,943	5,759	23,689	11,495
Boring 6	127,386	5,438	99,309	22,639
Boring 7	57,596	18,788	4,732	34,075
Boring 8	16,781	6,885	3,303	6,593
Boring 9	43,119	7,177	21,589	14,354
Boring 10	19,255	4,814	4,814	9,627
Boring 11	16,460	2,649	8,519	5,292
Boring 12	nd	nd	nd	nd
Boring 13	nd	nd	nd	nd
Boring 14	33,982	5,671	5,671	22,639
Boring 15	33,463	19,022	4,814	9,627
Boring 16	43,528	22,639	6,943	13,945
Boring 17	53,564	5,952	5,952	41,661
Boring 18	nd	nd	nd	nd
Boring 19	nd	nd	nd	nd
Boring 20	66,167	12,603	5,952	47,612

^{1.} Based on predicted concentration of VOCs in DU Layer A groundwater with respect to measured concentrations of VOCs in Borehole CI soil samples (see Table 21). Concentration in soil gas equal to concentration in groundwater times VOC Henry's Law constant and adjusted to ug/m^3 (H': TCE = 0.40, 1,2 DCEcis = 0.17, vinyl chloride = 1.1).

Table 24a. Measured concentrations of total VOCs in soil gas within primary plume area (see Figure 3).

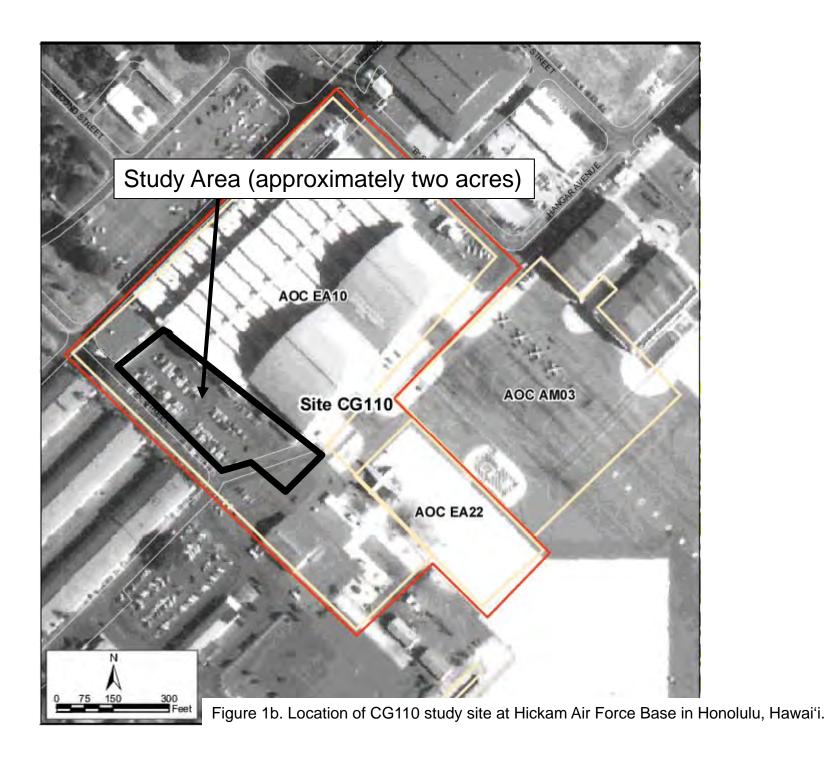
	¹ Measured VOCs in Soil Gas (ug/m³)				
Soil Gas Point	Total VOCs	TCE	1,2 DCE(cis)	Vinyl Chloride	
SG03	35,603	31,700	3,900	3.5	
SG10	2,776	2,650	126	0.20	
SG011	817	816	0.79	0.20	
SG12	10	9.3	0.69	0.08	
SG14	5,334	5,160	165	9.1	
SG15	1,882	1,740	142	0.39	
SG017	116	114	2.3	0.09	
SG018	6,227	5,910	317	0.18	
SG019	28,608	4,780	23,800	28	
Average:	9,042	5,875	3,162	4.6	

^{1.}Based on concentration of VOCs in soil gas reported in 2008 (depth 3-4' bgs; USAF 2007, 2008). Values for vinyl chloride for soil gas points 10, 15 and 18 represent one-half the laboratory MDL.

Table 24b. Predicted concentrations of total VOCs in soil gas immediately above the groundwater interface within primary plume area, based on soil data from nearby borings.

ľ					
	¹ Predicted VOCs in Soil Gas (ug/m³)				
Study Boring Points	Total VOCs	TCE	1,2 DCE(cis)	Vinyl Chloride	
B1	238,120	6,652	218,223	13,245	
B2	293,317	7,527	270,736	15,054	
B3	70,006	4,895	4,895	60,216	
B4	nd	nd	nd	nd	
B5	40,943	5,759	23,689	11,495	
B6	127,386	5,438	99,309	22,639	
B7	57,596	18,788	4,732	34,075	
B8	16,781	6,885	3,303	6,593	
B9	43,119	7,177	21,589	14,354	
B10	19,255	4,814	4,814	9,627	
B11	16,460	2,649	8,519	5,292	
B12	nd	nd	nd	nd	
Average:	92,298	7,058	65,981	19,259	

^{1.} Based on predicted concentration of VOCs in DU Layer A groundwater times Henry's Law Constant (see Table 23).


FIGURES

CG110 Study Area

Figure 1a. Location of CG110 study site at Hickam Air Force Base in Honolulu, Hawai'i.

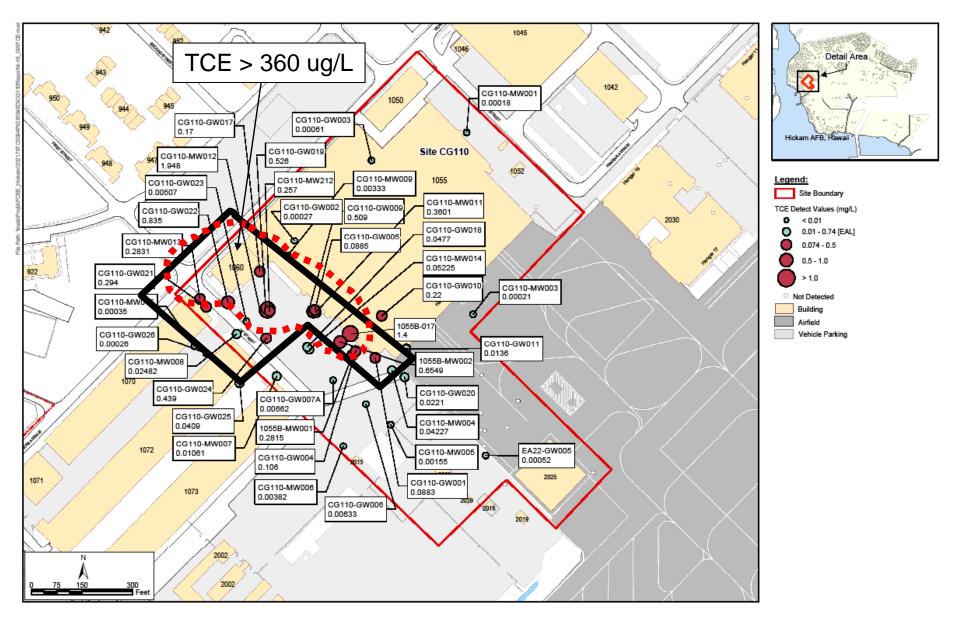


Figure 2. Reported concentrations of TCE in groundwater above 360 ug/L (USAF 2007).

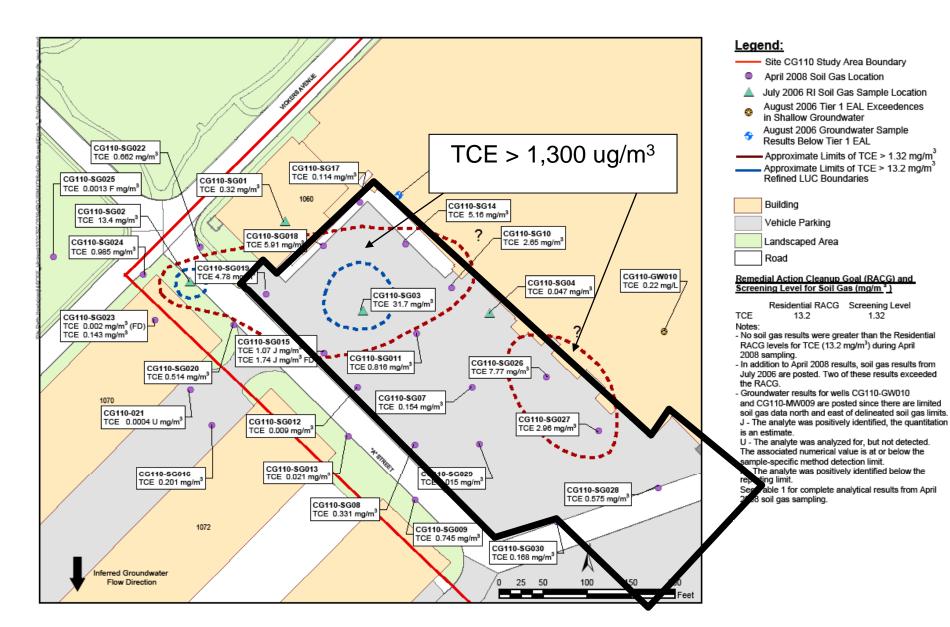


Figure 3. Reported concentrations of TCE in soil gas (USAF 2007).

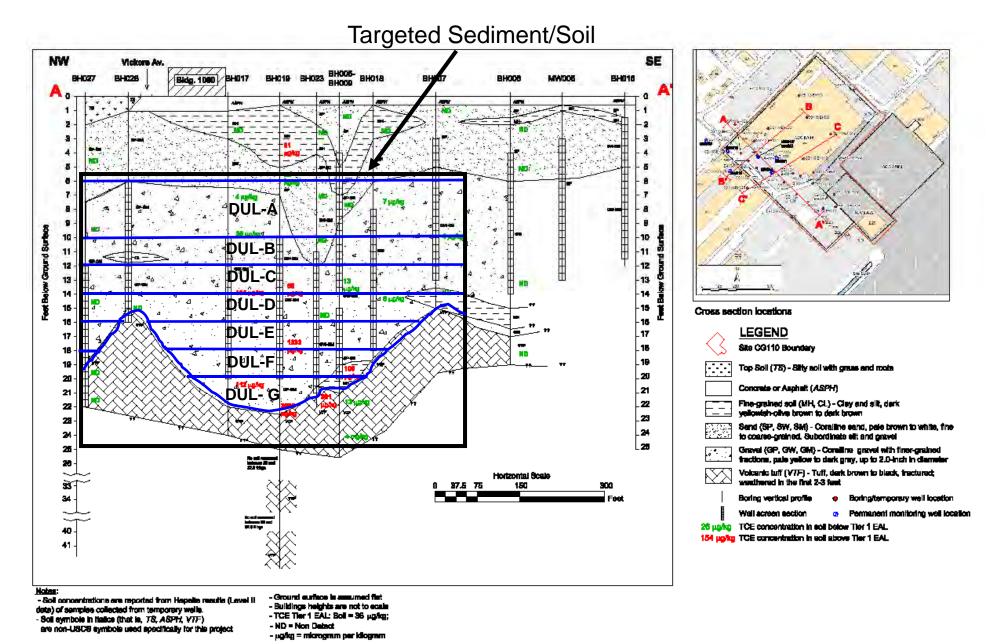


Figure 4a. Cross Section A-A' from 2007 USAF RI with superimposed DU layers designated for HDOH study.

Targeted Sediment/Soil NE DUL" A 10 - 10 -ĎUL-B F 12 -12 O 18-14 -16 ÿ Ē 18 17 19 10 20 20 21 21 Z 22 23 25 23 SU-G 24 24 24 37.5 75 LEGEND TCE concentration in soil below Tier 1 EAL Sile CG110 Boundary TCE concentration in soil above Tier 1 EAL Concrete or Asphalt (ASPH) TCE concentration in groundwater below Tier 1 EAL Fine-grained soil (MH, CL) - Clay and sit, TCE concentration in groundwater above Tier 1 EAL dark yellowish-citive brown to dark brown Send (SP, SW, SM) - Coreline send, pale brown to white, fine chain) of semples collected from femporery wells.

- Forum of surfaces in successed first, happy wells are not for social collections in successed first, ASPT4, VTF1 are non-MSCS equitode used constituting for first project.

- NOT — Note Debut ACCUMES. to coarse-grained. Subordinate silt and gravel Gravel (GP, GW, Ghi) - Corolline gravel with finer-grained fractions, pale yellow to dark gray, up to 2.0-inch in diameter Volcanio fuff (VTF) - Tuff, dark brown to black, fractured; sethered in the first 2-3 feet Boring vertical profile Well ecreen section Cross section locations

Figure 4b. Cross Sections B-B' and C-C' from 2007 USAF RI with superimposed DU layers designated for HDOH study.

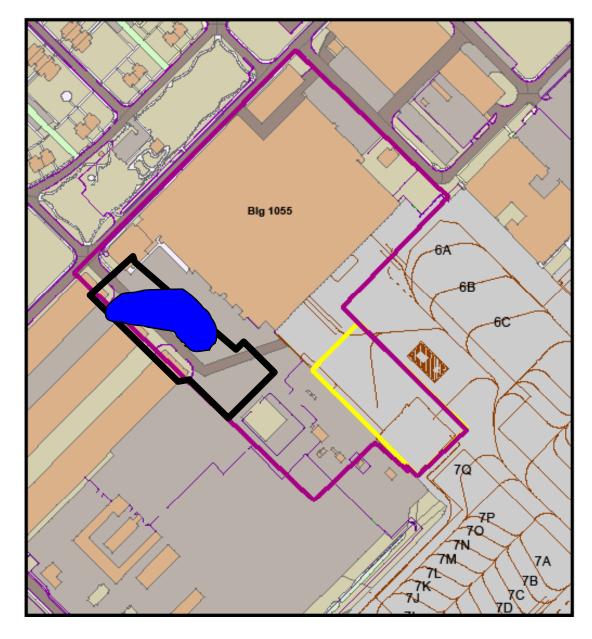


Figure 5. Core area of TCE plume based on previous soil, groundwater and soil gas data summarized in 2007 USAF RI (HDOH interpretation).

Figure 6. HDOH study DU borehole locations (approximate 70-foot grid).

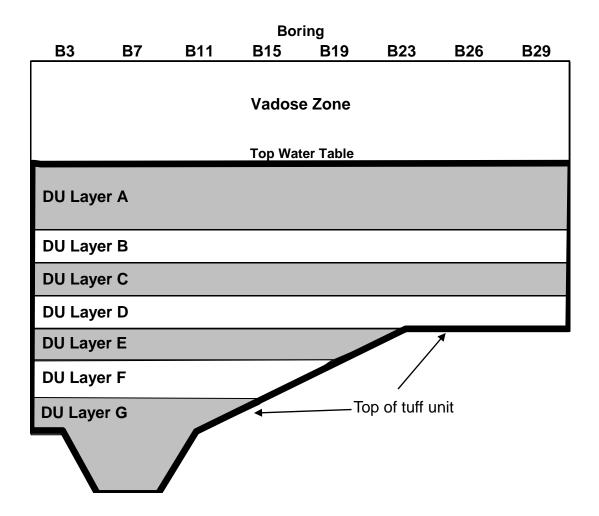


Figure 7. NW-SE cross section of DU layers based on depth to tuff unit identified in this study.

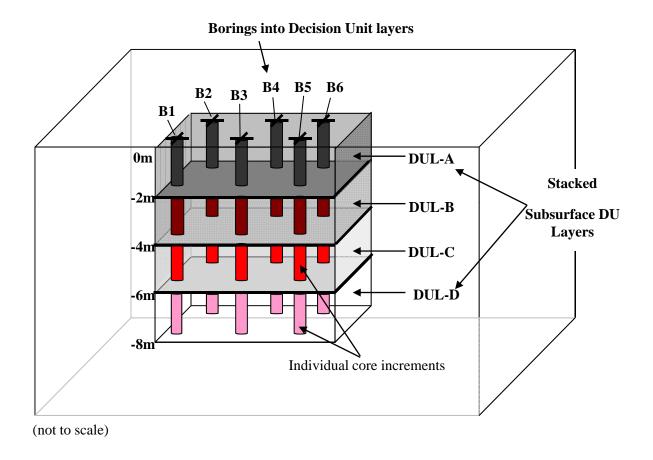
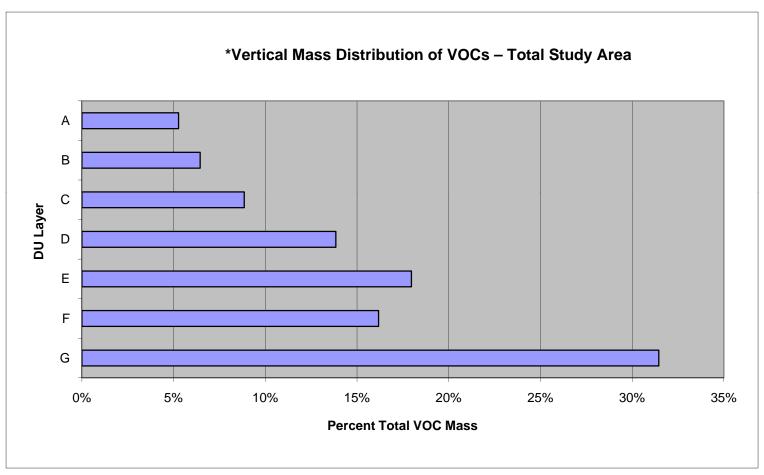


Figure 8. Depiction of borehole core increments collected from targeted, decision unit layers.



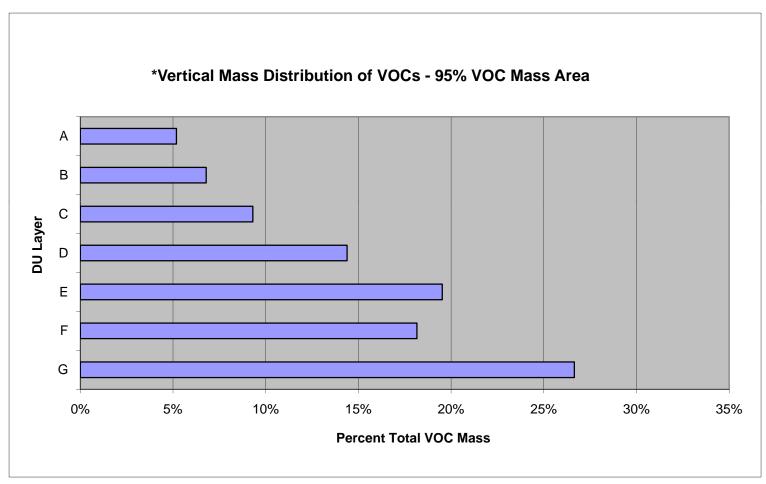


Figure 9. Preparation of core increment samples by subsampling targeted DU layer intervals.

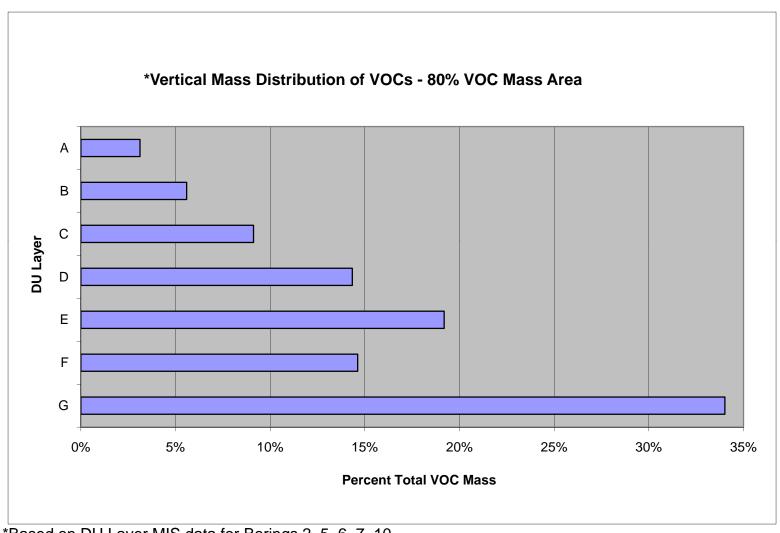

^{*}Based on DU Layer MIS data for Borings 1-30.

Figure 10a. Vertical distribution of total VOCs in DU layers across total study area (see Table 14).

^{*}Based on DU Layer MIS data for Borings 1-2, 5-7, 9-11, 15.

Figure 10b. Vertical distribution of total VOCs within DU layers within 95% mass area (nine borings; see Table 14).

*Based on DU Layer MIS data for Borings 2, 5, 6, 7, 10

Figure 10c. Vertical distribution of Total VOCs within DU layers within 80% mass area (five borings; see Table 14).

*Vertical Mass Distribution of VOCs Between Nearby, Individual Boreholes

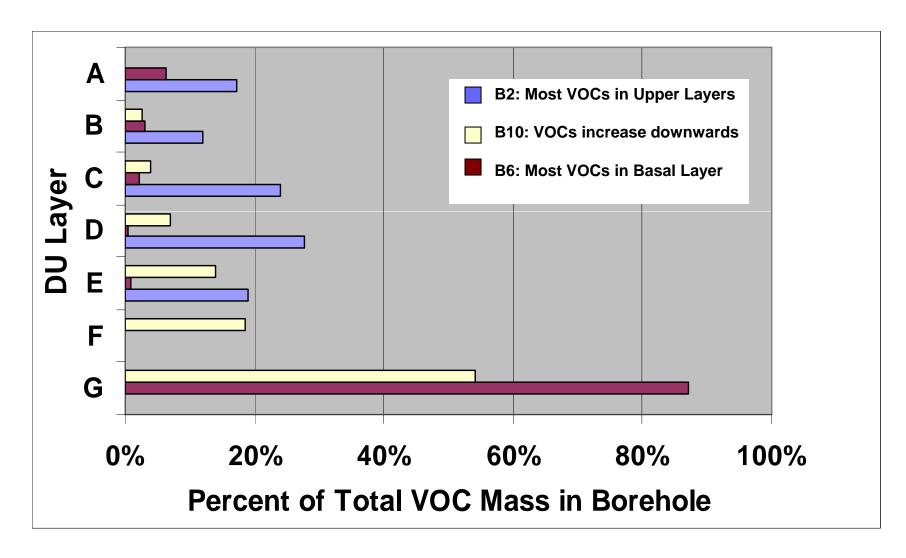


Figure 10d. Vertical distribution of total VOCs between adjacent boreholes in core area of contamination, depicting heterogeneous distribution of contaminants at the scale of a single core increment sample (refer to data in Table 4).

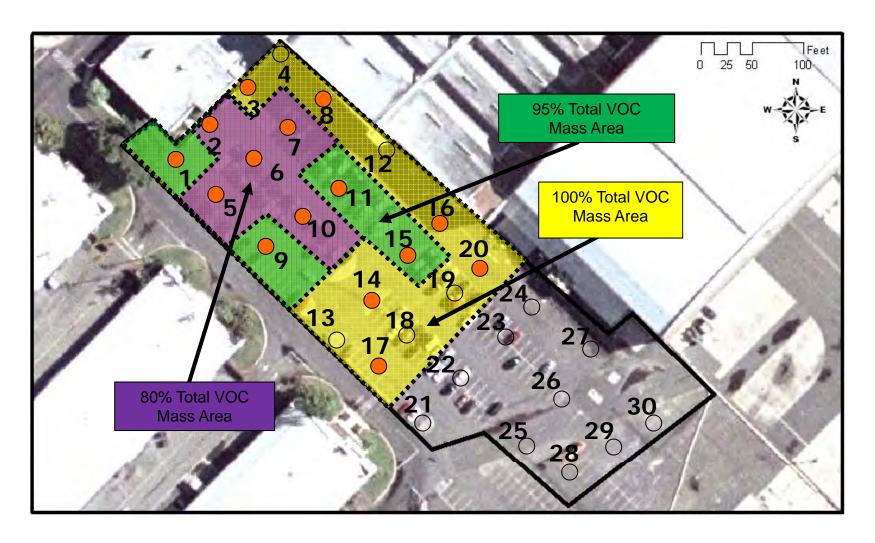


Figure 11. Aerial distribution of total VOCs within study area, depicting areas that incorporate 80%, 95%, and 100% of contaminant mass (aerial view).

Figure 12. Schematic of aerial distribution of total VOCs within study area, depicting areas that incorporate 80%, 95% and 100% of contaminant mass (mass cutoffs are arbitrary but typical of remedial projects).

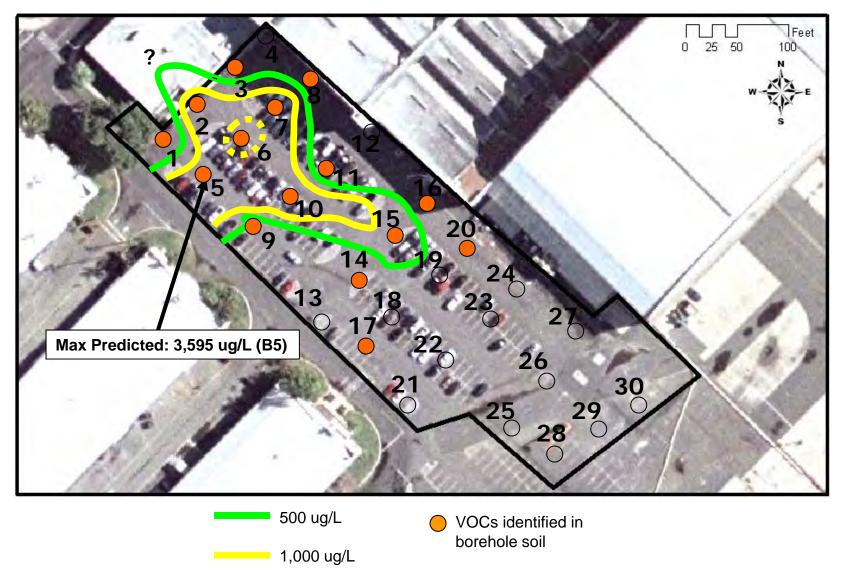


Figure 13. Predicted contour map of total VOCs in groundwater based on borehole MI soil and total organic carbon data (See Table 20).

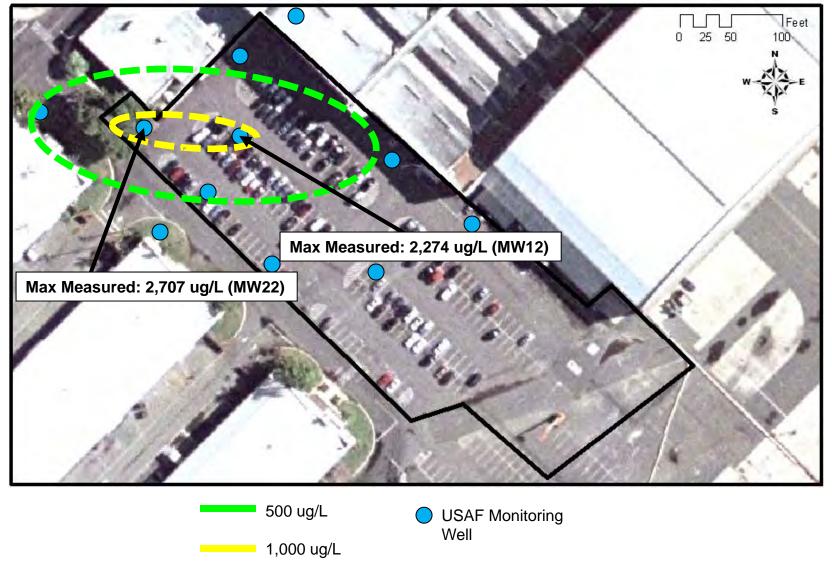


Figure 14. Simplified map of total VOCs in groundwater reported in 2007 RI report (approximate locations of key wells noted; see USAF 2007). Note that only trace VOCs were reported in the study boring closest to MW22 (Boring 1 on Fig 13), reflecting the heterogeneity of subsurface contamination around the perimeter of the main plume area.

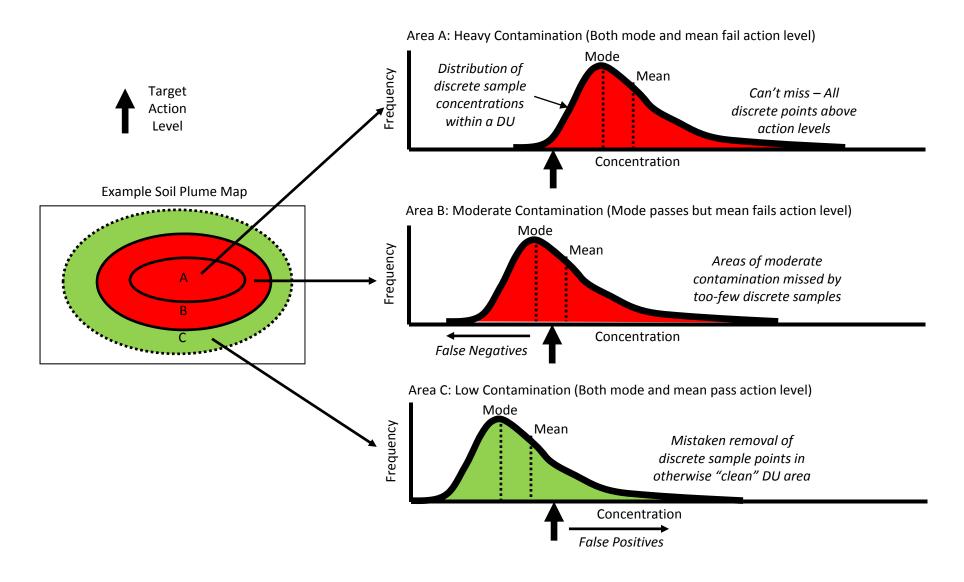


Figure 15. Effect of heterogeneous distribution of contaminant concentrations at the scale of a discrete sample point (or aliquot) on interpretation of DU volume of sediment (or soil) as a whole.

APPENDIX 1 BORING LOGS

Boring	Total	
ID	Depth	
Number	(feet)	Decision Unit Layer (DUL) Description
		DUL-A (6-10' bgs): Sandy, gravely clay (odd, musty odor), >50% fines over lt bn to bn sandy gravel, 1-5% fines.
		DUL-B (10-12' bgs): Lt bn to bn sandy gravel to gravely sand, 1-5% fines.
		DUL-C (12-14' bgs): Lt bn to bn sandy gravel to gravely sand, 1-5% fines.
1	22	DUL-D (14-16' bgs): Lt bn to bn sandy gravel to gravely sand, 1-5% fines.
		DUL-E (16-18' bgs): Same with increasing fines downward to 10% fines.
		DUL-F (18-20' bgs): Lt bn to bn clayey sand to sandy clay.
		DUL-G (20'-TD bgs): Bn sandy gravel to sandy, dense clay with tuff frags; tuff @ 22' bgs.
		DUL-A (6-10' bgs): Lt bn to bn sandy gravel, 1-1-5 fines.
		DUL-B (10-12' bgs): Lt bn to bn sandy gravel, 1-1-5 fines.
	24	DUL-C (12-14' bgs): Lt bn to bn sandy gravel to gravely sand, 1-1-5 fines; increasing fines at base.
2		DUL-D (14-16' bgs): Lt bn to bn sandy, gravely clay, 50-60% fines.
		DUL-E (16-18' bgs): Lt bn to bn sandy, gravely clay, 30-40% fines.
		DUL-F (18-20' bgs): Lt bn to bn sandy, gravely clay, 30-40% fines.
		DUL-G (20'-TD bgs): Lt bn to bn sandy, gravely clay, 60-70% fines, over drk bn tuffaceous sand; tuff @ 24' bgs.
		DUL-A (6-10' bgs): Lt bn to bn sandy gravel, 1-5% fines.
		DUL-B (10-12' bgs): Lt bn to bn sandy gravel to gravely sand, 20% fines.
		DUL-C (12-14' bgs): Lt bn to bn sandy gravel to gravely sand, 20% fines.
3	22	DUL-D (14-16' bgs): Lt bn to bn clayey sandy gravel, 10-20% fines.
		DUL-E (16-18' bgs): Lt bn to bn clayey sandy gravel, 10-20% fines.
		DUL-F (18-20' bgs): Same with tuff fragments near base.
		DUL-G (20'-TD bgs): Bn to drk bn clayey sand to sandy clay with shell and tuff frags; tuff @ -22' bgs.
		DUL-A (6-10' bgs): Lt bn to bn sandy gravel to gravely sand, 1-5% fines.
		DUL-B (10-12' bgs): Lt bn to bn sandy gravel to gravely sand, 1-5% fines.
	22	DUL-C (12-14' bgs): Lt bn to bn sandy gravel to gravely sand, 1-5% fines.
4	22	DUL-D (14-16' bgs): Lt bn to bn gravely sand, 30% fines.
		DUL-E (16-18' bgs): Lt bn to bn gravely sand, 30% fines.
		DUL-F (18-20' bgs): Lt bn to bn gravely sand, 30% fines, increasing fines at base.
		DUL-G (20'-TD bgs): Bn to drk bn clayey sand to sandy clay with shell and tuff frags; tuff @ -22' bgs.

Boring	Total	
ID	Depth	
Number	(feet)	Decision Unit Layer (DUL) Description
		DUL-A (6-10' bgs): Lt bn to bn sandy gravel, <<1% fines.
		DUL-B (10-12' bgs): Lt bn to bn sandy gravel, <<1% fines.
		DUL-C (12-14' bgs): Lt bn to bn sandy gravel, 1-5% fines.
5	24	DUL-D (14-16' bgs): Same top five inches, over lt bn to bn sandy, gravely clay, >50% fines.
		DUL-E (16-18' bgs): Lt bn to bn sandy, gravely clay, >50% fines.
		DUL-F (18-20' bgs): Lt bn to bn sandy, gravely clay, >50% fines.
		DUL-G (20'-TD bgs): Dk bn sandy clay with gravel fragments, 50-75% fines; dk bn tuff @ 23.5 ft bgs.
		DUL-A (6-10' bgs): Lt bn to bn sandy gravel, <1% fines.
		DUL-B (10-12' bgs): Lt bn to bn sandy gravel, <1% fines.
		DUL-C (12-14' bgs): Lt bn to bn sandy gravel, <1% fines, increasing to 1-5% fines at base.
6	23	DUL-D (14-16' bgs): Same over lt bn to bn sandy, gravely clay, >50% fines.
		DUL-E (16-18' bgs): Lt bn to bn sandy, gravely clay, >50% fines.
		DUL-F (18-20' bgs): Lt bn to bn sandy, gravely clay, >50-75% fines
		DUL-G (20'-TD bgs): Lt bn to bn gravely silt-clay, 30-70% gravel (tuff fragments?); tuff @ -23ft bgs.
		DUL-A (6-10' bgs): Lt bn to bn sandy gravel, est 10% sand, <1% fines.
		DUL-B (10-12' bgs): Lt bn to bn sandy gravel to gravelly. clayey sand, 10-15% fines.
		DUL-C (12-14' bgs): Lt bn to bn sandy gravel to gravelly. clayey sand, 10-15% fines (oversaturated, swelled).
7	25	DUL-D (14-16' bgs): Bn clayey silt with sand and gravel (50-75% fines).
		DUL-E (16-18' bgs): Bn clayey silt with sand and gravel (50-75% fines).
		DUL-F (18-20' bgs): Gravely sand-clay mix, et. 30% fines.
		DUL-G (20'-TD bgs): Lt bwn clayey gravely sand (30% fines) over drk bn, silty sand with shell frags; drk bn
		tuff/saprolite @ -24' bgs.
		DUL-A (6-10' bgs): Lt bn to bn sandy gravel, est 10% sand, <1% fines.
		DUL-B (10-12' bgs): Lt bn to bn sandy gravel to gravelly sand, 1-5% fines.
		DUL-C (12-14' bgs): Lt bn to bn sandy gravel to gravelly sand, 1-5% fines.
8	22	DUL-D (14-16' bgs): Lt bn to bn sandy gravel, est 10% sand, <1% fines.
(31, 32)		DUL-E (16-18' bgs): Lt bn to bn sandy gravel, est 10% sand, <1% fines.
		DUL-F (18-20' bgs): Lt bn to bn sandy gravel, est 10% sand, <1% fines; sharp boundary with DUL-G.
		DUL-G (20'-TD bgs): Bn clayey gravel (20-30% fines) to clayey silt overlying drk bn, tuffaceous sand with
		gravel (saprolite?)

Boring	Total	
ID	Depth	
Number	(feet)	Decision Unit Layer (DUL) Description
		DUL-A (6-10' bgs): Lt bn to bn sandy gravel, 1-1-5 fines.
		DUL-B (10-12' bgs): Lt bn to bn clayey, sandy gravel, 5% fines.
		DUL-C (12-14' bgs): Lt bn to bn clayey, sandy gravel, 5% fines.
9	22	DUL-D (14-16' bgs): Lt bn to bn sandy gravel, 1-1-5 fines.
		DUL-E (16-18' bgs): Lt bn to bn sandy gravel, 1-1-5 fines, increasing fines at base.
		DUL-F (18-20' bgs): Lt bn to bn clayey, sandy gravel, 1-5% fines.
		DUL-G (20'-TD bgs): Dk bn clayey, sandy gravel with tuff frags, 5-10% fines; tuff @ 22 ft bgs.
		DUL-A (6-10' bgs): Lt bn to bn sandy gravel, <1% fines.
		DUL-B (10-12' bgs): Lt bn to bn sandy gravel, <1% fines.
	22	DUL-C (12-14' bgs): Lt bn to bn sandy gravel, <1% fines.
10		DUL-D (14-16' bgs): Lt bn to bn sandy gravel, 1-5% fines.
		DUL-E (16-18' bgs): Lt bn to bn sandy gravel, 1-5% fines.
		DUL-F (18-20' bgs): Lt bn to bn gravely, clayey sand, 10-15% fines.
-		DUL-G (20'-TD bgs): Bn sandy gravel to gravely sand, 5-10% fines; tuff @ 22 ft bgs.
		DUL-A (6-10' bgs): Lt bn to bn sandy gravel, 1-1-5 fines.
		DUL-B (10-12' bgs): Lt bn to bn sandy gravel to gravely sand, 1-1-5 fines.
1.1	22	DUL-C (12-14' bgs): Lt bn to bn sandy gravel to gravely sand, 1-5% fines.
11	22	DUL-D (14-16' bgs): Lt bn to bn sandy gravel, 1-1-5 fines.
		DUL-E (16-18' bgs): Lt bn to bn sandy gravel, 1-1-5 fines.
		DUL-F (18-20' bgs): Lt bn to bn gravely, sandy clay to clayey, sandy gravel, 20-30% fines.
		DUL-G (20'-TD bgs): Bn sandy gravel with tuff frags, 1-5% fines; tuff @ 22 ft bgs.
		DUL-A (6-10' bgs): Lt bn to bn sandy gravel, <1% fines.
		DUL-B (10-12' bgs): Lt bn to bn sandy gravel, <1% fines.
12	21	DUL-C (12-14' bgs): Lt bn to bn sandy gravel, <1% fines.
12	21	DUL-D (14-16' bgs): Lt bn to bn sandy gravel, <1% fines grading to DUL E below.
		DUL-E (16-18' bgs): Lt bn to bn sandy gravel to gravely sand, over clayey gravely sand, 20% fines.
		DUL-F (18-20' bgs): Lt bn to bn gravely sand and clay, >50% fines, swelled to four ft on retrieval.
		DUL-G (20'-TD bgs): Bn sandy gravel with tuff frags, 1-5% fines; tuff @ 21 ft bgs.

Boring	Total	
ID Number	Depth (feet)	Decision Unit Layer (DUL) Description
Number	(leet)	DUL-A (6-10' bgs): Lt bn to bn sandy gravel, <1% fines.
		DUL-B (10-12' bgs): Lt bn to bn sandy gravel, <1% fines.
		DUL-C (12-14' bgs): Lt bn to bn sandy gravel to gravely sand, 1-5% fines.
13	20	DUL-D (14-16' bgs): Lt bn to bn clayey sandy gravel, 5% fines.
		DUL-E (16-18' bgs): Lt bn to bn sandy, gravely clay, est. 30-40% fines.
		DUL-F (18-20' bgs): Lt bn to bn clayey gravel to gravely, sandy clay, 20-30% fines; over drk bn tuffaceous sand;
		tuff @ 20 ft bgs.
		DUL-A (6-10' bgs): Lt bn to bn sandy gravel, <1% fines.
	20	DUL-B (10-12' bgs): Lt bn to bn sandy gravel, <1% fines.
		DUL-C (12-14' bgs): Lt bn to bn sandy gravel, 1-5% fines.
14		DUL-D (14-16' bgs): Lt bn to bn sandy gravel to gravely sand, 5% fines.
		DUL-E (16-18' bgs): Lt bn to bn gravely sand, 10% fines; increasing fines downward.
		DUL-F (18-20' bgs): Lt bn to bn gravely sand to sandy clay, >50% fines; over drk bn tuffaceous sand; tuff @ 20 ft
		bgs.
		DUL-A (6-10' bgs): Lt bn to bn sandy gravel, <1% fines.
		DUL-B (10-12' bgs): Lt bn to bn sandy gravel, 1-5% fines.
15	20	DUL-C (12-14' bgs): Lt bn to bn sandy gravel, 1-5% fines.
		DUL-D (14-16' bgs): Same, overlying lt bn to bn sandy gravel to gravely sand, 1-5% fines. DUL-E (16-18' bgs): Lt Lt bn to bn clayey sand, 10% fines.
		DUL-F (18-20' bgs): Lt bit to bit clayey said, 10% lines. DUL-F (18-20' bgs): Lt bit to bit clayey said, 10% lines.
		DUL-A (6-10' bgs): Lt bn to bn gravely clay, >13% lines, over drk bn tuffaceous sand, tuff @ 20 it bgs.
		DUL-B (10-12' bgs): Lt bn to bn sandy gravel to gravely sand, 1-5% fines.
		DUL-C (12-14' bgs): Lt bn to bn clayey, gravely sandy, 10% fines.
16	20	DUL-D (14-16' bgs): Lt bn to bn clayey, gravely sandy, 10% fines.
		DUL-E (16-18' bgs): Lt Lt bn to bn clayey, gravely sandy, 10% fines; increasing fines downward.
		DUL-F (18-20' bgs): Lt bn to bn clayey sandy gravel to gravely sand, 10-20% fines, swelled to four ft on retrieval.
		DUL-G (20'-TD bgs): Thin, <1 ft layer of drk bn, tuffaceous sand with tuff frags (not sampled).

Boring	Total	
ID	Depth	
Number	(feet)	Decision Unit Layer (DUL) Description
		DUL-A (6-10' bgs): Lt bn to bn sandy gravel, 1-5% fines.
1.7	1.0	DUL-B (10-12' bgs): Lt bn to bn sandy gravel, 1-5% fines.
17	18	DUL-C (12-14' bgs): Lt bn to bn sandy gravel, 5% fines.
		DUL-D (14-16 bgs): Lt bn to bn sandy gravel to gravely sand, 5-10% fines; 1 ft sandy clay at base, >50% fines.
		DUL-E (16-TD bgs): Lt bn to bn sandy gravel to gravely sand, 5-10% fines; tuff not encountered but close to TD.
		DUL-A (6-10' bgs): Lt bn to bn sandy gravel, 1-5% fines.
		DUL-B (10-12' bgs): Lt bn to bn sandy gravel, 1-5% fines.
18	18	DUL-C (12-14' bgs): Lt bn to bn sandy gravel, 5% fines.
	10	DUL-D (14-16 bgs): Lt bn to bn sandy gravel, 5% fines.
		DUL-E (16-TD bgs): Lt bn to bn sandy gravel to gravely sand, 10-20% fines.
		DUL-F: Thin, <1ft layer of drk bn tuffaceous sand, not sampled; tuff @ 19 ft bgs.
		DUL-A (6-10' bgs): Lt bn to bn sandy gravel, 1-5% fines.
4.0	4.0	DUL-B (10-12' bgs): Lt bn to bn sandy gravel, 1-5% fines.
19	18	DUL-C (12-14' bgs): Lt bn to bn sandy gravel to gravely sand, 5-10% fines.
		DUL-D (14-16 bgs): Lt bn to bn sandy gravel to gravely sand, 5-10% fines.
		DUL-E (16-TD bgs): Lt bn to bn gravely sand, 5-10% fines; tuff @-18 ft bgs.
		DUL-A (6-10' bgs): Lt bn to bn sandy gravel, 1-5% fines.
		DUL-B (10-12' bgs): Lt bn to bn sandy gravel to gravely sand, 1-5% fines.
20	18	DUL-C (12-14' bgs): Lt bn to bn sandy gravel to gravely sand, 5% fines.
		DUL-D (14-16 bgs): Lt bn to bn sandy gravel to gravely sand, 5% fines, sandy, gravely clay at base, >50% fines.
		DUL-E (16-TD bgs): Same at top 1 ft, over lt bn to bn gravely sand, 1-5% fines.
		DUL-F: Thin, <1ft layer of gravely sand, not sampled; tuff not obvious but close to TD.
		DUL-A (6-10' bgs): Lt bn to bn sandy gravel, 1-5% fines.
21	16	DUL-B (10-12' bgs): Lt bn to bn sandy gravel, 1-5% fines.
		DUL-C (12-14' bgs): Lt bn to bn sandy gravel, 1-5% fines.
		DUL-D (14-TD bgs): Lt bn to bn gravelly sand, bottom few inches bn clayey sand, >75% fines.

Boring	Total	
ID	Depth	
Number	(feet)	Decision Unit Layer (DUL) Description
		DUL-A (6-10' bgs): Lt bn to bn sandy gravel, 1-5% fines.
		DUL-B (10-12' bgs): Lt bn to bn sandy gravel to gravelly sand, 1-5% fines.
22	15	DUL-C (12-14' bgs): Lt bn to bn sandy gravel to gravelly sand, 1-5% fines.
22	13	DUL-D (14-16 bgs): Lt bn to bn sandy gravel, 1-5% fines.
		DUL-E: Thin, <1 ft layer of drk bwn tuffaceous sandLt bn to bn gravelly sand, bottom few inches bn clayey sand, >75% fines.
		DUL-A (6-10' bgs): Lt bn to bn sandy gravel to gravelly sand, 1-5% fines.
		DUL-B (10-12' bgs): Lt bn to bn sandy gravel to gravelly sand, 1-5% fines.
23	15	DUL-C (12-14' bgs): Lt bn to bn sandy gravel to gravelly sand, 1-5% fines; bottom one ft bn clayey sand.
		DUL-D (14-TD bgs): Lt bn to bn gravelly sand, bottom one ft bn clayey sand, >50% fines.
		DUL-A (6-10' bgs): Lt bn to bn sandy gravel to gravelly sand, 1-5% fines.
24	16	DUL-B (10-12' bgs): Lt bn to bn sandy gravel to gravelly sand, 1-5% fines.
24		DUL-C (12-14' bgs): Lt bn to bn sandy gravel to gravelly sand, 1-5% fines.
		DUL-D (14-TD bgs): Upper lt bn to bn sandy gravel to gravelly sand over one ft bn clayey sand to sandy clay.
		DUL-A (6-10' bgs): Lt bn to bn sandy gravel to gravelly sand, 1-5% fines.
25	16	DUL-B (10-12' bgs): Lt bn to bn sandy gravel to gravelly sand, 1-5% fines.
23	10	DUL-C (12-14' bgs): Lt bn to bn sandy gravel to gravelly sand, 1-5% fines; bottom one ft compact, drk bn clay.
		DUL-D (14-TD bgs): Bn to drk bn clayey silt to silty clay with some sandy gravel, >75% fines.
26		Abandoned due to subsurface obstruction at one-foot bgs.
		DUL-A (6-10' bgs): Lt bn to bn gravelly sand to sandy gravel with increasing fines at base, 5-10% fines;
27	15	DUL-B (10-12' bgs): Same, sandier near base.
		DUL-C & D (12-14' bgs): Poor recovery (two feet), bn clayey silt with gravel, >50% fines.
		DUL-A (6-10' bgs): Lt bn to bn gravelly sand to sandy gravel with increasing fines at base, 5-10% fines;
28	16	DUL-B (10-12' bgs): Same, sandier near base.
20	10	DUL-C (12-14' bgs): Lt bn to bn ilty sand to sandy silt with increasing fines downwards, 5-10% clays
		DUL-D (14-TD bgs): Interlayered lt bn sandy gravel and bn clayey sand, bottom1 ft 30% fines.
		DUL-A (6-10' bgs): Lt bn gravelly sand to sandy gravel with increasing fines at base, 5-10% fines;
29	16	DUL-B (10-12' bgs): Same, sandier near base.
		DUL-C (12-14' bgs): Lt bn ilty sand to sandy silt with increasing fines downwards, 5-10% clays
		DUL-D (14-TD bgs): Lt bn, interlayered sandy gravel and clayey sand, bottom1 ft 50% fines.

Boring	Total	
ID	Depth	
Number	(feet)	Decision Unit Layer (DUL) Description
30	16	DUL-A (6-10' bgs): Lt bn gravelly sand to sandy gravel, 1-5% fines. DUL-B (10-12' bgs): Same, sandier near base.
30	10	DUL-C (12-14' bgs): Lt bn to bn upper-silty sand to sandy silt grading to lower bn silty clay, 50-60% fines. DUL-D (14-TD bgs): Lt bn to bn, interlayered sandy gravel and clayey sand, 10-15% fines.

Notes.

- 1. "Gravel" in most cases was angular and could represent fragments of coral broken during drilling.
- 2. "Fines" mix of fine sand, silt and clay; refer to grain-size analysis in text.
- 3. Boundaries between coarse and fine units sharp but gradational; no obvious erosional layers except top of tuff.
- 4. Borehole installation dates: June 14, 2011 Boreholes 22-30; June 15, 2011 Boreholes 3-8; June 15, 2011 Boreholes 1,2,
- 9-16; June 17, 2011 Boreholes 17-21.

APPENDIX 2 BOREHOLE GPS LOCATIONS

Project Name: Hickam AFB CG110 MIS VOC Study

Project Number: 103DS148843.H0201

GPS Coordinates* for Soil Borings

Site	Date	Soil Boring ID	Latitude**	Longitude
CG110	6/14/2010	30	21°19'52.9"	157°57'43.8"
66	"	29	21°19'52.6"	157°57'44.2"
66	u	28	21°19'52.3"	157°57'44.6"
66	ii.	27	21°19'53.5"	157°57'44.4"
66	ii .	26^	(21°19'53.1")	(157°57'44.6")
66	ii.	25	21°19'56.6"	157°57'44.9"
и	и	24	21°19′54.0"	157°57'45.1"
и	и	23	21°19'53.6"	157°57'45.5"
и	и	22	21°19′53.3"	157°57'45.9"
и	6/15/2010	8	21°19'55.8"	157°57'46.4"
и	и	7	21°19'55.6"	157°57'46.9"
и	и	6	21°19'55.3"	157°57'47.3"
ш	u	5	21°19'54.9"	157°57'46.8"
u	и	4	21°19′56.5"	157°57'47.4"
и	и	3	21°19′56.4"	157°57'47.6"
и	6/16/2010	12	21°19'55.7"	157°57'46.5"
u	ii .	11	21°19'55.7"	157°57'46.9"
и	и	10	21°19′54.9"	157°57'47.1"
и	u	9	21°19'54.5"	157°57'47.4"
и	"	2	21°19'56.2"	157°57'48.0"
u	u	1	21°19'55.5"	157°57'48.5"
и	и	16	21°19′54.7"	157°57'45.8"
u	ii.	15	21°19'54.5"	157°57'46.1"
и	и	14	21°19′54.1"	157°57'46.4"
u	и	13	21°19'53.8"	157°57'46.7"
и	6/17/2010	21	21°19'52.9"	157°57'46.0"
u	и	18	21°19'53.9"	157°57'45.9"
и	u	19	21°19'54.0"	157°57'45.6"
и	ii.	20	21°19'54.4"	157°57'45.1"
и	и	17	21°19'53.4"	157°57'46.2"

NOTES:

* All coordinates recorded using Garmin GPSmap 76Cx.

** Units recorded in degrees, minutes and seconds.

^ Drilling started on borehole 26 but was not completed due to utility concerns. Samples not collected. Coordinates recorded for start of borehole.

APPENDIX 3 LABORATORY REPORTS

June 30, 2010

Attn: Scott Duzan

LABORATORY REPORT

Client:

Tetra Tech EM Inc. Work Order: HTF0069

737 Bishop st., Suite 3010 Project Name: Subsurface Soil Investigation (MIS-VOCs)

Honolulu, HI 96813 Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.Ht

Date Received: 06/14/10

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica Analytical Testing Corporation certifies that the analytical results contained herein apply only to the specific sample(s) analyzed.

The Chain(s) of Custody, 6 pages, are included and are an integral part of this report. This entire report was reviewed and approved for release

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-(808)486-5227

Samples were received into laboratory at a temperature of 8 °C.

DZ

NELAC states that samples which require thermal preservation shall be considered acceptable if the arrival temperature is within 2 degrees C of the required temperature or the method specified range. For samples with a temperature requirement of 4 degrees C, an arrival temperature from 0 degrees C to 6 degrees C meets specifications. Samples that are delivered to the laboratory on the same day that they are collected may not meet these criteria. In these cases, the samples are considered acceptable if there is evidence that the chilling process has begun, such as arrival on ice.

The reported results were obtained in compliance with the 2003 NELAC standards unless otherwise noted.

Approved By:

NELAC Certification # E87907

Tetra Tech EM Inc. 737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan

HTF0069 Work Order:

Received:

06/14/10 Reported: 06/30/10 17:30

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Sample Summary

			Date/Time	Date/Time	Sample
Sample Identification	Lab Number	Client Matrix	Sampled	Received	Qualifiers
B24-A-(MIC-VOC)	HTF0069-01	Solid/Soil	06/14/10 15:00	06/14/10 17:15	
FIELD BLANK B24-A	HTF0069-02	Solid/Soil	06/14/10 15:01	06/14/10 17:15	
B24-B-(MIC-VOC)	HTF0069-03	Solid/Soil	06/14/10 15:07	06/14/10 17:15	
B24-C-(MIC-VOC)	HTF0069-04	Solid/Soil	06/14/10 15:05	06/14/10 17:15	
B24-D-(MIC-VOC)	HTF0069-05	Solid/Soil	06/14/10 15:15	06/14/10 17:15	
B23-A-(MIC-VOC)	HTF0069-06	Solid/Soil	06/14/10 15:30	06/14/10 17:15	
B23-B-(MIC-VOC)	HTF0069-07	Solid/Soil	06/14/10 15:38	06/14/10 17:15	
B23-C-(MIC-VOC)	HTF0069-08	Solid/Soil	06/14/10 15:42	06/14/10 17:15	
B23-D-(MIC-VOC)	HTF0069-09	Solid/Soil	06/14/10 15:50	06/14/10 17:15	
B22-A-(MIC-VOC)	HTF0069-10	Solid/Soil	06/14/10 16:05	06/14/10 17:15	
TRIP BLANK	HTF0069-11	Solid/Soil	06/14/10 15:54	06/14/10 17:15	
B22-B-(MIC-VOC)	HTF0069-12	Solid/Soil	06/14/10 16:15	06/14/10 17:15	
B22-C-(MIC-VOC)	HTF0069-13	Solid/Soil	06/14/10 16:20	06/14/10 17:15	
B22-D-(MIC-VOC)	HTF0069-14	Solid/Soil	06/14/10 16:25	06/14/10 17:15	
B28-C-(MIC-VOC)	HTF0069-15	Solid/Soil	06/14/10 11:05	06/14/10 17:15	
B28-D-(MIC-VOC)	HTF0069-16	Solid/Soil	06/14/10 11:20	06/14/10 17:15	
B27-A-(MIC-VOC)	HTF0069-17	Solid/Soil	06/14/10 11:45	06/14/10 17:15	
B27-B-(MIC-VOC)	HTF0069-18	Solid/Soil	06/14/10 12:25	06/14/10 17:15	
B27-C-(MIC-VOC)	HTF0069-19	Solid/Soil	06/14/10 12:30	06/14/10 17:15	
B27-D-(MIC-VOC)	HTF0069-20	Solid/Soil	06/14/10 12:35	06/14/10 17:15	
B25-A-(MIC-VOC)	HTF0069-21	Solid/Soil	06/14/10 14:25	06/14/10 17:15	
B25-B-(MIC-VOC)	HTF0069-22	Solid/Soil	06/14/10 14:30	06/14/10 17:15	
B25-C-(MIC-VOC)	HTF0069-23	Solid/Soil	06/14/10 14:35	06/14/10 17:15	
B25-D-(MIC-VOC)	HTF0069-24	Solid/Soil	06/14/10 14:40	06/14/10 17:15	
B27-4-6-SM	HTF0069-25	Solid/Soil	06/14/10 11:35	06/14/10 17:15	
B30-A-(MIC-VOC)	HTF0069-26	Solid/Soil	06/14/10 08:37	06/14/10 17:15	

Tetra Tech EM Inc. 737 Bishop st., Suite 3010

Honolulu, HI 96813

Scott Duzan

Work Order: HTF0069 Received: 06/14/10

Reported: 06/30/10 17:30

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Commis Idontification	I ah Nissahas	Oliant Matrix	Date/Time Sampled	Date/Time Received	Sample
Sample Identification	Lab Number	Client Matrix	Sampleu	Received	Qualifiers
B30-B-(MIC-VOC)	HTF0069-27	Solid/Soil	06/14/10 08:45	06/14/10 17:15	
B30-C-(MIC-VOC)	HTF0069-28	Solid/Soil	06/14/10 08:47	06/14/10 17:15	
B30-D-(MIC-VOC)	HTF0069-29	Solid/Soil	06/14/10 09:00	06/14/10 17:15	
B29-A-(MIC-VOC)	HTF0069-30	Solid/Soil	06/14/10 10:25	06/14/10 17:15	
B29-B-(MIC-VOC)	HTF0069-31	Solid/Soil	06/14/10 10:30	06/14/10 17:15	
B29-C-(MIC-VOC)	HTF0069-32	Solid/Soil	06/14/10 10:35	06/14/10 17:15	
B29-D-(MIC-VOC)	HTF0069-33	Solid/Soil	06/14/10 10:40	06/14/10 17:15	
B28-A-(MIC-VOC)	HTF0069-34	Solid/Soil	06/14/10 10:55	06/14/10 17:15	
B28-B-(MIC-VOC)	HTF0069-35	Solid/Soil	06/14/10 11:07	06/14/10 17:15	

Tetra Tech EM Inc. 737 Bishop st., Suite 3010

Scott Duzan

Work Order:

HTF0069

Received: Reported: 06/14/10 06/30/10 17:30

Honolulu, HI 96813

Subsurface Soil Investigation (MIS-VOCs)

Project:

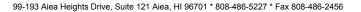
Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

ANAI	VTIC	AI. R	EPORT

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0069-01 (B24-A-(M		id/Soil)			Samj	pled:	06/14/10 15:00	Re	cvd: 06/14/	10 17:15
Volatile Organic Compounds by EPA 82			/1	4.61	0.22	50	06/15/10 17:45	06/15/10	100000	EPA 8260
cis-1,2-Dichloroethene	ND		ug/kg "	4.61	9.22	50	06/15/10 17:45	06/15/10	10F0088	EFA 8200
trans-1,2-Dichloroethene	ND		"	4.61	9.22	,,	"	"	,,	,,
Trichloroethene	ND	т	"	4.61	9.22	,,	"	"	,,	,,
Vinyl chloride	12.8	J		6.27	18.4		"	"	,,	,,
Surr: 1,2-Dichloroethane-d4 (80-120%)	94 %						,,	,,	,,	,,
Sample ID: HTF0069-02 (FIELD BI Volatile Organic Compounds by EPA 82		Solid/Soil)			Samj	pled:	06/14/10 15:01	Re	cvd: 06/14/	10 17:15
cis-1,2-Dichloroethene	ND		ug/kg	5.00	10.0	50	06/15/10 18:11	06/15/10	10F0088	EPA 8260
trans-1,2-Dichloroethene	ND		""	5.00	10.0	"	"	"	"	"
Trichloroethene	ND		"	5.00	10.0	"	"	"	"	"
Vinyl chloride	11.2	J	"	6.80	20.0	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	91 %	v		0.00	20.0		"	"	"	"
Sample ID: HTF0069-03 (B24-B-(M	-	id/Soil)			Samj	pled:	06/14/10 15:07	Re	cvd: 06/14/	10 17:15
Volatile Organic Compounds by EPA 82			а	4.42	0.05	50	06/15/10 10 27	06/15/10	100000	EDA 92/0
cis-1,2-Dichloroethene	ND		ug/kg 	4.42	8.85	50	06/15/10 18:37	06/15/10	10F0088	EPA 8260
trans-1,2-Dichloroethene	ND			4.42	8.85	"				
Trichloroethene	ND		"	4.42	8.85	"	"	"	"	"
Vinyl chloride	6.18	J	"	6.02	17.7	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	92 %						"	"	"	"
Sample ID: HTF0069-04 (B24-C-(M Volatile Organic Compounds by EPA 82		id/Soil)			Samj	pled:	06/14/10 15:05	Re	cvd: 06/14/	10 17:15
cis-1,2-Dichloroethene	ND		ug/kg	4.60	9.20	50	06/15/10 19:56	06/15/10	10F0088	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.60	9.20	"	"	"	"	"
Trichloroethene	ND		"	4.60	9.20	"	"	"	"	"
Vinyl chloride	ND		"	6.25	18.4	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	98 %						"	"	"	"
Sample ID: HTF0069-05 (B24-D-(M	IC-VOC) - Sol	id/Soil)			Samj	pled:	06/14/10 15:15	Re	cvd: 06/14/	10 17:15
Volatile Organic Compounds by EPA 82										
cis-1,2-Dichloroethene	ND		ug/kg	4.77	9.55	50	06/15/10 19:05	06/15/10	10F0088	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.77	9.55	"	"	"	"	"
Trichloroethene	ND		"	4.77	9.55	"	"	"	"	"
Vinyl chloride	ND		"	6.49	19.1	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	94 %						"	"	"	"
Sample ID: HTF0069-06 (B23-A-(M	,	id/Soil)			Samj	pled:	06/14/10 15:30	Re	cvd: 06/14/	10 17:15
Volatile Organic Compounds by EPA 82 cis-1,2-Dichloroethene	260 ND		ng/ka	A A1	0 02	50	06/15/10 10:21	06/15/10	1050000	EPA 8260
· ·			ug/kg "	4.41	8.82	50	06/15/10 19:31	06/15/10	10F0088	LI A 0200
trans-1,2-Dichloroethene	ND		"	4.41	8.82	,,	"	"	,,	"
Trichloroethene	ND		"	4.41	8.82	,,	"		,,	"
Vinyl chloride	ND		.,	6.00	17.6	"			"	,,
Surr: 1,2-Dichloroethane-d4 (80-120%)	94 %						"	"	"	"

Work Order: HTF0069

0069


Received: 06/14/10 Reported: 06/30/10 17:30

Project: Subsurface Soil Investigation (MIS-VOCs)

Honolulu, HI 96813 Scott Duzan

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0069-06 (B23-A-(MI	IC-VOC) - Soli	id/Soil) - cont.			Samp	oled:	06/14/10 15:30	Re	cvd: 06/14/	10 17:15
Sample ID: HTF0069-07 (B23-B-(MI Volatile Organic Compounds by EPA 82	-	d/Soil)			Samı	oled:	06/14/10 15:38	Re	evd: 06/14/	10 17:15
cis-1,2-Dichloroethene	ND		ug/kg	5.19	10.4	50	06/15/10 20:22	06/15/10	10F0088	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.19	10.4	"	"	"	"	"
Trichloroethene	ND		"	5.19	10.4	"	"	"	"	"
Vinyl chloride	ND		"	7.06	20.8	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	96 %						"	"	"	"
Sample ID: HTF0069-08 (B23-C-(MI Volatile Organic Compounds by EPA 82		id/Soil)			Samp	oled:	06/14/10 15:42	Rec	evd: 06/14/	10 17:15
cis-1,2-Dichloroethene	ND		ug/kg	5.09	10.2	50	06/15/10 20:48	06/15/10	10F0088	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.09	10.2	"	"	"	"	"
Trichloroethene	ND		"	5.09	10.2	"	n .	"	"	"
Vinyl chloride	ND		"	6.93	20.4	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	93 %						"	"	"	"
Sample ID: HTF0069-09 (B23-D-(MI Volatile Organic Compounds by EPA 82		id/Soil)			Samp	oled:	06/14/10 15:50	Rec	cvd: 06/14/	10 17:15
cis-1,2-Dichloroethene	ND		ug/kg	5.20	10.4	50	06/15/10 21:13	06/15/10	10F0088	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.20	10.4	"	"	"	"	"
Trichloroethene	ND		"	5.20	10.4	,,	"	"	"	"
Vinyl chloride	ND		"	7.07	20.8	,,	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	94 %						"	"	"	"
Sample ID: HTF0069-10 (B22-A-(MI	(C-VOC) - Soli	id/Soil)			Samı	oled:	06/14/10 16:05	Re	cvd: 06/14/	10 17:15
Volatile Organic Compounds by EPA 82	60				-					
cis-1,2-Dichloroethene	ND		ug/kg	5.09	10.2	50	06/15/10 21:39	06/15/10	10F0088	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.09	10.2	"	"	"	"	"
Trichloroethene	ND		"	5.09	10.2	"	"	"	"	"
Vinyl chloride	ND		"	6.93	20.4	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	98 %						"	"	"	"
Sample ID: HTF0069-11 (TRIP BLA Volatile Organic Compounds by EPA 82		il)			Samp	oled:	06/14/10 15:54	Re	cvd: 06/14/	10 17:15
cis-1,2-Dichloroethene	ND		ug/kg	5.00	10.0	50	06/15/10 22:05	06/15/10	10F0088	EPA 8260
trans-1,2-Dichloroethene	ND		ug/kg "	5.00	10.0	"	"	"	"	"
Trichloroethene	ND		"	5.00	10.0	,,	"	"	,,	,,
Vinyl chloride	ND		"	6.80	20.0	,,	"	,,	,,	,,
Surr: 1,2-Dichloroethane-d4 (80-120%)	97 %			0.00	20.0		"	"	"	"
Sample ID: HTF0069-12 (B22-B-(MI	[C-VOC) - Soli	d/Soil)			Samı	pled:	06/14/10 16:15	Re	evd: 06/14/	10 17:15
Volatile Organic Compounds by EPA 82	60									
cis-1,2-Dichloroethene	ND		ug/kg	4.27	8.53	50	06/15/10 22:31	06/15/10	10F0088	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.27	8.53	"	"	"	"	"
Trichloroethene	ND		"	4.27	8.53	"	"	"	"	"

Honolulu, HI 96813

Scott Duzan

HTF0069 Work Order:

06/14/10 Received: Reported: 06/30/10 17:30

Subsurface Soil Investigation (MIS-VOCs) Project:

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

ANALYTICAL REPORT

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0069-12 (B22-B-(MI	C-VOC) - Soli	id/Soil) - cont.			Sam	pled:	06/14/10 16:15	Re	cvd: 06/14/	10 17:15
Volatile Organic Compounds by EPA 82	60 - cont.									
Vinyl chloride	6.32	J	"	5.80	17.1	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	98 %						"	"	"	"
Sample ID: HTF0069-13 (B22-C-(MI	(C-VOC) - Sol	id/Soil)			Sam	pled:	06/14/10 16:20	Re	cvd: 06/14/	10 17:15
Volatile Organic Compounds by EPA 82	60									
cis-1,2-Dichloroethene	ND		ug/kg	5.43	10.9	50	06/15/10 22:56	06/15/10	10F0088	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.43	10.9	"	"	"	"	"
Trichloroethene	ND		"	5.43	10.9	"	"	"	"	"
Vinyl chloride	ND		"	7.38	21.7	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	96 %						"	"	"	"
Sample ID: HTF0069-14 (B22-D-(MI	(C-VOC) - Sol	id/Soil)			Sam	pled:	06/14/10 16:25	Re	cvd: 06/14/	10 17:15
Volatile Organic Compounds by EPA 82	60									
cis-1,2-Dichloroethene	ND		ug/kg	5.52	11.0	50	06/15/10 23:22	06/15/10	10F0088	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.52	11.0	"	"	"	"	"
Trichloroethene	ND		"	5.52	11.0	"	"	"	"	"
Vinyl chloride	ND		"	7.51	22.1	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	99 %						"	"	"	"
Sample ID: HTF0069-15 (B28-C-(MI	(C-VOC) - Sol	id/Soil)			Sam	pled:	06/14/10 11:05	Re	cvd: 06/14/	10 17:15
Volatile Organic Compounds by EPA 82	60									
cis-1,2-Dichloroethene	ND		ug/kg	4.96	9.92	50	06/15/10 23:47	06/15/10	10F0088	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.96	9.92	"	"	"	"	"
Trichloroethene	ND		"	4.96	9.92	"	"	"	"	"
Vinyl chloride	ND		"	6.75	19.8	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	101 %						"	"	"	"
Sample ID: HTF0069-16 (B28-D-(MI	(C-VOC) - Sol	id/Soil)			Sam	pled:	06/14/10 11:20	Re	cvd: 06/14/	10 17:15
Volatile Organic Compounds by EPA 82	60									
cis-1,2-Dichloroethene	ND		ug/kg	5.14	10.3	50	06/16/10 00:13	06/15/10	10F0088	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.14	10.3	"	"	"	"	"
Trichloroethene	ND		"	5.14	10.3	"	"	"	"	"
Vinyl chloride	ND		"	6.99	20.6	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	98 %						"	"	"	"
Sample ID: HTF0069-17 (B27-A-(MI	(C-VOC) - Sol	id/Soil)			Sam	pled:	06/14/10 11:45	Re	cvd: 06/14/	10 17:15
Volatile Organic Compounds by EPA 82		*								
cis-1,2-Dichloroethene	ND		ug/kg	4.59	9.17	50	06/16/10 09:17	06/15/10	10F0088	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.59	9.17	"	"	"	"	"
Trichloroethene	ND		"	4.59	9.17	"	"	"	"	"
Vinyl chloride	ND		"	6.24	18.3	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	96 %						"	"	"	"

Sample ID: HTF0069-18 (B27-B-(MIC-VOC) - Solid/Soil)

Volatile Organic Compounds by EPA 8260

Recvd: 06/14/10 17:15

Sampled: 06/14/10 12:25

Scott Duzan

Work Order:

HTF0069

Received: Reported: 06/14/10 06/30/10 17:30

Honolulu, HI 96813

Subsurface Soil Investigation (MIS-VOCs)

Project:

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0069-18 (B27-B-(MIC-	VOC) - Soli	id/Soil) - cont.			Sam	pled:	06/14/10 12:25	Re	cvd: 06/14/	10 17:15
Volatile Organic Compounds by EPA 8260	- cont.									
cis-1,2-Dichloroethene	ND		ug/kg	4.87	9.75	50	06/16/10 10:32	06/15/10	10F0088	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.87	9.75	"	"	"	"	"
Trichloroethene	ND		"	4.87	9.75	"	"	"	"	"
Vinyl chloride	ND		"	6.63	19.5	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	97 %						"	"	"	"
Sample ID: HTF0069-19 (B27-C-(MIC-	VOC) - Sol	id/Soil)			Samj	pled:	06/14/10 12:30	Re	evd: 06/14/	10 17:15
Volatile Organic Compounds by EPA 8260										
cis-1,2-Dichloroethene	ND		ug/kg	5.41	10.8	50	06/16/10 10:58	06/15/10	10F0088	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.41	10.8	"	"	"	"	"
Trichloroethene	ND		"	5.41	10.8	"	"	"	"	"
Vinyl chloride	ND		"	7.35	21.6	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	99 %						"	"	"	"
Sample ID: HTF0069-20 (B27-D-(MIC-Volatile Organic Compounds by EPA 8260	VOC) - Sol	id/Soil)			Samj	pled:	06/14/10 12:35	Re	cvd: 06/14/	10 17:15
cis-1,2-Dichloroethene	ND		υσ/kα	4.85	9.70	50	06/16/10 11:23	06/15/10	10F0088	EPA 8260
trans-1,2-Dichloroethene	ND		ug/kg "	4.85	9.70	"	00/10/10 11.23	"	"	"
			,,			,,	,,	,,	,,	,,
Trichloroethene	ND		"	4.85	9.70	,,	,,	,,	,,	,,
Vinyl chloride	ND			6.59	19.4		"	,,	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	95 %									
Sample ID: HTF0069-21 (B25-A-(MIC-Volatile Organic Compounds by EPA 8260	VOC) - Sol	id/Soil)			Samj	pled:	06/14/10 14:25	Re	evd: 06/14/	10 17:15
cis-1,2-Dichloroethene	ND		ug/kg	2.40	4.81	50	06/16/10 12:38	06/16/10	10F0095	EPA 8260
trans-1,2-Dichloroethene	ND		"	2.40	4.81	"	"	"	"	"
Trichloroethene	ND		"	2.40	4.81	"	"	"	"	"
Vinyl chloride	ND		"	3.27	9.62	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	99 %						"	"	"	"
Sample ID: HTF0069-22 (B25-B-(MIC-	VOC) - Sol	id/Soil)			Samj	pled:	06/14/10 14:30	Re	evd: 06/14/	10 17:15
Volatile Organic Compounds by EPA 8260										
cis-1,2-Dichloroethene	ND		ug/kg	2.95	5.90	50	06/16/10 13:04	06/16/10	10F0095	EPA 8260
trans-1,2-Dichloroethene	ND		"	2.95	5.90	"	"	"	"	"
Trichloroethene	ND		"	2.95	5.90	"	"	"	"	"
Vinyl chloride	ND		"	4.01	11.8	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	101 %						"	"	"	"
Sample ID: HTF0069-23 (B25-C-(MIC-Veletile Organic Compounds by EPA 8260	VOC) - Sol	id/Soil)			Samj	pled:	06/14/10 14:35	Re	cvd: 06/14/	10 17:15
Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene	ND		ng/ka	2.48	4.96	50	06/16/10 14:19	06/16/10	10F0095	EPA 8260
	ND ND		ug/kg "			30	06/16/10 14:19	00/10/10	1010093	"
trans-1,2-Dichloroethene			,,	2.48	4.96	"	,,	,,	,,	"
Trichloroethene	ND		"	2.48	4.96	,,	,,	,,	,,	,,
Vinyl chloride	ND			3.38	9.93		"	"	"	,,
Surr: 1,2-Dichloroethane-d4 (80-120%)	97 %						"	"	"	"

737 Bishop st., Suite 3010

Honolulu, HI 96813

Scott Duzan

Work Order: HTF0069

Received:

06/14/10

Reported:

06/30/10 17:30

Project: Subsurface Soil Investigation (MIS-VOCs)

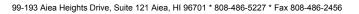
Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

### Parameters ### P	Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Nation Compounds by EPA 8260 1i-12-Dichlorocchane ND 10 10 10 10 10 10 10 10 10 10 10 10 10	Sample ID: HTF0069-23 (B25-C-(MI	C-VOC) - Sol	id/Soil) - cont.			Samj	pled:	06/14/10 14:35	Re	cvd: 06/14/	10 17:15
1	Sample ID: HTF0069-24 (B25-D-(MI	C-VOC) - Sol	id/Soil)			Samj	pled:	06/14/10 14:40	Re	cvd: 06/14/	10 17:15
trans-1.2-Dichlorocheme	Volatile Organic Compounds by EPA 820	60									
Sample ID: HTF0069-25RE2 (B27-4-6-SM - Solid/Soil) Sample ID: HTF0069-25RE2 (B30-A-(MIC-VOC) - Solid/Soil) Sample ID: HTF0069-25RE2 (B30-C-(MIC-VOC) - Solid/Soil) Sample ID: HTF0069-25RE	cis-1,2-Dichloroethene	ND		ug/kg	2.50	4.99	50	06/16/10 14:44	06/16/10	10F0095	EPA 8260
Name 1.7	trans-1,2-Dichloroethene	ND		"	2.50	4.99	"	"	"	"	"
Sample ID: HTF0069-25 (B27-4-6-SM - Solid/Soil) General Chemistry Parameters % Moisture 25.9 Weight % 0,100 0,100 100 0,100 0,100 0,00	Trichloroethene	ND		"	2.50	4.99	"	"	"	"	"
Sample ID: HTF0069-25 RE2 (B27-46-SM - Solid/Soil) Sample ID: HTF0069-26 (B30-A-(MIC-VOC) - Solid/Soil) Sample ID: HTF0069-26 (B30-B-(MIC-VOC) - Solid/Soil) Sample ID: HTF0069-26 (B30-B-(MIC-VOC) - Solid/Soil) Sample ID: HTF0069-26 (B30-C-(MIC-VOC) -	Vinyl chloride	ND		"	3.39	9.98	"	"	"	"	"
Sample ID: HTF0069-25RE1 (B27-4-6-SM - Solid/Soil)	Surr: 1,2-Dichloroethane-d4 (80-120%)	100 %						"	"	"	"
54 Moisture 25.0 Weight % 0.100 0.100 0.10 0.623/10 09:00 0.621/10 10F0126 MEZSAL Sample ID: HTF0069-25RE1 (B27-4-6-SM - Solid/Soil) 3 0.100 0.100 0.100 0.101 <td>Sample ID: HTF0069-25 (B27-4-6-SM</td> <td>4 - Solid/Soil)</td> <td></td> <td></td> <td></td> <td>Sam</td> <td>pled:</td> <td>06/14/10 11:35</td> <td>Re</td> <td>cvd: 06/14/</td> <td>10 17:15</td>	Sample ID: HTF0069-25 (B27-4-6-SM	4 - Solid/Soil)				Sam	pled:	06/14/10 11:35	Re	cvd: 06/14/	10 17:15
Sample ID: HTF0069-25RE1 (B27-4-6-SM - Solid/Soil) General Chemistry Parameters **Moisture	General Chemistry Parameters										
Sample ID: HTF0069-25RE2 (B27-4-6-SM - Solid/Soil) Sample ID: HTF0069-25RE2 (B27-4-6-SM - Solid/Soil) Sample ID: HTF0069-25RE3 (B27-4-6-SM - Solid/Soil) Sample ID: HTF0069-26 (B30-A-(MIC-VOC) - Solid/Soil) Sample ID: HTF0069-27 (B30-B-(MIC-VOC) - Solid/Soil) Sample ID: HTF0069-28 (B30-C-(MIC-VOC) - Solid/Soil) Sample ID: HTF0069-28 (B30-C	% Moisture	25.0		Weight %	0.100	0.100	1	06/23/10 09:00	06/21/10	10F0126	SM 2540G
% Moisture 24.7 "0.000 0.1000 "0.10000 "0.10000 "0.10000	-	6-SM - Solid/S	Soil)			Samj	pled:	06/14/10 11:35	Re	cvd: 06/14/	10 17:15
Sample ID: HTF0069-25RE2 (B27-4-6-SN - Solid/Soil) General Chemistry Parameters '% Moisture 27.8 " 0.100 0.100 " " " " " " " " " " " " " " " " " "	•										
Sample ID: HTF0069-25RE3 (B27-4-6-SM - Solid/Soil) Sample ID: HTF0069-25RE3 (B27-4-6-SM - Solid/Soil) Sample ID: HTF0069-26 (B30-A-(MIC-VOC) - Solid/Soil) Sample ID: HTF0069-27 (B30-B-(MIC-VOC) - Solid/Soil) Sample ID: HTF0069-28 (B30-C-(MIC-VOC) - Solid/Soil) Sample ID: HT	% Moisture	24.7		"	0.100	0.100	"	"	"	"	"
5% Moisture 27.8 "0.100 0.100 "0.100 "0.100 "0.100 "0.100 "0.100 "0.100 "0.100 "0.100 "0.101 11.35 Recvd: 06/14/10 17:15 Recvd: 06/14/10 08:37 Recvd: 06/14/10 08:37 Recvd: 06/14/10 08:37 Recvd: 06/14/10 08:37 Recvd: 06/14/10 07:15 Recvd: 06/14/10 08:37 Recvd: 06/14/10 07:15 Recvd: 06/14/10 08:37 Recvd: 0	•	6-SM - Solid/S	Soil)			Sam	pled:	06/14/10 11:35	Re	cvd: 06/14/	10 17:15
Sample ID: HTF0069-26 (B30-A-(MIC-VOC) - Solid/Soil) Sample ID: HTF0069-27 (B30-B-(MIC-VOC) - Solid/Soil) Sample ID: HTF0069-27 (B30-B-(MIC-VOC) - Solid/Soil) Sample ID: HTF0069-27 (B30-B-(MIC-VOC) - Solid/Soil) Sample ID: HTF0069-28 (B30-C-(MIC-VOC) - Solid/Soil) Sample ID	•	27.8		"	0.100	0.100	"	"	"	"	"
% Moisture 29.1 "0.100 0.100 """" """"" """" """" """" """" """" """" """" """" """" """" """" """" """" """" """ <t< td=""><td>-</td><td>6-SM - Solid/S</td><td>Soil)</td><td></td><td></td><td>Sam</td><td>pled:</td><td>06/14/10 11:35</td><td>Re</td><td>cvd: 06/14/</td><td>10 17:15</td></t<>	-	6-SM - Solid/S	Soil)			Sam	pled:	06/14/10 11:35	Re	cvd: 06/14/	10 17:15
Sample ID: HTF0069-26 (B30-A-(MIC-VOC) - Solid/Soil) Sample ID: Granic Compounds by EPA 8260 Sci-1,2-Dichloroethene ND ND ND ND ND ND ND N	•										
Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND ug/kg 2.71 5.42 50 06/16/10 15:09 06/16/10 10F0095 EPA 826 trans-1,2-Dichloroethene ND " 2.71 5.42 " " " " " " " " " " " " " " " " " " "	% Moisture	29.1		"	0.100	0.100	"	"	"	"	"
cis-1,2-Dichloroethene ND ug/kg 2.71 5.42 50 06/16/10 15:09 06/16/10 10F0095 EPA 820 trans-1,2-Dichloroethene ND " 2.71 5.42 " " " " " " " " " " " " " " " " " " "	- · · · · · · · · · · · · · · · · · · ·		id/Soil)			Samj	pled:	06/14/10 08:37	Re	cvd: 06/14/	10 17:15
trans-1,2-Dichloroethene ND " 2,71 5,42 " " " " " " " " " " " " " " " " " " "				na/ka	2.71	5.42	50	06/16/10 15:00	06/16/10	1000005	EPA 8260
Trichloroethene ND " 2.71 5.42 " " " " " " " " " " " " " " " " " " "	·										LI A 0200
Vinyl chloride ND " 3.68 10.8 " " " " " " " " " " " " " " " " " " "	·								,,	,,	,,
Sample ID: HTF0069-27 (B30-B-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND " " " " " " " " " " " " " " " " "				,,					,,	"	,,
Sample ID: HTF0069-27 (B30-B-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND " 3.88 7.77 " " " " " " " " " " " " " " " "	•				3.68	10.8			"	"	"
Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND ug/kg 3.88 7.77 50 06/16/10 15:35 06/16/10 10F0095 EPA 826 EP			: 1/6 - :1)			C		0.6/1.4/1.0.00.45	D.	avd. 06/14/	10 17.15
cis-1,2-Dichloroethene ND ug/kg 3.88 7.77 50 06/16/10 15:35 06/16/10 10F0095 EPA 820 trans-1,2-Dichloroethene ND " 3.88 7.77 " " " " " " " " " " " " " " " " "	•	,	10/8011)			Sam	piea:	00/14/10 08:45	Ne	cvu: 00/14/	10 17:13
trans-1,2-Dichloroethene ND " 3.88 7.77 " " " " " " " " " " " " " Trichloroethene ND " 3.88 7.77 " " " " " " " " " " " " " " " " "				na/ka	3 88	7 77	50	06/16/10 15:35	06/16/10	10E0005	EPA 8260
Trichloroethene ND " 3.88 7.77 "				ug/kg					00/10/10	1010093	"
Vinyl chloride ND " 5.28 15.5 " " " " " " " " " " Sample ID: HTF0069-28 (B30-C-(MIC-VOC) - Solid/Soil) Sample ID: HTF0069-28 (B30-C-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND ug/kg 2.67 5.35 50 06/16/10 16:00 06/16/10 10F0095 EPA 8260 trans-1,2-Dichloroethene ND " 2.67 5.35 " " " " " " " " " " " " " " " " " " "	,			,,				"	,,	,,	,,
Sample ID: HTF0069-28 (B30-C-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND ug/kg 2.67 5.35 06/14/10 08:47 Recvd: 06/14/10 17:15 EPA 826 trans-1,2-Dichloroethene ND " 2.67 Trichloroethene ND " " " " " " " " " " " " " " " " "								,,	,,		
Sample ID: HTF0069-28 (B30-C-(MIC-VOC) - Solid/Soil) Sampled: 06/14/10 08:47 Recvd: 06/14/10 17:15 Volatile Organic Compounds by EPA 8260 ND ug/kg 2.67 5.35 50 06/16/10 16:00 06/16/10 10F0095 EPA 820 trans-1,2-Dichloroethene ND " 2.67 5.35 " " " " " Trichloroethene ND " 2.67 5.35 " " " " "	•			"	5.28	15.5			,,	"	,,
Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND ug/kg 2.67 5.35 50 06/16/10 16:00 06/16/10 10F0095 EPA 820 trans-1,2-Dichloroethene ND " 2.67 5.35 " " " " " Trichloroethene ND " 2.67 5.35 " " " " "	Surr. 1,2-Dichloroeinane-u4 (60-12076)	90 /0									
cis-1,2-Dichloroethene ND ug/kg 2.67 5.35 50 06/16/10 16:00 06/16/10 10F0095 EPA 820 trans-1,2-Dichloroethene ND " 2.67 5.35 " " " " " " Trichloroethene ND " 2.67 5.35 " " " " " "	- · · · · · · · · · · · · · · · · · · ·		id/Soil)			Sam	pled:	06/14/10 08:47	Re	cvd: 06/14/	10 17:15
trans-1,2-Dichloroethene ND " 2.67 5.35 " " " " " " " " " Trichloroethene ND " 2.67 5.35 " " " " " " " " " " "	• • •			<i>p</i>	2.7		= 0	06/16/10 15 00	06/15/10	100000	ED 4 02 (0
Trichloroethene ND " 2.67 5.35 " " " " " "											EPA 8260
inclinoteurile ND 2.07 3.33	,										"
Vinyl chloride ND " 3.64 10.7 " " " " " "	Trichloroethene	ND		"	2.67	5.35	"			"	
	Vinyl chloride	ND		"	3.64	10.7	"	"	"	"	"

737 Bishop st., Suite 3010

Honolulu, HI 96813

Scott Duzan


HTF0069 06/14/10 Work Order: Received:

Reported: 06/30/10 17:30

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0069-28 (B30-C-(MI	,	id/Soil) - cont.			Samj	pled:	06/14/10 08:47	Re	cvd: 06/14/	10 17:15
Volatile Organic Compounds by EPA 826							"	,,	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	100 %						,,		,	
Sample ID: HTF0069-29 (B30-D-(MIC Volatile Organic Compounds by EPA 826		id/Soil)			Samj	pled:	06/14/10 09:00	Re	cvd: 06/14/	10 17:15
cis-1,2-Dichloroethene	ND		ug/kg	2.45	4.90	50	06/16/10 16:25	06/16/10	10F0095	EPA 8260
trans-1,2-Dichloroethene	ND		"	2.45	4.90	"	"	"	"	"
Trichloroethene	ND		"	2.45	4.90	"	"	"	"	"
Vinyl chloride	ND		"	3.33	9.79	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	100 %						"	"	"	"
Sample ID: HTF0069-30 (B29-A-(MI	C-VOC) - Soli	id/Soil)			Sam	pled:	06/14/10 10:25	Re	evd: 06/14/	10 17:15
Volatile Organic Compounds by EPA 826	60									
cis-1,2-Dichloroethene	ND		ug/kg	3.33	6.65	50	06/16/10 16:50	06/16/10	10F0095	EPA 8260
trans-1,2-Dichloroethene	ND		"	3.33	6.65	"	"	"	"	"
Trichloroethene	ND		"	3.33	6.65	"	"	"	"	"
Vinyl chloride	ND		"	4.52	13.3	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	97 %						"	"	"	"
Sample ID: HTF0069-31 (B29-B-(MI	,	id/Soil)			Samj	pled:	06/14/10 10:30	Re	evd: 06/14/	10 17:15
Volatile Organic Compounds by EPA 826										
cis-1,2-Dichloroethene	ND		ug/kg	2.51	5.01	50	06/16/10 17:15	06/16/10	10F0095	EPA 8260
trans-1,2-Dichloroethene	ND		"	2.51	5.01	"	"	"	"	"
Trichloroethene	ND		"	2.51	5.01	"	"	"	"	"
Vinyl chloride	ND		"	3.41	10.0	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	99 %						"	"	"	"
Sample ID: HTF0069-32 (B29-C-(MI	,	id/Soil)			Samj	pled:	06/14/10 10:35	Re	evd: 06/14/	10 17:15
Volatile Organic Compounds by EPA 826				• • •			05/45/40 4= 44	0.514.514.0	405000	ED 1 00/0
cis-1,2-Dichloroethene	ND		ug/kg "	2.94	5.87	50	06/16/10 17:41	06/16/10	10F0095	EPA 8260
trans-1,2-Dichloroethene	ND		"	2.94	5.87		,,	"	,,	,,
Trichloroethene	ND		"	2.94	5.87	"	"	,,	,,	,,
Vinyl chloride	ND		"	3.99	11.7	"	"	"	"	,,
Surr: 1,2-Dichloroethane-d4 (80-120%)	101 %						"	"	"	"
Sample ID: HTF0069-33 (B29-D-(MI Volatile Organic Compounds by EPA 826		id/Soil)			Samj	pled:	06/14/10 10:40	Re	evd: 06/14/	10 17:15
cis-1,2-Dichloroethene	ND		ug/kg	2.03	4.07	50	06/16/10 18:06	06/16/10	10F0095	EPA 8260
trans-1,2-Dichloroethene	ND		"	2.03	4.07	"	"	"	"	"
Trichloroethene	ND		"	2.03	4.07	"	"	"	"	"
Vinyl chloride	ND		"	2.77	8.14	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	103 %						"	"	"	"
Sample ID: HTF0069-34 (B28-A-(MI	C-VOC) - Soli	id/Soil)			Samj	pled:	06/14/10 10:55	Re	cvd: 06/14/	10 17:15
Volatile Organic Compounds by EPA 826										
cis-1,2-Dichloroethene	ND		ug/kg	2.84	5.69	50	06/16/10 18:32	06/16/10	10F0095	EPA 8260

Work Order: HTF0069

Received:

Reported:

06/14/10 06/30/10 17:30

737 Bishop st., Suite 3010 Honolulu, HI 96813

Project: Su

Subsurface Soil Investigation (MIS-VOCs)

Scott Duzan Project Number: Hic

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0069-34 (B28-A-(M	IC-VOC) - Sol	id/Soil) - cont.			Samp	oled:	06/14/10 10:55	Rec	evd: 06/14/	10 17:15
Volatile Organic Compounds by EPA 82	60 - cont.									
trans-1,2-Dichloroethene	ND		"	2.84	5.69	"	"	"	"	"
Trichloroethene	ND		"	2.84	5.69	"	"	"	"	"
Vinyl chloride	ND		"	3.87	11.4	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	104 %						"	"	"	"
Sample ID: HTF0069-35 (B28-B-(MI	(C-VOC) - Sol	id/Soil)			Samp	oled:	06/14/10 11:07	Rec	evd: 06/14/	10 17:15
Volatile Organic Compounds by EPA 82	60									
cis-1,2-Dichloroethene	ND		ug/kg	2.91	5.83	50	06/16/10 19:49	06/16/10	10F0095	EPA 8260
trans-1,2-Dichloroethene	ND		"	2.91	5.83	"	"	"	"	"
Trichloroethene	ND		"	2.91	5.83	"	"	"	"	"
Vinyl chloride	ND		"	3.96	11.7	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	106 %						"	"	"	"

99-193 Aiea Heights Drive, Suite 121 Aiea, HI 96701 * 808-486-5227 * Fax 808-486-2456

Tetra Tech EM Inc. 737 Bishop st., Suite 3010 Honolulu, HI 96813

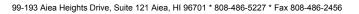
Scott Duzan

Work Order:

HTF0069

Received: Reported:

06/14/10 06/30/10 17:30


Project:

Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

SAMPLE EXTRACTION DATA

			Wt/Vol	Default					Extraction
Parameter	Batch	Lab Number	Extracted	Wt/Vol	Extracted Vol	Default Vol	Date	Analyst	Method

HTF0069 Work Order:

Received:

06/14/10

737 Bishop st., Suite 3010

Subsurface Soil Investigation (MIS-VOCs)

Reported: 06/30/10 17:30

Honolulu, HI 96813 Project: Scott Duzan

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

LABORATORY BLANK QC DATA

	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
General Chemistry Parameters													
Batch\Seq: 10F0126 Extracted: 06/	21/10												
Blank Analyzed: 06/22/2010 (10F0126	-BLK1)												
% Moisture			Weight %	0.100	0.100	ND							
Volatile Organic Compounds by EP	A 8260												
Batch\Seq: 10F0088 Extracted: 06/	15/10												
Blank Analyzed: 06/15/2010 (10F0088	-BLK1)												
cis-1,2-Dichloroethene			ug/kg	0.100	0.200	ND							
trans-1,2-Dichloroethene			ug/kg	0.100	0.200	ND							
Trichloroethene			ug/kg	0.100	0.200	ND							
Vinyl chloride			ug/kg	0.136	0.400	ND							
Surrogate: 1,2-Dichloroethane-d4			ug/kg					91		80-120			
Batch\Seq: 10F0095 Extracted: 06/	16/10												
Blank Analyzed: 06/16/2010 (10F0095	-BLK1)												
cis-1,2-Dichloroethene			ug/kg	0.0500	0.100	ND							
trans-1,2-Dichloroethene			ug/kg	0.0500	0.100	ND							
Trichloroethene			ug/kg	0.0500	0.100	ND							
Vinyl chloride			ug/kg	0.0680	0.200	ND							
Surrogate: 1,2-Dichloroethane-d4			ug/kg					100		80-120			

99-193 Aiea Heights Drive, Suite 121 Aiea, HI 96701 * 808-486-5227 * Fax 808-486-2456

Tetra Tech EM Inc. 737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan

Work Order: HTF0069

Received:

06/14/10

Reported:

06/30/10 17:30

Project: Subsurfa

Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

LABORATORY DUPLICATE QC DATA

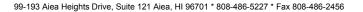
	Source	Spike					%	Dup	% REC		RPD	
Analyte	Result	Level	Units	MDL	MRL	Result	REC	%REC	Limits	RPD	Limit	Q
General Chemistry Parameters												
Batch\Seq: 10F0126 Extracted:	06/21/10											
Duplicate Analyzed: 06/23/2010 (10F0126-DUP1)		QC So	urce Samp	le: HTF0087-01						
% Moisture	81.6		Weight %	0.100	0.100	81.9				1	20	

Work Order:

HTF0069

Received: Reported: 06/14/10 06/30/10 17:30

737 Bishop st., Suite 3010 Honolulu, HI 96813


Scott Duzan

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

LCS/LCS DUPLICATE QC DATA

	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
Volatile Organic Compounds by El	PA 8260												
Batch\Seq: 10F0088 Extracted: 06	/15/10												
LCS Analyzed: 06/15/2010 (10F0088-	·BS1)												
cis-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	3.31		83		80-120			
trans-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	3.71		93		80-120			
Trichloroethene		4.00	ug/kg	0.100	0.200	3.37		84		80-120			
Vinyl chloride		4.00	ug/kg	0.136	0.400	3.50		88		80-120			
Surrogate: 1,2-Dichloroethane-d4			ug/kg					91		80-120			
Batch\Seq: 10F0095 Extracted: 06	/16/10												
LCS Analyzed: 06/16/2010 (10F0095-	·BS1)												
cis-1,2-Dichloroethene		4.00	ug/kg	0.0500	0.100	3.41		85		80-120			
trans-1,2-Dichloroethene		4.00	ug/kg	0.0500	0.100	3.83		96		80-120			
Trichloroethene		4.00	ug/kg	0.0500	0.100	3.57		89		80-120			
Vinyl chloride		4.00	ug/kg	0.0680	0.200	3.20		80		80-120			
Surrogate: 1,2-Dichloroethane-d4			ug/kg					103		80-120			

Scott Duzan

Work Order:

HTF0069

Received:

06/14/10

737 Bishop st., Suite 3010 Honolulu, HI 96813

Reported: 06/30/10 17:30

Subsurface Soil Investigation (MIS-VOCs) Project:

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC DATA

	Source	Spike					Dup	%	Dup	% REC		RPD		
Analyte	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit		Q
Volatile Organic Compounds by F	EPA 8260													
Batch\Seq: 10F0088 Extracted: 0	6/15/10													
Matrix Spike Analyzed: 06/16/2010	(10F0088-M	S1)		QC So	urce Samp	le: HTF00	69-01							
cis-1,2-Dichloroethene	ND	184	ug/kg	4.61	9.22	140	146	76	79	80-120	4	30	M7	
trans-1,2-Dichloroethene	ND	184	ug/kg	4.61	9.22	155	166	84	90	80-120	7	30		
Trichloroethene	ND	184	ug/kg	4.61	9.22	154	176	83	96	80-120	14	30		
Vinyl chloride	12.8	184	ug/kg	6.27	18.4	156	169	77	85	80-120	8	30	M7	
Surrogate: 1,2-Dichloroethane-d4			ug/kg					92	95	80-120				
Batch\Seq: 10F0095 Extracted: 0	6/16/10													
Matrix Spike Analyzed: 06/16/2010	(10F0095-M	S1)		QC So	urce Samp	le: HTF00	69-21							
cis-1,2-Dichloroethene	ND	192	ug/kg	2.40	4.81	169	158	88	82	80-120	7	30		
trans-1,2-Dichloroethene	ND	192	ug/kg	2.40	4.81	188	172	98	89	80-120	9	30		
Trichloroethene	ND	192	ug/kg	2.40	4.81	245	226	127	117	80-120	8	30	M7	
Vinyl chloride	ND	192	ug/kg	3.27	9.62	225	185	117	96	80-120	19	30		
Surrogate: 1,2-Dichloroethane-d4			ug/kg					107	103	80-120				

99-193 Aiea Heights Drive, Suite 121 Aiea, HI 96701 * 808-486-5227 * Fax 808-486-2456

Tetra Tech EM Inc. Work Order: HTF0069 Received: 06/14/10

737 Bishop st., Suite 3010 Reported: 06/30/10 17:30

Honolulu, HI 96813 Project: Subsurface Soil Investigation (MIS-VOCs)

Scott Duzan Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

CERTIFICATION SUMMARY

TestAmerica Honolulu

Method	Matrix	Nelac	Hawaii
EPA 8260	Solid/Soil	X	
SM 2540G	Solid/Soil		

For information concerning certifications of this facility or another TestAmerica facility, please visit our website at www.TestAmericaInc.com

DATA QUALIFIERS AND DEFINITIONS

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

M7 The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS).

ND Not detected at the reporting limit (or method detection limit if shown)

ADDITIONAL COMMENTS

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

rev1a

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

LABORATORY USE ONLY	LAB JOB NO. MTFOOLG	LOCATION	CONTAINERS

	ည	Chain of Cust	ody/	ustody / Analysis	is Rec	ank	Request Form	prm		<u>.</u> ≌J	ONTA	CONTAINERS			
Report to: Scott Duzan, scott.duzan@tetratech.com	-	Proje	Project identification	fication		<u>.</u>		Pu	date	analy	ses	ndidate analyses requested	P		
Company name: Tetra Tech EMI	g qor	Job name: Hickam AFB CG110 ISM VOC Study	G110 ISI	M VOC Str	fpr			ηţ							
Address: 737 Bishop Street, Suite 3010	Job	Job number: 103DS148843.H0301	3.H0301			<u>. </u>	tuet								
city: Honolulu state: HI zip: 96813					•		405								
Phone: 808.441.6645 Fax	Cont	Contact email address: Scott duzan@tefrafec	atech com	*			On the			uoc					
Sampler: SD # samples in shipment { 0							sioM			Carb					
		Matrix		Sampling	oling	T				ojut					
Client sample ID	SIM BARĐ	Water Soil Waslewater Drinking water Sludge Liquid Liquid Solid	Other Preservation method	Bate	əmiT	No. of containers	NIS-80928 S esobsV	Saturated	Grain Size	egn O letoT				Laborate	-aboratory ID no.
1 B24-A-(A11-vac)	×	×	MeOH	Меон 6-14-10	15.60	-	 ×			20 A 1 Table 2 Table 1				ATA	0069-01
2 Field Blank - Blu-A	×	×	МеОН		1203		<u>.</u>								ام
3 B24- B - CAIL-VOC)	×	×	MeOH		<u>5</u>	-	×	<u> </u>	 		i				507
4 B24 - C - (MIC-VOC)	×	×	МеОН		15.05		٤		ļ						70
5 B24 - D - (MIC-YOC)	×	×	МеОН		5151		×								So
6 873 - A - (MIC-VOC)	×	×	МеОН		1530		~								<u>و</u> م
7 823 - B - (MK -VOC)	×	×	МеОН		ी इंट्र		ί×								٦
8 \$23 - C - (MIC-VOC)	×	×	МеОН		255	_	×				<u> </u>				ا ئ ئ
9 823 - 0 - (MIC-VOC)	×	×	МеОН		055)	-	X								700
10 BZ - A - (MIC-VOC)	×		МеОН	4	1505	_	¥				*****				7(0
Released by Date / time (print sign)	Delive	Delivery method	3 G	Received by (print / sign)			ပိ	Company / Agency affiliation	Agenc; ion	_	۵	Date / time received		Condition noted	oted
Scott Duzan Will My 614.10 / 1915	Hand	Mic	څُ	إ			TestAmerica	erica			9/11/2	צורו/		Bur	200
		>										_		Ze 7	
Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl chloride	rans-D(CE; and Vinyl chlor	epi										ď	Please check one:	j.;

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc. Distribution:

COC REV 04/2008

White - TestAmerica

Yellow - TestAmerica

Pink - Client

₩ Dispose by lab

□ Return to client
□ Archive Page /

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Honoluíu

rev1a

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

				ਠ	Chain of		dy /	Analys	Custody / Analysis Request Form	anes	t For	Ε		00 00 00 00	CONTAINERS			
Report to	Report to: Scott Duzan, scott.duzan@tetratech.com	zan@tetral	tech.com			Projec	Project identification	fication				ndiga	te an	alyses	ndidate analyses requested	sted		
Company	Company name: Tetra Tech EMI			<u> ₹</u>	Job name: Hickam		3110 ISI	AFB CG110 ISM VOC Study	fpr	T		31					· <u>·</u>	
Address:	Address: 737 Bishop Street, Suite 3010	te 3010		j dy	Job number: 103DS148843.H0301	DS148843	.H0301				tuə	neju				***************************************		
city: Honolulu	nolulu	State: HI	ZIP: 96813		7						TuoO	o			•			
Phone: 8	Phone: 808.441.6645	Fax		8 %	Contact email address:	ass:	800				ture	nutsio	<u> </u>					
Sampler: SD	SD	# samples in shipment	shipment L	3			<u> </u>				sioM	oM ər	die.)					
<u> </u> -		-			M	Matrix	<u> </u>	Sampling	oling	T								
on metl	Client sample ID	ample II	Q	SIM 8AAD	Water Soil Wastewater Drinking water	egbulð biupiJ biloð IIO	Other Preservation method	əjsQ	əmiT	No. of containers 8260B-SII	Z əsobsV	Saturated	Grain Size Total Orga					Laboratory ID no.
-	~ 1			×	×		МеОН	01.H-9	1554	×			<u> </u>				Z	TF0069-11
7	BZZ-B-(MIC-VOC	(00)		×	×		MeOH		1615	, <u>×</u> _								٦/٦
က	822- (- (MIL-VOC)	- VOC)		×	×		MeOH		929	× 			ļ					7
4	B22 - D-(MIC	(MIC-VOC)		×	×		МеОН	-}	Ē	× -			<u> </u>					7.1
S				×	×		МеОН											
9				×	×		МеОН											
7				×	×		МеОН											
80				×	×		МеОН											
6				×	×		МеОН											
10				×	×		МеОН	- WYVER-LAND										
	Released by (prin / sign)		Date / time released	Deliv	Delivery method	,	9. G	Received by (print / sign)			Compa	Company / Agency affiliation	ency		Date / time received	2.5	Condit	Condition noted
Scott Duzan	Duzan NW M	Ample 6	* 6.14.10 / 研S	Hand		Ş		إ		Te	TestAmerica	ça		6/H/10	1	PIS	Sur	20
		•	,			>)								_		2. 7.	
			/												1			
Comm	Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl chloride	analyze for	TCE; cis-DCE;	trans-D	CE; and Vi	nyl chlorid	a											

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc.

COC REV 04/2008

Distribution:

White - TestAmerica

Yellow - TestAmerica

Pink - Client

Page 2 of 5

Please check one:
♣ Dispose by lab
☐ Return to client
☐ Archive

rev1a TestAmerica

Honolulu

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

LABORATORY USE ONLY	LAB JOB NO. // 17069	LOCATION	CONTAINERS

	Chain	Chain of Custody / Analysis Request Form	dy / An	alysi	s Red	nes	it Fo	r.u			CONTAINERS	SS.		
Report to: Scott Duzan, scott.duzan@tetratech.com		Project	lect identification	tion		<u> </u>		İğu	ate	analy	ndidate analyses requested	ested		
Company name: Tetra Tech EMI	Job name; H	Job name: Hickam AFB CG	CG110 ISM VOC Study	OC Stud		Τ		1						
Address: 737 Bishop Street, Suite 3010	Job number:	Job number: 103DS148843.F	43.H0301				juə:						···	
Cky. Honolulu state: HI zrp. 96813			ſ				TroO							
Phone: 808,441,6645 Fax	Contact email address:	Contact email address: scoft.duzan@tetratech.com	e o				sture			uoq				
Sampler: SD # samples in shipment 10	72)					ioM (Car				
o E Glient sample ID	MIS GRAB Water Soii	Aking water Airon Solid	ootservation method	Sampling	Dime Time	containers	MIS-80b MOSe Zone	turated Zo	əzi2 nig	oinsgaolis				
			-						S15	loΤ			Lab —	Laboratory ID no.
1 B2B - C- (MIC-VOC)	×		меон 6.	6-14-10 1	50)1	\ 	×						Z	F0069-15
2 B28-D-(M1(-VOC)	×	TO SECURE OF THE	МеОН		(130	_	×							3
3 B27-A-(MIC-VOC)	×		МеОН		145	X	×							7
4 B27-8-CMIC-VOC)	×		MeOH		725	_	×							(C)
5 B27-c- (MIC-VOC)	×		MeOH		827	_	×		<u> </u>					6)/
6 R21-D-(MIC-VCC)	×		MeOH		1235	_	×		ļ					7-
7 B2S- A-(MK-VOC)	×		MeOH		1425	<u></u>	×		<u> </u>	<u> </u>			İ	12-
8 825-8-(MIL-VOC)	×		MeOH		<u>8</u>		√							スノ
6 BZS - (- (MIC-NOC)	×		MeOH		(435	<u> </u>	/							(2.
10 B2S-0 - (MIC-VOC)	×		MeOH	7	語	_	7							4
Released by Date / time (print / sign) released	Delivery method	poi	Received by (print / sign)	ed by sign)			Cor	Company / Agency affiliation	Agency		Date / time received	time ved	Cond	Condition noted
Scott Duzan JM M - 6.14.10 / 1715	Hand	\ <u>\</u>		ا		<u>"</u>	TestAmerica	erica			دراساله ا	ארו/	Com	200
											1		Tun	
Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl chloride	trans-DCE; ar	nd Vinyl chloride											Please check one:	ck one:

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc.

COC REV 04/2008

Distribution:

White - TestAmerica

Yellow - TestAmerica

Pink - Client

* Dispose by lab

• Return to client

• Archive

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

rev1b

Honolulu

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

LABJOB NO. MT COS 69
LOCATION
CONTAINERS

				Chain of Custody / Analysis Request Form	of Cus	tody	// An	alysi	s Re	dne	st F	orm			CONTAINERS	VERS		
Repoi	Report to: Scott Duzan, scott.duzan@tetratech.com	@tetratech.com			Pro	ject id	Project identification	ion				<u>pu</u>	date	anal	ses	Indicate analyses requested		
Comp	Company name: Tetra Tech EMI	THE STATE OF THE S		Job name: Hickam AFB	kam AFB		CG110 ISM VOC Study	C Stud	≥			11					,	
Addre	Address: 737 Bishop Street, Suite 3010	3010		Job number: 103DS148843.H0301	3DS148	343.H0	301				,,				···········			
C.	city: Honolulu sta	State: HI ZIP: 96813																
Phone	Phone: 808.441.6645 Fax	×		Contact email address: Scott.duzan@tefratech.com	dress:	ch.corr								uoc				
Samp	Sampler: SD # s	samples in shipment)						-;-y\			Cart				
оп пезі	Client sample ID	nple ID	SIM	GRAB Water Soil Wastewater	Sudge partition water page 2 p	Oiher	horiterne boritern	Sate Sampling	emiT	No. of containers	MIS-80928	9noS əsobsV Səturəted Zoi	Grain Size	oinsgnO lstoT			7 3	MTF 60.69 Laboratory ID no.
~	-h-128	W5-9-h-	×	×		Ä		D.M. 0	1135		 	╂	┥				*	5.6 SMP-25
7	L		×	×		NA	4				7							4
က			×	×		AA	4				-							12-
4			×	×		Ā	4											2027
5			×	×		NA	4											52-115
ဖ			×	×		Ž	∢											2000
7			×	×		Z	NA											3-31
ω			×	×		Ϋ́	∢		-									-37
0			×	×		Ϋ́	Α	· · · · · · · · · · · · · · · · · · ·										12
10			×	×		N AA	⋖											121
	Released by (print / sign)	Date / time released	å	Delivery method			Received by (print / sign)	ed by sign)			ŏ	Company / Agency affiliation	Agenc) ion		الم الم	Date / time received	Condit	Condition noted
Sco	Scott Duzan	S111 / 0.14.9)	Hand	o	7/	(, 4	3			TestAmerica	nerica			6/14/10	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7	20
		/			<u> </u>)									1	Low	
		/ "														/		
Com	Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl chloride	lyze for TCE; cis-DCE;	trans	DCE; and	Vinyl chlo	ride												

SAP for Sal Ministure products - S.6= Vadose, S.7 Saturated も See Section 5.6+5.7

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc.

White - TestAmerica

Distribution:

COC REV 04/2008

Yellow - TestAmerica

Pink - Client

Please check one:
♣ Dispose by lab
☐ Return to client
☐ Archive

Page 4 of 5

THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

rev1a

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

	ည်	Chain of Custody / Analysis Request Form	stody	/ / Ana	alysis	s Red	nes	it Fo	E		_0	CONTAINERS			i
Report to: Scott Duzan, scott.duzan@tetratech.com		<u>a</u>	Project ide	ct identification	l lo				Igi	ate	nalys	ndicate analyses requested			1
company name: Tetra Tech EMI	dot	Job name: Hickam AFB C	B CG110	G110 ISM VOC Study	C Study		T		μ		***********		•		
Address: 737 Bishop Street, Suite 3010	Jop	Job number: 103DS148843.H0301	8843.H0	301				juə							
cty: Honolulu state: HI zip: 96813								InoO							
Phone: 808.441.6645	tte OS	Contact email address: Scott.duzan@tetratech.com	tech.com				•	sture			uoc				
Sampler: SD # samples in shipment [[)		e vincine vincine av 11 Action				sioM :			: Carl				
		Matrix			Sampling	6	T				oin				
Client sample ID	eAA9	Water Soil Wastewater Drinking water Sludge biulg	Solid Oii Other	Preservation borthem	Date	Fime No. of	containers	8260B-SIN 	Saturated	Grain Size	sgnO lstoT			Laboratory ID no.	25-
1 B30-A- (MIC-VOC)	×	×	Ž	меон 6.1 ч	6.14.10	0837	_	*						XT (2069 -	1
2 B30-B -(MIC-VOC)	×	×	Ž	МеОН	5	3480	_	×						- 62-	12
3 B30- C- (MIC-NOC)	×	×	Ž	МеОН	8	ळीसा	×							- 22-	 [
4 B30-D-(MI(-19C)	×	×	Ž	МеОН	6	مامو	×				 			- 62-	182
5 B29- A - (MIC-VOC)	×	×	Ž	МеОН		1025	<u>۲</u>				i I			, 05 -	٠ ۲۲ -
6 B29- B- (MIC-VC)	×	×	Ž	МеОН	_	10%	Λ	メ						131 1	19
7 B29-C- (MIC-VOC)	×	×	Σ	МеОН	*****	1035	<i>_</i>	*					-1 /	ر 32 - ا	ا ج
8 BZ91- D- (MIC-VOC)	×	×	Σ	МеОН		040	メ							-33 - 4	رے ا
9 B2B- A - CMI(- VCC)	×	×	2	МеОН		1055	ナ							1- he-	<u>ر</u>
10 B2B- B- CMIC-VOC)	×	×	Σ	MeOH		1.07		\prec						3- SI-	2
Released by Date / time (prinf / sigh) released	Delive	Delivery method		Received by (print / sign)	d by ign)			Con	Company / Agency affiliation	Agency		Date / time received		Condition noted	
Scott Duzan shart My Lung 6-14-10/1715	Hand		7	7	(۲	TestAmerica	erica		9	SILI 7/19/9	2	70 +4	
		>											<u>د</u> 	7	
Comments: 8260B-SIM: Only analyze for TCE: cis-DCE: trans-DCE: and Vinvl chlor	rans-D(JE: and Vinvic	hloride								-	,			-
! ! · /:- /)) . (» ()										Dieace	Djease check one.	

COC REV 04/2008

White - TestAmerica Distribution:

Yellow - TestAmerica ©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc.

Pink - Client

Please check one:
♣ Dispose by lab
☐ Return to client
☐ Archive Page

Sa	imple Receipt Checklist
Client Name: Tefre. Tech	Date/ Time Received: 6/14/16 1715
Checklist Completed By:	Received By: ソン
Matrices: Soil Ca	rrier: C(IAY Airbill#:
Shipping container/cooler in good condition? Chain of Custody present? Chain of Custody Signed when relinquished and Chain of Custody agrees with sample labels? Samples in proper container/bottle? Sample containers intact? Sample containers on ice? Sufficient sample volume for indicated test? All samples received within holding time? Water - VOA Vials have Zero Headspace? Water - pH acceptable upon receipt?	Yes No Not Present Consequence Yes No No Consequence No Consequenc
Encores / 5035 Vials Present? Sample Filtration Needed? Dry Weight Corrected Results? DODQSM / QAPP Project?	pH Adjusted? Yes No Final pH: Yes No Filtered in Field: Yes No Take Action: Yes No Type:
Temperature Sample Container/Blank Temperature Range (Mir	Blank Present? Yes No Fridalw imum 3 sample containers if available): 5 °C
	is labled as "BZ4-D" used saypling
the to continu 10.	n 6/15/10
·	

June 30, 2010

Attn: Scott Duzan

LABORATORY REPORT

Client:

Tetra Tech EM Inc. Work Order: HTF0073

737 Bishop st., Suite 3010 Project Name: Subsurface Soil Investigation (MIS-VOCs)

Honolulu, HI 96813 Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.HI

Date Received: 06/15/10

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica Analytical Testing Corporation certifies that the analytical results contained herein apply only to the specific sample(s) analyzed.

The Chain(s) of Custody, 4 pages, are included and are an integral part of this report. This entire report was reviewed and approved for release

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-(808)486-5227

Samples were received into laboratory at a temperature of 5 °C.

DZ

NELAC states that samples which require thermal preservation shall be considered acceptable if the arrival temperature is within 2 degrees C of the required temperature or the method specified range. For samples with a temperature requirement of 4 degrees C, an arrival temperature from 0 degrees C to 6 degrees C meets specifications. Samples that are delivered to the laboratory on the same day that they are collected may not meet these criteria. In these cases, the samples are considered acceptable if there is evidence that the chilling process has begun, such as arrival on ice.

The reported results were obtained in compliance with the 2003 NELAC standards unless otherwise noted.

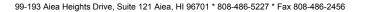
Approved By:

Marvin D. Heskett III Laboratory Director NELAC Certification # E87907

Tetra Tech EM Inc. 737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan

Work Order: HTF0073


Received: Reported: 06/15/10 06/30/10 17:42

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Sample Summary

			Date/Time	Date/Time	Sample
Sample Identification	Lab Number	Client Matrix	Sampled	Received	Qualifiers
B8MIS-VOC6	HTF0073-01	Solid/Soil	06/15/10 09:12	06/15/10 17:36	
B8MIS-VOC12	HTF0073-02	Solid/Soil	06/15/10 09:12	06/15/10 17:36	
B7MIS-VOC6	HTF0073-03	Solid/Soil	06/15/10 09:53	06/15/10 17:36	
B7MIS-VOC12	HTF0073-04	Solid/Soil	06/15/10 10:14	06/15/10 17:36	
B5MIS-VOC6	HTF0073-05	Solid/Soil	06/15/10 12:14	06/15/10 17:36	
B5MIS-VOC12	HTF0073-06	Solid/Soil	06/15/10 12:14	06/15/10 17:36	
B7-4-6-SM	HTF0073-07	Solid/Soil	06/15/10 09:53	06/15/10 17:36	
B7-A-SM	HTF0073-08	Solid/Soil	06/15/10 10:14	06/15/10 17:36	
B7-B-SM	HTF0073-09	Solid/Soil	06/15/10 10:27	06/15/10 17:36	
B7-C-SM	HTF0073-10	Solid/Soil	06/15/10 10:30	06/15/10 17:36	
B7-D-SM	HTF0073-11	Solid/Soil	06/15/10 10:44	06/15/10 17:36	
B7-E-SM	HTF0073-12	Solid/Soil	06/15/10 10:48	06/15/10 17:36	
B7-F-SM	HTF0073-13	Solid/Soil	06/15/10 10:58	06/15/10 17:36	
B7-G-SM	HTF0073-14	Solid/Soil	06/15/10 11:08	06/15/10 17:36	
B6-4-6-SM	HTF0073-15	Solid/Soil	06/15/10 14:04	06/15/10 17:36	
B6-A-SM	HTF0073-16	Solid/Soil	06/15/10 14:12	06/15/10 17:36	
B6-B-SM	HTF0073-17	Solid/Soil	06/15/10 14:19	06/15/10 17:36	
B6-C-SM	HTF0073-18	Solid/Soil	06/15/10 14:19	06/15/10 17:36	
B6-D-SM	HTF0073-19	Solid/Soil	06/15/10 14:26	06/15/10 17:36	
B6-E-SM	HTF0073-20	Solid/Soil	06/15/10 14:27	06/15/10 17:36	
B6-F-SM	HTF0073-21	Solid/Soil	06/15/10 14:34	06/15/10 17:36	
B6-G-SM	HTF0073-22	Solid/Soil	06/15/10 14:44	06/15/10 17:36	

Honolulu, HI 96813

Scott Duzan

HTF0073 06/15/10 Work Order: Received:

Reported: 06/30/10 17:42

Subsurface Soil Investigation (MIS-VOCs) Project:

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

ANALYTICAL REPORT

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0073-01 (B8MIS-VC	OC6 - Solid/So	il)			Samı	pled:	06/15/10 09:12	Re	cvd: 06/15/	10 17:36
Volatile Organic Compounds by EPA 82	60				-					
cis-1,2-Dichloroethene	ND		ug/kg	3.19	6.37	50	06/23/10 12:02	06/23/10	10F0147	EPA 8260
trans-1,2-Dichloroethene	ND		"	3.19	6.37	"	"	"	"	"
Trichloroethene	ND		"	3.19	6.37	"	"	"	"	"
Vinyl chloride	25.8		"	4.33	12.7	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	94 %						"	"	"	"
Sample ID: HTF0073-02 (B8MIS-VC	OC12 - Solid/S	oil)			Samj	pled:	06/15/10 09:12	Re	cvd: 06/15/	10 17:36
Volatile Organic Compounds by EPA 82	60									
cis-1,2-Dichloroethene	ND		ug/kg	3.49	6.97	50	06/23/10 12:27	06/23/10	10F0147	EPA 8260
trans-1,2-Dichloroethene	ND		"	3.49	6.97	"	"	"	"	"
Trichloroethene	ND		"	3.49	6.97	"	"	"	"	"
Vinyl chloride	22.9		"	4.74	13.9	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	93 %						"	"	"	"
Sample ID: HTF0073-03 (B7MIS-VC Volatile Organic Compounds by EPA 82		il)			Samp	pled:	06/15/10 09:53	Re	cvd: 06/15/	10 17:36
cis-1,2-Dichloroethene	73.6		ug/kg	2.26	4.52	50	06/23/10 12:52	06/23/10	10F0147	EPA 8260
trans-1,2-Dichloroethene	ND		"	2.26	4.52	"	"	"	"	"
Vinyl chloride	15.5		"	3.07	9.04	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	94 %						"	"	"	"
Sample ID: HTF0073-03RE1 (B7MI	S-VOC6 - Soli	d/Soil)			Samı	pled:	06/15/10 09:53	Re	cvd: 06/15/	10 17:36
Volatile Organic Compounds by EPA 82	60									
Trichloroethene	436		"	11.3	22.6	250	06/23/10 15:23	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	90 %						"	"	"	"
Sample ID: HTF0073-04 (B7MIS-VC	OC12 - Solid/S	oil)			Samp	pled:	06/15/10 10:14	Re	cvd: 06/15/	10 17:36
Volatile Organic Compounds by EPA 82			_							
cis-1,2-Dichloroethene	74.6		ug/kg	2.10	4.19	50	06/23/10 13:17	06/23/10	10F0147	EPA 8260
trans-1,2-Dichloroethene	ND		"	2.10	4.19	"	"	"	"	"
Vinyl chloride	11.0		"	2.85	8.38	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	94 %						"	"	"	"
Sample ID: HTF0073-04RE1 (B7MI) Volatile Organic Compounds by EPA 82		id/Soil)			Samp	pled:	06/15/10 10:14	Re	cvd: 06/15/	10 17:36
Trichloroethene	436		"	10.5	21.0	250	06/23/10 15:49	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	89 %						"	"	"	"
Sample ID: HTF0073-05 (B5MIS-VC Volatile Organic Compounds by EPA 82		il)			Samı	pled:	06/15/10 12:14	Re	evd: 06/15/	10 17:36
trans-1,2-Dichloroethene	3.85	J	ug/kg	2.74	5.48	50	06/23/10 13:42	06/23/10	10F0147	EPA 8260
Vinyl chloride	69.7		"	3.73	11.0	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	92 %						"	"	"	"
Sample ID: HTF0073-05RE1 (B5MI)		d/Soil)			Samj	pled:	06/15/10 12:14	Re	evd: 06/15/	10 17:36

Volatile Organic Compounds by EPA 8260

Honolulu, HI 96813

Scott Duzan

Work Order: HTF0073 Received: 06/15/10

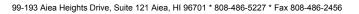
Reported: 06/30/10 17:42

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

		All	ALTICA	IL KEI O	11 1					
Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0073-05RE1 (B5MIS-V	/OC6 - Soli	d/Soil) - cont.			Samı	oled:	06/15/10 12:14	Re	cvd: 06/15/	10 17:36
Volatile Organic Compounds by EPA 8260		ŕ			•					
cis-1,2-Dichloroethene	656		"	13.7	27.4	250	06/23/10 16:14	"	"	"
Trichloroethene	689		"	13.7	27.4	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	97 %						"	"	"	"
Sample ID: HTF0073-06 (B5MIS-VOC	12 - Solid/S	oil)			Samp	oled:	06/15/10 12:14	Re	cvd: 06/15/	10 17:36
Volatile Organic Compounds by EPA 8260										
trans-1,2-Dichloroethene	ND		ug/kg	2.99	5.99	50	06/23/10 14:08	06/23/10	10F0147	EPA 8260
Vinyl chloride	76.3		"	4.07	12.0	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	93 %						"	"	"	"
Sample ID: HTF0073-06RE1 (B5MIS-Volatile Organic Compounds by EPA 8260	/OC12 - So	lid/Soil)			Samp	oled:	06/15/10 12:14	Re	cvd: 06/15/	10 17:36
cis-1,2-Dichloroethene	638		"	15.0	29.9	250	06/23/10 16:39	"	"	"
Trichloroethene	749		"	15.0	29.9	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	93 %						"	"	"	"
Sample ID: HTF0073-07 (B7-4-6-SM -	Solid/Soil)				Samp	oled:	06/15/10 09:53	Re	evd: 06/15/	10 17:36
General Chemistry Parameters Moisture	14.6		Weight %	0.100	0.100	1	06/23/10 09:00	06/21/10	10F0126	SM 2540G
Sample ID: HTF0073-07RE1 (B7-4-6-S General Chemistry Parameters	M - Solid/S	oil)			Samp	oled:	06/15/10 09:53	Re	evd: 06/15/	10 17:36
% Moisture	13.8		"	0.100	0.100	"	"	"	"	"
Sample ID: HTF0073-07RE2 (B7-4-6-S	M - Solid/S	oil)			Samp	oled:	06/15/10 09:53	Re	cvd: 06/15/	10 17:36
General Chemistry Parameters % Moisture	16.6		"	0.100	0.100	"	"	"	"	"
Sample ID: HTF0073-07RE3 (B7-4-6-S	M - Solid/S	oil)			Samp	oled:	06/15/10 09:53	Re	evd: 06/15/	10 17:36
General Chemistry Parameters % Moisture	17.2		"	0.100	0.100	"	"	"	"	"
Sample ID: HTF0073-08 (B7-A-SM - Se	olid/Soil)				Samp	oled:	06/15/10 10:14	Re	cvd: 06/15/	10 17:36
General Chemistry Parameters % Moisture	24.1		Weight %	0.100	0.100	1	06/23/10 09:00	06/21/10	10F0126	SM 2540G
Sample ID: HTF0073-09 (B7-B-SM - So	olid/Soil)				Samp	oled:	06/15/10 10:27	Re	evd: 06/15/	10 17:36
General Chemistry Parameters % Moisture	30.2		Weight %	0.100	0.100	1	06/23/10 09:00	06/21/10	10F0126	SM 2540G
Sample ID: HTF0073-10 (B7-C-SM - So	olid/Soil)				Samı	oled:	06/15/10 10:30	Re	evd: 06/15/	10 17:36
General Chemistry Parameters % Moisture	31.1		Weight %	0.100	0.100	1	06/23/10 09:00	06/21/10	10F0126	SM 2540G
Sample ID: HTF0073-11 (B7-D-SM - Se General Chemistry Parameters	olid/Soil)				Samı	oled:	06/15/10 10:44	Re	evd: 06/15/	10 17:36
% Moisture	31.9		Weight %	0.100	0.100	1	06/23/10 09:00	06/21/10	10F0126	SM 2540G

Tetra Tech EM Inc. 737 Bishop st., Suite 3010 Honolulu, HI 96813 Scott Duzan Work Order: HTF0073


Received: Reported:

06/15/10 06/30/10 17:42

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0073-11 (B7-D-SM - S	olid/Soil) - c	ont.			Samp	oled:	06/15/10 10:44	Rec	evd: 06/15/	10 17:36
Sample ID: HTF0073-12 (B7-E-SM - S General Chemistry Parameters	olid/Soil)				Samp	oled:	06/15/10 10:48	Rec	evd: 06/15/	10 17:36
% Moisture	29.5		Weight %	0.100	0.100	1	06/23/10 09:00	06/21/10	10F0126	SM 2540G
Sample ID: HTF0073-13 (B7-F-SM - S General Chemistry Parameters	olid/Soil)				Samp	oled:	06/15/10 10:58	Rec	evd: 06/15/	10 17:36
% Moisture	26.4		Weight %	0.100	0.100	1	06/23/10 09:00	06/21/10	10F0126	SM 2540G
Sample ID: HTF0073-14 (B7-G-SM - S General Chemistry Parameters	solid/Soil)				Samp	oled:	06/15/10 11:08	Rec	evd: 06/15/	10 17:36
% Moisture	37.5		Weight %	0.100	0.100	1	06/23/10 09:00	06/21/10	10F0126	SM 2540G
Sample ID: HTF0073-15 (B6-4-6-SM - General Chemistry Parameters	Solid/Soil)				Samp	oled:	06/15/10 14:04	Rec	evd: 06/15/	10 17:36
% Moisture	17.3		Weight %	0.100	0.100	1	06/23/10 09:00	06/21/10	10F0126	SM 2540G
Sample ID: HTF0073-15RE1 (B6-4-6-5) General Chemistry Parameters	SM - Solid/So	oil)			Samp	oled:	06/15/10 14:04	Rec	evd: 06/15/	10 17:36
% Moisture	17.8		"	0.100	0.100	"	"	"	"	"
Sample ID: HTF0073-15RE2 (B6-4-6-5) General Chemistry Parameters	SM - Solid/So	oil)			Samp	oled:	06/15/10 14:04	Rec	evd: 06/15/	10 17:36
% Moisture	16.5		"	0.100	0.100	"	"	"	"	"
Sample ID: HTF0073-15RE3 (B6-4-6-8 General Chemistry Parameters	SM - Solid/So	oil)			Samp	oled:	06/15/10 14:04	Rec	evd: 06/15/	10 17:36
% Moisture	16.8		"	0.100	0.100	"	"	"	"	"
Sample ID: HTF0073-16 (B6-A-SM - S General Chemistry Parameters	olid/Soil)				Samp	oled:	06/15/10 14:12	Rec	evd: 06/15/	10 17:36
% Moisture	21.9		Weight %	0.100	0.100	1	06/23/10 09:00	06/21/10	10F0126	SM 2540G
Sample ID: HTF0073-17 (B6-B-SM - S General Chemistry Parameters	olid/Soil)				Samp	oled:	06/15/10 14:19	Rec	evd: 06/15/	10 17:36
% Moisture	27.4		Weight %	0.100	0.100	1	06/23/10 09:00	06/21/10	10F0126	SM 2540G
Sample ID: HTF0073-18 (B6-C-SM - S General Chemistry Parameters	olid/Soil)				Samp	oled:	06/15/10 14:19	Rec	evd: 06/15/	10 17:36
% Moisture	31.0		Weight %	0.100	0.100	1	06/23/10 09:00	06/21/10	10F0126	SM 2540G
Sample ID: HTF0073-19 (B6-D-SM - S General Chemistry Parameters	olid/Soil)				Samp	oled:	06/15/10 14:26	Rec	evd: 06/15/	10 17:36
% Moisture	27.3		Weight %	0.100	0.100	1	06/23/10 09:00	06/21/10	10F0126	SM 2540G
Sample ID: HTF0073-20 (B6-E-SM - S General Chemistry Parameters	olid/Soil)				Samp	oled:	06/15/10 14:27	Rec	evd: 06/15/	10 17:36
% Moisture	24.5		Weight %	0.100	0.100	1	06/23/10 09:00	06/21/10	10F0126	SM 2540G

Tetra Tech EM Inc. 737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan

Work Order: HTF0073

Received:

06/15/10

Reported:

06/30/10 17:42

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0073-21 (B6-F-SM	- Solid/Soil)				Samp	oled:	06/15/10 14:34	Red	evd: 06/15/	10 17:36
General Chemistry Parameters	21.2		TT : 1 : 0/	0.100	0.100		06/22/10 00 00	0.6/21/10	1000126	GN 4 25 40 G
% Moisture	21.2		Weight %	0.100	0.100	1	06/23/10 09:00	06/21/10	10F0126	SM 2540G
Sample ID: HTF0073-22 (B6-G-SM	- Solid/Soil)				Samp	oled:	06/15/10 14:44	Rec	evd: 06/15/	10 17:36
General Chemistry Parameters										
% Moisture	30.2		Weight %	0.100	0.100	1	06/23/10 09:00	06/21/10	10F0126	SM 2540G

99-193 Aiea Heights Drive, Suite 121 Aiea, HI 96701 * 808-486-5227 * Fax 808-486-2456

Tetra Tech EM Inc. 737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan

Work Order:

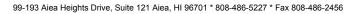
HTF0073

Received:

Reported:

06/30/10 17:42

06/15/10


Project:

Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

SAMPLE EXTRACTION DATA

			Wt/Vol	Default					Extraction
Parameter	Batch	Lab Number	Extracted	Wt/Vol	Extracted Vol	Default Vol	Date	Analyst	Method

737 Bishop st., Suite 3010

Honolulu, HI 96813

Scott Duzan

Work Order: HTF0073

Received:

06/15/10

Reported:

06/30/10 17:42

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

LABORATORY BLANK QC DATA

5	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
General Chemistry Parameters													
Batch\Seq: 10F0126 Extracted: 06/21 Blank Analyzed: 06/22/2010 (10F0126-B													
% Moisture	,		Weight %	0.100	0.100	ND							
Volatile Organic Compounds by EPA	8260												
Batch\Seq: 10F0147 Extracted: 06/23	3/10												
Blank Analyzed: 06/23/2010 (10F0147-E	BLK1)												
cis-1,2-Dichloroethene			ug/kg	0.100	0.200	ND							
trans-1,2-Dichloroethene			ug/kg	0.100	0.200	ND							
Trichloroethene			ug/kg	0.100	0.200	ND							
Vinyl chloride			ug/kg	0.136	0.400	ND							
Surrogate: 1,2-Dichloroethane-d4			ug/kg					90		80-120			

99-193 Aiea Heights Drive, Suite 121 Aiea, HI 96701 * 808-486-5227 * Fax 808-486-2456

Tetra Tech EM Inc. 737 Bishop st., Suite 3010

Honolulu, HI 96813

Scott Duzan

Work Order: HTF0073

Received:

06/15/10

Reported:

06/30/10 17:42

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

LABORATORY DUPLICATE QC DATA

	Source	Spike		% Dup % REC	RPD	
Analyte	Result	Level Units	MDL MRL Result	REC %REC Limits R	PD Limit	Q
General Chemistry Paran	neters					
Batch\Seq: 10F0126 Extr	acted: 06/21/10					
Duplicate Analyzed: 06/23/	/2010 (10F0126-DUP1)		QC Source Sample: HTF0087-	-01		
% Moisture	81.6	Weight %	0.100 0.100 81.9		1 20	

Work Order:

HTF0073

Received: Reported: 06/15/10 06/30/10 17:42

737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan

Project: Su

Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

LCS/LCS DUPLICATE QC DATA

	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
Volatile Organic Compounds by EF	PA 8260												
Batch\Seq: 10F0147 Extracted: 06/	23/10												
LCS Analyzed: 06/23/2010 (10F0147-	BS1)												
cis-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	4.31		108		80-120			
trans-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	5.00		125		80-120		L	
Trichloroethene		4.00	ug/kg	0.100	0.200	4.64		116		80-120			
Vinyl chloride		4.00	ug/kg	0.136	0.400	3.76		94		80-120			
Surrogate: 1,2-Dichloroethane-d4			ug/kg					118		80-120			

Scott Duzan

Work Order:

HTF0073

Received: Reported:

06/15/10 06/30/10 17:42

737 Bishop st., Suite 3010 Honolulu, HI 96813

Subsurface Soil Investigation (MIS-VOCs)

Project: Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC DATA

	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
Volatile Organic Compounds by I	EPA 8260												
Batch\Seq: 10F0147 Extracted: 0	6/23/10												
Matrix Spike Analyzed: 06/23/2010	(10F0147-M	S1)		QC So	urce Samp	ole: HTF00	72-80						
cis-1,2-Dichloroethene	ND	168	ug/kg	4.19	8.39	182	175	108	104	80-120	4	30	
trans-1,2-Dichloroethene	ND	168	ug/kg	4.19	8.39	208	201	124	120	80-120	4	30	M7
Trichloroethene	ND	168	ug/kg	4.19	8.39	230	213	137	127	80-120	7	30	M7
Vinyl chloride	51.6	168	ug/kg	5.71	16.8	191	188	83	81	80-120	2	30	
Surrogate: 1,2-Dichloroethane-d4			ug/kg					118	112	80-120			

99-193 Aiea Heights Drive, Suite 121 Aiea, HI 96701 * 808-486-5227 * Fax 808-486-2456

Tetra Tech EM Inc. Work Order: HTF0073 Received: 06/15/10

737 Bishop st., Suite 3010 Reported: 06/30/10 17:42

Honolulu, HI 96813 Project: Subsurface Soil Investigation (MIS-VOCs)

Scott Duzan Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

CERTIFICATION SUMMARY

TestAmerica Honolulu

Method	Matrix	Nelac	Hawaii
EPA 8260	Solid/Soil	X	
SM 2540G	Solid/Soil		

For information concerning certifications of this facility or another TestAmerica facility, please visit our website at www.TestAmericaInc.com

DATA QUALIFIERS AND DEFINITIONS

J	Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method
	Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits. Analyte

not detected, data not impacted.

M7 The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS).

ND Not detected at the reporting limit (or method detection limit if shown)

ADDITIONAL COMMENTS

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

rev1a

LABORATORY U' NLY
LAB JOB NO. HTFOD TS
LOCATION
CONTAINERS

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

	Chain of	_	// Analy	Sustody / Analysis Reguest Form	lest I	-orn	_		CONTAINERS	NERS		
Report to: Scott Duzan, scott.duzan@tetratech.com		Project id	Project identification	-		드	dicate	ana	ses	ndidate analyses requested		
Company name: Tetra Tech EMI	Job name: Hickam		AFB CG110 ISM VOC Study	tudy	1	<u></u>						
Address: 737 Bishop Street, Suite 3010	Job number: 10;	Job number: 103DS148843.H0301	301				นอาน					
City: Honolulu state: HI ztp: 96813											,	
Phone: 808.441,6645 Fax	Contact email address: SCott. duzan@te	Contact email address: Scott duzan@tetratech.com					ופותנ	uo				
Sampler: SD # samples in chipment)	-				JIAI ƏL	Carb				
و و Client sample ID	MIS Set Soil Soil Bester Bester	2011 2011 2011 2011 2011 2011 2011 2011	bontier	Sampling me	B-SIM	enoZ es	rated Zor 9zi2 r	Organic				
,	W seW	O S !T	и	1								Laboratory ID no.
1 BEMIS-VOCE	×	Σ	MEOH 6/15/1	2/:/2	×						-1	HTFarrs (
2 RSMIS -UBC 12	×	_≥	MeOH	9:12 1	×							. 2
3 PA MIS - VOCE	×	≥:	МеОН	91531	>							~
4 BF MES-10C12	×	≥	МеОН	10114	×							h-
5 BS MIS- VOC6	×	Σ	МеОН	12:14	メ							K
6 BS M75 - VOC12	×	Σ	МеОН	12:14	X					•		-(0
7	×	Σ	МеОН			<u> </u>		:	_	1	\	
8	×	2\	MeOH			<u> </u>		7	J	Q) 51		
6	×	Σ	МеОН		/			3	>		<u> </u>	
	* /×	\ \ \	MeOH		/			_	! ! ! !			
Released by Date / time (print / sign) released	Delivery method		Received by (print / sign)		j	Sompani affili	Company / Agency affiliation	>	O C	Date / time received	0	Condition noted
Losiland Selbach / Jose h Kar 19/10	Hand 1	de la la la la la la la la la la la la la	J		TestA	TestAmerica		1	为物	KLI WHI	1	5.Cinted/and
					ļ						:	
Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl chloride	; trans-DCE; and \	Vinyl chloride										

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc.

COC REV 04/2008

White - TestAmerica

Distribution;

America

Yellow - TestAmerica

Pink - Client

Please check one:

* Dispose by lab

Careful Return to client

Careful Archive

Page of

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

rev1b

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

LAB JOB NO. HTPod 2. LOCATION
LOCATIONCONTAINERS
CONTAINERS

	Chain of Cus	Custody /	tody / Analysis Request Form	sanba	t Fo	Ē		CONTAINERS	INERS		
Report to: Scott Duzan, scott.duzan@tefratech.com		Project identification	fification			ndica	te ana	lyses re	ndidate analyses requested		
Company name: Tetra Tech EMI	Job name: Hickam AFB		CG110 ISM VOC Study	T		1	-				
Address: 737 Bishop Street, Suite 3010	Job number: 103[Job number: 103DS148843.H0301			juə:	uəju					
city: Honolulu state: H1 zrp. 96813					Cont	၁၅ ə.					
Phone: 808,441,6645	Contact email address:	Contact email address: Scott.duzan@tetratech.com			sture	nuteic	uod				
Sampler: SD # samples in shipment)				sioM	M ən	Carb				
	2	Matrix	Sampling		—	ΙΟΖ					
Client sample ID	MIS GRAB Wastewater Soil Wastewater Drinking water	Sludge Liquid Solid Oil Other Other	e)ste emiT	No. of containers	S esobe	Saturated	əsi2 nisə2 ———— Fotal Orga	_			of Cl. yester
1 B3-4-6-5M	×	Ą Z	62:6 9:57		┪┈┈┈	3	┥┈┈┈		7.17.	4TFa77	* 5° 6 SAP
267-A-SM	×	N	6,15,10 10:14	_		メ				\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	木グロヘチ
3 B7-13-5M	×	AN	10:27			}-				5	
4 B3-C.SM	×	N	10:30	-						10)	
5 137-17-517	×	¥.	10:44		<u>.</u>						
6 157 - E-SM	×	¥.	84:01							2	
7 B7-F-SM	×	Ž	10:59				! !			10	
8 K7 - 6 - SM	×	¥Z	80://		0	-3				2)	\ \
6	$\left\langle \times \right\rangle$	<u>₹</u>		7	[[.	<u> </u>	 	/		1	
	×	\$	John L	115/1	0	/		\	<u>.</u>		
Released by Cate / time (print / sign)	Delivery method		Received by (print / sign)		Comp	Company / Agency affiliation	Sucy		Date / time received		Condition noted
2051 and Salbach (law b Chals)	Hand	and so	王一村一	<u> </u>	TestAmerica	ica		10/10	9411/01/51/9	2,	scinad/ma

Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl chloride

See Schioh S. C + S. 7 at SHP for Sil Misture protocols - S. L = Vales a Dispose by lab # Dispose by lab and a Distribution: White - TestAmerica & Destandants of TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design" are trademarks of TestAmerica Laboratories. Inc.

S. 7 Saturated Archive 2008 Revolution: White - TestAmerica Valina - TactAmerica Control

©2008. TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc.

COC REV 04/2008

rev1b **TestAmerica**

THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

LAB JOB NO	LABORATORY U'	۸۲۲
LOCATIONCONTAINERS	LAB JOB NO.	
CONTAINERS	LOCATION	
	CONTAINERS	

	Chain of Custody / Analysis	tody / #	Analysis	Request Form	st F	orm		<u>ပ</u>	CONTAINERS	RS			
Report to: Scott Duzan, scott.duzan@tetratech.com	Pro	Project identification	ication			nd	cate	analys	ndicate analyses requested	ested			
Company name: Tetra Tech EMI	Job name: Hickam AFB	CG110 ISN	CG110 ISM VOC Study						***				
Address: 737 Bishop Street, Suite 3010	Job number: 103DS148843.H0301	43.H0301			,								
City: Honolulu state: HI zip: 96813													
Phone: 808.441.6645	Contact email address: Scott duzan@tetratech.com	ch.com						uo					
Sampler: SD # samples in shipment								Carb			-		
	Matrix		Sampling				1	oju					
Client sample ID	MIS GRAB Water Soil Wastewater Drinking water Sludge Liquid Liquid	Offier Preservation method	Date	Time No. of containers	8260B-SIN	Vadose Zo ————Saturated	esi2 nis10	Total Orga				aboraton (I) on	Ş
1 Bb-4-6-5m	×	Ą	1912/10/4:00	1:04/		┨┈┈	<u> </u>		MERCI	1	16 ×	ろんくみひ	14
2 BC-A-SM	×	Ą	7	14:12.1	i 	X	 		3	1	# # B	イントング	1 0
3 PC-B-SM	×	∀ Z	1/	1 61.41	i					1	125] -	
4 126 - C - GM	×	Ϋ́	6/	1 61:41			<u> </u>			Ī	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		
5 16-5-5M	×	Ą	<i>3</i> /	14:26	 		: 			2	0 0 0 0		
6 126 - E - SM	×	A	7/	14.27 1						1 7	12/2		
7 BG- E-SM	×	Ϋ́	7/	1 18:41				:		7	-232(!
8 Bb - G- SM	×	Ą	₹ _	1 hbshl		,				7	27(27	3	
6	×	Z Y				/-	K	te	1		<u> </u>		/
	×	NA	/	/	B	5	i	150/			1		
Released by Date / time (print / sign) released	Delivery method	Rec (pri	Received by (print / sign)		ပိ	Company / Agency affiliation	Agency on		Date / time received	time /ed		Condition noted	
Rose hand Sill 11 16 11 11/6/10	Hand Mus	- Jugar	ELAM		TestAmerica	erica		هـ.) or (SI)	161	2.5	5. curad/we	Ø
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 Hand									:			

Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl chloride

for soil noisture protocols ©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc. See se then Sib + S. 7,

Yellow - TestAmerica

White - TestAmerica

Distribution:

COC REV 04/2008

5.7 = 6.01 Pink-Client

Please check one:
* Dispose by lab

□ Return to client

□ Archive

Page_

Sample Receipt Checklist							
Client Name: Tetra Tech	Date/ Time Receive	d:	15/10 173L				
Checklist Completed By:	Received B	y:	eal				
Matrices: SM Carrier:	thert	Airbill# :	:				
Shipping container/cooler in good condition? Chain of Custody present? Chain of Custody Signed when relinquished and receive Chain of Custody agrees with sample labels? Samples in proper container/bottle? Sample containers intact? Sample containers on ice? Sufficient sample volume for indicated test? All samples received within holding time? Water - VOA Vials have Zero Headspace? Water - pH acceptable upon receipt? pH / Encores / 5035 Vials Present?	Yes A Yes A Yes A Yes A Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	N N N N N N N N N N N N N N N N N N N	Not Present				
Sample Filtration Needed? Dry Weight Corrected Results?	Yes □ Yes □	No D	Filtered in Field:				
DODQSM / QAPP Project?	Yes 🗆	No 🗖	Type:				
Temperature Blank Sample Container/Blank Temperature Range (Minimum :		No □ ' available):	5 ℃				
Comments/ Sampling Handling Notes:							
		150					

June 30, 2010

Attn: Scott Duzan

LABORATORY REPORT

Client:

Tetra Tech EM Inc. Work Order: HTF0072

737 Bishop st., Suite 3010 Project Name: Subsurface Soil Investigation (MIS-VOCs)

Honolulu, HI 96813 Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.HI

Date Received: 06/15/10

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica Analytical Testing Corporation certifies that the analytical results contained herein apply only to the specific sample(s) analyzed.

The Chain(s) of Custody, 10 pages, are included and are an integral part of this report. This entire report was reviewed and approved for release

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-(808)486-5227

Samples were received into laboratory at a temperature of 5 °C.

DZ

NELAC states that samples which require thermal preservation shall be considered acceptable if the arrival temperature is within 2 degrees C of the required temperature or the method specified range. For samples with a temperature requirement of 4 degrees C, an arrival temperature from 0 degrees C to 6 degrees C meets specifications. Samples that are delivered to the laboratory on the same day that they are collected may not meet these criteria. In these cases, the samples are considered acceptable if there is evidence that the chilling process has begun, such as arrival on ice.

The reported results were obtained in compliance with the 2003 NELAC standards unless otherwise noted.

Approved By:

NELAC Certification # E87907

Tetra Tech EM Inc. 737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan

Work Order: HTF0072

Received:

06/15/10

Reported:

06/30/10 17:39

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Sample Summary

			Date/Time	Date/Time	Sample
Sample Identification	Lab Number	Client Matrix	Sampled	Received	Qualifiers
TRIP BLANK	HTF0072-01	Solid/Soil	06/15/10 09:50	06/15/10 17:33	
B8-A-(MIC-VOC)	HTF0072-02	Solid/Soil	06/15/10 08:26	06/15/10 17:33	
B31-A-(MIC-VOC)	HTF0072-03	Solid/Soil	06/15/10 08:28	06/15/10 17:33	
B32-A-(MIC-VOC)	HTF0072-04	Solid/Soil	06/15/10 08:30	06/15/10 17:33	
B8-B-(MIC-VOC)	HTF0072-05	Solid/Soil	06/15/10 08:40	06/15/10 17:33	
B31-B-(MIC-VOC)	HTF0072-06	Solid/Soil	06/15/10 08:40	06/15/10 17:33	
B32-B-(MIC-VOC)	HTF0072-07	Solid/Soil	06/15/10 08:44	06/15/10 17:33	
B8-C-(MIC-VOC)	HTF0072-08	Solid/Soil	06/15/10 08:46	06/15/10 17:33	
B31-C-(MIC-VOC)	HTF0072-09	Solid/Soil	06/15/10 08:48	06/15/10 17:33	
B32-C-(MIC-VOC)	HTF0072-10	Solid/Soil	06/15/10 08:50	06/15/10 17:33	
B8-D-(MIC-VOC)	HTF0072-11	Solid/Soil	06/15/10 08:56	06/15/10 17:33	
B31-D-(MIC-VOC)	HTF0072-12	Solid/Soil	06/15/10 08:58	06/15/10 17:33	
B32-D-(MIC-VOC)	HTF0072-13	Solid/Soil	06/15/10 09:00	06/15/10 17:33	
B8-E-(MIC-VOC)	HTF0072-14	Solid/Soil	06/15/10 09:02	06/15/10 17:33	
B31-E-(MIC-VOC)	HTF0072-15	Solid/Soil	06/15/10 09:04	06/15/10 17:33	
B32-E-(MIC-VOC)	HTF0072-16	Solid/Soil	06/15/10 09:06	06/15/10 17:33	
B8-F-(MIC-VOC)	HTF0072-17	Solid/Soil	06/15/10 09:14	06/15/10 17:33	
B31-F-(MIC-VOC)	HTF0072-18	Solid/Soil	06/15/10 09:16	06/15/10 17:33	
B32-F-(MIC-VOC)	HTF0072-19	Solid/Soil	06/15/10 09:18	06/15/10 17:33	
B8-G-(MIC-VOC)	HTF0072-20	Solid/Soil	06/15/10 09:20	06/15/10 17:33	
B31-G-(MIC-VOC)	HTF0072-21	Solid/Soil	06/15/10 09:22	06/15/10 17:33	
B32-G-(MIC-VOC)	HTF0072-22	Solid/Soil	06/15/10 09:24	06/15/10 17:33	
B7-A-(MIC-VOC)	HTF0072-23	Solid/Soil	06/15/10 10:10	06/15/10 17:33	
B33-A-(MIC-VOC)	HTF0072-24	Solid/Soil	06/15/10 10:12	06/15/10 17:33	
B34-A-(MIC-VOC)	HTF0072-25	Solid/Soil	06/15/10 10:14	06/15/10 17:33	
B7-B-(MIC-VOC)	HTF0072-26	Solid/Soil	06/15/10 10:22	06/15/10 17:33	

Tetra Tech EM Inc. 737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan

Work Order:

HTF0072

Received:

06/15/10 06/30/10 17:39

Project:

Reported:

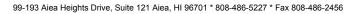
Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Ba3-B-(MIC-VOC)
B34-B-(MIC-VOC) HTF0072-28 Solid/Soil 06/15/10 10:26 06/15/10 17:33 B7-C-(MIC-VOC) HTF0072-29 Solid/Soil 06/15/10 10:30 06/15/10 17:33 B33-C-(MIC-VOC) HTF0072-30 Solid/Soil 06/15/10 10:32 06/15/10 17:33 B34-C-(MIC-VOC) HTF0072-31 Solid/Soil 06/15/10 10:34 06/15/10 17:33 B34-C-(MIC-VOC) HTF0072-32 Solid/Soil 06/15/10 10:42 06/15/10 17:33 B33-D-(MIC-VOC) HTF0072-33 Solid/Soil 06/15/10 10:44 06/15/10 17:33 B34-D-(MIC-VOC) HTF0072-34 Solid/Soil 06/15/10 10:46 06/15/10 17:33 B33-E-(MIC-VOC) HTF0072-35 Solid/Soil 06/15/10 10:48 06/15/10 17:33 B34-E-(MIC-VOC) HTF0072-36 Solid/Soil 06/15/10 10:50 06/15/10 17:33 B34-F-(MIC-VOC) HTF0072-37 Solid/Soil 06/15/10 10:50 06/15/10 17:33 B33-F-(MIC-VOC) HTF0072-39 Solid/Soil 06/15/10 10:56 06/15/10 17:33 B34-F-(MIC-VOC) HTF0072-40 Solid/Soil 06/15/10 11:0 06/15/10 17:
B7-C-(MIC-VOC) HTF0072-29 Solid/Soil 06/15/10 10:30 06/15/10 17:33 B33-C-(MIC-VOC) HTF0072-30 Solid/Soil 06/15/10 10:32 06/15/10 17:33 B34-C-(MIC-VOC) HTF0072-31 Solid/Soil 06/15/10 10:34 06/15/10 17:33 B7-D-(MIC-VOC) HTF0072-32 Solid/Soil 06/15/10 10:42 06/15/10 17:33 B33-D-(MIC-VOC) HTF0072-33 Solid/Soil 06/15/10 10:44 06/15/10 17:33 B34-D-(MIC-VOC) HTF0072-34 Solid/Soil 06/15/10 10:46 06/15/10 17:33 B7-E-(MIC-VOC) HTF0072-35 Solid/Soil 06/15/10 10:48 06/15/10 17:33 B3-E-(MIC-VOC) HTF0072-36 Solid/Soil 06/15/10 10:50 06/15/10 17:33 B3-E-(MIC-VOC) HTF0072-37 Solid/Soil 06/15/10 10:50 06/15/10 17:33 B3-F-(MIC-VOC) HTF0072-38 Solid/Soil 06/15/10 10:50 06/15/10 17:33 B34-F-(MIC-VOC) HTF0072-39 Solid/Soil 06/15/10 10:50 06/15/10 17:33 B34-F-(MIC-VOC) HTF0072-40 Solid/Soil 06/15/10 10:50 06/15/10 17:33 </td
B33-C-(MIC-VOC) HTF0072-30 Solid/Soil 06/15/10 10:32 06/15/10 17:33 B34-C-(MIC-VOC) HTF0072-31 Solid/Soil 06/15/10 10:34 06/15/10 17:33 B7-D-(MIC-VOC) HTF0072-32 Solid/Soil 06/15/10 10:42 06/15/10 17:33 B33-D-(MIC-VOC) HTF0072-33 Solid/Soil 06/15/10 10:44 06/15/10 17:33 B34-D-(MIC-VOC) HTF0072-34 Solid/Soil 06/15/10 10:46 06/15/10 17:33 B7-E-(MIC-VOC) HTF0072-35 Solid/Soil 06/15/10 10:48 06/15/10 17:33 B33-E-(MIC-VOC) HTF0072-36 Solid/Soil 06/15/10 10:50 06/15/10 17:33 B34-E-(MIC-VOC) HTF0072-37 Solid/Soil 06/15/10 10:52 06/15/10 17:33 B34-F-(MIC-VOC) HTF0072-38 Solid/Soil 06/15/10 10:58 06/15/10 17:33 B34-F-(MIC-VOC) HTF0072-39 Solid/Soil 06/15/10 10:58 06/15/10 17:33 B34-F-(MIC-VOC) HTF0072-40 Solid/Soil 06/15/10 11:10 06/15/10 17:33 B34-G-(MIC-VOC) HTF0072-41 Solid/Soil 06/15/10 11:12 06/15/10 17:
B34-C-(MIC-VOC) HTF0072-31 Solid/Soil 06/15/10 10:34 06/15/10 17:33 B7-D-(MIC-VOC) HTF0072-32 Solid/Soil 06/15/10 10:42 06/15/10 17:33 B33-D-(MIC-VOC) HTF0072-33 Solid/Soil 06/15/10 10:44 06/15/10 17:33 B34-D-(MIC-VOC) HTF0072-34 Solid/Soil 06/15/10 10:46 06/15/10 17:33 B7-E-(MIC-VOC) HTF0072-35 Solid/Soil 06/15/10 10:48 06/15/10 17:33 B33-E-(MIC-VOC) HTF0072-36 Solid/Soil 06/15/10 10:50 06/15/10 17:33 B34-E-(MIC-VOC) HTF0072-37 Solid/Soil 06/15/10 10:50 06/15/10 17:33 B33-F-(MIC-VOC) HTF0072-38 Solid/Soil 06/15/10 10:56 06/15/10 17:33 B34-F-(MIC-VOC) HTF0072-39 Solid/Soil 06/15/10 10:56 06/15/10 17:33 B34-F-(MIC-VOC) HTF0072-40 Solid/Soil 06/15/10 11:00 06/15/10 17:33 B3-G-(MIC-VOC) HTF0072-41 Solid/Soil 06/15/10 11:10 06/15/10 17:33 B3-G-(MIC-VOC) HTF0072-42 Solid/Soil 06/15/10 11:24 06/15/10 17:33
B7-D-(MIC-VOC) HTF0072-32 Solid/Soil 06/15/10 10:42 06/15/10 17:33 B33-D-(MIC-VOC) HTF0072-33 Solid/Soil 06/15/10 10:44 06/15/10 17:33 B34-D-(MIC-VOC) HTF0072-34 Solid/Soil 06/15/10 10:46 06/15/10 17:33 B7-E-(MIC-VOC) HTF0072-35 Solid/Soil 06/15/10 10:48 06/15/10 17:33 B33-E-(MIC-VOC) HTF0072-36 Solid/Soil 06/15/10 10:50 06/15/10 17:33 B34-E-(MIC-VOC) HTF0072-37 Solid/Soil 06/15/10 10:52 06/15/10 17:33 B34-F-(MIC-VOC) HTF0072-38 Solid/Soil 06/15/10 10:56 06/15/10 17:33 B34-F-(MIC-VOC) HTF0072-39 Solid/Soil 06/15/10 10:58 06/15/10 17:33 B34-F-(MIC-VOC) HTF0072-40 Solid/Soil 06/15/10 11:10 06/15/10 17:33 B7-G-(MIC-VOC) HTF0072-41 Solid/Soil 06/15/10 11:10 06/15/10 17:33 B34-G-(MIC-VOC) HTF0072-42 Solid/Soil 06/15/10 11:14 06/15/10 17:33 B35-A-(MIC-VOC) HTF0072-43 Solid/Soil 06/15/10 11:26 06/15/10 17:3
B33-D-(MIC-VOC) HTF0072-33 Solid/Soil 06/15/10 10:44 06/15/10 17:33 B34-D-(MIC-VOC) HTF0072-34 Solid/Soil 06/15/10 10:46 06/15/10 17:33 B7-E-(MIC-VOC) HTF0072-35 Solid/Soil 06/15/10 10:48 06/15/10 17:33 B33-E-(MIC-VOC) HTF0072-36 Solid/Soil 06/15/10 10:50 06/15/10 17:33 B34-E-(MIC-VOC) HTF0072-37 Solid/Soil 06/15/10 10:52 06/15/10 17:33 B7-F-(MIC-VOC) HTF0072-38 Solid/Soil 06/15/10 10:56 06/15/10 17:33 B34-F-(MIC-VOC) HTF0072-39 Solid/Soil 06/15/10 10:58 06/15/10 17:33 B34-F-(MIC-VOC) HTF0072-40 Solid/Soil 06/15/10 11:00 06/15/10 17:33 B7-G-(MIC-VOC) HTF0072-41 Solid/Soil 06/15/10 11:10 06/15/10 17:33 B34-G-(MIC-VOC) HTF0072-42 Solid/Soil 06/15/10 11:12 06/15/10 17:33 B5-A-(MIC-VOC) HTF0072-43 Solid/Soil 06/15/10 11:24 06/15/10 17:33 B36-A-(MIC-VOC) HTF0072-45 Solid/Soil 06/15/10 11:26 06/15/10 17:33
B34-D-(MIC-VOC) HTF0072-34 Solid/Soil 06/15/10 10:46 06/15/10 17:33 B7-E-(MIC-VOC) HTF0072-35 Solid/Soil 06/15/10 10:48 06/15/10 17:33 B33-E-(MIC-VOC) HTF0072-36 Solid/Soil 06/15/10 10:50 06/15/10 17:33 B34-E-(MIC-VOC) HTF0072-37 Solid/Soil 06/15/10 10:52 06/15/10 17:33 B7-F-(MIC-VOC) HTF0072-38 Solid/Soil 06/15/10 10:56 06/15/10 17:33 B33-F-(MIC-VOC) HTF0072-39 Solid/Soil 06/15/10 10:58 06/15/10 17:33 B34-F-(MIC-VOC) HTF0072-40 Solid/Soil 06/15/10 11:00 06/15/10 17:33 B7-G-(MIC-VOC) HTF0072-41 Solid/Soil 06/15/10 11:10 06/15/10 17:33 B3-G-(MIC-VOC) HTF0072-42 Solid/Soil 06/15/10 11:12 06/15/10 17:33 B5-A-(MIC-VOC) HTF0072-43 Solid/Soil 06/15/10 11:14 06/15/10 17:33 B35-A-(MIC-VOC) HTF0072-45 Solid/Soil 06/15/10 11:26 06/15/10 17:33 B5-B-(MIC-VOC) HTF0072-47 Solid/Soil 06/15/10 11:34 06/15/10 17:33 </td
B7-E-(MIC-VOC) HTF0072-35 Solid/Soil 06/15/10 10:48 06/15/10 17:33 B33-E-(MIC-VOC) HTF0072-36 Solid/Soil 06/15/10 10:50 06/15/10 17:33 B34-E-(MIC-VOC) HTF0072-37 Solid/Soil 06/15/10 10:52 06/15/10 17:33 B7-F-(MIC-VOC) HTF0072-38 Solid/Soil 06/15/10 10:56 06/15/10 17:33 B33-F-(MIC-VOC) HTF0072-39 Solid/Soil 06/15/10 10:58 06/15/10 17:33 B34-F-(MIC-VOC) HTF0072-40 Solid/Soil 06/15/10 11:00 06/15/10 17:33 B7-G-(MIC-VOC) HTF0072-41 Solid/Soil 06/15/10 11:10 06/15/10 17:33 B3-G-(MIC-VOC) HTF0072-42 Solid/Soil 06/15/10 11:12 06/15/10 17:33 B3-A-(MIC-VOC) HTF0072-43 Solid/Soil 06/15/10 11:14 06/15/10 17:33 B35-A-(MIC-VOC) HTF0072-44 Solid/Soil 06/15/10 11:24 06/15/10 17:33 B36-A-(MIC-VOC) HTF0072-45 Solid/Soil 06/15/10 11:28 06/15/10 17:33 B35-B-(MIC-VOC) HTF0072-47 Solid/Soil 06/15/10 11:34 06/15/10 17:33<
B33-E-(MIC-VOC) HTF0072-36 Solid/Soil 06/15/10 10:50 06/15/10 17:33 B34-E-(MIC-VOC) HTF0072-37 Solid/Soil 06/15/10 10:52 06/15/10 17:33 B7-F-(MIC-VOC) HTF0072-38 Solid/Soil 06/15/10 10:56 06/15/10 17:33 B33-F-(MIC-VOC) HTF0072-39 Solid/Soil 06/15/10 10:58 06/15/10 17:33 B34-F-(MIC-VOC) HTF0072-40 Solid/Soil 06/15/10 11:00 06/15/10 17:33 B7-G-(MIC-VOC) HTF0072-41 Solid/Soil 06/15/10 11:10 06/15/10 17:33 B33-G-(MIC-VOC) HTF0072-42 Solid/Soil 06/15/10 11:12 06/15/10 17:33 B34-G-(MIC-VOC) HTF0072-43 Solid/Soil 06/15/10 11:14 06/15/10 17:33 B5-A-(MIC-VOC) HTF0072-44 Solid/Soil 06/15/10 11:24 06/15/10 17:33 B36-A-(MIC-VOC) HTF0072-45 Solid/Soil 06/15/10 11:26 06/15/10 17:33 B5-B-(MIC-VOC) HTF0072-46 Solid/Soil 06/15/10 11:34 06/15/10 17:33 B36-B-(MIC-VOC) HTF0072-48 Solid/Soil 06/15/10 11:36 06/15/10 17:33
B34-E-(MIC-VOC) HTF0072-37 Solid/Soil 06/15/10 10:52 06/15/10 17:33 B7-F-(MIC-VOC) HTF0072-38 Solid/Soil 06/15/10 10:56 06/15/10 17:33 B33-F-(MIC-VOC) HTF0072-39 Solid/Soil 06/15/10 10:58 06/15/10 17:33 B34-F-(MIC-VOC) HTF0072-40 Solid/Soil 06/15/10 11:00 06/15/10 17:33 B7-G-(MIC-VOC) HTF0072-41 Solid/Soil 06/15/10 11:10 06/15/10 17:33 B33-G-(MIC-VOC) HTF0072-42 Solid/Soil 06/15/10 11:12 06/15/10 17:33 B34-G-(MIC-VOC) HTF0072-43 Solid/Soil 06/15/10 11:14 06/15/10 17:33 B5-A-(MIC-VOC) HTF0072-44 Solid/Soil 06/15/10 11:24 06/15/10 17:33 B35-A-(MIC-VOC) HTF0072-45 Solid/Soil 06/15/10 11:26 06/15/10 17:33 B5-B-(MIC-VOC) HTF0072-46 Solid/Soil 06/15/10 11:34 06/15/10 17:33 B35-B-(MIC-VOC) HTF0072-47 Solid/Soil 06/15/10 11:34 06/15/10 17:33 B36-B-(MIC-VOC) HTF0072-49 Solid/Soil 06/15/10 11:36 06/15/10 17:33
B34-E-(MIC-VOC) HTF0072-37 Solid/Soil 06/15/10 10:52 06/15/10 17:33 B7-F-(MIC-VOC) HTF0072-38 Solid/Soil 06/15/10 10:56 06/15/10 17:33 B33-F-(MIC-VOC) HTF0072-39 Solid/Soil 06/15/10 10:58 06/15/10 17:33 B34-F-(MIC-VOC) HTF0072-40 Solid/Soil 06/15/10 11:00 06/15/10 17:33 B7-G-(MIC-VOC) HTF0072-41 Solid/Soil 06/15/10 11:10 06/15/10 17:33 B34-G-(MIC-VOC) HTF0072-42 Solid/Soil 06/15/10 11:12 06/15/10 17:33 B34-G-(MIC-VOC) HTF0072-43 Solid/Soil 06/15/10 11:14 06/15/10 17:33 B5-A-(MIC-VOC) HTF0072-44 Solid/Soil 06/15/10 11:24 06/15/10 17:33 B36-A-(MIC-VOC) HTF0072-45 Solid/Soil 06/15/10 11:26 06/15/10 17:33 B5-B-(MIC-VOC) HTF0072-46 Solid/Soil 06/15/10 11:34 06/15/10 17:33 B35-B-(MIC-VOC) HTF0072-48 Solid/Soil 06/15/10 11:36 06/15/10 17:33 B36-B-(MIC-VOC) HTF0072-49 Solid/Soil 06/15/10 11:40 06/15/10 17:33
B7-F-(MIC-VOC) HTF0072-38 Solid/Soil 06/15/10 10:56 06/15/10 17:33 B33-F-(MIC-VOC) HTF0072-39 Solid/Soil 06/15/10 10:58 06/15/10 17:33 B34-F-(MIC-VOC) HTF0072-40 Solid/Soil 06/15/10 11:00 06/15/10 17:33 B7-G-(MIC-VOC) HTF0072-41 Solid/Soil 06/15/10 11:10 06/15/10 17:33 B33-G-(MIC-VOC) HTF0072-42 Solid/Soil 06/15/10 11:12 06/15/10 17:33 B34-G-(MIC-VOC) HTF0072-43 Solid/Soil 06/15/10 11:14 06/15/10 17:33 B5-A-(MIC-VOC) HTF0072-44 Solid/Soil 06/15/10 11:24 06/15/10 17:33 B35-A-(MIC-VOC) HTF0072-45 Solid/Soil 06/15/10 11:26 06/15/10 17:33 B36-A-(MIC-VOC) HTF0072-46 Solid/Soil 06/15/10 11:28 06/15/10 17:33 B35-B-(MIC-VOC) HTF0072-47 Solid/Soil 06/15/10 11:34 06/15/10 17:33 B36-B-(MIC-VOC) HTF0072-49 Solid/Soil 06/15/10 11:38 06/15/10 17:33 B5-C-(MIC-VOC) HTF0072-50 Solid/Soil 06/15/10 11:40 06/15/10 17:33
B34-F-(MIC-VOC) HTF0072-40 Solid/Soil 06/15/10 11:00 06/15/10 17:33 B7-G-(MIC-VOC) HTF0072-41 Solid/Soil 06/15/10 11:10 06/15/10 17:33 B33-G-(MIC-VOC) HTF0072-42 Solid/Soil 06/15/10 11:12 06/15/10 17:33 B34-G-(MIC-VOC) HTF0072-43 Solid/Soil 06/15/10 11:14 06/15/10 17:33 B5-A-(MIC-VOC) HTF0072-44 Solid/Soil 06/15/10 11:24 06/15/10 17:33 B35-A-(MIC-VOC) HTF0072-45 Solid/Soil 06/15/10 11:26 06/15/10 17:33 B36-A-(MIC-VOC) HTF0072-46 Solid/Soil 06/15/10 11:28 06/15/10 17:33 B5-B-(MIC-VOC) HTF0072-47 Solid/Soil 06/15/10 11:34 06/15/10 17:33 B36-B-(MIC-VOC) HTF0072-48 Solid/Soil 06/15/10 11:36 06/15/10 17:33 B36-B-(MIC-VOC) HTF0072-49 Solid/Soil 06/15/10 11:38 06/15/10 17:33 B5-C-(MIC-VOC) HTF0072-50 Solid/Soil 06/15/10 11:40 06/15/10 17:33
B7-G-(MIC-VOC) HTF0072-41 Solid/Soil 06/15/10 11:10 06/15/10 17:33 B33-G-(MIC-VOC) HTF0072-42 Solid/Soil 06/15/10 11:12 06/15/10 17:33 B34-G-(MIC-VOC) HTF0072-43 Solid/Soil 06/15/10 11:14 06/15/10 17:33 B5-A-(MIC-VOC) HTF0072-44 Solid/Soil 06/15/10 11:24 06/15/10 17:33 B35-A-(MIC-VOC) HTF0072-45 Solid/Soil 06/15/10 11:26 06/15/10 17:33 B36-A-(MIC-VOC) HTF0072-46 Solid/Soil 06/15/10 11:28 06/15/10 17:33 B5-B-(MIC-VOC) HTF0072-47 Solid/Soil 06/15/10 11:34 06/15/10 17:33 B35-B-(MIC-VOC) HTF0072-48 Solid/Soil 06/15/10 11:36 06/15/10 17:33 B36-B-(MIC-VOC) HTF0072-49 Solid/Soil 06/15/10 11:38 06/15/10 17:33 B36-B-(MIC-VOC) HTF0072-49 Solid/Soil 06/15/10 11:38 06/15/10 17:33 B36-B-(MIC-VOC) HTF0072-50 Solid/Soil 06/15/10 11:40 06/15/10 17:33
B33-G-(MIC-VOC) B34-G-(MIC-VOC) HTF0072-43 Solid/Soil B5-A-(MIC-VOC) HTF0072-44 Solid/Soil B5-A-(MIC-VOC) HTF0072-45 B36-A-(MIC-VOC) HTF0072-46 Solid/Soil B36-A-(MIC-VOC) HTF0072-47 Solid/Soil B35-B-(MIC-VOC) HTF0072-48 Solid/Soil B36-B-(MIC-VOC) HTF0072-48 Solid/Soil B36-B-(MIC-VOC) HTF0072-48 Solid/Soil B36-B-(MIC-VOC) HTF0072-49 Solid/Soil B36-B-(MIC-VOC) HTF0072-49 Solid/Soil B36-B-(MIC-VOC) HTF0072-50 Solid/Soil B36-B-(MIC-VOC) B35-B-(MIC-VOC) B35-B-(MIC-VOC) B35-B-(MIC-VOC) B36-B-(MIC-VOC) B36-B-(MIC-VOC) B36-B-(MIC-VOC) B37-B-(MIC-VOC) B38-B-(MIC-VOC) B38-B-(MIC-VOC) B39-B-(MIC-VOC) B39-B-(MIC-
B33-G-(MIC-VOC) HTF0072-42 Solid/Soil 06/15/10 11:12 06/15/10 17:33 B34-G-(MIC-VOC) HTF0072-43 Solid/Soil 06/15/10 11:14 06/15/10 17:33 B5-A-(MIC-VOC) HTF0072-44 Solid/Soil 06/15/10 11:24 06/15/10 17:33 B35-A-(MIC-VOC) HTF0072-45 Solid/Soil 06/15/10 11:26 06/15/10 17:33 B36-A-(MIC-VOC) HTF0072-46 Solid/Soil 06/15/10 11:28 06/15/10 17:33 B5-B-(MIC-VOC) HTF0072-47 Solid/Soil 06/15/10 11:34 06/15/10 17:33 B36-B-(MIC-VOC) HTF0072-48 Solid/Soil 06/15/10 11:36 06/15/10 17:33 B36-B-(MIC-VOC) HTF0072-49 Solid/Soil 06/15/10 11:38 06/15/10 17:33 B5-C-(MIC-VOC) HTF0072-50 Solid/Soil 06/15/10 11:40 06/15/10 17:33
B34-G-(MIC-VOC) HTF0072-43 Solid/Soil 06/15/10 11:14 06/15/10 17:33 B5-A-(MIC-VOC) HTF0072-44 Solid/Soil 06/15/10 11:24 06/15/10 17:33 B35-A-(MIC-VOC) HTF0072-45 Solid/Soil 06/15/10 11:26 06/15/10 17:33 B36-A-(MIC-VOC) HTF0072-46 Solid/Soil 06/15/10 11:28 06/15/10 17:33 B5-B-(MIC-VOC) HTF0072-47 Solid/Soil 06/15/10 11:34 06/15/10 17:33 B36-B-(MIC-VOC) HTF0072-48 Solid/Soil 06/15/10 11:36 06/15/10 17:33 B36-B-(MIC-VOC) HTF0072-49 Solid/Soil 06/15/10 11:38 06/15/10 17:33 B5-C-(MIC-VOC) HTF0072-50 Solid/Soil 06/15/10 11:40 06/15/10 17:33
B5-A-(MIC-VOC) HTF0072-44 Solid/Soil 06/15/10 11:24 06/15/10 17:33 B35-A-(MIC-VOC) HTF0072-45 Solid/Soil 06/15/10 11:26 06/15/10 17:33 B36-A-(MIC-VOC) HTF0072-46 Solid/Soil 06/15/10 11:28 06/15/10 17:33 B5-B-(MIC-VOC) HTF0072-47 Solid/Soil 06/15/10 11:34 06/15/10 17:33 B36-B-(MIC-VOC) HTF0072-48 Solid/Soil 06/15/10 11:36 06/15/10 17:33 B36-B-(MIC-VOC) HTF0072-49 Solid/Soil 06/15/10 11:38 06/15/10 17:33 B5-C-(MIC-VOC) HTF0072-50 Solid/Soil 06/15/10 11:40 06/15/10 17:33
B35-A-(MIC-VOC) HTF0072-45 Solid/Soil 06/15/10 11:26 06/15/10 17:33 B36-A-(MIC-VOC) HTF0072-46 Solid/Soil 06/15/10 11:28 06/15/10 17:33 B5-B-(MIC-VOC) HTF0072-47 Solid/Soil 06/15/10 11:34 06/15/10 17:33 B35-B-(MIC-VOC) HTF0072-48 Solid/Soil 06/15/10 11:36 06/15/10 17:33 B36-B-(MIC-VOC) HTF0072-49 Solid/Soil 06/15/10 11:38 06/15/10 17:33 B5-C-(MIC-VOC) HTF0072-50 Solid/Soil 06/15/10 11:40 06/15/10 17:33
B36-A-(MIC-VOC) HTF0072-46 Solid/Soil 06/15/10 11:28 06/15/10 17:33 B5-B-(MIC-VOC) HTF0072-47 Solid/Soil 06/15/10 11:34 06/15/10 17:33 B35-B-(MIC-VOC) HTF0072-48 Solid/Soil 06/15/10 11:36 06/15/10 17:33 B36-B-(MIC-VOC) HTF0072-49 Solid/Soil 06/15/10 11:38 06/15/10 17:33 B5-C-(MIC-VOC) HTF0072-50 Solid/Soil 06/15/10 11:40 06/15/10 17:33
B35-B-(MIC-VOC) HTF0072-48 Solid/Soil 06/15/10 11:36 06/15/10 17:33 B36-B-(MIC-VOC) HTF0072-49 Solid/Soil 06/15/10 11:38 06/15/10 17:33 B5-C-(MIC-VOC) HTF0072-50 Solid/Soil 06/15/10 11:40 06/15/10 17:33
B36-B-(MIC-VOC) HTF0072-49 Solid/Soil 06/15/10 11:38 06/15/10 17:33 B5-C-(MIC-VOC) HTF0072-50 Solid/Soil 06/15/10 11:40 06/15/10 17:33
B5-C-(MIC-VOC) HTF0072-50 Solid/Soil 06/15/10 11:40 06/15/10 17:33
B35-C-(MIC-VOC) HTF0072-51 Solid/Soil 06/15/10 11:42 06/15/10 17:33
B36-C-(MIC-VOC) HTF0072-52 Solid/Soil 06/15/10 11:44 06/15/10 17:33
B5-D-(MIC-VOC) HTF0072-53 Solid/Soil 06/15/10 11:48 06/15/10 17:33
B35-D-(MIC-VOC) HTF0072-54 Solid/Soil 06/15/10 11:50 06/15/10 17:33
B36-D-(MIC-VOC) HTF0072-55 Solid/Soil 06/15/10 11:52 06/15/10 17:33
B5-E-(MIC-VOC) HTF0072-56 Solid/Soil 06/15/10 11:54 06/15/10 17:33
B35-E-(MIC-VOC) HTF0072-57 Solid/Soil 06/15/10 11:56 06/15/10 17:33
B36-E-(MIC-VOC) HTF0072-58 Solid/Soil 06/15/10 11:58 06/15/10 17:33
B5-F-(MIC-VOC) HTF0072-59 Solid/Soil 06/15/10 12:02 06/15/10 17:33
B35-F-(MIC-VOC) HTF0072-60 Solid/Soil 06/15/10 12:04 06/15/10 17:33
B36-F-(MIC-VOC) HTF0072-61 Solid/Soil 06/15/10 12:06 06/15/10 17:33
B5-G-(MIC-VOC) HTF0072-62 Solid/Soil 06/15/10 12:18 06/15/10 17:33
B35-G-(MIC-VOC) HTF0072-63 Solid/Soil 06/15/10 12:20 06/15/10 17:33
B36-G-(MIC-VOC) HTF0072-64 Solid/Soil 06/15/10 12:22 06/15/10 17:33
FIELD BLANK B5 HTF0072-65 Solid/Soil 06/15/10 12:25 06/15/10 17:33
B6-A-(MIC-VOC) HTF0072-66 Solid/Soil 06/15/10 14:10 06/15/10 17:33
B6-B-(MIC-VOC) HTF0072-67 Solid/Soil 06/15/10 14:16 06/15/10 17:33
B6-C-(MIC-VOC) HTF0072-68 Solid/Soil 06/15/10 14:18 06/15/10 17:33
B6-D-(MIC-VOC) HTF0072-69 Solid/Soil 06/15/10 14:24 06/15/10 17:33

Honolulu, HI 96813

Scott Duzan


Work Order: HTF0072 Received: 06/15/10

Reported: 06/30/10 17:39

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

0 1 11 25 25		OI:	Date/Time	Date/Time	Sample
Sample Identification	Lab Number	Client Matrix	Sampled	Received	Qualifiers
B6-E-(MIC-VOC)	HTF0072-70	Solid/Soil	06/15/10 14:26	06/15/10 17:33	
B6-F-(MIC-VOC)	HTF0072-71	Solid/Soil	06/15/10 14:32	06/15/10 17:33	
B6-G-(MIC-VOC)	HTF0072-72	Solid/Soil	06/15/10 14:40	06/15/10 17:33	
B4-A-(MIC-VOC)	HTF0072-73	Solid/Soil	06/15/10 15:10	06/15/10 17:33	
B4-B-(MIC-VOC)	HTF0072-74	Solid/Soil	06/15/10 15:20	06/15/10 17:33	
B4-C-(MIC-VOC)	HTF0072-75	Solid/Soil	06/15/10 15:22	06/15/10 17:33	
B4-D-(MIC-VOC)	HTF0072-76	Solid/Soil	06/15/10 15:34	06/15/10 17:33	
B4-E-(MIC-VOC)	HTF0072-77	Solid/Soil	06/15/10 15:36	06/15/10 17:33	
B4-F-(MIC-VOC)	HTF0072-78	Solid/Soil	06/15/10 15:40	06/15/10 17:33	
B4-G-(MIC-VOC)	HTF0072-79	Solid/Soil	06/15/10 15:46	06/15/10 17:33	
B3-A-(MIC-VOC)	HTF0072-80	Solid/Soil	06/15/10 16:10	06/15/10 17:33	
B3-B-(MIC-VOC)	HTF0072-81	Solid/Soil	06/15/10 16:14	06/15/10 17:33	
B3-C-(MIC-VOC)	HTF0072-82	Solid/Soil	06/15/10 16:16	06/15/10 17:33	
B3-D-(MIC-VOC)	HTF0072-83	Solid/Soil	06/15/10 16:22	06/15/10 17:33	
B3-E-(MIC-VOC)	HTF0072-84	Solid/Soil	06/15/10 16:24	06/15/10 17:33	
B3-F-(MIC-VOC)	HTF0072-85	Solid/Soil	06/15/10 16:30	06/15/10 17:33	
B3-G-(MIC-VOC)	HTF0072-86	Solid/Soil	06/15/10 16:36	06/15/10 17:33	

737 Bishop st., Suite 3010

Honolulu, HI 96813

Scott Duzan

Tetra Tech EM Inc. Work Order: HTF0072

rk Order: HTF0072 Received: 06/15/10

Reported: 06/30/10 17:39

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

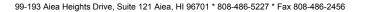
Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0072-01 (TRIP BLA	NK - Solid/So	il)			Sam	pled:	06/15/10 09:50	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82	260					-				
cis-1,2-Dichloroethene	ND		ug/kg	2.50	5.00	50	06/16/10 21:31	06/16/10	10F0096	EPA 8260
trans-1,2-Dichloroethene	ND		"	2.50	5.00	"	"	"	"	"
Trichloroethene	ND		"	2.50	5.00	"	"	"	"	"
Vinyl chloride	ND		"	3.40	10.0	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	100 %						"	"	"	"
Sample ID: HTF0072-02 (B8-A-(MI	C-VOC) - Solic	d/Soil)			Sam	pled:	06/15/10 08:26	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82	260									
cis-1,2-Dichloroethene	ND		ug/kg	2.83	5.66	50	06/16/10 21:56	06/16/10	10F0096	EPA 8260
trans-1,2-Dichloroethene	ND		"	2.83	5.66	"	"	"	"	"
Trichloroethene	5.90		"	2.83	5.66	"	"	"	"	"
Vinyl chloride	ND		"	3.85	11.3	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	99 %						"	"	"	"
Sample ID: HTF0072-03 (B31-A-(M	IC-VOC) - Sol	id/Soil)			Sam	pled:	06/15/10 08:28	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82	260									
cis-1,2-Dichloroethene	ND		ug/kg	2.47	4.95	50	06/16/10 22:22	06/16/10	10F0096	EPA 8260
trans-1,2-Dichloroethene	ND		"	2.47	4.95	"	"	"	"	"
Trichloroethene	5.27		"	2.47	4.95	"	"	"	"	"
Vinyl chloride	ND		"	3.36	9.90	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	99 %						"	"	"	"
Sample ID: HTF0072-04 (B32-A-(M		id/Soil)			Sam	pled:	06/15/10 08:30	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82										
cis-1,2-Dichloroethene	ND		ug/kg	1.73	3.45	50	06/16/10 22:48	06/16/10	10F0096	EPA 8260
trans-1,2-Dichloroethene	ND		"	1.73	3.45	"	"	"	"	"
Trichloroethene	4.64		"	1.73	3.45	"	"	"	"	"
Vinyl chloride	ND		"	2.35	6.90	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	108 %						"	"	"	"
Sample ID: HTF0072-05 (B8-B-(MIC		d/Soil)			Sam	pled:	06/15/10 08:40	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82							0.5/4.5/4.0.00	0.514.514.0	4070006	ED 1 02 (0
cis-1,2-Dichloroethene	ND		ug/kg "	2.56	5.12	50	06/16/10 23:15	06/16/10	10F0096	EPA 8260
trans-1,2-Dichloroethene	ND			2.56	5.12	"				
Trichloroethene	ND		"	2.56	5.12	"	"	"	"	
Vinyl chloride	ND		"	3.48	10.2	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	101 %						"	"	"	"
Sample ID: HTF0072-06 (B31-B-(M) Volatile Organic Compounds by EPA 82		id/Soil)			Sam	pled:	06/15/10 08:40	Re	cvd: 06/15/	10 17:33
cis-1,2-Dichloroethene	ND		ug/kg	2.35	4.70	50	06/16/10 23:40	06/16/10	10F0096	EPA 8260
trans-1,2-Dichloroethene	ND		"	2.35	4.70	,,	"	"	"	"
Trichloroethene	ND		"	2.35	4.70	"	"	"	"	"
Vinyl chloride	ND		"	3.20	9.40	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	97 %				2		"	"	"	"
S 1,2 Diemoroemane-ut (00-120/0)	27.70									

Honolulu, HI 96813

Scott Duzan

Work Order: H

HTF0072


Received: Reported: 06/15/10 06/30/10 17:39

Project:

Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0072-06 (B31-B-(MI	C-VOC) - Soli	id/Soil) - cont.			Sam	pled:	06/15/10 08:40	Re	cvd: 06/15/	10 17:33
Sample ID: HTF0072-07 (B32-B-(MICV) Volatile Organic Compounds by EPA 820		id/Soil)			Sam	pled:	06/15/10 08:44	Re	evd: 06/15/	10 17:33
cis-1,2-Dichloroethene	ND		ug/kg	2.69	5.37	50	06/17/10 00:06	06/16/10	10F0096	EPA 8260
trans-1,2-Dichloroethene	ND		"	2.69	5.37	"	"	"	"	"
Trichloroethene	ND		"	2.69	5.37	"	"	"	"	"
Vinyl chloride	ND		"	3.65	10.7	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	105 %						"	"	"	"
Sample ID: HTF0072-08 (B8-C-(MIC Volatile Organic Compounds by EPA 820		l/Soil)			Sam	pled:	06/15/10 08:46	Re	cvd: 06/15/	10 17:33
cis-1,2-Dichloroethene	ND		ug/kg	2.24	4.48	50	06/17/10 00:32	06/16/10	10F0096	EPA 8260
trans-1,2-Dichloroethene	ND		"	2.24	4.48	,,	"	"	"	"
Trichloroethene	ND		"	2.24	4.48	"	"	"	,,	"
Vinyl chloride	ND		"	3.05	8.97	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	105 %						"	"	"	"
Sample ID: HTF0072-09 (B31-C-(MI Volatile Organic Compounds by EPA 820		id/Soil)			Sam	pled:	06/15/10 08:48	Re	evd: 06/15/	10 17:33
cis-1,2-Dichloroethene	ND		ug/kg	2.59	5.18	50	06/17/10 00:57	06/16/10	10F0096	EPA 8260
trans-1,2-Dichloroethene	ND		"	2.59	5.18	"	"	"	"	"
Trichloroethene	ND		"	2.59	5.18	,,	"	"	"	"
Vinyl chloride	ND		,,	3.52	10.4	"	"	"	,,	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	103 %						"	"	"	"
Sample ID: HTF0072-10 (B32-C-(MI	C-VOC) - Sol	id/Soil)			Sam	pled:	06/15/10 08:50	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 820	50									
cis-1,2-Dichloroethene	ND		ug/kg	2.04	4.09	50	06/17/10 01:23	06/16/10	10F0096	EPA 8260
trans-1,2-Dichloroethene	ND		"	2.04	4.09	"	"	"	"	"
Trichloroethene	ND		"	2.04	4.09	"	"	"	"	"
Vinyl chloride	ND		"	2.78	8.17	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	100 %						"	"	"	"
Sample ID: HTF0072-11 (B8-D-(MIC Volatile Organic Compounds by EPA 820		l/Soil)			Sam	pled:	06/15/10 08:56	Re	cvd: 06/15/	10 17:33
cis-1,2-Dichloroethene	ND		ug/kg	2.96	5.91	50	06/17/10 01:48	06/16/10	10F0096	EPA 8260
trans-1,2-Dichloroethene	ND		" " " " " " "	2.96	5.91	"	"	"	"	"
Trichloroethene	ND		"	2.96	5.91	,,	"	"	"	"
Vinyl chloride	ND		"	4.02	11.8	,,	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	99 %			1.02	11.0		"	"	"	"
Sample ID: HTF0072-12 (B31-D-(MI		id/Soil)			Sam	pled:	06/15/10 08:58	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 826										
cis-1,2-Dichloroethene	ND		ug/kg	2.75	5.51	50	06/17/10 02:14	06/16/10	10F0096	EPA 8260
trans-1,2-Dichloroethene	ND		"	2.75	5.51	"	"	"	"	"
Trichloroethene	ND		"	2.75	5.51	"	"	"	"	"

HTF0072 Work Order: Received:

Reported: 06/30/10 17:39

06/15/10

Honolulu, HI 96813 Subsurface Soil Investigation (MIS-VOCs) Project: Scott Duzan

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

ANALYTICAL REPORT

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0072-12 (B31-D-(MI	C-VOC) - Sol	id/Soil) - cont.			Sam	pled:	06/15/10 08:58	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 820	60 - cont.									
Vinyl chloride	ND		"	3.75	11.0	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	98 %						"	"	"	"
Sample ID: HTF0072-13 (B32-D-(MI	C-VOC) - Sol	id/Soil)			Sam	pled:	06/15/10 09:00	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 820	60									
cis-1,2-Dichloroethene	ND		ug/kg	2.72	5.44	50	06/17/10 02:39	06/16/10	10F0096	EPA 8260
trans-1,2-Dichloroethene	ND		"	2.72	5.44	"	"	"	"	"
Trichloroethene	ND		"	2.72	5.44	"	"	"	"	"
Vinyl chloride	ND		"	3.70	10.9	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	104 %						"	"	"	"
Sample ID: HTF0072-14 (B8-E-(MIC	C-VOC) - Solic	l/Soil)			Sam	pled:	06/15/10 09:02	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 820	60									
cis-1,2-Dichloroethene	ND		ug/kg	2.41	4.81	50	06/17/10 03:05	06/16/10	10F0096	EPA 8260
trans-1,2-Dichloroethene	ND		"	2.41	4.81	"	"	"	"	"
Trichloroethene	ND		"	2.41	4.81	"	"	"	"	"
Vinyl chloride	ND		"	3.27	9.62	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	100 %						"	"	"	"
Sample ID: HTF0072-15 (B31-E-(MIC-VOC) - Solid/Soil)					Sam	pled:	06/15/10 09:04	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82 0	60									
cis-1,2-Dichloroethene	ND		ug/kg	2.59	5.19	50	06/17/10 03:31	06/16/10	10F0096	EPA 8260
trans-1,2-Dichloroethene	ND		"	2.59	5.19	"	"	"	"	"
Trichloroethene	ND		"	2.59	5.19	"	"	"	"	"
Vinyl chloride	ND		"	3.53	10.4	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	103 %						"	"	"	"
Sample ID: HTF0072-16 (B32-E-(MI	C-VOC) - Soli	id/Soil)			Sam	pled:	06/15/10 09:06	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 820	60									
cis-1,2-Dichloroethene	ND		ug/kg	4.42	8.85	50	06/17/10 11:41	06/17/10	10F0110	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.42	8.85	"	"	"	"	"
Trichloroethene	ND		"	4.42	8.85	"	"	"	"	"
Vinyl chloride	ND		"	6.02	17.7	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	98 %						"	"	"	"
Sample ID: HTF0072-17 (B8-F-(MIC	C-VOC) - Solid	l/Soil)			Sam	pled:	06/15/10 09:14	Re	evd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82	60									
cis-1,2-Dichloroethene	ND		ug/kg	4.39	8.77	50	06/17/10 12:06	06/17/10	10F0110	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.39	8.77	"	"	"	"	"
Trichloroethene	ND		"	4.39	8.77	"	"	"	"	"
Vinyl chloride	ND		"	5.97	17.5	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	99 %						"	"	"	"

Sample ID: HTF0072-18 (B31-F-(MIC-VOC) - Solid/Soil)

Volatile Organic Compounds by EPA 8260

Recvd: 06/15/10 17:33

Sampled: 06/15/10 09:16

Work Order: H'

HTF0072 Received:

Received: 06/15/10 Reported: 06/30/10 17:39

Honolulu, HI 96813 Project: Scott Duzan Project N

Project: Subsurface Soil Investigation (MIS-VOCs)
Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Volatile Organic Compounds by EPA 8260 - cont. cis-1,2-Dichloroethene ND ug/kg 4.47 8.94 5.00 trans-1,2-Dichloroethene ND " 4.47 8.94 Trichloroethene ND " 4.47 8.94 Vinyl chloride ND " 6.08 17.9 Surr: 1,2-Dichloroethane-d4 (80-120%) 102 % Sample Of the Compounds by EPA 8260 cis-1,2-Dichloroethene ND ug/kg 4.96 9.91 5 trans-1,2-Dichloroethene ND " 4.96 9.91 5 Trichloroethene ND " 4.96 9.91 5 Vinyl chloride ND " 4.96 9.91 5 Surr: 1,2-Dichloroethane-d4 (80-120%) 97 % " 6.74 19.8	d: 06/15/10 09:16	Re		
cis-1,2-Dichloroethene ND ug/kg 4.47 8.94 5 trans-1,2-Dichloroethene ND " 4.47 8.94 Trichloroethene ND " 4.47 8.94 Vinyl chloride ND " 6.08 17.9 Surr: 1,2-Dichloroethane-d4 (80-120%) 102 % Sample ID: HTF0072-19 (B32-F-(MIC-VOC) - Solid/Soil) Sample ID: HTF0072-20 (B8-G-(MIC-VOC) - Solid/Soil)			cvd: 06/15/	10 17:33
trans-1,2-Dichloroethene ND " 4.47 8.94 Trichloroethene ND " 4.47 8.94 Vinyl chloride ND " 6.08 17.9 Surr: 1,2-Dichloroethane-d4 (80-120%) 102 % Sample ID: HTF0072-19 (B32-F-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND ug/kg 4.96 9.91 trans-1,2-Dichloroethene ND " 4.96 9.91 Trichloroethene ND " 4.96 9.91 Vinyl chloride ND " 4.96 9.91 Vinyl chloride ND " 6.74 19.8 Surr: 1,2-Dichloroethane-d4 (80-120%) 97 % Sample ID: HTF0072-20 (B8-G-(MIC-VOC) - Solid/Soil)				
Trichloroethene ND " 4.47 8.94 Vinyl chloride ND " 6.08 17.9 Surr: 1,2-Dichloroethane-d4 (80-120%) 102 % Sample ID: HTF0072-19 (B32-F-(MIC-VOC) - Solid/Soil) Sample Compounds by EPA 8260 cis-1,2-Dichloroethene ND ug/kg 4.96 9.91 trans-1,2-Dichloroethene ND " 4.96 9.91 Trichloroethene ND " 4.96 9.91 Vinyl chloride ND " 4.96 9.91 Vinyl chloride ND " 6.74 19.8 Surr: 1,2-Dichloroethane-d4 (80-120%) 97 % Sample ID: HTF0072-20 (B8-G-(MIC-VOC) - Solid/Soil)	50 06/17/10 12:31	06/17/10	10F0110	EPA 8260
Vinyl chloride ND " 6.08 17.9 Surr: 1,2-Dichloroethane-d4 (80-120%) 102 % Sample ID: HTF0072-19 (B32-F-(MIC-VOC) - Solid/Soil) Sample ID: HTF0072-20 (B8-G-(MIC-VOC) - Solid/Soil) Sample ID: Sample ID: HTF0072-20 (B8-G-(MIC-VOC) - Solid/Soil) Sample ID: Sample ID: Sample ID: HTF0072-20 (B8-G-(MIC-VOC) - Solid/Soil)	" "	"	"	"
Sample ID: HTF0072-19 (B32-F-(MIC-VOC) - Solid/Soil) Sample ID: HTF0072-19 (B32-F-(MIC-VOC) - Solid/Soil) Sample ID: HTF0072-19 (B32-F-(MIC-VOC) - Solid/Soil) Sample ID: HTF0072-20 (B8-G-(MIC-VOC) - Sol	" "	"	"	"
Sample ID: HTF0072-19 (B32-F-(MIC-VOC) - Solid/Soil) Sample of	" "	"	"	"
Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND ug/kg 4.96 9.91 5 trans-1,2-Dichloroethene ND " 4.96 9.91 Trichloroethene ND " 4.96 9.91 Vinyl chloride ND " 6.74 19.8 Surr: 1,2-Dichloroethane-d4 (80-120%) 97 % Sample ID: HTF0072-20 (B8-G-(MIC-VOC) - Solid/Soil) Sample ID: HTF0072-20 (B8-G-(MIC-VOC) - Solid/Soil)	"	"	"	"
cis-1,2-Dichloroethene ND ug/kg 4.96 9.91 5 trans-1,2-Dichloroethene ND " 4.96 9.91 Trichloroethene ND " 4.96 9.91 Vinyl chloride ND " 6.74 19.8 Surr: 1,2-Dichloroethane-d4 (80-120%) 97 % Sample ID: HTF0072-20 (B8-G-(MIC-VOC) - Solid/Soil) Sample ID: HTF0072-20 (B8-G-(MIC-VOC) - Solid/Soil) Sample ID: HTF0072-20 (B8-G-(MIC-VOC) - Solid/Soil)	d: 06/15/10 09:18	Re	cvd: 06/15/	10 17:33
trans-1,2-Dichloroethene ND " 4.96 9.91 Trichloroethene ND " 4.96 9.91 Vinyl chloride ND " 6.74 19.8 Surr: 1,2-Dichloroethane-d4 (80-120%) 97 % Sample ID: HTF0072-20 (B8-G-(MIC-VOC) - Solid/Soil) Sample				
Trichloroethene ND " 4.96 9.91 Vinyl chloride ND " 6.74 19.8 Surr: 1,2-Dichloroethane-d4 (80-120%) 97 % Sample ID: HTF0072-20 (B8-G-(MIC-VOC) - Solid/Soil) Sample	50 06/17/10 12:57	06/17/10	10F0110	EPA 8260
Vinyl chloride ND " 6.74 19.8 Surr: 1,2-Dichloroethane-d4 (80-120%) 97 % Sample ID: HTF0072-20 (B8-G-(MIC-VOC) - Solid/Soil) Sample	" "	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%) 97 % Sample ID: HTF0072-20 (B8-G-(MIC-VOC) - Solid/Soil) Sample	" "	"	"	"
Sample ID: HTF0072-20 (B8-G-(MIC-VOC) - Solid/Soil) Sample	" "	"	"	"
•	"	"	"	"
Volatile Organic Compounds by EPA 8260	d: 06/15/10 09:20	Re	cvd: 06/15/	10 17:33
		0.5/4.27/4.0	4070440	ED 1 00 00
	50 06/17/10 13:22	06/17/10	10F0110	EPA 8260
trans-1,2-Dichiotoeuteite ND 4.15 6.31	" "			
Themorecules AD 4.13 6.51	" "	"	"	"
Vinyl chloride 18.1 " 5.65 16.6	" "	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%) 98 %	"	"	"	"
Sample ID: HTF0072-21 (B31-G-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260	d: 06/15/10 09:22	Re	cvd: 06/15/	10 17:33
	50 06/17/10 13:47	06/17/10	10F0110	EPA 8260
,	" "	"	"	"
	" "	,,	"	"
	" "	,,	"	,,
Surr: 1,2-Dichloroethane-d4 (80-120%) 99 %	"	"	"	"
Sample ID: HTF0072-22 (B32-G-(MIC-VOC) - Solid/Soil) Sample	d: 06/15/10 09:24	Re	evd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260	u. 00/10/10 05.21			
	50 06/17/10 14:12	06/17/10	10F0110	EPA 8260
trans-1,2-Dichloroethene ND " 5.48 11.0	" "	"	"	"
Trichloroethene ND " 5.48 11.0	" "	"	"	"
Vinyl chloride 42.3 " 7.46 21.9	" "	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%) 97 %	"	"	"	"
Sample ID: HTF0072-23 (B7-A-(MIC-VOC) - Solid/Soil) Sample	d: 06/15/10 10:10	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260				
cis-1,2-Dichloroethene ND ug/kg 4.05 8.11 5	50 06/17/10 14:38	06/17/10	10F0110	EPA 8260
trans-1,2-Dichloroethene ND " 4.05 8.11	" "	"	"	"
Trichloroethene 16.1 " 4.05 8.11	" "	"	"	"
Vinyl chloride 29.2 " 5.51 16.2	" "	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%) 103 %	"	"	"	"

737 Bishop st., Suite 3010

Scott Duzan

Honolulu, HI 96813

HTF0072 06/15/10 Work Order: Received:

Reported: 06/30/10 17:39

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0072-23 (B7-A-(MIC	C-VOC) - Solic	d/Soil) - cont.			Samj	pled:	06/15/10 10:10	Re	cvd: 06/15/	10 17:33
Sample ID: HTF0072-24 (B33-A-(M	,	id/Soil)			Sam	pled:	06/15/10 10:12	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82										
cis-1,2-Dichloroethene	ND		ug/kg	4.78	9.56	50	06/17/10 15:03	06/17/10	10F0110	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.78	9.56	"	"	"	"	"
Trichloroethene	18.0		"	4.78	9.56	"	"	"	"	"
Vinyl chloride	24.2		"	6.50	19.1	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	97 %						"	"	"	"
Sample ID: HTF0072-25 (B34-A-(MI		id/Soil)			Samj	pled:	06/15/10 10:14	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82			_							
cis-1,2-Dichloroethene	ND		ug/kg	5.03	10.1	50	06/17/10 15:28	06/17/10	10F0110	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.03	10.1	"	"	"	"	"
Trichloroethene	21.8		"	5.03	10.1	"	"	"	"	"
Vinyl chloride	13.0	J	"	6.84	20.1	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	96 %						"	"	"	"
Sample ID: HTF0072-26 (B7-B-(MIC		l/Soil)			Samj	pled:	06/15/10 10:22	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82										
cis-1,2-Dichloroethene	103		ug/kg	3.84	7.67	50	06/17/10 15:53	06/17/10	10F0110	EPA 8260
trans-1,2-Dichloroethene	ND		"	3.84	7.67	"	"	"	"	"
Vinyl chloride	6.58	J	"	5.22	15.3	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	100 %						"	"	"	"
Sample ID: HTF0072-26RE1 (B7-B-	` ,	Solid/Soil)			Samj	pled:	06/15/10 10:22	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82										
Trichloroethene	675		"	19.2	38.4	250	06/18/10 12:55	06/18/10	10F0133	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	94 %						"	"	"	"
Sample ID: HTF0072-27 (B33-B-(MI		id/Soil)			Sam	pled:	06/15/10 10:24	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82			Л	4.02	0.07	50	06/17/10 16 10	06/17/10	1000110	EDA 92/0
cis-1,2-Dichloroethene	109		ug/kg "	4.93	9.87	50	06/17/10 16:18	06/17/10	10F0110	EPA 8260
trans-1,2-Dichloroethene	ND	_		4.93	9.87	"			"	
Vinyl chloride	8.79	J	"	6.71	19.7	"	"			
Surr: 1,2-Dichloroethane-d4 (80-120%)	97 %						"	"	"	"
Sample ID: HTF0072-27RE1 (B33-B	. ,	- Solid/Soil)			Sam	pled:	06/15/10 10:24	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82			"		40.	400	0.5/4.0/4.0.4.0.00	0.5/4.0/4.0	4070444	
Trichloroethene	662		"	9.87	19.7	100	06/18/10 13:20	06/18/10	10F0133	,,
Surr: 1,2-Dichloroethane-d4 (80-120%)	92 %						"	"	"	,
Sample ID: HTF0072-28 (B34-B-(MI		id/Soil)			Samj	pled:	06/15/10 10:26	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82										
cis-1,2-Dichloroethene	102		ug/kg	5.35	10.7	50	06/17/10 16:43	06/17/10	10F0110	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.35	10.7	"	"	"	"	"
Vinyl chloride	ND		"	7.28	21.4	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	100 %						"	"	"	"

Honolulu, HI 96813

Scott Duzan

Work Order: HTF0072

Received: 06/15/10 Reported: 06/30/10 17:39

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

		AIN	ALYTICA	AL KEPU	KI					
Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0072-28 (B34-B-(M	IC-VOC) - Sol	lid/Soil) - cont.			Sam	pled:	06/15/10 10:26	Re	cvd: 06/15/	10 17:33
Sample ID: HTF0072-28RE1 (B34-B	B-(MIC-VOC)	- Solid/Soil)			Sam	pled:	06/15/10 10:26	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82	260									
Trichloroethene	633		"	10.7	21.4	100	06/18/10 13:46	06/18/10	10F0133	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	96 %						"	"	"	"
Sample ID: HTF0072-29 (B7-C-(MI	C-VOC) - Soli	d/Soil)			Sam	pled:	06/15/10 10:30	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82										
cis-1,2-Dichloroethene	179		ug/kg	4.72	9.43	50	06/17/10 17:09	06/17/10	10F0110	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.72	9.43	"	"	"	"	"
Vinyl chloride	ND		"	6.41	18.9	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	96 %						"	"	"	"
Sample ID: HTF0072-29RE1 (B7-C-		Solid/Soil)			Sam	pled:	06/15/10 10:30	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82			,,	22.6	47.2	250	06/19/10 14-11	06/19/10	1000122	,,
Trichloroethene	1190			23.6	47.2	250	06/18/10 14:11	06/18/10	10F0133	,,
Surr: 1,2-Dichloroethane-d4 (80-120%)	94 %							,	,	
Sample ID: HTF0072-30 (B33-C-(M Volatile Organic Compounds by EPA 82		lid/Soil)			Sam	pled:	06/15/10 10:32	Re	cvd: 06/15/	10 17:33
cis-1,2-Dichloroethene	166		ug/kg	5.73	11.5	50	06/17/10 17:34	06/17/10	10F0110	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.73	11.5	"	"	"	"	"
Vinyl chloride	ND		"	7.80	22.9	,,	,,	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	101 %			7.00	22.7		"	"	"	"
Sample ID: HTF0072-30RE1 (B33-C	C-(MIC-VOC)	- Solid/Soil)			Sam	pled:	06/15/10 10:32	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82		,				1				
Trichloroethene	1030		"	28.7	57.3	250	06/18/10 14:36	06/18/10	10F0133	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	95 %						"	"	"	"
Sample ID: HTF0072-31 (B34-C-(M		lid/Soil)			Sam	pled:	06/15/10 10:34	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82										
cis-1,2-Dichloroethene	138		ug/kg	5.32	10.6	50	06/17/10 18:00	06/17/10	10F0110	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.32	10.6	"	"	"	"	"
Vinyl chloride	ND		"	7.23	21.3	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	100 %						"	"	"	"
Sample ID: HTF0072-31RE1 (B34-C Volatile Organic Compounds by EPA 82	. ,	- Solid/Soil)			Sam	pled:	06/15/10 10:34	Re	evd: 06/15/	10 17:33
Trichloroethene	200 876		,,	26.6	53.2	250	06/18/10 15:01	06/18/10	10F0133	,,
Surr: 1,2-Dichloroethane-d4 (80-120%)	99 %			20.0	33.2	230	"	"	"	"
Sample ID: HTF0072-32 (B7-D-(MIC	C-VOC) - Soli	d/Soil)			Sam	nled•	06/15/10 10:42	Re	evd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82		M SUII)			Saill	picu.	00/13/10 10:42	I C	2.4. 00/10/	1011.00
cis-1,2-Dichloroethene	171		ug/kg	4.68	9.36	50	06/17/10 18:26	06/17/10	10F0110	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.68	9.36	"	"	"	"	"
Vinyl chloride	6.66	J	"	6.37	18.7	"	"	"	"	"
, ₀	••••	-		J.J.	10.,					

Honolulu, HI 96813

Scott Duzan

Work Order: HTF0072 Received: 06/15/10

Reported: 0

06/30/10 17:39

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

		AINA	ALYTICA	AL KEPU	KI					
Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0072-32 (B7-D-(MIC-V Volatile Organic Compounds by EPA 8260 -		d/Soil) - cont.			Sam	pled:	06/15/10 10:42	Rec	evd: 06/15/	10 17:33
Surr: 1,2-Dichloroethane-d4 (80-120%)	98 %						"	"	"	"
Sample ID: HTF0072-32RE1 (B7-D-(MI Volatile Organic Compounds by EPA 8260	(C-VOC) -	Solid/Soil)			Sam	pled:	06/15/10 10:42	Rec	evd: 06/15/	10 17:33
Trichloroethene	1010		"	23.4	46.8	250	06/18/10 15:26	06/18/10	10F0133	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	96 %						"	"	"	"
Sample ID: HTF0072-33 (B33-D-(MIC-Volatile Organic Compounds by EPA 8260	VOC) - Sol	lid/Soil)			Sam	pled:	06/15/10 10:44	Rec	evd: 06/15/	10 17:33
cis-1,2-Dichloroethene	179		ug/kg	5.17	10.3	50	06/17/10 18:51	06/17/10	10F0110	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.17	10.3	"	"	"	"	"
Vinyl chloride	ND		"	7.02	20.7	,,	"	"	,,	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	102 %			7.02	20.7		"	"	"	"
Sample ID: HTF0072-33RE1 (B33-D-(M	IIC-VOC)	- Solid/Soil)			Sam	pled:	06/15/10 10:44	Rec	evd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260 Trichloroethene	1070		"	25.8	51.7	250	06/18/10 15:51	06/18/10	10F0133	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	96%			23.0	31.7	230	"	"	"	"
Sample ID: HTF0072-34 (B34-D-(MIC-Volatile Organic Compounds by EPA 8260	VOC) - Sol	lid/Soil)			Sam	pled:	06/15/10 10:46	Rec	evd: 06/15/	10 17:33
cis-1,2-Dichloroethene	156		ug/kg	5.61	11.2	50	06/17/10 19:17	06/17/10	10F0110	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.61	11.2	"	"	"	"	"
Vinyl chloride	ND		"	7.62	22.4	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	99 %						"	"	"	"
Sample ID: HTF0072-34RE1 (B34-D-(M Volatile Organic Compounds by EPA 8260	IIC-VOC)	- Solid/Soil)			Sam	pled:	06/15/10 10:46	Rec	evd: 06/15/	10 17:33
Trichloroethene	956		"	28.0	56.1	250	06/18/10 16:16	06/18/10	10F0133	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	96 %						"	"	"	"
Sample ID: HTF0072-35 (B7-E-(MIC-V Volatile Organic Compounds by EPA 8260	OC) - Soli	d/Soil)			Sam	pled:	06/15/10 10:48	Rec	evd: 06/15/	10 17:33
cis-1,2-Dichloroethene	131		ug/kg	4.03	8.07	50	06/17/10 19:42	06/17/10	10F0110	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.03	8.07	"	"	"	"	,,
Vinyl chloride	ND		"	5.49	16.1	,,	"	"	,,	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	100 %			5.47	10.1		"	"	"	"
Sample ID: HTF0072-35RE1 (B7-E-(MI Volatile Organic Compounds by EPA 8260	(C-VOC) -	Solid/Soil)			Sam	pled:	06/15/10 10:48	Rec	evd: 06/15/	10 17:33
Trichloroethene	766		"	20.2	40.3	250	06/18/10 16:42	06/18/10	10F0133	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	99 %						"	"	"	"
Sample ID: HTF0072-36 (B33-E-(MIC-	VOC) - Sol	lid/Soil)			Sam	pled:	06/15/10 10:50	Rec	evd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260	144		/1	4.52	0.05	50	06/17/10 22 16	06/17/10	1000111	EDA 9260
cis-1,2-Dichloroethene	144		ug/kg	4.53	9.05	50	06/17/10 22:16	06/17/10	10F0111	EPA 8260

737 Bishop st., Suite 3010

Honolulu, HI 96813

Scott Duzan

Work Order: HTF0072 Received: 06/15/10

Reported: 06/30/10 17:39

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0072-36 (B33-E-(MI	IC-VOC) - Sol	id/Soil) - cont.			Samj	pled:	06/15/10 10:50	Re	evd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82	60 - cont.									
trans-1,2-Dichloroethene	ND		"	4.53	9.05	"	"	"	"	"
Vinyl chloride	ND		"	6.16	18.1	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	105 %						"	"	"	"
Sample ID: HTF0072-36RE1 (B33-E Volatile Organic Compounds by EPA 82		- Solid/Soil)			Samj	pled:	06/15/10 10:50	Re	cvd: 06/15/	10 17:33
Trichloroethene	801		"	22.6	45.3	250	06/18/10 17:07	06/18/10	10F0133	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	98 %						"	"	"	"
Sample ID: HTF0072-37 (B34-E-(MI Volatile Organic Compounds by EPA 82	,	id/Soil)			Samp	pled:	06/15/10 10:52	Re	cvd: 06/15/	10 17:33
cis-1,2-Dichloroethene	121		ug/kg	4.45	8.90	50	06/17/10 22:45	06/17/10	10F0111	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.45	8.90	"	"	"	"	"
Vinyl chloride	ND		"	6.05	17.8	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	103 %						"	"	"	"
Sample ID: HTF0072-37RE1 (B34-E Volatile Organic Compounds by EPA 82	` ,	- Solid/Soil)			Sam	pled:	06/15/10 10:52	Re	evd: 06/15/	10 17:33
Trichloroethene	723		"	22.3	44.5	250	06/18/10 17:33	06/18/10	10F0133	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	100 %						"	"	"	"
Sample ID: HTF0072-38 (B7-F-(MIC Volatile Organic Compounds by EPA 82		l/Soil)			Samı	pled:	06/15/10 10:56	Re	cvd: 06/15/	10 17:33
cis-1,2-Dichloroethene	6.99	J	ug/kg	5.70	11.4	50	06/17/10 23:10	06/17/10	10F0111	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.70	11.4	"	"	"	"	"
Vinyl chloride	ND		"	7.75	22.8	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	105 %						"	"	"	"
Sample ID: HTF0072-38RE1 (B7-F-(Volatile Organic Compounds by EPA 82		Solid/Soil)			Samj	pled:	06/15/10 10:56	Re	cvd: 06/15/	10 17:33
Trichloroethene	46.4		"	5.70	11.4	50	06/18/10 17:58	06/18/10	10F0133	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	100 %						"	"	"	"
Sample ID: HTF0072-39 (B33-F-(MI Volatile Organic Compounds by EPA 82		id/Soil)			Sam	pled:	06/15/10 10:58	Re	evd: 06/15/	10 17:33
cis-1,2-Dichloroethene	7.33	J	ug/kg	4.95	9.89	50	06/17/10 23:36	06/17/10	10F0111	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.95	9.89	"	"	"	"	"
Vinyl chloride	6.83	J	"	6.73	19.8	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	104 %						"	"	"	"
Sample ID: HTF0072-39RE1 (B33-F Volatile Organic Compounds by EPA 82		- Solid/Soil)			Samı	pled:	06/15/10 10:58	Re	cvd: 06/15/	10 17:33
Trichloroethene	50.3		"	4.95	9.89	50	06/18/10 18:24	06/18/10	10F0133	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	105 %						"	"	"	"
Sample ID: HTF0072-40 (B34-F-(MI	[C-VOC) - Soli	id/Soil)			Samj	pled:	06/15/10 11:00	Re	cvd: 06/15/	10 17:33

06/15/10

06/30/10 17:39

Tetra Tech EM Inc. Work Order: HTF0072 Received:

737 Bishop st., Suite 3010

Reported:

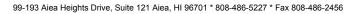
Honolulu, HI 96813 Project: Subsurface Soil Investigation (MIS-VOCs)

Scott Duzan Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0072-40 (B34-F-(MIC-	VOC) - Sol	id/Soil) - cont.			Samı	oled:	06/15/10 11:00	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260										
cis-1,2-Dichloroethene	ND		ug/kg	5.19	10.4	50	06/18/10 00:02	06/17/10	10F0111	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.19	10.4	"	"	"	"	"
Vinyl chloride	ND		"	7.06	20.8	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	102 %						"	"	"	"
Sample ID: HTF0072-40RE1 (B34-F-(N Volatile Organic Compounds by EPA 8260	IIC-VOC)	- Solid/Soil)			Samı	oled:	06/15/10 11:00	Re	cvd: 06/15/	10 17:33
Trichloroethene	32.8		"	5.19	10.4	50	06/18/10 18:50	06/18/10	10F0133	,,
Surr: 1,2-Dichloroethane-d4 (80-120%)	103 %			3.19	10.4	50	"	"	"	"
Sample ID: HTF0072-41 (B7-G-(MIC-V	/OC) - Solid	d/Soil)			Sami	ıled•	06/15/10 11:10	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260	00) 501				Sum	,ıcu.	00/12/10 11:10			
cis-1,2-Dichloroethene	ND		ug/kg	2.95	5.90	50	06/18/10 00:27	06/17/10	10F0111	EPA 8260
trans-1,2-Dichloroethene	ND		"	2.95	5.90	"	"	"	"	"
Vinyl chloride	ND		"	4.01	11.8	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	102 %						"	"	"	"
Sample ID: HTF0072-41RE1 (B7-G-(M Volatile Organic Compounds by EPA 8260	IC-VOC) -	Solid/Soil)			Samp	oled:	06/15/10 11:10	Re	cvd: 06/15/	10 17:33
Trichloroethene	ND		"	2.95	5.90	50	06/18/10 19:16	06/18/10	10F0133	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	104 %						"	"	"	"
Sample ID: HTF0072-42 (B33-G-(MIC-Volatile Organic Compounds by EPA 8260	VOC) - Sol	id/Soil)			Samı	oled:	06/15/10 11:12	Re	cvd: 06/15/	10 17:33
cis-1,2-Dichloroethene	ND		ug/kg	4.47	8.95	50	06/18/10 00:53	06/17/10	10F0111	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.47	8.95	"	"	"	"	"
Vinyl chloride	ND		"	6.08	17.9	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	103 %						"	"	"	"
Sample ID: HTF0072-42RE1 (B33-G-(Note the Companie Companie Apr. ERA 8260	AIC-VOC)	- Solid/Soil)			Samp	oled:	06/15/10 11:12	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260 Trichloroethene	ND		"	4.47	8.95	50	06/18/10 19:42	06/18/10	10F0133	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	104 %			7.7/	0.75	30	"	"	"	"
Sample ID: HTF0072-43 (B34-G-(MIC-Volatile Organic Compounds by EPA 8260	VOC) - Sol	id/Soil)			Samj	oled:	06/15/10 11:14	Re	cvd: 06/15/	10 17:33
cis-1,2-Dichloroethene	ND		ug/kg	5.67	11.3	50	06/18/10 01:18	06/17/10	10F0111	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.67	11.3	"	"	"	"	"
Vinyl chloride	ND		"	7.71	22.7	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	105 %						"	"	"	"
Sample ID: HTF0072-43RE1 (B34-G-(N	MIC-VOC)	- Solid/Soil)			Samp	oled:	06/15/10 11:14	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260	ND		"	5.77	11.2	50	06/19/10 20 07	06/10/10	1000122	,
Trichloroethene	ND			5.67	11.3	50	06/18/10 20:07	06/18/10	10F0133	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	104 %						"	"	"	,,

HTF0072 Work Order:

06/15/10 Received: Reported: 06/30/10 17:39


737 Bishop st., Suite 3010 Honolulu, HI 96813

Subsurface Soil Investigation (MIS-VOCs)

Project: Scott Duzan

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0072-44 (B5-A-(MIC-V	VOC) - Solic	d/Soil)			Samj	pled:	06/15/10 11:24	Re	evd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260										
cis-1,2-Dichloroethene	20.3		ug/kg	4.93	9.87	50	06/18/10 01:44	06/17/10	10F0111	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.93	9.87	"	"	"	"	"
Vinyl chloride	7.03	J	"	6.71	19.7	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	107 %						"	"	"	"
Sample ID: HTF0072-44RE1 (B5-A-(M	IIC-VOC) -	Solid/Soil)			Samp	pled:	06/15/10 11:24	Re	evd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260										
Trichloroethene	ND		"	4.93	9.87	50	06/18/10 20:33	06/18/10	10F0133	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	102 %						"	"	"	"
Sample ID: HTF0072-45 (B35-A-(MIC-Volatile Organic Compounds by EPA 8260		id/Soil)			Samp	pled:	06/15/10 11:26	Re	evd: 06/15/	10 17:33
cis-1,2-Dichloroethene	20.9		ug/kg	4.02	8.04	50	06/18/10 02:10	06/17/10	10F0111	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.02	8.04	"	"	"	"	"
Vinyl chloride	17.3		"	5.47	16.1	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	101 %						"	"	"	"
Sample ID: HTF0072-45RE1 (B35-A-(Notatile Organic Compounds by EPA 8260	,	- Solid/Soil)			Samp	pled:	06/15/10 11:26	Re	evd: 06/15/	10 17:33
Trichloroethene	ND		"	4.02	8.04	50	06/18/10 20:59	06/18/10	10F0133	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	104 %						"	"	"	"
Sample ID: HTF0072-46 (B36-A-(MIC-	-VOC) - Sol	id/Soil)			Samj	pled:	06/15/10 11:28	Re	evd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260										
cis-1,2-Dichloroethene	21.1		ug/kg	4.67	9.33	50	06/18/10 02:35	06/17/10	10F0111	EPA 8260
Vinyl chloride	9.27	J	"	6.35	18.7	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	107 %						"	"	"	"
Sample ID: HTF0072-46RE1 (B36-A-(N		- Solid/Soil)			Samp	pled:	06/15/10 11:28	Re	evd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260										
cis-1,2-Dichloroethene	20.2		"	4.67	9.33	50	06/18/10 23:32	06/18/10	10F0134	"
Trichloroethene	ND		"	4.67	9.33	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	99 %						"	"	"	"
Sample ID: HTF0072-47 (B5-B-(MIC-Volatile Organic Compounds by EPA 8260		l/Soil)			Samp	pled:	06/15/10 11:34	Rec	evd: 06/15/	10 17:33
cis-1,2-Dichloroethene	ND		ug/kg	5.22	10.4	50	06/18/10 03:01	06/17/10	10F0111	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.22	10.4	"	"	"	"	"
Vinyl chloride	24.2		"	7.10	20.9	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	107 %						"	"	"	"
Sample ID: HTF0072-47RE1 (B5-B-(M	IIC-VOC) -	Solid/Soil)			Samj	pled:	06/15/10 11:34	Re	evd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260										
Trichloroethene	ND		"	5.22	10.4	50	06/18/10 23:58	06/18/10	10F0134	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	97 %						"	"	"	"

HTF0072 Work Order:

Received:

06/15/10 Reported: 06/30/10 17:39

Subsurface Soil Investigation (MIS-VOCs) Project:

Honolulu, HI 96813

Scott Duzan

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0072-48 (B35-B-(MIC	C-VOC) - Soli	id/Soil)			Samj	oled:	06/15/10 11:36	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260)									
cis-1,2-Dichloroethene	ND		ug/kg	5.03	10.1	50	06/18/10 03:26	06/17/10	10F0111	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.03	10.1	"	"	"	"	"
Vinyl chloride	27.2		"	6.84	20.1	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	102 %						"	"	"	"
Sample ID: HTF0072-48RE1 (B35-B-(MIC-VOC) -	Solid/Soil)			Samj	oled:	06/15/10 11:36	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260)									
Trichloroethene	ND		"	5.03	10.1	50	06/19/10 00:23	06/18/10	10F0134	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	102 %						"	"	"	"
Sample ID: HTF0072-49 (B36-B-(MIC Volatile Organic Compounds by EPA 8260	-	id/Soil)			Samp	oled:	06/15/10 11:38	Re	cvd: 06/15/	10 17:33
cis-1,2-Dichloroethene	ND		ug/kg	5.13	10.3	50	06/18/10 03:52	06/17/10	10F0111	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.13	10.3	"	"	"	"	"
Vinyl chloride	16.4	J	"	6.98	20.5	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	103 %						"	"	"	"
Sample ID: HTF0072-49RE1 (B36-B-(Volatile Organic Compounds by EPA 8260		Solid/Soil)			Samp	oled:	06/15/10 11:38	Re	cvd: 06/15/	10 17:33
Trichloroethene	ND		"	5.13	10.3	50	06/19/10 00:49	06/18/10	10F0134	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	100 %						"	"	"	"
Sample ID: HTF0072-50 (B5-C-(MIC-	·VOC) - Solic	l/Soil)			Samj	oled:	06/15/10 11:40	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260)									
cis-1,2-Dichloroethene	18.2		ug/kg	4.81	9.61	50	06/18/10 04:17	06/17/10	10F0111	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.81	9.61	"	"	"	"	"
Vinyl chloride	24.6		"	6.54	19.2	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	103 %						"	"	"	"
Sample ID: HTF0072-50RE1 (B5-C-(N Volatile Organic Compounds by EPA 8260	,	Solid/Soil)			Samp	pled:	06/15/10 11:40	Re	cvd: 06/15/	10 17:33
Trichloroethene	ND		"	4.81	9.61	50	06/19/10 01:14	06/18/10	10F0134	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	105 %						"	"	"	"
Sample ID: HTF0072-51 (B35-C-(MIC Volatile Organic Compounds by EPA 8260		id/Soil)			Samj	oled:	06/15/10 11:42	Re	cvd: 06/15/	10 17:33
cis-1,2-Dichloroethene	27.3		ug/kg	4.62	9.25	50	06/18/10 04:43	06/17/10	10F0111	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.62	9.25	"	"	"	"	"
Vinyl chloride	32.1		"	6.29	18.5	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	107 %						"	"	"	"
Sample ID: HTF0072-51RE1 (B35-C-(Volatile Organic Compounds by EPA 8260		- Solid/Soil)			Samp	oled:	06/15/10 11:42	Re	cvd: 06/15/	10 17:33
Trichloroethene	ND		"	4.62	9.25	50	06/19/10 01:40	06/18/10	10F0134	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	103 %						"	"	"	"

Honolulu, HI 96813

Scott Duzan

Work Order:

HTF0072

Received: Reported: 06/15/10 06/30/10 17:39

Subsurface Soil Investigation (MIS-VOCs)

Project: Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0072-52 (B36-C-(MIC-	VOC) - Sol	id/Soil)			Samı	oled:	06/15/10 11:44	Re	evd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260	,	,								
cis-1,2-Dichloroethene	24.6		ug/kg	4.60	9.20	50	06/18/10 05:08	06/17/10	10F0111	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.60	9.20	"	"	"	"	"
Vinyl chloride	21.2		"	6.26	18.4	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	103 %						"	"	"	"
Sample ID: HTF0072-52RE1 (B36-C-(M	IIC-VOC)	- Solid/Soil)			Samp	oled:	06/15/10 11:44	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260										
Trichloroethene	ND		"	4.60	9.20	50	06/19/10 02:05	06/18/10	10F0134	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	101 %						"	"	"	"
Sample ID: HTF0072-53 (B5-D-(MIC-V	OC) - Soli	d/Soil)			Samp	oled:	06/15/10 11:48	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260	11.2		/1	4.70	0.57	50	06/19/10 05:24	06/17/10	1000111	EPA 8260
trans-1,2-Dichloroethene	11.3		ug/kg "	4.79	9.57	50	06/18/10 05:34	06/17/10	10F0111	EFA 6200
Vinyl chloride Surr: 1,2-Dichloroethane-d4 (80-120%)	185 104 %			6.51	19.1		"	"	"	"
Sample ID: HTF0072-53RE1 (B5-D-(MI	C-VOC) -	Solid/Soil)			Samp	oled:	06/15/10 11:48	Re	evd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene	997		"	23.9	47.9	250	06/19/10 02:31	06/18/10	10F0134	"
,	180		,,	23.9	47.9	230	00/19/10 02.31	00/16/10	1010134	"
Trichloroethene Surr: 1,2-Dichloroethane-d4 (80-120%)	102 %			23.9	47.9		"	"	"	"
Sample ID: HTF0072-54 (B35-D-(MIC-\	VOC) - Sol	id/Soil)			Sami	sled•	06/15/10 11:50	Re	evd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260	, 00, 50.	147.5011)			Samp	icu.	00/13/10 11:30		00,10,	10 17 100
cis-1,2-Dichloroethene	1150		ug/kg	28.2	56.5	250	06/19/10 03:22	06/18/10	10F0134	EPA 8260
Trichloroethene	271		"	28.2	56.5	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	98 %						"	"	"	"
Sample ID: HTF0072-54RE1 (B35-D-(M	IIC-VOC)	- Solid/Soil)			Samp	oled:	06/15/10 11:50	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260	- 0.4						0.5/24/40.4.7.7.7	0.5/04/4.0	4070449	
trans-1,2-Dichloroethene	5.91	J	,,	5.65	11.3	50	06/21/10 15:57	06/21/10	10F0143	
Vinyl chloride	231		"	7.68	22.6	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	110 %						"	"	"	
Sample ID: HTF0072-55 (B36-D-(MIC-Volatile Organic Compounds by EPA 8260	VOC) - Sol	id/Soil)			Samp	oled:	06/15/10 11:52	Re	evd: 06/15/	10 17:33
cis-1,2-Dichloroethene	942		ug/kg	20.8	41.5	250	06/19/10 04:14	06/18/10	10F0134	EPA 8260
Trichloroethene	175		"	20.8	41.5	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	100 %						"	"	"	"
Sample ID: HTF0072-55RE1 (B36-D-(M Volatile Organic Compounds by EPA 8260	IIC-VOC)	- Solid/Soil)			Samı	oled:	06/15/10 11:52	Re	cvd: 06/15/	10 17:33
trans-1,2-Dichloroethene	ND		"	4.15	8.30	50	06/21/10 16:23	06/21/10	10F0143	"
Vinyl chloride	198		"	5.65	16.6	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	115 %						"	"	"	"

Scott Duzan

Work Order: HTF0072

Received: Reported: 06/15/10 06/30/10 17:39

Honolulu, HI 96813

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

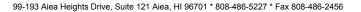
Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0072-56 (B5-E-(MIC-V	OC) - Solic	d/Soil)			Sam	pled:	06/15/10 11:54	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260										
trans-1,2-Dichloroethene	ND		ug/kg	5.08	10.2	50	06/21/10 16:48	06/21/10	10F0143	EPA 8260
Vinyl chloride	89.5		"	6.91	20.3	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	114%						"	"	"	"
Sample ID: HTF0072-56RE1 (B5-E-(MI	(C-VOC) -	Solid/Soil)			Sam	pled:	06/15/10 11:54	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260										
cis-1,2-Dichloroethene	1260		"	50.8	102	500	06/21/10 17:13	"	"	"
Trichloroethene	1400		"	50.8	102	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	113 %						"	"	"	"
Sample ID: HTF0072-57 (B35-E-(MIC-	VOC) - Sol	id/Soil)			Sam	pled:	06/15/10 11:56	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260	12.1		wa/Ira	5.12	10.2	50	06/21/10 17:20	06/21/10	10F0143	EPA 8260
trans-1,2-Dichloroethene			ug/kg "			30	06/21/10 17:39	00/21/10	1010143	EFA 8200
Vinyl chloride Surr: 1,2-Dichloroethane-d4 (80-120%)	261 129 %	Z2		6.96	20.5		"	"	"	,,
Sample ID: HTF0072-57RE1 (B35-E-(M	IIC-VOC)	- Solid/Soil)			Sampled: 06/15/10 11:56			Re	10 17:33	
Volatile Organic Compounds by EPA 8260										
cis-1,2-Dichloroethene	1500		"	51.2	102	500	06/21/10 18:04	"	"	"
Trichloroethene	1750		"	51.2	102	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	117 %						"	"	"	"
Sample ID: HTF0072-58 (B36-E-(MIC-	VOC) - Sol	id/Soil)			Sam	pled:	06/15/10 11:58	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260					40.4		0.5/24/40.40.20	0.5/0.4/4.0	4000442	ED 1 00/0
trans-1,2-Dichloroethene	7.31	J	ug/kg	5.07	10.1	50	06/21/10 18:30	06/21/10	10F0143	EPA 8260
Vinyl chloride	157		"	6.90	20.3	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	117 %						"	"	"	"
Sample ID: HTF0072-58RE1 (B36-E-(M	IIC-VOC)	- Solid/Soil)			Sam	pled:	06/15/10 11:58	Re	evd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260	1710			50.7	101	500	06/01/10 10 55	,,		,,
cis-1,2-Dichloroethene	1510		,,	50.7	101	500	06/21/10 18:55			
Trichloroethene	2660		"	50.7	101	"	"		"	,,
Surr: 1,2-Dichloroethane-d4 (80-120%)	122 %	Z2					"	"	"	
Sample ID: HTF0072-59 (B5-F-(MIC-V	OC) - Solid	l/Soil)			Sam	pled:	06/15/10 12:02	Re	evd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260 trans-1,2-Dichloroethene	ND		ug/kg	4.16	8.32	50	06/21/10 19:21	06/21/10	10F0143	EPA 8260
Vinyl chloride	70.1		ug/kg "	5.66	16.6	"	00/21/10 19.21	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	7 0.1 119 %			3.00	10.0		"	"	"	"
Sample ID: HTF0072-59RE1 (B5-F-(MI	(C-VOC) -	Solid/Soil)			Sam	nled•	06/15/10 12:02	Re	evd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260		~			Sam	picu.	J. 10/10 12:02	- 10		
cis-1,2-Dichloroethene	888		"	41.6	83.2	500	06/21/10 19:47	"	"	"
Trichloroethene	1770		"	41.6	83.2	"	"	"	"	"
	2.70									

737 Bishop st., Suite 3010

Honolulu, HI 96813 Scott Duzan

Work Order:

HTF0072


Received:

06/15/10 06/30/10 17:39

Reported: Subsurface Soil Investigation (MIS-VOCs) Project:

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0072-60 (B35-F-(MI	C-VOC) - Soli	d/Soil)			Sam	pled:	06/15/10 12:04	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82	60									
trans-1,2-Dichloroethene	ND		ug/kg	5.41	10.8	50	06/21/10 20:12	06/21/10	10F0143	EPA 8260
Vinyl chloride	111		"	7.36	21.6	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	120 %						"	"	"	"
Sample ID: HTF0072-60RE1 (B35-F-	-(MIC-VOC) -	Solid/Soil)			Samj	pled:	06/15/10 12:04	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82	60									
cis-1,2-Dichloroethene	1310		"	54.1	108	500	06/21/10 20:38	"	"	"
Trichloroethene	2610		"	54.1	108	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	119 %						"	"	"	"
Sample ID: HTF0072-61 (B36-F-(MI Volatile Organic Compounds by EPA 82		d/Soil)			Samj	pled:	06/15/10 12:06	Re	cvd: 06/15/	10 17:33
trans-1,2-Dichloroethene	ND		ug/kg	5.21	10.4	50	06/21/10 21:03	06/21/10	10F0143	EPA 8260
Vinyl chloride	72.8		"	7.08	20.8	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	116 %						"	"	"	"
Sample ID: HTF0072-61RE1 (B36-F-Volatile Organic Compounds by EPA 82	,	Solid/Soil)			Samı	pled:	06/15/10 12:06	Re	cvd: 06/15/	10 17:33
cis-1,2-Dichloroethene	998		"	52.1	104	500	06/21/10 21:29	"	"	"
Trichloroethene	2080		"	52.1	104	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	119 %						"	"	"	"
Sample ID: HTF0072-62 (B5-G-(MIC	C-VOC) - Solid	I/Soil)			Samı	oled:	06/15/10 12:18	Re	evd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82	,	,								
trans-1,2-Dichloroethene	ND		ug/kg	4.80	9.60	50	06/21/10 21:55	06/21/10	10F0143	EPA 8260
Vinyl chloride	40.2		"	6.53	19.2	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	117 %						"	"	"	"
Sample ID: HTF0072-62RE1 (B5-G-	(MIC-VOC) -	Solid/Soil)			Samj	pled:	06/15/10 12:18	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82	60									
cis-1,2-Dichloroethene	559		"	48.0	96.0	500	06/21/10 22:21	"	"	"
Trichloroethene	868		"	48.0	96.0	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	117 %						"	"	"	"
Sample ID: HTF0072-63 (B35-G-(MI Volatile Organic Compounds by EPA 82		id/Soil)			Sam	pled:	06/15/10 12:20	Re	cvd: 06/15/	10 17:33
trans-1,2-Dichloroethene	ND		ug/kg	4.71	9.42	50	06/21/10 22:46	06/21/10	10F0143	EPA 8260
Vinyl chloride	42.9		"	6.41	18.8	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	116 %						"	"	"	"
Sample ID: HTF0072-63RE1 (B35-G		- Solid/Soil)			Samj	pled:	06/15/10 12:20	Re	evd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82			"	47.1	04.2	500	06/21/10 22:12	,,	"	"
cis-1,2-Dichloroethene	591		"	47.1	94.2	500	06/21/10 23:12		,,	,
Trichloroethene	892		"	47.1	94.2	"				
Surr: 1,2-Dichloroethane-d4 (80-120%)	117 %						"	"	"	"

737 Bishop st., Suite 3010

Honolulu, HI 96813 Scott Duzan Work Order: HTF0072 Re

Received: 06/15/10

Reported: 0

06/30/10 17:39

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

ANALYTICAL REPORT

Result	Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
-VOC) - Sol	lid/Soil)			Sam	pled:	06/15/10 12:22	Re	cvd: 06/15/	10 17:33
ND		ug/kg	3.90	7.80	50	06/21/10 23:38	06/21/10	10F0143	EPA 8260
40.0		"	5.30	15.6	"	"	"	"	"
123 %	Z2					"	"	"	"
MIC-VOC)	- Solid/Soil)			Sam	pled:	06/15/10 12:22	Re	cvd: 06/15/	10 17:33
561		"	39.0	78.0	500	06/22/10 00:03	"	"	"
885		"	39.0	78.0	"	"	"	"	"
ND		"	53.0	156	"	"	"	"	"
115 %						"	"	"	"
	id/Soil)			Samj	pled:	06/15/10 12:25	Re	cvd: 06/15/	10 17:33
		_							
									EPA 8260
ND			5.00	10.0			"		"
ND		"	5.00	10.0	"	"	"	"	"
ND		"	6.80	20.0	"	"	"	"	"
123 %	Z2					"	"	"	"
	d/Soil)			Samj	pled:	06/15/10 14:10	Re	evd: 06/15/	10 17:33
						0.5/20/4.0.00.05	0.5/04/4.0	1070111	ED 1 00 (0
									EPA 8260
ND		"	4.66	9.32	"	"	"	"	"
19.4		"	6.34	18.6	"	"	"	"	"
122 %	Z2					"	"	"	"
	d/Soil)			Samj	pled:	06/15/10 14:16	Re	evd: 06/15/	10 17:33
		nø/kø	5 99	12.0	50	06/22/10 03:31	06/21/10	10F0144	EPA 8260
		"			"	"	"	"	"
	ī	"			,,	"	,,	,,	,,
		,,			,,	,,	,,	,,	"
			6.14	23.9		"	"	"	"
123 /0	<i>L</i> 2								
	d/Soil)			Samj	pled:	06/15/10 14:18	Re	evd: 06/15/	10 17:33
44.0		ug/kg	5.03	10.1	50	06/22/10 03:57	06/21/10	10F0144	EPA 8260
ND		"	5.03	10.1	"	"	"	"	"
31.8		"	5.03		,,	"	"	"	"
		"			"	"	"	"	"
	Z2					"	,,	"	"
	ND 40.0 123 % MIC-VOC) 561 885 ND 115 % NK B5 - Sol ND ND ND ND ND ND 123 % VOC) - Solid 101 ND 7.47 18.5 123 % VOC) - Solid 101 ND 7.47 18.5 123 %	S-VOC) - Solid/Soil) ND 40.0 123 % Z2 MIC-VOC) - Solid/Soil) 561 885 ND 115 % NK B5 - Solid/Soil) ND ND ND ND ND ND ND 123 % Z2 VOC) - Solid/Soil) 19.4 122 % Z2 VOC) - Solid/Soil) 101 ND 7.47 J 18.5 J 123 % Z2 VOC) - Solid/Soil) 44.0 ND 31.8	C-VOC) - Solid/Soil) ND	P-VOC) - Solid/Soil) ND	ND	ND	ND	ND	ND

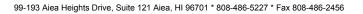
 $Sample\ ID:\ HTF0072-69\ (B6-D-(MIC-VOC)-Solid/Soil)$

Volatile Organic Compounds by EPA 8260

Recvd: 06/15/10 17:33

Sampled: 06/15/10 14:24

06/15/10


Tetra Tech EM Inc. Work Order: HTF0072 Received:

737 Bishop st., Suite 3010 Reported: 06/30/10 17:39

Honolulu, HI 96813 Project: Subsurface Soil Investigation (MIS-VOCs)

Scott Duzan Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0072-69 (B6-D-(MIC	C-VOC) - Solid	l/Soil) - cont.			Sam	pled:	06/15/10 14:24	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82										
cis-1,2-Dichloroethene	4.82	J	ug/kg	4.59	9.18	50	06/22/10 04:22	06/21/10	10F0144	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.59	9.18	"	"	"	"	"
Trichloroethene	11.4		"	4.59	9.18	"	"	"	"	"
Vinyl chloride	ND		"	6.25	18.4	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	123 %	Z2					"	"	"	"
Sample ID: HTF0072-70 (B6-E-(MIC Volatile Organic Compounds by EPA 82	,	l/Soil)			Sam	pled:	06/15/10 14:26	Re	cvd: 06/15/	10 17:33
cis-1,2-Dichloroethene	13.9		ug/kg	4.68	9.37	50	06/22/10 04:48	06/21/10	10F0144	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.68	9.37	"	"	"	"	"
Trichloroethene	18.3		"	4.68	9.37	"	"	"	"	"
Vinyl chloride	ND		"	6.37	18.7	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	119 %						"	"	"	"
Sample ID: HTF0072-71 (B6-F-(MIC	C-VOC) - Solid	l/Soil)			Sam	pled:	06/15/10 14:32	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82	60									
cis-1,2-Dichloroethene	ND		ug/kg	4.89	9.77	50	06/22/10 05:14	06/21/10	10F0144	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.89	9.77	"	"	"	"	"
Trichloroethene	ND		"	4.89	9.77	"	"	"	"	"
Vinyl chloride	ND		"	6.64	19.5	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	123 %	Z2					"	"	"	"
Sample ID: HTF0072-72 (B6-G-(MIC Volatile Organic Compounds by EPA 82		d/Soil)			Sam	pled:	06/15/10 14:40	Re	evd: 06/15/	10 17:33
trans-1,2-Dichloroethene	4.86	J	ug/kg	4.24	8.48	50	06/22/10 05:39	06/21/10	10F0144	EPA 8260
Vinyl chloride	14.2	J	"	5.77	17.0	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	124 %	Z2					"	"	"	"
Sample ID: HTF0072-72RE1 (B6-G-	(MIC-VOC) -	Solid/Soil)			Sam	pled:	06/15/10 14:40	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82	60									
cis-1,2-Dichloroethene	977		"	42.4	84.8	500	06/23/10 08:38	06/23/10	10F0147	"
Trichloroethene	486		"	42.4	84.8	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	92 %						"	"	"	"
Sample ID: HTF0072-73 (B4-A-(MIC Volatile Organic Compounds by EPA 82		l/Soil)			Sam	pled:	06/15/10 15:10	Re	cvd: 06/15/	10 17:33
cis-1,2-Dichloroethene	ND		ug/kg	5.06	10.1	50	06/22/10 06:05	06/21/10	10F0144	EPA 8260
trans-1,2-Dichloroethene	ND		ug/kg "	5.06	10.1	"	"	"	"	"
Trichloroethene	ND		"	5.06	10.1	"	"	,,	,,	"
Vinyl chloride	ND		"	6.88	20.2	"	"	,,	,,	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	119 %			0.00	20.2		"	"	"	"
Sample ID: HTF0072-74 (B4-B-(MIC		l/Soil)			Sam	pled:	06/15/10 15:20	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82 cis-1,2-Dichloroethene	6 0 ND		ug/kg	5.11	10.2	50	06/22/10 06:30	06/21/10	10F0144	EPA 8260
Cio-1,2-Dichioroculcue	ND		ug/Kg	J.11	10.2	30	00/22/10 00.30	00/21/10	101-0144	L171 0200

Work Order: H

HTF0072

Received: Reported: 06/15/10 06/30/10 17:39

Honolulu, HI 96813

Scott Duzan

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0072-74 (B4-B-(MIC	C-VOC) - Solid	l/Soil) - cont.			Sam	oled:	06/15/10 15:20	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82		,			•					
trans-1,2-Dichloroethene	ND		"	5.11	10.2	"	"	"	"	"
Trichloroethene	ND		"	5.11	10.2	"	"	"	"	"
Vinyl chloride	ND		"	6.95	20.4	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	120 %						"	"	"	"
Sample ID: HTF0072-75 (B4-C-(MIC	C-VOC) - Solic	l/Soil)			Samj	pled:	06/15/10 15:22	Re	evd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82	60									
cis-1,2-Dichloroethene	ND		ug/kg	4.63	9.25	50	06/22/10 06:55	06/21/10	10F0144	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.63	9.25	"	"	"	"	"
Trichloroethene	ND		"	4.63	9.25	"	"	"	"	"
Vinyl chloride	ND		"	6.29	18.5	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	117 %						"	"	"	"
Sample ID: HTF0072-76 (B4-D-(MIC Volatile Organic Compounds by EPA 82		l/Soil)			Samj	pled:	06/15/10 15:34	Re	evd: 06/15/	10 17:33
cis-1,2-Dichloroethene	ND		ug/kg	4.19	8.37	50	06/22/10 07:20	06/21/10	10F0144	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.19	8.37	"	"	"	"	"
Trichloroethene	ND		"	4.19	8.37	"	"	"	"	"
Vinyl chloride	ND		"	5.69	16.7	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	118 %			5.05	10.7		"	"	"	"
Sample ID: HTF0072-77 (B4-E-(MIC	C-VOC) - Solid	l/Soil)			Sam	pled:	06/15/10 15:36	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82	60				•					
cis-1,2-Dichloroethene	ND		ug/kg	5.03	10.1	50	06/22/10 07:45	06/21/10	10F0144	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.03	10.1	"	"	"	"	"
Trichloroethene	ND		"	5.03	10.1	"	"	"	"	"
Vinyl chloride	ND		"	6.83	20.1	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	120 %						"	"	"	"
Sample ID: HTF0072-78 (B4-F-(MIC		/Soil)			Samj	pled:	06/15/10 15:40	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82 cis-1,2-Dichloroethene	ND		ug/kg	4.07	8.13	50	06/22/10 08:10	06/21/10	10F0144	EPA 8260
trans-1,2-Dichloroethene	ND		ug/kg	4.07	8.13	"	00/22/10 08.10	"	"	"
Trichloroethene	ND		,,	4.07	8.13	,,	,,	,,	,,	,,
Vinyl chloride			"	5.53		,,	,,	,,	,,	,,
Surr: 1,2-Dichloroethane-d4 (80-120%)	ND 118 %			3.33	16.3		"	"	"	"
Sample ID: HTF0072-79 (B4-G-(MIC	C-VOC) - Solic	l/Soil)			Sami	oled:	06/15/10 15:46	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 82	•	,			~					
cis-1,2-Dichloroethene	ND		ug/kg	3.93	7.87	50	06/22/10 08:35	06/21/10	10F0144	EPA 8260
trans-1,2-Dichloroethene	ND		"	3.93	7.87	"	"	"	"	"
Trichloroethene	ND		"	3.93	7.87	"	"	"	"	"
Vinyl chloride	ND		"	5.35	15.7	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	118 %						"	"	"	"

Scott Duzan

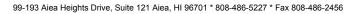
Work Order:

HTF0072

Received: Reported:

06/15/10 06/30/10 17:39

737 Bishop st., Suite 3010 Honolulu, HI 96813


Subsurface Soil Investigation (MIS-VOCs)

Project:

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

ANA	LVTI	CAL	REPORT

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0072-80 (B3-A-(MIC-V	OC) - Solic	l/Soil)			Sam	pled:	06/15/10 16:10	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260					•					
cis-1,2-Dichloroethene	ND		ug/kg	4.19	8.39	50	06/23/10 09:03	06/23/10	10F0147	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.19	8.39	"	"	"	"	"
Trichloroethene	ND		"	4.19	8.39	"	"	"	"	"
Vinyl chloride	51.6		"	5.71	16.8	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	95 %						"	"	"	"
Sample ID: HTF0072-81 (B3-B-(MIC-V	OC) - Solic	l/Soil)			Sam	pled:	06/15/10 16:14	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260										
cis-1,2-Dichloroethene	ND		ug/kg	3.93	7.85	50	06/23/10 09:30	06/23/10	10F0147	EPA 8260
trans-1,2-Dichloroethene	ND		"	3.93	7.85	"	"	"	"	"
Trichloroethene	ND		"	3.93	7.85	"	"	"	"	"
Vinyl chloride	37.0		"	5.34	15.7	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	96 %						"	"	"	"
Sample ID: HTF0072-82 (B3-C-(MIC-V	OC) - Solic	l/Soil)			Sam	pled:	06/15/10 16:16	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260										
cis-1,2-Dichloroethene	ND		ug/kg	4.76	9.51	50	06/23/10 09:56	06/23/10	10F0147	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.76	9.51	"	"	"	"	"
Trichloroethene	ND		"	4.76	9.51	"	"	"	"	"
Vinyl chloride	42.5		"	6.47	19.0	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	92 %						"	"	"	"
Sample ID: HTF0072-83 (B3-D-(MIC-V	OC) - Solid	l/Soil)			Sam	pled:	06/15/10 16:22	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene	ND		na/ka	4.66	9.32	50	06/23/10 10:21	06/23/10	10F0147	EPA 8260
trans-1,2-Dichloroethene	ND ND		ug/kg	4.66	9.32	"	00/23/10 10.21	"	"	" "
·			"			"	,,	,,	"	,,
Trichloroethene	ND		"	4.66	9.32	,,	,,	,,	,,	,,
Vinyl chloride	40.3			6.34	18.6		"	,,	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	92 %									
Sample ID: HTF0072-84 (B3-E-(MIC-V	OC) - Solic	l/Soil)			Sam	pled:	06/15/10 16:24	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260					40.0		0.5/20/40.40.45	0.5/0.0/4.0	400044	ED 1 02 (0
cis-1,2-Dichloroethene	ND		ug/kg	5.17	10.3	50	06/23/10 10:46	06/23/10	10F0147	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.17	10.3	"	"		"	
Trichloroethene	ND		"	5.17	10.3	"	"	"	"	"
Vinyl chloride	44.8		"	7.03	20.7	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	91 %						"	"	"	"
Sample ID: HTF0072-85 (B3-F-(MIC-V	OC) - Solid	l/Soil)			Sam	pled:	06/15/10 16:30	Re	cvd: 06/15/	10 17:33
Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene	ND		μα/៤α	4.04	8.07	50	06/23/10 11:11	06/23/10	10F0147	EPA 8260
	ND ND		ug/kg "		8.07	30	06/23/10 11:11	00/23/10	10F014/	EFA 8200
trans-1,2-Dichloroethene			"	4.04		"	,,	,,	,,	"
Trichloroethene	ND		"	4.04	8.07	"	,,		,,	"
Vinyl chloride	37.7			5.49	16.1		"	"	"	,,
Surr: 1,2-Dichloroethane-d4 (80-120%)	92 %						"	"	"	,,

737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan


HTF0072 06/15/10 Work Order: Received:

Reported: 06/30/10 17:39

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0072-85 (B3-F-(MIC		Samp	oled:	06/15/10 16:30	Red	evd: 06/15/	10 17:33			
Sample ID: HTF0072-86 (B3-G-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260						oled:	06/15/10 16:36	Rec	evd: 06/15/	10 17:33
cis-1,2-Dichloroethene	ND		ug/kg	5.12	10.2	50	06/23/10 11:36	06/23/10	10F0147	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.12	10.2	"	"	"	"	"
Trichloroethene	ND		"	5.12	10.2	"	"	"	"	"
Vinyl chloride	36.3		"	6.96	20.5	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	91 %						"	"	"	"

Tetra Tech EM Inc.

Work Order:

HTF0072

Received: Reported:

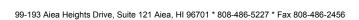
06/15/10 06/30/10 17:39

737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan

Subsurface Soil Investigation (MIS-VOCs)

Project:


Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

LABORATORY BLANK QC DATA

Sour	rce	Spike					Dup	%	Dup	% REC		RPD	
Analyte Resu	ult	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
Volatile Organic Compounds by EPA 826	60												
Batch\Seq: 10F0096 Extracted: 06/16/10													
Blank Analyzed: 06/16/2010 (10F0096-BLK)	_												
cis-1,2-Dichloroethene	-,		ug/kg	0.0500	0.100	ND							
trans-1,2-Dichloroethene			ug/kg	0.0500	0.100	ND							
Trichloroethene			ug/kg	0.0500	0.100	ND							
Vinyl chloride			ug/kg	0.0680	0.200	ND							
Surrogate: 1,2-Dichloroethane-d4			ug/kg	******	*****			99		80-120			
Batch\Seq: 10F0110 Extracted: 06/17/10													
Blank Analyzed: 06/17/2010 (10F0110-BLK)	_												
cis-1,2-Dichloroethene	-,		ug/kg	0.100	0.200	ND							
trans-1,2-Dichloroethene			ug/kg	0.100	0.200	ND							
Trichloroethene			ug/kg	0.100	0.200	ND							
Vinyl chloride			ug/kg	0.136	0.400	0.315						J	
Surrogate: 1,2-Dichloroethane-d4			ug/kg	*****		***************************************		101		80-120			
Batch\Seq: 10F0111 Extracted: 06/17/10													
Blank Analyzed: 06/17/2010 (10F0111-BLK)													
cis-1,2-Dichloroethene	-,		ug/kg	0.100	0.200	ND							
trans-1,2-Dichloroethene			ug/kg	0.100	0.200	ND							
Vinyl chloride			ug/kg	0.136	0.400	ND							
Surrogate: 1,2-Dichloroethane-d4			ug/kg	*****				104		80-120			
Batch\Seq: 10F0133 Extracted: 06/18/10													
Blank Analyzed: 06/18/2010 (10F0133-BLK)													
Trichloroethene	1)		ug/kg	0.100	0.200	ND							
Surrogate: 1,2-Dichloroethane-d4			ug/kg ug/kg	0.100	0.200	ND		96		80-120			
Surroguie. 1,2-Dictioroemane-u4			ug/kg					90		00-120			
Batch\Seq: 10F0134 Extracted: 06/18/10	_												
Blank Analyzed: 06/18/2010 (10F0134-BLK)	1)												
cis-1,2-Dichloroethene			ug/kg	0.100	0.200	ND							
Trichloroethene			ug/kg	0.100	0.200	ND							
Surrogate: 1,2-Dichloroethane-d4			ug/kg					98		80-120			
Batch\Seq: 10F0143 Extracted: 06/21/10	_												
Blank Analyzed: 06/21/2010 (10F0143-BLK)	1)												
cis-1,2-Dichloroethene			ug/kg	0.100	0.200	ND							
trans-1,2-Dichloroethene			ug/kg	0.100	0.200	ND							
Trichloroethene			ug/kg	0.100	0.200	ND							
Vinyl chloride			ug/kg	0.136	0.400	ND							
Surrogate: 1,2-Dichloroethane-d4			ug/kg					110		80-120			
Batch\Seq: 10F0144 Extracted: 06/21/10	_												
Blank Analyzed: 06/22/2010 (10F0144-BLK)	1)												
cis-1,2-Dichloroethene			ug/kg	0.100	0.200	ND							
trans-1,2-Dichloroethene			ug/kg	0.100	0.200	ND							
Trichloroethene			ug/kg	0.100	0.200	ND							
Vinyl chloride			ug/kg	0.136	0.400	ND							
Surrogate: 1,2-Dichloroethane-d4			ug/kg					120		80-120			
Datab\Sam. 10E0147 Extracted: 06/23/10													

Batch\Seq: 10F0147 Extracted: 06/23/10

Blank Analyzed: 06/23/2010 (10F0147-BLK1)

Work Order:

HTF0072

Received: Reported: 06/15/10 06/30/10 17:39

737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan

Subsurface Soil Investigation (MIS-VOCs)

Project:

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

LABORATORY BLANK QC DATA

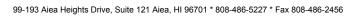
Analyte	Source Result	Spike Level	Units	MDL	MRL	Result	Dup Result	% RFC	Dup %RFC	% REC	RPD	RPD Limit	Q
Volatile Organic Compounds by EF						Result	Result	REC	70KEC	Limits	KID	Limit	<u> </u>
Batch\Seq: 10F0147 Extracted: 06/ Blank Analyzed: 06/23/2010 (10F0147	23/10												
cis-1,2-Dichloroethene	,		ug/kg	0.100	0.200	ND							
trans-1,2-Dichloroethene			ug/kg	0.100	0.200	ND							
Trichloroethene			ug/kg	0.100	0.200	ND							
Vinyl chloride			ug/kg	0.136	0.400	ND							
Surrogate: 1,2-Dichloroethane-d4			ug/kg					90		80-120			

Scott Duzan

Tetra Tech EM Inc. Work Order: HTF0072 Received: 737 Bishop st., Suite 3010 Reported:

Reported: 06/30/10 17:39

06/15/10


Honolulu, HI 96813 Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

LCS/LCS DUPLICATE QC DATA

	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Result	Level	Units	MDL	MRL	Result	Result		_	Limits	RPD	Limit	Q
Volatile Organic Compounds by EPA	A 8260												
Batch\Seq: 10F0096 Extracted: 06/10	6/10												
LCS Analyzed: 06/16/2010 (10F0096-B													
cis-1,2-Dichloroethene	,	4.00	ug/kg	0.0500	0.100	3.31		83		80-120			
trans-1,2-Dichloroethene		4.00	ug/kg	0.0500	0.100	3.84		96		80-120			
Trichloroethene		4.00	ug/kg	0.0500	0.100	3.45		86		80-120			
Vinyl chloride		4.00	ug/kg	0.0680	0.200	3.55		89		80-120			
Surrogate: 1,2-Dichloroethane-d4			ug/kg					100		80-120			
Batch\Seq: 10F0110 Extracted: 06/1	7/10												
LCS Analyzed: 06/17/2010 (10F0110-B													
cis-1,2-Dichloroethene	,	4.00	ug/kg	0.100	0.200	3.60		90		80-120			
trans-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	4.17		104		80-120			
Trichloroethene		4.00	ug/kg	0.100	0.200	3.85		96		80-120			
Vinyl chloride		4.00	ug/kg	0.136	0.400	3.37		84		80-120			
Surrogate: 1,2-Dichloroethane-d4			ug/kg					110		80-120			
Batch\Seq: 10F0111 Extracted: 06/1	7/10												
LCS Analyzed: 06/17/2010 (10F0111-B)													
cis-1,2-Dichloroethene	31)	4.00	ug/kg	0.100	0.200	3.65		91		80-120			
trans-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	4.16		104		80-120			
Vinyl chloride		4.00	ug/kg	0.136	0.400	3.97		99		80-120			
Surrogate: 1,2-Dichloroethane-d4		1.00	ug/kg	0.150	0.100	3.71		115		80-120			
_	0.4.0		********							******			
Batch\Seq: 10F0133 Extracted: 06/13													
LCS Analyzed: 06/18/2010 (10F0133-B)	S1)	4.00		0.400						00.400			
Trichloroethene		4.00	ug/kg	0.100	0.200	3.41		85		80-120			. 01
Surrogate: 1,2-Dichloroethane-d4			ug/kg					176		80-120			A-01
Batch\Seq: 10F0134 Extracted: 06/13	8/10												
LCS Analyzed: 06/18/2010 (10F0134-B)	S1)												
cis-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	3.34		83		80-120			
Trichloroethene		4.00	ug/kg	0.100	0.200	3.40		85		80-120			
Surrogate: 1,2-Dichloroethane-d4			ug/kg					101		80-120			
Batch\Seq: 10F0143 Extracted: 06/2	1/10												
LCS Analyzed: 06/21/2010 (10F0143-B)	S1)												
cis-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	4.06		102		80-120			
trans-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	4.73		118		80-120			
Trichloroethene		4.00	ug/kg	0.100	0.200	4.30		107		80-120			
Vinyl chloride		4.00	ug/kg	0.136	0.400	3.87		97		80-120			
Surrogate: 1,2-Dichloroethane-d4			ug/kg					107		80-120			
Batch\Seq: 10F0144 Extracted: 06/2	1/10												
LCS Analyzed: 06/22/2010 (10F0144-B)	S1)												
cis-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	3.86		96		80-120			
trans-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	4.33		108		80-120			
Trichloroethene		4.00	ug/kg	0.100	0.200	4.01		100		80-120			
Vinyl chloride		4.00	ug/kg	0.136	0.400	3.82		95		80-120			
Surrogate: 1,2-Dichloroethane-d4			ug/kg					109		80-120			
D 110 10011 F D 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2/10												

Batch\Seq: 10F0147 Extracted: 06/23/10 LCS Analyzed: 06/23/2010 (10F0147-BS1)

HTF0072

Received:

06/15/10

737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan

Reported:

06/30/10 17:39

Project:


Subsurface Soil Investigation (MIS-VOCs)

Work Order:

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

LCS/LCS DUPLICATE QC DATA

	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
Volatile Organic Compounds by EI	PA 8260												
Batch\Seq: 10F0147 Extracted: 06/	23/10												
LCS Analyzed: 06/23/2010 (10F0147-	BS1)												
cis-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	4.31		108		80-120			
trans-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	5.00		125		80-120		L	
Trichloroethene		4.00	ug/kg	0.100	0.200	4.64		116		80-120			
Vinyl chloride		4.00	ug/kg	0.136	0.400	3.76		94		80-120			
Surrogate: 1,2-Dichloroethane-d4			ug/kg					118		80-120			

HTF0072 Work Order:

Received:

06/15/10 Reported: 06/30/10 17:39

737 Bishop st., Suite 3010 Honolulu, HI 96813

Subsurface Soil Investigation (MIS-VOCs)

Project: Scott Duzan

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC DATA

	Source	Spike					Dup	%	Dup	% REC		RPD		
Analyte	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit		Q
Volatile Organic Compounds by	y EPA 8260													
Batch\Seq: 10F0096 Extracted:	06/16/10													
Matrix Spike Analyzed: 06/17/201		S1)		OC So	urce Sami	ole: HTF00	72-02							
cis-1,2-Dichloroethene	ND	226	ug/kg	2.83	5.66	179	177	79	78	80-120	1	30	M7	
trans-1,2-Dichloroethene	ND	226	ug/kg	2.83	5.66	200	198	88	87	80-120	1	30		
Trichloroethene	5.90	226	ug/kg	2.83	5.66	193	188	83	81	80-120	2	30		
Vinyl chloride	ND	226	ug/kg	3.85	11.3	223	217	98	96	80-120	3	30		
Surrogate: 1,2-Dichloroethane-d4			ug/kg					97	98	80-120				
Batch\Seq: 10F0110 Extracted:	06/17/10													
Matrix Spike Analyzed: 06/17/201		S1)		QC So	urce Samı	ole: HTF00	72-16							
cis-1,2-Dichloroethene	ND	177	ug/kg	4.42	8.85	162	161	92	91	80-120	1	30		
trans-1,2-Dichloroethene	ND	177	ug/kg	4.42	8.85	185	180	105	102	80-120	3	30		
Trichloroethene	ND	177	ug/kg	4.42	8.85	177	167	100	94	80-120	6	30		
Vinyl chloride	ND	177	ug/kg	6.02	17.7	214	200	121	113	80-120	7	30	M7	
Surrogate: 1,2-Dichloroethane-d4			ug/kg					112	114	80-120				
Batch\Seq: 10F0111 Extracted:	06/17/10													
Matrix Spike Analyzed: 06/18/201	10 (10F0111-M	S1)		QC So	urce Samp	ole: HTF00	72-36							
cis-1,2-Dichloroethene	144	181	ug/kg	4.53	9.05	299	313	86	93	80-120	5	30		
trans-1,2-Dichloroethene	ND	181	ug/kg	4.53	9.05	177	187	98	103	80-120	5	30		
Vinyl chloride	ND	181	ug/kg	6.16	18.1	221	227	122	125	80-120	2	30	M7	
Surrogate: 1,2-Dichloroethane-d4			ug/kg					110	115	80-120				
Batch\Seq: 10F0133 Extracted:	06/18/10													
Matrix Spike Analyzed: 06/18/201	10 (10F0133-M	S1)		QC So	urce Samp	ole: HTF00	72-38RE1							
Trichloroethene	46.4	228	ug/kg	5.70	11.4	260	246	94	87	80-120	6	30		
Surrogate: 1,2-Dichloroethane-d4			ug/kg					111	105	80-120				
Batch\Seq: 10F0134 Extracted:	06/18/10													
Matrix Spike Analyzed: 06/19/201	10 (10F0134-M	S1)		QC So	urce Samp	ole: HTF00	72-46RE1							
cis-1,2-Dichloroethene	20.2	187	ug/kg	4.67	9.33	170	171	80	81	80-120	0	30		
Trichloroethene	ND	187	ug/kg	4.67	9.33	153	160	82	86	80-120	5	30		
Surrogate: 1,2-Dichloroethane-d4			ug/kg					101	101	80-120				
Batch\Seq: 10F0143 Extracted:														
Matrix Spike Analyzed: 06/22/201	`				-	ole: HTF00								
cis-1,2-Dichloroethene	1260	2050	ug/kg	51.2	102	3020	3310	86	100	80-120	9	30		
trans-1,2-Dichloroethene	ND	2050	ug/kg	51.2	102	2190	2360	107	115	80-120	8	30		
Trichloroethene	1400	2050	ug/kg	51.2	102	3210	3560	89	105	80-120	10	30		
Vinyl chloride	706	2050	ug/kg	69.6	205	2060	2240	66	75	80-120	8	30	M7	
Surrogate: 1,2-Dichloroethane-d4			ug/kg					106	112	80-120				
Batch\Seq: 10F0144 Extracted:														
Matrix Spike Analyzed: 06/22/201	•		ñ		-	ole: HTF00				00.150		2.0		
cis-1,2-Dichloroethene	85.1	186	ug/kg	4.66	9.32	254	255	90	91	80-120	1	30		
trans-1,2-Dichloroethene	ND	186	ug/kg	4.66	9.32	195	195	105	105	80-120	0	30		
Trichloroethene	ND	186	ug/kg	4.66	9.32	253	232	135	125	80-120	8	30	M7	
Vinyl chloride	19.4	186	ug/kg	6.34	18.6	240	216	118	105	80-120	11	30		
Surrogate: 1,2-Dichloroethane-d4			ug/kg					103	104	80-120				
Ratch\Sea: 10F0147 Extracted:	06/23/10													

Batch\Seq: 10F0147 Extracted: 06/23/10

Matrix Spike Analyzed: 06/23/2010 (10F0147-MS1)

QC Source Sample: HTF0072-80

Work Order:

HTF0072

Received: Reported:

06/15/10 06/30/10 17:39

737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan

Subsurface Soil Investigation (MIS-VOCs)

Project:

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC DATA

	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
Volatile Organic Compounds by E	PA 8260												
Batch\Seq: 10F0147 Extracted: 00	5/23/10												
Matrix Spike Analyzed: 06/23/2010	(10F0147-M	S1)		QC So	urce Samp	le: HTF00	72-80						
cis-1,2-Dichloroethene	ND	168	ug/kg	4.19	8.39	182	175	108	104	80-120	4	30	
trans-1,2-Dichloroethene	ND	168	ug/kg	4.19	8.39	208	201	124	120	80-120	4	30	M7
Trichloroethene	ND	168	ug/kg	4.19	8.39	230	213	137	127	80-120	7	30	M7
Vinyl chloride	51.6	168	ug/kg	5.71	16.8	191	188	83	81	80-120	2	30	
Surrogate: 1,2-Dichloroethane-d4			ug/kg					118	112	80-120			

99-193 Aiea Heights Drive, Suite 121 Aiea, HI 96701 * 808-486-5227 * Fax 808-486-2456

Tetra Tech EM Inc. Work Order: HTF0072 Received: 06/15/10

737 Bishop st., Suite 3010 Reported: 06/30/10 17:39

Honolulu, HI 96813 Project: Subsurface Soil Investigation (MIS-VOCs)

Scott Duzan Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

CERTIFICATION SUMMARY

TestAmerica Honolulu

Method	Matrix	Nelac	Hawaii
EPA 600/R-03/027	Solid/Soil		

EPA 8260 Solid/Soil X

 $For information \ concerning \ certifications \ of \ this \ facility \ or \ another \ TestAmerica \ facility, \ please \ visit \ our \ website \ at \ www. TestAmericaInc.com$

DATA QUALIFIERS AND DEFINITIONS

The state of the s
(L) and greater than or equal to the Method
s of limited reliability.
overy was above the acceptance limits. Analyte
CS).
s of limited reliability. overy was above the acceptance limits. A

ADDITIONAL COMMENTS

Honolulu

rev1a

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900

ļ LABORATORY U AB JOB NO. HTFOOT CONTAINERS LOCATION

Laboratory ID no. 9 9 S 80-3 TES 200 ndidate analyses requested Total Organic Carbon Srain Size Saturated Zone Moisture Content Chain of Custody / Analysis Request Form Adose Zone Moisture Content 8560B-SIM X containers 808-486-LABS (5227) • Fax 808-486-2456 No. of 多是 848 885 846 ОЪЗо 828 828 828 0830 əmiT Job name: Hickam AFB CG110 ISM VOC Study Sampling MeOH 6-15-10 Project identification Date MeOH MeOH МеОН MeOH MeOH MeOH MeOH MeOH Job number: 103DS148843,H0301 werpog Preservation scott.duzan@tetratech.com Orpet IIO bilo2 biupid Contact email address: Sindge Drinking water Vaslewater × × X × × × lio2 Nater а∧яэ × × \times × × × \times \times \times ZIP: 96813 Report to: Scott Duzan, scott.duzan@tetratech.com # samples in shipment THE LEADER IN ENVIRONMENTAL TESTING Client sample ID State: H Address: 737 Bishop Street, Suite 3010 (MIC- VOC.) MIC - VOC. . (MIL - Vec. - B - / MIC - VOC BB - B - (M16-401) Eax 1832 - A - [MIC-VOI] B31-A-(MI(-10) BB-A-(MIC-VIC Company name: Tetra Tech EMI Fio Blank Phone: 808.441.6645 837 - B) **B**3 **B3**1 City: Honolulu 88 Sampler: SD <u>ග</u>

tem no:

Please check one: ♣ Dispose by lab☐ Return to client☐ Archive Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl chloride

22008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc. Distribution: COC REV 04/2008

White - TestAmerica

Yellow - TestAmerica

Pink - Client

Page

いったなか/wil

10/12/p

TestAmerica

中本を

(print / sign)

Delivery method

Date / time

(prin / sign)

Scott Duzan

4.15.10 / 1733 Hand

MeOH

×

 \times

1- CMIC-10C

037-0

5

5 9 Condition noted

Date / time

Company / Agency

J.

rev1a

THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

NLY			
LABORATORY U	LAB JOB NO. HTFOD72	LOCATION	CONTAINERS

Client Sample ID Mission Size H X Continue Hickory December Continue Con	to: Scott Duz	Report to: Scott Duzan, scott duzan@tetratech.com	Chain of	Chain of Custody / Analysis Request Form	/ Analys	is Rec	dnest	For	٦	-	CONTAINERS	Control of the Contro
AFB CG110 ISM VOC Study 148843, H0301 148843, H0301 148843, H0301 15				Project ider	ntification				ndidate	ana	yses requested	
148843.H0301	Tetra	Tech EMI	Job name: HiCK		ISM VOC Sto	Áþr	Γ) i			
Tatech.com MeOH Condition note Co	Sishor	5 Street, Suite 3010	. Job number: 103	3DS148843.H030	01			juə:	neju			
tratech, com tratech, com tratech, com tratech, com we on the trace and company Agency we on the trace and company Agency trace and trace an	ם							TuoO	၁၅ ခ.			
MeOH (1916 X X Section MeOH MeOH MeOH MeOH MeOH MeOH MeOH MeOH	41.66		Contact email add	lress:				fure	nistur	uo		
Sampling Sampling		# samples in shipment						sioM :	oM ən	: Carb	±17-101-00-00-00-00-00-00-00-00-00-00-00-00	
MeOH CONGISTION MeOH MeOH CONGISTION MeOH MeOH CONGISTION MeOH				×	Samp	guile	<i>\</i>					
меон 6-15-10 0856 1 X HFF0072 меон 0900 1 X HFF0072 меон 0906 1 X HFF0072		Client sample ID	GRAB Water Soil Wastewater	Sjudge Liquid Solid Oil Other			containers			 		-
меон 0900 X 111.0 меон 0904 X 111.0 меон 0904 1 X 111.0 меон 0906 1 X 111.0	-0-	(MIC-VOL)		Me		55/80	3 ×		┩~			Laboratory IU no.
меон 0900 X 6900 X 7	- D-			Me		38	<u>ر ×</u>					11 7 20 11 11
MeOH 0902 I X I MeOH 0906 I X I MeOH 0906 I X I MeOH X I X I MeOH CONF X I X I MeOH CONG X I X I MeOH CONG I X I X I MeOH CONG I X I I X I MeOH CONG I X I I X I MeOH CONG I X I I X I I X I I I X I I X I	0-	- (MIC-VOC)		MeC	玉	0060	× -					1 4
MeOH 0904 X	(7)	~(MI(~VOC)		MeC		2060	<u> </u>					1
MECH 0906 I X Property I X I	י ער	- (MIC-Vac)		Мес		6964	<u>×</u>		<u> </u> 	-		<u> </u>
MeOH (Pq16 I X I X I X I X I X I X I X I X I X I		= - (MI(-vac)		MeC	H	9060	X -					91~
MeOH (PAIG I X No.) I X No. Company / Agency (print / sign) Company / Agency (print / sign) Condition note (plist / time affiliation of A	((MIC-1(K)		МеС	HO	HIW)	×					F
MeOH CONFO X Date / time Condition note	1	F- (MIC-VOC)		МеС		9116	×		<u> </u>			718
Received by Company / Agency Date / time Condition note (print / sign) affiliation affiliation TestAmerica 6 Flo The Condition note	7	F- (MIC-NOC)		МеС		35	× -		:			617
Received by Company / Agency Date / time (print / sign) affiliation received received TestAmerica 6/15/10/1799 G-C	,	(WI (- NOC)		MeC	-1	M 20	×			<u> </u>		200
Wastern Elder TestAmerica 6/15/10/1709	Rele (pri		Delivery method	,	Received by (print / sign)			Compar	ıy / Agenc liation	<u>ج</u>	Date / time received	Condition noted
	*	myn 6	Hand	mester	- ELAGO		Tes	tAmeric	m			5.C intad/wit
												A Dienose hy loh

©2008, TestAmerica Laboratojies, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc.

COC REY 04/2008

Distribution:

White - TestAmerica

Yellow - TestAmerica

Pink - Client

Page Z

Please check one:
♣ Dispose by lab
☐ Return to client
☐ Archive

THE LEADER IN ENVIRONMENTAL TESTING

-
=
0
_
<u>o</u>
T

rev1a

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

LABORATORY UF NLY	LAB JOB NO. HTPOOT	LOCATION	CONTAINERS	
	_5		<u>8</u>	

Chain of Custody / Analysis Request Form

Laboratory ID no. 125 でいずながを 13 B 4 FFD072-2 Condition noted 阿国心 / 1733 ndidate analyses requested Date / time received Total Organic Carbon Company / Agency **Brain Size** Saturated Zone Moisture Content TestAmerica Vadose Zone Moisture Content X × XX X MIS-80928 No. of 0922 1032 1017 20 12% **B**B 1074 Diag 1014 **EmiT** Sampling Job name: Hickam AFB CG110 ISM VOC Study 6.K6 Received by (print / sign) Project identification Date MeOH MeOH MeOH MeOH MeOH MeOH MeOH MeOH MeOH MeOH Job number: 103DS148843.H0301 poqjaw Preservation scott.duzan@tetratech.com Other ľ.O bilo2 piupiJ Contact email address: Slndge Drinking water Wastewater Delivery method × × × × × lio2 Water **BARD** 6.1510 / 1737 Hand SIW × × × × × × × \times \times zie: 96813 Date / time 9 Report to: Scott Duzan, scott.duzan@tetratech.com # samples in shipment Client sample ID (N(C-V0C) State: HI Address: 737 Bishop Street, Suite 3010 B33-c-(MIC-VOC 837 - B - (MIG-VK) 一のころと B33 - A - (MIC-VC) 151 - A - (MIC-VOC) Fax 832 - C - (MIC-VIC B7-B-(MIC-VOC) B31-12-1MIC-VOC Company name: Tetra Tech EMI Released by (print / sign) Phone: 808,441,6645 BH-A 82代 R1-Scott Duzan city: Honolulu Sampler: SD tem no. ന g S 9 / ω

Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl chloride

02008. TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc.

COC REV 04/2008

White - TestAmerica

Distribution:

Yellow - TestAmerica

Pink - Client

♣ Dispose by lab□ Return to client□ Archive ō Page 3

Please check one:

THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

rev1a

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

ᆛ LAB JOB NO. HTFDO 72 LABORATORY U CONTAINERS LOCATION

Chain of Custody / Analysis Request Form

B Laboratory ID no. Ÿ 30 30 B 3 120 50 Condition noted #FDD72 SO MAR जिया । एक ndidate analyses requested Date / time received Total Organic Carbon Company / Agency **Grain Size** Saturated Zone Moisture Content TestAmerica Vadose Zone Moisture Content XX X X 8260B-SIM spaniatnos No. of 1052 989 [542 046 <u>gh</u>0] 8 <u>1</u>6% たり PAG! 1100 əmiT Sampling Job name: Hickam AFB CG110 ISM VOC Study 6.15.10 Project identification (print / sign) Received by Date MeOH MeOH MeOH MeOH MeOH MeOH MeOH MeOH MeOH MeOH Job number: 103DS148843.H0301 method Preservation scott.duzan@tetratech.com Other ľO bilos piupid Contact email address: agbulg Drinking water 19jeweles/W Delivery method × × × × × × × lio2 Water 8A75 6.15.10 / 1733 Hand SIW × × × × × × × × × ZIP: 96813 Date / fime 9 Report to: Scott Duzan, scott.duzan@tetratech.com # samples in shipment Client sample ID - E ~ CMIC-10C State: HI Address: 737 Bishop Street, Suite 3010 822-11 - (MIC-30) 833-F-(MIC-VOC) - CM(C-VOC **第二学** B34-0-(MIC-VOC 833-0-(MI-100) 1- (MIC-60) Fax B1-0-(MIC-18C) 834-(-(MIC-VOC) Company name: Tetra Tech EMI L Released by (print / sign) Phone: 808,441,6645 ı P24 ८३म city: Honolulu Scott Duzan Sampler: SD 5 item no. က Ω. ω 6 9 7

Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl chloride

92008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc. Distribution:

COC REV 04/2008

White - TestAmerica

Yellow - TestAmerica

Pink - Client

Page ☐ Archive

Please check one:

* Dispose by lab

□ Return to client

THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

revla

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

LABORATORY UF NLY	LABJOBNO. #TF0072	LOCATION	CONTAINERS

	Chain	Chain of Custody / Analysis Reguest Form	dv / A	nalvei	s Rec	110ct	T L	5		CONTAINERS		
Report to: Scott Duzan, scott.duzan@tetratech.com		Project	Project identification	ation				ndidat	ndidate analyses	/ses requested	ted	
Company name: Tetra Tech EMI	Job name:	Job name: Hickam AFB CG110 ISM VOC Study	110 ISM	VOC Stud	<u>></u>	1				-		
Address: 737 Bishop Street, Suite 3010	Job number	Job number: 103DS148843.H0301	H0301				ţuə	ufeu.				···
city: Honolulu state: HI ZIP: 96813	8]	JuoO	၀၅ ခ				
Phone: 808.441.6645 Fax	Contact email address:	all address:		À			ure	ıntei	uo		V	· · · ·
Sampler: SD # samples in shipment	200:000	scott.duzan@tettatecii.com			ν.		sioM	oM ər	Carb			
		Matrix		Sampling	<u>gn</u>	T V	əu					
Client sample ID	MiS GRAB Water Soil	Wastewaler Drinking water Sludge Liquid biog biog	Preservation bodisem	əţeO	Time to .ou	containers	oZ əsobsV	Saturated Grain Size	egnO letoT	54441		on III voterode
1 BT-6-(MIC-VOC)	×		МеОн	7-K-16	011	×		┨	┪			HT-amo-4
2 B33-6-(MIC-VOC)	×		7	1	111.7	/ × -						4
3 B34 - (> - (MIC-NOC)	×		MeOH		filty	\ <u> </u>						1 4
4 BS-A- (MIC-VOC)	×		MeOH		1211	×						1
5 B35- A - (MIC-VOC)	×		MeOH	<u> </u>	127	X						4
6 B36 - A - (MIC-VOC)	×		MeOH		(129	X			-			17-
7 BS- B- (MIC-VOC)	×		MeOH		134	×						4
8 B35-B-(M1C-voc)	×		MeOH		13%	X					-	\$h_
9 B36 - B - (MIC-YOC)	×		MeOH		38	X				1 00 00000		67-
10 BS - C - (MIC-10C)	×		МеОН	_	을 물 -	×						P. Comment
Released by Date / time (print / sign) released	Delivery method	, O pou	Rece (print	Received by (print / sign)			Compar	Company / Agency affiliation	ò	Date / time received		Condition noted
Scott Duzan Start 11 14 6.15.10 1733	Hand	M	4	ELM	7	Test	TestAmerica	a		[[] / [] []	B	5c inad/met
		.										

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc.

Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl chloride

COC REV 04/2008

Distribution:

White - TestAmerica

Yellow - TestAmerica

Pink - Client

Please check one:

* Dispose by lab

Capaban Return to client

Archive Page

rev1a THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

NLY				
LABORATORY U	LAB JOB NO. HTF-07/L	LOCATION	CONTAINERS	

		Chain of	of Custody / Analysis		Reduest	Form	_		CONTAINERS	NERS		
Report to	Report to: Scott Duzan, scott.duzan@tetratech.com		Project identification		_		didat	ana	ses	indicate analyses requested		
Сотрап	Company name: Tetra Tech EMI	Job name: HIC	Job name: Hickam AFB CG110 ISM VOC Study	OC Study		•						
Address:	Address: 737 Bishop-Street, Suite 3010	Job number: 103D	3DS148843.H0301		-	tnə	uəju					
City: Ho	civ. Honolulu state: HT zre: 96813					JuoO	oე a.					
Phone: &	Phone: 808.441.6645	Contact email address:	Contact email address:			fure	nistur	uo			,	
Sampler: SD	SD # samples in shipment					sioM	DM 9r	Carb				
ltem no.	Client sample ID	MiS CRAB Waster Soil Waster	Maleva prikinia yasiew prikinia pagbulg seduga primi p	Sompling Sampling Sam	S260B-SIM	ənoZ əsobs\	Saturated Zor Satin Size	Total Organic				<u> </u>
-	835-c-(M1C-VOC)	×	МеОН 6 -	241 01-51-9	× -	-					HTF0012-5	20 E
2	B36-C-(MC-VOC)	×	МеОН	<u>를</u>	×							15%
က	BS-0-(M16-vac)	×	МеОН	<u>3</u>	×	ļ						20
4	B35 -D- (M16-VOC)	×	МеОН	පු	×							18
5	B36-D-(M1(-VOC)	×	МеОН	- 52	×	ļ		ļ 				+
9	BS - E- (MIC-VOC)	×	МеОн	<u>₹</u>	×							1 7
7	B35 - E - (MIC-VOC)	×	MeOH	<u>&</u>	(≻							15,
∞	B36-E-CM(C-VOC)	×	МеОн	<u>\$</u>	×							35
o	B5 - F - (MIC-VOC)	×	МеОН	7021	X			: 			:	S
10	- CMIC-NOC >	X	МеОН	7 1200	メ							3
`	Released by Date / time (print / sign) released	Delivery method	Received by (print / sign)	ed by sign)	 	Compan	Company / Agency affiliation	<i>3</i> 5	Da Pa	Date / time received	Condition noted	oted
Scott	Scott Duzan Wat 711 Just 6-15-10 / 1733 Hand	Hand	high Eltha	Ha/	Tes	TestAmerica	_		10/51/9	gel! 18	50 mag	tan
,*			5							1		
Comm	Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl chloride	trans-DCE; and \	Vinyl chloride							_		

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc. White - TestAmerica

COC REV 04/2008

Distribution:

Yellow - TestAmerica

Pink - Client

Please check one:

* Dispose by lab

□ Return to client

□ Archive Page 4

THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

rev1a

99-193 Aiea Heights Drive Suite 121 • Aiea, Hl 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

LABJOB NO. HTEOUL LOCATION CONTAINERS	۸LY		:	
	LABORATORY US	- 1	LOCATION	CONTAINERS

	O	, hai	Chain of Cus	todv	istody / Analysis Request Form	Sis Re	0110	T to	, L	_		CONTAINERS	
Report to: Scott Duzan, scott.duzan@tetratech.com			Pro	ect ide	Project identification		5		Ĕ	licate	anal	ndidate analyses requested	
Company name: Tetra Tech EMI	-	Job name	Job name: Hickam AFB CG110 ISM VOC Stridy	CG110	SM VOC	Shidy						•	
Address: 737 Bishop Street, Suite 3010		40	Johnson 1030S1488	8843 H0304	2					11101			
_			er. 1990	150 I 150 I								***************************************	
State: TI ZIP: 90813													
Phone: 808,441,6645 Fax		Scott.d	Contact email address: Scott.duzan@tetratech.com	moo q						22010	uo		
Sampler: SD # samples in shipment)	}							Carb		
			Matrix	-	SS	Sampling					oir		
Client sample ID	SIM	GRAB Water	Soil Wastewater Drinking water Sludge Liquid	Oiher Preservation	method	əmiT	No, of containers	MIS-80978	oZ əsobs\ 	Srain Size	regal Organ		<u></u>
1 B36-F-(MIC-VOC)	×		×	МеОН	DH 6.15.10	120%	-	-	-	┥—			HTF0072_61
2 BS-6-(MIC-VOC)	×		×	МеОН		1		×	ļ	ļ			Por-
3 B35 - 6 - CAN(-VOC)	×		×	MeOH	H H	972)		×	-	ļ			j á
4 B36 - 15 - (MIC-VOC)	×		×	МеОН	 	122		×	1	ļ			79-
5 Field Blank - BS	×	^-	.×	МеОН		223		×	-	ļ		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-
6 B6- A- (MIC-VA)	×		×	МеОН	H.	HIG	-	×		<u> </u>			1 2 2
7 (30-B- (MIC-Vac)	×	- ^	×	MeOH	 天	146		X		<u>:</u>			19
8 B6 - (- (MICNOC)	×		×	МеОН	H.	14.75		X		<u> </u>			897
9 BG -D- (MIC-VGC)	×		×	MeOH	Ŧ	1474		X	ļ	<u> </u>			59-
(MIC-VOC)	×	$\hat{-}$	×	MeOH	- \	1426	7	X					P.
Released by Date / time (print/ sign) released	Del	Delivery method	thod		Received by (print / sign)			ŭ	Company / Agency affiliation	/ Agenc tion		Date / time received	Condition noted
Scott Duzan 4 1 103 615.10 / 1793	Hand		duz	E E	七九	μ		TestAmerica	herica			4/15/10/120	Scintal/we
7			<u></u>										
Comments: 8260B-SIM: Only analyze for TCE: vis DCE: trans DCE: card Visual attracts		200										,	
commonics of the control of the cont	בו בי בי	֓֞֝֟֝֝֟֝֝֟֝֝֟֝֝֟֝֟֝֝֟֝֟֝֟ ֓֓֓֓֓֓֞֓֞֓֓֞֞֞֩֞֞֓֓֓֞֞֩֞֞֩֞֞֩֞֩֞֩֞	and vinyi cnio	lge								•	i

©2008. TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc. White - TestAmerica Distribution:

COC REV 04/2008

Yellow - TestAmerica

Pink - Client

Please check one:

* Dispose by lab

G Return to client

Archive

THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

rev1a

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

	LABORATORY US VLY
	LAB JOB NO. H (MU) //
	OCATION
	CONTAINERS
<u>'</u>	

	Chain of C	f Custody /	ustody / Analysis Begnest Form	Regi	pet	TOTA	2		CONTAINERS		
Report to: Scott Duzan, scott.duzan@tetratech.com		Project identification	iffication			드	didate	ana	ndidate analyses requested	Pe	
Company name: Tetra Tech EMI	Job name: Hick	Job name: Hickam AFB CG110 ISM VOC Study	SM VOC Study						•		
Address: 737 Bishop Street, Suite 3010	Job number: 103DS	3DS148843.H0301					nteni				
City: Honolulu state: HI zrp: 96813					ı		100 8				
Phone: 808.441.6645 Fax	Contact email address:	Contact email address: Scott duzan@tetratech.com	e company		1		unisio	uo	,		
Sampler: SD # samples in shipment q			Notes and an amount				DINI ƏL	Carb			
		Matrix	Sampling		<i>\</i>						
Client sample ID	MIS GRAB Waster Soil Waster	Orinking water Sludge Liquid Solid Oil Other	əjsQ	Time No. of containers	8260B-SIN	S esobsV	Saturated Grain Size	Total Orga			d d
1 Bb-F-(MIC-VOC)	×	MeOF	меон 6.5.0 /	1432 1	×	┨		┥			HTF087/2-11
2 Bb-(5-(MIC-VOC)	×	MeOH		1440	×						72-
-A- (×	МеОН		lS _I g	×	<u> </u>		 			4
4 B4- B- (MIC-NO)	×	МеОН		<u>a</u>	×		: 				7
) -) -	×	МеОН		725	×			İ			- ZE
6 B4-D-(MIC-VOC)	×	MeOH		悉	×			 			31-
7 B4 - E - (MI(-Vac)	×	MeOH		1536	×		<u> </u>	ļ			14
8 B4-F-(MIC-MC)	×	МеОн		1540	×			<u> </u>			SL-
9 BH- (5- (MIC-NOC)	×	MeOH	•	F	×			· :			0/-
安	*	MeOH		1		-	1		4		@_
Released by Date / time (prfnt / s/gn) freleased	Delivery method	R (F	Received by (print / sign)			Company	Company / Agency affiliation	>	Date / time received		Condition noted
Scott Duzan & W M June 6.15.11 / 1737	Hand	M. M.	ELHA		Test	TestAmerica			1 10/51/9	1335	5 Cintact/ Nat
)									
Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl	rans-DCE, and V	'inyl chloride			_				\		

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc.

COC REV 04/2008

Distribution:

White - TestAmerica

Yellow - TestAmerica

Pink - Client

Page

Please check one:
* Dispose by lab

Return to client

THE LEADER IN ENVIRONMENTAL TESTING

rev1a

Honolulu

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

LABORATORY U' NLY	LAB JOB NO. HTFUITC	LOCATION	CONTAINERS
·- *****			

	O	hai	Chain of Cus	todv	/ Analy	ustodv / Analysis Begnest Form	al ID	Set F	Ç	_		CONTAINERS			
Report to: Scott Duzan, scott.duzan@tetratech.com			ď	jert ide	Project identification		<u> </u>	; -	į	licate	808	ndidate analycectroniacted	_		
Company game, Tetra Tech FMI				2001,190	ionicano.			······							
		oo name	I IICHAIII ALE	0 100	recello isim voc stady	Stuay			+,	11					
Address: 737 Bishop Street, Suite 3010		dmun dol	Job number: 103DS148	48843.H0301	Ξ.					וונבו				*****	
cty: Honolulu state: HI zip: 96813										00.0					
Phone: 808.441.6645 Fax	0.0	Sontact er	Contact email address:	+						umei	uc				
Sampler: SD # samples in shipment		ocogi.u	scott.uuzari@tetrate	atecn.com				•1:::		0141.0	dısC		·····		
	-		Matrix		Ø.	Sampling) oir				
Client sample ID	SIM	Water Water	Soil Wastewater Drinking water Sludge Liquid Soild	Oliher Preservation	porthord Date	əmiT	No. of containers	NIS-80978	oZ əsobs\ 	Srain Size	otal Organ			<u>.</u>	
1 B3-4-CMIC-VOC)	×		×	MeOH	1751.9 HO	1616	_	ــــــــــــــــــــــــــــــــــــــ	┥	┥	┥			HTFD/12-81	.1
2 B3-B-(ML-VOC)	×		×	MeOH	~_ E) <u>E</u>	_	*		-	ļ		-	44	1
3 B3- C- (MIC-VOC)	×		×	МеОН	 	و ك		×		<u> </u> 				20,	
4 B3-D-(MIC-VOC)	×		×	МеОН		123		×						8	,
5 B3 -E-(MI(-Va)	×		×	МеОН	동	<u>た</u>		X		ļ		5		N N	,
6 P3-F- (MIC-VC)	×		×	Меон		82		X	<u> </u>	ļ				-2%	_
7 B3 - 12 - (AIR-VOL)	×		×	МеОН	\ <u>\</u>	1636		×			<u> </u>			18	-
8	×		×	МеОН	포		•				\ -		1		L
6	×			МеОН	下 王	\		/		· /\	À		مر		
<i>)</i>	×		×	Media	1								i		
Released by Date / time (print sign) released	Del	Delivery method	thod		Received by (print / sign)			O	Company / Agency affiliation	/ Agenc Ition	٠,	Date / time received		Condition noted	
Scott Duzan And M.A.A. 6.15.10 / 1783	Hand		3	432	四四	190g		TestAr	TestAmerica			EELI 19159/9	- :	5.c. indad/m	12
			-	S											:
Comments: 8260B-SIM: Only analyze for TCE: vis DCE: trans DCE: cad visal	- 2001		140 1.00									_			ļ
לפווויסווס: כבלכם לוווי. לווון מוומוזלט וטו ז לבי, סופ-בולבי, י	במומ:	, J	and virigi Gir	oride									i		

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc.

COC REV 04/2008

Distribution:

White - TestAmerica

Yellow - TestAmerica

Pink - Client

Please check one:
♣ Dispose by lab
☐ Return to client
☐ Archive Page_

Sample Client Name: Tetra Tech	Receipt Checklist Date/ Time Received:	ت اسرارا)
Checklist Completed By:	Received By:	ea	٠
Matrices: Carrier:	Client	Airbill#:	
Shipping container/cooler in good condition? Chain of Custody present? Chain of Custody Signed when relinquished and receive Chain of Custody agrees with sample labels? Samples in proper container/bottle? Sample containers intact? Sample containers on ice? Sufficient sample volume for indicated test? All samples received within holding time? Water - VOA Vials have Zero Headspace? Water - pH acceptable upon receipt? Encores / 5035 Vials Present? Sample Filtration Needed? Dry Weight Corrected Results? DODQSM / QAPP Project?	Yes T Yes T	No No No No No No No No No No No No No N	Not Present Type: No VOA vials present: Not Checked: Final pH: Filtered in Field: Take Action: Type:
Temperature Blank	Present? Yes	No □¹	
Sample Container/Blank Temperature Range (Minimum	3 sample containers if a	vailable):	<u>5 °c</u>
Comments/ Sampling Handling Notes:			
	770-70-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		

Honolulu

rev1a

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900

ļ LABORATORY U AB JOB NO. HTFOOT CONTAINERS LOCATION

Laboratory ID no. 9 9 S 80-3 TES 200 ndidate analyses requested Total Organic Carbon Srain Size Saturated Zone Moisture Content Chain of Custody / Analysis Request Form Adose Zone Moisture Content 8560B-SIM X containers 808-486-LABS (5227) • Fax 808-486-2456 No. of 多是 848 885 846 ОЪЗо 828 828 828 0830 əmiT Job name: Hickam AFB CG110 ISM VOC Study Sampling MeOH 6-15-10 Project identification Date MeOH MeOH МеОН MeOH MeOH MeOH MeOH MeOH Job number: 103DS148843,H0301 werpog Preservation scott.duzan@tetratech.com Orpet IIO bilo2 biupid Contact email address: Sindge Drinking water Vaslewater × × X × × × lio2 Nater а∧яэ × × \times × × × \times × \times ZIP: 96813 Report to: Scott Duzan, scott.duzan@tetratech.com # samples in shipment THE LEADER IN ENVIRONMENTAL TESTING Client sample ID State: H Address: 737 Bishop Street, Suite 3010 (MIC- VOC.) MIC - VOC. . (MIL - Vec. - B - / MIC - VOC BB - B - (M16-401) Eax 1832 - A - [MIC-VOI] B31-A-(MI(-10) BB-A-(MIC-VIC Company name: Tetra Tech EMI Fio Blank Phone: 808.441.6645 837 - B) **B**3 **B3**1 City: Honolulu 88 Sampler: SD <u>ග</u>

tem no:

Please check one: ♣ Dispose by lab☐ Return to client☐ Archive Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl chloride

22008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc. Distribution: **COC REV 04/2008**

White - TestAmerica

Yellow - TestAmerica

Pink - Client

Page

いったなか/wi

10/12/p

TestAmerica

中本を

(print / sign)

Delivery method

Date / time

(prin / sign)

Scott Duzan

4.15.10 / 1733 Hand

MeOH

×

 \times

1- CMIC-10C

037-0

5

5 9 Condition noted

Date / time

Company / Agency

J.

rev1a

THE LEADER IN ENVIRONMENTAL TESTING

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456 Honolulu

LABORATORY U. LAB JOB NO. TTFODTE LOCATION CONTAINERS	NLY			
	LABORATORY U	 LOCATION	CONTAINERS	

1		Chain of		Sustody / Analysis Request Form	sis Rec	anes	t For	ΕĒ		CONTAINERS		
Report to: SCOIT DUZ:	Keparlis Scott Duzan, Scott.duzan@tetratech.com	<u>.</u>	Project id	Project identification				Indica	te ans	ndicate analyses requested		i
Company name: Tetra Tech EMI	Tech EMI	Job name: Hickam		AFB CG110 ISM VOC Study	tudy	 		1				
Address: 737 Bishop	Address: 737 Bishop Street, Suite 3010	Job number: 100	Job number: 103DS148843.H0301	301	7		juə:	ueju				
ciy. Honolulu	State: HI zip. 96813	8				4	Cont	o) ə.				
Phone: 808.441.6645	5 Fax	Contact email address:	Contact email address:				ture	nutei	uo			
Sampler: SD	# samples in shipment	N CONTRACTOR OF THE CONTRACTOR	(Cremateun.com				sioM	oM ər	Carb	4.00 4.00 11.00 11.00		
ive 3			Matrix	San	Sampling	ν Τ						
ou majl	Client sample ID	MIS GRAB Water Soil Wasterstewater	Drinking water Sludge Liquid Solid Oil	Preservation bodiem Date	əmiT	No. of containers	Z əsobs\	Saturated	əsiS nisə EgiO İstol		<u>C</u>	
1 68-0-	EB-D-(MI(-VOI)	×	Σ	MeOH 6.15.10	25/30	×	٠		-		HTFOX 10-11	1
2 B31-D-	(M)(-VOC)	×	Σ			<u> </u>			<u> </u>		\ <u>\</u>	1
3 B32-D-	B32-0- (MIC-VOC)	×	Σ	Меон	Орр	× -			<u> </u>		1 4	. [
4 68 - E	E-(MI(-vac)	×	2	МеОН	2060	X	٠.					1 1
5 B31 - E	E- (MIC-VOC)	×	X	МеОН	6404	× -					1 1 1	П.
6 B32- E	E - (MI(-VOC)	×	E	MeOH	3060	<u></u>					91-	
7 88- F	(MIC-YOC)	×	Σ	МеОН	files)	×					-	1
- KG 8*	F- (MIC-VOC)	×	Σ	МеОН	gub)	×					718	1
9 831-	F- (M16-YOC)	×	Σ	МеОН	S S	× -				INC. IN		1
83	(WI(-10C)	×	Σ	MeOH -	0920	<u> </u>					2.	
Rele (prif	Released by Date / time (print / ‡ign)	Delivery method	,	Received by (print / sign)			Compa	Company / Agency affiliation	ncy	Date / time received	Condition noted	ll .
Scott Duzan	d m Ly 6.15.10 1733	Hand	mother	- El-Ala	X	Ľ	TestAmerica	g		6/12/10/ (189	5.C introd/wit	1
			11							,		
Comments: 8260B-	Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Viny	; trans-DCE; and V	/inyl chloride								Please check one:	11

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc. White - TestAmerica COC REY 04/2008

Distribution:

Yellow - TestAmerica

Pink - Client

Page Z

Please check one:

* Dispose by lab

C Return to client

Archive

THE LEADER IN ENVIRONMENTAL TESTING

-
=
0
_
<u>o</u>
T

rev1a

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

LABORATORY UF NLY	LAB JOB NO. HTPOOT	LOCATION	CONTAINERS	
	_5		<u>8</u>	

Chain of Custody / Analysis Request Form

Laboratory ID no. 125 でいずながを 13 B 4 FFD072-2 Condition noted 阿国心 / 1733 ndidate analyses requested Date / time received Total Organic Carbon Company / Agency **Brain Size** Saturated Zone Moisture Content TestAmerica Vadose Zone Moisture Content X × XX X MIS-80928 No. of 0922 1032 1017 20 12% **B**B 1074 Diag 1014 **amiT** Sampling Job name: Hickam AFB CG110 ISM VOC Study 6.K6 Received by (print / sign) Project identification Date MeOH MeOH MeOH MeOH MeOH MeOH MeOH MeOH MeOH MeOH Job number: 103DS148843.H0301 poqjaw Preservation scott.duzan@tetratech.com Other ľ.O bilo2 piupiJ Contact email address: agbul2 Drinking water Wastewater Delivery method × × × × × lio2 Water **BARD** 6.1510 / 1737 Hand SIW × × × × × × × \times \times zie: 96813 Date / time 9 Report to: Scott Duzan, scott.duzan@tetratech.com # samples in shipment Client sample ID (N(C-V0C) State: HI Address: 737 Bishop Street, Suite 3010 B33-c-(MIC-VOC 837 - B - (MIG-VK) 一のころと B33 - A - (MIC-VC) 151 - A - (MIC-VOC) Fax 832 - C - (MIC-VIC B7-B-(MIC-VOC) B31-12-1MIC-VOC Company name: Tetra Tech EMI Released by (print / sign) Phone: 808,441,6645 BH-A 82代 R1-Scott Duzan city: Honolulu Sampler: SD tem no. ന g S 9 / ω

Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl chloride

02008. TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc.

COC REV 04/2008

White - TestAmerica

Distribution:

Yellow - TestAmerica

Pink - Client

♣ Dispose by lab□ Return to client□ Archive ō Page 3

Please check one:

THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

rev1a

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

ᆛ LAB JOB NO. HTFDO 72 LABORATORY U CONTAINERS LOCATION

Chain of Custody / Analysis Request Form

B Laboratory ID no. Ÿ 30 30 B 3 120 50 Condition noted #FDD72 SO MAR जिया । एक ndidate analyses requested Date / time received Total Organic Carbon Company / Agency **Grain Size** Saturated Zone Moisture Content TestAmerica Vadose Zone Moisture Content XX X X 8260B-SIM spaniatnos No. of 1052 989 [542 048 <u>gh</u>0] 8 <u>1</u>6% たり PAG! 1100 əmiT Sampling Job name: Hickam AFB CG110 ISM VOC Study 0.51.6 Project identification (print / sign) Received by Date MeOH MeOH MeOH MeOH MeOH MeOH MeOH MeOH MeOH MeOH Job number: 103DS148843.H0301 method Preservation scott.duzan@tetratech.com Other ľO bilos piupid Contact email address: agbulg Drinking water 19jeweles/W Delivery method × × × × × × × lio2 Water 8A75 6.15.10 / 1733 Hand SIW × × × × × × × × × ZIP: 96813 Date / fime 9 Report to: Scott Duzan, scott.duzan@tetratech.com # samples in shipment Client sample ID - E ~ CMIC-10C State: HI Address: 737 Bishop Street, Suite 3010 822-11 - (MIC-30) 833-F-(MIC-VOC) - CM(C-VOC **第二学** B34-0-(MIC-VOC 833-0-(MI-100) 1- (MIC-60) Fax B1-0-(MIC-18C) 834-(-(MIC-VOC) Company name: Tetra Tech EMI L Released by (print / sign) Phone: 808,441,6645 ı P24 ८३म city: Honolulu Scott Duzan Sampler: SD 5 item no. က Ω. ω 6 9 7

Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl chloride

92008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc. Distribution:

COC REV 04/2008

White - TestAmerica

Yellow - TestAmerica

Pink - Client

Page ☐ Archive

Please check one:

* Dispose by lab

□ Return to client

THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

revla

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

LABORATORY UF NLY	LABJOBNO. #TF0072	LOCATION	CONTAINERS
			,

	Chain	Chain of Custody / Analysis Reguest Form	dv / A	nalvei	s Rec	110ct	T.	5		CONTAINERS		
Report to: Scott Duzan, scott.duzan@tetratech.com		Project	Project identification	ation				ndidat	ndidate analyses	/ses requested	ted	
Company name: Tetra Tech EMI	Job name:	Job name: Hickam AFB CG110 ISM VOC Study	110 ISM	VOC Stud	<u>></u>	1		1		-		
Address: 737 Bishop Street, Suite 3010	Job number	Job number: 103DS148843.H0301	H0301				ţuə	ufeu.				···
city: Honolulu state: HI ZIP: 96813	8]	JuoO	၀၅ ခ				
Phone: 808.441.6645 Fax	Contact email address:	all address:		À			ure	ıntei	uo		V	· · · ·
Sampler: SD # samples in shipment	200:000	scott.duzan@tettatecii.com			ν.		sioM	oM ər	Carb			
		Matrix		Sampling	<u>gn</u>	T V	əu					
Client sample ID	MiS GRAB Water Soil	Wastewaler Drinking water Sludge Liquid biog biog	Preservation bodisem	əţeO	Time to .ou	containers	oZ əsobsV	Saturated Grain Size	egnO letoT	54441		on (II) wotership
1 BT-6-(MIC-VOC)	×		МеОн	7.5°6	011	×		┨	┪			HT-amo-4
2 B33-6-(MIC-VOC)	×		7	1	111.7	/ × -						4
3 B34 - (> - (MIC-NOC)	×		MeOH		fills	\ <u> </u>						1 4
4 BS-A- (MIC-VOC)	×		MeOH		1211	×						1
5 B35- A - (MIC-VOC)	×		MeOH	<u> </u>	127	X						4
6 B36 - A - (MIC-VOC)	×		MeOH		(129	X			-			17-
7 BS- B- (MIC-VOC)	×		MeOH		134	×						4
8 B35-B-(M1C-voc)	×		MeOH		13%	X					-	\$h_
9 B36 - B - (MIC-YOC)	×		MeOH		38	X						67-
10 BS - C - (MIC-10C)	×		МеОН	_	을 물 -	×						P. C.
Released by Date / time (print / sign) released	Delivery method	, O pou	Rece (print	Received by (print / sign)			Compar	Company / Agency affiliation	ò	Date / time received		Condition noted
Scott Duzan Shall M Jang 6.15.10 1733	Hand	M	4	ELM	7	Test	TestAmerica	a		[[] / [] []	B	5c inad/met
		.										

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc.

Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl chloride

COC REV 04/2008

Distribution:

White - TestAmerica

Yellow - TestAmerica

Pink - Client

Please check one:

* Dispose by lab

Capaban Return to client

Archive Page

rev1a THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

NLY	j			
LABORATORY U	LAB JOB NO. #1+001	LOCATION	CONTAINERS	

		Chain of	of Custody / Analysis		Reduest	Form	_		CONTAINERS	NERS		
Report to	Report to: Scott Duzan, scott.duzan@tetratech.com		Project identification		_		didat	ana	ses	indicate analyses requested		
Сотрап	Company name: Tetra Tech EMI	Job name: HIC	Job name: Hickam AFB CG110 ISM VOC Study	OC Study		•						
Address	Address: 737 Bishop Street, Suite 3010	Job number: 103D	3DS148843.H0301		-	tnə	uəju					
City: Ho	civ. Honolulu state: HT zre: 96813					JuoO	oე a.					
Phone: &	Phone: 808.441.6645	Contact email address:	Contact email address:			fure	nistur	uo			, <u></u>	
Sampler: SD	SD # samples in shipment					sioM	DM 9r	Carb				
ltem no.	Client sample ID	MiS CRAB Waster Soil Waster	Maleva prikinia yasiew prikinia pagbulg seduga primi p	Sommer Search Se	No. of containers	ənoZ əsobs\	Saturated Zor Satin Size	Total Organic				<u> </u>
-	835-c- (MIC-VOC)	×	МеОН 6 -	241 01-51-9	× -	-					HTF0012-5	20 E
2	B36-C-(MC-VOC)	×	МеОН	量	×							15%
8	BS-0-(M16-VOC)	×	МеОН	<u>3</u>	×	!						53
4	B35 -0- (M16-VOC)	×	МеОН	පු	×			<u> </u>				18
5	B36-D-(M1(-VOC)	×	МеОН	<u>₹</u>	×	ļ						+
9	BS - E- (M1C-10C)	×	МеОн	<u> </u>	\ -							
7	B35 - E - (MIC-VOC)	×	МеОн	<u>~</u>	<u> </u>							15,
∞	B36-E-CM(C-VOC)	×	МеОн	<u>\$</u>	×							35
o	B5 - F - (MIC-VOC)	×	МеОН	7021	X		<u></u>	: 			:	S
10	- CMIC-NOC >	X	МеОН	7 1200	メ							3
`	Released by Date / time (print / sign) released	Delivery method	Received by (print / sign)	əd by sign)	 	Compan	Company / Agency affiliation	<i>3</i> 5	Da Pa	Date / time received	Condition noted	oted
Scott	Scott Duzan Wat 711 Just 6-15-10 / 1733 Hand	Hand	high Eltha	Ha/	Tes	TestAmerica	_		10/51/9	gel! 18	50 mag	tan
, -			5		_					1		
Comm	Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl chloride	trans-DCE; and \	Vinyl chloride							,		

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc. White - TestAmerica

COC REV 04/2008

Distribution:

Yellow - TestAmerica

Pink - Client

Please check one:

* Dispose by lab

□ Return to client

□ Archive Page 4

THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

rev1a

99-193 Aiea Heights Drive Suite 121 • Aiea, Hl 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

LABJOB NO. HTEOUL LOCATION CONTAINERS	۸LY		:	
	LABORATORY US	- 1	LOCATION	CONTAINERS

	O	hair	Chain of Cust	todv	istody / Analysis Request Form	sis R	<u> </u>	t to	-	_		CONTAINERS		
Report to: Scott Duzan, scott.duzan@tetratech.com			Pro	ect ide	Project identification		5 [5	digat	e anal	ndidate analyses requested	<u>و</u>	
Company name: Tetra Tech EMI	 ? 	ob name:	Job name: Hickam AFB CG110 ISM VOC Stridy	CG110	SM VOC	Study								
Address: 737 Bishop Street, Suite 3010		de de	Johnson 1030 S1488	8843 H0304	2		!			1uə:		****	•	
				2			;			uo:				
										re u				
Phone: 808,441,6645 Fax	0 0	Contact en	Contact email address: Scott.duzan@tetratech.com	mos q						การเด	uo			
Sampler: SD # samples in shipment)	}						OINI ƏI	Carb			
	_		Matrix	-	Š	Sampling	_			шо7	oir			
Client sample ID	SIW	GRAB Water Soil	Wastewater Drinking water Sludge Liquid	Oiher Other Preservation	bothom Bate	өшiТ	No. of containers	MIS-80928	oZ əsobs\	Saturated Z Srain Size	Total Organ			-
1 836-F-(MIC-VOC)	×	×		МеОН	DH 6.15.10	3021	_	×	-	┥—				HTF0012_61
2 BS-6-(MIC-VOC)	×	×		МеОН		1		×	<u> </u>	ļ				001-
3 B35 - 6 - (MI(-VC)	×	×		MeOH		0721		×	-	-			,	3 3
4 B36 - 15 - (MIC-VOC)	×	×		МеОН	 	122		×	1	ļ				1797
5 Field Blank - BS	×	. ×		МеОН		223		×	<u> </u>	ļ	-			14
6 B6- A- (MIC-VOC)	×	×		МеОН	동	HIG		×		<u> </u>				-26
7 (30-B- (MIC-Vac)	×	×		МеОН		146	<u> </u>	X		<u>;</u>	<u> </u>			الم الم
8 B6 - (- (MICNOC)	×	×		МеОН	돈	14.65		X			<u> </u>			897
9 BG -D- (MIC-VGC)	×	×		MeOH	E	1474	<u></u>	X	ļ	:			1	59-
(MIC-VOC)	×	×		МеОН	- X	1426	7	X		<u>:</u> 	ļ 			P
Reteased by Date / time (print/ sign) released	Deli	Delivery method	hod		Received by (print / sign)				Company / Agency affiliation	pany / Agen affiliation	5	Date / time received		Condition noted
Scott Duzan And M. Ang. 6.15.10 / 1723	Hand		dur	4	包井	طهر		TestA	TestAmerica			411 10 120	 	5 Cintad/wet
7												,		
Commonto: 8260B SIM: Only confirm for TOF: 110 POF			_									1		
continuents, ozoub-stint, Ottily attalyze for LCE; CIS-DCE; trans-DCE; and Vinyl chloride	rans-l	CT; a	nd Vinyl chlor	ide								•	 	

©2008. TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc. White - TestAmerica Distribution:

COC REV 04/2008

Yellow - TestAmerica

Pink - Client

Please check one:

* Dispose by lab

C Return to client

Archive

THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

rev1a

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

	LABORATORY US VLY
	LAB JOB NO. H (MU) //
	OCATION
	CONTAINERS
<u>'</u>	

	Chain of C	f Custody / Analysis Reguest Form	Analysis	Regu	pest	TOTA	2		CONTAINERS		
Report to: Scott Duzan, scott.duzan@tetratech.com		Project identification	iffication	, F		드	didate	ana	ndidate analyses requested	pe	
Company name: Tetra Tech EMI	Job name: Hick	Job name: Hickam AFB CG110 ISM VOC Study	SM VOC Study						•		
Address: 737 Bishop Street, Suite 3010	Job number: 103DS	3DS148843.H0301			i		nteni				
City: Honolulu state: HI zrp: 96813				;	ı		100 8				
Phone: 808.441.6645 Fax	Contact email address:	Contact email address: Scott duzan@tetratech.com			<u> </u>		unisio	uo			
Sampler: SD # samples in shipment q			Asha a sakaasaa				DINI ƏL	Carb			
		Matrix	Sampling		<i>I</i>						
Client sample ID	MIS GRAB Waster Soil Waster	Orinking water Sludge Liquid Solid Oil Other	Date	Time No. of	8260B-SIN	S esobsV	Saturated Grain Size	Total Orga			or Olympian
1 Bb-F-(MIC-VOC)	×	MeOF	меон 6.6.10	1432 1	×	┨		┥			HTF0878-71
2 Bb-(5-(MIC-VOC)	×	MeOH		1440	×						75-
-A- (×	МеОН		lS10	×	<u> </u>		 			4
4 B4- B- (MIC-NO)	×	МеОН		- AE	×		: 				7-
) -) -	×	МеОН		7251	×			İ			<u>3</u> 2
(×	MeOH		悉	×			 	2		3/-
7 B4 - E - (MI(-VC)	×	Меон	er tak menda ada	1536	×		:	ļ			16
8 B4-F-(MIC-MC)	×	MeOH		1540	×						21
9 RH- G- (MIC-NOC)	×	MeOH	•	F	×			:			279
A STATE OF THE STA	*	MeOH			>				1		Q,
Released by Date / time (prfnt / sgn) f released	Delivery method	R (F	Received by (print / sign)			Compan	Company / Agency affiliation	>	Date / time received		Condition noted
Scott Duzan & W M June 6.15.11 / 1737	Hand	M. M.	ELHA		Test	TestAmerica			1 10/51/9	133 5	5 Cintact/Vat
)			_						
Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl	rans-DCE, and V	'inyl chloride							\		

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc.

COC REV 04/2008

Distribution:

White - TestAmerica

Yellow - TestAmerica

Pink - Client

Page

Please check one:
* Dispose by lab

Return to client

THE LEADER IN ENVIRONMENTAL TESTING

rev1a

Honolulu

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

LABORATORY U' NLY	LAB JOB NO. HTFUITC	LOCATION	CONTAINERS
·- *****			

	O	hai	Chain of Cus	todv	/ Analy	ustodv / Analysis Begnest Form	al ID	Set F	Ç	_		CONTAINERS			
Report to: Scott Duzan, scott.duzan@tetratech.com			ď	jert ide	Project identification		<u> </u>	; -	į	licate	808	ndidate analycectroniacted	_		
Company game, Tetra Tech FMI				2001,190	ionicano.			······							
		oo name	I IICHAIII ALE	0 100	recello isim voc stady	Stuay			+,	11					
Address: 737 Bishop Street, Suite 3010		dmun dol	Job number: 103DS148	48843.H0301	Ξ.					וונבו				*****	
cty: Honolulu state: HI zip: 96813										00.0					
Phone: 808.441.6645 Fax	0.0	Sontact er	Contact email address:	+						umei	uc				
Sampler: SD # samples in shipment		ocogi.u	scott.uuzari@tetrate	atecn.com				•1:::		0141.0	dısC		·····		
	-		Matrix		Ø.	Sampling) oir				
Client sample ID	SIM	Water Water	Soil Wastewater Drinking water Sludge Liquid Soild	Oliher Preservation	porthord Date	əmiT	No. of containers	NIS-80978	oZ əsobs\ 	Srain Size	otal Organ			<u>.</u>	
1 B3-4-CMIC-VOC)	×		×	MeOH	1751.9 HO	1616	_	ــــــــــــــــــــــــــــــــــــــ	┥	┥	┥			HTFD/12-81	.1
2 B3-B-(ML-VOC)	×		×	MeOH	~_ E) <u>E</u>	_	*		-	ļ		-	44	1
3 B3- C- (MIC-VOC)	×		×	МеОН	 	و ك		×		<u> </u> 				20,	
4 B3-D-(MIC-VOC)	×		×	МеОН		123		×		ļ				8	,
5 B3 -E-(MI(-Va)	×		×	МеОН	동	<u>た</u>		X		ļ		5		N N	,
6 P3-F- (MIC-VC)	×		×	Меон		82		X	<u> </u>	ļ				-2%	_
7 B3 - 12 - (AIR-VOL)	×		×	МеОН	\ <u>\</u>	1636		×			<u> </u>			18	-
8	×		×	МеОН	포		•				\ -		1		L
6	×			МеОН	下 王	\		/		· /\	À		مر		
<i>)</i>	×		×	Media	1								i		
Released by Date / time (print sign) released	Del	Delivery method	thod		Received by (print / sign)			O	Company / Agency affiliation	/ Agenc Ition	٠,	Date / time received		Condition noted	
Scott Duzan And M.A.A. 6.15.10 / 1783	Hand		3	432	四四	190g		TestAr	TestAmerica			EELI 19159/9	- :	5.c. indad/m	12
			-	S											:
Comments: 8260B-SIM: Only analyze for TCE: vis DCE: trans DCE: cad visal	- 2001		140 1.00									_			ļ
לפווויסווס: כבלכם לוווי. לווון מוומוזלט וטו ז לבי, סופ-בולבי, י	במומ:	, J	and virigi Gir	oride									i		

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc.

COC REV 04/2008

Distribution:

White - TestAmerica

Yellow - TestAmerica

Pink - Client

Please check one:
♣ Dispose by lab
☐ Return to client
☐ Archive Page_

Sample Client Name: Tetra Tech	Receipt Checklist Date/ Time Received:	ت اسرارا)
Checklist Completed By:	Received By:	ea	٠
Matrices: Carrier:	Client	Airbill#:	
Shipping container/cooler in good condition? Chain of Custody present? Chain of Custody Signed when relinquished and receive Chain of Custody agrees with sample labels? Samples in proper container/bottle? Sample containers intact? Sample containers on ice? Sufficient sample volume for indicated test? All samples received within holding time? Water - VOA Vials have Zero Headspace? Water - pH acceptable upon receipt? Encores / 5035 Vials Present? Sample Filtration Needed? Dry Weight Corrected Results? DODQSM / QAPP Project?	Yes T Yes T Yes T Yes T Yes T Yes T Yes T Yes T Yes T Yes T Yes T Yes T Yes T	No No No No No No No No No No No No No N	Not Present Type: No VOA vials present: Not Checked: Final pH: Filtered in Field: Take Action: Type:
Temperature Blank	Present? Yes	No □¹	
Sample Container/Blank Temperature Range (Minimum	3 sample containers if a	vailable):	<u>5 °c</u>
Comments/ Sampling Handling Notes:			
	770-70-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		

June 30, 2010

LABORATORY REPORT

Client:

Tetra Tech EM Inc.

Work Order: HTF0092

737 Bishop st., Suite 3010

Project Name: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Subsurface Soil Investigation (MIS-VOCs)

Attn: Scott Duzan Date Received: 06/16/1

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica Analytical Testing Corporation certifies that the analytical results contained herein apply only to the specific sample(s) analyzed.

The Chain(s) of Custody, 9 pages, are included and are an integral part of this report. This entire report was reviewed and approved for release

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-(808)486-5227

Samples were received into laboratory at a temperature of 5 °C.

DZ

NELAC states that samples which require thermal preservation shall be considered acceptable if the arrival temperature is within 2 degrees C of the required temperature or the method specified range. For samples with a temperature requirement of 4 degrees C, an arrival temperature from 0 degrees C to 6 degrees C meets specifications. Samples that are delivered to the laboratory on the same day that they are collected may not meet these criteria. In these cases, the samples are considered acceptable if there is evidence that the chilling process has begun, such as arrival on ice.

The reported results were obtained in compliance with the 2003 NELAC standards unless otherwise noted.

Approved By:

NELAC Certification # E87907

Tetra Tech EM Inc. 737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan

Work Order: HTF0092 Received: 06/16/10

Reported: 06/30/10 17:49

Project: Subsurface Soil Investigation (MIS-VOCs)
Project Number: Subsurface Soil Investigation (MIS-VOCs)

Sample Summary

			Date/Time	Date/Time	Sample
Sample Identification	Lab Number	Client Matrix	Sampled	Received	Qualifiers
B12-A-(MIC-VOC)	HTF0092-01	Solid/Soil	06/16/10 08:55	06/16/10 17:28	
B12-B-(MIC-VOC)	HTF0092-02	Solid/Soil	06/16/10 08:58	06/16/10 17:28	
B12-C-(MIC-VOC)	HTF0092-03	Solid/Soil	06/16/10 09:00	06/16/10 17:28	
B12-D-(MIC-VOC)	HTF0092-04	Solid/Soil	06/16/10 09:04	06/16/10 17:28	
B12-E-(MIC-VOC)	HTF0092-05	Solid/Soil	06/16/10 09:06	06/16/10 17:28	
B12-F-(MIC-VOC)	HTF0092-06	Solid/Soil	06/16/10 09:10	06/16/10 17:28	
B12-G-(MIC-VOC)	HTF0092-07	Solid/Soil	06/16/10 09:18	06/16/10 17:28	
B11-A-(MIC-VOC)	HTF0092-08	Solid/Soil	06/16/10 09:34	06/16/10 17:28	
B11-B-(MIC-VOC)	HTF0092-09	Solid/Soil	06/16/10 09:40	06/16/10 17:28	
B11-C-(MIC-VOC)	HTF0092-10	Solid/Soil	06/16/10 09:42	06/16/10 17:28	
B11-D-(MIC-VOC)	HTF0092-11	Solid/Soil	06/16/10 09:48	06/16/10 17:28	
B11-E-(MIC-VOC)	HTF0092-12	Solid/Soil	06/16/10 09:50	06/16/10 17:28	
B11-F-(MIC-VOC)	HTF0092-13	Solid/Soil	06/16/10 10:00	06/16/10 17:28	
B11-G-(MIC-VOC)	HTF0092-14	Solid/Soil	06/16/10 09:57	06/16/10 17:28	
B10-A-(MIC-VOC)	HTF0092-15	Solid/Soil	06/16/10 10:05	06/16/10 17:28	
B10-B-(MIC-VOC)	HTF0092-16	Solid/Soil	06/16/10 10:10	06/16/10 17:28	
B10-C-(MIC-VOC)	HTF0092-17	Solid/Soil	06/16/10 10:12	06/16/10 17:28	
B10-D-(MIC-VOC)	HTF0092-18	Solid/Soil	06/16/10 10:15	06/16/10 17:28	
B10-E-(MIC-VOC)	HTF0092-19	Solid/Soil	06/16/10 10:17	06/16/10 17:28	
B10-F-(MIC-VOC)	HTF0092-20	Solid/Soil	06/16/10 10:22	06/16/10 17:28	
B10-G-(MIC-VOC)	HTF0092-21	Solid/Soil	06/16/10 10:24	06/16/10 17:28	
B9-A-(MIC-VOC)	HTF0092-22	Solid/Soil	06/16/10 10:30	06/16/10 17:28	
B9-B-(MIC-VOC)	HTF0092-23	Solid/Soil	06/16/10 10:33	06/16/10 17:28	
B9-C-(MIC-VOC)	HTF0092-24	Solid/Soil	06/16/10 10:35	06/16/10 17:28	
B9-D-(MIC-VOC)	HTF0092-25	Solid/Soil	06/16/10 10:39	06/16/10 17:28	
B9-E-(MIC-VOC)	HTF0092-26	Solid/Soil	06/16/10 10:41	06/16/10 17:28	

Tetra Tech EM Inc. 737 Bishop st., Suite 3010 Work Order: HTF0092

Received: Reported: 06/16/10 06/30/10 17:49

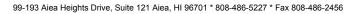
737 Bishop st., Suite 301 Honolulu, HI 96813 Scott Duzan

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Subsurface Soil Investigation (MIS-VOCs)

			Date/Time	Date/Time	Sample
Sample Identification	Lab Number	Client Matrix	Sampled	Received	Qualifiers
B9-F-(MIC-VOC)	HTF0092-27	Solid/Soil	06/16/10 10:45	06/16/10 17:28	
B9-G-(MIC-VOC)	HTF0092-28	Solid/Soil	06/16/10 10:47	06/16/10 17:28	
B1-H-(MIC-VOC)	HTF0092-29	Solid/Soil	06/16/10 11:05	06/16/10 17:28	
B2-A-(MIC-VOC)	HTF0092-30	Solid/Soil	06/16/10 11:36	06/16/10 17:28	
B2-B-(MIC-VOC)	HTF0092-31	Solid/Soil	06/16/10 11:38	06/16/10 17:28	
B2-C-(MIC-VOC)	HTF0092-32	Solid/Soil	06/16/10 11:40	06/16/10 17:28	
B2-D-(MIC-VOC)	HTF0092-33	Solid/Soil	06/16/10 11:46	06/16/10 17:28	
B2-E-(MIC-VOC)	HTF0092-34	Solid/Soil	06/16/10 11:48	06/16/10 17:28	
B2-F-(MIC-VOC)	HTF0092-35	Solid/Soil	06/16/10 11:54	06/16/10 17:28	
B2-G-(MIC-VOC)	HTF0092-36	Solid/Soil	06/16/10 11:56	06/16/10 17:28	
TRIP BLANK	HTF0092-37	Solid/Soil	06/16/10 13:25	06/16/10 17:28	
B1-A-(MIC-VOC)	HTF0092-38	Solid/Soil	06/16/10 13:30	06/16/10 17:28	
B1-B-(MIC-VOC)	HTF0092-39	Solid/Soil	06/16/10 13:32	06/16/10 17:28	
B1-C-(MIC-VOC)	HTF0092-40	Solid/Soil	06/16/10 13:34	06/16/10 17:28	
B1-D-(MIC-VOC)	HTF0092-41	Solid/Soil	06/16/10 13:36	06/16/10 17:28	
B1-E-(MIC-VOC)	HTF0092-42	Solid/Soil	06/16/10 13:38	06/16/10 17:28	
B1-F-(MIC-VOC)	HTF0092-43	Solid/Soil	06/16/10 13:42	06/16/10 17:28	
B1-G-(MIC-VOC)	HTF0092-44	Solid/Soil	06/16/10 13:46	06/16/10 17:28	
LAYER G-FMIS-VOC12	HTF0092-45	Solid/Soil	06/16/10 13:45	06/16/10 17:28	
LAYER G-FMIS-VOC6	HTF0092-46	Solid/Soil	06/16/10 13:45	06/16/10 17:28	
FIELD BLANK-B16-F	HTF0092-47	Solid/Soil	06/16/10 14:51	06/16/10 17:28	
B16-A-(MIC-VOC)	HTF0092-48	Solid/Soil	06/16/10 14:35	06/16/10 17:28	
B16-B-(MIC-VOC)	HTF0092-49	Solid/Soil	06/16/10 14:40	06/16/10 17:28	
B16-C-(MIC-VOC)	HTF0092-50	Solid/Soil	06/16/10 14:42	06/16/10 17:28	
B16-D-(MIC-VOC)	HTF0092-51	Solid/Soil	06/16/10 14:44	06/16/10 17:28	
B16-E-(MIC-VOC)	HTF0092-52	Solid/Soil	06/16/10 14:46	06/16/10 17:28	
B16-F-(MIC-VOC)	HTF0092-53	Solid/Soil	06/16/10 14:52	06/16/10 17:28	
B15-A-(MIC-VOC)	HTF0092-54	Solid/Soil	06/16/10 15:02	06/16/10 17:28	
B15-B-(MIC-VOC)	HTF0092-55	Solid/Soil	06/16/10 15:07	06/16/10 17:28	
B15-C-(MIC-VOC)	HTF0092-56	Solid/Soil	06/16/10 15:09	06/16/10 17:28	
B15-D-(MIC-VOC)	HTF0092-57	Solid/Soil	06/16/10 15:11	06/16/10 17:28	
B15-E-(MIC-VOC)	HTF0092-58	Solid/Soil	06/16/10 15:13	06/16/10 17:28	
B15-F-(MIC-VOC)	HTF0092-59	Solid/Soil	06/16/10 15:16	06/16/10 17:28	
B14-A-(MIC-VOC)	HTF0092-60	Solid/Soil	06/16/10 15:23	06/16/10 17:28	
B14-B-(MIC-VOC)	HTF0092-61	Solid/Soil	06/16/10 15:26	06/16/10 17:28	
B14-C-(MIC-VOC)	HTF0092-62	Solid/Soil	06/16/10 15:28	06/16/10 17:28	
B14-D-(MIC-VOC)	HTF0092-63	Solid/Soil	06/16/10 15:31	06/16/10 17:28	
B14-E-(MIC-VOC)	HTF0092-64	Solid/Soil	06/16/10 15:33	06/16/10 17:28	
B14-F-(MIC-VOC)	HTF0092-65	Solid/Soil	06/16/10 15:38	06/16/10 17:28	
B13-A-(MIC-VOC)	HTF0092-66	Solid/Soil	06/16/10 15:54	06/16/10 17:28	
B13-B-(MIC-VOC)	HTF0092-67	Solid/Soil	06/16/10 16:03	06/16/10 17:28	
B13-C-(MIC-VOC)	HTF0092-68	Solid/Soil	06/16/10 16:05	06/16/10 17:28	
B13-D-(MIC-VOC)	HTF0092-69	Solid/Soil	06/16/10 16:08	06/16/10 17:28	

B13-F-(MIC-VOC)


99-193 Aiea Heights Drive, Suite 121 Aiea, HI 96701 * 808-486-5227 * Fax 808-486-2456

Tetra Tech EM Inc. HTF0092 06/16/10 Work Order: Received: 737 Bishop st., Suite 3010

06/30/10 17:49 Reported:

Honolulu, HI 96813 Project: Subsurface Soil Investigation (MIS-VOCs) Project Number: Subsurface Soil Investigation (MIS-VOCs) Scott Duzan

Sample Identification	Lab Number	Client Matrix	Date/Time Sampled	Date/Time Received	Sample Qualifiers
B13-E-(MIC-VOC)	HTF0092-70	Solid/Soil	06/16/10 16:10	06/16/10 17:28	
B13-F-(MIC-VOC)	HTF0092-71	Solid/Soil	06/16/10 16:17	06/16/10 17:28	

Tetra Tech EM Inc. HTF0092 06/16/10 Work Order: Received: 06/30/10 17:49 Reported:

737 Bishop st., Suite 3010

Honolulu, HI 96813 Project: Subsurface Soil Investigation (MIS-VOCs) Scott Duzan

Project Number: Subsurface Soil Investigation (MIS-VOCs)

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0092-01 (B12-A-(M		id/Soil)			Samj	pled:	06/16/10 08:55	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 82	260 ND		ua/Ira	7.50	15.2	50	06/24/10 21:51	06/24/10	10F0154	EPA 8260
cis-1,2-Dichloroethene			ug/kg	7.59		30	06/24/10 21:51	06/24/10	10F0154	EFA 8200
trans-1,2-Dichloroethene	ND		,,	7.59	15.2	,,	,,	,,	,,	,,
Trichloroethene	ND	T	,,	7.59	15.2	"	,,	,,	,,	,,
Vinyl chloride	22.5	J		10.3	30.4		"	"	,,	,,
Surr: 1,2-Dichloroethane-d4 (80-120%)	96 %						,,	,,	,,	,,
Sample ID: HTF0092-02 (B12-B-(MI Volatile Organic Compounds by EPA 82	-	id/Soil)			Sam	pled:	06/16/10 08:58	Re	cvd: 06/16/	10 17:28
cis-1,2-Dichloroethene	ND		ug/kg	5.16	10.3	50	06/24/10 22:17	06/24/10	10F0154	EPA 8260
trans-1,2-Dichloroethene	ND		ug/kg "	5.16	10.3	"	"	"	"	"
Trichloroethene	ND		"	5.16	10.3	,,	"	,,	"	"
	10.7	J	,,	7.02	20.7	,,	,,	,,	"	"
Vinyl chloride Surr: 1,2-Dichloroethane-d4 (80-120%)	99 %	J		7.02	20.7		"	"	"	"
Sample ID: HTF0092-03 (B12-C-(M	IC-VOC) - Sol	id/Soil)			Samı	oled:	06/16/10 09:00	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 82	260	,			•					
cis-1,2-Dichloroethene	ND		ug/kg	4.49	8.98	50	06/24/10 22:42	06/24/10	10F0154	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.49	8.98	"	"	"	"	"
Trichloroethene	ND		"	4.49	8.98	"	"	"	"	"
Vinyl chloride	17.9	J	"	6.10	18.0	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	100 %						"	"	"	"
Sample ID: HTF0092-04 (B12-D-(M		id/Soil)			Samj	pled:	06/16/10 09:04	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 82	260 ND		ug/leg	4.84	9.69	50	06/24/10 23:08	06/24/10	10F0154	EPA 8260
cis-1,2-Dichloroethene	ND ND		ug/kg "			30	00/24/10/23.08	00/24/10	"	El A 8200
trans-1,2-Dichloroethene			,,	4.84	9.69	,,	,,	,,	"	,,
Trichloroethene	ND	T	,,	4.84	9.69	"	,,	,,	,,	,,
Vinyl chloride Surr: 1,2-Dichloroethane-d4 (80-120%)	17.0 96 %	J		6.59	19.4		"	"	"	"
								_		
Sample ID: HTF0092-05 (B12-E-(M)	-	id/Soil)			Sam	pled:	06/16/10 09:06	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 82 cis-1,2-Dichloroethene	2 60 ND		na/ka	4.81	9.63	50	06/24/10 23:34	06/24/10	10F0154	EPA 8260
trans-1,2-Dichloroethene	ND		ug/kg "	4.81		"	00/24/10 23:34	00/24/10	"	"
Trichloroethene	6.34	J	,,	4.81	9.63 9.63	,,	,,	,,	,,	,,
Vinyl chloride	0.54 ND	J	,,	6.55	19.3	,,	,,	,,	,,	,,
Surr: 1,2-Dichloroethane-d4 (80-120%)	ND 98 %			0.33	19.3		"	"	"	"
					_				1.0646	40.4 =.0 0
Sample ID: HTF0092-06 (B12-F-(MI Volatile Organic Compounds by EPA 82		id/Soil)			Sam	pled:	06/16/10 09:10	Re	cvd: 06/16/	10 17:28
cis-1,2-Dichloroethene	ND		ug/kg	4.84	9.68	50	06/24/10 23:59	06/24/10	10F0154	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.84	9.68	"	"	"	"	"
Trichloroethene	9.28	J	"	4.84	9.68	"	"	"	"	"
Vinyl chloride	ND	•	"	6.58	19.4	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	102 %			0.50	27.1		"	"	"	"
5m1. 1,2-Dichiol demane-u+ (00-120/0)	102 /0									

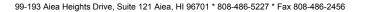
Work Order: H7

HTF0092 Received:

Reported:

06/30/10 17:49

06/16/10


737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Subsurface Soil Investigation (MIS-VOCs)

Sample ID: HTF0092-07 (R12-G-(MIC-VOC) - Solid/Soil Sample ID: HTF0092-07 (R12-G-(MIC-VOC) - Solid/Soil Sample ID: HTF0092-08 (R11 - MIC-VOC) - Solid/Soil Sample ID: HTF0092-09 (R11 - MIC-VOC) - Solid/Soil Sample ID: HTF0092-09 (R11 - MIC-VOC) - Solid/Soil Sample ID: HTF0092-09 (R11 - MIC-VOC) - Solid/Soil Sample ID: HTF0092-09 (R11 - MIC-VOC) - Solid/Soil Sample ID: HTF0092-09 (R11 - MIC-VOC) - Solid/Soil Sample ID: HTF0092-09 (R11 - MIC-VOC) - Solid/Soil Sample ID: HTF0092-09 (R11 - MIC-VOC) - Solid/Soil Sample ID: HTF0092-09 (R11 - MIC-VOC) - Solid/Soil Sample ID: HTF0092-09 (R11 - MIC-VOC) - Solid/Soil Sample ID: HTF0092-09 (R11 - MIC-VOC) - Solid/Soil Sample ID: HTF0092-09 (R11 - MIC-VOC) - Solid/Soil Sample ID: HTF0092-09 (R11 - MIC-VOC) - Solid/Soil Sample ID: HTF0092-10 (R11 - MIC-VOC) - Solid/Soil Sample ID: HTF0092-10 (R11 - MIC-VOC) - Solid/Soil Sample ID: HTF0092-10 (R11 - MIC-VOC) - Solid/Soil Sample ID: HTF0092-10 (R11 - MIC-VOC) - Solid/Soil Sample ID: HTF0092-10 (R11 - MIC-VOC) - Solid/Soil Sample ID: HTF0092-10 (R11 - MIC-VOC) - Solid/Soil Sample ID: HTF0092-10 (R11 - MIC-VOC) - Solid/Soil Sample ID: HTF0092-10 (R11 - MIC-VOC) - Solid/Soil Sample ID: HTF0092-11 (R11 - MIC-VOC) - Solid/Soil Sample ID: HTF0092-11 (R11 - MIC-VOC) - Solid/Soil Sample ID: HTF0092-11 (R11 -		Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Valatile Organic Compounds by EPA 8260 cis-i_2-Dichlorocheme ND	TF0092-06 (B12-F-(MIC-VOC) - Sol	id/Soil) - cont.	ı		Sam	pled:	06/16/10 09:10	Re	cvd: 06/16/	10 17:28
cis-1,2-Dichlorochene ND ugkg 5.27 10.5 50 0625/10 00.25 0624/10 11 trans-1,2-Dichlorochene ND	•		lid/Soil)			Sam	pled:	06/16/10 09:18	Re	cvd: 06/16/	10 17:28
Trichlorocthene	•			ug/kg	5.27	10.5	50	06/25/10 00:25	06/24/10	10F0154	EPA 8260
Name 1966 1976	roethene	ND		"	5.27	10.5	"	"	"	"	"
Sample D: HTF0092-08 (B11-A-(MIC-VOC) - Solid/Soil)	2	10.4	J	"	5.27	10.5	"	"	"	"	"
Sample ID: HTF0092-08 (BI1-A-(MIC-VOC) - Solid/Soil)		ND		"	7.17	21.1	"	"	"	"	"
Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene 7,30 ug/kg 2,27 4,54 50 06/25/10 00.51 06/24/10 1 1 1 1 1 2,27 4,54 50 06/25/10 00.51 06/24/10 1 1 1 1 1 2,27 4,54 50 06/25/10 00.51 06/24/10 1 1 1 1 1 2,27 4,54 50 06/25/10 00.51 06/24/10 1 1 1 1 1 1 1 2,27 4,54 50 06/25/10 00.51 06/24/10 1 1 1 1 1 1 1 1 1	oethane-d4 (80-120%)	97 %						"	"	"	"
trans-1,2-Dichloroethene	•		id/Soil)			Sam	pled:	06/16/10 09:34	Re	cvd: 06/16/	10 17:28
Trichloroethene	ethene	7.30		ug/kg	2.27	4.54	50	06/25/10 00:51	06/24/10	10F0154	EPA 8260
Name Name	roethene	ND		"	2.27	4.54	"	"	"	"	"
Sample ID: HTF0092-09 (B11-B-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene	2	4.41	J	"	2.27	4.54	"	"	"	"	"
Sample ID: HTF0092-09 (B11-B-(MIC-VOC) - Solid/Soil) Sampled: 06/16/10 09:40 Recvot volatile Organic Compounds by EPA 8260		8.54	J	"	3.08	9.07	"	"	"	"	"
Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene	oethane-d4 (80-120%)	97 %						"	"	"	"
cis-1,2-Dichloroethene 47.6 ug/kg 4.55 9.10 50 06/25/10 01:16 06/24/10 1 trans-1,2-Dichloroethene ND " 4.55 9.10 " <td< td=""><td>,</td><td>` '</td><td>id/Soil)</td><td></td><td></td><td>Sam</td><td>pled:</td><td>06/16/10 09:40</td><td>Re</td><td>cvd: 06/16/</td><td>10 17:28</td></td<>	,	` '	id/Soil)			Sam	pled:	06/16/10 09:40	Re	cvd: 06/16/	10 17:28
trans-1,2-Dichloroethene ND " 4.55 9,10 " " " " 1.55	•			ug/kg	4.55	9.10	50	06/25/10 01:16	06/24/10	10F0154	EPA 8260
Vinyl chloride 29.6 " 6.19 18.2 " " " " " Sample ID: HTF0092-10 (B11-C-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND " 4.92 9.84 50 06/25/10 02:33 06/24/10 1 Trichloroethene ND " 4.92 9.84 " " " " " Vinyl chloride 18.2 J " 6.69 19.7 " " " " Sample ID: HTF0092-11 (B11-D-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND " 8.28 10.7 " " " " Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND " 5.35 10.7 " " " " Trichloroethene ND " 5.35 10.7 " " " " Sample ID: HTF0092-12 (B11-E-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND " 7.27 21.4 " " " " Sample ID: HTF0092-12 (B11-E-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND " 8.35 10.7 " " " " Sample ID: HTF0092-12 (B11-E-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND " 8.35 10.7 " " " " " Sample ID: HTF0092-12 (B11-E-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND " 8.35 50 06/25/10 02:58 06/24/10 11	roethene	ND			4.55	9.10	"	"	"	"	"
Vinyl chloride 29.6 " 6.19 18.2 " " " "		ND		"	4.55	9.10	"	"	"	"	"
Sample ID: HTF0092-10 (B11-C-(MIC-VOC) - Solid/Soil) Sampled: O6/16/10 09:42 Record Volatile Organic Compounds by EPA 8260				"			"	"	"	"	"
Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND ug/kg 4.92 9.84 50 06/25/10 02:33 06/24/10 1 trans-1,2-Dichloroethene ND " 4.92 9.84 " " " " " Trichloroethene ND " 4.92 9.84 " " " " " Vinyl chloride 18.2 J " 6.69 19.7 " " " " Sample ID: HTF0092-11 (B11-D-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND " 5.35 10.7 50 06/25/10 02:58 06/24/10 1 trans-1,2-Dichloroethene ND " 5.35 10.7 " " " Trichloroethene ND " 5.35 10.7 " " " Vinyl chloride ND " 7.27 21.4 " " " " Sample ID: HTF0092-12 (B11-E-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 Cis-1,2-Dichloroethene ND " 5.35 10.7 " " " " Sample ID: HTF0092-12 (B11-E-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 Cis-1,2-Dichloroethane-d4 (80-120%) 100 % Sample ID: HTF0092-12 (B11-E-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND " 5.35 50 06/25/10 09:50 Recvolutile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND " Sample ID: HTF0092-12 (B11-E-(MIC-VOC) - Solid/Soil)	oethane-d4 (80-120%)	98 %						"	"	"	"
Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND " 4.92 9.84 50 06/25/10 02:33 06/24/10 1 trans-1,2-Dichloroethene ND " 4.92 9.84 " " " " " " " " " " " " " " " " " " "	Г F0092-10 (В11- С-	(MIC-VOC) - Sol	id/Soil)			Sam	pled:	06/16/10 09:42	Re	cvd: 06/16/	10 17:28
trans-1,2-Dichloroethene ND " 4,92 9.84 " " " " " " Trichloroethene ND " 4,92 9.84 " " " " " " Vinyl chloride 18.2 J " 6,69 19.7 " " " " Sample ID: HTF0092-11 (B11-D-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND " 5,35 10.7 " " " " Vinyl chloride ND " 5,35 10.7 " " " " " Sample ID: HTF0092-12 (B11-E-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 Vinyl chloride ND " 7,27 21.4 " " " " Sample ID: HTF0092-12 (B11-E-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND " 7,27 21.4 " " " " Sample ID: HTF0092-12 (B11-E-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND ug/kg 5.23 10.5 50 06/25/10 03:24 06/24/10 11	c Compounds by EPA	8260				•	•				
Trichloroethene ND " 4,92 9,84 " " " " " " " " " " " " " " " " " " "	ethene	ND		ug/kg	4.92	9.84	50	06/25/10 02:33	06/24/10	10F0154	EPA 8260
Vinyl chloride 18.2 J " 6.69 19.7 " " " " Sample ID: HTF0092-11 (B11-D-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND " 5.35 10.7 " " " " Trichloroethene ND " 5.35 10.7 " " " " Trichloroethene ND " 7.27 21.4 " " " " Sample ID: HTF0092-12 (B11-E-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 Sample ID: HTF0092-12 (B11-E-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND " 5.35 10.7 " " " " Sample ID: HTF0092-12 (B11-E-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND ug/kg 5.23 10.5 50 06/25/10 03:24 06/24/10 1	roethene	ND		"	4.92	9.84	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%) 100 % " " " " Sample ID: HTF0092-11 (B11-D-(MIC-VOC) - Solid/Soil) Sampled: 06/16/10 09:48 Recvd Volatile Organic Compounds by EPA 8260 ND ug/kg 5.35 10.7 50 06/25/10 02:58 06/24/10 1 trans-1,2-Dichloroethene ND " 5.35 10.7 " " " " " " Trichloroethene ND " 5.35 10.7 " " " " " " Vinyl chloride ND " 7.27 21.4 " " " " " Surr: 1,2-Dichloroethane-d4 (80-120%) 100 % " " " " " Sample ID: HTF0092-12 (B11-E-(MIC-VOC) - Solid/Soil) Sampled: 06/16/10 09:50 Recvd Volatile Organic Compounds by EPA 8260 " " " " " " " " cis-1,2-Dichloroethene ND ug/kg 5.23 10.5 50 06/25/10 03:24 06/24/10 1		ND		"	4.92	9.84	"	"	"	"	"
Sample ID: HTF0092-11 (B11-D-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND ug/kg 5.35 10.7 50 06/25/10 02:58 06/24/10 1 trans-1,2-Dichloroethene ND " 5.35 10.7 " " " " Trichloroethene ND " ND " 7.27 21.4 " " " " " Sampled: 06/16/10 09:48 Recvd Voly 10/25/10 02:58 06/24/10 1 The stans-1,2-Dichloroethene ND " 7.27 21.4 " " " " " " Sampled: 06/16/10 09:50 Recvd Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND ug/kg 5.23 10.5 50 06/25/10 03:24 06/24/10 1		18.2	J	"	6.69	19.7	"	"	"	"	"
Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND ug/kg 5.35 10.7 50 06/25/10 02:58 06/24/10 1 trans-1,2-Dichloroethene ND " 5.35 10.7 " " " Trichloroethene ND " 5.35 10.7 " " " " Vinyl chloride ND " 7.27 21.4 " " " Surr: 1,2-Dichloroethane-d4 (80-120%) 100 % " " " " " Sample ID: HTF0092-12 (B11-E-(MIC-VOC) - Solid/Soil) Sampled: 06/16/10 09:50 Recvd Volatile Organic Compounds by EPA 8260 Ug/kg 5.23 10.5 50 06/25/10 03:24 06/24/10 1	oethane-d4 (80-120%)	100 %						"	"	"	"
cis-1,2-Dichloroethene ND ug/kg 5.35 10.7 50 06/25/10 02:58 06/24/10 1 trans-1,2-Dichloroethene ND " 5.35 10.7 "<	· ·		id/Soil)			Sam	pled:	06/16/10 09:48	Re	cvd: 06/16/	10 17:28
trans-1,2-Dichloroethene ND " 5.35 10.7 " " " " " Trichloroethene ND " 5.35 10.7 " " " " " " " " " " " " " " " " " " "	-			ug/kg	5.35	10.7	50	06/25/10 02:58	06/24/10	10F0154	EPA 8260
Trichloroethene ND " 5.35 10.7 " " " " " " Vinyl chloride ND " 7.27 21.4 " " " " " " " " " " " " " " " " " " "	roethene	ND		"	5.35	10.7	"	"	"	"	"
Vinyl chloride ND " 7.27 21.4 " " " Surr: 1,2-Dichloroethane-d4 (80-120%) 100 % " " " Sample ID: HTF0092-12 (B11-E-(MIC-VOC) - Solid/Soil) Sampled: 06/16/10 09:50 Recvd Volatile Organic Compounds by EPA 8260 ND ug/kg 5.23 10.5 50 06/25/10 03:24 06/24/10 1		ND		"	5.35	10.7	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%) 100 % " " Sample ID: HTF0092-12 (B11-E-(MIC-VOC) - Solid/Soil) Sampled: 06/16/10 09:50 Recvd Volatile Organic Compounds by EPA 8260 ND ug/kg 5.23 10.5 50 06/25/10 03:24 06/24/10 1		ND		"	7.27		"	"	"	"	"
Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND ug/kg 5.23 10.5 50 06/25/10 03:24 06/24/10 1	oethane-d4 (80-120%)	100 %						"	"	"	"
cis-1,2-Dichloroethene ND ug/kg 5.23 10.5 50 06/25/10 03:24 06/24/10 1	`	•	id/Soil)			Sam	pled:	06/16/10 09:50	Re	cvd: 06/16/	10 17:28
	-			na/lra	5 22	10.5	50	06/25/10 02:24	06/24/10	1000154	EPA 8260
										10F0154	EFA 0200
trans-1,2-Dichloroethene ND " 5.23 10.5 " " " Trichloroethene ND " 5.23 10.5 " " "	roeutene	ND			5.23	10.5				"	

Work Order: H

HTF0092 Received:

Reported: 06/30/10 17:49

06/16/10

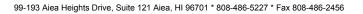
737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Subsurface Soil Investigation (MIS-VOCs)

ANALYTICAL REPORT


Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0092-12 (B11-E-(MIC	,	d/Soil) - cont.			Samp	oled:	06/16/10 09:50	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260			,,	7.11	20.0			,,		,
Vinyl chloride	34.5			7.11	20.9		,,	,,	"	,,
Surr: 1,2-Dichloroethane-d4 (80-120%)	103 %						,,	,,	"	
Sample ID: HTF0092-13 (B11-F-(MIC	-VOC) - Soli	d/Soil)			Samp	oled:	06/16/10 10:00	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260			_							
cis-1,2-Dichloroethene	21.7		ug/kg	4.93	9.87	50	06/25/10 03:50	06/24/10	10F0154	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.93	9.87	"	"	"	"	"
Trichloroethene	ND		"	4.93	9.87	"	"	"	"	"
Vinyl chloride	107		"	6.71	19.7	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	95 %						"	"	"	"
Sample ID: HTF0092-14 (B11-G-(MIC	C-VOC) - Sol	id/Soil)			Samp	oled:	06/16/10 09:57	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260)									
cis-1,2-Dichloroethene	217		ug/kg	4.82	9.63	50	06/25/10 04:15	06/24/10	10F0154	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.82	9.63	"	"	"	"	"
Trichloroethene	ND		"	4.82	9.63	"	"	"	"	"
Vinyl chloride	248		"	6.55	19.3	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	101 %						"	"	"	"
Sample ID: HTF0092-15 (B10-A-(MIC	-VOC) - Soli	id/Soil)			Samı	oled:	06/16/10 10:05	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260)									
cis-1,2-Dichloroethene	7.06	J	ug/kg	4.12	8.25	50	06/25/10 04:41	06/24/10	10F0154	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.12	8.25	"	"	"	"	"
Trichloroethene	4.89	J	"	4.12	8.25	"	"	"	"	"
Vinyl chloride	9.81	J	"	5.61	16.5	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	104 %						"	"	"	"
Sample ID: HTF0092-16 (B10-B-(MIC	-VOC) - Soli	d/Soil)			Samı	oled:	06/16/10 10:10	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260)				_					
cis-1,2-Dichloroethene	116		ug/kg	5.51	11.0	50	06/25/10 05:07	06/24/10	10F0154	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.51	11.0	"	"	"	"	"
Trichloroethene	8.48	J	"	5.51	11.0	"	"	"	"	"
Vinyl chloride	23.8		"	7.49	22.0	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	100 %						"	"	"	"
Sample ID: HTF0092-17 (B10-C-(MIC	-VOC) - Soli	id/Soil)			Samı	oled:	06/16/10 10:12	Re	evd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260		,								
cis-1,2-Dichloroethene	143		ug/kg	5.19	10.4	50	06/25/10 05:32	06/24/10	10F0154	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.19	10.4	"	"	"	"	"
	13.8		"	5.19	10.4	"	"	"	"	"
Trichloroethene										
Trichloroethene Vinyl chloride	50.5		"	7.06	20.8	"	"	"	"	"

Sample ID: HTF0092-18 (B10-D-(MIC-VOC) - Solid/Soil)

Volatile Organic Compounds by EPA 8260

Recvd: 06/16/10 17:28

Sampled: 06/16/10 10:15

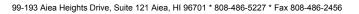
Work Order: HTF0092

F0092 Received:

Reported:

06/30/10 17:49

06/16/10


737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Subsurface Soil Investigation (MIS-VOCs)

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0092-18 (B10-D-(MIC-	·VOC) - Sol	id/Soil) - cont.			Samj	pled:	06/16/10 10:15	Re	evd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260	- cont.									
cis-1,2-Dichloroethene	57.0		ug/kg	4.94	9.88	50	06/25/10 05:58	06/24/10	10F0154	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.94	9.88	"	"	"	"	"
Trichloroethene	ND		"	4.94	9.88	"	"	"	"	"
Vinyl chloride	319		"	6.72	19.8	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	99 %						"	"	"	"
Sample ID: HTF0092-19 (B10-E-(MIC-	VOC) - Sol	id/Soil)			Samj	pled:	06/16/10 10:17	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260										
cis-1,2-Dichloroethene	306		ug/kg	4.95	9.89	50	06/25/10 10:15	06/25/10	10F0158	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.95	9.89	"	"	"	"	"
Trichloroethene	ND		"	4.95	9.89	"	"	"	"	"
Vinyl chloride	437		"	6.73	19.8	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	86 %						"	"	"	"
Sample ID: HTF0092-20 (B10-F-(MIC-Volatile Organic Compounds by EPA 8260	VOC) - Soli	id/Soil)			Samj	pled:	06/16/10 10:22	Rec	cvd: 06/16/	10 17:28
trans-1,2-Dichloroethene	ND		ug/kg	4.94	9.87	50	06/25/10 10:41	06/25/10	10F0158	EPA 8260
Trichloroethene	ND		"	4.94	9.87	"	"	"	"	"
Vinyl chloride	202		"	6.71	19.7	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	90 %						"	"	"	"
Sample ID: HTF0092-20RE1 (B10-F-(M	AIC-VOC) -	- Solid/Soil)			Samj	pled:	06/16/10 10:22	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260										
cis-1,2-Dichloroethene	786		"	24.7	49.4	250	06/25/10 19:32	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	94 %						"	"	"	"
Sample ID: HTF0092-21 (B10-G-(MIC-	-VOC) - Sol	id/Soil)			Samp	pled:	06/16/10 10:24	Red	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260 trans-1,2-Dichloroethene	ND		/1	4.20	0.70	50	06/25/10 11:06	06/25/10	1000150	EPA 8260
•	ND		ug/kg	4.39	8.79	50	06/25/10 11:06	06/25/10	10F0158	EFA 8200
Trichloroethene	ND		"	4.39	8.79	"		,,	,,	
Vinyl chloride Surr: 1,2-Dichloroethane-d4 (80-120%)	216 87 %			5.98	17.6			,,	"	"
								-		
Sample ID: HTF0092-21RE1 (B10-G-(MV) Volatile Organic Compounds by EPA 8260	MIC-VOC)	- Solid/Soil)			Samı	pled:	06/16/10 10:24	Rec	evd: 06/16/	10 17:28
cis-1,2-Dichloroethene	1230		"	22.0	43.9	250	06/25/10 19:58	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	97 %						"	"	"	"
Sample ID: HTF0092-22 (B9-A-(MIC-Volatile Organic Compounds by EPA 8260	VOC) - Solic	l/Soil)			Samı	pled:	06/16/10 10:30	Red	evd: 06/16/	10 17:28
cis-1,2-Dichloroethene	18.5		ug/kg	6.14	12.3	50	06/25/10 11:31	06/25/10	10F0158	EPA 8260
trans-1,2-Dichloroethene	ND		"	6.14	12.3	"	"	"	"	"
Trichloroethene	ND		"	6.14	12.3	"	"	"	"	"
77. 1 11 11										
Vinyl chloride	ND		"	8.35	24.6	"	"	"	"	"

Work Order: HTF0092 Received:

Reported: 06/30/10 17:49

06/16/10

737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Subsurface Soil Investigation (MIS-VOCs)

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0092-23 (B9-B-(MIC		d/Soil)			Samj	pled:	06/16/10 10:33	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 82 cis-1,2-Dichloroethene	58.2		ua/Ira	5.43	10.9	50	06/25/10 11:56	06/25/10	10F0158	EPA 8260
·			ug/kg "			30	00/23/10 11.30	00/23/10	1010138	EFA 8200
trans-1,2-Dichloroethene	ND		"	5.43	10.9	,,	,,	,,	,,	,,
Trichloroethene	ND	T	"	5.43	10.9	,,	,,	,,	,,	,,
Vinyl chloride	7.41	J		7.38	21.7		"	"	,,	,,
Surr: 1,2-Dichloroethane-d4 (80-120%)	90 %						"	"	"	,,
Sample ID: HTF0092-24 (B9-C-(MIO Volatile Organic Compounds by EPA 82		d/Soil)			Sam	pled:	06/16/10 10:35	Re	cvd: 06/16/	10 17:28
cis-1,2-Dichloroethene	99.4		ug/kg	4.62	9.25	50	06/25/10 12:21	06/25/10	10F0158	EPA 8260
trans-1,2-Dichloroethene	ND		ug/kg	4.62	9.25	"	"	"	"	"
Trichloroethene	ND		"	4.62	9.25	,,	"	,,	"	,,
	ND		,,	6.29	18.5	,,	,,	,,	"	,,
Vinyl chloride Surr: 1,2-Dichloroethane-d4 (80-120%)	ND 89 %			0.29	16.3		"	"	"	"
Sample ID: HTF0092-25 (B9-D-(MI0		4/So:1)			Camp	alad.	06/16/10 10.30	Do	cvd: 06/16/	10 17.28
Volatile Organic Compounds by EPA 82		u/3011)			Samj	pieu:	06/16/10 10:39	Ke	Cvu. 00/10/	10 17.20
cis-1,2-Dichloroethene	99.7		ug/kg	5.97	11.9	50	06/25/10 12:46	06/25/10	10F0158	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.97	11.9	"	"	"	"	"
Trichloroethene	130		"	5.97	11.9	"	"	"	"	"
Vinyl chloride	ND		"	8.12	23.9	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	92 %						"	"	"	"
Sample ID: HTF0092-26 (B9-E-(MIC	C-VOC) - Solic	d/Soil)			Sami	oled:	06/16/10 10:41	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 82		,				,				
cis-1,2-Dichloroethene	ND		ug/kg	4.82	9.64	50	06/25/10 13:12	06/25/10	10F0158	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.82	9.64	"	"	"	"	"
Trichloroethene	41.3		"	4.82	9.64	"	"	"	"	"
Vinyl chloride	ND		"	6.55	19.3	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	94 %						"	"	"	"
Sample ID: HTF0092-27 (B9-F-(MIC	C-VOC) - Solid	l/Soil)			Samj	pled:	06/16/10 10:45	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 82	260									
cis-1,2-Dichloroethene	ND		ug/kg	5.26	10.5	50	06/25/10 13:37	06/25/10	10F0158	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.26	10.5	"	"	"	"	"
Trichloroethene	108		"	5.26	10.5	"	"	"	"	"
Vinyl chloride	ND		"	7.16	21.1	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	95 %						"	"	"	"
Sample ID: HTF0092-28 (B9-G-(MI	C-VOC) - Soli	d/Soil)			Samj	pled:	06/16/10 10:47	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 82										
cis-1,2-Dichloroethene	ND		ug/kg	5.09	10.2	50	06/25/10 14:02	06/25/10	10F0158	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.09	10.2	"	"	"	"	"
Trichloroethene	137		"	5.09	10.2	"	"	"	"	"
Vinyl chloride	ND		"	6.92	20.4	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	99 %						"	"	"	"

Work Order:

HTF0092

Received: Reported: 06/16/10 06/30/10 17:49

737 Bishop st., Suite 3010 Honolulu, HI 96813

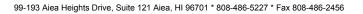
Scott Duzan

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Subsurface Soil Investigation (MIS-VOCs)

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0092-28 (B9-G-(MIC-	-VOC) - Solic	l/Soil) - cont.			Samp	led:	06/16/10 10:47	Re	cvd: 06/16/	10 17:28
Sample ID: HTF0092-29 (B1-H-(MIC-	-VOC) - Solic	d/Soil)			Samp	led:	06/16/10 11:05	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260	0									
cis-1,2-Dichloroethene	32.9		ug/kg	4.33	8.65	50	06/25/10 14:28	06/25/10	10F0158	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.33	8.65	"	"	"	"	"
Trichloroethene	10.3		"	4.33	8.65	"	"	"	"	"
Vinyl chloride	ND		"	5.88	17.3	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	90 %						"	"	"	"
Sample ID: HTF0092-30 (B2-A-(MIC-	-VOC) - Solid	l/Soil)			Samp	led:	06/16/10 11:36	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260	0									
cis-1,2-Dichloroethene	232		ug/kg	6.46	12.9	50	06/25/10 14:53	06/25/10	10F0158	EPA 8260
trans-1,2-Dichloroethene	ND		"	6.46	12.9	"	"	"	"	"
Trichloroethene	ND		"	6.46	12.9	"	"	"	"	"
Vinyl chloride	ND		"	8.78	25.8	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	92 %						"	"	"	"
Sample ID: HTF0092-31 (B2-B-(MIC- Volatile Organic Compounds by EPA 8260		l/Soil)			Samp	led:	06/16/10 11:38	Re	cvd: 06/16/	10 17:28
cis-1,2-Dichloroethene	85.8		ug/kg	3.91	7.82	50	06/25/10 16:08	06/25/10	10F0158	EPA 8260
trans-1,2-Dichloroethene	ND		"	3.91	7.82	"	"	"	"	"
Trichloroethene	241		"	3.91	7.82	"	"	"	"	"
Vinyl chloride	ND		"	5.32	15.6	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	92 %						"	"	"	"
Sample ID: HTF0092-32 (B2-C-(MIC-	-VOC) - Solid	l/Soil)			Samp	led:	06/16/10 11:40	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260	0				_					
cis-1,2-Dichloroethene	38.5		ug/kg	3.43	6.86	50	06/25/10 16:33	06/25/10	10F0158	EPA 8260
trans-1,2-Dichloroethene	ND		"	3.43	6.86	"	"	"	"	"
Vinyl chloride	ND		"	4.67	13.7	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	90 %						"	"	"	"
Sample ID: HTF0092-32RE1 (B2-C-(M	-	Solid/Soil)			Samp	led:	06/16/10 11:40	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260			,,	6.06	12.7	100	06/20/10 20 20	06/20/10	1000173	,
Trichloroethene Surr: 1,2-Dichloroethane-d4 (80-120%)	613 98 %			6.86	13.7	100	06/28/10 20:38	06/28/10	10F0172 "	"
Sample ID: HTF0092-33 (B2-D-(MIC-	-VOC) - Solid	l/Soil)			Samn	led:	06/16/10 11:46	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260		,			r					
cis-1,2-Dichloroethene	85.3		ug/kg	5.24	10.5	50	06/25/10 16:59	06/25/10	10F0158	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.24	10.5	"	"	"	"	"
Vinyl chloride	ND		"	7.13	21.0	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	93 %						"	"	"	"
Sample ID: HTF0092-33RE1 (B2-D-(N		Solid/Soil)			Samp	led:	06/16/10 11:46	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260 Trichloroethene	0 663		"	10.5	21.0	100	06/28/10 21:04	06/28/10	10F0172	"
				- · · ·	,-					

HTF0092 Work Order:


06/16/10 Received: Reported:

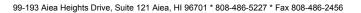
06/30/10 17:49

737 Bishop st., Suite 3010 Honolulu, HI 96813 Scott Duzan

Project: Subsurface Soil Investigation (MIS-VOCs) Project Number: Subsurface Soil Investigation (MIS-VOCs)

Name in Privinge 2-38 tr (1820 - Volume 192	Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF00092-34 (Re2-F-(MIC-VOF)		` ,	Solid/Soil) - co	ont.		Sam	pled:	06/16/10 11:46	Re	evd: 06/16/	10 17:28
Value (Congound Congounds by EPA 820° et.) - 1,0 (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	• • •							"	"	"	"
March Mar	-		l/Soil)			Sam	pled:	06/16/10 11:48	Re	cvd: 06/16/	10 17:28
Trichlorocthene 452 1,0 4,9 8,8 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	• • •			ug/kg	4.99	9.98	50	06/25/10 17:24	06/25/10	10F0158	EPA 8260
Tricklorochemo	·									"	"
No per la locale del la locale de la locale del la locale del la locale del la locale de la locale de la locale del la locale del la locale de la locale del la locale	,			"			,,	"	"	"	"
Sample ID: HTF0092-35 (B2-F-(MIC-VC) - Solid/Solity Sample ID: HTF0092-35 (B2-F-(MIC-VC) - Solid/Solity Sample ID: HTF0092-35 (B2-F-(MIC-VC) - Solid/Solity Sample ID: HTF0092-35 (B2-F-(MIC-VC) - Solid/Solity Sample ID: HTF0092-36 (B2-F-(MIC-VC) - Solity Sample ID: HTF0092-36 (B2-G-(MIC-VC) - Solity Sample ID: HTF0092-37 (TRIP BLANK - Solity Sample ID: HTF0092				"			,,	"	"	"	"
Notatile Organic Compounds by EPA 8269 Trichlorocchene ND ND ND ND ND ND ND ND ND N	-				0.70	20.0		"	"	"	"
Cis-12-Dichlorocthene	-	-	/Soil)			Sam	pled:	06/16/10 11:54	Re	cvd: 06/16/	10 17:28
Trichloroethene ND	• • •			ug/kg	5.51	11.0	50	06/25/10 17:50	06/25/10	10F0158	EPA 8260
Trichloroethene 6.13 J " 5.51 11.0 " <td>· ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>"</td>	· ·										"
Night cloride			J	"			,,	"	"	"	"
Sample ID: HTF0092-36 (B2-G-(MIC-VC) - Solid/Soll Solid				"			,,	"	"	"	"
Volatile Organic Compounds by EPA 8260 ND ug/kg 4.74 9.47 50 06/25/10 18:16 06/25/10 10F015/88 EPA 8260 trans-12-Dichloroethene ND "4.74 9.47 "6"	•				,	-2.0		"	"	"	"
Case 2-Dichloroethene ND	Sample ID: HTF0092-36 (B2-G-(MIC	C-VOC) - Solid	l/Soil)			Sam	pled:	06/16/10 11:56	Re	evd: 06/16/	10 17:28
trans-1,2-Dichloroethene ND " 4,74 9,47 " <	Volatile Organic Compounds by EPA 82	60									
Trichloroethene ND " 4,74 9,47 " " " " " " " " " " " " " " " " " " "	cis-1,2-Dichloroethene	ND		ug/kg	4.74	9.47	50	06/25/10 18:16	06/25/10	10F0158	EPA 8260
Vinyl chloride	trans-1,2-Dichloroethene	ND		"	4.74	9.47	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%) 98 %	Trichloroethene	ND		"	4.74	9.47	"	"	"	"	"
Sample ID: HTF0092-37 (TRIP BLANK - Solid/Soil) Sample ID: HTF0092-37 (TRIP BLANK - Solid/Soil) Ug/kg 5.00 10.0 50 06/25/10 18:41 06/25/10 10F0158 EPA 8260 10.0	Vinyl chloride	ND		"	6.44	18.9	"	"	"	"	"
Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND ug/kg 5.00 10.0 50 06/25/10 18:41 06/25/10 10F0158 EPA 8260 trans-1,2-Dichloroethene ND " 5.00 10.0 "	Surr: 1,2-Dichloroethane-d4 (80-120%)	98 %						"	"	"	"
Cis-1,2-Dichloroethene	- · · · · · · · · · · · · · · · · · · ·		il)			Sam	pled:	06/16/10 13:25	Re	cvd: 06/16/	10 17:28
trans-1,2-Dichloroethene ND " 5.00 10.0 " " " " " " " " " " " " " " Trichloroethene ND " 5.00 10.0 " " " " " " " " " " " " " " " " " "	• •										
Trichloroethene ND " 5.00 10.0 " " " " " " " " " " " " " " " " " "	· ·									10F0158	EPA 8260
Vinyl chloride ND " 6.80 20.0 " " " " " " " " " " " " " " " " " "	trans-1,2-Dichloroethene	ND		"	5.00	10.0		"		"	"
Sample ID: HTF0092-38 (B1-A-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND " Sampled: 06/16/10 13:30 Recvd: 06/16/10 17:28 Sampled: 06/16/10 13:30 Recvd: 06/16/10 17:28 FPA 8260 trans-1,2-Dichloroethene ND " Solid Soil) " Sampled: 06/16/10 13:30 Recvd: 06/16/10 17:28 FPA 8260 trans-1,2-Dichloroethene ND " Solid Soil) " " " " " " " " " " " " " " " " " "	Trichloroethene	ND		"	5.00	10.0	"	"	"	"	"
Sample ID: HTF0092-38 (B1-A-(MIC-VOC) - Solid/Soil) Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene ND " 5.68 11.4 " " " " " " " " " " " " " " " " " "	Vinyl chloride	ND		"	6.80	20.0	"	"	"	"	"
Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene 187 ug/kg 5.68 11.4 50 06/25/10 19:06 06/25/10 10F0158 EPA 8260 trans-1,2-Dichloroethene ND " 5.68 11.4 " " " " " Trichloroethene 10.2 J " 5.68 11.4 " " " " " Vinyl chloride 14.9 J " 7.72 22.7 " " " " " Surr: 1,2-Dichloroethane-d4 (80-120%) 98 % " 7.72 22.7 "<	Surr: 1,2-Dichloroethane-d4 (80-120%)	93 %						"	"	"	"
trans-1,2-Dichloroethene ND " 5.68 11.4 " " " " " " " " " " Trichloroethene 10.2 J " 5.68 11.4 " " " " " " " " " " " " " " " " " " "	-		l/Soil)			Sam	pled:	06/16/10 13:30	Re	evd: 06/16/	10 17:28
Trichloroethene 10.2 J " 5.68 11.4 " " " " " " " " " " " " " " " " " " "	cis-1,2-Dichloroethene	187		ug/kg	5.68	11.4	50	06/25/10 19:06	06/25/10	10F0158	EPA 8260
Vinyl chloride 14.9 J " 7.72 22.7 " <td>trans-1,2-Dichloroethene</td> <td>ND</td> <td></td> <td>"</td> <td>5.68</td> <td>11.4</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td>	trans-1,2-Dichloroethene	ND		"	5.68	11.4	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%) 98 % " " " " " " " Sample ID: HTF0092-39 (B1-B-(MIC-VOC) - Solid/Soil) Sampled: 06/16/10 13:32 Recvd: 06/16/10 17:28 Volatile Organic Compounds by EPA 8260	Trichloroethene	10.2	J	"	5.68	11.4	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%) 98 % " <td>Vinyl chloride</td> <td>14.9</td> <td>J</td> <td>"</td> <td>7.72</td> <td>22.7</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td>	Vinyl chloride	14.9	J	"	7.72	22.7	"	"	"	"	"
Volatile Organic Compounds by EPA 8260	•							"	"	"	"
	- · · · · · · · · · · · · · · · · · · ·		l/Soil)			Sam	pled:	06/16/10 13:32	Re	cvd: 06/16/	10 17:28
cis-1,2-Dichloroethene 271 ug/kg 4.95 9.91 50 06/25/10 21:40 06/25/10 10F0159 EPA 8260						_					
	cis-1,2-Dichloroethene	271		ug/kg	4.95	9.91	50	06/25/10 21:40	06/25/10	10F0159	EPA 8260

HTF0092 Work Order:

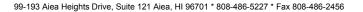

06/16/10 Received: 06/30/10 17:49 Reported:

737 Bishop st., Suite 3010

Project: Subsurface Soil Investigation (MIS-VOCs)

Honolulu, HI 96813 Project Number: Subsurface Soil Investigation (MIS-VOCs) Scott Duzan

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0092-39 (B1-B-(MIC		/Soil) - cont.			Samp	oled:	06/16/10 13:32	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 82			"	4.05	0.01	"	"	,,	,,	
trans-1,2-Dichloroethene	ND			4.95	9.91		"	"	"	
Trichloroethene	20.5		"	4.95	9.91					
Vinyl chloride	43.4		"	6.74	19.8	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	96 %						"	"	"	"
Sample ID: HTF0092-40 (B1-C-(MIC	C-VOC) - Solid	l/Soil)			Samp	oled:	06/16/10 13:34	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 82										
cis-1,2-Dichloroethene	111		ug/kg	4.74	9.47	50	06/25/10 22:06	06/25/10	10F0159	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.74	9.47	"	"	"	"	"
Trichloroethene	12.9		"	4.74	9.47	"	"	"	"	"
Vinyl chloride	16.1	J	"	6.44	18.9	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	95 %						"	"	"	"
Sample ID: HTF0092-41 (B1-D-(MIC	*	l/Soil)			Samı	oled:	06/16/10 13:36	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 82 cis-1,2-Dichloroethene	18.3		na/Ira	1.65	0.20	50	06/25/10 22:31	06/25/10	10F0159	EPA 8260
<i>'</i>			ug/kg	4.65	9.30	30	00/23/10 22.31	00/23/10	1010139	EFA 8200
trans-1,2-Dichloroethene	ND		,,	4.65	9.30	,,	,,	"	"	
Trichloroethene	ND			4.65	9.30					,,
Vinyl chloride	ND		"	6.33	18.6	"	"	"	"	
Surr: 1,2-Dichloroethane-d4 (80-120%)	95 %						"	"	"	"
Sample ID: HTF0092-42 (B1-E-(MIC		/Soil)			Samp	oled:	06/16/10 13:38	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 82			_							
cis-1,2-Dichloroethene	ND		ug/kg	5.51	11.0	50	06/25/10 22:57	06/25/10	10F0159	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.51	11.0	"	"	"	"	"
Trichloroethene	ND		"	5.51	11.0	"	"	"	"	"
Vinyl chloride	ND		"	7.49	22.0	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	95 %						"	"	"	"
Sample ID: HTF0092-43 (B1-F-(MIC	*	/Soil)			Samp	oled:	06/16/10 13:42	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 82			_							
cis-1,2-Dichloroethene	ND		ug/kg	5.09	10.2	50	06/25/10 23:23	06/25/10	10F0159	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.09	10.2	"	"	"	"	"
Trichloroethene	ND		"	5.09	10.2	"	"	"	"	"
Vinyl chloride	ND		"	6.92	20.3	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	95 %						"	"	"	"
Sample ID: HTF0092-44 (B1-G-(MIC Volatile Organic Compounds by EPA 82		l/Soil)			Samp	oled:	06/16/10 13:46	Re	cvd: 06/16/	10 17:28
cis-1,2-Dichloroethene	ND		ug/kg	5.39	10.8	50	06/25/10 23:48	06/25/10	10F0159	EPA 8260
trans-1,2-Dichloroethene	ND ND		ug/kg "			30	00/23/10 23.48	00/23/10	1010139	"
			"	5.39	10.8	,,	"	"	"	,,
Trichloroethene	ND		"	5.39	10.8		,,	"	,,	,,
Vinyl chloride	ND		"	7.33	21.5	"			"	
Surr: 1,2-Dichloroethane-d4 (80-120%)	102 %						"	"	"	"


Tetra Tech EM Inc. HTF0092 06/16/10 Work Order: Received: 06/30/10 17:49 Reported:

737 Bishop st., Suite 3010

Honolulu, HI 96813 Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Subsurface Soil Investigation (MIS-VOCs) Scott Duzan

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0092-45 (LAYER G-F)	MIS-VOC1	2 - Solid/Soil)			Sam	pled:	06/16/10 13:45	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260					•					
trans-1,2-Dichloroethene	ND		ug/kg	2.52	5.05	50	06/26/10 00:14	06/25/10	10F0159	EPA 8260
Trichloroethene	93.5		"	2.52	5.05	"	"	"	"	"
Vinyl chloride	9.07	J	"	3.43	10.1	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	95 %						"	"	"	"
Sample ID: HTF0092-45RE1 (LAYER	G-FMIS-V	OC12 - Solid/S	oil)		Sam	pled:	06/16/10 13:45	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260										
cis-1,2-Dichloroethene	308		"	12.6	25.2	250	06/28/10 21:29	06/28/10	10F0172	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	99 %						"	"	"	"
Sample ID: HTF0092-46 (LAYER G-F)	MIS-VOC6	- Solid/Soil)			Sam	pled:	06/16/10 13:45	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260	NID		/1	2.27	4.54	50	06/26/10 00 40	06/25/10	1000150	EDA 92/0
trans-1,2-Dichloroethene	ND		ug/kg "	2.27	4.54	50	06/26/10 00:40	06/25/10	10F0159	EPA 8260
Trichloroethene	176			2.27	4.54		"	,,	,,	,,
Vinyl chloride	22.6		"	3.08	9.07	"				
Surr: 1,2-Dichloroethane-d4 (80-120%)	100 %						"	"	"	"
Sample ID: HTF0092-46RE1 (LAYER	G-FMIS-V	OC6 - Solid/So	il)		Sam	pled:	06/16/10 13:45	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260	251		,,	11.2	22.7	250	06/20/10 21 55	06/20/10	1000173	,,
cis-1,2-Dichloroethene Surr: 1,2-Dichloroethane-d4 (80-120%)	251 104 %			11.3	22.7	250	06/28/10 21:55	06/28/10	10F0172	,,
	JIV D16 E	Calid/Cail)			C	.1.4.	06/16/10 14.51	Do	cvd: 06/16/	10 17.29
Sample ID: HTF0092-47 (FIELD BLA! Volatile Organic Compounds by EPA 8260	VIX-DIU-I -	Soliu/Soli)			Sam	pieu:	06/16/10 14:51	KU	Cvu. 00/10/	10 17.20
cis-1,2-Dichloroethene	ND		ug/kg	60.0	120	50	06/26/10 01:05	06/25/10	10F0159	EPA 8260
trans-1,2-Dichloroethene	ND		"	60.0	120	"	"	"	"	"
Trichloroethene	ND		"	60.0	120	"	"	"	"	"
Vinyl chloride	ND		,,	81.6	240	"	"	,,	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	97 %			01.0	210		"	"	"	"
Sample ID: HTF0092-48 (B16-A-(MIC-	·VOC) - Sol	id/Soil)			Sami	nled:	06/16/10 14:35	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260	,	,			,					
cis-1,2-Dichloroethene	ND		ug/kg	5.97	11.9	50	06/26/10 01:31	06/25/10	10F0159	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.97	11.9	"	"	"	"	"
Trichloroethene	19.4		"	5.97	11.9	"	"	"	"	"
Vinyl chloride	ND		"	8.12	23.9	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	99 %						"	"	"	"
Sample ID: HTF0092-49 (B16-B-(MIC-Volatile Organic Compounds by EPA 8260	VOC) - Sol	id/Soil)			Sam	pled:	06/16/10 14:40	Re	cvd: 06/16/	10 17:28
cis-1,2-Dichloroethene	ND		ug/kg	4.90	9.79	50	06/26/10 01:56	06/25/10	10F0159	EPA 8260
trans-1,2-Dichloroethene	ND		ug/kg "	4.90	9.79	"	"	"	"	"
Trichloroethene	ND		,,	4.90	9.79	,,	"	"	"	,,
Vinyl chloride			"			,,	"	,,	"	"
•	ND			6.66	19.6			,,	,,	,,
Surr: 1,2-Dichloroethane-d4 (80-120%)	95 %						"	"	"	"

Work Order: HTF0092

Received: Reported: 06/16/10 06/30/10 17:49

737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Subsurface Soil Investigation (MIS-VOCs)

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0092-50 (B16-C-(MIC	-VOC) - Sol	id/Soil)			Sam	pled:	06/16/10 14:42	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260					•	-				
cis-1,2-Dichloroethene	ND		ug/kg	3.95	7.89	50	06/26/10 02:22	06/25/10	10F0159	EPA 8260
trans-1,2-Dichloroethene	ND		"	3.95	7.89	"	"	"	"	"
Trichloroethene	ND		"	3.95	7.89	"	"	"	"	"
Vinyl chloride	ND		"	5.37	15.8	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	96 %						"	"	"	"
Sample ID: HTF0092-51 (B16-D-(MIC	-VOC) - Sol	id/Soil)			Sam	pled:	06/16/10 14:44	Re	evd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260										
cis-1,2-Dichloroethene	ND		ug/kg	5.15	10.3	50	06/26/10 02:47	06/25/10	10F0159	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.15	10.3	"	"	"	"	"
Trichloroethene	ND		"	5.15	10.3	"	"	"	"	"
Vinyl chloride	ND		"	7.00	20.6	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	97 %						"	"	"	"
Sample ID: HTF0092-52 (B16-E-(MIC-	-VOC) - Soli	id/Soil)			Sam	pled:	06/16/10 14:46	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260										
cis-1,2-Dichloroethene	ND		ug/kg	4.93	9.86	50	06/26/10 03:13	06/25/10	10F0159	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.93	9.86	"	"	"	"	"
Trichloroethene	ND		"	4.93	9.86	"	"	"	"	"
Vinyl chloride	ND		"	6.71	19.7	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	96 %						"	"	"	"
Sample ID: HTF0092-53 (B16-F-(MIC-		d/Soil)			Sam	pled:	06/16/10 14:52	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260										
cis-1,2-Dichloroethene	ND		ug/kg	5.38	10.8	50	06/26/10 03:39	06/25/10	10F0159	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.38	10.8	"	"	"	"	"
Trichloroethene	ND		"	5.38	10.8	"	"	"	"	"
Vinyl chloride	ND		"	7.32	21.5	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	98 %						"	"	"	"
Sample ID: HTF0092-54 (B15-A-(MIC		id/Soil)			Sam	pled:	06/16/10 15:02	Re	evd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260			_							
cis-1,2-Dichloroethene	ND		ug/kg	4.13	8.25	50	06/26/10 04:04	06/25/10	10F0159	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.13	8.25	"	"	"	"	"
Trichloroethene	16.3		"	4.13	8.25	"	"	"	"	"
Vinyl chloride	ND		"	5.61	16.5	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	95 %						"	"	"	"
Sample ID: HTF0092-55 (B15-B-(MIC-		id/Soil)			Sam	pled:	06/16/10 15:07	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene	ND		ng/lra	5 40	11.0	50	06/26/10 04:30	06/25/10	1000150	EPA 8260
			ug/kg	5.48	11.0	50	06/26/10 04:30	06/25/10	10F0159	LI A 0200
trans-1,2-Dichloroethene	ND		,,	5.48	11.0	,,	"	"	,,	"
Trichloroethene	24.7		"	5.48	11.0	"	"	"	"	
Vinyl chloride	ND		"	7.46	21.9	"				"
Surr: 1,2-Dichloroethane-d4 (80-120%)	100 %						"	"	"	"

Work Order: HTF0092

Received:

Reported:

06/30/10 17:49

06/16/10

737 Bishop st., Suite 3010 Honolulu, HI 96813

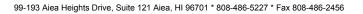
Scott Duzan

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Subsurface Soil Investigation (MIS-VOCs)

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0092-55 (B15-B-(MI	C-VOC) - Soli	id/Soil) - cont.			Sam	pled:	06/16/10 15:07	Re	cvd: 06/16/	10 17:28
Sample ID: HTF0092-56 (B15-C-(MI Volatile Organic Compounds by EPA 820		id/Soil)			Sam	pled:	06/16/10 15:09	Re	cvd: 06/16/	10 17:28
cis-1,2-Dichloroethene	ND		ug/kg	5.08	10.2	50	06/26/10 04:56	06/25/10	10F0159	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.08	10.2	"	"	"	"	"
Trichloroethene	14.7		"	5.08	10.2	"	"	"	"	"
Vinyl chloride	ND		"	6.90	20.3	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	97 %						"	"	"	"
Sample ID: HTF0092-57 (B15-D-(MI Volatile Organic Compounds by EPA 820		id/Soil)			Sam	pled:	06/16/10 15:11	Re	evd: 06/16/	10 17:28
cis-1,2-Dichloroethene	ND		ug/kg	5.40	10.8	50	06/26/10 05:21	06/25/10	10F0159	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.40	10.8	"	"	"	"	"
Trichloroethene	107		,,	5.40	10.8	"	"	"	"	"
Vinyl chloride	ND		"	7.34	21.6	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	100 %						"	"	"	"
Sample ID: HTF0092-58 (B15-E-(MI- Volatile Organic Compounds by EPA 820		id/Soil)			Sam	pled:	06/16/10 15:13	Re	evd: 06/16/	10 17:28
cis-1,2-Dichloroethene	19.4		ug/kg	5.07	10.1	50	06/28/10 15:32	06/28/10	10F0172	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.07	10.1	"	"	"	"	"
Vinyl chloride	ND		,,	6.90	20.3	"	"	"	,,	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	92 %			0.50	20.5		"	"	"	"
Sample ID: HTF0092-58RE1 (B15-E- Volatile Organic Compounds by EPA 820		Solid/Soil)			Sam	pled:	06/16/10 15:13	Re	evd: 06/16/	10 17:28
Trichloroethene	484		"	10.1	20.3	100	06/28/10 23:12	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	105 %						"	"	"	"
Sample ID: HTF0092-59 (B15-F-(MI	,	d/Soil)			Sam	pled:	06/16/10 15:16	Re	evd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 820				4.50	0.50		0.5/20/40.4.7.7.	0.5/0.0/4.0	400045	ED 1 00 (0
cis-1,2-Dichloroethene	28.7		ug/kg	4.79	9.59	50	06/28/10 15:57	06/28/10	10F0172	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.79	9.59	"	"	"	"	
Vinyl chloride Surr: 1,2-Dichloroethane-d4 (80-120%)	ND 94 %		"	6.52	19.2	"	"	"	"	"
Surr. 1,2-Dictior oethane-u4 (60-12076)	94 /0									
Sample ID: HTF0092-59RE1 (B15-F- Volatile Organic Compounds by EPA 820	60	Solid/Soil)			Sam	pled:	06/16/10 15:16	Re	cvd: 06/16/	10 17:28
Trichloroethene	1070		"	24.0	47.9	250	06/28/10 23:37	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	99 %						"	"	"	"
Sample ID: HTF0092-60 (B14-A-(MI Volatile Organic Compounds by EPA 820		id/Soil)			Sam	pled:	06/16/10 15:23	Re	cvd: 06/16/	10 17:28
cis-1,2-Dichloroethene	ND		ug/kg	4.86	9.72	50	06/28/10 16:22	06/28/10	10F0172	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.86	9.72	"	"	"	"	"
Trichloroethene	ND		"	4.86	9.72	"	"	"	"	"
Vinyl chloride	ND									

737 Bishop st., Suite 3010


Honolulu, HI 96813 Scott Duzan Work Order: HTF0092 Received: 06/16/10

Reported:

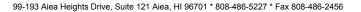
06/30/10 17:49

Project: Subsurface Soil Investigation (MIS-VOCs)
Project Number: Subsurface Soil Investigation (MIS-VOCs)

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0092-60 (B14-A-(MIC	C-VOC) - Soli	id/Soil) - cont.			Samj	oled:	06/16/10 15:23	Re	evd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 826	60 - cont.									
Surr: 1,2-Dichloroethane-d4 (80-120%)	95 %						"	"	"	"
Sample ID: HTF0092-61 (B14-B-(MIC		d/Soil)			Samp	oled:	06/16/10 15:26	Re	evd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 826										
cis-1,2-Dichloroethene	ND		ug/kg	4.99	9.99	50	06/28/10 16:48	06/28/10	10F0172	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.99	9.99	"	"	"	"	"
Trichloroethene	12.3		"	4.99	9.99	"	"	"	"	"
Vinyl chloride	ND		"	6.79	20.0	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	95 %						"	"	"	"
Sample ID: HTF0092-62 (B14-C-(MIC Volatile Organic Compounds by EPA 826		id/Soil)			Samp	oled:	06/16/10 15:28	Re	evd: 06/16/	10 17:28
cis-1,2-Dichloroethene	ND		ug/kg	5.10	10.2	50	06/28/10 17:13	06/28/10	10F0172	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.10	10.2	"	"	"	"	"
Trichloroethene	42.2		"	5.10	10.2	"	"	"	"	"
Vinyl chloride	ND		"	6.94	20.4	"	"	,,	"	,,
Surr: 1,2-Dichloroethane-d4 (80-120%)	96 %			0.51	20.1		"	"	"	"
Sample ID: HTF0092-63 (B14-D-(MI0	C-VOC) - Soli	id/Soil)			Sami	aled•	06/16/10 15:31	Re	evd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 826		<i>(a)</i> (3011)			Samp	ncu.	00/10/10 13.31	110	c v u . 0 0 / 1 0 /	10 17.20
cis-1,2-Dichloroethene	ND		ug/kg	4.99	9.98	50	06/28/10 17:39	06/28/10	10F0172	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.99	9.98	"	"	"	"	,,
Trichloroethene	114		"	4.99	9.98	"	"	"	"	"
Vinyl chloride	ND		"	6.78	20.0	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	94 %			0.70	20.0		"	"	"	"
Sample ID: HTF0092-64 (B14-E-(MIC	C-VOC) - Soli	d/Soil)			Sami	aled:	06/16/10 15:33	Re	evd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 826		.u. 5011)			Sam	Jicu.	00/10/10 13:55		00,10,	10 17.020
cis-1,2-Dichloroethene	ND		ug/kg	4.98	9.97	50	06/28/10 18:04	06/28/10	10F0172	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.98	9.97	"	"	"	"	"
Trichloroethene	146		"	4.98	9.97	"	"	"	"	"
Vinyl chloride	ND		"	6.78	19.9	"	"	"	"	,,
Surr: 1,2-Dichloroethane-d4 (80-120%)	99 %						"	"	"	"
Sample ID: HTF0092-65 (B14-F-(MIC	C-VOC) - Soli	d/Soil)			Samj	oled:	06/16/10 15:38	Re	evd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 826	50									
cis-1,2-Dichloroethene	ND		ug/kg	4.69	9.38	50	06/28/10 18:30	06/28/10	10F0172	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.69	9.38	"	"	"	"	"
Trichloroethene	40.5		"	4.69	9.38	"	"	"	"	"
Vinyl chloride	ND		"	6.38	18.8	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	98 %						"	"	"	"
Sample ID: HTF0092-66 (B13-A-(MIO Volatile Organic Compounds by EPA 826		id/Soil)			Samı	oled:	06/16/10 15:54	Re	cvd: 06/16/	10 17:28
cis-1,2-Dichloroethene	ND		ug/kg	5.37	10.7	50	06/28/10 18:56	06/28/10	10F0172	EPA 8260

Work Order: HTF0092

Received: Reported: 06/16/10 06/30/10 17:49


737 Bishop st., Suite 3010 Honolulu, HI 96813

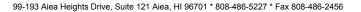
Scott Duzan

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Subsurface Soil Investigation (MIS-VOCs)

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0092-66 (B13-A-(MI		id/Soil) - cont.			Samj	oled:	06/16/10 15:54	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 82			,,	5.25	10.7	"	"	,,	,,	
trans-1,2-Dichloroethene	ND			5.37	10.7		"	,	"	
Trichloroethene	ND		"	5.37	10.7					
Vinyl chloride	ND		"	7.30	21.5	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	98 %						"	"	"	"
Sample ID: HTF0092-67 (B13-B-(MI	,	d/Soil)			Samp	oled:	06/16/10 16:03	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 82										
cis-1,2-Dichloroethene	ND		ug/kg	4.38	8.75	50	06/28/10 19:21	06/28/10	10F0172	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.38	8.75	"	"	"	"	"
Trichloroethene	ND		"	4.38	8.75	"	"	"	"	"
Vinyl chloride	ND		"	5.95	17.5	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	100 %						"	"	"	"
Sample ID: HTF0092-68 (B13-C-(MI	,	id/Soil)			Samp	oled:	06/16/10 16:05	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 82										
cis-1,2-Dichloroethene	ND		ug/kg	4.13	8.25	50	06/28/10 19:47	06/28/10	10F0172	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.13	8.25	"	"	"	"	"
Trichloroethene	ND		"	4.13	8.25	"	"	"	"	"
Vinyl chloride	ND		"	5.61	16.5	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	97 %						"	"	"	"
Sample ID: HTF0092-69 (B13-D-(M		id/Soil)			Samp	oled:	06/16/10 16:08	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 82										
cis-1,2-Dichloroethene	ND		ug/kg	3.98	7.96	50	06/28/10 20:12	06/28/10	10F0172	EPA 8260
trans-1,2-Dichloroethene	ND		"	3.98	7.96	"	"	"	"	"
Trichloroethene	ND		"	3.98	7.96	"	"	"	"	"
Vinyl chloride	ND		"	5.41	15.9	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	101 %						"	"	"	"
Sample ID: HTF0092-70 (B13-E-(MI	(C-VOC) - Soli	d/Soil)			Samp	oled:	06/16/10 16:10	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 82										
cis-1,2-Dichloroethene	ND		ug/kg	4.49	8.97	50	06/28/10 14:17	06/28/10	10F0172	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.49	8.97	"	"	"	"	"
Trichloroethene	ND		"	4.49	8.97	"	"	"	"	"
Vinyl chloride	ND		"	6.10	17.9	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	93 %						"	"	"	"
Sample ID: HTF0092-71 (B13-F-(MI		d/Soil)			Samp	oled:	06/16/10 16:17	Re	cvd: 06/16/	10 17:28
Volatile Organic Compounds by EPA 82			/1	£ 12	10.2	50	06/20/10 15 07	06/20/10	1000172	EDA 9240
cis-1,2-Dichloroethene	ND		ug/kg	5.13	10.3	50	06/28/10 15:07	06/28/10	10F0172	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.13	10.3	"	"			
Trichloroethene	ND		"	5.13	10.3	"	"	"	"	
Vinyl chloride	ND		"	6.98	20.5	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	89 %						"	"	"	"

Tetra Tech EM Inc. HTF0092 06/16/10 Work Order: Received:

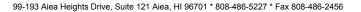

737 Bishop st., Suite 3010 Reported: 06/30/10 17:49

Honolulu, HI 96813 Project: Subsurface Soil Investigation (MIS-VOCs) Scott Duzan

Project Number: Subsurface Soil Investigation (MIS-VOCs)

LABORATORY BLANK QC DATA

S	Source	Spike					Dup	%	Dup	% REC		RPD		
Analyte	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit		Q
Volatile Organic Compounds by EPA	8260													
Batch\Seq: 10F0154 Extracted: 06/24	/10													
Blank Analyzed: 06/24/2010 (10F0154-B	LK1)													
cis-1,2-Dichloroethene			ug/kg	0.100	0.200	ND							M7	
trans-1,2-Dichloroethene			ug/kg	0.100	0.200	ND								
Trichloroethene			ug/kg	0.100	0.200	ND								
Vinyl chloride			ug/kg	0.136	0.400	ND								
Surrogate: 1,2-Dichloroethane-d4			ug/kg					97		80-120				
Batch\Seq: 10F0158 Extracted: 06/25	/10													
Blank Analyzed: 06/25/2010 (10F0158-B	LK1)													
cis-1,2-Dichloroethene			ug/kg	0.100	0.200	ND								
trans-1,2-Dichloroethene			ug/kg	0.100	0.200	ND								
Trichloroethene			ug/kg	0.100	0.200	ND								
Vinyl chloride			ug/kg	0.136	0.400	ND								
Surrogate: 1,2-Dichloroethane-d4			ug/kg					87		80-120				
Batch\Seq: 10F0159 Extracted: 06/25	/10													
Blank Analyzed: 06/25/2010 (10F0159-B	LK1)													
cis-1,2-Dichloroethene			ug/kg	0.100	0.200	ND								
trans-1,2-Dichloroethene			ug/kg	0.100	0.200	ND								
Trichloroethene			ug/kg	0.100	0.200	ND								
Vinyl chloride			ug/kg	0.136	0.400	ND								
Surrogate: 1,2-Dichloroethane-d4			ug/kg					95		80-120				
Batch\Seq: 10F0172 Extracted: 06/28	/10													
Blank Analyzed: 06/28/2010 (10F0172-B	LK1)													
cis-1,2-Dichloroethene			ug/kg	0.100	0.200	ND								
trans-1,2-Dichloroethene			ug/kg	0.100	0.200	ND								
Trichloroethene			ug/kg	0.100	0.200	ND								
Vinyl chloride			ug/kg	0.136	0.400	ND								
Surrogate: 1,2-Dichloroethane-d4			ug/kg					96		80-120				


Tetra Tech EM Inc. Work Order: HTF0092 Received: 06/16/10

737 Bishop st., Suite 3010 Reported: 06/30/10 17:49

Honolulu, HI 96813 Project: Subsurface Soil Investigation (MIS-VOCs)
Scott Duzan Project Number: Subsurface Soil Investigation (MIS-VOCs)

LCS/LCS DUPLICATE QC DATA

	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
Volatile Organic Compounds by E	PA 8260												
Batch\Seq: 10F0154 Extracted: 06	5/24/10												
LCS Analyzed: 06/24/2010 (10F0154	-BS1)												
cis-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	4.05		101		80-120			
trans-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	4.58		115		80-120			
Trichloroethene		4.00	ug/kg	0.100	0.200	4.13		103		80-120			
Vinyl chloride		4.00	ug/kg	0.136	0.400	3.54		88		80-120			
Surrogate: 1,2-Dichloroethane-d4			ug/kg					108		80-120			
Batch\Seq: 10F0158 Extracted: 06	5/25/10												
LCS Analyzed: 06/25/2010 (10F0158	-BS1)												
cis-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	3.88		97		80-120			
trans-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	4.57		114		80-120			
Trichloroethene		4.00	ug/kg	0.100	0.200	4.05		101		80-120			
Vinyl chloride		4.00	ug/kg	0.136	0.400	3.34		84		80-120			
Surrogate: 1,2-Dichloroethane-d4			ug/kg					98		80-120			
Batch\Seq: 10F0159 Extracted: 06	5/25/10_												
LCS Analyzed: 06/25/2010 (10F0159													
cis-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	3.71		93		80-120			
trans-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	4.16		104		80-120			
Trichloroethene		4.00	ug/kg	0.100	0.200	3.78		95		80-120			
Vinyl chloride		4.00	ug/kg	0.136	0.400	2.88		72		80-120		L2	
Surrogate: 1,2-Dichloroethane-d4			ug/kg					100		80-120			
Batch\Seq: 10F0172 Extracted: 06	5/28/10_												
LCS Analyzed: 06/28/2010 (10F0172	-BS1)												
cis-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	3.85		96		80-120			
trans-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	4.53		113		80-120			
Trichloroethene		4.00	ug/kg	0.100	0.200	4.16		104		80-120			
Vinyl chloride		4.00	ug/kg	0.136	0.400	3.26		81		80-120			
Surrogate: 1,2-Dichloroethane-d4			ug/kg					106		80-120			

06/16/10

Tetra Tech EM Inc. Work Order: HTF0092 Received:

737 Bishop st., Suite 3010 Reported: 06/30/10 17:49

Honolulu, HI 96813 Project: Subsurface Soil Investigation (MIS-VOCs)
Scott Duzan Project Number: Subsurface Soil Investigation (MIS-VOCs)

MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC DATA

	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	t Q
Volatile Organic Compounds by E	PA 8260												
Batch\Seq: 10F0154 Extracted: 06	5/24/10												
Matrix Spike Analyzed: 06/25/2010 ((10F0154-M	S1)		QC So	urce Samp	ole: HTF00	92-01						
cis-1,2-Dichloroethene	ND	304	ug/kg	7.59	15.2	307	295	101	97	80-120	4	30	
trans-1,2-Dichloroethene	ND	304	ug/kg	7.59	15.2	351	328	115	108	80-120	7	30	
Trichloroethene	ND	304	ug/kg	7.59	15.2	444	416	146	137	80-120	7	30	M7
Vinyl chloride	22.5	304	ug/kg	10.3	30.4	277	251	84	75	80-120	10	30	M7
Surrogate: 1,2-Dichloroethane-d4			ug/kg					112	108	80-120			
Batch\Seq: 10F0158 Extracted: 06	5/25/10												
Matrix Spike Analyzed: 06/25/2010 ((10F0158-M	S1)		QC So	urce Samp	ole: HTF00	92-19						
cis-1,2-Dichloroethene	306	198	ug/kg	4.95	9.89	461	460	78	78	80-120	0	30	M7
trans-1,2-Dichloroethene	ND	198	ug/kg	4.95	9.89	208	207	105	105	80-120	1	30	
Trichloroethene	ND	198	ug/kg	4.95	9.89	187	187	95	95	80-120	0	30	
Vinyl chloride	437	198	ug/kg	6.73	19.8	562	547	63	56	80-120	3	30	MHA
Surrogate: 1,2-Dichloroethane-d4			ug/kg					99	98	80-120			
Batch\Seq: 10F0159 Extracted: 06	5/25/10												
Matrix Spike Analyzed: 06/26/2010 ((10F0159-M	S1)		QC So	urce Samp	ole: HTF00	92-39						
cis-1,2-Dichloroethene	271	198	ug/kg	4.95	9.91	456	443	93	87	80-120	3	30	
trans-1,2-Dichloroethene	ND	198	ug/kg	4.95	9.91	214	202	108	102	80-120	6	30	
Trichloroethene	20.5	198	ug/kg	4.95	9.91	216	204	99	93	80-120	6	30	
Vinyl chloride	43.4	198	ug/kg	6.74	19.8	191	178	74	68	80-120	7	30	M8
Surrogate: 1,2-Dichloroethane-d4			ug/kg					103	97	80-120			
Batch\Seq: 10F0172 Extracted: 06	5/28/10												
Matrix Spike Analyzed: 06/28/2010 ((10F0172-M	S1)		QC So	urce Samp	ole: HTF00	92-60						
cis-1,2-Dichloroethene	ND	194	ug/kg	4.86	9.72	215	209	110	108	80-120	3	30	
trans-1,2-Dichloroethene	ND	194	ug/kg	4.86	9.72	239	231	123	119	80-120	3	30	M7
Trichloroethene	ND	194	ug/kg	4.86	9.72	246	233	126	120	80-120	5	30	M7
Vinyl chloride	ND	194	ug/kg	6.61	19.4	204	193	105	99	80-120	6	30	
Surrogate: 1,2-Dichloroethane-d4			ug/kg					123	121	80-120			Z1

99-193 Aiea Heights Drive, Suite 121 Aiea, HI 96701 * 808-486-5227 * Fax 808-486-2456

Tetra Tech EM Inc. Work Order: HTF0092 Received: 06/16/10

737 Bishop st., Suite 3010 Reported: 06/30/10 17:49

Honolulu, HI 96813 Project: Subsurface Soil Investigation (MIS-VOCs)
Scott Duzan Project Number: Subsurface Soil Investigation (MIS-VOCs)

CERTIFICATION SUMMARY

TestAmerica Honolulu

Method	Matrix	Nelac	Hawaii
EPA 8260	Solid/Soil	X	

For information concerning certifications of this facility or another TestAmerica facility, please visit our website at www.TestAmericaInc.com

DATA QUALIFIERS AND DEFINITIONS

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method	J	Estimated value. Ana	alyte detected at a level l	ess than the Reporting I	Limit (RL) and greater	than or equal to the Method
---	---	----------------------	-----------------------------	--------------------------	------------------------	-----------------------------

Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

L2 Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was below acceptance limits.

M7 The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS).M8 The MS and/or MSD were below the acceptance limits. See Blank Spike (LCS).

MHA Due to high levels of analyte in the sample, the MS/MSD calculation does not provide useful spike recovery information. See

Blank Spike (LCS).

Z1 Surrogate recovery was above acceptance limits.

ND Not detected at the reporting limit (or method detection limit if shown)

ADDITIONAL COMMENTS

rev1a THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

99-193 Aiea Heights Drive Suite 121 • Aiea, Hl 96701-3900

Ϋ́ LABORATORY US CONTAINERS LAB JOB NO. LOCATION.

808-486-LABS (5227) • Fax 808-486-2456

Chain of Custody / Analysis Request Form

	Chain of	コン	stody / Analysis		Reguest		Form		긴	COINTAINERS	
Report to: Scott Duzan, scott.duzan@tetratech.com		Project id	roject identification			`├─	ndi	ate	naivs	ndicate analyses requested	
Company name: Tetra Tech EMI	Job name: Hickam AF	cam AFB CG110	B CG110 ISM VOC Study	Study						-	
Address: 737 Bishop Street, Suite 3010	Job number: 103DS14	3DS148843.H0301	301	1		fuə			····		
City. Honolulu state: HI zip. 96813						TnoO					
Phone: 808.441.6645	Contact email address:	dress:				ture			uo		
Sampler: SD # samples in shipment 10			<u></u>			sioM			Carb		
		Matrix	Š	Sampling	Ť				oin		**********
Client sample ID	MIS GRAB Water Soil Wastewater	Drinking water Sludge Liquid Solid Oil Other	method method	9miT	No. of containers	3260B-SIN 	Saturated	ezi2 nis15	otal Orga		<u>.</u>
1 BIZ-A-(MIC-VOC)	×	<u>×</u>	меон 4.16.	4.14.10 (085)	_	-			<u> </u>		1/1 Congo Co
2 B12-13-(M1(-VCL)	×	ž	MeOH	853	_	×		-	<u> </u>		
3 BIZ-C- (MIC-VOC)	×	×	MeOH	BB		X	ļ				23
4 BIZ - D-(MI(-VOL)	×	W	MeOH	holpo	1	X			-		70-
5 B12-E-(MIC-VOC)	×	×	MeOH	0000		K			<u></u>		8
6 B12 - F-(MIC-VOC)	×	Ž	МеОН	0 g (0	_	X	ļ 				90-
- (Mic-vac)	×	Ž	MeOH	0468	<u>×</u>						12
- A - (MIC-VO()	×	Ψ̈́	MeOH	0934		X					929
1-B-(MIC-VOC)	×	¥	МеОН	9 % 0		X					60-
(MIC-VOC)	×	Me	МеОН	0847	7	人		:			001
Released by Date / time (print/ sign) released	Delivery method		Received by (print / sign)			Ö	Company / Agency affiliation	gency		Date / time received	Condition noted
Scott Duzan Aut M Just 16.16.6 1736	Hand	Mrlestof	1-1 h	R	Ě	TestAmerica	erica		"	6-1610 17:28	Wher
									<u> </u>		۲.,۲
Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl chloride	ans-DCE; and	/inyl chloride			-						

©2008. TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc. White - TestAmerica

Distribution:

COC REV 04/2008

Yellow - TestAmerica

Please check one:

★ Dispose by lab

□ Return to client

□ Archive Page__

rev1a THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

\NLY 5005 LABORATORY US LAB JOB NO. LOCATION

	Chain	Chain of Custody / Analysis Request Form	// Analv	sis Red	Sellic	For	Ε		CONTAINERS	
Report to: Scott Duzan, scott.duzan@tetratech.com		Project id	ject identification				ndidate	e anal	analyses requested	
Сотралу пате: Tetra Tech EMI	Јор пате: Ніс	Job name: Hickam AFB CG110	CG110 ISM VOC Study	tudy					•	
Address: 737 Bishop Street, Suite 3010	Job number: 1	Job number: 103DS148843.H0301	301			ĵиe	ıneju			
City: Honolulu State: HI ZIP: 96813						quo	၀၅ ေ			
Phone: 808.441.6645	Contact email address:	address:) əını	nutei	uc		
Sampler: SD # samples in shipment 10	פרטווי.מתלפ	scott.cuzan@tetratecn.com	·- ·-···			tsioM	oM ər	Carbo		
		Matrix	Sar	Sampling	T					
Client sample ID	MIS GRAB Water Soil Wastewater	Drinking water Sludge Liquid Solid Oil Other	horisem bothem Date	ami∓	No. of containers	oS esobsV	Saturated Grain Size	Total Orga		or Cl. virterior
1 BII-D-(MIC-WC)	×	Me	MEOH 6.1.10	9	X	┥		┥~		KT COUST - 11
	×	W	МеОН	<u>8</u>	×		ļ 			7,7
1-F-(MIC-VOC)	×	<u>W</u>	МеОН	<u> 28</u>	X					157
4 BII - (5 - (MIC-VOC)	×	ž	МеОН	1500	×					7.7
- A - (MIC-VOC)	×	Ž	МеОН	(00S	×					167
0 - B - (MIL-VOC)	×	W	МеОН	1010	×		<u> </u>			1 2
7 BIO - (- (MIL-VC))	×	X	МеОН	201	×					
8 B10 - D - (MIC-VOC)	×	W	МеОН	901	X		<u> </u>			1 (26
9 B10 - E - (MIC-NO)	×	₩ W	МеОН	Ē	X					0
- (MI(-10C)	×	×	МеОН	1622	×					2-
Released by Date / time (print sign) (released	Delivery method		Received by (print / sign)			Compa	Company / Agency affiliation	ें	Date / time received	Condition noted
Scott Duzan AM Auth 6-16-10, 1728 1	Hand	Meset	1-/4	8	Tes	TestAmerica	ig		6-16-10 (7:28	Infect 50°C
					ļ				··· / · · · · · · · · · · · · · · · · ·)

Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl chloride

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc. White - TestAmerica

Distribution:

COC REV 04/2008

Yellow - TestAmerica

Pink - Client

Please check one:

* Dispose by lab

C Return to client

Archive

Page 2 of 8

rev1a **TestAmerica**

THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900

۸Ľ LABORATORY U' CONTAINERS LAB JOB NO. LOCATION,

808-486-LABS (5227) • Fax 808-486-2456

Chain of Custody / Analysis Request Form

Report to: Scott Uuzan, scott.duzan@tetratech.com	P	Project identification		ndicate	analys	ndidate analyses requested	
Company name: Tetra Tech EMI	Job name: Hickam AFE	Job name: Hickam AFB CG110 ISM VOC Study		,		,	
Address: 737 Bishop Street, Suite 3010	Job number: 103DS148843.H0301	3843.H0301	- tue				*****
City: Honolulu state: HI ZIP: 96813			JnoO			પ્રદ્રા	
Phone: 808.441.6645 Fax	Contact email address:	woo 400	iure (<i>B</i>	
Sampler: SD # samples in shipment			sioM			uez	
	Matrix	Sampling		ηοΣ		lá	
Client sample ID	MIS GRAB Soil Hewater Hewater Tewater	Oil servation method sate	ntainers NB-SIN	rated 7 Size	Orga	<u> </u>	
	Was Orink	D J J	∞ 928	Satu		tdI	Laboratory ID no.
(2 - (MIC -VUC)	×	MeOH 6.16-(0) /024	× -				MESSIGNER
	×	MeOH 1020	×				727
	×	МеОН 1023	×				12.
- C - (MIC-VOL)	×	929 / ноэм	<u>></u>				52.
D - (MIC-NOC)	×	МеОН 1039	*				\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
- E - (MIC-VOC)	×	// (64/	X				70
F - (MIC-VOC)	×	Sha) ноем	<u>۸</u>				17-
- (2 - (MIC-NOC)	×	MeOH [647]	^				07-
- H - (MIC-VOC)	×	Меон (1105	×		>		* Ful Sinte 1005-29
- (MIC-10C)	×	меон 🖊 1136	∀				37
Released by Date / time (print / sign) released	Delivery method	Received by (print / sign)	Com	Company / Agency affiliation		Date / time received	Condition noted
6.16.10 / 1728	Hand	140/ HARA!	TestAmerica	rica	9	82:11 (2)-2/-2	(reef
					: 	,	۲.۲

Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl chloride

BI- H-(MIC-VOX) = FAII Suite VOCS + TPAI FUEL STAN BOTSM

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design ¹⁴ are trademarks of TestAmerica Laboratories, Inc.

COC REV 04/2008

White - TestAmerica Distribution:

Yellow - TestAmerica

Pink - Client

Please check one:
* Dispose by lab

□ Return to client
□ Archive

rev1a **TestAmerica**

THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

99-193 Aiea Heights Drive Suite 121 • Aiea, Hl 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

۸Ľ 160091 LABORATORY US CONTAINERS LAB JOB NO. LOCATION_

Chain of Custody / Analysis Request Form

	Chain of Cus	of Custody / A	tody / Analysis Request Form	Redit	Set Fo	L		CONT	CONTAINERS	7,000.
Report to: Scott Duzan, scott.duzan@tetratech.com		Project identification	ication			Indidate	ate an	alvsesir	analyses requested	
Company name: Tetra Tech EMI	Job name: Hickam AFB	am AFB CG110 ISM	CG110 ISM VOC Study		•					
Address: 737 Bishop Street, Suite 3010	Job number: 103DS1488	3DS148843.H0301			Jue	uţeuļ				
City: Honolulu state: HI zip: 96813					JuoC	၀၅ ဓ				
Phone: 808,441,6645 Fax	Contact email address:	Contact email address:			ture (isture		110		~
Sampler: SD # samples in shipment					sioM	oM əı	,	og Ipo		
		Matrix	Sampling			noZ		211		
Client sample ID	MIS GRAB Water Soil Waster Soil Wastewater	Drinking water Sludge Liquid Solid Oili Oili Cher	Date	No, of containers	NIS-80928 OZ esope/	sturated z	ezi2 nish	otal Organ		
1 B2-B-(MI(-YOC)	×	HCee	G.16.10 1129	o o	-	3				
2 82 - C - (MK - NOC)		H Cow	2 7		< y					1110040
3 B2 - D- (MIC-1/01)		HO	Jac	د ا	\x		<u>!</u>			7 7 7
4 B2-E-(MIC-VOC)	×	MeOH	(A) (A) (A) (A) (A) (A) (A) (A) (A) (A)		. ×					13.5
5 B2-F-(MI(-VOC)	×	MeOH	<u> </u>) S	×	-	 			127
4	×	MeOH	(Z)	- e	×		<u> </u>			72.
7 RIP BLANK	×	MeOH	EQ.	13%	×					5
- A - (1	×	МеОН	(3)	93.	*					300
SI-B-	×	МеОН	1337	72	X					7, 29
A(C - VOC)	×	МеОН	元山人	<u>ئے</u>	X		<u>.</u>			ू र
Released by Date / time (print / sign) released	Defivery method	Reco (prin	Received by (print / sign)		Comp	Company / Agency affiliation	sucy	٥٠	Date / time received	Condition noted
Scott Duzan 2 WT Jung 6-16-10 / 1728	Hand	1488H/	1 10	الم	TestAmerica	ica		6.16	82.21 2-91-9	Intect
										J
Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE: and Vinyl chloride	rans-DCE: and V	invi chlorida								
· · · · · · · · · · · · · · · · · · ·		131 011012							ц	Please check one.

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc. Distribution:

COC REV 04/2008

White - TestAmerica

Yellow - TestAmerica

Pink - Client

Please check one:

* Dispose by lab

□ Return to client

□ Archive Page 4 of B

rev1a **TestAmerica**

THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

99-193 Aiea Heights Drive Suite 121 • Aiea, Hl 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

LABORATORY USE ONLY LABJOBNO. HTT-US92 CONTAINERS LOCATION

	Chain of	f Custody / Analysis	Analysis	Request Form	est	-orn	_	_	CONTAINERS	
Report to: Scott Duzan, scott.duzan@tefratech.com		Project identification	ification			Ĕ	licate	analys	ndicate analyses requested	
Company name: Tetra Tech EMI	Job name: Hickam	14	M VOC Study		· ·					
Address: 737 Bishop Street, Suite 3010	Job number: 10:	Job number: 103DS148843.H0301								
city: Honolulu state: HI zip. 96813	313									
Phone: 808.441.6645 Fax	Contact email address:	Contact email address:						uo	***	
Sampler: SD # semples in shipment O		Contractor Colli						dısO		
		Matrix	Sampling		V			oin		
Client sample ID	AIN GRAB Water Soli Wastewater	Drinking water Sludge Liquid Oil Oil Other	əteQ	Time No. of containers	NIS-80928	oz esobs\ ———— Saturated	ezi2 nis12	sgnO lsto		
	×	МеОн	MeOH 6-16-10 13	13% 1	3 ×	┩		L		Laboratory ID no.
2 BI - E - (MIL-VOC)	×	MeOH		13%	×	ļ ļ				(h)
1-2-1	×	MeOH		1342	×					1
4 BI - 6 - (MIC-VOC)	×	МеОН		9451	×					h.m.
-	×	МеОН		35	×	<u>'</u>				Sh-
اللكا	×	MeOH		र्ये	×					9)
Tiel!	×	MeOH		151	X					
-A-(×	MeOH		1435	×					7
9 B16-B- (MIT-VOC) NO	×	МеОН		를 물	×			(2
	*	TO SM	7	一部			Y			
Released by Date / time (print / sign) released	Delivery method	Re (p	Received by (print / sign)			Company / Agency affiliation	Agency		Date / time received	Condition noted
Scott Duzan & With Jungs 6-16-10/1728	Hand	MHESCH	20/2	اه	TestA	TestAmerica		9	12:10 101-91-9	(a bact
										ر کر
Commonto: 8260B CIM: Only on the Control of the Con									/	
10 T T T T T T T T T T T T T T T T T T T	1.1222	(C 1 (C C C C C C C C C								

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc. White - TestAmerica

COC REV 04/2008

Distribution:

Yellow - TestAmerica

Pink - Client

Please check one:

* Dispose by lab

□ Return to client
□ Archive

TestAmerica
THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

rev1a

99-193 Aiea Heights Drive Suite 121 • Aiea, Hl 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

LAB JOB NO. MTF-0.09.2. LOCATION		LABORATORY USE ONLY
LOCATIONCONTAINERS	LAB JO	7
CONTAINERS	LOCATI	NOI
	CONTA	INERS

	Chain of Cust		ody / Analysis Request Form	sis Red	sent	t For	Ē		CONT	CONTAINERS	
Report to: Scott Duzan, scott.duzan@tetratech.com		Project id	Project identification		_		Indida	te ana	yses	ndicate analyses requested	
Company name: Tetra Tech EMI	Job name: Hick	Job name: Hickam AFB CG110 ISM VOC Study	S ISM VOC S	study	<u> </u>		}				
Address: 737 Bishop Street, Suite 3010	Job number: 103DS14884	3DS148843.H0301	301			juə	nəju	····			
City: Honolulu state: HI ZIP: 96813			2			JuoO	oე ə.				
Phone: 808,441,6645 Fax	Contact email address:	Contact email address:				fure	nistur	uo			
Sampler: SD # samples in shipment 10						sioM	oM ər	Carb			
Client sample ID	MIS GRAB Wastewaler Soil Wastewaler Thinking water	Malevicking water and budge bu	hooiterin booiterin Salaa Sa Salaa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa S	Sampling Time	No. of containers MIS-808-81M	onoS esobsV	Saturated Zor	Grain Size Total Organic			on Olympton of
1 BB-C-CM(C-NOC)	×	Ž	меон 6.16.0	1442	<u> </u>	-	┪—-	┨	44.17.000/0.4		KITCO A 7 120
2 B16 - D - (MIC-VOC)	×	Ž	MeOH	팔	\ \ \						
3 B16 - E - (MI(-VC)	×	Ž	MeOH	347	×			<u> </u>			25-
4 B16 - F - (MIC-1OC)	×	Ž	МеОН	1457	X						557
5 - FUE - BIS - A - (MIC-VOC)	×	Ž	МеОН	E E	X						45.1
6 BIS-B-(MIC-VOC)	×	Š	МеОН	Z	×			ļ		1	SS
7 BIS-C-(MIC-VOC)		ž	MeOH	£0,53;	×		<u> </u>				35.
8 B15-0-(M11-VOC)	×	W	МеОН	120	\						5,
9 BIS - E - (MIC-VOC)	×	Ž	MeOH	(512)	\		<u> </u>				900
(MIC - VOC)	×	Š	MeOH	1516	×						- 59
Released by Date / time (print/ sign) released	Delivery method		Received by (print / sign)			Comp	Company / Agency affiliation	ncy		Date / time received	Condition noted
Scott Duzan XM M Jugh 16-16, 1728	Hand	MLESEF	r) #	100	, i	TestAmerica	g		9/-9	82.21 ptg-9	ls het
								į		,	J S
Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl chloride	trans-DCE; and V	inyl chloride									Diases cheek one.

©2006, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc.

COC REV 04/2008

Distribution:

White - TestAmerica

Yellow - TestAmerica

Pink - Client

Please check one:
♣ Dispose by lab
☐ Return to client
☐ Archive Page 6 of 8

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

rev1a

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

LABORATORY USE ONLY LAB JOB NO. MTFCOS92 CONTAINERS LOCATION_

			Ch	Chain of Custody / Analysis	tody/	Analy	sis Re	dne	Request Form	n C			CONTAINERS	
Report to: Scott Duzan, scott.duzan@tetratech.com	duzan@tetratech.con	-		Pro	oject identification	ification		ļ	\vdash	Pu	date	anal	ndidate analyses requested	
Company name: Tetra Tech EMI	-		Job	Job name: Hickam AFB CG110 ISM VOC Study	CG110 IS	M VOC S	tudy			1				
Address: 737 Bishop Street, Suite 3010	Suite 3010		g qor	Job number: 103DS148843.H0301	43.H0301				ţue					
cııy. Honolulu	State: HI ZIF	ZIP: 96813					ļ							
Phone: 808.441.6645	Fax		Conta	Contact email address:	800) Anit			uo		
Sampler: SD	# samples in shipment	9	Ī)								Carb		
				Matrix		San	Sampling	T				oin		
Olient	Client sample ID	Sin	SIM 8ARĐ	Water Soil Cinking water Sludge Liquid Solid	Oiher Preservation method	Date	€miT	No, of containers	NIS-80928 S esobeV	Saturated	erain Size	Total Orga	All divisions	on Olympian I
1 BIG-A-(MI(-VOC	(-Noc)	×	- >	×	МеОН	6.16.10	533		┨—		J			MT Course Co
2 BI4- B- (MI(-VOC	(-100	×	~	×	МеОН	· ~	1526		×	ļ				9-
3 Pily- (- (M	(MIC-VEC)	×		×	MeOH		5.23		×					
4 BIH -D - (A	- (MI(-NC)	×		×	MeOH		533		×	ļ				J 6 5
5 BH-E- (M)	(M)(10C)	×		×	МеОН		(5,3,3		×					
6 BI4-F-(M	(MK-VOC)	×		×	МеОН		229	-	X					
7 B13-A-(A	(MIC-VOC)	×		×	МеОН		忍		 X					19,
B- 0	(JVIC -VOC)	×		×	МеОН		663		×					
9 Bl3- (- (N	(MI(-10C)	×		×	МеОн	 	(SS)		×					200
10 B13 - D-(1	M(C - VOC)	×	-	×	MeOH	/	 899 <u>.</u>	Z	X					169
Released by (print/ sign)	Date / time released	time sed	Defivery	Delivery method	R A	Received by (print / sign)		!!	Š	Company / Agency affliation	Agency		Date / time received	Condition noted
Scott Duzan	And 6-16-10, 1720		Hand	M	16567	~/	30		TestAmerica	arica			17:24	Which
						•								5.5
													/	
Comments: 8260B-SIM: Only analyze for	2	F. cis-DCF: trans-I	ns-DC	F. and Vinyl chlor	oride									

Distribution:

COC REV 04/2008

White - TestAmerica

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc.

Yellow - TestAmerica

Pink - Client

Please check one:

* Dispose by lab

☐ Return to client
☐ Archive Page_/

rev1a **TestAmerica**

THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

Chain of Custody / Analysis Request Form

LABORATORY USE ONLY LAB JOB NO. MTF 0392 CONTAINERS LOCATION

	Chaill of Custody / Allalysis Redulest Form		ב			
Report to: Scott Duzan, scott.duzan@tetratech.com	District State of Sta					
	LIOJECT IDENINGATION		2	e ana -	naldate analyses requested	
Company name: Tetra Tech EMI	Job name: Hickam AFB CG110 ISM VOC Study		1			
Address: 737 Bishop Street, Suite 3010	Job number: 103DS148843.H0301	fue			***	
city: Honoluliu State: HI ZIP: 96813		inoC				
Phone: 808,441,6645	Contact email address:	ture (uo		
Sampler: SD # samples in shipment	מסנייסנדמוופינפוומוכסוויסווו	sioM		Carb		
*1	atrix		uoZ			
Client sample ID	MSARA GRAB Soil Soil Wastewster Wastewster Dinking water Sludge Liquid Ciquid Oith Oith Oith Oith Ciduid Oith Oith Oith Ciduid Oither Ciduid O	NIS-80928	baturated	ezi2 nisı6 ————————————————————————————————————		
1 B13-E-(MIC-VOC)	X X X X X X X X X X X X X X X X X X X		3	┥		Mr Crange 10 no.
2 BB-F-(MI(-VOI)	X	×		ļ		
	>		<u> </u>	_		
4	< /		(4)	\int		
v))				
» «	× ;					
	— X					
7	Ж Ж					
8	Х					
6	Ж			ļ		
	X X					
Released by Date / time (print/ sign) released	Delivery method (print / sign)	Com	Company / Agency affiliation	δ	Date / time received	Condition noted
Scott Duzan And Aug 6-16-10/1728	Hand Miles & / MODE	TestAmerica	rica		85:11 01-71-9	In back
Commonte: 8280B CIM: Only conclude for TOF.						
Comments, except-Sim, Only analyze for LCE; CIS-DCE; 1	I CE; CIS-DCE; trans-DCE; and Vinyl chloride					Please check one:
						* Dispose by lab
©2008. TestAmerica I aboratories. Inc., All rights researed. Took America 9. Decision						l Archiye

Page (

Pink - Client

Yellow - TestAmerica

White - TestAmerica

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc.

Distribution:

COC REV 04/2008

	Sample	Receipt Ch	ecklis	t			
Client Name: Tebalec9		Date/ Time Re	eceived	: 6/1	6/10	17:28	
Checklist Completed By:		Recei	ved By	_	mo of	1	
Matrices: らか	Carrier:			Airbill# :	:		
Shipping container/cooler in good condition? Chain of Custody present? Chain of Custody Signed when relinquished at Chain of Custody agrees with sample labels? Samples in proper container/bottle? Sample containers intact? Sample containers on ice? Sufficient sample volume for indicated test? All samples received within holding time? Water - VOA Vials have Zero Headspace? Water - pH acceptable upon receipt? Encores / 5035 Vials Present? Sample Filtration Needed? Dry Weight Corrected Results?		Yes Yes			Туре:	H: n Field: □	
DODQSM / QAPP Project?		Yes 4		No 🗔	Type:	M MOD	\$
Temperat Sample Container/Blank Temperature Range (Present? Yes sample contai		No 🗔	<u> </u>	<u>c</u>	
Comments/ Sampling Handling No	otes:						
					·		
	- M.	***************************************					

June 30, 2010

Attn: Scott Duzan

LABORATORY REPORT

Client:

Tetra Tech EM Inc. Work Order: HTF0088

737 Bishop st., Suite 3010 Project Name: Subsurface Soil Investigation (MIS-VOCs)

Honolulu, HI 96813 Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.HI

Date Received: 06/17/10

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica Analytical Testing Corporation certifies that the analytical results contained herein apply only to the specific sample(s) analyzed.

The Chain(s) of Custody, 5 pages, are included and are an integral part of this report. This entire report was reviewed and approved for release

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-(808)486-5227

Samples were received into laboratory at a temperature of 4 °C.

DZ

NELAC states that samples which require thermal preservation shall be considered acceptable if the arrival temperature is within 2 degrees C of the required temperature or the method specified range. For samples with a temperature requirement of 4 degrees C, an arrival temperature from 0 degrees C to 6 degrees C meets specifications. Samples that are delivered to the laboratory on the same day that they are collected may not meet these criteria. In these cases, the samples are considered acceptable if there is evidence that the chilling process has begun, such as arrival on ice.

The reported results were obtained in compliance with the 2003 NELAC standards unless otherwise noted.

Approved By:

NELAC Certification # E87907

Tetra Tech EM Inc. 737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan

Work Order: HTF0088

Received: Reported:

06/17/10 06/30/10 17:46

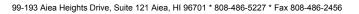
Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Sample Summary

			Date/Time	Date/Time	Sample
Sample Identification	Lab Number	Client Matrix	Sampled	Received	Qualifiers
B21-A-(MIC-VOC)	HTF0088-01	Solid/Soil	06/17/10 08:46	06/17/10 11:46	
B21-B-(MIC-VOC)	HTF0088-02	Solid/Soil	06/17/10 08:45	06/17/10 11:46	
B21-C-(MIC-VOC)	HTF0088-03	Solid/Soil	06/17/10 08:47	06/17/10 11:46	
B21-D-(MIC-VOC)	HTF0088-04	Solid/Soil	06/17/10 08:49	06/17/10 11:46	
B18-A-(MIC-VOC)	HTF0088-05	Solid/Soil	06/17/10 08:55	06/17/10 11:46	
B18-B-(MIC-VOC)	HTF0088-06	Solid/Soil	06/17/10 08:59	06/17/10 11:46	
B18-C-(MIC-VOC)	HTF0088-07	Solid/Soil	06/17/10 09:01	06/17/10 11:46	
B18-D-(MIC-VOC)	HTF0088-08	Solid/Soil	06/17/10 09:04	06/17/10 11:46	
B18-E-(MIC-VOC)	HTF0088-09	Solid/Soil	06/17/10 09:06	06/17/10 11:46	
B19-A-(MIC-VOC)	HTF0088-10	Solid/Soil	06/17/10 09:16	06/17/10 11:46	
B19-B-(MIC-VOC)	HTF0088-11	Solid/Soil	06/17/10 09:19	06/17/10 11:46	
B19-C-(MIC-VOC)	HTF0088-12	Solid/Soil	06/17/10 09:20	06/17/10 11:46	
B19-D-(MIC-VOC)	HTF0088-13	Solid/Soil	06/17/10 09:26	06/17/10 11:46	
B19-E-(MIC-VOC)	HTF0088-14	Solid/Soil	06/17/10 09:28	06/17/10 11:46	
FIELD BLANK - B19	HTF0088-15	Solid/Soil	06/17/10 09:29	06/17/10 11:46	
B20-A-(MIC-VOC)	HTF0088-16	Solid/Soil	06/17/10 09:41	06/17/10 11:46	
B20-B-(MIC-VOC)	HTF0088-17	Solid/Soil	06/17/10 09:46	06/17/10 11:46	
B20-C-(MIC-VOC)	HTF0088-18	Solid/Soil	06/17/10 09:48	06/17/10 11:46	
B20-D-(MIC-VOC)	HTF0088-19	Solid/Soil	06/17/10 09:51	06/17/10 11:46	
B20-E-(MIC-VOC)	HTF0088-20	Solid/Soil	06/17/10 09:53	06/17/10 11:46	
B17-A-(MIC-VOC)	HTF0088-21	Solid/Soil	06/17/10 10:05	06/17/10 11:46	
B17-B-(MIC-VOC)	HTF0088-22	Solid/Soil	06/17/10 10:09	06/17/10 11:46	
B17-C-(MIC-VOC)	HTF0088-23	Solid/Soil	06/17/10 10:10	06/17/10 11:46	
B17-D-(MIC-VOC)	HTF0088-24	Solid/Soil	06/17/10 10:14	06/17/10 11:46	
B17-E-(MIC-VOC)	HTF0088-25	Solid/Soil	06/17/10 10:16	06/17/10 11:46	
LAYER E-FMIS-VOC6	HTF0088-26	Solid/Soil	06/17/10 10:15	06/17/10 11:46	

99-193 Aiea Heights Drive, Suite 121 Aiea, HI 96701 * 808-486-5227 * Fax 808-486-2456


Tetra Tech EM Inc. HTF0088 06/17/10 Work Order: Received: 737 Bishop st., Suite 3010

Reported: 06/30/10 17:46

Honolulu, HI 96813 Project: Subsurface Soil Investigation (MIS-VOCs) Scott Duzan

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Sample Identification	Lab Number	Client Matrix	Date/Time Sampled	Date/Time Received	Sample Qualifiers
LAYER E-FMIS-VOC12	HTF0088-27	Solid/Soil	06/17/10 10:15	06/17/10 11:46	
LAYER F-FMIS-VOC6	HTF0088-28	Solid/Soil	06/16/10 16:17	06/17/10 11:46	
LAYER F-FMIS-VOC12	HTF0088-29	Solid/Soil	06/16/10 16:17	06/17/10 11:46	
B37-A-(MIC-VOC)	HTF0088-30	Solid/Soil	06/17/10 10:20	06/17/10 11:46	
B38-A-(MIC-VOC)	HTF0088-31	Solid/Soil	06/17/10 10:30	06/17/10 11:46	
TRIP BLANK	HTF0088-32	Solid/Soil	06/17/10 10:35	06/17/10 11:46	

Tetra Tech EM Inc. 737 Bishop st., Suite 3010

Scott Duzan

Work Order: HT

HTF0088 Re

Received: 06/17/10

Reported: Subsurface Soil Investigation (MIS-VOCs)

06/30/10 17:46

Honolulu, HI 96813

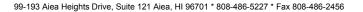
Project: Subsurface Soil Investigation (MIS-VOCs)
Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0088-01 (B21-A-(MIC-Volatile Organic Compounds by EPA 8260	-VOC) - Sol	id/Soil)			Samj	pled:	06/17/10 08:46	Re	evd: 06/17/	10 11:46
cis-1,2-Dichloroethene	ND		ug/kg	6.61	13.2	50	06/23/10 23:58	06/23/10	10F0149	EPA 8260
trans-1,2-Dichloroethene	ND		"	6.61	13.2	"	"	"	"	"
Trichloroethene	ND		"	6.61	13.2	"	"	"	"	"
Vinyl chloride	ND		"	9.00	26.5	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	99 %						"	"	"	"
Sample ID: HTF0088-02 (B21-B-(MIC-Volatile Organic Compounds by EPA 8260	-VOC) - Sol	id/Soil)			Samp	pled:	06/17/10 08:45	Re	cvd: 06/17/	10 11:46
cis-1,2-Dichloroethene	ND		ug/kg	4.62	9.24	50	06/24/10 00:23	06/23/10	10F0149	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.62	9.24	"	"	"	"	"
Trichloroethene	ND		"	4.62	9.24	"	"	,,	"	"
Vinyl chloride	ND		"	6.28	18.5	"	"	,,	"	,,
Surr: 1,2-Dichloroethane-d4 (80-120%)	98 %			0.20	10.5		"	"	"	"
Sample ID: HTF0088-03 (B21-C-(MIC-	-VOC) - Sol	id/Soil)			Samj	pled:	06/17/10 08:47	Re	cvd: 06/17/	10 11:46
Volatile Organic Compounds by EPA 8260										
cis-1,2-Dichloroethene	ND		ug/kg	5.09	10.2	50	06/24/10 00:49	06/23/10	10F0149	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.09	10.2	"	"	"	"	"
Trichloroethene	ND		"	5.09	10.2	"	"	"	"	"
Vinyl chloride	ND		"	6.93	20.4	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	96 %						"	"	"	"
Sample ID: HTF0088-04 (B21-D-(MIC-Volatile Organic Compounds by EPA 8260	-VOC) - Sol	id/Soil)			Samp	pled:	06/17/10 08:49	Re	cvd: 06/17/	10 11:46
cis-1,2-Dichloroethene	ND		ug/kg	5.02	10.0	50	06/24/10 01:15	06/23/10	10F0149	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.02	10.0	"	"	"	"	"
Trichloroethene	ND		"	5.02	10.0	"	"	"	"	"
Vinyl chloride	10.8	J	"	6.83	20.1	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	99 %	v		0.03	20.1		"	"	"	"
Sample ID: HTF0088-05 (B18-A-(MIC-	-VOC) - Sol	id/Soil)			Samj	pled:	06/17/10 08:55	Re	evd: 06/17/	10 11:46
Volatile Organic Compounds by EPA 8260										
cis-1,2-Dichloroethene	ND		ug/kg	5.40	10.8	50	06/24/10 01:40	06/23/10	10F0149	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.40	10.8	"	"	"	"	"
Trichloroethene	ND		"	5.40	10.8	"	"	"	"	"
Vinyl chloride	ND		"	7.34	21.6	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	98 %						"	"	"	"
Sample ID: HTF0088-06 (B18-B-(MIC-Volatile Organic Compounds by EPA 8260	·VOC) - Sol	id/Soil)			Samp	pled:	06/17/10 08:59	Re	cvd: 06/17/	10 11:46
cis-1,2-Dichloroethene	ND		ug/kg	5.28	10.6	50	06/24/10 02:06	06/23/10	10F0149	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.28	10.6	"	"	"	"	"
Trichloroethene	ND		"	5.28	10.6	"	"	"	"	"
Vinyl chloride	ND		"	7.18	21.1	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	92 %						n .	"	"	"

Work Order:

HTF0088

Received: Reported: 06/17/10 06/30/10 17:46


737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0088-06 (B18-B-(MIC-	·VOC) - Sol	id/Soil) - cont.			Sam	pled:	06/17/10 08:59	Re	cvd: 06/17/	10 11:46
Sample ID: HTF0088-07 (B18-C-(MIC-	-VOC) - Sol	id/Soil)			Sam	pled:	06/17/10 09:01	Re	cvd: 06/17/	10 11:46
Volatile Organic Compounds by EPA 8260										
cis-1,2-Dichloroethene	ND		ug/kg	5.29	10.6	50	06/24/10 02:31	06/23/10	10F0149	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.29	10.6	"	"	"	"	"
Trichloroethene	ND		"	5.29	10.6	"	"	"	"	"
Vinyl chloride	ND		"	7.20	21.2	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	94 %						"	"	"	"
Sample ID: HTF0088-08 (B18-D-(MIC-Volatile Organic Compounds by EPA 8260	-VOC) - Sol	id/Soil)			Sam	pled:	06/17/10 09:04	Re	cvd: 06/17/	10 11:46
cis-1,2-Dichloroethene	ND		ug/kg	4.86	9.72	50	06/24/10 02:57	06/23/10	10F0149	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.86	9.72	"	"	"	"	"
Trichloroethene	ND		"	4.86	9.72	"	"	"	"	"
Vinyl chloride	ND		"	6.61	19.4	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	95 %						"	"	"	"
Sample ID: HTF0088-09 (B18-E-(MIC- Volatile Organic Compounds by EPA 8260	·VOC) - Sol	id/Soil)			Sam	pled:	06/17/10 09:06	Re	evd: 06/17/	10 11:46
cis-1,2-Dichloroethene	ND		ug/kg	4.46	8.92	50	06/24/10 03:22	06/23/10	10F0149	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.46	8.92	,,	"	"	"	"
Trichloroethene	ND		"	4.46	8.92	,,	"	"	"	"
Vinyl chloride	ND		"	6.06	17.8	,,	"	,,	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	94 %			0.00	17.0		"	"	"	"
Sample ID: HTF0088-10 (B19-A-(MIC-	-VOC) - Sol	id/Soil)			Sam	pled:	06/17/10 09:16	Re	cvd: 06/17/	10 11:46
Volatile Organic Compounds by EPA 8260	,	ŕ			,					
cis-1,2-Dichloroethene	ND		ug/kg	5.84	11.7	50	06/24/10 03:48	06/23/10	10F0149	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.84	11.7	"	"	"	"	"
Trichloroethene	ND		"	5.84	11.7	"	"	"	"	"
Vinyl chloride	ND		"	7.94	23.4	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	95 %						"	"	"	"
Sample ID: HTF0088-11 (B19-B-(MIC-	·VOC) - Sol	id/Soil)			Sam	pled:	06/17/10 09:19	Re	cvd: 06/17/	10 11:46
Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene	ND		ug/kg	4.18	8.36	50	06/24/10 10:01	06/24/10	10F0153	EPA 8260
trans-1,2-Dichloroethene	ND ND		ug/ n g	4.18	8.36	30	00/24/10 10.01	00/24/10	1010133	"
Trichloroethene	ND ND		"	4.18		,,	"	,,	,,	,,
			"		8.36	,,	"		"	,,
Vinyl chloride	ND			5.69	16.7		"	"	"	,,
Surr: 1,2-Dichloroethane-d4 (80-120%)	92 %						"	"	"	"
Sample ID: HTF0088-12 (B19-C-(MIC-Volatile Organic Compounds by EPA 8260	-VOC) - Sol	id/Soil)			Sam	pled:	06/17/10 09:20	Re	cvd: 06/17/	10 11:46
cis-1,2-Dichloroethene	ND		ug/kg	4.87	9.74	50	06/24/10 10:26	06/24/10	10F0153	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.87	9.74	"	"	"	"	"
Trichloroethene	ND		"	4.87	9.74	"	"	"	"	"

Tetra Tech EM Inc. 737 Bishop st., Suite 3010 Work Order:

HTF0088

Received: Reported:

06/17/10 06/30/10 17:46

Honolulu, HI 96813

Scott Duzan

Subsurface Soil Investigation (MIS-VOCs) Project:

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

ANALYTICAL REPORT

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0088-12 (B19-C-(MI	(C-VOC) - Soli	id/Soil) - cont.			Sam	pled:	06/17/10 09:20	Re	cvd: 06/17/	10 11:46
Volatile Organic Compounds by EPA 82	60 - cont.									
Vinyl chloride	ND		"	6.62	19.5	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	95 %						"	"	"	"
Sample ID: HTF0088-13 (B19-D-(MI	(C-VOC) - Soli	id/Soil)			Sam	pled:	06/17/10 09:26	Re	cvd: 06/17/	10 11:46
Volatile Organic Compounds by EPA 82	60									
cis-1,2-Dichloroethene	ND		ug/kg	5.27	10.5	50	06/24/10 10:51	06/24/10	10F0153	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.27	10.5	"	"	"	"	"
Trichloroethene	ND		"	5.27	10.5	"	"	"	"	"
Vinyl chloride	ND		"	7.17	21.1	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	91 %						"	"	"	"
Sample ID: HTF0088-14 (B19-E-(MI		id/Soil)			Sam	pled:	06/17/10 09:28	Re	cvd: 06/17/	10 11:46
Volatile Organic Compounds by EPA 826			/1	5.00	10.0	50	06/24/10 11:17	06/24/10	1000152	EPA 8260
cis-1,2-Dichloroethene	ND		ug/kg	5.00	10.0	50	06/24/10 11:17	06/24/10	10F0153	EFA 8200
trans-1,2-Dichloroethene	ND		"	5.00	10.0	,,	"	,,	"	,,
Trichloroethene	ND			5.00	10.0				"	
Vinyl chloride	ND		"	6.80	20.0	"	"	"		"
Surr: 1,2-Dichloroethane-d4 (80-120%)	90 %						"	"	"	"
Sample ID: HTF0088-15 (FIELD BL		folid/Soil)			Sam	pled:	06/17/10 09:29	Re	cvd: 06/17/	10 11:46
Volatile Organic Compounds by EPA 826			/1	5.00	10.0	50	06/24/10 11:42	06/24/10	1000152	EPA 8260
cis-1,2-Dichloroethene	ND		ug/kg	5.00	10.0	50	06/24/10 11:42	06/24/10	10F0153	EFA 8200
trans-1,2-Dichloroethene	ND		,,	5.00	10.0	,,	"	,,	"	,,
Trichloroethene	ND			5.00	10.0					,,
Vinyl chloride	19.6	J	"	6.80	20.0	"	"	"	"	
Surr: 1,2-Dichloroethane-d4 (80-120%)	91 %						"	"	"	"
Sample ID: HTF0088-16 (B20-A-(MI		id/Soil)			Sam	pled:	06/17/10 09:41	Re	cvd: 06/17/	10 11:46
Volatile Organic Compounds by EPA 820 cis-1,2-Dichloroethene	ND		ug/kg	5.09	10.2	50	06/24/10 12:07	06/24/10	10F0153	EPA 8260
trans-1,2-Dichloroethene	ND		ug/kg "	5.09	10.2	"	"	00/2 4 /10	"	"
Trichloroethene	10.8		"	5.09	10.2	,,	"	"	"	"
	40.8		"	6.93	20.4	,,	,,	,,	,,	,,
Vinyl chloride Surr: 1,2-Dichloroethane-d4 (80-120%)	40.8 91 %			0.93	20.4		"	"	"	"
5arr. 1,2-Dictior octivate-44 (00-12070)	71 70									
Sample ID: HTF0088-17 (B20-B-(MI Volatile Organic Compounds by EPA 82)	,	id/Soil)			Sam	pled:	06/17/10 09:46	Re	cvd: 06/17/	10 11:46
cis-1,2-Dichloroethene	ND		ug/kg	5.15	10.3	50	06/24/10 12:32	06/24/10	10F0153	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.15	10.3	"	"	"	"	"
Trichloroethene	9.04	J	"	5.15	10.3	"	"	"	"	"
Vinyl chloride	46.7		"	7.01	20.6	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	94 %				20.0		"	"	"	"
54.1. 1,2-Diemoi Gemane-u4 (00-12070)	27 /U									

Sample ID: HTF0088-18 (B20-C-(MIC-VOC) - Solid/Soil)

Volatile Organic Compounds by EPA 8260

Recvd: 06/17/10 11:46

Sampled: 06/17/10 09:48

Tetra Tech EM Inc. 737 Bishop st., Suite 3010 Work Order:

HTF0088

Received: Reported:

06/17/10 06/30/10 17:46

Honolulu, HI 96813 Scott Duzan

Subsurface Soil Investigation (MIS-VOCs)

Project:

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

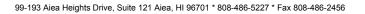
Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0088-18 (B20-C-(MIC	C-VOC) - Sol	id/Soil) - cont.			Sam	pled:	06/17/10 09:48	Re	cvd: 06/17/	10 11:46
Volatile Organic Compounds by EPA 8260	0 - cont.				•					
cis-1,2-Dichloroethene	ND		ug/kg	4.76	9.51	50	06/24/10 12:57	06/24/10	10F0153	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.76	9.51	"	"	"	"	"
Trichloroethene	ND		"	4.76	9.51	"	"	"	"	"
Vinyl chloride	44.2		"	6.47	19.0	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	91 %						"	"	"	"
Sample ID: HTF0088-19 (B20-D-(MIC	C-VOC) - Sol	id/Soil)			Sam	pled:	06/17/10 09:51	Re	cvd: 06/17/	10 11:46
Volatile Organic Compounds by EPA 8260)									
cis-1,2-Dichloroethene	ND		ug/kg	4.73	9.45	50	06/24/10 13:22	06/24/10	10F0153	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.73	9.45	"	"	"	"	"
Trichloroethene	ND		"	4.73	9.45	"	"	"	"	"
Vinyl chloride	53.8		"	6.43	18.9	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	96 %						"	"	"	"
Sample ID: HTF0088-20 (B20-E-(MIC Volatile Organic Compounds by EPA 8260	,	id/Soil)			Sam	pled:	06/17/10 09:53	Re	cvd: 06/17/	10 11:46
cis-1,2-Dichloroethene	ND		ug/kg	4.88	9.76	50	06/24/10 13:48	06/24/10	10F0153	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.88	9.76	"	"	"	"	"
Trichloroethene	ND		"	4.88	9.76	"	"	"	"	"
Vinyl chloride	41.4		"	6.63	19.5	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	93 %						"	"	"	"
Sample ID: HTF0088-21 (B17-A-(MIC	C-VOC) - Sol	id/Soil)			Sam	pled:	06/17/10 10:05	Re	cvd: 06/17/	10 11:46
Volatile Organic Compounds by EPA 8260)									
cis-1,2-Dichloroethene	ND		ug/kg	5.11	10.2	50	06/24/10 14:13	06/24/10	10F0153	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.11	10.2	"	"	"	"	"
Trichloroethene	ND		"	5.11	10.2	"	"	"	"	"
Vinyl chloride	35.7		"	6.95	20.4	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	92 %						"	"	"	"
Sample ID: HTF0088-22 (B17-B-(MIC	C-VOC) - Sol	id/Soil)			Sam	pled:	06/17/10 10:09	Re	cvd: 06/17/	10 11:46
Volatile Organic Compounds by EPA 8260			_							
cis-1,2-Dichloroethene	ND		ug/kg	4.62	9.24	50	06/24/10 14:38	06/24/10	10F0153	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.62	9.24	"	"	"	"	"
Trichloroethene	ND		"	4.62	9.24	"	"	"	"	"
Vinyl chloride	33.0		"	6.29	18.5	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	91 %						"	"	"	"
Sample ID: HTF0088-23 (B17-C-(MIC		id/Soil)			Sam	pled:	06/17/10 10:10	Re	cvd: 06/17/	10 11:46
Volatile Organic Compounds by EPA 8260			ng/lra	175	0.50	50	06/24/10 15:02	06/24/10	1000152	EPA 8260
cis-1,2-Dichloroethene	ND		ug/kg "	4.75	9.50	50	06/24/10 15:03	06/24/10	10F0153	EPA 8200
trans-1,2-Dichloroethene	ND		"	4.75	9.50	,,	"	,,	,,	"
Trichloroethene	ND		"	4.75	9.50	"	"	"	"	"
Vinyl chloride	24.9		"	6.46	19.0	"				"
Surr: 1,2-Dichloroethane-d4 (80-120%)	94 %						"	"	"	"

737 Bishop st., Suite 3010

Honolulu, HI 96813 Scott Duzan Work Order: HTF0088

Received:

06/17/10


Reported:

06/30/10 17:46

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

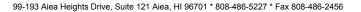
Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0088-23 (B17-C-(MIC-	-VOC) - Sol	id/Soil) - cont.			Sam	pled:	06/17/10 10:10	Re	cvd: 06/17/	10 11:46
Sample ID: HTF0088-24 (B17-D-(MIC-	-VOC) - Sol	id/Soil)			Sam	pled:	06/17/10 10:14	Re	cvd: 06/17/	10 11:46
Volatile Organic Compounds by EPA 8260										
cis-1,2-Dichloroethene	ND		ug/kg	5.58	11.2	50	06/24/10 15:28	06/24/10	10F0153	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.58	11.2	"	"	"	"	"
Trichloroethene	ND		"	5.58	11.2	"	"	"	"	"
Vinyl chloride	29.8		"	7.59	22.3	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	95 %						"	"	"	"
Sample ID: HTF0088-25 (B17-E-(MIC- Volatile Organic Compounds by EPA 8260	·VOC) - Sol	id/Soil)			Sam	pled:	06/17/10 10:16	Re	cvd: 06/17/	10 11:46
cis-1,2-Dichloroethene	ND		ug/kg	4.56	9.11	50	06/24/10 15:53	06/24/10	10F0153	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.56	9.11	"	"	"	"	"
Trichloroethene	ND		"	4.56	9.11	"	"	"	"	"
Vinyl chloride	10.7	J	"	6.20	18.2	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	92 %						"	"	"	"
Sample ID: HTF0088-26 (LAYER E-FI Volatile Organic Compounds by EPA 8260	MIS-VOC6	- Solid/Soil)			Sam	pled:	06/17/10 10:15	Re	evd: 06/17/	10 11:46
cis-1,2-Dichloroethene	64.5		ug/kg	1.97	3.94	50	06/24/10 16:18	06/24/10	10F0153	EPA 8260
trans-1,2-Dichloroethene	ND		"	1.97	3.94	,,	"	"	"	"
Trichloroethene	120		"	1.97	3.94	,,	"	"	"	"
Vinyl chloride	8.34		"	2.68	7.88	,,	"	,,	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	91 %			_,,,	,,,,,		"	"	"	"
Sample ID: HTF0088-27 (LAYER E-FI	MIS-VOC12	2 - Solid/Soil)			Sami	nled:	06/17/10 10:15	Re	cvd: 06/17/	10 11:46
Volatile Organic Compounds by EPA 8260		,			,					
cis-1,2-Dichloroethene	62.7		ug/kg	2.12	4.25	50	06/24/10 16:44	06/24/10	10F0153	EPA 8260
trans-1,2-Dichloroethene	ND		"	2.12	4.25	"	"	"	"	"
Trichloroethene	141		"	2.12	4.25	"	"	"	"	"
Vinyl chloride	14.4		"	2.89	8.49	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	96 %						"	"	"	"
Sample ID: HTF0088-28 (LAYER F-FI	MIS-VOC6	- Solid/Soil)			Sam	pled:	06/16/10 16:17	Re	cvd: 06/17/	10 11:46
Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene	101		ug/kg	2.21	4.41	50	06/24/10 17:09	06/24/10	10F0153	EPA 8260
trans-1,2-Dichloroethene	ND		ug/Ng "	2.21	4.41	"	"	"	101 0133	"
Trichloroethene	160		"	2.21	4.41	,,	"	,,	"	,,
Vinyl chloride	25.6		"	3.00	8.83	,,	"	,,	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	25.6 95 %			3.00	0.03		"	"	"	"
Sample ID: HTF0088-29 (LAYER F-F! Volatile Organic Compounds by EPA 8260	MIS-VOC12	2 - Solid/Soil)			Sam	pled:	06/16/10 16:17	Re	cvd: 06/17/	10 11:46
cis-1,2-Dichloroethene	93.5		ug/kg	2.57	5.13	50	06/24/10 17:35	06/24/10	10F0153	EPA 8260
trans-1,2-Dichloroethene	ND		"	2.57	5.13	"	"	"	"	"
Trichloroethene	179		"	2.57	5.13	"	"	"	"	"

737 Bishop st., Suite 3010

Honolulu, HI 96813 Scott Duzan

HTF0088 Work Order:

Received:


06/17/10 06/30/10 17:46

Reported:

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0088-29 (LAYER F-I	FMIS-VOC12	2 - Solid/Soil) -	cont.		Samj	pled:	06/16/10 16:17	Re	evd: 06/17/	10 11:46
Volatile Organic Compounds by EPA 826	0 - cont.									
Vinyl chloride	9.71	J	"	3.49	10.3	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	97 %						"	"	"	"
Sample ID: HTF0088-30 (B37-A-(MIC	C-VOC) - Sol	id/Soil)			Samj	pled:	06/17/10 10:20	Re	evd: 06/17/	10 11:46
Volatile Organic Compounds by EPA 826	0									
cis-1,2-Dichloroethene	14.8		ug/kg	5.00	10.0	50	06/24/10 18:00	06/24/10	10F0153	EPA 8260
trans-1,2-Dichloroethene	13.2		"	5.00	10.0	"	"	"	"	"
Trichloroethene	13.3		"	5.00	10.0	"	"	"	"	"
Vinyl chloride	27.1		"	6.80	20.0	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	107 %						"	"	"	"
Sample ID: HTF0088-31 (B38-A-(MIC	C-VOC) - Sol	id/Soil)			Samp	pled:	06/17/10 10:30	Re	evd: 06/17/	10 11:46
Volatile Organic Compounds by EPA 826	0									
cis-1,2-Dichloroethene	174		ug/kg	5.00	10.0	50	06/24/10 21:00	06/24/10	10F0154	EPA 8260
trans-1,2-Dichloroethene	203		"	5.00	10.0	"	"	"	"	"
Trichloroethene	184		"	5.00	10.0	"	"	"	"	"
Vinyl chloride	195		"	6.80	20.0	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	238 %	A-01b					"	"	"	"
Sample ID: HTF0088-32 (TRIP BLA	NK - Solid/So	il)			Samj	pled:	06/17/10 10:35	Re	cvd: 06/17/	10 11:46
Volatile Organic Compounds by EPA 826	60									
cis-1,2-Dichloroethene	ND		ug/kg	5.00	10.0	50	06/24/10 21:25	06/24/10	10F0154	EPA 8260
trans-1,2-Dichloroethene	ND		"	5.00	10.0	"	"	"	"	"
Trichloroethene	ND		"	5.00	10.0	"	"	"	"	"
Vinyl chloride	ND		"	6.80	20.0	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	96 %						"	"	"	"

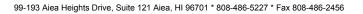
Tetra Tech EM Inc. Work Order: HTF0088

Received:

06/17/10

737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan


Reported: 06/30/10 17:46

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

LABORATORY BLANK QC DATA

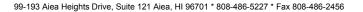
	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
Volatile Organic Compounds by EP	A 8260												
Batch\Seq: 10F0149 Extracted: 06/2	23/10												
Blank Analyzed: 06/24/2010 (10F0149-	-BLK1)												
cis-1,2-Dichloroethene			ug/kg	0.100	0.200	ND							
trans-1,2-Dichloroethene			ug/kg	0.100	0.200	ND							
Trichloroethene			ug/kg	0.100	0.200	ND							
Vinyl chloride			ug/kg	0.136	0.400	ND							
Surrogate: 1,2-Dichloroethane-d4			ug/kg					90		80-120			
Batch\Seq: 10F0153 Extracted: 06/2	24/10												
Blank Analyzed: 06/24/2010 (10F0153-	-BLK1)												
cis-1,2-Dichloroethene			ug/kg	0.100	0.200	ND							
trans-1,2-Dichloroethene			ug/kg	0.100	0.200	ND							
Trichloroethene			ug/kg	0.100	0.200	ND							
Vinyl chloride			ug/kg	0.136	0.400	ND							
Surrogate: 1,2-Dichloroethane-d4			ug/kg					95		80-120			
Batch\Seq: 10F0154 Extracted: 06/2	24/10												
Blank Analyzed: 06/24/2010 (10F0154-	-BLK1)												
cis-1,2-Dichloroethene			ug/kg	0.100	0.200	ND						N	17
trans-1,2-Dichloroethene			ug/kg	0.100	0.200	ND							
Trichloroethene			ug/kg	0.100	0.200	ND							
Vinyl chloride			ug/kg	0.136	0.400	ND							
Surrogate: 1,2-Dichloroethane-d4			ug/kg					97		80-120			

Tetra Tech EM Inc. 737 Bishop st., Suite 3010 Work Order:

HTF0088

Received: Reported: 06/17/10 06/30/10 17:46

Project:


Subsurface Soil Investigation (MIS-VOCs)

Honolulu, HI 96813 Scott Duzan

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

LCS/LCS DUPLICATE QC DATA

	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
Volatile Organic Compounds by El	PA 8260												
Batch\Seq: 10F0149 Extracted: 06	/23/10												
LCS Analyzed: 06/23/2010 (10F0149-	·BS1)												
cis-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	4.13		103		80-120			
trans-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	4.77		119		80-120			
Trichloroethene		4.00	ug/kg	0.100	0.200	4.55		114		80-120			
Vinyl chloride		4.00	ug/kg	0.136	0.400	3.45		86		80-120			
Surrogate: 1,2-Dichloroethane-d4			ug/kg					110		80-120			
Batch\Seq: 10F0153 Extracted: 06	/24/10												
LCS Analyzed: 06/24/2010 (10F0153-	·BS1)												
cis-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	4.12		103		80-120			
trans-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	4.78		119		80-120			
Trichloroethene		4.00	ug/kg	0.100	0.200	4.33		108		80-120			
Vinyl chloride		4.00	ug/kg	0.136	0.400	3.84		96		80-120			
Surrogate: 1,2-Dichloroethane-d4			ug/kg					105		80-120			
Batch\Seq: 10F0154 Extracted: 06	/24/10												
LCS Analyzed: 06/24/2010 (10F0154-	·BS1)												
cis-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	4.05		101		80-120			
trans-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	4.58		115		80-120			
Trichloroethene		4.00	ug/kg	0.100	0.200	4.13		103		80-120			
Vinyl chloride		4.00	ug/kg	0.136	0.400	3.54		88		80-120			
Surrogate: 1,2-Dichloroethane-d4			ug/kg					108		80-120			

Work Order:

HTF0088

Received: Reported:

06/17/10 06/30/10 17:46

737 Bishop st., Suite 3010 Honolulu, HI 96813

Project:

Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301 Scott Duzan

MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC DATA

	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
Volatile Organic Compounds by I	EPA 8260												
Batch\Seq: 10F0149 Extracted: 0	6/23/10												
Matrix Spike Analyzed: 06/24/2010	(10F0149-M	S1)		QC So	urce Samp	ole: HTF00	88-01						
cis-1,2-Dichloroethene	ND	265	ug/kg	6.61	13.2	271	249	102	94	80-120	8	30	
trans-1,2-Dichloroethene	ND	265	ug/kg	6.61	13.2	312	283	118	107	80-120	10	30	
Trichloroethene	ND	265	ug/kg	6.61	13.2	293	269	111	102	80-120	9	30	
Vinyl chloride	ND	265	ug/kg	9.00	26.5	249	214	94	81	80-120	15	30	
Surrogate: 1,2-Dichloroethane-d4			ug/kg					110	101	80-120			
Batch\Seq: 10F0153 Extracted: 0	6/24/10												
Matrix Spike Analyzed: 06/24/2010	(10F0153-M	S1)		QC So	urce Samp	ole: HTF00	88-11						
cis-1,2-Dichloroethene	ND	167	ug/kg	4.18	8.36	184	189	110	113	80-120	2	30	
trans-1,2-Dichloroethene	ND	167	ug/kg	4.18	8.36	209	212	125	126	80-120	1	30	M7
Trichloroethene	ND	167	ug/kg	4.18	8.36	192	198	115	118	80-120	3	30	
Vinyl chloride	ND	167	ug/kg	5.69	16.7	182	182	109	109	80-120	0	30	
Surrogate: 1,2-Dichloroethane-d4			ug/kg					200	207	80-120			A-01,A-01a
Batch\Seq: 10F0154 Extracted: 0	6/24/10												
Matrix Spike Analyzed: 06/25/2010	(10F0154-M	S1)		QC So	urce Samp	ole: HTF00	92-01						
cis-1,2-Dichloroethene	ND	304	ug/kg	7.59	15.2	307	295	101	97	80-120	4	30	
trans-1,2-Dichloroethene	ND	304	ug/kg	7.59	15.2	351	328	115	108	80-120	7	30	
Trichloroethene	ND	304	ug/kg	7.59	15.2	444	416	146	137	80-120	7	30	M7
Vinyl chloride	22.5	304	ug/kg	10.3	30.4	277	251	84	75	80-120	10	30	M7
Surrogate: 1,2-Dichloroethane-d4			ug/kg					112	108	80-120			

99-193 Aiea Heights Drive, Suite 121 Aiea, HI 96701 * 808-486-5227 * Fax 808-486-2456

HTF0088 Tetra Tech EM Inc. Work Order: 06/17/10 Received: 737 Bishop st., Suite 3010

Reported: 06/30/10 17:46

Subsurface Soil Investigation (MIS-VOCs) Project:

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

CERTIFICATION SUMMARY

TestAmerica Honolulu

Honolulu, HI 96813

Scott Duzan

Method	Matrix	Nelac	Hawaii
EPA 8260	Solid/Soil	X	

For information concerning certifications of this facility or another TestAmerica facility, please visit our website at www.TestAmericaInc.com

DATA QUALIFIERS AND DEFINITIONS

A-01 True Value 3.5ug/l, 114% Recovery True Value 3.5ug/l, 118% Recovery A-01a A-01b True Value 4.0ug/l, 87% Recovery

Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method

Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS). M7

Not detected at the reporting limit (or method detection limit if shown) ND

ADDITIONAL COMMENTS

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

rev1a

Honolulu

99-193 Aiea Heights Drive Suite 121 . Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

LABORATORY USE ONLY	LAB JOB NO. MF0035	LOCATION	CONTAINERS

Chain of Custody / Analysis Request Form

Zith war you KTK0032-0 کا 6 ٩ Z 9 20 102 5 01-Laboratory ID no. Condition noted 6/17/s / 1146 ndidate analyses requested Date / time received Total Organic Carbon Company / Agency affiliation Grain Size Saturated Zone Moisture Content TestAmerica Vadose Zone Moisture Content \times MIS-80978 To .oM PILE Salot Calot क्षेत्र क्ष 5580 9859 [obo 988 Time Sampling Job name: Hickam AFB CG110 ISM VOC Study 01.11.10 Received by (print / sign) Project identification Date MeOH MeOH Меон MeOH MeOH MeOH MeOH MeOH MeOH MeOH роцјеш Job number: 103DS148843.H0301 scott.duzan@tetratech.com Other ‼O bilo2 DiupiJ əgbulg Contact email address: Drinking water Delivery method Vastewater × × × × × $\overline{\times}$ $\overline{\times}$ lios Water 8A*R*∂ SIM × × × \times \times × × \times 6.17.10 / 1130 ZIP: 96813 Date / time released 9 Report to: Scott Duzan, scott.duzan@tetratech.com # samples in shipment Client sample ID State: HI Address: 737 Bishop Street, Suite 3010 4 - 1 MI 1 - 10C B - (M1C-VGC) E - (Mr - Vot ~ (M15-VA 70/1-1/W) -- (MIC-VOC \$ Fax 1821 - 18 - (MII - VOC. 1921- A - (MIL-VOC) Company name: Tetra Tech EM (print / sign) ι Phone: 808.441,6645 BBí 018 B21-1 20 Scott Duzan 8 city: Honolulu Sampler: SD ဖ ωi ٥ tem no.

Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl chloride

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc.

Distribution:

COC REV 04/2008

White - TestAmerica

Yellow - TestAmerica

Pink - Client

☐ Return to client ☐ Archive

Please check one:

♣ Dispose by lab

₽ Page

TestAmerica

rev1a THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

Chain of Custody / Analysis Request Form

LABORATORY USE ONLY
LAB JOB NO. ATTOOSS
LOCATION
CONTAINERS

Rep	Report to: SCOII Duzah, SCOII.duzan@tetratech.com		Project	Project identification	ation				ndi	atea	nalys	ndicate analyses requested		1
ૄૄ	сомралу паме: Tetra Tech EMI	Job name: Hic	Job name: Hickam AFB CG110 ISM VOC Study	110 ISM \	/OC Stu	dy	$\overline{}$		Jı					
Addr	Address: 737 Bishop Street, Suite 3010	Job number: 103DS	03DS148843.H0301	10301			į	ţuəţ						
S.	ciry: Honolulu state: H1 ZIP: 96813							noO	····					
Phor	Phone: 808,441.6645	Contact email address:	address: In@tetratech.com	Eo				sture			uoc			
Sam	Sampler: SD # samples in shipment 10							sioM :			hsO :			
			Matrix		Sampling	guil	T				oin			
on metl	Client sample ID	MIS GRAB Water Soil Wastewater	Drinking water Sludge Liquid Solid Oil	noitsvieseig bodjem	Date	əmiT	No. of containers	oz esobsV	Saturated.	erain Size	sgnO lstoT		Laboratory ID no.	
-	819-13 - (MIC-vac) ×	×		MeOH 6	6.77.10	69160	×	<u></u>					VITEOS!! -	آا
2	BIG-C- (MIC-YOC)	×		МеОН		Del D	<u>×</u>						77	لہ ا
က	B19- D- (M1(-10c)	×		МеОН		0926	X						21	ا بہ
4	KIG - E- (MIC-VOC)	×		MeOH		97,60	×		<u> </u>				7	ا ج
5	Field Blank Bla	×		МеОН		6360		×					31	1
9	820 - A - (MIG-VOC)	×		MeOH		0941		X	1		ļ		97-	وا
7	878 - 13 - (MIC-VOL)	×		MeOH		ghby		K					5	ا ر
ω	BZD-C- (MIC-NOC)	×		МеОН		OPTYB	X						35	30
6	B70 - D - (MIC-401) ×	×		MeOH		15/2 18/3	X						T	, ₍₊
위	1320 - E - (MIC-10C)	X		MeOH	1	OK 3	\ \	×					2-	_
	Released by Date / time (print / sign) / released	Delivery method	P	Recei (print	Received by (print / sign)			ပ်	Company / Agency affiliation	Agency on	! !	Date / time received	Condition noted	
SS	Scott Duzan Just 111, 10 / 1130 -	Hand	7	المراجعة المراجعة	3		리	TestAmerica	erica		اك	15/cm / 1146	2 Tak	. :
			>					ĺ			3	1 W/S)	2,	:
	1											_		
Ö	Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl	ins-DCE; and	d Vinyl chloride											

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc.

White - TestAmerica

Distribution:

COC REV 04/2008

Yellow - TestAmerica

Pink - Client

Please check one:

♣ Dispose by lab

☐ Return to client
☐ Archive Page_

rev1a **TestAmerica**

THE LEADER IN ENVIRONMENTAL TESTING

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456 Honolulu

LABORATORY USE ONLY MTF0038 LAB JOB NO. _ CONTAINERS LOCATION.

	Chain of	ည	stody / Analysis	ysis Re	Request Form	Fo	Ę		8	CONTAINERS			
Report to: Scott Duzan, scott.duzan@tetratech.com		Project identification	entification				ndid	ate ar	alyse	ndicate analyses requested	P		
Company name. Tetra Tech EMI	Job name: Hickam AF	m AFB CG110	B CG110 ISM VOC Study	Study			ţ			····			
Address: 737 Bishop Street, Suite 3010	Job number: 103D	Job number: 103DS148843.H0301	201			ţeuţ	nejuo						
City: Honbiulu state: HI ZIP: 96813						.uoე)) ə.					·	
Phone: 808.441.6645 Fax	Contact email address: Scott.duzan@te	Contact email address: Scott.duzan@tetratech.com	77	4 - 4		sture	ıntsic	·····	uod				
Sampler: SD # samples in shipment						sioM	M ər				,		
	Mis	Matrix	Ś	Sampling	\ 		10Z		oiu				
Client sample ID	MIS GRAB Wastewater Wastewater Drinking water	Sludge Liquid Solid Oil Other Other	bortism Sts.Cl	əmi T	No. of containers	oZ əsobsV	Saturated	erain Size	ag₁O latoT			aborat	aboratory ID no
1 BTT - A - (MIC-VOC)	×	Me	MeOH 6.17.10	5001 0	X	┨						775	7008 5-12
2 BM-B-(MIC-VOC)	×	Me	МеОН	1009	\								72-
3 BT-(-(MIC-VOC)	×	×	МеОН	Uol	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								12/
4 BIT - D - (MI(-VOC)	×	M	МеОН	70.0	٧ ,								5,
5 1317 - E - (MIC-VOC)	×	Me	МеОН	اهرم	* *								22-
6 Layer E - FMIS - VOCG	×	Me	МеОН	5101	K								3
- LAVER E-FMIS-VOCIZ	×	<u> </u>	₩ НО НО Н	5101	×			<u> </u>					12-
8 Loyer F-FMIS-10CB	×	Me	MeOH 6-16-10	0 1617	<u> </u>								-26
9 LENG F-FMIS-VOLIZ,	×	W	р).9].9 НО⊖М	16.17 bi	×			 !		- (52-
	× + *	W	МеОн										
Released by Date / time (print / sign) released	Delivery method	,	Received by (print / sign)			Comp	Company / Agency affiliation	ency		Date / time received		Condition noted	noted
Scott Duzan (with Chyl 6.17.10 / 1190	Hand	More	بخ	<u> </u>	Tes	TestAmerica	Eg.		9	6 (miles / 1146	و	42	Let
									****	,			
Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl chloride	E; trans-DCE; and Vir	ıyl chloride									<u></u>	Please check one: ♣ Dispose by lab □ Return to client □ Archive	1 6.

ᢐ

Page 7

Pink - Client

Yellow - TestAmerica

White - TestAmerica

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc.

Distribution:

COC REV 04/2008

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Honolulu rev1a

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

	Chain of	Chain of Custody / Analysis Request Form	/ Analy	sis Re	dne	st Fc	rm		Ŏ	CONTAINERS			
Report to: Scott Duzan, scott.duzan@tetratech.com		Project identification	entification				ndic	ate	ınalys	Indicate analyses requested	pel		1
Company name: Tetra Tech EMI	Job name: HICK?	Job name: Hickam AFB CG110 ISM VOC Study	ISM VOC SE	tndy			ţ						
Address: 737 Bishop Street, Suite 3010	Job number: 103	Job number: 103DS148843.H0301	101			ţuə.							
city: Honolulu state: HI zip: 96813					j	Conf							
Phone: 808.441,6645	Contact email address:	Contact email address: Scott.duzan@tetratech.com			***	ture			uoc				
Sampler: SD # samples in shipment						sioM			Carb				
*1		latrix		Sampling				ə	anic				
e E E E E E E E E E E E E E E E E E E E	MIS GRAB Water Soil astewater	Sludge Solid Oil Other	borhern Date	əmiT	No. of containers	12-808 S esop	urated	zi2 nig	al Org				
The state of the s								STĐ	toT 		****	Laboratory ID no.	
1 - 1931A- (B31-A-(MIC-VOC)	×	Me	меон 6.17.10	0201	-	×						VTF0000	-23°
2 B3B -A - CMIC-VOC)	×	We	Меон	1630		×						127	
3 Trip Blank 1	×	Me	MeOH	1835	7	y V			~	<u></u>		-52	د .
4	×	Me	МеОН						9				
5	×	₩ We	MeOH						-				
9	×	Me	МеОН				.i		ļ				
	×	Me	МеОН										
σ.	×	Me	меон										
0	×	W	МеОН										ı
	×	Me	МеОН										
Released by Date / time (print sign) released	Delivery method		Received by (print / sign)			Cor	Company / Agency affiliation	gency n		Date / time received		Condition noted	II.
Scott Duzan Mutton 6.17:10 /1190	Hand	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Jemson.	4		TestAmerica	erica		9	9111/9449	46	Zum Wet	1
		>										ر رئ	
Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl chloride	rans-DCE; and V	inyl chloride			-				.		ļ ă	Please check one:	11

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc.

COC REV 04/2008

Distribution:

White - TestAmerica

Yellow - TestAmerica

Pink - Client

Please check one:

* Dispose by lab

C Return to client

Archive Page

₽

Sa	mple Receipt Check	list	
Client Name: tehra Tech	Date/ Time Receiv	ed: 6/17/10 1	146
Checklist Completed By:	Received	Ву:	
Matrices: Sol(Car	rrier: Cllut	Airbill#:	
Shipping container/cooler in good condition? Chain of Custody present? Chain of Custody Signed when relinquished and re Chain of Custody agrees with sample labels? Samples in proper container/bottle? Sample containers intact? Sample containers on ice? Sufficient sample volume for indicated test? All samples received within holding time? Water - VOA Vials have Zero Headspace?	Yes Z Yes Z Yes Z Yes Z Yes Z Yes Z Yes Z Yes Z Yes Z Yes Z Yes Z Yes Z Yes Z	No Control No Control	vials present:
Water - pH acceptable upon receipt? Encores / 5035 Vials Present? Sample Filtration Needed? Dry Weight Corrected Results? DODQSM / QAPP Project?	Yes □ pH Adjusted? Yes □ Yes □ Yes □ Yes □ Yes □ Yes □	No P Not Che No P Final p No P Filtered No P Take Ac No P Type:	ecked: Z
Temperature Sample Container/Blank Temperature Range (Mini Comments/ Sampling Handling Notes		No 7 67710 4 if available): 4	<u>°C</u>

July 06, 2010

Attn: Scott Duzan

LABORATORY REPORT

Client:

Tetra Tech EM Inc. Work Order: HTF0154

737 Bishop st., Suite 3010 Project Name: Subsurface Soil Investigation (MIS-VOCs)

Honolulu, HI 96813 Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.HI

Date Received: 06/28/10

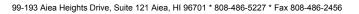
The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica Analytical Testing Corporation certifies that the analytical results contained herein apply only to the specific sample(s) analyzed.

This entire report was reviewed and approved for release.

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-(808)486-5227

Samples were received into laboratory at a temperature of 5 °C.


DZ

NELAC states that samples which require thermal preservation shall be considered acceptable if the arrival temperature is within 2 degrees C of the required temperature or the method specified range. For samples with a temperature requirement of 4 degrees C, an arrival temperature from 0 degrees C to 6 degrees C meets specifications. Samples that are delivered to the laboratory on the same day that they are collected may not meet these criteria. In these cases, the samples are considered acceptable if there is evidence that the chilling process has begun, such as arrival on ice.

The reported results were obtained in compliance with the 2003 NELAC standards unless otherwise noted.

Approved By:

NELAC Certification # E87907

Tetra Tech EM Inc. 737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan

Work Order: HTF0154

Received:

06/28/10

Reported:

07/06/10 16:14

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Sample Summary

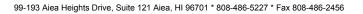
			Date/Time	Date/Time	Sample
Sample Identification	Lab Number	Client Matrix	Sampled	Received	Qualifiers
Layer E lab composite B1-B20 Rep1	HTF0154-01	Solid/Soil	06/15/10	06/28/10 16:26	
Layer E lab composite B1-B20 Rep2	HTF0154-02	Solid/Soil	06/15/10	06/28/10 16:26	
Layer E lab composite B1-B20 Rep3	HTF0154-03	Solid/Soil	06/15/10	06/28/10 16:26	
Layer F lab composite B1-B16 Rep1	HTF0154-04	Solid/Soil	06/15/10	06/28/10 16:26	
Layer F lab composite B1-B16 Rep2	HTF0154-05	Solid/Soil	06/15/10	06/28/10 16:26	
Layer F lab composite B1-B16 Rep3	HTF0154-06	Solid/Soil	06/15/10	06/28/10 16:26	
Layer G lab composite B1-B12 Rep1	HTF0154-07	Solid/Soil	06/15/10	06/28/10 16:26	
Layer G lab composite B1-B12 Rep2	HTF0154-08	Solid/Soil	06/15/10	06/28/10 16:26	
Layer G lab composite B1-B12 Rep3	HTF0154-09	Solid/Soil	06/15/10	06/28/10 16:26	

Work Order:

HTF0154

Received:

06/28/10 07/06/10 16:14


737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan

Reported: Project: Subsurface Soil Investigation (MIS-VOCs)

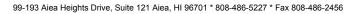
Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Part Part	Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
1	- · · · · · · · · · · · · · · · · · · ·	-	1-B20 Rep1 - S	Solid/Soil)		Samı	oled:	06/15/10	Re	cvd: 06/28/	10 16:26
traineria_2 Dicisitionecimene ND "4.85 9,71 "5 "6 "7 "6 "7 "6 "7 "6 "7 "6 "7 "6 "7 "6 "7 "6 "7 "6 "7 "6 "7 "6 "7 "6 "7 "6 "7 "6 "7 "6 "7 "6 "7 "6 "8 "8 "7 "8 "8 "7 "8 "8 "8 "8 "8 "8 "8 "8 "8 "8 "8 "8 "8 "8	• • •			ug/kg	4.85	9.71	50	06/29/10 11:16	06/29/10	10F0184	EPA 8260
Tricklorotechem 215 4,85 9,71 10 </td <td>·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>"</td>	·										"
Name 1	*			"			.,	"	"	"	"
Series 1.11				"			"	"	"	"	"
Name Part P	•							"	"	"	"
trans 1,2 Dichlorotchene ND	- · · · · · · · · · · · · · · · · · · ·	-	1-B20 Rep2 - S	Solid/Soil)		Samp	oled:	06/15/10	Re	cvd: 06/28/	10 16:26
trinch (2-) Dichloroethene ND " 4.85 9.71 "	• • •			ug/kg	4.85	9.71	50	06/29/10 11:41	06/29/10	10F0184	EPA 8260
Trichlorocthene											"
Name 1900				,,			"	"	,,	"	"
Sample ID: HTF0154-03 (Layer E lab compounds by EPA 8260 Sample ID: HTF0154-03 (Layer E lab compounds by EPA 8260 Sample ID: HTF0154-03 (Layer E lab compounds by EPA 8260 Sample ID: HTF0154-03 (Layer E lab compounds by EPA 8260 Sample ID: HTF0154-09 (Layer E lab compounds by EPA 8260 Sample ID: HTF0154-09 (Layer E lab compounds by EPA 8260 Sample ID: HTF0154-04 (Layer F lab compounds be IB-16 kep1 - Sulf 2014) Sample ID: HTF0154-04 (Layer F lab compounds be IB-16 kep1 - Sulf 2014) Sample ID: HTF0154-04 (Layer F lab compounds be IB-16 kep1 - Sulf 2014) Sample ID: HTF0154-04 (Layer F lab compounds be IB-16 kep1 - Sulf 2014) Sample ID: HTF0154-04 (Layer F lab compounds be IB-16 kep1 - Sulf 2014) Sample ID: HTF0154-04 (Layer F lab compounds be IB-16 kep1 - Sulf 2014) Sample ID: HTF0154-04 (Layer F lab compounds be IB-16 kep1 - Sulf 2014) Sample ID: HTF0154-05 (Layer F lab compounds be IB-16 kep1 - Sulf 2014) Sample ID: HTF0154-05 (Layer F lab compounds be IB-16 kep1 - Sulf 2014) Sample ID: HTF0154-05 (Layer F lab compounds be IB-16 kep1 - Sulf 2014) Sample ID: HTF0154-05 (Layer F lab compounds be IB-16 kep1 - Sulf 2014) Sample ID: HTF0154-05 (Layer F lab compounds be IB-16 kep1 - Sulf 2014) Sample ID: HTF0154-05 (Layer F lab compounds be IB-16 kep1 - Sulf 2014) Sample ID: HTF0154-05 (Layer F lab compounds be IB-16 kep1 - Sulf 2014) Sample ID: HTF0154-06 (Layer F lab compounds be IB-16 kep1 - Sulf 2014)				,,			,,	"	"	"	,,
Volatile Organic Compounds by EPA 8250 9.6 ug kg 4.85 9.71 50 062910 10F0184 PAR 2010 trans-1,2-Dichloroethene 10 " 4.85 9.71 "	•				0.00	19.4		"	"	"	"
cis-1,2-Dichloroethene 96.6 ug/kg 4.85 9.71 50 06/29/10 12:06 06/100 1670 18 EPA 820 trans-1,2-Dichloroethene ND " 4.85 9.71 "	Sample ID: HTF0154-03 (Layer E lab	composite B	1-B20 Rep3 - S	Solid/Soil)		Samı	oled:	06/15/10	Re	cvd: 06/28/	10 16:26
Trichloroethene ND " 4.85 9.71 " " " " " " " " "	Volatile Organic Compounds by EPA 8260	0									
Trichloroethene 210 " 4.85 9.71 " " " " " " " " " " " " " " " " " " "	cis-1,2-Dichloroethene	96.6		ug/kg	4.85	9.71	50	06/29/10 12:06	06/29/10	10F0184	EPA 8260
Nimyl chloride	trans-1,2-Dichloroethene	ND		"	4.85	9.71	"	"	"	"	"
Surr: 1,2-Dichloroethane-4 (80-120%) 102 % " "" "" "" "" "" "" "" "" "" "" "" "" "	Trichloroethene	210		"	4.85	9.71	"	"	"	"	"
Sample ID: HTF0154-04 (Layer F lab composite B1-B16 Rep1 - Solid/Soil) Sample ID: HTF0154-04 (Layer F lab composite B1-B16 Rep1 - Solid/Soil) Sample ID: HTF0154-04 (Layer F lab composite B1-B16 Rep1 - Solid/Soil) Sample ID: HTF0154-05 (Layer F lab composite B1-B16 Rep2 - Solid/Soil) Sample ID: HTF0154-05 (Layer F lab composite B1-B16 Rep2 - Solid/Soil) Sample ID: HTF0154-05 (Layer F lab composite B1-B16 Rep2 - Solid/Soil) Sample ID: HTF0154-05 (Layer F lab composite B1-B16 Rep2 - Solid/Soil) Sample ID: HTF0154-05 (Layer F lab composite B1-B16 Rep2 - Solid/Soil) Sample ID: HTF0154-05 (Layer F lab composite B1-B16 Rep2 - Solid/Soil) Sample ID: HTF0154-05 (Layer F lab composite B1-B16 Rep2 - Solid/Soil) Sample ID: HTF0154-05 (Layer F lab composite B1-B16 Rep2 - Solid/Soil) Sample ID: HTF0154-05 (Layer F lab composite B1-B16 Rep2 - Solid/Soil) Sample ID: HTF0154-05 (Layer F lab composite B1-B16 Rep2 - Solid/Soil) Sample ID: HTF0154-05 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-05 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID:	Vinyl chloride	ND		"	6.60	19.4	"	"	"	"	"
Volatile Organic Compounds by EPA 8260 130 ug/kg 4.81 9.62 50 06/29/10 12:32 06/29/10 10F0184 EPA 8260 trans-1,2-Dichloroethene ND "4.81 9.62 "8	Surr: 1,2-Dichloroethane-d4 (80-120%)	102 %						"	"	"	"
cis-1,2-Dichloroethene 130 ug/kg 4.81 9.62 50 06/29/10 12:32 06/29/10 10F0184 EPA 8260 trans-1,2-Dichloroethene ND " 4.81 9.62 " " " " " " Tichloroethene 236 " 4.81 9.62 " " " " " " Vinyl chloride ND " 6.54 19.2 " " " " " " Surr: 1,2-Dichloroethane-d4 (80-120%) 105 % " Sample ID: HTF0154-05 (Layer F lab composite B1-B16 Rep2 - Solid/Soil) Sample ID: Ug/kg 4.81 9.62 50 06/15/10 Recvt: 06/28/10 16:26 EPA 8260 cis-1,2-Dichloroethene 122 ug/kg 4.81 9.62 50 06/29/10 12:57 06/29/10 10F0184 EPA 8260 trans-1,2-Dichloroethene 221 " 4.81 9.62 " " " " " " " " " "	- · · · · · · · · · · · · · · · · · · ·	-	1-B16 Rep1 - S	Solid/Soil)		Samı	pled:	06/15/10	Re	cvd: 06/28/	10 16:26
trans-1,2-Dichloroethene ND " 4.81 9.62 " <	• • •			ug/kg	4.81	9.62	50	06/29/10 12:32	06/29/10	10F0184	EPA 8260
Trichloroethene 236 " 4.81 9.62 " " " " " Vinyl chloride ND " 6.54 19.2 " " " " " Surr: 1,2-Dichloroethane-d4 (80-120%) 105 % " " " " " " Sample ID: HTF0154-05 (Layer F lab composite B1-B16 Rep2 - Solid/Soil) Sample ID: HTF0154-05 (Layer F lab composite B1-B16 Rep2 - Solid/Soil) Sample ID: HTF0154-05 (Layer F lab composite B1-B16 Rep2 - Solid/Soil) Sample ID: HTF0154-05 (Layer F lab composite B1-B16 Rep2 - Solid/Soil) 4.81 9.62 50 06/29/10 12:57 06/29/10 10F0184 EPA 8260 trans-1,2-Dichloroethane-d4 (80-120%) 99 % 4.81 9.62 " " " " " Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite	·			"						"	"
Vinyl chloride ND " 6.54 19.2 " " " " " Surr: 1,2-Dichloroethane-d4 (80-120%) 105 % " <td></td> <td></td> <td></td> <td>"</td> <td></td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td>				"			"	"	"	"	"
Sample ID: HTF0154-05 (Layer F lab composite B1-B16 Rep2 - Solid/Soil) Sample ID: HTF0154-05 (Layer F lab composite B1-B16 Rep2 - Solid/Soil) Sample ID: HTF0154-05 (Layer F lab composite B1-B16 Rep2 - Solid/Soil) Sample ID: HTF0154-05 (Layer F lab composite B1-B16 Rep2 - Solid/Soil) Sample ID: HTF0154-05 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID:				"			,,	"	"	"	"
Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene 122 ug/kg 4.81 9.62 50 06/29/10 12:57 06/29/10 10F0184 EPA 8260 trans-1,2-Dichloroethene ND " 4.81 9.62 " " " " " " Trichloroethene 221 " 4.81 9.62 " " " " " " Surr: 1,2-Dichloroethane-d4 (80-120%) 99 % " 19.2 "	•				0.51	17.2		"	"	"	"
cis-1,2-Dichloroethene 122 ug/kg 4.81 9.62 50 06/29/10 12:57 06/29/10 10F0184 EPA 8260 trans-1,2-Dichloroethene ND " 4.81 9.62 " " " " " Trichloroethene 221 " 4.81 9.62 " " " " " " Vinyl chloride ND " 6.54 19.2 " " " " " " Surr: 1,2-Dichloroethane-d4 (80-120%) 99 % Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sample ID: HTF0154-06 (Layer F lab composite B1-B16 R	Sample ID: HTF0154-05 (Layer F lab	composite B	1-B16 Rep2 - S	Solid/Soil)		Samı	oled:	06/15/10	Re	cvd: 06/28/	10 16:26
trans-1,2-Dichloroethene ND " 4.81 9.62 " " " " " " " " " " " " " Trichloroethene 221 " 4.81 9.62 " " " " " " " " " " " " " " " " " " "	Volatile Organic Compounds by EPA 8260	0									
Trichloroethene 221 " 4.81 9.62 "	cis-1,2-Dichloroethene	122		ug/kg	4.81	9.62	50	06/29/10 12:57	06/29/10	10F0184	EPA 8260
Vinyl chloride ND " 6.54 19.2 "	trans-1,2-Dichloroethene	ND		"	4.81	9.62	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%) 99 % " " " " " " Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sampled: 06/15/10 Recvd: 06/28/10 16:26 Volatile Organic Compounds by EPA 8260 Ug/kg 4.81 9.62 50 06/29/10 13:22 06/29/10 10/50/10 10/	Trichloroethene	221		"	4.81	9.62	"	"	"	"	"
Sample ID: HTF0154-06 (Layer F lab composite B1-B16 Rep3 - Solid/Soil) Sampled: 06/15/10 Recvd: 06/28/10 16:26 Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene 125 ug/kg 4.81 9.62 50 06/29/10 13:22 06/29/10 10/20 10F0184 EPA 8260 trans-1,2-Dichloroethene ND " 4.81 9.62 " " " " " Trichloroethene 227 " 4.81 9.62 " " " " " Vinyl chloride ND " 6.54 19.2 " " " " " "	Vinyl chloride	ND		"	6.54	19.2	"	"	"	"	"
Volatile Organic Compounds by EPA 8260 cis-1,2-Dichloroethene 125 ug/kg 4.81 9.62 50 06/29/10 13:22 06/29/10 10:22 10F0184 EPA 8260 trans-1,2-Dichloroethene ND " 4.81 9.62 " " " " " Trichloroethene 227 " 4.81 9.62 " " " " " Vinyl chloride ND " 6.54 19.2 " " " " "	Surr: 1,2-Dichloroethane-d4 (80-120%)	99 %						"	"	"	"
cis-1,2-Dichloroethene 125 ug/kg 4.81 9.62 50 06/29/10 13:22 06/29/10 10F0184 EPA 8260 trans-1,2-Dichloroethene ND " 4.81 9.62 " " " " " Trichloroethene 227 " 4.81 9.62 " " " " " Vinyl chloride ND " 6.54 19.2 " " " " "	- · · · · · · · · · · · · · · · · · · ·	-	1-B16 Rep3 - S	Solid/Soil)		Samı	oled:	06/15/10	Re	evd: 06/28/	10 16:26
trans-1,2-Dichloroethene ND " 4.81 9.62 " " " " " " " " " Trichloroethene 227 " 4.81 9.62 " " " " " " " " " " " " " " " " " " "	• •			ug/kg	4.81	9.62	50	06/29/10 13:22	06/29/10	10F0184	EPA 8260
Trichloroethene 227 " 4.81 9.62 " " " " Vinyl chloride ND " 6.54 19.2 " <td>, and the second</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>"</td>	, and the second										"
Vinyl chloride ND " 6.54 19.2 " " " " " "	·			"			"	"	"	"	"
				"			.,	"	"	"	"
	•							"	"	"	"

Scott Duzan

HTF0154 Work Order:

Received:


06/28/10 07/06/10 16:14

737 Bishop st., Suite 3010 Honolulu, HI 96813

Reported: Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Analyte	Sample Result	Data Qualifiers	Units	MDL	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0154-06 (Layer F la	b composite B	1-B16 Rep3 -	Solid/Soil) - (cont.	Sam	pled:	06/15/10	Re	evd: 06/28/	10 16:26
Sample ID: HTF0154-07 (Layer G la	b composite B	1-B12 Rep1	- Solid/Soil)		Sam	pled:	06/15/10	Re	evd: 06/28/	10 16:26
Volatile Organic Compounds by EPA 82	60									
cis-1,2-Dichloroethene	249		ug/kg	4.43	8.86	50	06/29/10 13:47	06/29/10	10F0184	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.43	8.86	"	"	"	"	"
Trichloroethene	127		"	4.43	8.86	"	"	"	"	"
Vinyl chloride	7.04	J	"	6.03	17.7	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	104 %						"	"	"	"
Sample ID: HTF0154-08 (Layer G la	b composite B	1-B12 Rep2	- Solid/Soil)		Sam	pled:	06/15/10	Re	evd: 06/28/	10 16:26
Volatile Organic Compounds by EPA 82	60									
cis-1,2-Dichloroethene	243		ug/kg	4.43	8.86	50	06/29/10 14:12	06/29/10	10F0184	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.43	8.86	"	"	"	"	"
Trichloroethene	125		"	4.43	8.86	"	"	"	"	"
Vinyl chloride	6.89	J	"	6.03	17.7	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	99 %						"	"	"	"
Sample ID: HTF0154-09 (Layer G la	b composite B	1-B12 Rep3	- Solid/Soil)		Sam	pled:	06/15/10	Re	evd: 06/28/	10 16:26
Volatile Organic Compounds by EPA 82	60									
cis-1,2-Dichloroethene	257		ug/kg	4.43	8.86	50	06/29/10 14:38	06/29/10	10F0184	EPA 8260
trans-1,2-Dichloroethene	ND		"	4.43	8.86	"	"	"	"	"
Trichloroethene	131		"	4.43	8.86	"	"	"	"	"
Vinyl chloride	10.0	J	"	6.03	17.7	"	"	"	"	"
Surr: 1,2-Dichloroethane-d4 (80-120%)	104 %						"	"	"	"

Work Order: HTF0154

Received:

06/28/10 07/06/10 16:14

737 Bishop st., Suite 3010

Reported: Project: Subsurface Soil Investigation (MIS-VOCs)

Honolulu, HI 96813

Scott Duzan

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

LABORATORY BLANK QC DATA

	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
Volatile Organic Compounds by El	PA 8260												
Batch\Seq: 10F0184 Extracted: 06/	29/10												
Blank Analyzed: 06/29/2010 (10F0184	4-BLK1)												
cis-1,2-Dichloroethene			ug/kg	0.100	0.200	ND							
trans-1,2-Dichloroethene			ug/kg	0.100	0.200	ND							
Trichloroethene			ug/kg	0.100	0.200	ND							
Vinyl chloride			ug/kg	0.136	0.400	ND							
Surrogate: 1,2-Dichloroethane-d4			ug/kg					95		80-120			

737 Bishop st., Suite 3010

Work Order: HTF0154

Received:

06/28/10 07/06/10 16:14

Project: Subsurface Soil Investigation (MIS-VOCs)

Reported: (

Honolulu, HI 96813

Scott Duzan

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

LCS/LCS DUPLICATE QC DATA

	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyte	Result	Level	Units	MDL	MRL	Result	Result	REC	%REC	Limits	RPD	Limit	Q
Volatile Organic Compounds by EP	PA 8260												
Batch\Seq: 10F0184 Extracted: 06/	29/10												
LCS Analyzed: 06/29/2010 (10F0184-1	BS1)												
cis-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	3.99		100		80-120			
trans-1,2-Dichloroethene		4.00	ug/kg	0.100	0.200	4.62		115		80-120			
Trichloroethene		4.00	ug/kg	0.100	0.200	4.17		104		80-120			
Vinyl chloride		4.00	ug/kg	0.136	0.400	3.73		93		80-120			
Surrogate: 1,2-Dichloroethane-d4			ug/kg					110		80-120			

99-193 Aiea Heights Drive, Suite 121 Aiea, HI 96701 * 808-486-5227 * Fax 808-486-2456

Tetra Tech EM Inc. Work Order: HTF0154
737 Bishop st., Suite 3010

Received: 06/28/10

Reported: 07/06/10 16:14

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

CERTIFICATION SUMMARY

TestAmerica Honolulu

Honolulu, HI 96813

Scott Duzan

Method	Matrix	Nelac	Hawaii
EPA 8260	Solid/Soil	X	

For information concerning certifications of this facility or another TestAmerica facility, please visit our website at www.TestAmericaInc.com

DATA QUALIFIERS AND DEFINITIONS

J Estimated value. Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). The user of this data should be aware that this data is of limited reliability.

ND Not detected at the reporting limit (or method detection limit if shown)

ADDITIONAL COMMENTS

Particle Size Results

CASE NARRATIVE

Client: TestAmerica Laboratories, Inc

Project: Dual System

Report Number: 200-663-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 07/01/2010; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 2.6 C.

D422 GRAIN SIZE

Samples LAYERG(FMIS70CGS) (200-663-1), LAYER F (FMIS-70CGS) (200-663-2), LAYERA(FMIS70CGS) (200-663-3), LAYER B (FMIS-70CGS) (200-663-4), LAYER C (FMIS-70CGS) (200-663-5), LAYER D (FMIS-70CGS) (200-663-6) and LAYER E (FMIS-70CGS) (200-663-7) were analyzed for D422 grain size in accordance with D422 grain size. The samples were analyzed on 07/08/2010 and 07/09/2010.

No difficulties were encountered during the D422 grain size analyses.

All quality control parameters were within the acceptance limits.

SAMPLE SUMMARY

Client: TestAmerica Laboratories, Inc

Job Number: 200-663-1 Sdg Number: HTF0095 TVAX

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
200-663-1	LAYERG(FMIS70CGS)	Solid	06/16/2010 1345	07/01/2010 1020
200-663-2	LAYER F (FMIS-70CGS)	Solid	06/16/2010 1617	07/01/2010 1020
200-663-3	LAYERA(FMIS70CGS)	Solid	06/17/2010 1005	07/01/2010 1020
200-663-4	LAYER B (FMIS-70CGS)	Solid	06/17/2010 1009	07/01/2010 1020
200-663-5	LAYER C (FMIS-70CGS)	Solid	06/17/2010 1010	07/01/2010 1020
200-663-6	LAYER D (FMIS-70CGS)	Solid	06/17/2010 1014	07/01/2010 1020
200-663-7	LAYER E (FMIS-70CGS)	Solid	06/17/2010 1016	07/01/2010 1020

METHOD SUMMARY

Client: TestAmerica Laboratories, Inc

Job Number: 200-663-1

Sdg Number: HTF0095 TVAX

Description	Lab Location	Method	Preparation Method
Matrix: Solid			
Grain Size	TAL BUR	ASTM D422	

Lab References:

TAL BUR = TestAmerica Burlington

Method References:

ASTM = ASTM International

METHOD / ANALYST SUMMARY

Client: TestAmerica Laboratories, Inc Job Number: 200-663-1

Sdg Number: HTF0095 TVAX

Method	Analyst	Analyst ID
ASTM D422	Peterson, David J	DJP

Client: TestAmerica Laboratories, Inc Job Number: 200-663-1

Sdg Number: HTF0095 TVAX

LAYERG(FMIS70CGS) Client Sample ID:

Lab Sample ID: 200-663-1 Date Sampled: 06/16/2010 1345 Client Matrix: Date Received: 07/01/2010 1020 Solid

D422 Grain Size

Method: D422 Analysis Batch: 200-4218 Instrument ID: D422_import 200-663-A-1.txt

Preparation: N/A Lab File ID: Dilution: 1.0 Initial Weight/Volume:

07/08/2010 2354 Date Analyzed: Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (% Passing)	Qualifier	NONE	NONE
Sieve Size 3 inch - Percent F	iner	100.0			
Sieve Size 2 inch - Percent F	iner	100.0			
Sieve Size 1.5 inch - Percent	t Finer	100.0			
Sieve Size 1 inch - Percent F	iner	100.0			
Sieve Size 0.75 inch - Percei	nt Finer	100.0			
Sieve Size 0.375 inch - Perc	ent Finer	64.5			
Sieve Size #4 - Percent Fine	er	56.3			
Sieve Size #10 - Percent Fin	er	51.9			
Sieve Size #20 - Percent Fin	er	45.6			
Sieve Size #40 - Percent Fin	er	41.2			
Sieve Size #60 - Percent Fin	er	38.0			
Sieve Size #80 - Percent Fin	er	34.2			
Sieve Size #100 - Percent Fi	iner	32.8			
Sieve Size #200 - Percent Fi	ner	24.7			
Hydrometer Reading 1 - Per	cent Finer	17.9			
Hydrometer Reading 2 - Per	cent Finer	15.2			
Hydrometer Reading 3 - Per	cent Finer	13.8			
Hydrometer Reading 4 - Per	cent Finer	11.1			
Hydrometer Reading 5 - Per	cent Finer	9.8			
Hydrometer Reading 6 - Per	cent Finer	8.4			
Hydrometer Reading 7 - Per	cent Finer	4.3			

Client: TestAmerica Laboratories, Inc Job Number: 200-663-1

Sdg Number: HTF0095 TVAX

Client Sample ID: LAYERG(FMIS70CGS)

 Lab Sample ID:
 200-663-1
 Date Sampled: 06/16/2010 1345

 Client Matrix:
 Solid
 Date Received: 07/01/2010 1020

D422 Grain Size

Method: D422 Analysis Batch: 200-4218 Instrument ID: D422_import

Preparation: N/A Lab File ID: 200-663-A-1.txt
Dilution: 1.0 Initial Weight/Volume:

Date Analyzed: 07/08/2010 2354 Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		43.7			
Sand		31.6			
Coarse Sand		4.4			
Medium Sand		10.7			
Fine Sand		16.5			
Silt		15.0			
Clay		9.8			

Client: TestAmerica Laboratories, Inc Job Number: 200-663-1

Sdg Number: HTF0095 TVAX

Client Sample ID: LAYER F (FMIS-70CGS)

Lab Sample ID: 200-663-2 Date Sampled: 06/16/2010 1617

Client Matrix: Solid Date Received: 07/01/2010 1020

D422 Grain Size

Method: D422 Analysis Batch: 200-4218 Instrument ID: D422_import

Preparation: N/A Lab File ID: 200-663-A-2.txt
Dilution: 1.0 Initial Weight/Volume:

Date Analyzed: 07/08/2010 2356 Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (% Passing)	Qualifier	NONE	NONE	
Sieve Size 3 inch - Percent	Finer	100.0				
Sieve Size 2 inch - Percent	Finer	100.0				
Sieve Size 1.5 inch - Percer	nt Finer	100.0				
Sieve Size 1 inch - Percent	Finer	100.0				
Sieve Size 0.75 inch - Perce	ent Finer	70.1				
Sieve Size 0.375 inch - Pero	cent Finer	63.1				
Sieve Size #4 - Percent Fine	er	53.3				
Sieve Size #10 - Percent Fi	ner	47.7				
Sieve Size #20 - Percent Fi	ner	44.9				
Sieve Size #40 - Percent Fi	ner	43.2				
Sieve Size #60 - Percent Fi	ner	42.1				
Sieve Size #80 - Percent Fi	ner	40.4				
Sieve Size #100 - Percent F	iner	39.7				
Sieve Size #200 - Percent F	iner	34.5				
Hydrometer Reading 1 - Per	rcent Finer	26.5				
Hydrometer Reading 2 - Per	rcent Finer	22.7				
Hydrometer Reading 3 - Per	rcent Finer	19.0				
Hydrometer Reading 4 - Per	rcent Finer	17.0				
Hydrometer Reading 5 - Per	rcent Finer	15.1				
Hydrometer Reading 6 - Per	rcent Finer	11.4				
Hydrometer Reading 7 - Per	rcent Finer	6.7				

Client: TestAmerica Laboratories, Inc Job Number: 200-663-1

Sdg Number: HTF0095 TVAX

Client Sample ID: LAYER F (FMIS-70CGS)

 Lab Sample ID:
 200-663-2
 Date Sampled: 06/16/2010 1617

 Client Matrix:
 Solid
 Date Received: 07/01/2010 1020

D422 Grain Size

Method: D422 Analysis Batch: 200-4218 Instrument ID: D422_import

Preparation: N/A Lab File ID: 200-663-A-2.txt
Dilution: 1.0 Initial Weight/Volume:

Date Analyzed: 07/08/2010 2356 Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		46.7			
Sand		18.8			
Coarse Sand		5.6			
Medium Sand		4.5			
Fine Sand		8.7			
Silt		19.4			
Clay		15.1			

Client: TestAmerica Laboratories, Inc Job Number: 200-663-1

Sdg Number: HTF0095 TVAX

Client Sample ID: LAYERA(FMIS70CGS)

 Lab Sample ID:
 200-663-3
 Date Sampled: 06/17/2010 1005

 Client Matrix:
 Solid
 Date Received: 07/01/2010 1020

D422 Grain Size

Method:D422Analysis Batch: 200-4218Instrument ID:D422_importPreparation:N/ALab File ID:200-663-A-3.txt

Preparation: N/A
Dilution: 1.0

07/08/2010 2358

Initial Weight/Volume: Final Weight/Volume:

Date Analyzed: Date Prepared:

Analyte	DryWt Corrected: N	Result (% Passing)	Qualifier	NONE	NONE
Sieve Size 3 inch - Percent	Finer	100.0			
Sieve Size 2 inch - Percent	Finer	100.0			
Sieve Size 1.5 inch - Percei	nt Finer	100.0			
Sieve Size 1 inch - Percent	Finer	100.0			
Sieve Size 0.75 inch - Perce	ent Finer	82.6			
Sieve Size 0.375 inch - Per	cent Finer	62.1			
Sieve Size #4 - Percent Fin	er	49.5			
Sieve Size #10 - Percent Fi	ner	40.3			
Sieve Size #20 - Percent Fi	ner	35.3			
Sieve Size #40 - Percent Fi	ner	32.6			
Sieve Size #60 - Percent Fi	ner	31.0			
Sieve Size #80 - Percent Fi	ner	28.9			
Sieve Size #100 - Percent F	Finer	28.2			
Sieve Size #200 - Percent F	Finer	24.5			
Hydrometer Reading 1 - Pe	rcent Finer	14.8			
Hydrometer Reading 2 - Pe	rcent Finer	13.4			
Hydrometer Reading 3 - Pe	rcent Finer	11.9			
Hydrometer Reading 4 - Pe	rcent Finer	10.5			
Hydrometer Reading 5 - Pe	rcent Finer	9.0			
Hydrometer Reading 6 - Pe	rcent Finer	7.4			
Hydrometer Reading 7 - Pe	rcent Finer	4.5			

Client: TestAmerica Laboratories, Inc Job Number: 200-663-1

Sdg Number: HTF0095 TVAX

Client Sample ID: LAYERA(FMIS70CGS)

 Lab Sample ID:
 200-663-3
 Date Sampled: 06/17/2010 1005

 Client Matrix:
 Solid
 Date Received: 07/01/2010 1020

D422 Grain Size

Method: D422 Analysis Batch: 200-4218 Instrument ID: D422_import

Preparation: N/A Lab File ID: 200-663-A-3.txt
Dilution: 1.0 Initial Weight/Volume:

Date Analyzed: 07/08/2010 2358 Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		50.5			
Sand		25.0			
Coarse Sand		9.2			
Medium Sand		7.7			
Fine Sand		8.1			
Silt		15.5			
Clay		9.0			

Client: TestAmerica Laboratories, Inc Job Number: 200-663-1

Sdg Number: HTF0095 TVAX

LAYER B (FMIS-70CGS) Client Sample ID:

Lab Sample ID: 200-663-4 Date Sampled: 06/17/2010 1009 Client Matrix:

Date Received: 07/01/2010 1020 Solid

D422 Grain Size

Method: D422 Analysis Batch: 200-4218 Instrument ID: D422_import

Preparation: N/A Lab File ID: 200-663-A-4.txt Dilution: 1.0 Initial Weight/Volume:

07/09/2010 0000 Date Analyzed: Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (% Passing)	Qualifier	NONE	NONE
Sieve Size 3 inch - Percent F	iner	100.0			
Sieve Size 2 inch - Percent F	iner	100.0			
Sieve Size 1.5 inch - Percent	t Finer	100.0			
Sieve Size 1 inch - Percent F	iner	100.0			
Sieve Size 0.75 inch - Percei	nt Finer	89.5			
Sieve Size 0.375 inch - Perc	ent Finer	70.9			
Sieve Size #4 - Percent Fine	r	53.9			
Sieve Size #10 - Percent Fin	er	44.2			
Sieve Size #20 - Percent Fin	er	38.9			
Sieve Size #40 - Percent Fin	er	36.3			
Sieve Size #60 - Percent Fin	er	34.9			
Sieve Size #80 - Percent Fin	er	33.1			
Sieve Size #100 - Percent Fi	ner	32.5			
Sieve Size #200 - Percent Fi	ner	29.0			
Hydrometer Reading 1 - Per	cent Finer	18.8			
Hydrometer Reading 2 - Per	cent Finer	16.5			
Hydrometer Reading 3 - Per	cent Finer	14.2			
Hydrometer Reading 4 - Per	cent Finer	14.2			
Hydrometer Reading 5 - Per	cent Finer	11.9			
Hydrometer Reading 6 - Per	cent Finer	9.4			
Hydrometer Reading 7 - Per	cent Finer	4.8			

Client: TestAmerica Laboratories, Inc Job Number: 200-663-1

Sdg Number: HTF0095 TVAX

Client Sample ID: LAYER B (FMIS-70CGS)

Lab Sample ID: 200-663-4 Date Sampled: 06/17/2010 1009

Client Matrix: Solid Date Received: 07/01/2010 1020

D422 Grain Size

Method: D422 Analysis Batch: 200-4218 Instrument ID: D422_import

Preparation:N/ALab File ID:200-663-A-4.txtDilution:1.0Initial Weight/Volume:

Date Analyzed: 07/09/2010 0000 Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		46.1			
Sand		24.9			
Coarse Sand		9.7			
Medium Sand		7.9			
Fine Sand		7.3			
Silt		17.1			
Clay		11.9			

Client: TestAmerica Laboratories, Inc Job Number: 200-663-1

Sdg Number: HTF0095 TVAX

Client Sample ID: LAYER C (FMIS-70CGS)

 Lab Sample ID:
 200-663-5
 Date Sampled: 06/17/2010 1010

 Client Matrix:
 Solid
 Date Received: 07/01/2010 1020

D422 Grain Size

Method: D422 Analysis Batch: 200-4218 Instrument ID: D422_import

Preparation: N/A Lab File ID: 200-663-A-5.txt
Dilution: 1.0 Initial Weight/Volume:

Date Analyzed: 07/09/2010 0002 Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (% Passing)	Qualifier	NONE	NONE
Sieve Size 3 inch - Percent F	iner	100.0			
Sieve Size 2 inch - Percent F	iner	100.0			
Sieve Size 1.5 inch - Percent	Finer	100.0			
Sieve Size 1 inch - Percent F	iner	100.0			
Sieve Size 0.75 inch - Percer	nt Finer	100.0			
Sieve Size 0.375 inch - Perce	ent Finer	64.9			
Sieve Size #4 - Percent Finer	r	54.8			
Sieve Size #10 - Percent Fine	er	47.6			
Sieve Size #20 - Percent Fine	er	43.0			
Sieve Size #40 - Percent Fine	er	40.4			
Sieve Size #60 - Percent Fine	er	38.9			
Sieve Size #80 - Percent Fine	er	37.0			
Sieve Size #100 - Percent Fir	ner	36.4			
Sieve Size #200 - Percent Fir	ner	32.7			
Hydrometer Reading 1 - Perc	cent Finer	22.9			
Hydrometer Reading 2 - Perc	cent Finer	21.4			
Hydrometer Reading 3 - Perc	cent Finer	17.1			
Hydrometer Reading 4 - Perc	cent Finer	15.7			
Hydrometer Reading 5 - Perc	cent Finer	14.3			
Hydrometer Reading 6 - Perc	ent Finer	10			
Hydrometer Reading 7 - Perc	cent Finer	5.8			

Client: TestAmerica Laboratories, Inc Job Number: 200-663-1

Sdg Number: HTF0095 TVAX

Client Sample ID: LAYER C (FMIS-70CGS)

 Lab Sample ID:
 200-663-5
 Date Sampled: 06/17/2010 1010

 Client Matrix:
 Solid
 Date Received: 07/01/2010 1020

D422 Grain Size

Method: D422 Analysis Batch: 200-4218 Instrument ID: D422_import

Preparation:N/ALab File ID:200-663-A-5.txtDilution:1.0Initial Weight/Volume:

Date Analyzed: 07/09/2010 0002 Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		45.2			
Sand		22.1			
Coarse Sand		7.2			
Medium Sand		7.2			
Fine Sand		7.7			
Silt		18.4			
Clay		14.3			

Client: TestAmerica Laboratories, Inc Job Number: 200-663-1

Sdg Number: HTF0095 TVAX

Client Sample ID: LAYER D (FMIS-70CGS)

Lab Sample ID: 200-663-6 Date Sampled: 06/17/2010 1014 Client Matrix: Date Received: 07/01/2010 1020 Solid

D422 Grain Size

Method: D422 Analysis Batch: 200-4218 Instrument ID: D422_import 200-663-A-6.txt

Preparation: N/A Lab File ID: Dilution: Initial Weight/Volume: 1.0

07/09/2010 0005 Date Analyzed: Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (% Passing)	Qualifier	NONE	NONE	
Sieve Size 3 inch - Percent	Finer	100.0				
Sieve Size 2 inch - Percent	Finer	100.0				
Sieve Size 1.5 inch - Percer	nt Finer	100.0				
Sieve Size 1 inch - Percent	Finer	100.0				
Sieve Size 0.75 inch - Perce	ent Finer	88.8				
Sieve Size 0.375 inch - Pero	cent Finer	68.3				
Sieve Size #4 - Percent Fine	er	56.3				
Sieve Size #10 - Percent Fi	ner	46.9				
Sieve Size #20 - Percent Fi	ner	42.5				
Sieve Size #40 - Percent Fi	ner	40.3				
Sieve Size #60 - Percent Fi	ner	39.0				
Sieve Size #80 - Percent Fi	ner	37.2				
Sieve Size #100 - Percent F	iner	36.6				
Sieve Size #200 - Percent F	iner	33.0				
Hydrometer Reading 1 - Per	rcent Finer	25.6				
Hydrometer Reading 2 - Per	rcent Finer	23.2				
Hydrometer Reading 3 - Per	rcent Finer	20.1				
Hydrometer Reading 4 - Per	rcent Finer	18.5				
Hydrometer Reading 5 - Per	rcent Finer	16.8				
Hydrometer Reading 6 - Per	rcent Finer	12.9				
Hydrometer Reading 7 - Per	rcent Finer	6.4				

Client: TestAmerica Laboratories, Inc Job Number: 200-663-1

Sdg Number: HTF0095 TVAX

Client Sample ID: LAYER D (FMIS-70CGS)

 Lab Sample ID:
 200-663-6
 Date Sampled: 06/17/2010 1014

 Client Matrix:
 Solid
 Date Received: 07/01/2010 1020

D422 Grain Size

Method: D422 Analysis Batch: 200-4218 Instrument ID: D422_import

Preparation: N/A Lab File ID: 200-663-A-6.txt Dilution: 1.0 Initial Weight/Volume:

Date Analyzed: 07/09/2010 0005 Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		43.7			
Sand		23.3			
Coarse Sand		9.4			
Medium Sand		6.6			
Fine Sand		7.3			
Silt		16.2			
Clay		16.8			

Client: TestAmerica Laboratories, Inc Job Number: 200-663-1

Sdg Number: HTF0095 TVAX

LAYER E (FMIS-70CGS) Client Sample ID:

Lab Sample ID: 200-663-7 Date Sampled: 06/17/2010 1016

Client Matrix: Solid Date Received: 07/01/2010 1020

D422 Grain Size

Method: D422 Analysis Batch: 200-4218 Instrument ID: D422_import

Preparation: N/A Lab File ID: 200-663-A-7.txt Dilution: 1.0 Initial Weight/Volume:

07/09/2010 0006 Date Analyzed: Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (% Passing)	Qualifier	NONE	NONE
Sieve Size 3 inch - Percent Finer		100.0			
Sieve Size 2 inch - Percent Finer		100.0			
Sieve Size 1.5 inch - Percent Finer		100.0			
Sieve Size 1 inch - Percent Finer		100.0			
Sieve Size 0.75 inch - Perce	nt Finer	82.3			
Sieve Size 0.375 inch - Perc	ent Finer	65.2			
Sieve Size #4 - Percent Fine	er	58.9			
Sieve Size #10 - Percent Fin	er	52.2			
Sieve Size #20 - Percent Fin	er	48.7			
Sieve Size #40 - Percent Fin	er	46.7			
Sieve Size #60 - Percent Fin	er	45.6			
Sieve Size #80 - Percent Fin	er	44.1			
Sieve Size #100 - Percent Fi	iner	43.6			
Sieve Size #200 - Percent Fi	iner	40.2			
Hydrometer Reading 1 - Per	cent Finer	31.2			
Hydrometer Reading 2 - Per	cent Finer	28.3			
Hydrometer Reading 3 - Per	cent Finer	23.5			
Hydrometer Reading 4 - Per	cent Finer	21.5			
Hydrometer Reading 5 - Percent Finer		20.4			
Hydrometer Reading 6 - Per	Hydrometer Reading 6 - Percent Finer				
Hydrometer Reading 7 - Per	cent Finer	8.8			

Client: TestAmerica Laboratories, Inc Job Number: 200-663-1

Sdg Number: HTF0095 TVAX

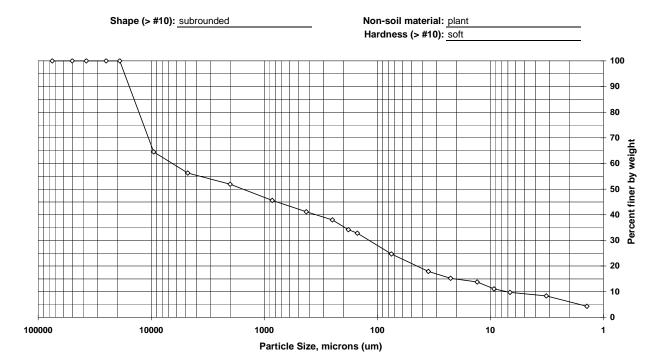
Client Sample ID: LAYER E (FMIS-70CGS)

 Lab Sample ID:
 200-663-7
 Date Sampled: 06/17/2010 1016

 Client Matrix:
 Solid
 Date Received: 07/01/2010 1020

D422 Grain Size

Method: D422 Analysis Batch: 200-4218 Instrument ID: D422_import


Preparation:N/ALab File ID:200-663-A-7.txtDilution:1.0Initial Weight/Volume:

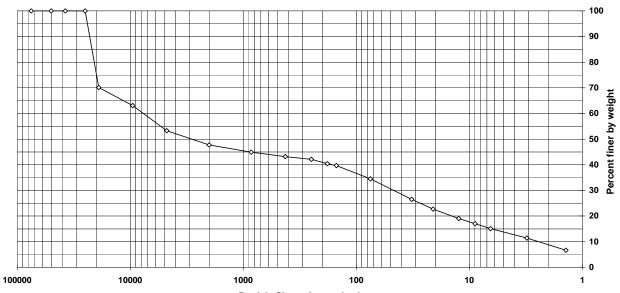
Date Analyzed: 07/09/2010 0006 Final Weight/Volume:

Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE	NONE
Gravel		41.1			
Sand		18.7			
Coarse Sand		6.7			
Medium Sand		5.5			
Fine Sand		6.5			
Silt		19.8			
Clay		20.4			

 Sample ID:
 LAYERG(FMIS70CGS)
 Percent Solids:
 71.5%
 Start Date:
 7/8/2010

 Lab ID:
 200-663-A-1
 Specific Gravity:
 2.650
 End Date:
 7/12/2010

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	64.5	35.5
#4	4750	56.3	8.2
#10	2000	51.9	4.4
#20	850	45.6	6.3
#40	425	41.2	4.4
#60	250	38.0	3.2
#80	180	34.2	3.8
#100	150	32.8	1.4
#200	75	24.7	8.1
Hyd1	35.3	17.9	6.8
Hyd2	22.5	15.2	2.7
Hyd3	13.1	13.8	1.4
Hyd4	9.3	11.1	2.7
Hyd5	6.7	9.8	1.3
Hyd6	3.2	8.4	1.4
Hyd7	1.4	4.3	4.1

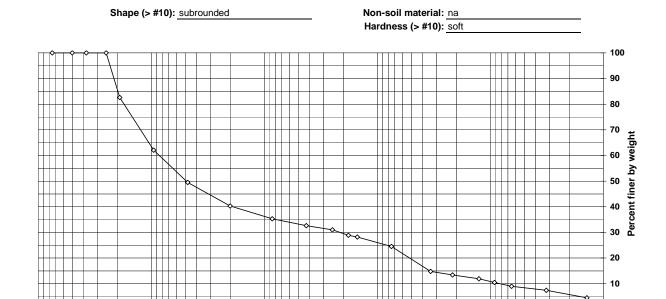

Soil	Percent of
Classification	sample
Gravel	43.7
Sand	31.6
Coarse Sand	4.4
Medium Sand	10.7
Fine Sand	16.5
Silt	15.0
Clay	9.8

TestAmerica Burlington 200-663-A-1.xls 7/13/2010

 Sample ID:
 LAYER F (FMIS-70CGS)
 Percent Solids:
 75.0%
 Start Date:
 7/1/2010

 Lab ID:
 200-663-A-2
 Specific Gravity:
 2.650
 End Date:
 7/12/2010

Particle Size, microns (um)


Ciava	Particle	Doroont	Ingramantal
Sieve		Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	70.1	29.9
3/8 inch	9500	63.1	7.0
#4	4750	53.3	9.8
#10	2000	47.7	5.6
#20	850	44.9	2.8
#40	425	43.2	1.7
#60	250	42.1	1.1
#80	180	40.4	1.7
#100	150	39.7	0.7
#200	75	34.5	5.2
Hyd1	32.4	26.5	8.0
Hyd2	20.9	22.7	3.8
Hyd3	12.4	19.0	3.7
Hyd4	8.9	17.0	2.0
Hyd5	6.5	15.1	1.9
Hyd6	3.1	11.4	3.7
Hyd7	1.4	6.7	4.7

Soil	Percent of
Classification	sample
Gravel	46.7
Sand	18.8
Coarse Sand	5.6
Medium Sand	4.5
Fine Sand	8.7
Silt	19.4
Clay	15.1

TestAmerica Burlington 200-663-A-2.xls 7/13/2010

 Sample ID:
 LAYERA(FMIS70CGS)
 Percent Solids:
 82.7%
 Start Date:
 7/1/2010

 Lab ID:
 200-663-A-3
 Specific Gravity:
 2.650
 End Date:
 7/12/2010

Particle Size, microns (um)

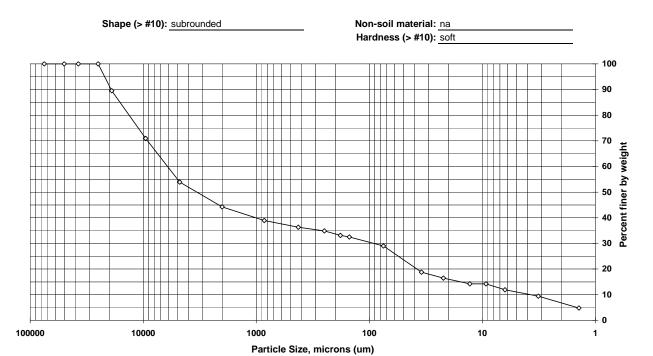
100

1000

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	82.6	17.4
3/8 inch	9500	62.1	20.5
#4	4750	49.5	12.6
#10	2000	40.3	9.2
#20	850	35.3	5.0
#40	425	32.6	2.7
#60	250	31.0	1.6
#80	180	28.9	2.1
#100	150	28.2	0.7
#200	75	24.5	3.7
Hyd1	33.8	14.8	9.7
Hyd2	21.6	13.4	1.4
Hyd3	12.6	11.9	1.5
Hyd4	9.2	10.5	1.4
Hyd5	6.5	9.0	1.5
Hyd6	3.2	7.4	1.6
Hyd7	1.4	4.5	2.9
•			

10000

100000

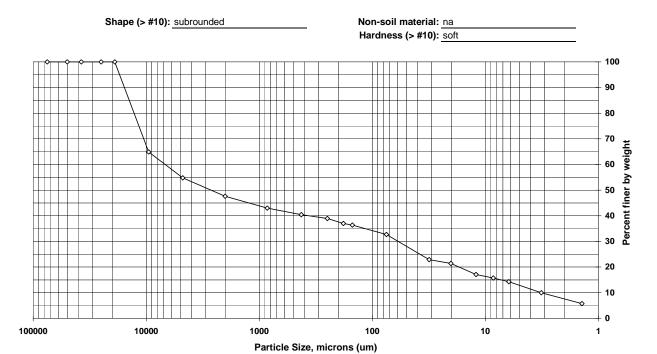

Soil	Percent of
Classification	sample
Gravel	50.5
Sand	25.0
Coarse Sand	9.2
Medium Sand	7.7
Fine Sand	8.1
Silt	15.5
Clay	9.0

10

TestAmerica Burlington 200-663-A-3.xls 7/13/2010

 Sample ID:
 LAYER B (FMIS-70CGS)
 Percent Solids:
 81.4%
 Start Date:
 7/1/2010

 Lab ID:
 200-663-A-4
 Specific Gravity:
 2.650
 End Date:
 7/12/2010

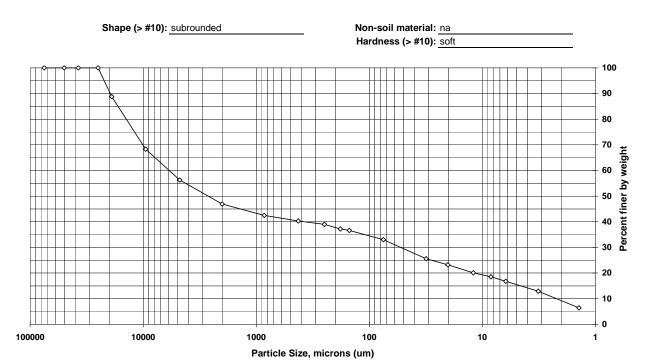

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	89.5	10.5
3/8 inch	9500	70.9	18.6
#4	4750	53.9	17.0
#10	2000	44.2	9.7
#20	850	38.9	5.3
#40	425	36.3	2.6
#60	250	34.9	1.4
#80	180	33.1	1.8
#100	150	32.5	0.6
#200	75	29.0	3.5
Hyd1	34.5	18.8	10.2
Hyd2	22.1	16.5	2.3
Hyd3	12.9	14.2	2.3
Hyd4	9.3	14.2	0.0
Hyd5	6.3	11.9	2.3
Hyd6	3.2	9.4	2.5
Hyd7	1.4	4.8	4.6

Soil	Percent of
Classification	sample
Gravel	46.1
Sand	24.9
Coarse Sand	9.7
Medium Sand	7.9
Fine Sand	7.3
Silt	17.1
Clay	11.9

TestAmerica Burlington 200-663-A-4.xls 7/13/2010

 Sample ID:
 LAYER C (FMIS-70CGS)
 Percent Solids:
 77.3%
 Start Date:
 7/9/2010

 Lab ID:
 200-663-A-5
 Specific Gravity:
 2.650
 End Date:
 7/12/2010


Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	64.9	35.1
#4	4750	54.8	10.1
#10	2000	47.6	7.2
#20	850	43.0	4.6
#40	425	40.4	2.6
#60	250	38.9	1.5
#80	180	37.0	1.9
#100	150	36.4	0.6
#200	75	32.7	3.7
Hyd1	31.4	22.9	9.8
Hyd2	20.2	21.4	1.5
Hyd3	12.1	17.1	4.3
Hyd4	8.5	15.7	1.4
Hyd5	6.2	14.3	1.4
Hyd6	3.2	10.0	4.3
Hyd7	1.4	5.8	4.2

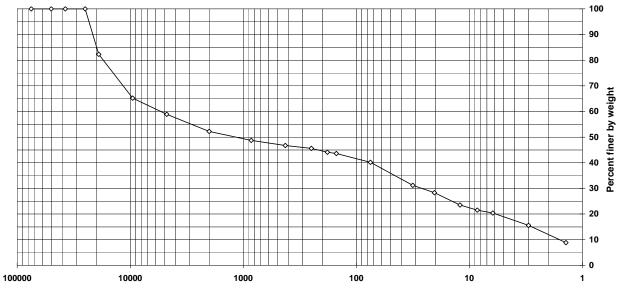
Soil	Percent of
Classification	sample
Gravel	45.2
Sand	22.1
Coarse Sand	7.2
Medium Sand	7.2
Fine Sand	7.7
Silt	18.4
Clay	14.3

TestAmerica Burlington 200-663-A-5.xls 7/13/2010

 Sample ID:
 LAYER D (FMIS-70CGS)
 Percent Solids:
 75.3%
 Start Date:
 7/1/2010

 Lab ID:
 200-663-A-6
 Specific Gravity:
 2.650
 End Date:
 7/12/2010

Particle	Percent	Incremental
size, um	finer	percent
75000	100.0	0.0
50000	100.0	0.0
37500	100.0	0.0
25000	100.0	0.0
19000	88.8	11.2
9500	68.3	20.5
4750	56.3	12.0
2000	46.9	9.4
850	42.5	4.4
425	40.3	2.2
250	39.0	1.3
180	37.2	1.8
150	36.6	0.6
75	33.0	3.6
31.4	25.6	7.4
20.2	23.2	2.4
12	20.1	3.1
8.4	18.5	1.6
6.2	16.8	1.7
3.2	12.9	3.9
1.4	6.4	6.5
	75000 50000 37500 25000 19000 9500 4750 2000 850 425 250 180 150 75 31.4 20.2 12 8.4 6.2	75000 100.0 50000 100.0 37500 100.0 37500 100.0 25000 100.0 19000 88.8 9500 68.3 4750 56.3 2000 46.9 850 42.5 425 40.3 250 39.0 180 37.2 150 36.6 75 33.0 31.4 25.6 20.2 23.2 12 20.1 8.4 18.5 6.2 16.8 3.2 12.9


Percent of
sample
43.7
23.3
9.4
6.6
7.3
16.2
16.8

TestAmerica Burlington 200-663-A-6.xls 7/13/2010

 Sample ID:
 LAYER E (FMIS-70CGS)
 Percent Solids:
 75.7%
 Start Date:
 7/1/2010

 Lab ID:
 200-663-A-7
 Specific Gravity:
 2.650
 End Date:
 7/12/2010

Particle Size, microns (um)

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	82.3	17.7
3/8 inch	9500	65.2	17.1
#4	4750	58.9	6.3
#10	2000	52.2	6.7
#20	850	48.7	3.5
#40	425	46.7	2.0
#60	250	45.6	1.1
#80	180	44.1	1.5
#100	150	43.6	0.5
#200	75	40.2	3.4
Hyd1	31.6	31.2	9.0
Hyd2	20.4	28.3	2.9
Hyd3	12.1	23.5	4.8
Hyd4	8.5	21.5	2.0
Hyd5	6.2	20.4	1.1
Hyd6	3	15.6	4.8
Hyd7	1.4	8.8	6.8

Soil	Percent of
Classification	sample
Gravel	41.1
Sand	18.7
Coarse Sand	6.7
Medium Sand	5.5
Fine Sand	6.5
Silt	19.8
Clay	20.4

TestAmerica Burlington 200-663-A-7.xls 7/13/2010

Sediment Grain Size - D422

Client Client Sample ID LAYERG(FMIS70CGS)
Lab Sample ID 200-663-A-1

Dry Weight Determination

 Tin Weight
 1.01 g

 Wet Sample + Tin
 51.04 g

 Dry Sample + Tin
 36.76 g

 % Moisture
 28.54 %

Sample WeightsTare (g)Pan+Samp (g)Samp (g)Sample Weight (Wet)58.19140.7882.59Sample Weight (Oven Dried)59

Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)	
Sample >=#10				28.4
Sample <#10				30.6
% Passing #10				37.1

Date Received	7/1/2010
Start Date	7/8/2010
End Date	7/12/2010

Non-soil material: plant Shape (> #10): subrounded Hardness (> #10): soft

Default Soil Gravity 2.6500

Hydrometer Data

741402 Serial Number Calib. Date (mm/dd/yyyy) 01/06/2009 Low Temp (C) 17.0 Reading at Low Temp 1.0045 High Temp (C) 23.0 Reading at High Temp 1.0035 Hydrometer Cal Slope -0.000166667 Hydrometer Cal Intercept 1.007333333

Gravel/Sand Fraction (Sieves)

Graveroand Fraction (Gleves)							
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.0	Gravel	
2 inch	50000			0.00 g	100.0	Gravel	
1.5 inch	37500			0.00 g	100.0	Gravel	
1 inch	25000			0.00 g	100.0	Gravel	
3/4 inch	19000			0.00 g	100.0	Gravel	
3/8 inch	9500	447.53	468.50	20.97 g	64.5	Gravel	
#4	4750	488.27	493.08	4.81 g	56.3	Gravel	
#10	2000	462.97	465.54	2.57 g	51.9	Sand	Coarse
#20	850	383.64	387.33	3.69 g	45.6	Sand	Medium
#40	425	346.16	348.77	2.61 g	41.2	Sand	Medium
#60	250	335.80	337.70	1.90 g	38.0	Sand	Fine
#80	180	304.77	307.04	2.27 g	34.2	Sand	Fine
#100	150	332.80	333.60	0.80 g	32.8	Sand	Fine
#200	75	325.39	330.19	4.80 g	24.7	Sand	Fine
				0.00 g	24.7		
				4.80 g	24.7	Sand	

Adjusted Hydrometer Sample Mass

Hydrometer Sample Mass (g) 59

ond oldy i radiion (riyaror										
Particle Size										
Hydrometer Test Time (min)	Actual	S	Spec. Gravity	Temp C	(Micron)	% Finer	Classification	Sub Class		
	2	2	1.0105	20.5	35.3	17.	.9 Silt			
	5	5	1.0095	20.5	22.5	15	.2 Silt			
	15	15	1.0090	20.5	13.1	13.	.8 Silt			
	30	30	1.0080	20.5	9.3	11.	.1 Silt			
	60	59	1.0075	20.5	6.7	9.7	'5 Silt			
	250	256	1.0070	20.5	3.2	8.3	9 Clay			
	1440	1440	1.0055	20.5	1.4	4.3	1 Clay			

Sediment Grain Size - D422

Client Client Sample ID LAYER F (FMIS-70CGS) Lab Sample ID 200-663-A-2

Dry Weight Determination

Tin Weight 1.03 g Wet Sample + Tin 46.61 g Dry Sample + Tin 35.21 g % Moisture 25.01 %

Sample Weights Tare (g) Pan+Samp (g) Samp (g) Sample Weight (Wet) 57.96 172.71 114.75 Sample Weight (Oven Dried) 86

Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)	
Sample >=#10				45
Sample <#10				41
% Passing #10				35.7

Date Received	7/1/2010
Start Date	7/8/2010
End Date	7/12/2010

Non-soil material: Shape (> #10): subrounded Hardness (> #10): soft

Default Soil Gravity 2.6500

Hydrometer Data Serial Number 741402 Calib. Date (mm/dd/yyyy) 01/06/2009 Low Temp (C) 17.0 Reading at Low Temp 1.0045 High Temp (C) 23.0 Reading at High Temp 1.0035 Hydrometer Cal Slope -0.000166667 Hydrometer Cal Intercept 1.007333333

Gravel/Sand Fraction (Sieves)

Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.0) Gravel	
2 inch	50000			0.00 g	100.0) Gravel	
1.5 inch	37500			0.00 g	100.0) Gravel	
1 inch	25000			0.00 g	100.0) Gravel	
3/4 inch	19000	457.85	483.59	25.74 g	70.	1 Gravel	
3/8 inch	9500	447.53	453.56	6.03 g	63.	1 Gravel	
#4	4750	488.27	496.74	8.47 g	53.3	3 Gravel	
#10	2000	462.97	467.77	4.80 g	47.7	7 Sand	Coarse
#20	850	383.64	386.03	2.39 g	44.9	9 Sand	Medium
#40	425	346.16	347.62	1.46 g	43.2	2 Sand	Medium
#60	250	335.80	336.77	0.97 g	42.	1 Sand	Fine
#80	180	304.77	306.22	1.45 g	40.4	4 Sand	Fine
#100	150	332.80	333.41	0.61 g	39.7	7 Sand	Fine
#200	75	325.39	329.87	4.48 g	34.5	5 Sand	Fine
				0.00 g	34.5	5	
				_			

Adjusted Hydrometer Sample Mass

Hydrometer Sample Mass (g) 86

Hydrometer Test Time (min)	Actual	Spec. Gravity	Temp C	Particle Size (Micron)	% Finer	Classification	Sub Class
2	2 2	1.0180	21.0	32.4	26.5	Silt	
	5 5	1.0160	21.0	20.9	22.7	Silt	
15	5 15	1.0140	21.0	12.4	19	Silt	
30	30	1.0130	20.5	8.9	17	Silt	
60	58	1.0120	20.5	6.5	15.1	Silt	
250	256	1.0100	20.5	3.1	11.4	Clay	
1440	1440	1.0075	20.5	1.4	6.69	Clay	

Sediment Grain Size - D422

Client Client Sample ID LAYERA(FMIS70CGS) Lab Sample ID 200-663-A-3

Dry Weight Determination

Tin Weight 1.01 g Wet Sample + Tin 41.14 g Dry Sample + Tin 34.20 g % Moisture 17.29 %

Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)
Sample Weight (Wet)	57.51	190.58	133.07
Sample Weight (Oven Dried)			110

Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)	
Sample >=#10				65.6
Sample <#10				44.4
% Passing #10				33.4

Date Received	7/1/2010
Start Date	7/8/2010
End Date	7/12/2010

Non-soil material: Shape (> #10): subrounded Hardness (> #10): soft

Default Soil Gravity 2.6500

Hydrometer Data Serial Number

741402 Calib. Date (mm/dd/yyyy) 01/06/2009 Low Temp (C) 17.0 Reading at Low Temp 1.0045 High Temp (C) 23.0 Reading at High Temp 1.0035 Hydrometer Cal Slope -0.000166667 Hydrometer Cal Intercept 1.007333333

Gravel/Sand Fraction (Sieves)

Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
75000)		0.00 g	100.0) Gravel	
50000	1		0.00 g	100.0) Gravel	
37500	1		0.00 g	100.0) Gravel	
25000	1		0.00 g	100.0) Gravel	
19000	457.85	476.99	19.14 g	82.6	Gravel	
9500	447.53	470.03	22.50 g	62.1	Gravel	
4750	488.27	502.13	13.86 g	49.5	Gravel	
2000	462.97	473.04	10.07 g	40.3	3 Sand	Coarse
850	383.64	389.16	5.52 g	35.3	3 Sand	Medium
425	346.16	349.18	3.02 g	32.6	Sand	Medium
250	335.80	337.51	1.71 g	31.0) Sand	Fine
180	304.77	307.09	2.32 g	28.9	9 Sand	Fine
150	332.80	333.55	0.75 g	28.2	2 Sand	Fine
75	325.39	329.49	4.10 g	24.5	Sand	Fine
			0.00 g	24.5	5	
	75000 50000 37500 25000 19000 9500 4750 2000 850 425 250 180	75000 50000 37500 25000 19000 457.85 9500 447.53 4750 488.27 2000 462.97 850 383.64 425 346.16 250 335.80 180 304.77 150 332.80	75000 50000 37500 25000 19000 457.85 476.99 9500 447.53 470.03 4750 488.27 502.13 2000 462.97 473.04 850 383.64 389.16 425 346.16 349.18 250 335.80 337.51 180 304.77 307.09 150 332.80 333.55	75000 0.00 g 50000 0.00 g 37500 0.00 g 25000 0.00 g 19000 457.85 476.99 19.14 g 9500 447.53 470.03 22.50 g 4750 488.27 502.13 13.86 g 2000 462.97 473.04 10.07 g 850 383.64 389.16 5.52 g 425 346.16 349.18 3.02 g 250 335.80 337.51 1.71 g 180 304.77 307.09 2.32 g 150 332.80 333.55 0.75 g 75 325.39 329.49 4.10 g	75000 0.00 g 100.0 50000 0.00 g 100.0 37500 0.00 g 100.0 25000 0.00 g 100.0 19000 457.85 476.99 19.14 g 82.6 9500 447.53 470.03 22.50 g 62.1 4750 488.27 502.13 13.86 g 49.5 2000 462.97 473.04 10.07 g 40.3 850 383.64 389.16 5.52 g 35.3 425 346.16 349.18 3.02 g 32.6 250 335.80 337.51 1.71 g 31.0 180 304.77 307.09 2.32 g 28.5 150 332.80 333.55 0.75 g 28.2 75 325.39 329.49 4.10 g 24.5	75000 0.00 g 100.0 Gravel 50000 0.00 g 100.0 Gravel 37500 0.00 g 100.0 Gravel 25000 0.00 g 100.0 Gravel 19000 457.85 476.99 19.14 g 82.6 Gravel 9500 447.53 470.03 22.50 g 62.1 Gravel 4750 488.27 502.13 13.86 g 49.5 Gravel 2000 462.97 473.04 10.07 g 40.3 Sand 850 383.64 389.16 5.52 g 35.3 Sand 425 346.16 349.18 3.02 g 32.6 Sand 250 335.80 337.51 1.71 g 31.0 Sand 180 304.77 307.09 2.32 g 28.9 Sand 150 332.80 333.55 0.75 g 28.2 Sand 75 325.39 329.49 4.10 g 24.5 Sand

Adjusted Hydrometer Sample Mass

Hydrometer Sample Mass (g) 110

Silvolay Fraction (Flydrometer Test)						
Hydrometer Test Time (min)	Actual	Spec. Gravity	(Micron) %	Finer Classification	Sub Class	
	2	2 1.014	0 21.0	33.8	14.8 Silt	
	5	5 1.013	0 21.0	21.6	13.4 Silt	
	15	15 1.012	0 21.0	12.6	11.9 Silt	
	30	29 1.011	0 21.0	9.2	10.5 Silt	
	60	58 1.010	0 21.0	6.5	9 Silt	
	250	250 1.009	0 20.5	3.2	7.42 Clay	
	1440 1	434 1.007	0 20.5	1.4	4.5 Clay	

Sediment Grain Size - D422

Client
Client Sample ID
Lab Sample ID
Lab Sample ID
Lab Sample ID
Lab Sample ID

Dry Weight Determination

 Tin Weight
 1.01 g

 Wet Sample + Tin
 48.04 g

 Dry Sample + Tin
 39.29 g

 % Moisture
 18.61 %

Sample WeightsTare (g)Pan+Samp (g)Samp (g)Sample Weight (Wet)57.96143.7285.76Sample Weight (Oven Dried)69.8

 Sample Split (oven dried)
 Tare (g)
 Pan+Samp (g)
 Samp (g)

 Sample >=#10
 38.9

 Sample <#10</td>
 30.9

 Passing #10
 36

 Date Received
 7/1/2010

 Start Date
 7/9/2010

 End Date
 7/12/2010

Non-soil material: na Shape (> #10): subrounded Hardness (> #10): soft

Default Soil Gravity 2.6500

Hydrometer Data

Serial Number 741402 Calib. Date (mm/dd/yyyy) 01/06/2009 Low Temp (C) 17.0 Reading at Low Temp 1.0045 High Temp (C) 23.0 Reading at High Temp 1.0035 Hydrometer Cal Slope -0.000166667 Hydrometer Cal Intercept 1.007333333

Gravel/Sand Fraction (Sieves)

	a				a		
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)		% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.	0 Gravel	
2 inch	50000	1		0.00 g	100.	0 Gravel	
1.5 inch	37500	1		0.00 g	100.	0 Gravel	
1 inch	25000			0.00 g	100.	0 Gravel	
3/4 inch	19000	457.85	465.17	7.32 g	89.	5 Gravel	
3/8 inch	9500	447.53	460.52	12.99 g	70.	9 Gravel	
#4	4750	488.27	500.13	11.86 g	53.	9 Gravel	
#10	2000	462.97	469.72	6.75 g	44.	2 Sand	Coarse
#20	850	383.64	387.31	3.67 g	38.	9 Sand	Medium
#40	425	346.16	347.96	1.80 g	36.	3 Sand	Medium
#60	250	335.80	336.79	0.99 g	34.	9 Sand	Fine
#80	180	304.77	306.02	1.25 g	33.	1 Sand	Fine
#100	150	332.80	333.21	0.41 g	32.	5 Sand	Fine
#200	75	325.39	327.86	2.47 g	29.	0 Sand	Fine
				0.00 g	29.	0	

Adjusted Hydrometer Sample Mass

Hydrometer Sample Mass (g) 69.8

one only industrial (nyaromotor root)								
Particle Size								
Hydrometer Test Time (min)	Actual	Spe	c. Gravity	Temp C	(Micron)	% Finer	Classification	Sub Class
	2	2	1.0120	21.0	34.5	18.8	Silt	
	5	5	1.0110	21.0	22.1	16.5	Silt	
	15	15	1.0100	21.0	12.9	14.2	Silt	
	30	29	1.0100	21.0	9.3	14.2	Silt	
	60	63	1.0090	21.0	6.3	11.9	Silt	
	250	250	1.0080	20.5	3.2	9.4	Clay	
	1440	1434	1.0060	20.5	1.4	4.79	Clay	

Sediment Grain Size - D422

Client
Client Sample ID
Layer C (FMIS-70CGS)
Lab Sample ID
200-663-A-5

Dry Weight Determination

 Tin Weight
 1.03 g

 Wet Sample + Tin
 55.30 g

 Dry Sample + Tin
 42.99 g

 % Moisture
 22.68 %

Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)
Sample Weight (Wet)	58.01	206.02	148.01
Sample Weight (Oven Dried)			114

Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)	
Sample >=#10				59.6
Sample <#10				54.4
% Passing #10				36.8

Date Received	7/1/2010
Start Date	7/9/2010
End Date	7/12/2010

Non-soil material: na Shape (> #10): subrounded Hardness (> #10): soft

Default Soil Gravity 2.6500

Hydrometer Data

Serial Number	741402
Calib. Date (mm/dd/yyyy)	01/06/2009
Low Temp (C)	17.0
Reading at Low Temp	1.0045
High Temp (C)	23.0
Reading at High Temp	1.0035
Hydrometer Cal Slope	-0.000166667
Hydrometer Cal Intercept	1.007333333

Gravel/Sand Fraction (Sieves)

oravonoana rraomon (olovoo)							
Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000)		0.00 g	100.0	Gravel	
2 inch	50000	1		0.00 g	100.0	Gravel	
1.5 inch	37500	1		0.00 g	100.0	Gravel	
1 inch	25000	1		0.00 g	100.0	Gravel	
3/4 inch	19000			0.00 g	100.0	Gravel	
3/8 inch	9500	447.53	3 487.49	39.96 g	64.9	Gravel	
#4	4750	488.27	7 499.74	11.47 g	54.8	Gravel	
#10	2000	462.97	7 471.14	8.17 g	47.6	Sand	Coarse
#20	850	383.64	388.90	5.26 g	43.0	Sand	Medium
#40	425	346.16	349.10	2.94 g	40.4	Sand	Medium
#60	250	335.80	337.53	1.73 g	38.9	Sand	Fine
#80	180	304.77	306.94	2.17 g	37.0	Sand	Fine
#100	150	332.80	333.49	0.69 g	36.4	Sand	Fine
#200	75	325.39	329.64	4.25 g	32.7	Sand	Fine
				0.00 g	32.7	•	

Adjusted Hydrometer Sample Mass

Hydrometer Sample Mass (g) 114

Hydrometer Test Time (min)	Actual	Spec. Gravity		Particle Size (Micron)	% Finer	Classification	Sub Class
2	2 2	1.0200	21.5	31.4	22.9	Silt	
	5 5	1.0190	21.0	20.2	21.4	Silt	
15	15	1.0160	21.0	12.1	17.1	Silt	
30	31	1.0150	21.0	8.5	15.7	Silt	
60	60	1.0140	21.0	6.2	14.3	Silt	
250	240	1.0110	20.5	3.2	9.98	Clay	
1440	1424	1.0080	20.5	1.4	5.75	Clay	

Sediment Grain Size - D422

Client
Client Sample ID
Lab Sample ID
Lab Sample ID
Lab Sample ID
Lab Sample ID

Dry Weight Determination

 Tin Weight
 1.02 g

 Wet Sample + Tin
 52.79 g

 Dry Sample + Tin
 40.00 g

 % Moisture
 24.71 %

Sample WeightsTare (g)Pan+Samp (g)Samp (g)Sample Weight (Wet)58.30194.22135.92Sample Weight (Oven Dried)102

 Sample Split (oven dried)
 Tare (g)
 Pan+Samp (g)
 Samp (g)

 Sample >=#10
 54.2

 Sample <#10</td>
 47.8

 % Passing #10
 35.2

 Date Received
 7/1/2010

 Start Date
 7/9/2010

 End Date
 7/12/2010

Non-soil material: na Shape (> #10): subrounded Hardness (> #10): soft

Default Soil Gravity 2.6500

Hydrometer Data

Serial Number 741402 Calib. Date (mm/dd/yyyy) 01/06/2009 Low Temp (C) 17.0 Reading at Low Temp 1.0045 High Temp (C) 23.0 Reading at High Temp 1.0035 Hydrometer Cal Slope -0.000166667 Hydrometer Cal Intercept 1.007333333

Gravel/Sand Fraction (Sieves)

Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.0) Gravel	
2 inch	50000			0.00 g	100.0) Gravel	
1.5 inch	37500			0.00 g	100.0) Gravel	
1 inch	25000			0.00 g	100.0) Gravel	
3/4 inch	19000	457.85	469.28	11.43 g	88.8	3 Gravel	
3/8 inch	9500	447.53	468.43	20.90 g	68.3	3 Gravel	
#4	4750	488.27	500.52	12.25 g	56.3	3 Gravel	
#10	2000	462.97	472.54	9.57 g	46.9	Sand	Coarse
#20	850	383.64	388.15	4.51 g	42.5	Sand	Medium
#40	425	346.16	348.45	2.29 g	40.3	3 Sand	Medium
#60	250	335.80	337.16	1.36 g	39.0) Sand	Fine
#80	180	304.77	306.65	1.88 g	37.2	2 Sand	Fine
#100	150	332.80	333.45	0.65 g	36.6	Sand	Fine
#200	75	325.39	329.09	3.70 g	33.0) Sand	Fine
				0.00 g	33.0)	

Adjusted Hydrometer Sample Mass

Hydrometer Sample Mass (g) 102

ond oldy i radiion (riyaro								
					Particle Size			
Hydrometer Test Time (min)	Actual	Sp	oec. Gravity	Temp C	(Micron)	% Finer	Classification	Sub Class
	2	2	1.0200	21.5	31.4	- 2	5.6 Silt	
	5	5	1.0185	21.5	20.2	. 2	3.2 Silt	
	15	15	1.0165	21.5	12	. 2	0.1 Silt	
	30	31	1.0155	21.5	8.4	1	8.5 Silt	
	60	59	1.0145	21.0	6.2	! 1	6.8 Silt	
	250	234	1.0120	21.0	3.2	! 1	2.9 Clay	
	1440	418	1.0080	20.5	1.4	6	.43 Clay	

Sediment Grain Size - D422

Client
Client Sample ID
Lab Sample ID
Lab Sample ID
Lab Sample ID
Lab Sample ID
Lab Sample ID

Dry Weight Determination

Tin Weight 1.01 g
Wet Sample + Tin 43.61 g
Dry Sample + Tin 33.27 g
% Moisture 24.27 %

Sample WeightsTare (g)Pan+Samp (g)Samp (g)Sample Weight (Wet)58.07168.08110.01Sample Weight (Oven Dried)83.3

 Sample Split (oven dried)
 Tare (g)
 Pan+Samp (g)
 Samp (g)

 Sample >=#10
 39.8

 Sample <#10</td>
 43.5

 % Passing #10
 39.5

 Date Received
 7/1/2010

 Start Date
 7/9/2010

 End Date
 7/12/2010

Non-soil material: shell subrounded Hardness (> #10): soft soft

Default Soil Gravity 2.6500

Hydrometer Data

Serial Number 741402 Calib. Date (mm/dd/yyyy) 01/06/2009 Low Temp (C) 17.0 Reading at Low Temp 1.0045 High Temp (C) 23.0 Reading at High Temp 1.0035 Hydrometer Cal Slope -0.000166667 Hydrometer Cal Intercept 1.007333333

Gravel/Sand Fraction (Sieves)

Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.0) Gravel	
2 inch	50000			0.00 g	100.0) Gravel	
1.5 inch	37500			0.00 g	100.0) Gravel	
1 inch	25000			0.00 g	100.0) Gravel	
3/4 inch	19000	457.85	472.60	14.75 g	82.3	3 Gravel	
3/8 inch	9500	447.53	461.79	14.26 g	65.2	2 Gravel	
#4	4750	488.27	493.53	5.26 g	58.9	9 Gravel	
#10	2000	462.97	468.52	5.55 g	52.2	2 Sand	Coarse
#20	850	383.64	386.59	2.95 g	48.7	7 Sand	Medium
#40	425	346.16	347.79	1.63 g	46.7	7 Sand	Medium
#60	250	335.80	336.71	0.91 g	45.6	S Sand	Fine
#80	180	304.77	306.02	1.25 g	44.1	1 Sand	Fine
#100	150	332.80	333.25	0.45 g	43.6	Sand	Fine
#200	75	325.39	328.23	2.84 g	40.2	2 Sand	Fine
				0.00 g	40.2	2	

Adjusted Hydrometer Sample Mass

Hydrometer Sample Mass (g) 83.3

ond oldy i radiion (riyaror								
					Particle Size			
Hydrometer Test Time (min)	Actual	S	Spec. Gravity	Temp C	(Micron)	% Finer	Classification	Sub Class
	2	2	1.0200	21.0	31.6	31	.2 Silt	
	5	5	1.0185	21.0	20.4	- 28	3.3 Silt	
	15	15	1.0160	21.0	12.1	23	3.5 Silt	
	30	31	1.0150	21.0	8.5	21	.5 Silt	
	60	59	1.0145	20.5	6.2	. 20	0.4 Silt	
	250	265	1.0120	20.5	3	15	5.6 Clay	
	1440	1412	1.0085	20.5	1.4	8.	84 Clay	

DATA REPORTING QUALIFIERS

Lab Section Qualifier Description

Quality Control Results

Client: TestAmerica Laboratories, Inc Job Number: 200-663-1

Sdg Number: HTF0095 TVAX

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
Geotechnical					
Analysis Batch:200-421	18				
200-663-1	LAYERG(FMIS70CGS)	T	Solid	D422	
200-663-2	LAYER F (FMIS-70CGS)	T	Solid	D422	
200-663-3	LAYERA(FMIS70CGS)	T	Solid	D422	
200-663-4	LAYER B (FMIS-70CGS)	Т	Solid	D422	
200-663-5	LAYER C (FMIS-70CGS)	Т	Solid	D422	
200-663-6	LAYER D (FMIS-70CGS)	Т	Solid	D422	
200-663-7	LAYER E (FMIS-70CGS)	Т	Solid	D422	

Report Basis

T = Total

Client: TestAmerica Laboratories, Inc

Job Number: 200-663-1

SDG: HTF0095 TVAX

Laboratory Chronicle

Lab ID: 200-663-1 Client ID: LAYERG(FMIS70CGS)

Sample Date/Time: 06/16/2010 13:45 Received Date/Time: 07/01/2010 10:20

Date Prepared / **Analysis Batch** Analyzed **Bottle ID** Method Run Prep Batch Dil Lab Analyst 07/08/2010 23:54 A:D422 200-663-A-1 200-4218 TAL BUR DJP

Lab ID: 200-663-2 Client ID: LAYER F (FMIS-70CGS)

Sample Date/Time: 06/16/2010 16:17 Received Date/Time: 07/01/2010 10:20

Analysis Date Prepared / Method **Bottle ID** Batch Analyzed Run Prep Batch Dil Lab Analyst 07/08/2010 23:56 A:D422 200-663-A-2 200-4218 TAL BUR DJP

Lab ID: 200-663-3 Client ID: LAYERA(FMIS70CGS)

Sample Date/Time: 06/17/2010 10:05 Received Date/Time: 07/01/2010 10:20

Analysis Date Prepared / **Batch** Analyzed Method **Bottle ID** Run Dil Prep Batch Lab Analyst 07/08/2010 23:58 A:D422 200-663-A-3 200-4218 TAL BUR DJP 1

Lab ID: 200-663-4 Client ID: LAYER B (FMIS-70CGS)

Sample Date/Time: 06/17/2010 10:09 Received Date/Time: 07/01/2010 10:20

Analysis Date Prepared / **Batch** Analyzed Method **Bottle ID** Run Prep Batch Dil Lab Analyst 07/09/2010 00:00 A:D422 200-663-A-4 200-4218 TAL BUR DJP 1

Lab ID: 200-663-5 Client ID: LAYER C (FMIS-70CGS)

Sample Date/Time: 06/17/2010 10:10 Received Date/Time: 07/01/2010 10:20

Date Prepared / **Analysis Batch** Analyzed Method **Bottle ID** Run **Prep Batch** Dil Lab Analyst 07/09/2010 00:02 A:D422 200-663-A-5 200-4218 1 TAL BUR DJP

Lab ID: 200-663-6 Client ID: LAYER D (FMIS-70CGS)

Sample Date/Time: 06/17/2010 10:14 Received Date/Time: 07/01/2010 10:20

Date Prepared / **Analysis Batch** Analyzed Method **Bottle ID** Run Prep Batch Dil Lab Analyst A:D422 200-663-A-6 200-4218 07/09/2010 00:05 TAL BUR DJP

Lab ID: 200-663-7 Client ID: LAYER E (FMIS-70CGS)

Sample Date/Time: 06/17/2010 10:16 Received Date/Time: 07/01/2010 10:20

Date Prepared / **Analysis** Analyzed Method **Bottle ID Batch** Run Prep Batch Dil Lab Analyst 07/09/2010 00:06 A:D422 200-663-A-7 200-4218 TAL BUR DJP

Quality Control Results

Client: TestAmerica Laboratories, Inc

Job Number: 200-663-1

SDG: HTF0095 TVAX

Laboratory Chronicle

Lab References:

TAL BUR = TestAmerica Burlington

TestAmerica Burlington A = Analytical Method P = Prep Method

COVER PAGE GEOTECHNICAL

Lab Name:	TestAmerica Burlington	Job Number: 200-663-1
SDG No.:	HTF0095 TVAX	
Project:	Dual System	
	Client Sample ID	Lab Sample ID
	LAYERG (FMIS70CGS)	200-663-1
	LAYER F (FMIS-70CGS)	200-663-2
	LAYERA (FMIS70CGS)	200-663-3
	LAYER B (FMIS-70CGS)	200-663-4
	LAYER C (FMIS-70CGS)	200-663-5
	LAYER D (FMIS-70CGS)	200-663-6
	LAYER E (FMIS-70CGS)	200-663-7

Comments:

1B-IN INORGANIC ANALYSIS DATA SHEET GEOTECHNICAL

Client Sample ID: LAYERG(FMIS70CGS) Lab Sample ID: 200-663-1

Lab Name: TestAmerica Burlington Job No.: 200-663-1

SDG ID.: HTF0095 TVAX

Matrix: Solid Date Sampled: 06/16/2010 13:45

Reporting Basis: WET Date Received: 07/01/2010 10:20

CAS No.	Analyte	Conc.	Units	C Q	DIL	Method
	Gravel	43.7	8		1	D422
	Sieve Size 3 inch - Percent Finer	100.0	% Passing		1	D422
	Sand	31.6	8		1	D422
	Sieve Size 2 inch - Percent Finer	100.0	% Passing		1	D422
	Coarse Sand	4.4	8		1	D422
	Sieve Size 1.5 inch - Percent Finer	100.0	% Passing		1	D422
	Medium Sand	10.7	8		1	D422
	Sieve Size 1 inch - Percent Finer	100.0	% Passing		1	D422
	Fine Sand	16.5	%		1	D422
	Sieve Size 0.75 inch - Percent Finer	100.0	% Passing		1	D422
	Sieve Size 0.375 inch - Percent Finer	64.5	% Passing		1	D422
	Silt	15.0	8		1	D422
	Clay	9.8	%		1	D422
	Sieve Size #4 - Percent Finer	56.3	% Passing		1	D422
	Sieve Size #10 - Percent Finer	51.9	% Passing		1	D422
	Sieve Size #20 - Percent Finer	45.6	% Passing		1	D422
	Sieve Size #40 - Percent Finer	41.2	% Passing		1	D422
	Sieve Size #60 - Percent Finer	38.0	% Passing		1	D422
	Sieve Size #80 - Percent Finer	34.2	% Passing		1	D422
	Sieve Size #100 - Percent Finer	32.8	% Passing		1	D422
	Sieve Size #200 - Percent Finer	24.7	% Passing		1	D422
	Hydrometer Reading 1 - Percent Finer	17.9	% Passing		1	D422
	Hydrometer Reading 2 - Percent Finer	15.2	% Passing		1	D422
	Hydrometer Reading 3 - Percent Finer	13.8	% Passing		1	D422
	Hydrometer Reading 4 - Percent Finer	11.1	% Passing		1	D422
	Hydrometer Reading 5 - Percent Finer	9.8	% Passing		1	D422
	Hydrometer Reading 6 - Percent Finer	8.4	% Passing		1	D422
	Hydrometer Reading 7 - Percent Finer	4.3	% Passing		1	D422

1B-IN INORGANIC ANALYSIS DATA SHEET GEOTECHNICAL

Client Sample ID: LAYER F (FMIS-70CGS) Lab Sample ID: 200-663-2

Lab Name: TestAmerica Burlington Job No.: 200-663-1

SDG ID.: HTF0095 TVAX

Matrix: Solid Date Sampled: 06/16/2010 16:17

Reporting Basis: WET Date Received: 07/01/2010 10:20

CAS No.	Analyte	Conc.	Units	C Q	DIL	Method
	Gravel	46.7	8		1	D422
	Sieve Size 3 inch - Percent Finer	100.0	% Passing		1	D422
	Sand	18.8	જે		1	D422
	Sieve Size 2 inch - Percent Finer	100.0	% Passing		1	D422
	Coarse Sand	5.6	8		1	D422
	Sieve Size 1.5 inch - Percent Finer	100.0	% Passing		1	D422
	Medium Sand	4.5	8		1	D422
	Sieve Size 1 inch - Percent Finer	100.0	% Passing		1	D422
	Fine Sand	8.7	%		1	D422
	Sieve Size 0.75 inch - Percent Finer	70.1	% Passing		1	D422
	Sieve Size 0.375 inch - Percent Finer	63.1	% Passing		1	D422
	Silt	19.4	%		1	D422
	Clay	15.1	%		1	D422
	Sieve Size #4 - Percent Finer	53.3	% Passing		1	D422
	Sieve Size #10 - Percent Finer	47.7	% Passing		1	D422
	Sieve Size #20 - Percent Finer	44.9	% Passing		1	D422
	Sieve Size #40 - Percent Finer	43.2	% Passing		1	D422
	Sieve Size #60 - Percent Finer	42.1	% Passing		1	D422
	Sieve Size #80 - Percent Finer	40.4	% Passing		1	D422
	Sieve Size #100 - Percent Finer	39.7	% Passing		1	D422
	Sieve Size #200 - Percent Finer	34.5	% Passing		1	D422
	Hydrometer Reading 1 - Percent Finer	26.5	% Passing		1	D422
	Hydrometer Reading 2 - Percent Finer	22.7	% Passing		1	D422
	Hydrometer Reading 3 - Percent Finer	19.0	% Passing		1	D422
	Hydrometer Reading 4 - Percent Finer	17.0	% Passing		1	D422
	Hydrometer Reading 5 - Percent Finer	15.1	% Passing		1	D422
	Hydrometer Reading 6 - Percent Finer	11.4	% Passing		1	D422
	Hydrometer Reading 7 - Percent Finer	6.7	% Passing		1	D422

1B-IN INORGANIC ANALYSIS DATA SHEET GEOTECHNICAL

Client Sample ID: LAYERA(FMIS70CGS) Lab Sample ID: 200-663-3

Lab Name: TestAmerica Burlington Job No.: 200-663-1

SDG ID.: HTF0095 TVAX

Matrix: Solid Date Sampled: 06/17/2010 10:05

Reporting Basis: WET Date Received: 07/01/2010 10:20

CAS No.	Analyte	Conc.	Units	C Q	DIL	Method
	Gravel	50.5	8		1	D422
	Sieve Size 3 inch - Percent Finer	100.0	% Passing		1	D422
	Sand	25.0	8		1	D422
	Sieve Size 2 inch - Percent Finer	100.0	% Passing		1	D422
	Coarse Sand	9.2	8		1	D422
	Sieve Size 1.5 inch - Percent Finer	100.0	% Passing		1	D422
	Medium Sand	7.7	8		1	D422
	Sieve Size 1 inch - Percent Finer	100.0	% Passing		1	D422
	Fine Sand	8.1	%		1	D422
	Sieve Size 0.75 inch - Percent Finer	82.6	% Passing		1	D422
	Sieve Size 0.375 inch - Percent Finer	62.1	% Passing		1	D422
	Silt	15.5	8		1	D422
	Clay	9.0	8		1	D422
	Sieve Size #4 - Percent Finer	49.5	% Passing		1	D422
	Sieve Size #10 - Percent Finer	40.3	% Passing		1	D422
	Sieve Size #20 - Percent Finer	35.3	% Passing		1	D422
	Sieve Size #40 - Percent Finer	32.6	% Passing		1	D422
	Sieve Size #60 - Percent Finer	31.0	% Passing		1	D422
	Sieve Size #80 - Percent Finer	28.9	% Passing		1	D422
	Sieve Size #100 - Percent Finer	28.2	% Passing		1	D422
	Sieve Size #200 - Percent Finer	24.5	% Passing		1	D422
	Hydrometer Reading 1 - Percent Finer	14.8	% Passing		1	D422
	Hydrometer Reading 2 - Percent Finer	13.4	% Passing		1	D422
	Hydrometer Reading 3 - Percent Finer	11.9	% Passing		1	D422
	Hydrometer Reading 4 - Percent Finer	10.5	% Passing		1	D422
	Hydrometer Reading 5 - Percent Finer	9.0	% Passing		1	D422
	Hydrometer Reading 6 - Percent Finer	7.4	% Passing		1	D422
	Hydrometer Reading 7	4.5	% Passing		1	D422

Client Sample ID: LAYER B (FMIS-70CGS) Lab Sample ID: 200-663-4

Lab Name: TestAmerica Burlington Job No.: 200-663-1

SDG ID.: HTF0095 TVAX

Matrix: Solid Date Sampled: 06/17/2010 10:09

CAS No.	Analyte	Conc.	Units	C Q	DIL	Method
	Gravel	46.1	8		1	D422
	Sieve Size 3 inch - Percent Finer	100.0	% Passing		1	D422
	Sand	24.9	8		1	D422
	Sieve Size 2 inch - Percent Finer	100.0	% Passing		1	D422
	Coarse Sand	9.7	8		1	D422
	Sieve Size 1.5 inch - Percent Finer	100.0	% Passing		1	D422
	Medium Sand	7.9	8		1	D422
	Sieve Size 1 inch - Percent Finer	100.0	% Passing		1	D422
	Fine Sand	7.3	8		1	D422
	Sieve Size 0.75 inch - Percent Finer	89.5	% Passing		1	D422
	Sieve Size 0.375 inch - Percent Finer	70.9	% Passing		1	D422
	Silt	17.1	8		1	D422
	Clay	11.9	%		1	D422
	Sieve Size #4 - Percent Finer	53.9	% Passing		1	D422
	Sieve Size #10 - Percent Finer	44.2	% Passing		1	D422
	Sieve Size #20 - Percent Finer	38.9	% Passing		1	D422
	Sieve Size #40 - Percent Finer	36.3	% Passing		1	D422
	Sieve Size #60 - Percent Finer	34.9	% Passing		1	D422
	Sieve Size #80 - Percent Finer	33.1	% Passing		1	D422
	Sieve Size #100 - Percent Finer	32.5	% Passing		1	D422
	Sieve Size #200 - Percent Finer	29.0	% Passing		1	D422
	Hydrometer Reading 1 - Percent Finer	18.8	% Passing		1	D422
	Hydrometer Reading 2 - Percent Finer	16.5	% Passing		1	D422
	Hydrometer Reading 3 - Percent Finer	14.2	% Passing		1	D422
	Hydrometer Reading 4 - Percent Finer	14.2	% Passing		1	D422
	Hydrometer Reading 5 - Percent Finer	11.9	% Passing		1	D422
	Hydrometer Reading 6 - Percent Finer	9.4	% Passing		1	D422
	Hydrometer Reading 7	4.8	% Passing		1	D422

Client Sample ID: LAYER C (FMIS-70CGS) Lab Sample ID: 200-663-5

Lab Name: TestAmerica Burlington Job No.: 200-663-1

SDG ID.: HTF0095 TVAX

Matrix: Solid Date Sampled: 06/17/2010 10:10

CAS No.	Analyte	Conc.	Units	C Q	DIL	Method
	Gravel	45.2	8		1	D422
	Sieve Size 3 inch - Percent Finer	100.0	% Passing		1	D422
	Sand	22.1	8		1	D422
	Sieve Size 2 inch - Percent Finer	100.0	% Passing		1	D422
	Coarse Sand	7.2	%		1	D422
	Sieve Size 1.5 inch - Percent Finer	100.0	% Passing		1	D422
	Medium Sand	7.2	8		1	D422
	Sieve Size 1 inch - Percent Finer	100.0	% Passing		1	D422
	Fine Sand	7.7	%		1	D422
	Sieve Size 0.75 inch - Percent Finer	100.0	% Passing		1	D422
	Sieve Size 0.375 inch - Percent Finer	64.9	% Passing		1	D422
	Silt	18.4	8		1	D422
	Clay	14.3	%		1	D422
	Sieve Size #4 - Percent Finer	54.8	% Passing		1	D422
	Sieve Size #10 - Percent Finer	47.6	% Passing		1	D422
	Sieve Size #20 - Percent Finer	43.0	% Passing		1	D422
	Sieve Size #40 - Percent Finer	40.4	% Passing		1	D422
	Sieve Size #60 - Percent Finer	38.9	% Passing		1	D422
	Sieve Size #80 - Percent Finer	37.0	% Passing		1	D422
	Sieve Size #100 - Percent Finer	36.4	% Passing		1	D422
	Sieve Size #200 - Percent Finer	32.7	% Passing		1	D422
	Hydrometer Reading 1 - Percent Finer	22.9	% Passing		1	D422
	Hydrometer Reading 2 - Percent Finer	21.4	% Passing		1	D422
	Hydrometer Reading 3 - Percent Finer	17.1	% Passing		1	D422
	Hydrometer Reading 4 - Percent Finer	15.7	% Passing		1	D422
	Hydrometer Reading 5 - Percent Finer	14.3	% Passing		1	D422
	Hydrometer Reading 6 - Percent Finer	10	% Passing		1	D422
	Hydrometer Reading 7	5.8	% Passing		1	D422

Client Sample ID: LAYER D (FMIS-70CGS) Lab Sample ID: 200-663-6

Lab Name: TestAmerica Burlington Job No.: 200-663-1

SDG ID.: HTF0095 TVAX

Matrix: Solid Date Sampled: 06/17/2010 10:14

CAS No.	Analyte	Conc.	Units	С	Q DIL	Metho
	Gravel	43.7	8		1	D422
	Sieve Size 3 inch - Percent Finer	100.0	% Passing		1	D422
	Sand	23.3	8		1	D422
	Sieve Size 2 inch - Percent Finer	100.0	% Passing		1	D422
	Coarse Sand	9.4	8		1	D422
	Sieve Size 1.5 inch - Percent Finer	100.0	% Passing		1	D422
	Medium Sand	6.6	8		1	D422
	Sieve Size 1 inch - Percent Finer	100.0	% Passing		1	D422
	Fine Sand	7.3	8		1	D422
	Sieve Size 0.75 inch - Percent Finer	88.8	% Passing		1	D422
	Sieve Size 0.375 inch - Percent Finer	68.3	% Passing		1	D422
	Silt	16.2	8		1	D422
	Clay	16.8	%		1	D422
	Sieve Size #4 - Percent Finer	56.3	% Passing		1	D422
	Sieve Size #10 - Percent Finer	46.9	% Passing		1	D422
	Sieve Size #20 - Percent Finer	42.5	% Passing		1	D422
	Sieve Size #40 - Percent Finer	40.3	% Passing		1	D422
	Sieve Size #60 - Percent Finer	39.0	% Passing		1	D422
	Sieve Size #80 - Percent Finer	37.2	% Passing		1	D422
	Sieve Size #100 - Percent Finer	36.6	% Passing		1	D422
	Sieve Size #200 - Percent Finer	33.0	% Passing		1	D422
	Hydrometer Reading 1 - Percent Finer	25.6	% Passing		1	D422
	Hydrometer Reading 2 - Percent Finer	23.2	% Passing		1	D422
	Hydrometer Reading 3 - Percent Finer	20.1	% Passing		1	D422
	Hydrometer Reading 4 - Percent Finer	18.5	% Passing		1	D422
	Hydrometer Reading 5 - Percent Finer	16.8	% Passing		1	D422
	Hydrometer Reading 6 - Percent Finer	12.9	% Passing		1	D422
	Hydrometer Reading 7	6.4	% Passing		1	D422

Client Sample ID: LAYER E (FMIS-70CGS) Lab Sample ID: 200-663-7

Lab Name: TestAmerica Burlington Job No.: 200-663-1

SDG ID.: HTF0095 TVAX

Matrix: Solid Date Sampled: 06/17/2010 10:16

CAS No.	Analyte	Conc.	Units	С	Q DIL	Method
	Gravel	41.1	8		1	D422
	Sieve Size 3 inch - Percent Finer	100.0	% Passing		1	D422
	Sand	18.7	80		1	D422
	Sieve Size 2 inch - Percent Finer	100.0	% Passing		1	D422
	Coarse Sand	6.7	8		1	D422
	Sieve Size 1.5 inch - Percent Finer	100.0	% Passing		1	D422
	Medium Sand	5.5	%		1	D422
	Sieve Size 1 inch - Percent Finer	100.0	% Passing		1	D422
	Fine Sand	6.5	8		1	D422
	Sieve Size 0.75 inch - Percent Finer	82.3	% Passing		1	D422
	Sieve Size 0.375 inch - Percent Finer	65.2	% Passing		1	D422
	Silt	19.8	%		1	D422
	Clay	20.4	%		1	D422
	Sieve Size #4 - Percent Finer	58.9	% Passing		1	D422
	Sieve Size #10 - Percent Finer	52.2	% Passing		1	D422
	Sieve Size #20 - Percent Finer	48.7	% Passing		1	D422
	Sieve Size #40 - Percent Finer	46.7	% Passing		1	D422
	Sieve Size #60 - Percent Finer	45.6	% Passing		1	D422
	Sieve Size #80 - Percent Finer	44.1	% Passing		1	D422
	Sieve Size #100 - Percent Finer	43.6	% Passing		1	D422
	Sieve Size #200 - Percent Finer	40.2	% Passing		1	D422
	Hydrometer Reading 1 - Percent Finer	31.2	% Passing		1	D422
	Hydrometer Reading 2 - Percent Finer	28.3	% Passing		1	D422
	Hydrometer Reading 3 - Percent Finer	23.5	% Passing		1	D422
	Hydrometer Reading 4 - Percent Finer	21.5	% Passing		1	D422
	Hydrometer Reading 5 - Percent Finer	20.4	% Passing		1	D422
	Hydrometer Reading 6 - Percent Finer	15.6	% Passing		1	D422
	Hydrometer Reading 7	8.8	% Passing		1	D422

Geotechnical Worksheet

Batch Number: 200-4218

Method: D422

Analyst: Peterson, David J

Date Open: Jul 08 2010 11:54PM

Batch End:

Comments

Lab ID	Client ID	Method Chain	Basis	Analysis comment
200-663-A-1	LAYERG(FMIS70CGS)	D422	Т	SEE-SAMPLE-DATAS HEETS
200-663-A-2	LAYER F (FMIS-70CGS)	D422	Т	SEE-SAMPLE-DATAS HEETS
200-663-A-3	LAYERA(FMIS70CGS)	D422	Т	SEE-SAMPLE-DATAS HEETS
200-663-A-4	LAYER B (FMIS-70CGS)	D422	Т	SEE-SAMPLE-DATAS HEETS
200-663-A-5	LAYER C (FMIS-70CGS)	D422	Т	SEE-SAMPLE-DATAS HEETS
200-663-A-6	LAYER D (FMIS-70CGS)	D422	Т	SEE-SAMPLE-DATAS HEETS
200-663-A-7	LAYER E (FMIS-70CGS)	D422	Т	SEE-SAMPLE-DATAS HEETS

June 30, 2010

Attn: Scott Duzan

LABORATORY REPORT

Client:

Tetra Tech EM Inc. Work Order: HTF0094

737 Bishop st., Suite 3010 Project Name: Subsurface Soil Investigation (MIS-VOCs)

Honolulu, HI 96813 Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.Ht

Date Received: 06/16/10

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica Analytical Testing Corporation certifies that the analytical results contained herein apply only to the specific sample(s) analyzed.

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report. This entire report was reviewed and approved for release

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-(808)486-5227

Samples were received into laboratory at a temperature of 5 °C.

DZ

NELAC states that samples which require thermal preservation shall be considered acceptable if the arrival temperature is within 2 degrees C of the required temperature or the method specified range. For samples with a temperature requirement of 4 degrees C, an arrival temperature from 0 degrees C to 6 degrees C meets specifications. Samples that are delivered to the laboratory on the same day that they are collected may not meet these criteria. In these cases, the samples are considered acceptable if there is evidence that the chilling process has begun, such as arrival on ice.

The reported results were obtained in compliance with the 2003 NELAC standards unless otherwise noted.

Approved By:

NELAC Certification # E87907

Tetra Tech EM Inc. 737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan

Work Order: HTF0094 Received: 06/16/10

Reported: 06/30/10 17:52

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Sample Summary

			Date/Time	Date/Time	Sample
Sample Identification	Lab Number	Client Matrix	Sampled	Received	Qualifiers
B16-4-6-SM	HTF0094-01	Solid/Soil	06/16/10 14:31	06/16/10 17:28	_

Tetra Tech EM Inc. 737 Bishop st., Suite 3010 Honolulu, HI 96813 Scott Duzan Work Order: HTF0094 Received: 06/16/10

Reported: 06/30/10 17:52

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

ANALYTICAL REPORT

Analyte	Sample Result	Data Qualifiers	Units	Rpt Limit	Dil	Date Analyzed	Prep Date	Seq/ Batch	Method
Sample ID: HTF0094-01 (B16-4-6-SM	M - Solid/Soil)			Samı	oled:	06/16/10 14:31	Red	evd: 06/16/	10 17:28
General Chemistry Parameters				•					
% Moisture	17.0		Weight %	0.100	1	06/23/10 09:00	06/21/10	10F0126	SM 2540G
Sample ID: HTF0094-01RE1 (B16-4-	-6-SM - Solid/S	oil)		Samı	oled:	06/16/10 14:31	Red	evd: 06/16/	10 17:28
General Chemistry Parameters									
% Moisture	17.3		"	0.100	"	"	"	"	"
Sample ID: HTF0094-01RE2 (B16-4-	-6-SM - Solid/S	oil)		Samp	oled:	06/16/10 14:31	Red	evd: 06/16/	10 17:28
General Chemistry Parameters									
% Moisture	19.7		"	0.100	"	"	"	"	"
Sample ID: HTF0094-01RE3 (B16-4-	-6-SM - Solid/S	oil)		Samı	oled:	06/16/10 14:31	Rec	evd: 06/16/	10 17:28
General Chemistry Parameters	4.50		"	0.400		,,	,,	,,	,,
% Moisture	15.8		"	0.100	"	"	.,	"	.,

Honolulu, HI 96813

Scott Duzan

99-193 Aiea Heights Drive, Suite 121 Aiea, HI 96701 * 808-486-5227 * Fax 808-486-2456

Tetra Tech EM Inc. HTF0094 06/16/10 Work Order: Received: 737 Bishop st., Suite 3010

Reported: 06/30/10 17:52

Subsurface Soil Investigation (MIS-VOCs) Project:

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

SAMPLE EXTRACTION DATA

			Wt/Vol	Default					Extraction
Parameter	Batch	Lab Number	Extracted	Wt/Vol	Extracted Vol	Default Vol	Date	Analyst	Method

Tetra Tech EM Inc. HTF0094 Work Order: 737 Bishop st., Suite 3010

06/16/10 Received:

Reported: 06/30/10 17:52

Honolulu, HI 96813 Subsurface Soil Investigation (MIS-VOCs) Project: Scott Duzan

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

LABORATORY BLANK QC DATA

	Source	Spike					Dup	%	Dup	% REC		RPD	
Analyta	Result	Level	Units	MDL	MRL	Result	Posult	REC	% DEC	Limite	DDD	Limit	Ω

General Chemistry Parameters

Batch\Seq: 10F0126 Extracted: 06/21/10

Blank Analyzed: 06/22/2010 (10F0126-BLK1)

% Moisture Weight % 0.100 ND N/A

Tetra Tech EM Inc.

Work Order: HTF0094

Received: 06/16/10

06/30/10 17:52

737 Bishop st., Suite 3010

Reported: Subsurface Soil Investigation (MIS-VOCs)

Honolulu, HI 96813 Scott Duzan

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

LABORATORY DUPLICATE QC DATA

Project:

	Source	Spike				%	Dup	% REC		RPD	
Analyte	Result	Level	Units	MDL MR	L Result	REC	%REC	Limits	RPD	Limit	Q
General Chemistry Parameters	1										
Batch\Seq: 10F0126 Extracted	: 06/21/10										
Duplicate Analyzed: 06/23/2010 (10F0126-DUP1)		QC Source Sa	mple: HTF0087-01						
% Moisture	81.6		Weight %	N/A 0.100	81.9				1	20	

Tetra Tech EM Inc. Work Order: HTF0094 Received: 06/16/10

737 Bishop st., Suite 3010 Reported: 06/30/10 17:52

Honolulu, HI 96813 Project: Subsurface Soil Investigation (MIS-VOCs)

Scott Duzan Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

CERTIFICATION SUMMARY

TestAmerica Honolulu

Method Matrix Nelac Hawaii
SM 2540G Solid/Soil

For information concerning certifications of this facility or another TestAmerica facility, please visit our website at www.TestAmericaInc.com

DATA QUALIFIERS AND DEFINITIONS

ND Not detected at the reporting limit (or method detection limit if shown)

ADDITIONAL COMMENTS

rev1b **TestAmerica**

THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

LABORATORY U: VLY	LAB JOB NO.	LOCATION ATFOOSY	CONTAINERS
-------------------	-------------	------------------	------------

		Chain of Cus	Custody /	tody / Analysis Request Form	uest	Form		CONTAINERS		
Report to: Scott Duzan, scott.duzan@tetratech.com	Ē		Project identification	tification		Pu	icate ar	Indicate analyses requested		
Company name: Tetra Tech EMI		Job name: Hickam AFB		CG110 ISM VOC Study	T	- 1				
Address: 737 Bishop Street, Suite 3010		Job number: 103[Job number: 103DS148843.H0301	-						
city: Honolulu State: HI Z	ZIP: 96813							W 2.4.		
Phone: 808,441,6645	7	Contact email address:			-				· · · · · · · · · · · · · · · · · · ·	
Sampler: SD # samples in shipment		scott.duzan@	scott.duzan@tetratech.com					oarbo		
	-	X	Matrix	Sampling) OIL		
Client sample ID	SIM	GRAB Waster Soil Wastewaster Drinking waster	Sludge Liquid Solid Solid Oil Other Descendation bodtem	Date	SeoB-SIM	oZ əsobs\ ————————————————————————————————————	əzi2 nisı	negrO leto	MTFOO99-01	<u>6</u>
1 B16-4-6-CM	×	×	AZ AZ	1571 01-91-9			<u> </u>		KAP Course S) ()
2	X	×	NA				1	4	200	٩
3	×	<u>)</u>	AN AN		/	}				
4	×	×	N							
5	×	×	NA							
9	×	×	A A							246.8
	×	×	AN					- Advantage		
8	×	×	¥							
00 1	× >	×>	¥							
Released by	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Κ	INA			··				
		Delivery method	¥ 3	Received by (print / sign)		Company / Agency affiliation	Agency on	Date / time received	Condition noted	
Scott Duzan Shath / Juff 16-10 1 178	/ []& Hand	pu	Mileslatt	Ber 1 4	TestA	TestAmerica		82:21 101-91-9	Chart or	ال ا
>					: 				,	

See Seetien 5.5 of SAP ofor soil moisture protocols - 5.6 = vidose

Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl chloride

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc. White - TestAmerica Distribution:

COC REV 04/2008

Yellow - TestAmerica

Please check one:
* Dispose by lab

□ Return to client
□ Archive

Page_

	Sample Red	ceipt Checkli	st	
Client Name: Tebalecq	Date	e/ Time Receive	d: <u>6/</u>	10/10 17:28
Checklist Completed By:	<u>H</u>	Received B	y:	ms 1
Matrices: シガ	Carrier:		Airbill#	:
Shipping container/cooler in good of Chain of Custody present? Chain of Custody Signed when relin Chain of Custody agrees with samp Samples in proper container/bottle? Sample containers intact? Sample containers on ice? Sufficient sample volume for indicate All samples received within holding to Water - VOA Vials have Zero Heads Water - pH acceptable upon receipt? Encores / 5035 Vials Present? Sample Filtration Needed?	equished and received? le labels? ed test? ime? pace?	Yes P Yes P Yes P Yes P Yes P Yes P Yes P Yes P Yes P Yes P Yes P Yes P Yes P Yes P Yes P Yes P Yes P Yes P	No No No No No No No No No No No No No N	Not Present Type: No VOA vials present: Not Checked: Final pH: Filtered in Field:
Dry Weight Corrected Results? DODQSM / QAPP Project?		Yes T	No D	Take Action: Type: MYS
Sample Container/Blank Temperatur	Temperature Blank Prese e Range (Minimum 3 sam		No □ · available):	<u>5 °c</u>
Comments/ Sampling Hand	lling Notes:			

June 30, 2010

Attn: Scott Duzan

LABORATORY REPORT

Client:

Tetra Tech EM Inc. Work Order: HTF0090

737 Bishop st., Suite 3010 Project Name: Subsurface Soil Investigation (MIS-VOCs)

Honolulu, HI 96813 Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.HI

Date Received: 06/17/10

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica Analytical Testing Corporation certifies that the analytical results contained herein apply only to the specific sample(s) analyzed.

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report. This entire report was reviewed and approved for release

If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-(808)486-5227

Samples were received into laboratory at a temperature of 4 °C.

DZ

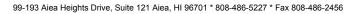
NELAC states that samples which require thermal preservation shall be considered acceptable if the arrival temperature is within 2 degrees C of the required temperature or the method specified range. For samples with a temperature requirement of 4 degrees C, an arrival temperature from 0 degrees C to 6 degrees C meets specifications. Samples that are delivered to the laboratory on the same day that they are collected may not meet these criteria. In these cases, the samples are considered acceptable if there is evidence that the chilling process has begun, such as arrival on ice.

The reported results were obtained in compliance with the 2003 NELAC standards unless otherwise noted.

Approved By:

NELAC Certification # E87907

Tetra Tech EM Inc. 737 Bishop st., Suite 3010 Honolulu, HI 96813 Scott Duzan Work Order: HTF0090 Received: 06/17/10


Reported: 06/30/10 17:47

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

Sample Summary

			Date/Time	Date/Time	Sample
Sample Identification	Lab Number	Client Matrix	Sampled	Received	Qualifiers
B17-4-6-SM	HTF0090-01	Solid/Soil	06/17/10 10:01	06/17/10 11:46	

Tetra Tech EM Inc. 737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan

Work Order: HTF0090

Received: Reported:

06/17/10 06/30/10 17:47

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

ANALYTICAL REPORT

	Sample	Data	II		D.1	Date	Prep	Seq/	
Analyte	Result	Qualifiers	Units	Rpt Limit	Dil	Analyzed	Date	Batch	Method
Sample ID: HTF0090-01 (B17-4-6-SM	- Solid/Soil)			Samp	oled:	06/17/10 10:01	Recvd: 06/17/10 11:46		
General Chemistry Parameters									
% Moisture	23.7		Weight %	0.100	1	06/23/10 09:00	06/21/10	10F0126	SM 2540G
Sample ID: HTF0090-01RE1 (B17-4-6-	-SM - Solid/S	oil)		Samp	oled:	06/17/10 10:01	Rec	evd: 06/17/	10 11:46
General Chemistry Parameters									
% Moisture	18.9		"	0.100	"	"	"	"	"
Sample ID: HTF0090-01RE2 (B17-4-6-	-SM - Solid/S	oil)		Samp	oled:	06/17/10 10:01	Red	evd: 06/17/	10 11:46
General Chemistry Parameters									
% Moisture	19.3		"	0.100	"	"	"	"	"
Sample ID: HTF0090-01RE3 (B17-4-6-	-SM - Solid/S	oil)		Samp	oled:	06/17/10 10:01	Red	evd: 06/17/	10 11:46
General Chemistry Parameters									
% Moisture	22.7		"	0.100	"	"	"	"	"

Honolulu, HI 96813

Scott Duzan

99-193 Aiea Heights Drive, Suite 121 Aiea, HI 96701 * 808-486-5227 * Fax 808-486-2456

Tetra Tech EM Inc. Work Order: 737 Bishop st., Suite 3010

ler: HTF0090 Received: 06/17/10

Reported: 06/30/10 17:47

Project: Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

SAMPLE EXTRACTION DATA

			Wt/Vol	Default					Extraction
Parameter	Batch	Lab Number	Extracted	Wt/Vol	Extracted Vol	Default Vol	Date	Analyst	Method

Tetra Tech EM Inc. Work Order: 737 Bishop st., Suite 3010

HTF0090

06/17/10 Received: Reported:

06/30/10 17:47

Subsurface Soil Investigation (MIS-VOCs) Project:

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

LABORATORY BLANK QC DATA

Source Spike **%** RPD % REC Dup Dup Result Level Units MDL MRL Result Result REC %REC Limits RPD Analyte Limit Q

General Chemistry Parameters

Honolulu, HI 96813

Scott Duzan

Batch\Seq: 10F0126 Extracted: 06/21/10

Blank Analyzed: 06/22/2010 (10F0126-BLK1)

% Moisture Weight % 0.100 ND N/A

Tetra Tech EM Inc. 737 Bishop st., Suite 3010 Honolulu, HI 96813

Scott Duzan

Work Order:

HTF0090

Received: Reported:

06/30/10 17:47

06/17/10

Project:

Subsurface Soil Investigation (MIS-VOCs)

Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

LABORATORY DUPLICATE QC DATA

	Source	Spike					%	Dup	% REC		RPD	
Analyte	Result	Level	Units	MDL	MRL	Result	REC	%REC	Limits	RPD	Limit	Q
General Chemistry Parameters	s											
Batch\Seq: 10F0126 Extracted	l: 06/21/10											
Duplicate Analyzed: 06/23/2010	(10F0126-DUP1))		QC So	urce Samp	le: HTF0087-01						
% Moisture	81.6		Weight %	N/A	0.100	81.9				1	20	

Tetra Tech EM Inc. Work Order: HTF0090 Received: 06/17/10

737 Bishop st., Suite 3010 Reported: 06/30/10 17:47

Honolulu, HI 96813 Project: Subsurface Soil Investigation (MIS-VOCs)

Scott Duzan Project Number: Hickam AFB CG110 ISM VOC Study, 103DS148843.H0301

CERTIFICATION SUMMARY

TestAmerica Honolulu

Method Matrix Nelac Hawaii

SM 2540G Solid/Soil

For information concerning certifications of this facility or another TestAmerica facility, please visit our website at www.TestAmericaInc.com

DATA QUALIFIERS AND DEFINITIONS

ND Not detected at the reporting limit (or method detection limit if shown)

ADDITIONAL COMMENTS

rev1b **TestAmerica**

THE LEADER IN ENVIRONMENTAL TESTING

Honolulu

99-193 Aiea Heights Drive Suite 121 • Aiea, HI 96701-3900 808-486-LABS (5227) • Fax 808-486-2456

LABORATORY U: NLY
LAB JOB NO. MTTONGO
LOCATION
CONTAINERS

ر ا MT F-0050-01 マップ フィーマグ The Sec aboratory ID no. SA Condition noted 4711 / 1146 ndidate analyses requested Date / time received Total Organic Carbon Company / Agency affiliation Grain Size Saturated Zone Moisture Content Chain of Custody / Analysis Request Form TestAmerica Vadose Zone Moisture Content MIS-80978 25 No. of containers 18 10:0 əmiT Job name: Hickam AFB CG110 ISM VOC Study Sampling 17-17 Received by (print / sign) Project identification Date Job number: 103DS148843.H0301 podlam ≨ ≶ ž ٤ ≨ ₹ ≨ ₹ noitevieser scott.duzan@tetratech.com Other llO pilos piupid Contact email address: Sludge Drinking water Delivery method Wastewater $\overline{\times}$ × × × lios 4/17/16/11:40 Hand Vater аАЯэ Hand SIM × × \times \times × \times × × ZIP: 96813 Date / time released Report to: Scott Duzan, scott.duzan@tetratech.com # samples in shipment することの方が子 Client sample ID 5 State: HI Address: 737 Bishop Street, Suite 3010 Fax Company name: Tetra Tech EMI クイン Released by (print / sign) Phone: 808.441.6645 ١ 4 city: Honolulu Scott Duzan Lesi Sampler: SD 2 .on mətl 2 က 4 S 9 7 ∞ တ

Moisture Problem Comments: 8260B-SIM: Only analyze for TCE; cis-DCE; trans-DCE; and Vinyl chloride Far Sø1 (SC 5.6 of SAP

©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design™ are trademarks of TestAmerica Laboratories, Inc.

COC REV 04/2008

Distribution:

White - TestAmerica

Yellow - TestAmerica

Pink - Client

Please check one:
♣ Dispose by lab
☐ Return to client
☐ Archive ₽ Page_

S	Sample	e Recei	pt Ch	ecklis	t		
Client Name: Tojn Tall	Date/ Time Received: 6/17/16 1146						
Checklist Completed By:		Recei	ved By	i	2		
Matrices: Sol(arrier:	Cllut	-		Airbill#	:	
Shipping container/cooler in good condition? Chain of Custody present? Chain of Custody Signed when relinquished and Chain of Custody agrees with sample labels? Samples in proper container/bottle? Sample containers intact? Sample containers on ice? Sufficient sample volume for indicated test? All samples received within holding time? Water - VOA Vials have Zero Headspace? Water - pH acceptable upon receipt? Encores / 5035 Vials Present? Sample Filtration Needed?		ed? Adjusted?	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes		No No No No No No No No No No No No No N	Not Present Type: No VOA viais present: Not Checked: Final pH: Filtered in Field: Time Present Filtered in Field: Final Present Final Presen	
Dry Weight Corrected Results? DODQSM / QAPP Project?			Yes Yes	7	No 🗖	Take Action:	
Temperatur Sample Container/Blank Temperature Range (Mi	e Blank inimum	Present? 3 sample	Yes contai	ners if a	No 76/17 available):	1 4 °C	
Comments/ Sampling Handling Note	es:						

Logbook No.: IN-2010-14

Oven: Oven 2 Scale: SAR1

TestAmerica

Page 10 of 30

% Solids/% Moisture Determination

Method: SW 2540G MRL: 0.10% Analyst: Time Recording of crucible drying prior to analysis:

Date / Time on: (0/15/10 1000

Oven Temp °C: (05

Date / Time off: (6/15/10 1.2-20)

Oven Temp °C:

	Sample ID/Crucible #	Q made	Dry Crucible Weight (g) (after drying in oven 2- 3 hrs and cooling)	Wet residue weight (placed in crucible) (g) Analyst: Date on: ((21/10) Time on: ((20) Oven temp °C: (05)	Weight (g) No. 1 Analyst: JM Date off: 6/72/10 Time off: 600 Oven temp °C: 105	Dry Residue weight + Dry Crucible Weight (g) No. 2 Analyst: 11 Date off: 6(75/10 Time off: 6000 Oven temp °C: 105
1	HTF0069-25A	To BLK	4.2845	08:75:11	1.0224 40 64.6814	64.6359
	HTF0077-07A	2 DUP		88.5012	261356	80.1024
2	HTF0073-08 A	3	4 1600-	123-1622	105 2124	105 1783
	HTF-00-73-09 A	4	116/12/10841700	122.0315	89.4516	89.3832
4	47F0073-10 A	5	4.0728	115.3568	83.5655	83.5241
5	HTF0073-11 A	4	4.1979	86-27-14	630111	62.9832
6	HTF0073-12A	7	42582	105.013.0	50.0909	50.0814
7	1+F0073-13 A	8	4.2056	73.9664	58.6704	58.6384
8	th F0073-14 A	9	4:1795	97.2537	64.8841	64:9971
9	HTF0073-15A	10	4.1646	56.7775	51-155-9	51.1466
	HTF0073-16 A		4.1006	72.7859	60.9642	60-9796
	HYF00-73-17A	12	4-2154	81.9252	63.7410	63.7237
1	HTF0073-18 A	13	4.0625	64.0194	482427	48 2300
	HT-0073-19 A	14	4.0089	75.4341	58-8964	589176
14		15	4.0765	640930	.52.3150	52.4916
	HIF0073-21 A	10	+ 2137	65.2210	55 6741	55.6119
F	HTF0073-22A	17	4.1806	94.8383	70.3729	70.4217
- 1	HTF0090-01 A	18	4-2176	62.7059	7	52.0895
	HTF0094-01 A	19	4.1975	53.2058	48.3933	48.3698
19 20	,		v 1 = v	N	er de desiman a aporter de la la la la la la la la la la la la la	
² Ψ		į	<u></u> i.			

Reviewed by:

Date: 06/24/0

2 column not needed if overnight analysis was performed

 $N: \QA_QC \land S \land Wet_Chem \land Moist$

Revised 2/19/08 DJK

· continued from previous page

Logbook No.: IN-2010-14

Oven: Oven 2

TestAmerica

Page 11 of 30

Scale: SAR1

% Solids/% Moisture Determination

Method: SW 2540G MRL: 0.10% Analyst: M

Time Recording of crucible drying prior to analysis: Date / Time on: 6/15/10 1000 Oven Temp C: ioS Date / Time off: 615/10 1220 Oven Temp C: 105

	Sample ID/Crucible #	Dry Crucible Weight (g) (after drying in oven 2- 3 hrs and cooling)	Wet residue weight (placed in crucible) (g) Analyst: ふん Date on: (タにん)(ロ	•	Dry Residue weight + Dry Crucible Weight (g) No. 2 Analyst: 3(1)
			Time on: (630	Time off: 1000	Time off: 0900
ı	SPLK		Oven temp °C: 105	Oven temp °C: LOS	Oven temp °C: LOS
	HTF0069-25 PEI 23 SBLK	1:0164	5.5277	5.1828	5.1801
]	HTF0069-25 REZ 80 3 00	0-9937	5.5471	5.0698	4.9988
	HTF0069-28RE384 DUP	1-0103	6.7920	5.8150	5.8286
2				a englary comments	
3	HTF0073-07 REI 48	1.0187	5.6791	5.9128	5.9131
4	HTF0073-07 REZ 45	1.0265	5.1413	5.3128	53137
5	HTF0073-07 RE3 42	1.02964	5.8479	5.8725	5.8732
6			San (18)	er i i des altra llementalent des tipes (Court Report of particular and a sec-
7	HTF0073-15 REI 64	1.0552	5.7686	5.7905	5 7977
8 2	HTF0073-15 REZ 41	1.0309	5.1588	5.3345	5:3397
9 -	HTF0073-15-RE3 24	1.0160	5.0996	5-2546	5 2588
10					
11[]	TTF0090-01 REI 44	1.0106	5.5719	5.5193	5.5286
12	HTF0090-01 REZ 1de	0.9993	5-6640		to 5.5698
13	HTF0090-01 REZ 45	1.0265	5.6034	7 (14) <u>5</u> (1)	53572
14			-	,	
15 <u>[</u>	TF0094-01 RE, 38	0.9997	5.8433	5.8161	5.8347
	TF0094-018EZ 1	1.0235	6/0713	5.9055	5.8999
	HF0094-01 RE3. 47	1.6227	55194	5.6742	5.6693
18			27 17 10 10 10 10 10 10 10 10 10 10 10 10 10		
19	tTF0087-01 A 46	1.0200	5.869	2.1023	
	HF0087 81 A 40 DUP	0.9984	5.5372	1.9789	

Reviewed by:	\mathcal{M}
	<i>[</i>

TestAmerica MOISTURE DETERMINATION

Analyst: JM Date: 6/21/2010 Instrument: SAR1

Sample ID	Dry Crucible Weight (g)	Wet Residue Weight (g)	Dry Residue + Crucible Weight (g)	Dry Residue Weight (g)	Moisture Results	
BLK	1.0226		1.0224	-0.0002	#DIV/0!	
1 HTF0069-25	4.2845	80.4578	64.6359	60.3514	24.990%	
HTF0073-07	4.2390	88.8012	80.1024	75.8634	14.569%	
3 HTF0073-08	4.1662	133.1632	105.1783	101.0121	24.144%	
4 HTF0073-09	4.1700	122.0315	89.3832	85,2132	30.171%	
5 HTF0073-10	4.0728	115.3568	83.5241	79.4513	31.126%	
6 HTF0073-11	4.1979	86.3714	62.9832	58.7853	31.939%	
7 HTF0073-12	4.2582	65.0130	50.0814	45.8232	29.517%	
8 HTF0073-13	4.2050	73.9664	58.6384	54.4334	26.408%	
9 HTF0073-14	4.1795	97.2537	64.9971	60.8176	37.465%	
0 HTF0073-15	4.1646	56.7775	51.1466	46.9820	17.252%	
HTF0073-16	4.1006	72.7859	60.9796	56.8790	21.854%	
2 HTF0073-17	4.2154	81 .9252	63.7237	59.5083	27.363%	
HTF0073-18	4.0625	64.0194	48.2300	44.1675	31.009%	
HTF0073-19	4.0689	75.4341	58.9176	54.8487	27.289%	
5 HTF0073-20	4.0765	64.0930	52.4916	48.4151	24.461%	
6 HTF0073-21	4.2137	65.2210	55.6119	51.3982	21.194%	
7 HTF0073-22	4.1866	94.8383	70.4217	66.2351	30.160%	
8 HTF0090-01	4.2176	62.7059	52.0895	47.8719	23.656%	
9 HTF0094-01	4.1975	5 3.2058	48.3698	44.1723	16.978%	

REFERENCE: PG.#10 IN % SOLIDS/MOISTURE DETERMINATION LOG BOOK IN-2010-14

Manual check: Dry residue wt. (g)= [Dry residue + crucible wt. (g)]-[crucible wt. (g)]

%Moisture= [Wet residue wt.(g) - Dry residue wt.(g)] X100%

Wet residue wt.(g)

48.3698 53.2058 - 4.1975 = 44.1723 Invizatio Sample ID: _____Dry residue wt. (g)= HTF0074-01

> 53.2058 - 44.1723 × 100% 53.2058 - 16.98% %Moisture=

TestAmerica MOISTURE DETERMINATION

Analyst: JM Date: 6/21/2010 Instrument: SAR1

			T			γ
	Sample ID	Dry Crucible Weight (g)	Wet Residue Weight (g)	Dry Residue + Crucible Weight (g)	Dry Residue Weight (g)	Moisture Results
1	HTF0069-25RE1	1.0164	5.5277	5.1801	4.1637	24.676%
	HTF0069-25RE2	0.9937	5.5471	4.9988	4.0051	27.798%
	HTF0069-25RE3	1.0103	6.7920	5.8286	4.8183	29.059%
					Average:	27.178%
2	HTF0073-07RE1	1.0187	5.6791	5.9131	4.8944	13.817%
	HTF0073-07RE2	1.0265	5.1413	5.3137	4.2872	16.613%
	HTF0073-07RE3	1.0284	5.8479	5.8732	4.8448	17.153%
					Average:	<u>15.861%</u>
10	HTF0073-15RE1	1.0552	5. 768 6	5.7977	4.7425	17.788%
	HTF0073-15RE2	1.0309	5.1588	5.3397	4.3088	16.477%
	HTF0073-15RE3	1.0160	5.0996	5.2588	4.2428	16.801%
	,				Average:	<u>17.022%</u>
18	HTF0090-01RE1	1.0106	5.5719	5.5286	4.5180	18.915%
	HTF0090-01RE2	0.9993	5.6640	5.5698	4.5705	19.306%
	HTF0090-01RE3	1.0268	5.6034	5.3572	4.3304	22.718%
					Average:	<u>20.313%</u>
19	HTF0094-01RE1	0.9997	5.8433	5.8347	4.8350	17.256%
	HTF0094-01RE2	1.0235	6.0713	5.8999	4.8764	19.681%
	HTF0094-01RE3	1.0227	5.5194	5.6693	4.6466	15.813%
					Average:	17.583%
					4.6466	1:

REFERENCE: PG.#11 IN % SOLIDS/MOISTURE DETERMINATION LOG BOOK IN-2010-14

Manual check:

Dry residue wt. (g)= [Dry residue + crucible wt. (g)]-[crucible wt. (g)]

%Moisture=[Wet residue wt.(g) - Dry residue wt.(g)] X100%

Wet residue wt.(g)

Sample ID: _____ Dry residue wt. (g)=

5.6693 - 1.0227 = 4.6466

%Moisture=

5.5194 - 4.6466 ×100

MOISTURE DETERMINATION **TestAmerica**

921030)

Analyst: JM

Date:

6/21/2010 Instrument: MET1

ulfs			<u> </u>
Moisture Results	#DIV/0i	81.552%	81.931%
Dry Residue Weight (g)	-0.0002	1.0823	1.0005
Dry Residue + Crucible Weight (g)	1.0224	2.1023	1.9789
Wet Residue Weight (g)		5.8669	5.5372
Dry Crucible Weight (g)	1.0226	1.0200	0.9784
Sample ID	BLK	HTF0089-014 HTF0008-01B- 0S	111-0008-1-0. A D
		1 S ontrain	へ

REFERENCE: PG.#11 IN % SOLIDS DETERMINATION LOG BOOK IN-2010-14

Manual check:

Dry residue wt. (g)= [Dry residue + crucible wt. (g)]-[crucible wt. (g)]

%Moisture= [Wet residue wt.(g) - Dry residue wt.(g)]X100%

Wet residue wt.(g)

2 1.000S _Dry residue wt. (g)= 1.9789 - 0.9784

HF0087-01

Sample ID:

%Moisture=

5.5372-1.0005 × 100%

5.5372

1,26.18 11

PREPARATION BENCH SHEET

10F0126

TestAmerica Honolulu

rinted: 6/24/2010 2:14:29PM

Lab Number Analysis Prepared 10F0126-BLK1 QC 06/21/10 16:30 10F0126-DUP1 QC 06/21/10 16:30 HTF0069-25RE Moisture (%) 06/21/10 16:30 HTF0069-25RE Moisture (%) 06/21/10 16:30 HTF0073-07RE Moisture (%) 06/21/10 16:30 HTF0073-1 Moisture (%) 06/21/10 16:30 HTF0073-1 Moisture (%) 06/21/10 16:30 HTF0073-1 Moisture (%) 06/21/10 16:30 HTF0073-13 Moisture (%) 06/21/10 16:30 HTF0073-14 Moisture (%) 06/21/10 16:30 HTF0073-15 Moisture (%) 06/21/10 16:30 HTF0073-15RE Moisture (%) 06/21/10 16:	d Initial (g) 6:30 5							
		Final (mL)	Spike ID	Source ID	ul Spike	ul Surrogate	Client	Extraction Comments
		5						
	6:30 5	5		HTF0087-01				
	6:30 5	5					Tetra Tech EM Inc.	VZ (arak rock-17)
	6:30 5	5					Tetra Tech EM Inc.	VZ Main porthon
RE Moisture (%) (%) RE Moisture (%) (%) RE Moisture (%) (%) Moisture (%) (%) Moisture (%) (%) Moisture (%) (%) Moisture (%) (%) Moisture (%) (%) RE Moisture (%) (%) RE Moisture (%) (%) RE Moisture (%) (%)	6:30 5	5					Tetra Tech EM Inc.	ZA
Moisture (%) (6:30 5	5					Tetra Tech EM Inc.	ZA
	6:30 5	5					Tetra Tech EM Inc.	ZA
RE Moisture (%) () RE Moisture (%) () Moisture (%) () Moisture (%) () Moisture (%) () Moisture (%) () Moisture (%) () RE Moisture (%) () RE Moisture (%) () RE Moisture (%) ()	6:30 5	5					Tetra Tech EM Inc.	ZA
RE Moisture (%) (%) Moisture (%) (%) Moisture (%) (%) Moisture (%) (%) Moisture (%) (%) RE Moisture (%) (%) RE Moisture (%) (%) RE Moisture (%) (%)	6:30 5	5					Tetra Tech EM Inc.	ZA
Moisture (%) Moisture (%) Moisture (%) Moisture (%) Moisture (%) Moisture (%) Moisture (%) Moisture (%) RE Moisture (%) RE Moisture (%)	6:30 5	5					Tetra Tech EM Inc.	ZA
Moisture (%) Moisture (%) Moisture (%) Moisture (%) Moisture (%) Moisture (%) Moisture (%) RE Moisture (%) RE Moisture (%)	6:30 5	5					Tetra Tech EM Inc.	sat
Moisture (%) Moisture (%) Moisture (%) Moisture (%) Moisture (%) RE Moisture (%) RE Moisture (%)	6:30 5	5					Tetra Tech EM Inc.	sat
Moisture (%) Moisture (%) Moisture (%) Moisture (%) RE Moisture (%) RE Moisture (%)	6:30 5	5					Tetra Tech EM Inc.	sat
	6:30 5	5					Tetra Tech EM Inc.	sat
	6:30 5	5					Tetra Tech EM Inc.	sat
	6:30 5	5					Tetra Tech EM Inc.	sat
	6:30 5	5					Tetra Tech EM Inc.	sat
	6:30 5	5					Tetra Tech EM Inc.	vz One large piece of
	6:30 5	5					Tetra Tech EM Inc.	
, 	6:30 5	5					Tetra Tech EM Inc.	ZA
•	6:30 5	5					Tetra Tech EM Inc.	ZA.
HTF0073-16 Moisture (%) 06/21/10 16:30	6:30 5	5					Tetra Tech EM Inc.	sat
HTF0073-17 Moisture (%) 06/21/10 16:30	6:30 5	5					Tetra Tech EM Inc.	sat

Preparation Reviewed By Date

Spiking Witnessed By

Extracts Received By

Page 1 of 2

PREPARATION BENCH SHEET

10F0126

TestAmerica Honolulu

'rinted: 6/24/2010 2:14:29PM

Matrix: Solid/Soil	oil		Pre	Prepared using:	_	WetChem - Default Prep GenChem	ep GenCh	ЕШ		(No Surrogate)	
			Initial	Final	:		n	[n	1		
Lab Number	Analysis	Prepared	(g)	(mL)	Spike ID	Source ID	Spike	Surrogate	Client	Extraction Comments	
HTF0073-18 N	Moisture (%)	06/21/10 16:30	5	5					Tetra Tech EM Inc.	sat	
HTF0073-19 N	Moisture (%)	06/21/10 16:30	5	5					Tetra Tech EM Inc.	sat	
HTF0073-20 N	Moisture (%)	06/21/10 16:30	5	5					Tetra Tech EM Inc.	sat	
HTF0073-21 N	Moisture (%)	06/21/10 16:30	5	5					Tetra Tech EM Inc.	sat	
HTF0073-22 N	Moisture (%)	06/21/10 16:30	5	5					Tetra Tech EM Inc.	sat	
HTF0087-01	Moisture (%)	06/21/10 16:30	5	5					wit Pacific Co. (Rail Proje	9	
HTF0090-01	Moisture (%)	06/21/10 16:30	5	5					Tetra Tech EM Inc.	vz fier larap rocks	
HTF0090-01RE Moisture (%)	Moisture (%)	06/21/10 16:30	5	5					Tetra Tech EM Inc.	VZ PREKINT IN MAIN DICHON	CHO)
HTF0090-01RE Moisture (%)	Moisture (%)	06/21/10 16:30	5	5					Tetra Tech EM Inc.	ZA	
HTF0090-01RE Moisture (%)	Moisture (%)	06/21/10 16:30	5	5					Tetra Tech EM Inc.	ZA	
HTF0094-01	Moisture (%)	06/21/10 16:30	5	5					Tetra Tech EM Inc.	ZA	
HTF0094-01RE Moisture (%)	Moisture (%)	06/21/10 16:30	5	5					Tetra Tech EM Inc.	ZV	
HTF0094-01RE Moisture (%)	Moisture (%)	06/21/10 16:30	5	5					Tetra Tech EM Inc.	ZV	
HTF0094-01RE Moisture (%)	Moisture (%)	06/21/10 16:30	5	5					Tetra Tech EM Inc.	ZA	
									┪		

Preparation Reviewed By

Extracts Received By

Page 2 of 2