Site Characterization Report

Site Characterization for Banana Patch Properties, Pearl City, Oahu, Hawaii

Honolulu Rail Transit Project January 2015

Prepared for:

Honolulu Authority for Rapid Transportation

Table of Contents

Table	of Cont	ents	i	
Abbre	eviations	s and Acronyms	v	
1.0	Intro	duction	1	
	1.1	Project Background and Objectives	1	
	1.2	Regulatory Framework	2	
	1.3	Document Organization	3	
2.0	Site B	ackground and Setting	5	
	2.1	Summary of Previous Investigations	5	
		2.2.1 Phase 1 Environmental Assessment	5	
		2.2.2 Geotechnical Investigation	5	
	2.2	Site Description and History	6	
	2.3	Geology and Hydrogeology	7	
3.0	Field	Field Investigation Procedures		
	3.1	Pre-Investigation Activities	9	
	3.2	Geophysical Investigation	9	
	3.3	Test Pit Investigation	10	
	3.4	Drilling Methods and Lithologic Observations		
	3.5	Soil Sample Collection	11	
	3.6	Stream Bank Sampling	13	
	3.7	Stream Bed Sediment Sampling		
	3.8	Temporary Well Construction and Groundwater Sampling		
	3.9	Investigation Derived Waste Management		
	3.10	Sample Management and Laboratory Analysis	15	
4.0	Resul	ts		
	4.1	Preliminary Estimates of Fill and Construction Debris		
	4.2	Flat Area Soil Characterization	19	
		4.2.1 Area with Future Fill		
		4.2.2 Area with No or Limited Future Excavation		
		4.2.3 Area with Future Excavation		
	4.3	Flat Area Waste Characterization		
	4.4	Discrete Soil Sample Results		
	4.5	Stream Bank Characterization		
	4.6	Stream Bed Characterization		
	4.7	Groundwater Characterization	25	
5.0		eptual Site Model and Environmental Hazard Evaluation		
	5.1	Conceptual Site Model		
		5.1.1 Site Land Use		
		5.1.2 Contaminants of Potential Concern		
		5.1.3 Sources of Contamination		
		5.1.4 Transport Mechanism		
	F 2	5.1.5 Potential Receptors and Exposure Pathways		
	5.2	Environmental Hazard Evaluation		
		5.2.1 Soil	29	

		5.2.2	Groundwater	31
6.0	Envir	onmenta	l Hazard Management Plan	33
	6.1	Summ	ary of Environmental Hazards	33
	6.2	Site Co	ontrols Implementation and Long Term Management of Contaminated Media	34
		6.2.1	Flat Area with Future Fill	35
		6.2.2	Flat Area with No or Limited Future Excavation	35
		6.2.3	Flat Area with Future Excavation	36
		6.2.4	Stream Bank	37
7.0	Concl	usions a	nd Recommendations	39
	7.1	Activit	ies Summary and Conclusions	39
		7.1.1	Flat Area Geophysical and Fill Characterization	39
		7.1.2	Flat Area Soil Characterization	39
		7.1.3	Stream Bank Characterization	41
		7.1.4	Stream Bed Characterization	41
		7.1.5	Groundwater Results	41
		7.1.6	Conceptual Site Model	41
		7.1.7	Environmental Hazard Evaluation	
		7.1.8	Environmental Hazard Management Plan	42
	7.2		nmendations	
		7.2.1	Flat Area with Future Fill	
		7.2.2	Flat Area with No or Limited Future Excavation	
		7.2.3	Flat Area with Future Excavation	
		7.2.4	Stream Bank	
		7.2.5	Stream Bed	
		7.2.6	Further General Recommendations	
	7.3		Gaps	
8.0	Refer	ences		47
Figure	·s			
1-1		ocation		
2-1	Site L			
3-1		•	urvey Area	
3-2	-	•	d Test Pit Locations	
3-3		_	onitoring Well Locations	
4-1	-	-	nomalies and Test Pit Locations	
4-2a	•	•	A-A' (West-East)	
4-2b			B-B' (Northeast-Southwest)	
4-2c			C-C' (Northeast-Southwest)	
4-3			ove Screening Levels	
4-4			ults Above Screening Levels	
4-5			Results Above Screening Levels	
5-1		eptual Sit	_	
5-2		•		
5-2 5-3	Environmental Hazard Evaluation Summary - Soil			
5-3 6-1	Environmental Hazard Evaluation Summary - Groundwater			
6-2a			ronmental Hazard Management Areas for Soil — DUS and DU6 A-R Horizon	
	-		nmental Hazard Management Areas for Soil – DU5 and DU6 A-B Horizon	
6-2a	•		nmental Hazard Management Areas for Soil – DU5 and DU6 C Horizon I Hazard Management Area – Groundwater	
6-3	CHVII (חווופווומ	i nazaru ivianagement Area — Offulluwatei	

Tables

3-1	Test Pit Excavation Summary
3-2	Decision Unit Soil Sample Collection and Analysis Summary

- 3-3 Temporary Well Construction and Groundwater Analysis Summary
- 4-1 Preliminary Fill and Debris Volume Estimate
- 4-2 Chemicals Detected in Soil
- 4-3 Soil Samples Analyzed for Additional Waste Characterization
- 4-4 Chemicals Detected in Sediment
- 4-5 Chemicals Detected in Groundwater
- Environmental Hazard Evaluation Summary Soil 5-1
- 5-2 Environmental Hazard Evaluation Summary – Groundwater
- 6-1 Environmental Hazard Management Summary – Soil
- 6-2 Environmental Hazard Management Summary – Groundwater
- Site Controls and Long-term Monitoring Activities 6-3

Appendices

- Photographs of Field Activities Α
- В **Geophysical Survey Figures**
- С **Test Pit Logs**
- D Soil Boring Logs
- Ε **Groundwater Sampling Logs**
- F **Laboratory Reports**
- G **Data Quality Evaluation Report**
- Н **Technical Review Comments and HDOH Concurrence**

This page is intentionally left blank.

Abbreviations and Acronyms

μg/kg micrograms per kilogram μg/L micrograms per liter

bgs below ground surface

C/I commercial/industrial

COPC chemicals of potential concern

CSM conceptual site model

DL detection limit
DPS direct push system
DU decision unit

EAL Environmental Action Level

EHE Environmental Hazard Evaluation

EHMP Environmental Hazard Management Plan

EM electromagnetic

GPS Global Positioning System

HAR Hawaii Administrative Rules

HART Honolulu Authority for Rapid Transportation

HAZWOPER Hazardous Waste Operations and Emergency Response

HDOH State of Hawaii Department of Health
HEER Hazard Evaluation and Emergency Response

HEPCRA Hawaii Emergency Planning and Community Right-to-Know Act

HERL Hawaii Environmental Response Law

HRS Hawaii Revised Statutes
HRTP Honolulu Rail Transit Project

HQ hazard quotient

IDW investigation-derived waste IS incremental sampling

LNAPL light, non-aqueous phase liquid

LOD limit of detection
LOQ limit of quantitation
LUC land use control

mg/kg milligram per kilogram mg/L milligram per liter

mL milliliter

NOAA National Oceanic and Atmospheric Administration

PAH polycyclic aromatic hydrocarbons

PCB polychlorinated biphenyls
PEC Probable Effects Concentration

PVC polyvinyl chloride

QAP Quality Assurance Plan

QAPP Quality Assurance Program Plan

QC quality control

RCRA Resource Conservation and Recovery Act
REC Recognized Environmental Conditions

SCP Hawaii State Contingency Plan
SHWB Solid and Hazardous Waste Branch
SOP Standard Operating Procedure
SQuiRTs Screening Quick Reference Tables

SU sampling unit

TCLP toxicity characteristic leaching procedure

TEC Threshold Effects Concentration

TEL Threshold Effects Level
TGM Technical Guidance Manual

TMK tax map key

TPH-d total petroleum hydrocarbons, diesel-range organics (C10-C28)
TPH-g total petroleum hydrocarbons, gasoline-range organics (C6-C10)
TPH-o total petroleum hydrocarbons, oil –range organics (>C28-C40)

TW temporary well

UECA Uniform Environmental Covenants Act

VOA volatile organic analysis
VOC volatile organic compound

1.0 Introduction

This report documents a site characterization conducted for the Banana Patch Properties located in Pearl City, Oahu, Hawaii (Figure 1-1). The characterization area consists of approximately 7.5 acres located along the south edge of Kamehameha Highway approximately 500 feet southeast of the intersection of Kamehameha Highway and Waihona Street, and north and adjacent to Waiawa Stream, in the Waiawa area of Pearl City on the Island of Oahu (Figure 1-1). Work planning was conducted between April 29, and May 13, 2014. The site characterization field work was conducted from May 16 through June 5, 2014.

This report was prepared by CH2M HILL for the Honolulu Authority for Rapid Transportation (HART) in support of the Honolulu Rail Transit Project (HRTP). The site characterization was conducted under CH2M HILL's contract with HART (Contract SC-HRT-1200100 dated August 23, 2012), under Task Order 4.

1.1 Project Background and Objectives

On behalf of HART, CH2M HILL prepared a Work Plan titled *Site Characterization for Banana Patch Property, Pearl City, Oahu, Hawaii* (herein referred to as the Work Plan) (CH2M HILL, 2014a) that described proposed site characterization activities at the Banana Patch Properties (hereafter referred to as the Site). This site characterization was necessary to support the future construction of the Pearl Highlands Station (the Station), the associated section of the rail guideway, and related parking and bus transfer structures. Construction also includes excavation of a significant volume of soil to re-establish the 100-year floodplain that had been modified by past illegal dumping/filling activities.

The site characterization was conducted by HART in advance of future excavation and construction activities at the Site in order to evaluate the nature and extent of potential contamination, pre-characterize materials that may require offsite disposal during construction, evaluate potential risks to site workers during construction, and make decisions regarding potential mitigation measures to eliminate risk to construction workers. Data developed during the investigation were also used to develop an Environmental Hazard Management Plan (EHMP) for the Site. As described in the Work Plan, various activities were conducted at different portions of the Site to achieve the following task-specific objectives:

- Evaluate and delineate, to the extent practicable, the presence and extent of construction and other debris in the subsurface associated with previous dumping or fill activities.
- Qualitatively evaluate the composition and types of fill, construction debris, solid waste, and other debris that is present in the subsurface at the Site.
- Characterize and evaluate surface and subsurface soil and groundwater at the Site.
- Evaluate conditions at the Waiawa Stream bank to estimate the quantities and general characteristics of construction and other debris present within the north bank of the stream.
- Evaluate if sediment within the Waiawa Stream bed has been impacted by historical Site use or other sources.

To meet the objectives specified above, the following activities were conducted:

- Geophysical investigation in accessible areas of the Site to identify metallic and other debris or anomalous structures in the subsurface
- Test pit excavation to further and intrusively investigate selected geophysical anomalies
- Advancement of soil borings and incremental sampling (IS) of surface and subsurface soil for laboratory analysis

- Installation of temporary wells and sampling of groundwater for laboratory analysis
- Waiawa Stream bank visual survey and soil IS for laboratory analysis
- Waiawa Stream bed sediment IS for laboratory analysis

1.2 Regulatory Framework

The HRTP work is governed under various local, state, and federal regulations as described in the Final Environmental Impact Statement. Statutory requirements for identification, reporting, and responding to releases are described in Hawaii laws and regulations that are administered by the State of Hawaii Department of Health (HDOH) Hazard Evaluation and Emergency Response (HEER) Office, and include the following:

- Hawaii Revised Statutes (HRS)
 - HRS 128-D, Hawaii Environmental Response Law (HERL)
 - HRS 128-E, Hawaii Emergency Planning and Community Right-to-Know Act (HEPCRA)
 - HRS 508-C, Uniform Environmental Covenants Act (UECA)
- Hawaii Administrative Rules (HAR)
 - HAR 11-451, Hawaii State Contingency Plan (Hawaii SCP)
 - HAR 11-453, HEPCRA¹

Statutory requirements for managing waste are described in Hawaii laws and regulations administered by the HDOH, Solid and Hazardous Waste Branch (SHWB), and include the following:

- HRS 342-G, Integrated Solid Waste Management
- HRS 342-H, Solid Waste Pollution
- HRS 342-I, Special Waste Management
- HRS 342-J, Hazardous Waste
- HRS 342-L, Underground Storage Tanks
- HAR 11-58.1, Solid Waste Management Control
- HAR 11-104.1, Infectious Waste Management
- HAR 11-260 through 280, Hazardous Waste Management
- HAR 11-281, Underground Storage Tanks

Statutory requirements for managing waters are described in Hawaii laws and regulations administered by the HDOH, Clean Water Branch, and include the following:

- HRS 342D, Water Pollution
- HRS 342E, Nonpoint Source Pollution Management and Control
- HAR 11-55, Water Pollution Control
- HAR 11-62, Wastewater Systems

Reference to HAR 11-453 applies to storage and reporting requirements for chemicals stored in reportable quantities and subsequently released by Contractors from laydown areas.

Although a release of a hazardous substance had not been reported for the Site, HART worked in conjunction with the HDOH HEER office to develop the site characterization requirements and HDOH HEER is considered to be the lead regulatory agency overseeing site characterization activities. The HEER Office has prepared a document to provide guidance on the *Screening for Environmental Hazards at Sites with Contaminated Soil and Groundwater* (HDOH, Fall 2011). In this guidance, HDOH provides environmental action level (EAL) tables organized to reflect four default conceptual site models (CSMs) for contaminated sites in Hawaii based on groundwater utility and proximity to a surface water body. As further discussed in Section 2, the Site is adjacent to Waiawa Stream and does not directly overlie a current or potential source of drinking water (i.e., the shallow aquifer beneath the Site is not used for drinking water purposes). Therefore, the EALs applicable for the Site are those for sites within 150 meters (500 feet) of a surface water body, where drinking water is not threatened (Table B-1 of HDOH guidance). However, for evaluation purposes results were conservatively compared also to the lowest Tier 1 EALs (those for sites within 150 meters from surface water and where drinking water is threatened). The comparison to different EALs allows to evaluate different exposure scenarios, including the unrestricted/residential scenario in case the soil is removed for reuse offsite (that is, outside the Pearl Highlands Work Area).

The HDOH HEER office will review site characterization results and the associated Environmental Hazard Evaluation (EHE) and EHMP developed for the Site. Data developed during this investigation will also be submitted to the HDOH Solid and Hazardous Waste Branch (SHWB) as part of waste disposal planning associated with upcoming construction activities.

1.3 Document Organization

This site characterization report is organized as follows:

- **Section 2.0 Site Background.** Provides a brief description of site history, conditions, and previous investigation.
- Section 3.0 Investigation Procedures. Briefly describes the field procedures for all tasks conducted to characterize the Site.
- Section 4.0 Results. Summarizes the results from the various site characterization activities, including
 geophysical surveys, test pitting, soil sample analytical results, sediment sample analytical results, and
 groundwater sample analytical result.
- **Section 5.0 Environmental Hazard Evaluation**. Describes the potential environmental hazards posed by buried debris and chemicals of potential concern (COPCs) detected in site characterization sampling.
- Section 6.0 Environmental Hazard Management Plan. Presents the proposed approaches for mitigating and managing the potential environmental hazards posed by buried debris and COPCs detected in site characterization sampling.
- **Section 7.0 Conclusions and Recommendations.** Summarizes the fundamental findings and recommendations from the site characterization project.
- Appendix A A Photographs of Field Activities. Presents representative photographs from all phases of the field investigation.
- Appendix B Geophysical Survey Figures. Includes figures illustrating the results of the geophysical surveys.
- Appendix C Test Pit Logs. Provides logs from test pits with photographic documentation of the types of debris encountered.
- Appendix D Soil Boring Logs. Provides the field logs from soil borings.
- Appendix E Groundwater Sampling Logs. Provides the field logs from groundwater sampling.

- **Appendix F Laboratory Reports.** Includes the laboratory reports from soil, sediment, and groundwater sampling. [Because of the large size of the files, the lab reports will only be provided on CD-ROM]
- Appendix G Data Quality Evaluation Report. Includes data validation findings for samples collected during the investigation.
- Appendix H Technical Review Comments and HDOH Concurrence. Includes technical review comments and responses on the Revision 0 version of this document, as well as concurrence that comments have been adequately addressed and resolved in this Revision 1 version of this document.

This report is focused on the results, EHE, EHMP, and recommendations for future use of the Site soil during and after construction activities. Additional details on Site background, data collection strategies and procedures, quality control plan, and project team organization can be found in the Work Plan (CH2M HILL, 2014a).

2.0 Site Background and Setting

This section provides a summary of Site background information including, site description, previous land use, previous site investigations, and the geologic and hydrogeologic setting.

2.1 Summary of Previous Investigations

Limited site investigation was conducted at the Site before the site characterization investigation conducted during this project. Previous investigations include a Phase 1 Site Assessment and a geotechnical investigation to support future HRTP construction efforts. These are briefly summarized as follows.

2.2.1 Phase 1 Environmental Assessment

In 2009, Environet Inc., conducted a Phase 1 Site Assessment for one of the parcels within the Banana Patch (Tax Map Key [TMK] 96003016), titled *Phase 1 Environmental Site Assessment Former Banana Patch, Pearl City, Oahu, Hawaii 96797, TMK (1) 9-6-3, Parcel 16* (Environet Inc, 2009). The assessment was conducted to evaluate existing conditions, investigate the environmental history, and identify the presence of recognized environmental conditions (RECs) within and around the Site. The Phase 1 Environmental Site Assessment consisted of reviewing of historical and regulatory records, visually evaluating site conditions, evaluating Site geology and hydrogeology records, and interviews with persons that had knowledge about former Site activities. This assessment revealed no evidence of current or historical RECs in connection with the Site. No intrusive investigation was conducted during the Phase 1 assessment.

The Phase 1 Environmental Site Assessment reported that the Site was a banana farm from 1957 until sometime between 1969 and 1998. Aerial photographs indicate that large scale agricultural cover was also present at the Site and the surrounding area as early as 1949, continuing for many decades. Since 1981, nearby properties northwest of the Site have been used as a base yard for heavy construction equipment. From 2004 through 2009, a portion of the Site was used as a storage yard for wrecked automobiles.

Items of environmental concern noted in the Phase 1 report included the following:

- Because land use at the Site was agricultural for decades, it is possible that the application of fertilizers and
 pesticides applied over the years may have accumulated in the underlying soil.
- Automobiles may have potentially leaked small quantities of petroleum products directly onto the unpaved ground at the Site while it was being used as an automobile storage yard.
- A spent automobile battery was found partially buried with other miscellaneous trash. Automobile batteries
 usually contain lead and sulfuric acid, and could potentially result in surface and subsurface soil
 contamination.

2.2.2 Geotechnical Investigation

In 2014, Geolabs Inc. conducted an intrusive geotechnical investigation at the Site and adjacent areas; findings were presented in the *Geotechnical Data Report for Honolulu Rail Transit Project Pearl Highlands Parking Structure Transit Center and H2R1 Ramp, Pearl City Oahu, Hawaii* (Geolabs, 2014). The objective of the geotechnical exploration program was to characterize the geologic and hydrogeologic conditions at the locations planned for the parking structure, transit center, and Ramp H2R1, in support of the preliminary civil and structural engineering design for the Station.

During the geotechnical investigation, Geolabs advanced 22 borings to depths ranging from 59 to 141.5 feet below ground surface (bgs). Because this was a geotechnical investigation, no soil or groundwater samples were collected or analyzed. Based on the geotechnical borings conducted by Geolabs, it was estimated that fill mixed with construction debris is present in the subsurface soil at the Site down to depths ranging between approximately 6 and

18 feet bgs. The fill was estimated to be thickest in low lying areas and when overlying native alluvium, which was generally deposited in a low energy environment such as an estuary or bay. The native alluvium under the fill was generally characterized as a reddish brown to dark brown silty clay or clayey silt with a soft to stiff consistency.

2.2 Site Description and History

As described in the Phase 1 report, the Site and adjacent properties were historically used for both agricultural and residential purposes, with a portion of the Site previously used as a storage yard for wrecked cars. The Site was recently acquired by HART for the HRTP. For investigation purposes, the Site was divided into the following sub-areas (see Figure 2-1):

- Flat area (approximately 6 acres), including decision units (DUs) DU1 through DU6, north of Waiawa Stream: Future work in this area will include construction of the Station and related parking structure along the rail guideway. The planned location of the Station is within the stream's 100-year floodplain, which is currently overlain by illegally placed fill material and debris. The 100-year floodplain will be re-established during future construction work by removing a significant volume of fill material and debris (preliminarily estimated at 25,000 cubic yards). The existing fill material, debris, and native soil will be excavated to an estimated depth of 15 feet bgs and will be either reused within the Pearl Highlands Work Area or properly disposed of at a permitted facility offsite. The flat area is therefore further subdivided into three main areas for investigation purposes:
 - Two areas with a combined size of approximately 2 acres where current plans include only fill placement to raise the elevation up to the planned final grade for the ramp, parking garage, and Station. These two areas are located at the east and west ends of the Site, and are referred to as DU1 and DU4, respectively. Because of conditions observed during the investigation, DU1 has been further subdivided into DU1N (where no significant geophysical anomalies were observed) and DU1S (characterized by the presence of significant geophysical anomalies associated with construction debris).
 - An area of approximately 3 acres (DU2 and DU3), where current plans include no or limited excavation (with the exception of column foundation locations) to achieve planned final grade.
 - An area of approximately 1 acre (DU5 and DU6), where current plans include significant excavation in order to re-establish the 100-year floodplain.
- North stream bank (approximately 1 acre), referred to as DU7 and consisting of the embankment directly adjacent to the flat area along the north edge of Waiawa Stream
- The stream bed (approximately 1 acre), including the portions of Waiawa Stream upstream of (DU8), adjacent to (DU9), and downstream of (DU10) of the Site

With the exception of foundations and pavement associated with former buildings, bare soil is exposed at the surface across most of DU2, DU3, DU4, DU5, and DU6. Demolition debris is present at the surface in the western portion of DU6, where a church and residential structures were recently demolished. In the western portion of the Site (DU1 and DU2), recently vacated residential units are still present and have significant amounts of household waste and debris at the surface around them. Various types of vegetation and large trees are present throughout the Site.

According to the City and County of Honolulu, Department of Planning and Permitting website, the Site is zoned as AG-2. The AG-2 agricultural district conserves and protects agricultural activities on smaller parcels of land (City and County of Honolulu, 2011). The 1998 United States Geological Survey (USGS) Topographic Map of the area shows the land portion of the Site as generally flat with an elevation of approximately 20 to 25 feet above mean sea level. The Middle Loch of Pearl Harbor is located approximately 2,000 feet south of the Site.

2.3 Geology and Hydrogeology

The Site is located on the southwest side of the Koolau Mountains, and is underlain by alluvial sediments and the eroded remains of the Koolau Volcanic Shield that consist of tholeitic and olivine basalts with small amounts of oceanite. Soil in the general Site area is designated Kawaihapai clay loam (K1A), (Foote et al., 1972). This series consists of silty clay soil that is present on smooth slopes. In a representative profile the surface soil consists dark brown clay loam up to 22 inches thick (Environet Inc., 2009) and is underlain by dark-brown stratified sandy loam up to 32 inches thick. The substratum is typically stony and gravelly. Soils at the Site exhibit moderate permeability, runoff is slow, and the erosion hazard is low. The available water capacity is about 1.8 inches per foot in the surface layers and about 1.6 inches per foot in the subsoil. In some places, this soil is subject to flooding (Foote et al., 1972). Because the Site is within a floodplain and is adjacent to Waiawa Stream, it is expected that the area was subject to periodic flooding prior to development and placement of fill material.

According to Mink and Lau (Mink and Lau, 1990), the Site lies over two superimposed aquifers. The shallow aquifer, code 30202116 (12211), is a basal (i.e., fresh water in contact with seawater), unconfined, sedimentary aquifer that is ecologically important but is not used as a drinking water resource. This aquifer has low salinity and is irreplaceable and highly vulnerable. The deeper aquifer, code 30202121 (12212), is a basal, confined, flank-type aquifer that is also ecologically important. This aquifer has low salinity and is irreplaceable and is moderately vulnerable.

General groundwater flow direction in the area is to the south, toward Pearl Harbor. It is expected that Waiawa Stream is hydraulically interconnected with the shallow aquifer and that the groundwater beneath the Site generally flows towards the Waiawa Stream in a south-southwest direction. The depth to groundwater at the Site is approximately 12 to 20 feet bgs.

Two production wells (well identification numbers 3-2459-016 and 3-2459-017 in the state Department of Land and Natural Resources well index) are present onsite and appear to be installed in the deeper aquifer at approximately 130 to 140 feet bgs. The past use of these wells is unknown.

Current and historical activities along Waiawa Stream, including activities at the Site, may have contributed to contamination of stream bed sediment. The state of Hawaii placed Waiawa Stream on Hawaii's 303(d) list, which identifies water bodies that are "water quality limited" because they do not meet regulatory standards for certain constituents or parameters (HDOH, 2014).

Waiawa Stream is classified as an interrupted perennial stream, meaning the stream and tributaries are continuously flowing in the uplands, but stream flow is absent in a lowland segment during the dry season (Hawaii Cooperative Park Service Unit, 1990). Waiawa Stream is perennial flowing in the Site area, fed by local springs (AECOS, 1991). A 36-inch-diameter storm-drain culvert daylights at the base of the Kamehameha Highway from the bank at a point directly under the location of the future Pearl Highlands Station along the rail guideway. This storm drain appears to be discharging a perennial flow that may be spring water from Waiawa Springs captured from the *mauka* (mountainward) side of the highway, although the source of the apparently continuous flow has not been verified by CH2M HILL.

This page is intentionally left blank.

3.0 Field Investigation Procedures

This section summarizes the investigation procedures followed for the site characterization. Investigation activities were conducted in general accordance with the Work Plan (CH2M HILL, 2014a) and referenced standard operating procedures (SOPs) included in CH2M HILL's *Project Quality Assurance Plan* (QAP) (CH2M HILL, 2014b). Photographs of field activities are included in Appendix A.

3.1 Pre-Investigation Activities

Several activities took place before starting the field investigation, including coordinating site access, obtaining required permits, mobilizing, conducting site reconnaissance to identify site boundaries, and identifying sampling locations and work areas. Photographs from site reconnaissance and other field activities are included in Appendix A.

All work and Site access was coordinated with HART and other contractors working in the area. Before the start of field activities, CH2M HILL contacted the Hawaii One Call Utility Locating Center to identify existing underground utilities at the Site. As a secondary measure, a third-party utility locating firm (Geotek Hawaii) was also contracted to clear the planned intrusive locations using a Ridgid Seek Tech SR-60. No active or inactive buried utility lines were identified by either the Hawaii One Call Utility Locating Center or by the third-party utility surveyor in the areas where soil borings or test pits were planned. However, an abandoned pipe was identified during trenching (see Section 4.1).

Before starting geophysical survey and direct push system (DPS) drilling activities, it was also necessary to clear dense vegetation to gain access to certain areas of the Site. Vegetation clearance was conducted by using gas-powered string trimmers, as well as an excavator to push down vegetation. No soil grubbing was conducted.

Site reconnaissance was conducted to identify site boundaries, geophysical transects, and boring locations. The boundaries of the DUs were surveyed by CH2M HILL personnel using a hand-held Trimble Navigation Ltd. Global Positioning System (GPS) unit. Within each DU, soil boring locations and test pit locations were marked using marking paint and/or flags and surveyed using the hand-held GPS unit.

3.2 Geophysical Investigation

From May 16 to May 21, 2014, Geotek Hawaii conducted a geophysical survey in accessible portions of the flat area (DU1 through DU6) to identify the presence of subsurface anomalies.

The geophysical survey was conducted using the Geonics, Ltd. EM31-MK2 and EM61-MK2 instruments with transects conducted on approximately 5-foot spacing, as was practical given site conditions. As shown in Figure 3-1 and captured in the photo log in Appendix A, the geophysical survey area was limited to approximately 50 percent of the Site because of presence of the following:

- Residential structures, chicken coops, surface debris, soil stockpiles, and vegetation in DU1 and DU2
- Surface debris, heavy equipment, and materials stored in DU3
- Steep slope on the east side of DU4
- Connex boxes, vegetation, and surface debris in DU5
- Surface debris and a depression in DU6

The geophysical survey transect locations for both the EM31-MK2 and EM61-MK2 instruments were determined using GPS, except within the southernmost portion of DU1S where trees prevented GPS from functioning accurately. Throughout the rest of the Site, GPS data was recorded at 1 hertz, with sub-meter horizontal accuracy.

The Geonics, Ltd. EM31-MK2 measures the electrical conductivity of subsurface materials as deep as 15 feet bgs by inducing a time-varying magnetic field and measuring the amplitude and phase shift of an induced secondary magnetic field. Variations in subsurface conductivity may be caused by the presence of buried metal objects, presence of non-metallic wastes and debris, or by changes in geologic conditions that alter the conductive signature of subsurface materials.

The EM61-MK2 is a high-resolution, time-domain electromagnetic instrument designed to detect, with high spatial resolution, shallow ferrous and non-ferrous metallic objects. The standard EM61-MK2 system consists of two aircored, 1-meter-by-0.5-meter coils, a digital data recorder, batteries and operating electronics. The EM61 transmitter generates a pulsed primary magnetic field, which induces eddy currents in nearby metallic objects. The effective survey depth of EM61-MK2 is generally 10 feet bgs.

Maps presenting the geophysical survey data are included in Appendix B. Geophysical survey results are discussed in Section 4.1.

3.3 Test Pit Investigation

At selected areas where subsurface anomalies were identified during the geophysical surveys, test pits were excavated by Pacific Commercial Services using a Hitachi 135 Track Excavator. The approximate location of each test pit was logged using a hand held Trimble GPS unit. Test pit locations are shown on Figure 3-2 and further discussed in Section 4.1. Test pit logs are provided in Appendix C and summarized in Table 3-1.

As detailed in the Work Plan, the objective of the test pit investigation was to identify the type and extent of buried metallic and non-metallic wastes, debris, and obstructions (e.g., former building foundations) within the proposed construction footprint. Test pit activities included the following:

- At selected areas (up to one per DU) where anomalies were identified during geophysical surveys, test pits were excavated to a maximum depth of approximately 10 feet bgs with variable areal extent.
- CH2M HILL logged and photographed the test pits to document the type(s) of buried objects causing the geophysical anomalies.
- Estimates of the relative quantities of different types of debris and solid waste were developed to assess the
 amount of soil that can potentially be reused during future construction and the volume of debris, waste,
 and soil that may need disposal.
- All excavated material (soil and debris) was replaced in the respective test pit from which it was excavated from, and the ground surface was restored to the previous approximate elevation.

3.4 Drilling Methods and Lithologic Observations

Borings for soil sampling were advanced in the flat area by Geotek HI between May 19 and May 28, 2014, using trackand truck-mounted DPS Geoprobe 6600 series rigs. The approximate soil boring locations in each of the DUs are shown on Figure 3-2. Soil samples from each soil boring were separated into multiple vertical sampling units (SUs) to evaluate different exposure scenarios and waste disposal options as further described in Section 3.5.

Core barrels were dedicated to each vertical SU interval, and disposable acetate liners were used to collect soil from each depth interval within each DU. Because of the use of dedicated/disposable sampling equipment, and because no evidence of gross contamination was encountered during the project, no decontamination of sampling tools/rods was conducted between subsequent vertical SUs within each DU. Decontamination of all sampling equipment was conducted between susbequent DUs.

Continuous coring techniques were used to advance all soil borings to approximately 20 feet bgs while collecting soil cores in acetate sleeves for sample collection. Selected borings were advanced to greater depths (up to 30 feet bgs) at select locations for temporary well installation. All recovered soil cores were screened for volatile vapors using a

Rae Systems MultiRae equipped with a photoionization detector. No volatile vapors were detected in soil cores during the investigation. Field boring logs are provided in Appendix D.

The composition of the fill and the key characteristics of the prevailing lithologic units encountered during the investigation include the following:

• **Fill:** Fill materials were encountered in all soil borings ranging in thickness from approximately 3 feet in DU1N to 20 feet (total boring depth) at some locations in DU3 and DU6 (see boring logs in Appendix D). Fill was relatively thinner in the northwest portion of the Site (DU1N) and thicker in the eastern portion of the Site at DU3, DU5, and DU6.

Fill encountered during the investigation generally consisted of reddish brown silty clay to silty sand with gravel mixed throughout. The consistency was generally medium-stiff to stiff in sections where silty clay dominated, and ranged from loose to dense when the sand and gravel composition increased. Gravel-size material encountered consisted mostly of road fill materials such as asphalt and concrete, with some coralline and basalt gravel. Asphalt, including asphalt paper, and concrete indicative of road fill debris were present within the fill at many boring location. There was very little plastic or glass debris and no visual evidence of gross contamination. Fill materials were generally dry to moist, indicating that they are generally not in contact with the underlying aquifer.

- Native Soil: Below the fill materials, the predominant native soil generally consisted of recent alluvium, saprolite eroded from weathered basalt, marsh, and lagoon deposits (Geolabs, 2014). General characteristics of these sediments include the following:
 - **Recent Alluvium:** tan to brown silty clay with varying amounts of sand. The consistency is generally in the range of very soft to medium stiff, with low to moderate plasticity and dry to moist.
 - Saprolite (Weathered Basalt): reddish brown to dark brown silty clay eroded from weathered basalt.
 This silty clay was generally medium stiff with a moderate plasticity and dry to moist.
 - Marsh Deposits: dark gray and brown silt and clay with traces of fine-grained sand and fibrous organic materials; very soft to soft consistency, moist to wet.
 - Lagoon Deposits: light gray to medium gray sandy silt or silty sand with a very soft to soft consistency, very loose to loose relative density, moist to wet.

The depth to water measured in the temporary wells installed in the flat area of the Site generally ranged from 15 to 20 feet bgs. Therefore, most of the 20 foot deep soil borings reached the capillary fringe or extended below the water table. However, native soil with a relatively high clay content was commonly present at borings in the 15- to 20-foot depth interval. The clay unit near the water table appears to act as an aquitard, inhibiting groundwater movement into the overlying fill materials. Water levels were generally higher in the temporary wells than what observed in boring soil cores, potentially indicating artesian conditions. Based on field observations, the shallow aquifer beneath the Site appears to be semi-confined by the clay unit.

3.5 Soil Sample Collection

Soil borings and test pits were completed in the DUs within the flat area to collect soil samples and characterize potential soil contamination that may have resulted from dumping and other historic activities conducted at the Site. As summarized in Table 3-2, each DU was separated into multiple vertical SUs to delineate potential surface and subsurface contamination, assess different exposure scenarios, and evaluate future waste disposal options. Vertical SUs were established as follows:

Flat area with future fill:

— DU1N

- ➤ A (0 to 0.5 feet bgs) to evaluate surface soil conditions that could potentially affect current and future construction workers
- ➤ **B (0.5 to 3 feet bgs)** for vertical delineation of potential contamination and to evaluate conditions that could potentially affect future construction workers
- > C (3-foot interval below the fill) for vertical delineation of potential contamination

— DU1S:

- ➤ A (0 to 0.5 feet bgs) to evaluate surface soil conditions that could potentially affect current and future construction workers
- ➤ B (8 to 10 feet bgs) to qualitatively evaluate characteristics of possible construction debris and waste identified within DU1S by geophysical investigations, evaluate potential disposal options, and assess conditions that could potentially affect future construction workers if debris/waste is removed
- > C (3-foot interval below the fill) for vertical delineation of potential contamination

— DU4:

- ➤ A (0 to 0.5 feet bgs) to evaluate surface soil conditions that could potentially affect current and future construction workers
- ➤ **B (0 to 3 feet bgs)** to evaluate conditions that could potentially affect current and future construction workers
- Flat area with no or limited future excavation (DU2 and DU3):
 - A (0 to 0.5 feet bgs) to evaluate surface soil conditions that could potentially affect current and future construction workers and future commercial/industrial receptors
 - B (0.5 to 3 feet bgs) for vertical delineation of potential contamination and to evaluate conditions that could potentially affect future construction workers and future commercial/industrial receptors
 - C (3-foot interval below the fill) for vertical delineation of potential contamination and to evaluate
 conditions that could potentially affect future construction workers during excavation/drilling where the
 parking structure and rail station will be constructed
- Flat area with future excavation (DU5 and DU6):
 - A (0 to 5 feet bgs) to evaluate potential disposal options and assess conditions that could potentially
 affect future construction workers during soil removal to re-establish the 100-year floodplain
 - B (5 to 10 feet bgs) to evaluate potential disposal options and assess conditions that could potentially
 affect future construction workers during soil removal to re-establish the 100-year floodplain
 - C (10 to 15 feet bgs) to evaluate potential disposal options and assess conditions that could potentially
 affect future construction workers during soil removal to re-establish the 100-year floodplain
 - **D (3-foot interval below the fill)** for vertical delineation of potential contamination and to evaluate conditions that could potentially affect future receptors

As listed in Table 3-2, replicate samples were collected within the "A" depth interval in DU4 (0 to 0.5 foot bgs) and DU6 (0 to 5 feet bgs). Approximately 30 increments per IS sample were collected at each vertical SU in each DU. Exceptions were the "C" vertical SU at DU1S and the "D" vertical SU at DU6, where significant construction debris

resulted in drilling refusal at many locations with a limited number of increments (12 and 20, respectively) collected. Because of time constraints and lack of evidence of contamination, a limited number of soil increments (15) was also collected at the "B" and "C" SU vertical interval in DU1N.

Fill material was not combined with the underlying native soil during sample collection. A dedicated Terra Core sampler was used to collect soil increments at each vertical SU. Individual soil increments for non-volatile organic compound analysis at each SU consisted of a 50-gram soil aliquot collected by plunging the 5-gram Terra Core sampler 10 times at different depths along the vertical SU interval and extruding the sampler content each time into a dedicated resealable bag. Each sample/SU consisted of a resealable bag containing approximately 1.5 kilograms of soil, which was placed in ice during collection and transport to the analytical laboratory, where samples were processed (drying and sieving/subsampling) and analyzed in accordance with instructions provided in the HDOH Technical Guidance Manual (TGM) (HDOH, 2009). At each IS sample interval below 0.5 feet bgs (i.e., no volatile analysis for surface soil) soil aliquots were also placed into 40 milliliter (mL) volatile organic compound (VOA) vials for volatile organic compound (VOC) analysis. Increments for VOC analysis consisted of 15-gram aliquots collected by plunging the sampler into the soil core at three different depths along the vertical SU interval and then extruding the content into a 40-mL VOA vial that was immediately placed into a cooler with dry ice to freeze the samples. Once at the laboratory, under controlled conditions and while soil was still frozen, all soil aliquots/vials from each SU were combined together for methanol extraction and analysis.

Because of space and access constraints at DU4, where soil investigation was limited to surface/near-surface soil sampling from 0 to 0.5 feet bgs and 0.5 to 3 feet bgs, the 30 IS increments at each vertical SU were collected using a hand drill onto a stainless steel plate. Soil on the plate at each increment location was then transferred into a resealable bag and shipped to the laboratory for analysis. Same sampling method was adopted for surface soil ("A" SU) in DU1N.

IS samples from each SU were analyzed for the following compounds: VOCs (only samples collected deeper than 0.5 feet bgs); total petroleum hydrocarbons (TPH) gasoline-range organics (TPH-g); TPH, diesel-range organics (TPH-d); and TPH, oil-range organics (TPH-o); polycyclic aromatic hydrocarbons (PAH); pesticides; polychlorinated biphenyls (PCBs); herbicides; and Resource Conservation and Recovery Act (RCRA) 8 metals. No evidence of burned material or ash was encountered during soil sampling so no samples were submitted for dioxin/furan analysis.

In addition, waste characterization samples were collected and analyzed at SUs exceeding the HDOH Tier 1 EALs, by grouping together representative portions of soil from each vertical SU from 6 adjacent borings. These samples (FAWC- series samples) were analyzed for the compounds that exceeded Tier 1 EAL in the IS samples; toxic characteristics leaching procedure (TCLP) analysis was also conducted for samples with total metal results greater than 20 times the TCLP limit. The purpose of these samples was to further characterize the distribution of contaminated soil to support the development of disposal alternatives. These results are presented in Section 4.3.

Discrete samples (FADS-DU6D1-0514, FADS-DU6D2-0514, and FADS-DU6D3-0514) were also collected from borings advanced downgradient of two cesspools within the existing depressed area in DU6 to assess potential contamination (Figure 2-1). Samples at these locations were collected in the 3-foot interval below the estimated bottom depth of the cesspool and analyzed for the same parameters as the site characterization soil samples.

3.6 Stream Bank Sampling

As shown on Figure 2-1 and Table 3-2, the stream bank characterization included collection of one IS sample from DU7. The initial stream bank characterization consisted of a visual survey to (1) evaluate if separating the stream bank into multiple DUs was warranted, (2) describe and visually characterize the construction debris and solid waste present along the bank, and (3) estimate the relative percentages of soil, construction and other debris, and solid waste. These estimates were based solely on what could be observed at the surface. No excavation (test pits or borings) was conducted along the bank to evaluate the nature or extent of debris and potential contamination.

Because the debris along the bank is fairly homogeneous, the entire section of the north stream bank along the Site boundary was sampled as a single DU using an IS approach. Photographs of the stream bank survey are provided in Appendix A. The IS sample was collected from 100 increment locations, using hand tools and a random sampling approach, with some of the increments located adjacent to debris and waste along the stream bank. Sample increments were collected between 0 and 1 foot below the surface of the bank and perpendicular to it using a hand drill with a stainless-steel drill bit. All 100 increments were collected into a resealable bag, subsampled in the field, and shipped to the laboratory, where samples were processed (drying and sieving/subsampling) and analyzed in accordance with instructions provided in the HDOH TGM (HDOH, 2009). The IS sample was analyzed for TPH-d, TPH-o, PAHs, pesticides, PCBs, herbicides, and RCRA 8 metals. No evidence of gross contamination or ash or burned material was observed, therefore no discrete samples were collected and analyzed separately from the other IS sample collected in the DU.

3.7 Stream Bed Sediment Sampling

As shown on Figure 2-1 and Table 3-2, the stream bed characterization included collection of IS from the following three DUs:

- DU8: approximately 375 linear feet of stream bed located directly upstream of the Site
- DU9: approximately 1,200 linear feet of stream bed located adjacent to the Site
- DU10: approximately 350 linear feet of stream bed located directly downstream of the Site

Replicate samples were collected at DU9, in the portion of the stream adjacent to the Site. Sampling within DU9 was conducted to evaluate if illegal dumping on the stream bank and/or potential contamination in the Site subsurface soil have impacted the stream bed. Sampling within DU8 was conducted to obtain ambient data and evaluate if potential contamination of sediments within the stream bed section adjacent to the Site could potentially be because of upstream sources. Results from DU10 were collected to help understanding if potential contamination from the Site is impacting the downstream portion of Waiawa Stream.

Using a systematic random IS sampling approach, 30 increment locations were sampled in each DU. Sample increments were collected from the vertical interval between 0 and 0.5 feet below the bed of the stream, composited into a separate resealable bag for each DU, and sent to the laboratory for further IS processing. Because of the excessive amount of time required for drying, stream bed samples were analyzed wet. Samples were analyzed for the following compounds: TPH-d and TPH-o, PAHs, pesticides, PCBs, herbicides, and RCRA 8 metals.

3.8 Temporary Well Construction and Groundwater Sampling

To evaluate if groundwater has been affected by potential subsurface soil contamination, 11 temporary wells (TW-series wells, on Figure 3-3) were constructed and sampled during the site investigation. In addition, an existing monitoring well (labeled at TW-012 in Figure 3-3 for the purpose of this investigation) in the northeastern portion of DU6 was also sampled to meet the project objective of collecting groundwater samples at a frequency of approximately one sample per half acre.

Temporary wells were installed following procedures outlined in the Work Plan (well construction details are summarized in Table 3-3). To install the temporary wells (1.0 and 1.5 inch diameter), boreholes with an approximate diameter of 3.25 inches were advanced to maximum depths of 30 feet bgs. Temporary wells were constructed using polyvinyl chloride (PVC) screens and riser pipe with the top of pre-packed sand filter pack screens located approximately at the water table, and extending up to 10 feet below the water table. After installation, each temporary well was developed by pumping for approximately 12 to 20 minutes. As listed in Table 3-3, the water table is present at approximately 15 to 20 feet bgs in wells completed in the flat area.

At least 24 hours after well development was completed, groundwater samples were collected using bladder pumps and low flow sampling methods. Groundwater sampling logs are included in Appendix E. Groundwater samples were

analyzed for VOCs, TPH-g, TPH-d, TPH-o, pesticides, PCBs, herbicides, and RCRA 8 metals (samples for dissolved metals analysis were filtered using a 0.45 micron filter). No evidence of light, non-aqueous phase liquid (LNAPL) or other gross contamination was noted in development or purged water; therefore, water generated during well development and groundwater sample purging was returned to the ground at the Site in the vicinity of each well it was pumped from.

In addition to groundwater samples, one discrete sample (sample ID, FASC-LNAPL01-0514) containing an oil-like substance was collected using a bailer from a 5-inch-diameter, thin-walled, steel-cased well that is located about 10 feet upgradient of TW-001 (see Figure 3-3). This sample was analyzed for TPH-g, TPH-d, and TPH-o, and was estimated to be oil because of the high concentration (505,000 milligrams per kilogram [mg/kg]) of TPH-o.

3.9 Investigation-derived Waste Management

No investigation-derived waste (IDW) was generated during sampling activities that required storage in 55-gallon drums or offsite disposal. IDW generated during sampling activities and management activities included the following:

- Soil IDW: Soil IDW included soil generated during soil boring, test pitting, and soil sampling activities. Because
 no evidence of grossly contaminated soil was observed, excess soil disturbed during sampling activities (i.e.,
 not shipped to the laboratory for analysis) was placed back into the borehole or test pit it was excavated
 from.
- Other solid waste generated during sampling activities included used personal protective equipment, and municipal-type waste: These wastes consisted of acetate sleeves from soil borings, nitrile gloves, Ziploc bags, and paper towels. All of these items were disposed of offsite as municipal solid waste.
- Liquid waste: No liquid waste was generated during characterization activities because decontamination fluid and purged groundwater were re-infiltrated onsite near the locations from which they were generated.

3.10 Sample Management and Laboratory Analysis

To achieve the project objectives, samples were collected and analyzed in accordance with the Work Plan and the project specific Quality Assurance Program Plan (QAPP) (CH2M HILL, 2014c). Samples were analyzed by Accutest Laboratory, San Jose California, which has been certified by the California Environmental Laboratory Accreditation Program to perform these services.

Target analyte results were compared to the screening level objectives identified in the QAPP. Methods of analysis and detection limit goals are also defined in the QAPP, which shows that the limit of detection (LOD), limit of quantitation (LOQ), or the detection limit (DL) for each listed target compound will, in most cases, meet the screening level objectives for the project. The methods selected for analysis were the most up to date and technologically sound commonly available laboratory methods at the time the work was conducted. All samples were collected and preserved as defined in the QAPP, which also defines the applicable method specific holding times for each method.

Analytical methods were completed in accordance with the method-specific requirements as described in the project-specific QAPP. Analytical data was provided to CH2M HILL as Level IV data deliverables in portable document format (PDF) as well as in electronic data deliverable format as defined by the CH2M HILL LabSpec 7. All results were validated by CH2M HILL chemists for compliance with QAPP requirements.

Validation was performed on an analytical batch basis by assessing quality control (QC) samples and associated field sample results. Data validation guidelines have been developed in accordance with the method requirements and professional judgment. The following information was reviewed as part of a Level-II type summary data validation:

- Chain-of-custody documentation
- Holding time

- QC sample frequencies
- Method blanks
- Laboratory control sample
- Surrogate spikes
- Matric spike/ matric spike duplicate
- Field replicate (duplicate and triplicate) precision
- Case narrative review and other method-specific criteria

Full laboratory data reports are included as Appendix F, while the data quality evaluation report is included in Appendix G.

4.0 Results

This section summarizes the results of the investigations conducted at the Site in May and June 2014 to evaluate if illegal filling and dumping activities conducted at the Site in the past may have impacted soil and groundwater at the Site, or sediments in Waiawa Stream. Investigations included the following:

- A geophysical and test pit investigation to estimate the distribution of fill and construction debris
- Soil sampling and analysis of the flat area
- Soil sampling and analysis of the north bank of Waiawa Stream and the Waiawa Stream bed
- Groundwater sampling and analysis

4.1 Preliminary Estimates of Fill and Construction Debris

Geophysical electromagnetic surveys were conducted at the Site to identify anomalies potentially associated with construction or metallic debris. Select anomalies that were believed to be associated with construction or metallic debris in the subsurface were further investigated through the excavation of test pits. Larger geophysical anomalies were investigated to delineate the lateral and vertical extent of the debris and to estimate the relative composition of the debris present in the subsurface at the Site.

The areas with the greatest density of anomalies (as indicated by EM61 response of greater than 300 millivolts) are shown on Figure 4-1 in pink to purple color. Also shown on Figure 4-1 are the approximate locations of test pits excavated to investigate the types of debris causing these anomalies in DU1, DU2, DU3, and DU6. Additional figures presenting the geophysical survey data are included in Appendix B.

Geophysical observations include the following:

- Unoccupied houses in DU1 and the western third of DU2 remain in place, so limited geophysical investigation could be conducted in these areas. Foundation footings and associated construction materials are likely causing low-level anomalies around the houses in these areas.
- The southeastern portion of DU2 was inaccessible to geophysical investigation because of the presence of soil piles accumulated during HRTP construction.
- Numerous surface metal objects stockpiled at the time of the investigation in the eastern side of DU3 pending use during HRTP construction (including metal connex boxes, roll off bins, and pallets with metal-containing construction parts) interfered with the geophysical equipment, causing anomalies in this area that cannot be inferred as being related to subsurface debris. There were also large connex boxes near Borings 12 and 15 in DU3 that resulted in an anomaly (which shows up as a pink area with a white center on Figure 4-1) that is not indicative of subsurface debris.
- Limited geophysical investigation was conducted in DU4 because of heavy vegetation and a steep elevation change as the stream bank on the eastern side of DU4 merges with the Waiawa Stream.
- Geophysical investigation of the existing depression covering almost half of DU6 was not conducted because of limited access and safety reasons; however, the area (approximately 0.2 acre) was investigated using seven test pits.
- The southern half of DU1 adjacent to the Waiawa Stream had a large area (approximately 0.2 acre) of subsurface anomalies. Because of the presence of dense trees in this area, GPS data could not be recorded for all of this area, although high subsurface response was reported by the geophysical surveyor.

- The central-western portion of DU2 had a small area with a subsurface anomaly that was investigated using a test pit.
- There was also an area of approximately 0.1 acre on the northeastern portion of DU3, far enough away from potential interferences in this DU, which was identified as a subsurface anomaly. This area was investigated using a test pit.

The test pit logs are summarized in Table 3-1 and included in Appendix C. The areas with geophysical anomalies described above that were investigated with test pits include the following:

- Seven test pits were excavated down to approximately 10 feet bgs in the southern portion of DU1, where the largest area of anomalies was detected during the geophysical survey (Figure 4-1). Concrete, rebar, tires, a water heater, a portion of a 55-gallon drum, and other miscellaneous metal debris were encountered in the excavations down to approximately 10 feet bgs and accounted for approximately 40 percent of the volume in all test pits, except for DU1S-TP3 and DU1S-TP5, where no or very minimal debris was found. As summarized in Table 3-1, the approximate relative composition of debris was estimated as follows:
 - 15 to 20 percent concrete
 - 15 percent metal
 - 5 to 10 percent other debris

Because of the extensive debris concentrated in the southern portion of DU1, while no significant geophysical anomalies suggesting subsurface construction/metallic debris were detected in the northern portion, DU1 was split into two DUs: DU1N and DU1S. Similarly, because the extensive debris observed in DU1S was expected to make DPS drilling difficult, 30 IS increments were collected at the surface and from the debris layer within the DU1S test pits for soil chemical characterization purposes.

- One test pit was excavated at DU2 to approximately 3 feet bgs. A 2-inch metal clothesline post was found at the surface, covered by dense underbrush vegetation. No subsurface debris was observed at this location.
- One test pit was excavated within DU3 to approximately 8 feet bgs. Metal and concrete debris was observed to extend to a depth of at least 8 feet bgs. A potentially abandoned concrete pipe was encountered at the bottom of the test pit (approximately 8 feet bgs), but excavation was discontinued before uncovering the pipe to avoid damaging this apparently abandoned utility line. Because the pipe was not uncovered, the diameter could not be estimated. As summarized in Table 3-1, the approximate relative composition of debris was estimated as follows:
 - 10 percent concrete
 - 10 percent metal
 - 5 percent other debris
- Seven test pits were also excavated in a portion of DU6 where an existing excavation was already present from previous housing demolition work that still contained surface debris. Test pits at DU6 generally encountered asphalt, concrete, wood debris, and plastic within the vertical interval from 0 to 5 feet bgs at each excavation, except for test pit DU6-TP7. At test pit DU6-TP7 an abandoned cesspool was identified; other than the cesspool, no debris was identified at this location. As summarized in Table 3-1, the approximate average composition of debris in the DU6 test pits was estimated as follows:
 - 20 percent concrete
 - 10 percent metal
 - 10 percent other debris

Because the large open depression covers a significant portion of DU6, making it was inaccessible to the DPS rigs, soil sample increments were also collected within the test pits to supplement the soil boring IS collected for soil characterization purposes. Test pit and boring increments from comparable depths were combined together to form the IS samples collected at various SU depths within DU6.

Based on soil boring observations, three representative cross sections were prepared to show the estimated vertical relationship between fill material, construction/metal debris, and native soil. Cross sections are presented on Figures 4-2a, 4-2b, and 4-2c, and the locations of the cross sections are shown on Figure 3-2. Based on the investigation results fill material is present across the entire Site and is thickest (approximately 20 feet thick) in the eastern portion of the Site, on the western side of DU3 (DU3 west), and in the existing depression in DU6.

As shown on Figure 4-1 and Figures 4-2a-c, construction and metal debris appears to be limited to the following areas: DU1S, DU3, and the existing depressed area in DU6.

Construction debris (concrete and metal debris) and other debris were also observed on the north bank of Waiawa Stream (DU7), where a visual survey was conducted before IS sample collection to qualitatively evaluate fill/debris relative composition and set up sampling DU. The approximate relative composition of debris on the stream bank was estimated as follows:

- 10 percent concrete
- 5 percent metal
- 5 to 10 percent other debris

Table 4-1 lists the estimated volume of debris that may require offsite disposal based on the estimated lateral and vertical extent of the areas shown on Figure 4-1. Based on geophysical and test pit data, a total area of approximately 0.5 acre is estimated to contain construction and metal debris in the flat area. Test pit data suggest that the approximate thickness for construction debris is 8 feet in the DU3 east, 3 feet in DU6, and 10 feet or more in DU1S. Based on visual observations, an additional 1-acre area impacted by construction and other debris is estimated along the north stream bank, where a depth of approximately 3 feet is assumed (i.e., not test pits or intrusive investigation of debris was conducted along the bank).

Based on these estimates, a total volume of approximately 75,000 cubic feet of construction and metal debris may be present in the subsurface at the Site. Of this, approximately 30,000 cubic feet appears to be metal debris and 45,000 cubic feet appears to be concrete and other construction debris.

4.2 Flat Area Soil Characterization

The flat area includes DU1 through DU6. Soil characterization of the flat area included soil sampling to evaluate surface and subsurface conditions and current and future exposure scenarios. Three subareas within the flat area were identified based on future construction and exposure scenarios. Samples were collected using both IS and discrete sampling approaches (Table 3-2 presents a summary of collection methods). Soil analytical results are discussed below. Analytical results for analytes detected above laboratory DLs are summarized in Table 4-2. For evaluation purposes, soil detections were conservatively compared to the following HDOH EALs (HDOH, Fall 2011):

- Tier 1 (lowest) EALs for unrestricted/residential sites within 150 meters of a surface water body, where drinking water is threatened.
- EALs for unrestricted/residential sites within 150 meters of a surface water body, where drinking water is not threatened
- EALs for commercial/industrial (C/I) sites within 150 meters of a surface water body, where drinking water is threatened.
- EALs for C/I sites within 150 meters of a surface water body, where drinking water is not threatened

Analytes detected above the EALs are summarized in Table 4-2 and Figure 4-3. Results for each specific area are discussed in the following subsections.

4.2.1 Area with Future Fill

The area with future fill includes DU1N, DU1S, and DU4; soil characterization in these DUs included surface and subsurface soil sampling to evaluate if contamination was present and to evaluate current and future exposure scenarios. As briefly discussed in Section 4.1, DU1 was split into two DUs based on geophysical and test pit investigation results. No significant geophysical anomalies were detected in the northern portion of the DU, leading to the conclusion that no subsurface construction or metal debris was present in this subarea; significant anomalies detected in the southern portion of DU1 were confirmed to correspond to construction and other debris. Therefore, DU1 was divided into two DUs (DU1N and DU1S) so that samples representative of the differing conditions in each area would be collected. All samples in the area with future fill were collected using an IS approach.

Analytical results for analytes detected above laboratory DLs are summarized in Table 4-2. Analytes detected above the Tier 1 EALs are shown on Figure 4-3. The following discusses detected analytes and those that exceeded the HDOH EALs, for the three DUs:

- **DU1N** Samples were collected from three vertical SUs:
 - A (0 to 0.5 feet bgs) –TPHs, PAHs, and RCRA 8 metals were detected in surface soil. Concentrations were below the Tier 1 EALs except for benzo[a]pyrene, which was detected at a concentration of 159 micrograms per kilogram (μg/kg), above the Tier 1 EAL of 150 μg/kg but below the C/I EAL of 2.1 mg/kg.
 - **B (0.5 to 3 feet bgs)**—TPHs, PAHs, organochlorine pesticides, PCBs, and RCRA 8 metals were detected in this depth interval. However, all concentrations are below the Tier 1 EALs.
 - C (3-foot interval below the fill)² –TPHs, PAHs, organochlorine pesticides, PCBs, and RCRA 8 metals were
 detected in subsurface soil in the 3-foot interval below the fill. However, all concentrations were below
 the Tier 1 EALs.
- **DU1S** Samples were collected from three vertical SUs:
 - A (0 to 0.5 feet bgs) –TPHs, PAHs, organochlorine pesticides, herbicides, and the RCRA 8 metals were detected in surface soil. However all concentrations were below the Tier 1 EALs.
 - B (0.5 to 3 feet bgs) –TPHs, PAHs, organochlorine pesticides, herbicides, PCBs, and the RCRA 8 metals were detected in this depth interval. Concentrations were below the Tier 1 EALs except for TPH-o and benzo[a]pyrene.
 - > TPH-o was detected at a concentration of 647 mg/kg, above the Tier 1 EAL of 500 mg/kg but below the C/I EALs of 1,000 mg/kg.
 - > Benzo[a]pyrene was detected at a concentration of 243 μg/kg, above the Tier 1 EAL of 150 μg/kg but below the C/I EALs of 2,100 μg/kg.
 - C (3-foot interval below the fill)³ –TPHs, PAHs, organochlorine pesticides, and RCRA 8 metals were
 detected in subsurface soil in the 3-foot interval below the fill. However, all concentrations were below
 the Tier 1 EALs.

² Fill material in DU1N was found at a depth ranging between 3 feet and 12 feet bgs (average depth of approximately 6 feet bgs).

³ Fill material in DU1S was found at a depth ranging between 10 feet and 13 feet bgs (average depth of approximately 10.5 feet bgs).

- **DU4** Samples were collected from two different vertical SUs, with primary, replicate and triplicate samples collected from the A SU depth:
 - A (0 to 0.5 feet bgs) –TPHs, PAHs, organochlorine pesticides, herbicides, and RCRA 8 metals were
 detected in surface soil. Concentrations were below the Tier 1 EALs, except for heptachlor epoxide and
 lead.
 - Heptachlor epoxide was detected at estimated concentrations (J qualified) ranging from 61.6J to 79.3J μg/kg in the replicate samples. These results are above the Tier 1 EAL of 53 μg/kg but below the C/I EAL of 190 μg/kg.
 - ➤ Lead was detected at concentrations ranging from 720 to 873 mg/kg in the replicate samples. These results are all above the Tier 1 EAL of 200 mg/kg, and range from below to above the C/I EAL of 800 mg/kg.
 - B (0 to 3 feet bgs) This sample was analyzed for RCRA 8 metals, based on the Tier 1 EAL exceedance in the A horizon sample. Numerous RCRA 8 metals were detected. Lead was detected at 902 mg/kg, above the Tier 1 EAL of 200 mg/kg and the C/I EAL of 800 mg/kg. TPHs, PAHs, pesticides, PCBs, and herbicides were not analyzed in this sample because they were not detected above the Tier 1 EAL in the surface soil sample.

4.2.2 Area with No or Limited Future Excavation

The area with no or minimal future excavation includes DU2 and DU3. Soil characterization in these DUs included surface and subsurface soil sampling to evaluate if contamination was present and to evaluate current and future exposure scenarios. All samples were collected using an IS approach.

Analytical results for analytes detected above laboratory DLs are summarized in Table 4-2. Analytes detected above the Tier 1 EALs are shown on Figure 4-3. The following discusses detected analytes and those that exceeded the HDOH EALs, for the two DUs:

- **DU2** Samples were collected from three different vertical SUs:
 - A (0 to 0.5 feet bgs) TPH-o, chlordane, and RCRA 8 metals were detected in surface soil. Concentrations were below Tier 1 EALs, except for TPH-o, which was detected at a concentration of 1,410 mg/kg—above the Tier 1 EAL of 500 mg/kg and the C/I EALs of of 1,000 mg/kg.
 - B (0.5 to 3 feet bgs) TPHs, PAHs, organochlorine pesticides, and RCRA 8 metals were detected in subsurface soil between 0.5 and 3 feet bgs. Concentrations were below the Tier 1 EALs, except for TPH-o and benzo[a]pyrene, which were detected at a concentration of 736 mg/kg and 734 μg/kg, respectively. Although concentrations of these two compounds were above the Tier 1 EALs (500 mg/kg and 0.15 mg/kg, respectively), the C/I EALs (1,000 mg/kg and 2.1 mg/kg) were not exceeded.
 - C (3-foot interval below the fill)⁴ –TPHs, PAHs, organochlorine pesticides, herbicides, and RCRA 8 metals
 were detected in subsurface soil in the 3-foot interval below the fill. However, all concentrations were
 below Tier 1 EALs.
- DU3 Samples were collected from three different vertical SUs:
 - A (0 to 0.5 feet bgs) –TPHs, PAHs, organochlorine pesticides, PCBs, and RCRA 8 metals were detected in surface soil. Concentrations were below the Tier 1 EALs, except for TPH-o, which was detected at a concentration of 634 mg/kg, above the Tier 1 EAL of 500 mg/kg but below the C/I EALs of 1,000 mg/kg.

⁴ Fill material in DU2 was found at a depth ranging between 8 feet and 18 feet bgs (average depth of approximately 13 feet bgs).

- B (0.5 to 3 feet bgs) –TPHs, PAHs, organochlorine pesticides, PCBs, herbicides, and RCRA 8 metals were detected in subsurface soil between 0.5 and 3 feet bgs. However, all concentrations were below Tier 1 EALs.
- C (3-foot interval below the fill)⁵ –TPHs, PAHs, organochlorine pesticides, PCBs, and RCRA 8 metals were detected in subsurface soil beneath the fill. However, all concentrations were below Tier 1 EALs.

4.2.3 Area with Future Excavation

The area with future excavation includes DU5 and DU6; soil characterization in these DUs included surface and subsurface soil sampling to evaluate if contamination was present and to evaluate waste disposal alternatives. All samples were collected using an IS approach.

Analytical results for analytes detected above laboratory DLs are summarized in Table 4-2. Analytes detected above the Tier 1 EALs are shown on Figure 4-3. The following discusses analytes that were detected and that exceeded the HDOH EALs, for the two DUs:

- DU5 Samples were collected from four different vertical SUs:
 - A (0 to 5 feet bgs) –TPHs, PAHs, organochlorine pesticides, herbicides, and RCRA 8 metals were detected in this interval. Concentrations were below the Tier 1 EALs except for TPH-d, TPH-o, arsenic, and lead.
 - > TPH-d was detected at a concentration of 208J mg/kg, which is above the Tier 1 EAL of 100 mg/kg but below the C/I EAL (drinking water not threatened) of 500 mg/kg.
 - > TPH-o was detected at a concentration of 1,970 mg/kg, which is above the Tier 1 and C/I EALs of 500 mg/kg and 1,000 mg/kg, respectively.
 - Arsenic was detected at a concentration of 50.1 mg/kg, which is above the Tier 1 EAL of 24 mg/kg and below the C/I EAL of 95 mg/kg.
 - Lead was detected at a concentration of 804 mg/kg, which is above the Tier 1 and C/I EALs of 200 mg/kg and 800 mg/kg, respectively.
 - B (5 to 10 feet bgs) –TPHs, PAHs, organochlorine pesticides, herbicides, and RCRA 8 metals were detected in subsurface soil between 5 and 10 feet bgs. Concentrations were below the Tier 1 EALs, except for TPH-d, TPH-o, and benzo[a]pyrene.
 - Benzo[a]pyrene was detected at a concentration of 211 μ g/kg, which is above the Tier 1 EAL of 150 μ g/kg but below the C/I EALs of 2,100 μ g/kg.
 - > TPH-d was detected at a concentration of 283J mg/kg, which is above the Tier 1 EAL but below the C/I EAL (drinking water not threatened) of 500 mg/kg.
 - > TPH-o was detected at a concentration of 2,450 mg/kg, which above the Tier 1 EAL and C/I EAL of 500 mg/kg and 1,000 mg/kg, respectively.
 - C (10 to 15 feet bgs) PAHs, TPHs, organochlorine pesticides, and RCRA 8 metals were detected in subsurface soil between 10 and 15 feet bgs. Concentrations were below the Tier 1 EALs except for benzo[a]pyrene, TPH-d, and TPH-o.
 - > TPH-d was detected at an estimated concentration of 262 mg/kg, which is above the Tier 1 and C/I EAL of 100 mg/kg but below the C/I EAL (drinking water not threatened) of 500 mg/kg.

_

⁵ Fill material in DU3 was found at a depth ranging between 12 feet and 20 feet bgs (average depth of approximately 16.5 feet bgs).

- > TPH-o was detected at an estimated concentration of 2,370 mg/kg, which is above the Tier 1 EAL and C/I EALs of 500 mg/kg and 1,000 mg/kg, respectively.
- Benzo[a]pyrene was detected at a concentration of 176 μg/kg, which is above the Tier 1 EAL of 150 μg/kg but below the C/I EAL of 2,100 μg/kg.
- D (interval below the fill)⁶ –TPHs, PAHs, organochlorine pesticides, and RCRA 8 metals were generally detected at low levels in subsurface soil immediately below the fill. Concentrations were below the Tier 1 EALs except TPH-o. TPH-o was detected at a concentration of 619 mg/kg, which is above the Tier 1 EAL of 500 mg/kg but below the C/I EALs of 1,000 mg/kg.
- DU6 Samples were collected from four different vertical SUs:
 - A (0 to 5 feet bgs) –TPHs, PAHs, organochlorine pesticides, herbicides, and RCRA 8 metals were detected
 in this interval in the primary, replicate and triplicate samples. Concentrations were below the Tier 1
 EALs, except for TPH-d, TPH-o, benzo[a]pyrene, and lead.
 - > TPH-d was detected at estimated concentrations ranging from 158 to 200 mg/kg, which is above the Tier 1 EAL of 100 mg/kg but below the C/I EAL (drinking water not threatened) of 500 mg/kg.
 - > TPH-o was detected at concentrations ranging from of 1,070 to 1,290 mg/kg, which is above the Tier 1 and C/I EALs of 500 mg/kg and 1,000 mg/kg, respectively.
 - \triangleright Benzo[a]pyrene was detected at a concentration ranging from 856 to 1,080 μg/kg, which is above the Tier 1 EAL of 150 μg/kg but below the C/I EAL of 2,100 μg/kg.
 - Lead was detected at a concentration of 227 mg/kg in the replicate sample only, above the Tier 1 EAL of 200 mg/kg but below the C/I EALs of 800 mg/kg.
 - B (5 to 10 feet bgs) –TPHs, PAHs, organochlorine pesticides, herbicides, and RCRA 8 metals were detected in this interval. Concentrations were below the Tier 1 EALs except for TPH-d, TPH-d, benzo[a]pyrene, and lead.
 - > TPH-d was detected at a concentration of 163J mg/kg, which is above the Tier 1 EAL of 100 mg/kg but below the C/I EAL (drinking water not threatened) of 500 mg/kg.
 - > TPH-o was detected at concentration of 1,150 mg/kg, which is above the Tier 1 and C/I EALs of 500 mg/kg and 1,000 mg/kg, respectively.
 - \triangleright Benzo[a]pyrene was detected at a concentration of 738 μg/kg, which is above the Tier 1 EAL of 150 μg/kg but below the C/I EAL of 2,100 μg/kg.
 - Lead was detected at a concentration of 239 mg/kg, which is above the Tier 1 EAL of 200 mg/kg but below the C/I EALs of 800 mg/kg.
 - C (10 to 15 feet bgs) –TPHs, PAHs, organochlorine pesticides, herbicides, and RCRA 8 metals were detected in this interval. Concentrations were below the Tier 1 EALs, except for TPH-d, TPH-o, and benzo[a]pyrene.
 - > TPH-d was detected at an estimated concentration of 141 mg/kg, which is above the Tier 1 EAL of 100 mg/kg but below the C/I EAL (drinking water not threatened) of 500 mg/kg.
 - > TPH-o was detected at concentration of 1,010 mg/kg, which is above Tier 1 and C/I EALs of 500 mg/kg and 1,000 mg/kg, respectively.

 $^{^6}$ Fill material in DU5 was found at a depth ranging between 9 feet and 18 feet bgs (average depth of approximately 14 feet bgs).

- > Benzo[a]pyrene was detected at a concentration of 617 μg/kg, which is above the Tier 1 EAL of 150 μg/kg but below the C/I EAL of 2,100 μg/kg.
- D (3-foot interval below the fill)⁷ –TPHs, PAHs, organochlorine pesticides, and RCRA 8 metals were detected at generally low concentrations in this interval. Concentrations were below Tier 1 EALs, except for heptachlor epoxide. Heptachlor epoxide was detected at a concentration of 8.14J μg/kg. This result is above the Tier 1 EAL of 53 μg/kg, but below the C/I EAL of 190 μg/kg.

4.3 Flat Area Waste Characterization

Table 4-3 presents the sample results for soil samples analyzed for additional waste characterization, which were used to further characterize the nature and extent of contaminated soil and to support the development of disposal alternatives. Waste characterization samples were collected in the field and archived during normal sample collection, combining representative portions of soil from 6 adjacent borings of each SU together (see section 3.6 for more details). Flat area archived, combined soil samples from vertical SUs resulted in exceedances of the Tier 1 EALs for TPH-d and TPH-o were analyzed to obtain further definition of the areas of each DU contributing the highest TPH concentration to each composite SU sample. In addition, samples that had total metals greater than 20 times the TCLP limit were analyzed for TCLP. Results for these waste characterization samples are summarized as follows (Table 4-3):

- TPH-d and TPH-o detections were compared against the HDOH Tier 1 EALs to evaluate disposal options, and
 against the C/I EALs (drinking water not threatened) to evaluate reuse within the Pearly Highlands Work
 Area. Only the "C" horizon sample from DU5 (FAWC-DU51318C) contained TPH-d and TPH-o at
 concentrations greater than the C/I Tier 1 EALs.
- In the samples analyzed that had total metals greater than 20 times the TCLP limit, there were no
 exceedances of TCLP limits.

4.4 Discrete Soil Sample Results

Three discrete samples were collected from borings advanced downgradient of two cesspools in the DU6 excavation area, to assess potential contamination. Two borings were advanced for sample collection (FADS-DU6D1-0514 and FADS-DU6D2-0514) downgradient of a cesspool identified within the eastern side of the excavation in DU6 (Figure 2-1) during site investigation. One boring was advanced for sample collection (FADS-DU6D3-0514), downgradient of the cesspool on the western side of DU6. Samples at these locations were collected in the 3-foot interval below the estimated bottom depth of the cesspools (approximately 14 to 17 feet bgs) and analyzed for the same parameters as IS samples. The two cesspools within DU6 had been recently inspected. They did not contain sewage or sludge and were temporarily filled during grading activities. These cesspools will be excavated and removed during construction of the Pearl Highlands Garage and Station. Other cesspools located around residential structures will be investigated and properly abandoned as part of future construction efforts.

As summarized in Table 4-2, TPHs, PAHs, organochlorine pesticides, herbicides, and RCRA 8 metals were detected in the FADS-DU6D1-0514 and FADS-DU6D3-0514 samples. TPHs, herbicides, and RCRA 8 metals were detected in the FADS-DU6D2-0514 sample. Analytes detected in the three samples were below the Tier 1 EALs, except for lead, which was found in sample FADS-DU6D3-0514 at a concentration of 362 mg/kg, above the Tier 1 EAL of 200 but below the C/I EALs of 800 mg/kg.

4.5 Stream Bank Characterization

The Waiawa Stream bank includes DU7, as shown on Figure 2-1. Surface soil samples were collected along the stream bank to evaluate if potential contamination from the flat area and/or debris on the stream bank itself had also

⁷ Fill material in DU6 was found at a depth ranging between 12 feet and 20 feet bgs (average depth of approximately 16 feet bgs).

impacted the northern bank of Waiawa Stream. All samples were collected using an IS approach. The initial stream bank characterization consisted of a visual survey to evaluate if separating the stream bank into multiple DUs was warranted. Because the types and distribution of debris observed at the surface were generally consistent along the portion of the stream bank evaluated, the entire section of the stream bank along the site boundary was identified as a single DU.

The IS sample in DU7 was composed of 100 increments taken from the surface to 1 foot below the surface of the bank (and perpendicular to it). As summarized in Table 4-2, TPHs, PAHs, organochlorine pesticides, PCBs, and RCRA 8 metals were detected, but concentrations were below the Tier 1 EALs.

4.6 Stream Bed Characterization

The Waiawa Stream bed includes DU8 (upgradient), DU9 (adjacent to the Site), and DU10 (downgradient from the Site), as shown on Figure 2-1. Samples were collected to evaluate whether potential contamination from the stream bank and subsurface soil at the flat area have impacted the stream bed. An upgradient (DU8) reach of the stream was sampled to evaluate ambient contamination levels upstream of the Site, and a downgradient (DU10) reach of the stream was sampled to evaluate if the potential contamination in DU9, was also present downstream of the Site. All samples were collected using an IS approach.

IS samples from both DU8 and DU10 were composed of 30 increments, and one set of replicate IS samples was also collected from DU9. Analytical results were compared to the National Oceanic and Atmospheric Administration Screening Quick Reference Tables (NOAA SQuiRTs), Threshold Effects Concentration (TECs) and Probable Effects Concentration (PECs) (NOAA, November 2008). The following samples exceeded the NOAA SQuiRTs PEC and/or TEC screening criteria (see Table 4-4 and Figure 4-4):

- DU8 (upgradient of Site) RCRA 8 metals (chromium) were detected above the NOAA SQuiRTs TECs.
- **DU9 (adjacent to Site)** Replicate samples were collected. RCRA 8 metals (chromium and lead) were detected above the NOAA SQuiRTs TECs in at least one of these three samples.
- **DU10 (downgradient of Site)** RCRA 8 metals (cadmium and chromium) were detected above the NOAA SQuiRTs TECs, the latter also above the PEC level.

These data indicate that RCRA 8 metals are present at concentrations above the NOAA SQuiRTs PEC and/or TEC screening levels in all stream bed sediments sampled, including those upstream, adjacent to, and downstream of the Site.Although the chromium and lead concentrations found in the stream exceed NOAA sediment PECs and TECs, they are below natural background levels for soil in Hawaii (HDOH, December 2014). Low levels of other constituents for which no NOAA sediment criteria are available (for example, TPH-d, TPH-o, pentachlorophenol, and selenium), were also detected in sediment samples. Concentrations of these constituents were relatively low, well below the unrestricted Tier 1 EALs for soil.

4.7 Groundwater Characterization

To evaluate if groundwater has been affected by subsurface soil contamination at the Site, 11 temporary wells were constructed and sampled during the site investigation. In addition, an existing monitoring well in the northeastern portion of DU6 was also sampled to meet the project objective of collecting groundwater samples at a frequency of approximately one groundwater sample per half acre. As listed in Table 4-5, groundwater analytes detected above the laboratory DLs included VOCs, TPHs, organochlorine pesticides, and RCRA 8 metals. Groundwater analytical results for detections above the HDOH Tier 1 EALs and the C/I HDOH EALs (drinking water not threatened) are summarized in Table 4-5 and presented on Figure 4-5. Analytes detected above the Tier 1 EALs include the following:

• TPH-g was detected at TW-002 at a concentration of 148 micrograms per liter (μ g/L), above the unrestricted Tier 1 EAL of 100 μ g/L but below the C/I EAL of 500 μ g/L.

- TPH-d was detected above the unrestricted Tier 1 EAL of 0.1 milligrams per liter (mg/L) at TW-007, TW-008, and TW-010 at concentrations of 0.149 mg/L, 0.125 mg/L, and 0.118 mg/L, respectively. Concentrations were below the C/I EAL of 0.64 mg/L.
- TPH-o was detected above the unrestricted Tier 1 EAL of 0.1 mg/L at TW-007 and TW-008 at estimated concentrations of 0.123 mg/L and 0.132 mg/L, respectively. Concentrations were below the C/I EAL of 0.64 mg/L.
- Organochlorine pesticides detected above the unrestricted Tier 1 EALs include the following:
 - Aldrin was detected above the unrestricted Tier 1 EAL of 0.004 μ g/L at wells TW-002 (estimated concentration of 0.0059) and TW-008 (0.46 μ g/L).
 - Chlordane was detected above the unrestricted Tier 1 EAL of 0.004 μ g/L at well TW-005 at an estimated concentration of 0.056 μ g/L.
 - Dieldrin was detected above the unrestricted Tier 1 EAL of 0.0019 μg/L at the following wells: TW-001 (estimated concentration of 0.0035 μg/L), TW-002 (0.0032 μg/L), TW-003 (estimated concentration of 0.0052μg/L), TW-005 (estimated concentration of 0.0028 μg/L), TW-006 (estimated concentration of 0.0033 μg/L), TW-008 (0.24 μg/L), TW-009 (estimated concentration of 0.0036 μg/L), and TW-010 (estimated concentration of 0.0023 μg/L).
 - Heptachlor was detected above the unrestricted Tier 1 EAL of 0.0036 μg/L in all groundwater samples.
 However, all results were B qualified, meaning that quantitation between primary and confirmation analyses differed by greater than 40 percent, so there is some uncertainty to the actual concentration of heptachlor in groundwater.
 - Heptachlor epoxide was detected above the unrestricted Tier 1 EAL of 0.0036 μ g/L at the following wells: TW-003 (estimated concentration of 0.0076 μ g/L), TW-005 (estimated concentration of 0.0053 μ g/L), TW-006 (0.019 μ g/L), TW-007 (estimated concentration of 0.0078 μ g/L), TW-009 (estimated concentration of 0.0063 μ g/L), and TW-010 (estimated concentration of 0.0047 μ g/L).

Except for aldrin in TW-002, concentrations of organochlorine pesticides in groundwater were also above the C/I EALs. Because organochlorine pesticides samples were not filtered before testing, the presence of heptachlor is possibly related to low levels of chlordane in shallow soil in most DUs.

- Dissolved selenium was detected above the unrestricted Tier 1 and C/I EALs of 5 μ g/L at TW-002, TW-003, TW-006, TW-007, TW-008, TW-010, TW-011, the TW-011 field duplicate, and TW-012. All concentrations above the EALs (except for TW-001 [21.7 μ g/L]) were estimated concentrations of less than 10 μ g/L.
- Dissolved silver was detected in TW-006 at 1.4 μ g/L (estimated "J" value), above the unrestricted Tier 1 and C/I EALs of 1 μ g/L.

In addition, one discrete sample (FASC-LNAPL01-0514) of an oil-like substance was collected using a bailer from the thin walled 5-inch steel-cased well located in DU3, about 10 feet upgradient of TW-001 (Figure 3-3). This sample was analyzed for TPH-g, TPH-d, and TPH-o. TPH-g was detected at 42.9 mg/kg, TPH-d was detected at 70,500 mg/kg, and TPH-o was detected at 505,000 mg/kg. A measurement of the thickness of LNAPL was attempted with an oil-water interface probe, but the substance was too viscous to obtain an accurate measurement. Depth to water in TW-001 and the steel-cased well containing oil were estimated to be within 0.2 foot of each other, and limited LNAPL was retrieved in the bailer sample.

In the temporary well TW-001, located approximately 12 feet downgradient (south) of the 5-inch steel-cased well, TPH-g and TPH-o were not detected while TPH-d was detected at an estimated concentration of 0.034 mg/L, below the unrestricted Tier 1 EAL of 0.1 mg/L. Further downgradient at TW-004 (near the Waiawa Stream), TPH-g, TPH-d, and TPH-o were all non-detect.

5.0 Conceptual Site Model and Environmental Hazard Evaluation

This section describes the CSM for the Site and provides the EHE for the COPCs found in soil and groundwater.

5.1 Conceptual Site Model

A CSM for the Site has been developed based on the results of the investigation conducted in May and June 2014 and available historical information for the Site. The elements of the CSM are described in the subsections below. The CSM is graphically represented in Figure 5-1.

5.1.1 Site Land Use

Historically, the Site and adjacent properties were used for both agricultural and residential purposes; available records also indicate that a portion of the Site was previously used as a storage yard for wrecked cars. The Site was recently acquired by HART for the HRTP and demolition of existing residential units is in process. The current and reasonably anticipated land use for the Site is C/I. However, because of the potential removal and reuse of soil outside the Pearl Highlands Work Area, unrestricted/residential use of soil is also evaluated.

5.1.2 Contaminants of Potential Concern

In this report, COPCs are defined as those compounds with concentrations above the Tier 1 (lowest) EAL. Based on investigation results, the COPCs at the Site are the following:

•	Soil
	— TPH-d
	— TPH-o
	Benzo[a]pyrene
	— Heptachlor epoxide
	— Arsenic
	— Lead
•	Groundwater
	— Aldrin
	— Chlordane
	— Dieldrin
	— Heptachlor
	— Heptachlor epoxide
	— Lead
	— Mercury ⁸
	— Selenium

⁸ Although mercury was not detected, the detection limit for groundwater was higher than the Tier 1 EAL. As a conservative measure, it is therefore considered as a potential COPC.

- Silver
- Sediments
 - Cadmium
 - Chromium
 - Lead

5.1.3 Sources of Contamination

Based on investigation data, the most likely source of contamination at the Site is the fill material found between the surface and depths of up to approximately 15 feet bgs. Historical agricultural use may also have been a source of contamination within the Site and in the Waiawa Stream flowing adjacent to the Site. Because of the presence of organochlorine pesticides in all wells at the Site, with relatively higher concentrations in the upgradient wells, it is possible that use of chemical products during past agricultural use on a larger area (including, but extending beyond the Site boundary – i.e., regional scale) may have contributed to groundwater contamination. Finally, a limited volume of LNAPL was observed within a steel-cased well located within DU-3 that may be contributing to gross contamination concerns within that DU in the immediate vicinity of the well (as further discussed in Section 5.2.1.1).

As described in previous sections, fill material includes construction debris (concrete and metal debris) and other waste, which are a likely source of contamination in soil, and may have also contributed to relatively high levels of pesticides and metals in groundwater.

5.1.4 Transport Mechanism

Transport mechanisms for COPCs found in fill/debris between the surface and approximately 10 to 15 feet bgs at the Site include the following:

- Leaching of COPCs from surface/subsurface soil to deeper soil
- Leaching of COPCs from subsurface soil to the shallow aquifer
- Migration of COPCs from shallow groundwater to surface water

5.1.5 Potential Receptors and Exposure Pathways

Based on current and reasonably anticipated future land use of the Site and the investigation results, potentially complete exposure pathways exist for the following human and ecological exposure scenarios:

- Future Hypothetical residents: Potential exposure of hypothetical residents to COPCs in surface soil and subsurface soil (down to 10 feet bgs) could occur by incidental ingestion, dermal contact, and inhalation of soil particles if contaminated soil was removed and reused outside the Pearl Highlands Work Area in a residential area.
- Future rail workers/users: Potential intermittent exposure of future workers/rail users to COPCs in surface
 and subsurface soil (down to 10 feet bgs) is assumed to occur by incidental ingestion, dermal contact, and
 inhalation of soil dust particles.
- Trespassers/recreational users: Potential intermittent exposure of trespassers and recreational users to COPCs in surface and subsurface soil (down to 1 foot bgs) could occur during rail guideway/station construction by incidental ingestion, dermal contact, and inhalation of soil dust particles.
- Construction workers: Exposure of construction workers to COPCs in surface and subsurface soil (down to construction depths) could occur during rail guideway/station construction by incidental ingestion, dermal contact, and inhalation of soil dust particles. Potential exposure of construction workers to groundwater, and sediment could also occur by incidental ingestion and dermal contact.

• Ecological aquatic receptors: Potential exposure of aquatic ecological receptors populating the Waiawa Stream could occur by ingestion of and dermal contact with groundwater draining into the stream. Potential exposure of ecological aquatic receptors to sediment could also occur by incidental ingestion and dermal contact. Although terrestrial ecological receptors (e.g., chickens, birds, mongoose, cats, dogs, and pigs) frequented that area when it was used for residential purposes, their habitat has been displaced because of construction work and will not be re-established in the future because of the presence of the rail guideway/station. Therefore, terrestrial ecological receptors are not expected to be present at the Site in the reasonably anticipated future.

5.2 Environmental Hazard Evaluation

This section evaluates potential hazards associated with COPC concentrations in soil and groundwater at Site. All results exceeding the applicable HDOH Tier 1 EALs were carried over to Tier 2 for the EHE of different exposure scenarios/hazards. This EHE is subdivided in two subsections to evaluate soil and groundwater against the appropriate hazard-specific EALs. After Tier 1 evaluation conducted in Section 4, where analytical results were compared against the unrestricted Tier 1 (lowest) EALs to select the COPCs, those compounds exceeding the Tier 1 EALs for sites within 150 meters of surface water bodies and where drinking water is not threatened (HDOH, Fall 2011) were carried over to Tier 2 evaluation. During the Tier 2 evaluation, results were compared against hazard-specific EALs to evaluate the potential exposure scenarios.

5.2.1 Soil

Soil analytical data were compared to the appropriate EALs for the following potential hazards:

- Gross contamination
- Leaching to groundwater
- Human direct exposure

Drinking water resources and vapor intrusion EALs were not considered in this evaluation because the unconfined aquifer system beneath the Site is not used for drinking water purposes and none of the COPCs detected in soil are volatile. In addition, as discussed in Section 5.1, the Site is being redeveloped and no terrestrial ecological receptors are present at the Site. Therefore, soil terrestrial ecotoxicity EALs do not apply for the Site. Different land use/exposure scenarios were evaluated, including unrestricted land use, a commercial/industrial land use scenario, and a construction/trench workers scenario. Outcomes of the EHE for soil are discussed below and are summarized in Table 5-1 and Figure 5-2.

5.2.1.1 Gross Contamination

Gross contamination of soil generally refers to the presence of LNAPL, offensive odors, unaesthetic appearance, general resource degradation, and generation of explosive vapors (HDOH, Fall 2011). Soil data were initially compared to gross contamination EALs for "Exposed or Potentially Exposed Soil" provided as Table F-2 in the HDOH EAL Surfer (HDOH, Fall 2011). Additional evaluation was then conducted based on field observation of soils encountered during the site investigation.

Based on comparison to gross contamination EALs (Table 5-1), soil samples from DU1S, DU2, DU3, DU5, and DU6 were flagged as posing potential gross contamination hazards under a hypothetical residential scenario because they exceeded the TPH-d and TPH-o EALs of 500 mg/kg, primarily within the vertical interval where fill material was encountered (vertical SUs "A" and "B"). Based on analytical results, under the current and reasonably anticipated future C/I scenario, potential gross contamination concerns are limited to a small portion of DU5 (approximately 5,000 square feet), where soil sample FAWC-DU51318C-0514 exceeded the gross contamination EAL for TPH-d and

⁹ The depth interval in the sample ID is shown after the DU number (e.g., FASC-DU1SB-0514 is the sample collected in the flat area for soil characterization [FASC-] at DU1S [DU1S] within the B [0.5 to 3 feet bgs] SU/depth interval [B-], in May 2014 [0514]).

TPH-o. This sample was composited from six adjacent borings (Borings 13 through 18) in the vertical interval where fill material was encountered ("C" depth interval of 10 to 15 feet bgs). Because of the exceedances of the gross contamination EALs in surface and subsurface soil, a Tier 2 EHE was conducted to address more specific components that may contribute to a potential overall gross contamination area at the Site.

Light, Non Aqueous Phase Liquid

Evidence of LNAPL (i.e., petroleum-saturated soil or strong odor/staining) was not observed during drilling and test pitting activities at any of the DUs. However, LNAPL (0.2 foot) was identified as present within a thin walled 5-inch steel-cased well located in DU3 (Figure 3-3). A sample of the fluid was collected from the pipe and analyzed for petroleum hydrocarbons. The laboratory chromatograms indicate that the predominant carbon range for the sample is C28 to C40, which is within the typical range of lubricating or heavy fuel oils. After sampling, no measurable LNAPL was observed in the well, suggesting that any LNAPL in the formation may be at residual saturation within the surrounding soils and with limited mobility. LNAPL was also measured in a temporary well (0.02 foot in well TW-001) located within DU3 approximately 12 feet downgradient (south) of the steel-cased well. However, uncertainties exist regarding the presence of LNAPL in TW-001 because although 0.02 foot of LNAPL was measured before sample collection, no LNAPL or sheen was observed in the groundwater sample, and no odor or staining was observed on the oil-water interface probe or groundwater sampling equipment. Furthermore, no staining, odor, or LNAPL was detected in the boring associated with the temporary well and LNAPL was not detected in the temporary well during gauging conducted the day after installation. Therefore, it is possible that the 0.02-foot measurement during groundwater sampling was a false detection.

Because of the LNAPL encountered in the 5-inch steel-cased well and potentially at TW-001, it is inferred that oil is present in the subsurface within DU3 and extends to the south at least as far as the location of TW-001. The lateral and vertical extent of oil within the subsurface at DU3 was not delineated during the site investigation. However, because no LNAPL was detected in temporary wells TW-002, TW-004, and TW-008, the LNAPL contamination is likely limited in extent to the vicinity of the steel pipe and TW-001.

Odor Concerns

With the exception of soil boring 4 and the steel pipe in DU3, no LNAPL, staining, or odor were observed during test pitting and soil boring activities. In addition, COPCs detected in soil and groundwater are not volatile; therefore, it is inferred that no odor concerns exist in most areas of the Site. Because LNAPL was detected in a steel pipe at DU3, and may be present in surrounding soils, odor concerns may exist for soils excavated in the vicinity of the steel pipe.

Unaesthetic Appearance and General Resource Degradation Concerns

Based on no staining, odor or other unaesthetic appearance, subsurface soil contamination at the Site has not caused any resource degradation concern.

Explosive Vapor Concerns

The COPCs in soil and groundwater at the Site are not volatile. Therefore no explosive vapor concerns exist at the Site.

Summary of Gross Contamination Concerns

It is concluded that gross contamination concerns in soil at the Site are limited to the area in the vicinity of the steel-cased well where LNAPL was encountered within DU3. As noted above, the extent of LNAPL contamination in subsurface soil near the steel-cased well was not thoroughly delineated during this investigation.

5.2.1.2 Leaching to Groundwater

Soil data were compared to the leaching EALs (Table E in the HDOH EAL Surfer; HDOH, FALL 2011) to evaluate whether contaminants in soil could potentially leach to groundwater. As shown in Table 5-1, this evaluation resulted in flagging DU2, DU5, and DU6, as posing potential leaching concerns because of exceedances of TPH-d (DU5 only) and TPH-o. However, TPH concentrations in groundwater are below the applicable Tier 1 EALs, suggesting that concentrations in soil are not significantly impacting groundwater.

5.2.1.3 Human Direct Exposure

Soil data from the investigation conducted at the Site in May and June 2014 were compared to the direct exposure EALs (Table I-1 in the HDOH EAL Surfer; HDOH, Fall 2011) to evaluate whether contaminants in soil potentially pose risks to human health by direct contact. Table I-1 in HDOH 2011 guidance provides EALs based on target risk of 10^{-6} for carcinogen compounds, soil saturation levels, risk with target hazard quotient (HQ) of 0.2 (0.5 for TPH), or risk with a HQ of 1.0, for non-carcinogen compounds.

As shown in Table 5-1, this evaluation resulted in flagging all DUs except for DU3 as posing potential direct exposure hazards under a hypothetical residential scenario because of exceedances of various COPCs. Under the current and reasonably anticipated C/I land use scenario and construction workers scenario, direct exposure concerns are limited to DU4 and DU5, where lead and TPH-d (DU5 only) exceeded the direct exposure EALs of 200 mg/kg and 500 mg/kg, respectively. Concentrations of TPH, PAHs, and lead above the direct exposure EALs in surface soil samples are typical of urban background, especially along roadsides (possibly from asphalt or oil in the original fill material, and from pre-1970s-era auto exhaust) (HDOH, December 2014).

5.2.2 Groundwater

Groundwater analytical data were compared to the appropriate EALs for the following potential hazards:

- Aquatic ecotoxicity
- Gross contamination

Drinking water toxicity and vapor intrusion EALs were not considered in this evaluation because the shallow unconfined aquifer beneath the Site is not used for drinking water purposes and none of the COPCs in groundwater are volatile. Outcomes of the EHE for groundwater are discussed in the following subsections and are summarized in Table 5-2 and Figure 5-3.

5.2.2.1 Aquatic Ecotoxicity

As described in Sections 2.3, the shallow aquifer beneath the Site is adjacent and likely hydraulically connected to Waiawa Stream. Therefore, groundwater data from the investigation were compared to the aquatic ecotoxicity EALs (Table D-4a in the HDOH EAL Surfer; HDOH, FALL 2011) to evaluate whether contaminants in groundwater potentially pose risks to ecological receptors in the stream.

As shown in Table 5-2, this evaluation resulted in flagging all DUs, except for DU4, as posing potential aquatic ecotoxicity hazards. COPCs include pesticides and metals. No groundwater monitoring well could be installed within DU4 because of limited accessibility, and it is unknown if potential aquatic ecotoxicity hazards related to groundwater contamination exist in this DU.

5.2.2.2 Gross Contamination

Gross contamination of groundwater generally refers to the presence of LNAPL, offensive odors, unaesthetic appearance, general resource degradation, and generation of explosive vapors (HDOH, FALL 2011). Groundwater data were compared to gross contamination EALs provided as Table G-2 in the HDOH EAL Surfer (HDOH, FALL 2011).

As shown in Table 5-2, this evaluation resulted in no exceedances of the gross contamination EALs and no flagging was applied for any of the DUs based on analytical results. However, approximately 0.2 foot of oil was initially observed in DU3 in a steel-cased well and could extend within the subsurface from the steel well south toward temporary well TW-001 (located approximately 12 feet downgradient of the steel-cased well) (Figure 3-3). LNAPL presence was not confirmed during subsequent gauging, after LNAPL in the well was collected with a bailer and sent to the laboratory for analysis. As described in Section 5.2.1.1, the lateral and vertical extent of LNAPL was not thoroughly delineated during this investigation. It is therefore concluded that the LNAPL present within the steel-cased well represents gross contamination concerns there and in the immediate vicinity, within DU3.

CONCEPTUAL SITE MODEL AND ENVIRONMENTAL HAZARD EVALUAT	TION
TI	his page is intentionally left blank.

6.0 Environmental Hazard Management Plan

The EHE, described in Section 5.0, identified potentially unacceptable risks and hazards in soil including human direct exposure, gross contamination, and leaching to groundwater. Potential risks from residual contamination in groundwater include potential impacts to aquatic habitats and gross contamination. Consequently, as indicated in HDOH TGM (HDOH, 2009), these potential risks will be addressed through an EHMP. This site-specific EHMP describes the proposed strategy for long-term management of contaminated soil, groundwater, and sediment at the Site.

6.1 Summary of Environmental Hazards

Based on the site investigation data and the EHE, it is concluded that potential gross contamination, direct exposure, leaching, and ecotoxicity concerns exist in soil and/or groundwater in the flat area of the Site. The EHE did not include stream sediments because no HDOH hazard-specific EALs are available for this medium; however, metal concentrations are present above the reference values in sediment and contamination must also be managed as described in this EHMP. Because none of the COPCs detected in soil and groundwater are volatile and LNAPL detected in DU3 is deeper than 10 feet and consists of residual range petroleum hydrocarbons, it is concluded that contamination at the Site does not pose vapor intrusion hazards.

The environmental concerns requiring long-term management in different portions of the flat area are summarized as follows (see Table 6-1 and Figures 6-1 and 6-2 for soil and Table 6-2 and Figure 6-3 for groundwater):

• Area with Future Fill

- DU1N Direct human exposure in surface soil (0 to 0.5 foot bgs) under a residential scenario. Aquatic
 ecotoxicity concerns in groundwater.
- DU1S Direct human exposure in near-surface soil (0.5 to 3 feet bgs) under a residential scenario.
 Aquatic ecotoxicity concerns in groundwater.
- DU4 Direct human exposure in surface (0 to 0.5 foot bgs) and near surface (0 to 3 feet bgs) soil under residential, C/I, and construction workers scenarios. No data is available for deeper soil and groundwater.

• Area with No or Limited Future Excavation

- DU2 Potential leaching concerns in near-surface soil (0.5 to 3 feet bgs) under residential and C/I scenarios, and direct human exposure in near-surface soil (0.5 to 3 feet bgs) under a residential scenario. Aquatic ecotoxicity concerns in groundwater. Because of lack of TPH contamination in deeper portions of the subsurface soil and in groundwater, potential leaching concerns from surface soil to groundwater are not confirmed (Table 6-1 and Figure 6-1). However, excavated soil that is not reused within the Pearl Highlands Work Area may require offsite disposal because of potential leaching concerns under different conditions.
- DU3 Gross contamination concerns in native soil under residential, C/I, and construction workers scenarios because of presence of LNAPL (Figure 6-1) which has not been fully delineated. Aquatic ecotoxicity and gross contamination concerns in groundwater.

• Area with Future Excavation

— DU5 - Direct human exposure and/or leaching concerns in soil from the surface to 15 feet bgs under residential and C/I scenarios; direct human exposure concerns in soil between 10 and 15 feet bgs under a construction worker scenario. As detailed in Figure 6-2, soil environmental concerns are inferred to be limited to a portion of the DU. Aquatic ecotoxicity concerns in groundwater.

— DU6 – Direct human exposure and leaching concerns in soil from surface to 15 feet bgs, and direct human exposure in native soil under a residential scenario; leaching concerns in soil from surface to 15 feet bgs under a C/I scenario. As detailed in Figure 6-2, soil environmental concerns are limited to a portion of the DU. Aquatic ecotoxicity concerns in groundwater.

As discussed in Section 5.2 (EHE), gross contamination EALs for soil were exceeded in some instances, but no evidence of adverse impact was observed except in a limited portion of DU3, where LNAPL is present. Therefore, it was concluded that gross contamination concerns are limited to a small portion of DU3.

Although no EAL exceedances were reported in the Waiawa Stream bank, extensive construction and other debris were identified during the site investigation. Future construction along the stream bank is likely to remove significant amounts of debris, which will be screened and evaluated for reuse, recycling, or disposal. Debris identified in other areas away from the stream bank (e.g., DU1S) appear to have been deposited prior to 1993, which predates Solid Waste Management regulations. Nonetheless, debris removed during construction will also be evaluated for reuse, recycling, or disposal options. HART will work with HDOH SHWB to identify the requirements to manage debris that may remain in place following construction.

6.2 Site Controls Implementation and Long Term Management of Contaminated Media

Environmental hazards and concerns identified above will require land use controls (LUCs) and long-term management of contaminated soil and groundwater during construction and future Site activities. Because different construction activities will occur in different portions of the Site, site controls and soil and groundwater management practices are outlined in the following subsections and summarized in Table 6-3 by area, based on planned activities. All volume estimates provided in the sections below are based on data collected during visual surveys, geophysical investigation, the advancement of soil borings, and test pitting. The data developed during the investigation are not comprehensive for the entire Site because of limited site access, and thus are inherently limited in accuracy. In addition, estimates of fill and debris may not account for variability between borings and test pits and may not accurately reflect actual subsurface conditions. *Therefore, these estimates are preliminary, and actual volumes may vary significantly.*

Construction activities that pose a potential risk of exposure for construction workers to contaminated soil or dust (such as excavation of soil), or exposure to contaminated groundwater, must be supervised by properly trained and certified personnel. All personnel working in areas where there is potential for direct contact with contaminated media shall have current 40-hour Hazardous Waste Operations and Emergency Response (HAZWOPER) certification and annual 8-hour HAZWOPER refresher training. The contractor's written health and safety plan will also be required to identify HAZWOPER-regulated tasks, associated hazards, monitoring and control measures, and emergency response requirements.

Although it is suspected that some of the detected contaminants may be regional contamination associated to historic activities, because groundwater at the Site exceeds the aquatic ecotoxicity EALs for pesticides and metals and stream bed sediments are also impacted by metals, surface water sampling of Waiawa Stream may be required during and after construction activities to confirm that groundwater from the Site is not impacting the stream or aquatic receptors. Also, groundwater extracted during future construction activities at the Site should not be directly discharged to the stream because of toxicity concerns for aquatic ecological receptors (Figure 6-3).

Soil that is removed from the Site (any DU) and is planned for reuse anywhere other than within the Pearl Highlands Work Area will require additional sampling (e.g., one sample per 200 cubic yards of soil).

Contaminated soil and groundwater handled during future construction activities will be managed in accordance with the Programmatic EHE/EHMP, as necessary and where applicable. Debris removed during construction will be evaluated for reuse, recycling, or disposal options.

6.2.1 Flat Area with Future Fill

This area includes DU1N, DU1S, and DU4, where fill material will be placed during future construction activities to bring current grade to the Station and parking structure final subgrade elevation. Environmental concerns have been identified in these DUs at different depths and will be managed through LUCs (administrative and institutional controls) and long-term management of soil during future activities, as follows (Table 6-3):

- **DU1N** No environmental concerns exist in this DU under C/I and construction worker scenarios. Surface debris will need to be removed during construction, but soil can be left in place. Administrative LUCs will be applied to limit future land use to C/I and restrict offsite reuse of soil.
- **DU1S** No environmental concerns appear to exist in this DU under C/I and construction worker scenarios. Soil can be left in place. Administrative LUCs will be applied to limit land use to C/I and restrict offsite reuse of soil. A relatively large volume of construction debris is present in this DU (Table 4-1). Approximately 30,000 cubic feet (1,100 cubic yards) have been estimated, consisting of approximately 17,000 cubic feet (650 cubic yards) of concrete debris and 13,000 cubic feet (450 cubic yards) of metal debris. Although no excavation is currently planned in this DU based on the existing design of the rail guideway/ station/garage/ramp, removal of debris may be required. In such an event, debris should be recycled or properly disposed of offsite.
- **DU4** Direct human exposure concerns exist in this DU under residential, C/I, and construction worker scenarios. The area should be remediated through soil removal and disposal. Alternatively, future construction activities in this area should include proper use of personal protective equipment by construction workers, and installation of a geotextile marker at the surface of impacted soil with at least 3 feet of soil with concentrations below the C/I EALs placed above the marker to minimize exposure of future human receptors. In the latter case, administrative LUCs will be applied to limit land use to C/I and to require offsite disposal of soil removed during future activities at the Site.

6.2.2 Flat Area with No or Limited Future Excavation

This area includes DU2 and DU3, where future excavation activities will be limited to the locations where columns will be installed for the construction of the Station parking structure. Environmental concerns have been identified in these DUs at different depths and will be managed through LUCs (administrative and institutional controls) and long-term management of soil during future activities, as follows (Table 6-3):

- **DU2** Potential environmental hazards exist in this DU because of potential leaching concerns in surface soil and human direct exposure concerns in near-surface soil (0.5 to 3 feet bgs) under residential and C/I land use scenarios. However, soil excavated during future construction of structural columns can be reused within the Pearl Highlands Work Area or properly disposed of at a permitted facility because leaching to groundwater is not confirmed (i.e., soil COPC concentrations from this DU are below relevant EALs for groundwater) and human exposure concerns are limited to residential use only. No actions are necessary if soil remains in place or is reused within the Pearl Highlands Work Area. However, LUCs will be applied to restrict future use of soil in residential and offsite C/I areas.
- **DU3** No environmental concerns exist in this DU under C/I and construction workers scenarios, except for the presence of LNAPL in a limited area around Boring 4 (co-located with temporary well TW-001, approximately 10 feet south of the steel-cased well where LNAPL was found). Although not fully delineated, it is assumed that gross contamination concerns are limited to the capillary fringe of the shallow aquifer in the vicinity of the steel-cased well where LNAPL was identified. Based on the limited data collected during this investigation, it is not possible to estimate the volume of petroleum contaminated soil present in DU3. It is recommended that this area is remediated during future construction activities by excavating impacted soil and disposing of it as non-hazardous waste at an offsite facility. Additional delineation should be conducted before or during removal to further evaluate extent of potential LNAPL. If the LNAPL-impacted soil is removed from DU3 during construction activities and disposed of offsite, no LUCs will apply and soil

excavated in the remaining areas of DU3 during future construction activities can be reused within the Pearl Highlands Work Area.

Relatively small volumes of construction debris are present in this DU at two different locations (Table 4-1). Approximately 15,000 cubic feet (550 cubic yards) have been estimated, consisting of approximately 8,000 cubic feet (300 cubic yards) of concrete debris and 7,000 cubic feet (250 cubic yards) of metal debris. Although the existing design indicates excavation in this DU will be limited to that required for the installation of structural columns to sustain the rail guideway and the Station, removal of debris may be required. In such an event, unpainted concrete meeting inert fill requirements may be reused within the Pearl Highlands Work Area as fill, while metal debris and concrete not meeting inert fill requirements should be recycled/disposed of offsite. If LNAPL-impacted soil and construction debris are not removed from the subsurface, LUCs may apply for DU3 to manage contamination/debris in place.

6.2.3 Flat Area with Future Excavation

This area includes DU5 and DU6, where future excavation activities will be conducted to re-establish the 100-year floodplain. Future excavation depth is assumed to be 15 feet bgs. Environmental concerns have been identified in these DUs at different depths and will be managed through LUCs (administrative and institutional controls) and long-term management of soil during future activities, as follows (Table 6-3):

- **DU5** Environmental hazards exist in this DU because of direct human exposure and leaching concerns in soil under residential and C/I land use scenarios. Removed soil will need to be handled as follows:
 - O to 10 feet bgs (Figure 6-2a) Soil removed from the area around Borings 1 through 6 and 25 through 30 (approximately 13,800 square feet for an estimated volume of 138,000 cubic feet [approximately 5,100 cubic yards]) can be reused within the Pearl Highlands Work Area or properly disposed of at a permitted facility. ¹⁰ Soil from remaining portion of the DU (approximately 10,300 square feet for an estimated volume of 103,000 cubic feet [approximately 3,800 cubic yards]) will need to be disposed of offsite at a permitted facility as non-hazardous waste.
 - 10 to 15 feet bgs (Figure 6-2b) Soil removed from the area around Borings 1 through 12 and 19 through 30 (approximately 19,300 square feet for an estimated volume of 96,500 cubic feet [approximately 3,600 cubic yards]) can be reused within the Pearl Highlands Work Area or properly disposed of at a permitted facility. Soil from remaining portion of the DU (approximately 4,800 square feet for an estimated volume of 24,000 cubic feet [approximately 900 cubic yards]) will need to be disposed of offsite at a permitted facility as non-hazardous waste.
 - Native soil Native soil can remain in place with no restrictions.

Once soil is removed to re-establish the 100-year floodplain, it is anticipated that only native soil will remain, and that no restrictions for soil will apply for this DU.

- **DU6** Environmental hazards exist in this DU because of direct human exposure and leaching concerns for soil under residential and C/I land use scenarios. Excavated soil will need to be handled as follows (Figure 6-2):
 - O to 10 feet bgs (Figure 6-2a) Soil removed from this depth interval (approximately 315,000 cubic feet or 11,600 cubic yards) will need to be disposed of offsite at a permitted facility as non-hazardous waste. Relatively small volumes of construction debris are present in this DU within this depth interval (Table 4-1). Approximately 7,800 cubic feet (300 cubic yards) have been estimated, consisting of approximately 5,200 cubic feet (200 cubic yards) of concrete debris and 2,600 cubic feet (100 cubic yards) of metal

Site Characterization Report Honolulu Rail Transit Project

¹⁰ Because of a very marginal lead exceedance of the C/I EAL in sample FASC-DU5A-0514 (804 mg/kg against an EAL of 800 mg/kg), soil from this horizon would be best if reused in areas with future filling by placing it at the bottom, with at least 3 feet of soil with concentrations below the C/I EAL at the top.

debris. Removal of debris may be required. In such an event, unpainted concrete meeting inert fill requirements may be reused within the Pearl Highlands Work Area or properly disposed of at a permitted facility as fill, while metal debris and concrete not meeting inert fill requirements should be recycled or properly disposed of offsite.

- 10-15 feet bgs (Figure 6-2b) Soil removed from the area around borings 7 through 12 (approximately 12,400 square feet for an estimated volume of 62,000 cubic feet [approximately 2,300 cubic yards]) can be reused within the Pearl Highlands Work Area or properly disposed of at a permitted facility. Soil from remaining portion of the DU (approximately 17,400 square feet for an estimated volume of 87,000 cubic feet [approximately 3,200 cubic yards]) will need to be disposed of offsite at a permitted facility as non-hazardous waste.
- **Native soil** Native soil can remain in place, but LUCs will apply to limit offsite reuse of soil and to limit future land use to C/I.

6.2.4 Stream Bank

This area includes DU7, where future excavation activities may be necessary in the eastern portion of the DU to reestablish the 100-year floodplain. Although no excavation activities are planned for the western portion of this DU, significant concrete and metal debris is present along the embankment at the north edge of Waiawa Stream. No test pits were conducted in this area; therefore, volume estimates are based on visual observation of what is present at the surface of the stream embankment. As such the estimates are preliminary and actual quantities may vary significantly. Based on the types and volume of debris present at the embankment, and assuming a depth of debris of 3 feet, a volume of construction debris of approximately 21,500 cubic feet (800 cubic yards) is estimated (Table 4-1) and may need to be removed. Of this volume, approximately 14,500 cubic feet (550 cubic yards) may consist of concrete that may be reused within the Pearl Highlands Work Area if it meets the inert fill requirements. The remaining 7,000 cubic feet (250 cubic yards) of metal debris and concrete not meeting inert fill requirements may need to be recycled or properly disposed of offsite.

This page is intentionally left blank.

7.0 Conclusions and Recommendations

This section summarizes the conclusions and recommendations of the site characterization activities conducted from May to June 2014 at the Site. The overall objective of the project was to characterize the site soil, sediment, and groundwater to evaluate environmental conditions and provide data that may be used for construction and waste disposal planning. In addition, the data was used to develop preliminary volume estimates for debris and contaminated soil that requires disposal. These volume estimates are based on limited data collected and interpretation during the investigation. As such they are considered preliminary and the actual volumes of either contaminated soil or debris encountered during construction could vary significantly.

A summary of activities conducted at the Site and conclusions are given below in Section 7.1, while recommendations are provided in Section 7.2.

7.1 Activities Summary and Conclusions

7.1.1 Flat Area Geophysical and Fill Characterization

Geophysical surveys of the flat area showed areas of anomalies in the following areas where debris was confirmed with test pit excavation:

- DU1S An area of approximately 8,700 square feet containing metal and concrete debris was estimated.
 Test pit excavation activities and borings conducted in this area suggest that the buried debris extends to
 approximately 10 feet bgs. Based on relative composition of debris observed in test pits, approximately
 17,000 cubic feet (650 cubic yards) of concrete and 13,000 cubic feet (450 cubic yards) of metal debris are
 estimated to be present in this area.
- **DU3** An area of approximately 6,600 square feet containing metal and concrete debris was estimated within this DU. Test pit excavation activities and borings conducted in this area suggest that the buried debris extends to approximately 10 feet bgs. Based on relative percent of debris, approximately 8,000 cubic feet (300 cubic yards) of concrete and 7,000 cubic feet (250 cubic yards) of metal debris are estimated to be present in this area.
- **DU6** An area of approximately 8,700 square feet containing metal and concrete debris was estimated within this DU. Test pit excavation activities and borings conducted in this area suggest that the debris is buried to approximately 3 feet bgs. Based on relative composition of debris observed in test pits, approximately 5,200 cubic feet (200 cubic yards) of concrete and 2,600 cubic feet (100 cubic yards) of metal debris are estimated to be present in this area.

Over 130 soil borings were advanced down to an average depth of approximately 20 feet bgs. Soil boring observations indicate that fill materials were present in all borings, with the thinnest fill present in the northwest portion of the Site and the thickest fill present on the eastern portion of the Site. Fill materials encountered during the investigation ranged from a thickness of 3 feet thick in DU1N, to over 15 feet thick in DU3, DU5, and DU6. Fill material appears to extend offsite in the west, east and northern directions. To the south, fill materials stop at the Waiawa Stream bank where fill and debris is observed at the surface.

7.1.2 Flat Area Soil Characterization

The flat area included the area with future fill activities (DU1N, DU1S, and DU4), the area with limited or no future excavation (DU2 and DU3, and the area with future excavation (DU5 and DU6). Soil characterization of these subareas included surface and subsurface soil sampling to evaluate soil conditions and current and future exposure scenarios. Samples were collected using both IS and discrete sampling approaches. For screening purposes, soil detections were conservatively compared to the HDOH Tier 1 (lowest) EALs for unrestricted sites within 150 meters

of surface water bodies, where groundwater is threatened. Detections above the Tier 1 EALs were also compared to the HDOH C/I land use EALs. Analytes that were detected are summarized separately in the following subsections.

7.1.2.1 Area with Future Fill

- DU1N PAHs, TPHs, organochlorine pesticides, PCBs, and RCRA 8 metals were detected in soil.
 Concentrations were below the Tier 1 EALs except for benzo[a]pyrene in surface soil (0 to 0.5 feet bgs), where it was detected at a concentration of 159 µg/kg, above the Tier 1 EAL of 150 µg/kg but below the C/I EAL of 2,100 µg/kg.
- **DU1S** PAHs, TPHs, organochlorine pesticides, herbicides, PCBs, and the RCRA 8 metals were detected in soil. Concentrations were below the Tier 1 EALs except for benzo[a]pyrene and TPH-o in near-surface soil (0.5 to 3 feet bgs), where they were detected at a concentration of 243 µg/kg and 647 mg/kg, respectively, above their Tier 1 EALs of 150 µg/kg g and 1,000 mg/kg. Concentrations were below the C/I EALs.
- **DU4** PAHs, TPHs, organochlorine pesticides, herbicides, and RCRA 8 metals were detected in soil. Concentrations were below the Tier 1 EALs except for heptachlor epoxide and lead in surface and near-surface soil (0 to 3 feet bgs). Heptachlor epoxide was detected up to 79.3 μg/kg, above the Tier 1 EAL of 3 μg/kg, but below the C/I EAL of 190 μg/kg. Lead was detected at concentrations up to 873 mg/kg, above the Tier 1 EAL of 200 mg/kg and the C/I EAL of 800 mg/kg.

7.1.2.2 Area with No or Minimal Future Excavation

- **DU2** PAHs, TPHs, organochlorine pesticides, herbicides, and RCRA 8 metals were detected in soil. Concentrations were below Tier 1 EALs except for benzo[a]pyrene and TPH-o in surface and near-surface soil (0 to 3 feet bgs), where they were detected at concentrations of up to 734 μg/kg and 1,410 mg/kg, respectively, above the Tier 1 (both compounds) and C/I (TPH-o only) EALs.
- **DU3** –PAHs, TPHs, organochlorine pesticides, herbicides, PCBs, and RCRA 8 metals were detected in soil. Concentrations were below the Tier 1 EALs, except for TPH-o in surface soil (0 to 0.5 foot bgs), where a concentration of 634 mg/kg was detected, above the Tier 1 EAL of 500 mg/kg but below the C/I EAL of 1,000 mg/kg.

7.1.2.3 Area with Future Excavation

- DU5 PAHs, TPHs, organochlorine pesticides, herbicides, and RCRA 8 metals were detected in soil.
 Concentrations were below the Tier 1 EALs except for benzo[a]pyrene, TPHs, arsenic, and lead down to 15 feet bgs. Concentrations appear to decrease with depth and the only analyte reported above the Tier 1 EAL in native soil (where sample depth was 15 to 18 feet bgs) is TPH-o, which was detected at a concentration of 619 mg/kg, above the Tier 1 EAL of 500 mg/kg but below the C/I EAL of 1,000 mg/kg.
- DU6 PAHs, TPHs, organochlorine pesticides, herbicides, and RCRA 8 metals were detected in soil.
 Concentrations were below the Tier 1 EALs except for benzo[a]pyrene, TPHs, organochlorine pesticides, and lead down to 15 feet bgs. Concentrations appear to decrease with depth, except for heptachlor epoxide, detected in native soil (where sample depth was 15 to 18 feet bgs) at a concentration of 81.4 µg/kg, above the Tier 1 EAL of 53 µg/kg but below the C/I EAL of 190 µg/kg.

Based on the analytical results, the potential risk associated with exposure to contaminants at the Site was evaluated for various scenarios, including for construction workers, future site users under the C/I land use scenario, and an unrestricted/residential scenario to evaluate potential exposure risk if soil is excavated and reused outside the Pearl Highlands Work Area. In addition, potential risks to aquatic organisms in Waiawa Stream were evaluated.

Waste characterization samples were collected in DU5 and DU6, where excavation activities will be conducted in the future to re-establish the 100-year floodplain. Representative portions of soil from six adjacent borings were grouped together and analyzed for the parameters exceeding the C/I EALs in IS samples and TCLP. The purpose of these samples was to further characterize the nature and extent of contaminated soil and to support the development of

waste disposal alternatives. Soil areas/volumes needing disposal were refined to limit disposal costs. The soil was determined to be non-hazardous, non-special waste.

7.1.3 Stream Bank Characterization

The Waiawa Stream bank includes DU7. One surface soil (0 to 1 foot bgs) IS sample (composited from 100 soil increment locations) was collected to evaluate if potential contamination from the flat area had also affected the northern side of the Waiawa Stream. The stream bank characterization started with a visual survey. Debris present along the northern bank of the stream include a street sweeper, an abandoned automobile, and various types of construction debris. The distribution of construction debris was generally consistent. PAHs, TPHs, organochlorine pesticides, PCBs, and RCRA 8 metals were detected in the soil IS samples, though concentrations were below the Tier 1 EALs for all analytes.

7.1.4 Stream Bed Characterization

The Waiawa Stream bed sampling included DU8 (upstream), DU9 (adjacent to the Site), and DU10 (downstream from the Site). Samples were collected to evaluate whether potential contamination from the stream bank and subsurface soil from the deeper portions of the flat area have impacted the stream bed. An upstream (DU8) reach of the stream was sampled to evaluate potential ambient contamination levels upstream, and a downstream (DU10) reach of the stream was sampled to evaluate if the potential contamination in DU9, adjacent to the Site, was also present downstream. Concentrations were compared against the NOAA SQuiRT PEC/TECs sediment screening values; the screening indicates that chromium is present at concentrations above the SQuiRT TEC levels, but below the PEC, at all three sampled DUs. Concentrations in DUs upstream and adjacent to the Site are consistent, while the concentration at the downstream DU is slightly higher. Cadmium and lead also exceed the SQuiRT TECs, but concentrations are below the upper screening levels. Although slightly higher in the downstream and adjacent DUs, the difference in contaminant concentrations does not appear to be significant enough to clearly indicate that the Site is the source of the downstream contamination.

7.1.5 Groundwater Results

To evaluate if groundwater has been affected by subsurface soil contamination at the Site, eleven temporary wells were constructed and sampled together with an existing well during the site investigation. Aldrin, chlordane, dieldrin, heptachlor, heptachlor epoxide, and selenium were detected at concentrations above the Tier 1 EAL in all areas sampled. However, no onsite source was found for these constituents (that is, there were no exceedances of EALs in soil [with the exception of a very marginal exceedance of the residential EAL for heptachlor epoxide in surface soil within DU4]). Therefore, it is believed that groundwater contamination within the Pearl Highlands Work Area is from past regional pesticides and termiticides agricultural/residential applications.

7.1.6 Conceptual Site Model

The Site was a banana farm from 1957 until sometime between 1969 and 1998. Since 1981, nearby properties northwest of the Site have been used as a base yard for heavy construction equipment. From 2004 through 2009, a portion of the Site was used as a storage yard for wrecked automobiles (Environet, 2009).

Many decades of agricultural land use at the Site and surrounding area have likely contributed pesticides and metals to soil, groundwater, and sediment (i.e., relatively high concentrations in groundwater and sediment do not correspond to high concentrations in soil/fill). Fill material is present in the subsurface down to 10 to 15 feet bgs and contains construction debris (concrete and metal debris) and other debris, which likely also have contributed to the environmental condition of the subsurface soil. The fill material appears to end at the south edge of the property along the bank of the Waiawa Stream, and to continue offsite to the north towards the Kamehameha Highway and also to the east and west.

Based on current and reasonably anticipated future land use of the Site and the investigation results, potentially complete human exposure pathways exist for hypothetical residents, future rail workers/users, trespassers, and construction workers. Exposure to COPCs in surface and subsurface soil could occur by incidental ingestion, dermal

contact, and inhalation of soil dust particles. Construction workers could also be exposed to groundwater and sediment through incidental ingestion and dermal contact. Potentially complete pathways also exist for aquatic organisms in Waiawa Stream through incidental ingestion and dermal contact.

7.1.7 Environmental Hazard Evaluation

All analytes exceeding the Tier 1 EALs were carried over to a Tier 2 EHE to evaluate environmental hazards/concerns present at the Site. Based on the site investigation data, it is concluded that potential gross contamination, direct exposure, leaching, and ecotoxicity concerns exist in soil and/or groundwater in the flat area of the Site. Because none of the COPCs detected in soil and groundwater are volatile, and because LNAPL detected in DU3 is deeper than 10 feet and consists of residual range petroleum hydrocarbons, it is concluded that contamination at the Site does not pose vapor intrusion hazards. The environmental concerns requiring long-term management in different portions of the flat area are summarized as follows:

- Area with Future Fill (DU1N, DU1S, and DU4) Direct human exposure in surface (0 to 0.5 foot bgs) and near surface (0.5 to 3 feet bgs) soil under residential, C/I (DU4 only), and construction workers (DU4 only) scenarios. Aquatic ecotoxicity concerns exist for groundwater.
- Area with No or Limited Future Excavation (DU2 and DU3) Potential leaching concerns in surface soil (0 to 0.5 foot bgs) under residential and C/I scenarios, and direct human exposure in near-surface soil (0.5 to 3 feet bgs) under a residential scenario exist in DU2. Gross contamination concerns in native soil are present in DU3 under residential, C/I, and construction workers scenarios because of presence of LNAPL. Aquatic ecotoxicity concerns exist for groundwater.
- Area with Future Excavation (DU5 and DU6) Direct human exposure and leaching concerns in soil from the
 surface to 15 feet bgs under residential and C/I scenarios; direct human exposure in native soil under a
 residential scenario (DU6 only); direct human exposure concerns in soil between 10 and 15 feet bgs under a
 construction worker scenario (DU5 only). Soil environmental concerns are inferred to be limited to a portion
 of the DU. Aquatic ecotoxicty concerns exist for groundwater.

Although no EAL exceedances were reported in the Waiawa Stream bank, extensive construction and other debris were identified during the site investigation.

7.1.8 Environmental Hazard Management Plan

Environmental hazards and concerns identified above will require LUCs and long-term management of contaminated soil and groundwater during construction and future Site activities. LUCs will apply in all DUs/SUs/subareas where COPCs are present at concentrations above Tier 1 EALs and where LNAPL is present, including the following:

Area with Future Fill

- DU1N LUCs for surface soil (0 to 0.5 feet bgs) to limit land use to C/I and restrict future use of soil
 outside the Pearl Highlands Work Area.
- DU1S LUCs to restrict future use of near-surface soil (0.5 to 3 feet bgs) outside the Pearl Highlands Work Area.
- DU4 LUCs to restrict future use of surface and near-surface soil (0 to 3 feet bgs) outside the Pearl
 Highlands Work Area. LUCs to control use of soil onsite and exposure to construction workers (may
 require upgrade in level of protection).

Area with Limited or No Future Excavation

- **DU2** LUCs to restrict future use of soil outside the Pearl Highlands Work Area.
- DU3 LUCs to control use, handling, and disposal of LNAPL-impacted soil, and exposure of construction workers to LNAPL.

Area with Future Excavation

- DU5 LUCs to limit site use and restrict offsite reuse of the soil if no remediation (soil removal) is conducted. Excavation of soil between 10 and 15 feet bgs will require excavation by construction workers who are HAZWOPER-certified (upgrade in level of protection may also be necessary).
- DU6 LUCs to limit site use and restrict offsite reuse of the soil if no remediation (soil removal) is conducted.

Short- and long-term management activities should include soil reuse within the Pearl Highlands Work Area whenever possible, disposal of excavated soil with concentrations above the C/I EALs, where excavation of construction debris is necessary, reuse of concrete meeting the inert fill requirements, and recycling or proper disposal of concrete not meeting inert fill requirements and metal debris. Soil excavated during future construction activities from less-impacted portions of DU5 and DU6 should be reused within the Pearl Highlands Work Area to minimize offsite disposal of soil.

7.2 Recommendations

Information presented in this report are based on data collected during visual surveys, geophysical investigation, the advancement of soil borings, and test pitting. The data developed during the investigation are not comprehensive for the entire Site because of limited site access, and the potential for variability in subsurface soil and groundwater conditions, and thus are inherently limited in accuracy. In addition, fill and debris observed within borings and test pits were highly variable, and therefore, estimates of fill and debris volumes may not account for variability in areas between borings and test pits. Therefore actual site conditions may vary significantly from those described in this report.

Based on the investigation results and the EHE/EHMP findings, the activities outlined in the following subsections are recommended for the Site during future construction activities and post-construction activities.

7.2.1 Flat Area with Future Fill

This area includes DU1N, DU1S, and DU4, where fill material will be placed during future construction activities to bring current grade to the Station and parking structure final subgrade elevation. Environmental concerns have been identified in these DUs at different depths and should be managed through LUCs (administrative and institutional controls) and long-term management of soil during future activities, as follows:

- DU1N Although no environmental concerns exist in this DU under C/I and construction worker scenarios, it
 is recommended that debris be removed before filling/construction activities unless determined to meet
 inert fill and construction requirements. Surface and subsurface soil can be left in place. Administrative LUCs
 should be applied to limit future land use to C/I and restrict offsite reuse of surface soil.
- **DU1S** Although no environmental concerns exist in this DU under C/I and construction worker scenarios and no excavation is currently planned in this DU based on the existing design of the rail guideway and station, the presence of construction debris in the subsurface soil may require removal actions. Approximately 650 cubic yards of concrete and 450 cubic yards of metal debris have been estimated to be present to depths of approximately 10 feet bgs over an area of approximately 8,700 square feet. If construction debris is removed, unpainted concrete meeting inert fill requirements should be reused within the Pearl Highlands Work Area as fill, while metal debris and concrete not meeting inert fill requirements should be recycled or properly disposed of offsite. The acceptance criteria for recycling facilities should be evaluated to determine if additional sampling and characterization are required. Administrative LUCs should be applied in this DU to limit land use to C/I and restrict offsite reuse of soil.
- **DU4** During future filling and construction activities, it is recommended that this area be remediated through placement of a geotextile marker at the surface with at least 3 feet of soil with concentrations below the C/I EALs placed above the marker to minimize exposure of future human receptors. Additional

delineation may also be necessary. Administrative LUCs should be applied until Tier 1 EALs are met to limit land use to C/I and to require offsite disposal of soil removed during future activities at the Site.

7.2.2 Flat Area with No or Limited Future Excavation

This area includes DU2 and DU3, where future excavation activities will be limited to the locations where columns are planned for the construction of the Station parking structure. Environmental concerns have been identified in these DUs at different depths and should be managed through LUCs and long-term management of soil during future activities, as follows:

- **DU2** Soil excavated during future construction of structural columns can be reused within the Pearl Highlands Work Area because leaching to groundwater is not confirmed to be a concern (i.e., soil COPC concentrations from this DU are below relevant EALs for groundwater) and human exposure concerns are limited to residential use only.
 - No actions are necessary if soil remains in place or is reused within the Pearl Highlands Work Area. However, LUCs should be applied to avoid future use of soil in residential and offsite C/I areas until Tier 1 EALs are met.
- **DU3** No environmental concerns exist in this DU under C/I and construction workers scenarios, except for the presence of LNAPL in a limited area around the steel-cased well where LNAPL was encountered. Based on the limited data collected during the investigation, it is not possible to estimate the volume of petroleum contaminated soil present in DU3. It is recommended that this area be remediated during future construction activities by excavating impacted soil and disposing of it as non-hazardous waste at an offsite facility. Additional delineation and remedial activities can be conducted during future construction activities to remove LNAPL and grossly contaminated soil potentially remaining in the area to the extent practicable.

Approximately 300 cubic yards of concrete and 250 cubic yards of metal debris are estimated to be present in DU3 down to approximately 10 feet bgs over an area of approximately 6,600 square feet. Although the existing design indicates excavation in DU3 will be limited, removal of debris may be required. In such an event, unpainted concrete meeting inert fill requirements should be reused within the Pearl Highlands Work Area as fill, while metal debris and concrete not meeting inert fill requirements should be recycled/disposed of offsite. If LNAPL-impacted soil and construction debris are removed from DU3, no LUCs will apply and soil excavated in the remaining areas of DU3 during future construction activities can be reused within the Pearl Highlands Work Area.

7.2.3 Flat Area with Future Excavation

This area includes DU5 and DU6, where future excavation activities will be conducted to re-establish the 100-year floodplain. Future excavation depth is assumed to be 15 feet bgs. Environmental concerns have been identified in these DUs at different depths and should be managed through LUCs (administrative and institutional controls) and long-term management of soil during future activities:

- DU5 Soil that will be removed from this DU should be handled as follows:
 - O to 10 feet bgs Soil removed from the area around Borings 1 through 6 and 25 through 30 (approximately 13,800 square feet for an estimated volume of approximately 5,100 cubic yards) can be reused within the Pearl Highlands Work Area. Because of a very marginal lead exceedance of the C/I EAL in sample FASC-DU5A-0514 (804 mg/kg against an EAL of 800 mg/kg), soil from this horizon would be best if reused in areas with future filling by placing it at the bottom with at least 3 feet of soil with concentrations below the C/I EAL at the top. Soil from remaining portion of the DU (approximately 10,300 square feet for an estimated volume of approximately 3,800 cubic yards) should be properly disposed of offsite at a permitted facility as non-hazardous waste.
 - 10 to 15 feet bgs Soil removed from the area around Borings 1 through 12 and 19 through 30 (approximately 19,300 square feet for an estimated volume of approximately 3,600 cubic yards) can be reused within the Pearl Highlands Work Area. Soil from remaining portion of the DU (approximately)

4,800 square feet for an estimated volume of approximately 900 cubic yards) should be properly disposed of offsite at a permitted facility as non-hazardous waste.

Once soil is removed to re-establish the 100-year floodplain, it is anticipated that only native soil will remain, and that no restrictions for soil will apply for this DU.

- DU6 Soil that will be removed from this DU should be handled as follows:
 - O to 10 feet bgs Soil removed from this depth interval (approximately 11,600 cubic yards) should be properly disposed of offsite at a permitted facility as non-hazardous waste. Approximately 200 cubic yards of concrete and 100 cubic yards of metal debris have been estimated to be present in this depth interval and removal may be required. In such an event, unpainted concrete meeting inert fill requirements should be reused within the Pearl Highlands Work Area as fill, while metal debris and concrete not meeting inert fill requirements should be recycled or properly disposed of offsite.
 - 10 to 15 feet bgs Soil removed from the area around Borings 7 through 12 (approximately 12,400 square feet for an estimated volume of approximately 2,300 cubic yards) can be reused within the Pearl Highlands Work Area. Soil from remaining portion of the DU (approximately 17,400 square feet for an estimated volume of approximately 3,200 cubic yards) should be properly disposed of offsite at a permitted facility as non-hazardous waste.

7.2.4 Stream Bank

This area includes DU7, where future excavation activities will be limited to eastern portion of the DU to re-establish the 100-year floodplain. Although no excavation activities are planned for the western portion of this DU, concrete and metal debris is present along the embankment at the north edge of Waiawa Stream. Based on the types and volume of debris present at the embankment, and assuming an average debris thickness of 3 feet, a volume of construction debris of approximately 800 cubic yards is estimated and may need to be removed. Of this volume, approximately 550 cubic yards may consist of concrete that should be reused within the Pearl Highlands Work Area if it meets the inert fill requirements, while metal debris and concrete not meeting inert fill requirements should be recycled or properly disposed of offsite.

7.2.5 Stream Bed

Although it is suspected that some of the detected contaminants may be regional contamination associated to historic activities, because of potential aquatic ecotoxicity concerns in the groundwater of the shallow aquifer at the Site, and because COPC concentrations in the stream bed sediments are above the SQuiRT TEC levels, it is recommended that Waiawa Stream surface water monitoring be conducted during construction activities to identify potential impacts during construction.

7.2.6 Further General Recommendations

If the above recommendations are implemented it is expected that no restrictions will apply in the future for DU3, DU5, and DU7. However, confirmation sampling may be required prior to removal of land use restrictions. LUCs will apply to other DUs to limit handling and use of contaminated soil, but no unacceptable exposure to current and future receptors is expected if future land use remains C/I.

Construction activities that pose a potential risk of exposure for construction workers to contaminated soil or dust (such as excavation of soil), or exposure to contaminated groundwater, must be supervised by properly trained and certified personnel. All personnel working in areas where there is potential for direct contact with contaminated media should have current 40-hour HAZWOPER certification and annual 8-hour HAZWOPER refresher training. The contractor's written health and safety plan should also be required to identify HAZWOPER-regulated tasks, associated hazards, monitoring and control measures, and emergency response requirements.

Because of aquatic ecotoxicity concerns, no groundwater should be directly discharged to Waiawa Stream during future construction activities. However, groundwater contamination above the C/I EALs is limited to organochlorine

pesticides and, marginally, selenium and silver. No onsite source was found for these constituents (that is, there were no exceedances of EALs in soil [with the exception of a very marginal exceedance of the residential EAL for heptachlor epoxide in surface soil within DU4]). Therefore, it is believed that groundwater contamination is from past regional pesticides and termiticides agricultural/residential applications, and future groundwater monitoring at the Pearl Highlands Work Area is not necessary. Because no future groundwater monitoring is necessary within the Pearl Highlands Work Area, all temporary wells should be abandoned in accordance with Option 3 of Section 6.2.5.2 of the HDOH TGM. The 5-inch-diameter, thin-walled, steel-cased well located about 12 feet upgradient of TW-001 should also be properly abandoned to prevent potential future unauthorized disposal.

Soil that is removed from the Site (any DU) and is planned for reuse outside the Pearl Highlands Work Area will require additional sampling for pre-characterization of soil intended for offsite reuse (e.g., one sample per 200 cubic yards of soil). Soil exceeding residential EALs should be either reused within the Pearl Highlands Work Area or properly disposed of at a permitted facility (if also exceeding C/I EALs). No soil exceeding residential EALs will be reused outside of the Pearl Highlands Work Area.

7.3 Data Gaps

The following main data gaps are identified for the Site:

- LNAPL impact in DU3 is assumed to be limited to an area in the vicinity of the steel pipe where LNAPL was encountered, but it has not been fully delineated. The lateral and vertical extent of LNAPL are unknown, and should be further evaluated.
- An area of approximately 3,000 square feet in the southern portions of DU2/DU5 could not be sampled because of the presence of soil stockpiles.
- Because of an existing depression over approximately 0.2 acre within DU6 from previous housing demolition
 work, investigation in this area was limited to test pits. Although soil increments were also collected within
 the test pits to supplement the soil boring IS samples, the distribution of increments from test pits was
 limited to a portion of the depressed area. This is especially the case for the shallow (0 to 5 feet bgs)
 SU/sampling interval, where soil was partially removed during previous demolition work.
- The vertical extent of contamination in DU4 and DU6 has not fully delineated. Although concentrations at the deepest investigated depths (3 feet and 18 feet bgs, respectively) are relatively low and this data gap has no implication on current/future exposure (concentrations are below C/I EALs) or construction activities in DU6, full delineation to Tier 1 EALs in these DUs was not achieved.
- As anticipated in the work plan, no detailed characterization of the waste and debris encountered was
 conducted during this investigation, and it is unknown how much of the concrete debris found in DU1S, DU3,
 and DU6 meets the inert fill requirements and can be reused within the Pearl Highlands Work Area as
 structural fill. Further assessment of the debris should be conducted in conjunction with construction.

8.0 References

AECOS, Inc. 1991. AECOS No. 661A. Survey of lower Waiawa Stream and impacts assessment for flood retention basis at the Waiawa Ridge development project. Prepared for Environmental Communications, Inc.

CH2M HILL. 2014a. Work Plan, Site Characterization for Banana Patch Property, Pearl City, Oahu, Hawaii. May.

CH2M HILL. 2014b. Project Quality Assurance Plan. Prepared for Honolulu Authority for Rapid Transportation. March.

CH2M HILL. 2014c. *Project Quality Assurance Program Plan, On Call Hazardous Materials Consulting Project*. Prepared for Honolulu Authority for Rapid Transportation. May.

City and County of Honolulu. 2011. Review of Current City and State Ordinances Honolulu High-Capacity Transit Corridor Project Final. August.

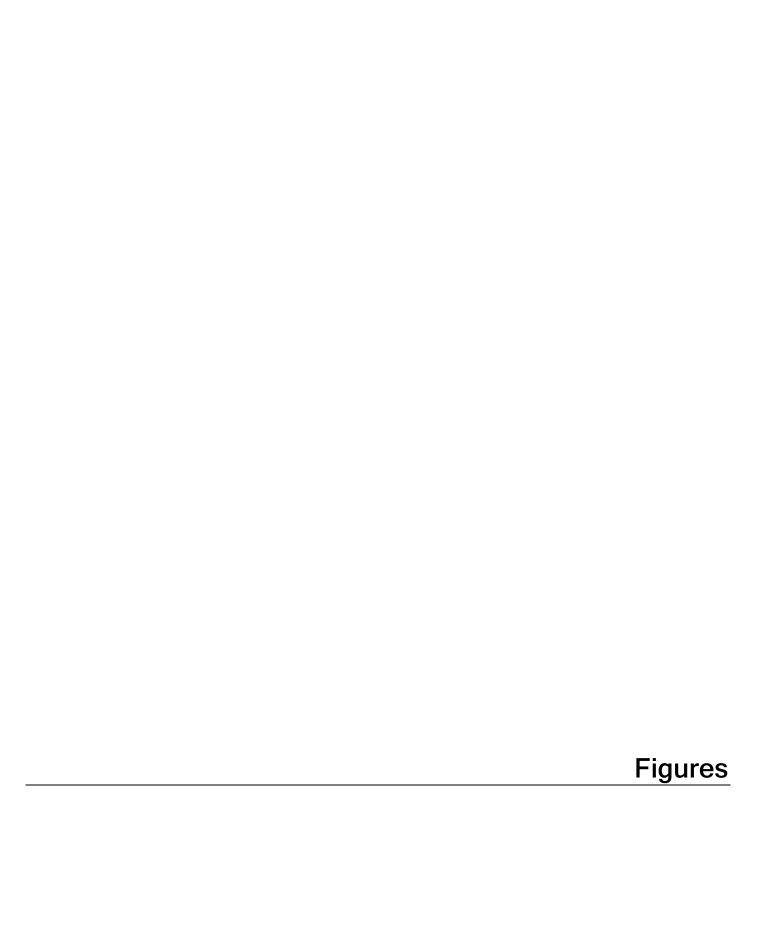
Environet Inc. 2009. Phase I Environmental Site Assessment Former Banana Patch, Pearl City, Oahu, Hawaii 96797, TMK (1) 9-6-3, Parcel 16. December.

Foote, D. E., E. L. Hill, S. Nakamura, and F. E. Stephens. 1972. *Soil survey of the islands of Kauai, Oahu, Maui, Molokai, and Lanai, State of Hawaii*. SCS, USDA, in cooperation with Univ. Hawaii Agr. Exp. Sta. U.S. Govt Printing Office, Wash. D.C.

Geolabs Inc. 2014. Geotechnical Data Report for Honolulu Rail Transit Project Pearl Highlands Parking Structure Transit Center and H2R1 Ramp, Pearl City Oahu, Hawaii. April 10.

Hawaii Cooperative Park Service Unit. 1990. R84. Hawaii Stream Assessment, *A preliminary appraisal of Hawaii's Stream Resources*. Prepared for the State of Hawaii commission on Water Resource Management.

Mink and Lau. 1990. Aguifer identification and classification for Oahu: Groundwater protection strategy for Hawaii.

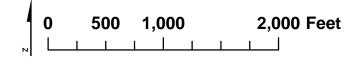

National Oceanic and Atmospheric Administration. Screening Quick Reference Tables (SQuiRTs). 2008. November. http://www.gesamp.org/data/gesamp/files/file_element/4a2a322c8acb2c26cc0234685eac71fa/SQuiRTs.pdf.

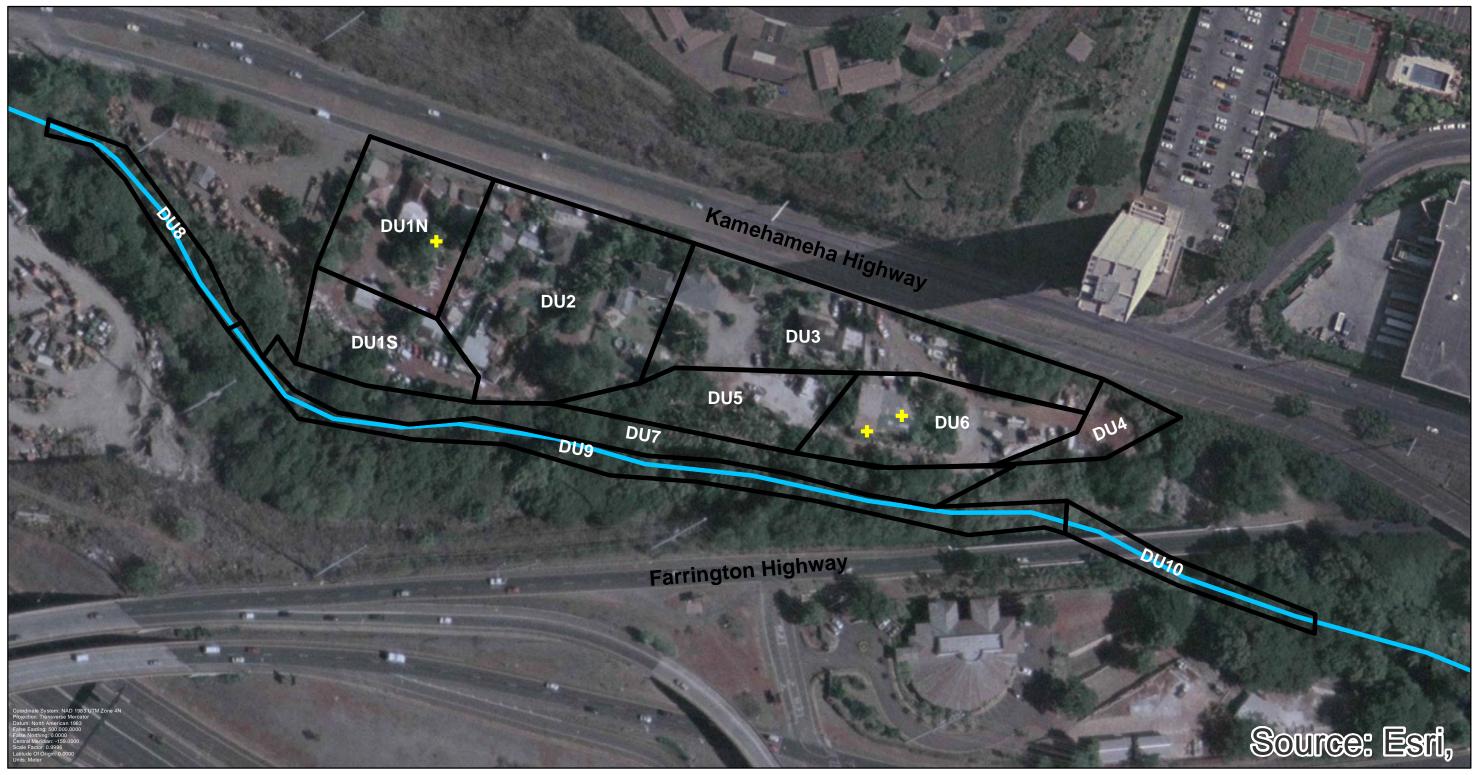
State of Hawaii Department of Health (HDOH). 2009 (and subsequent updates). *State of Hawaii Technical Guidance Manual*. November.

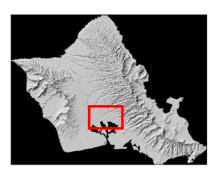
State of Hawaii Department of Health (HDOH). 2011. Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater (Fall 2011, revised January 2012 to correct TPH toxicity factors & action levels; see Appendix 1). Hazard Evaluation and Emergency Response Office.

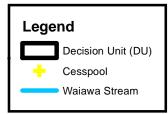
State of Hawaii Department of Health (HDOH). 2014. 2014 State of Hawaii water quality monitoring and assessment report: Integrated report to the U.S. Environmental Protection Agency and the U.S. Congress pursuant to Sections 303(d) and 305(b), Clean Water Act PL 97-117. April.

This page is intentionally left blank.


Legend


Banana Patch Property, 5.6 acres


Note: Boundary was surveyed usingTrimble global positioning system instrument. Locations are approximate.



Site Characterization Report of Banana Patch Properties Pearl City, Oahu, Hawaii Honolulu Rail Transit Project

Note: Decision Unit and Cesspool locations were surveyed usingTrimble global positioning system instrument. Locations are approximate.

Acronym List: DU: Decision Unit

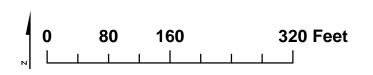
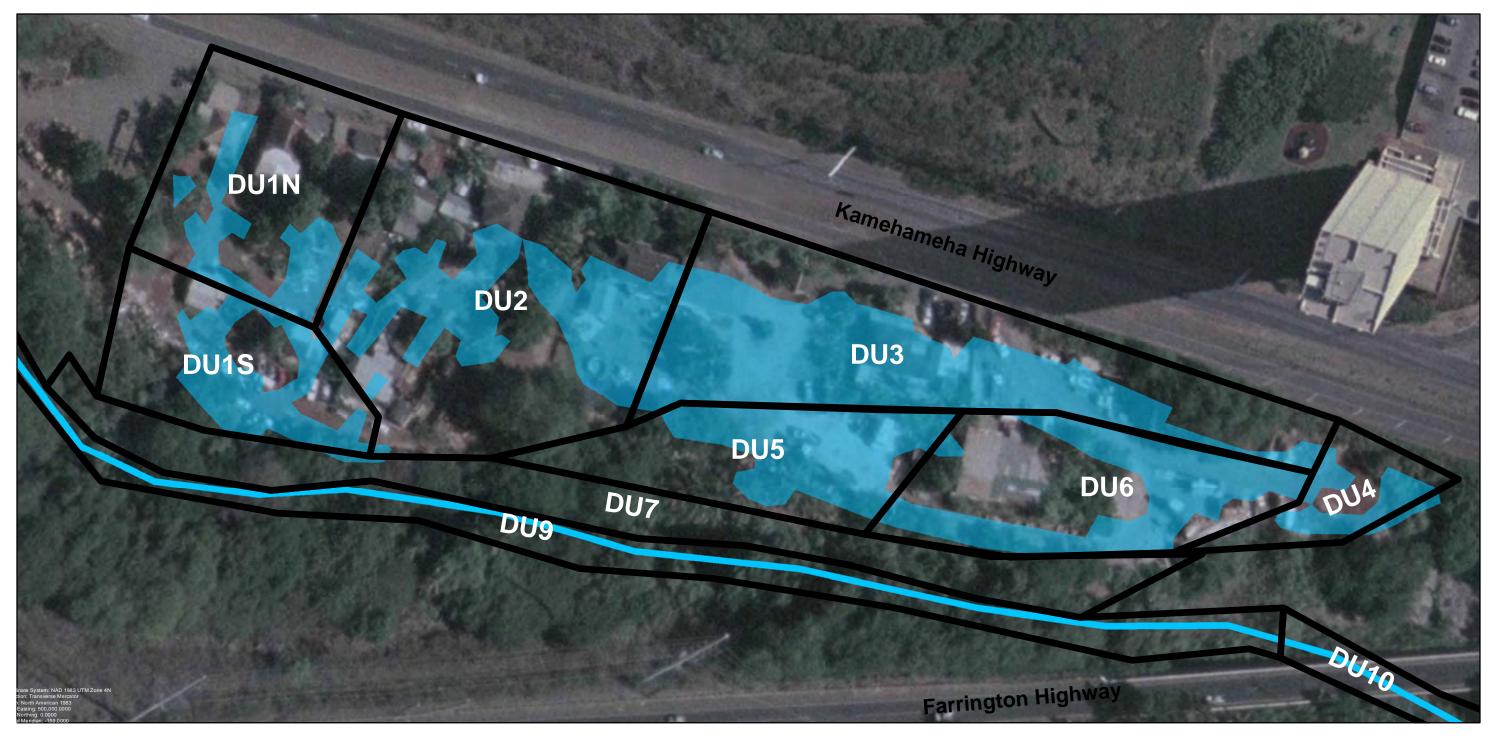
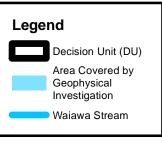
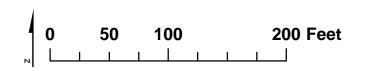
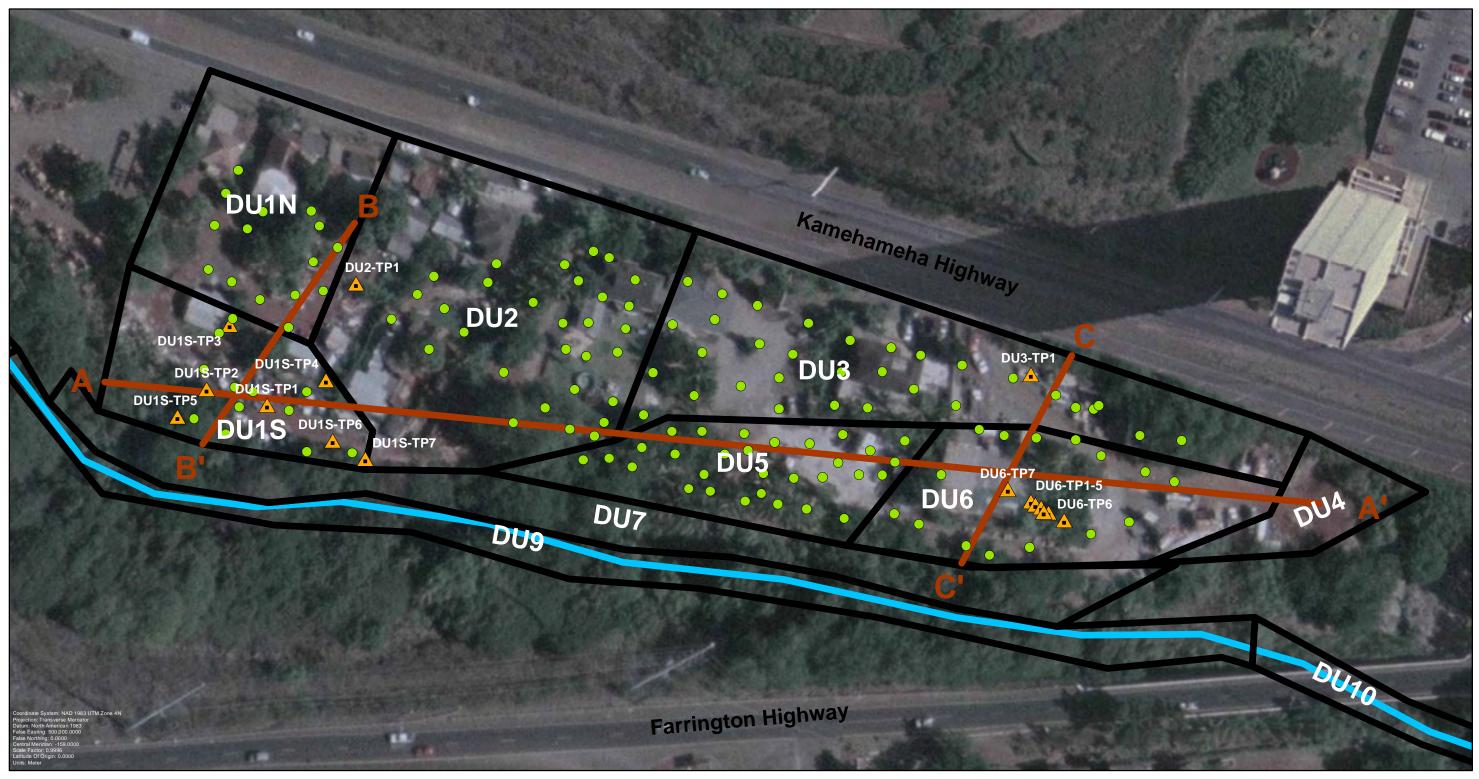




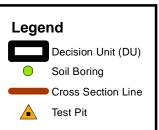
Figure 2-1 Site Layout

Site Characterization Report of Banana Patch Properties Pearl City, Oahu, Hawaii Honolulu Rail Transit Project


Note


The geophysical survey area was limited to approximately 50% of the flat area of the site due to presence of residential structures, chicken coops, surface debris, soil stockpiles, and vegetation in DU1 and DU2; surface debris, heavy equipment, and materials stored in DU3; steep slope on the east side of DU4; connex boxes, vegetation, and surface debris in DU5; and surface debris and a depression in DU6.

Acronym List: DU: Decision Unit



Site Characterization Report for Banana Patch Properties Pearl City, Oahu, Hawaii Honolulu Rail Transit Project

Note: Note: Decision Unit, Boring, and Test Pit locations were surveyed usingTrimble global positioning system instrument. Locations are approximate.

Acronym List: DU: Decision Unit TP: Test Pit

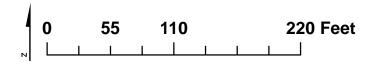
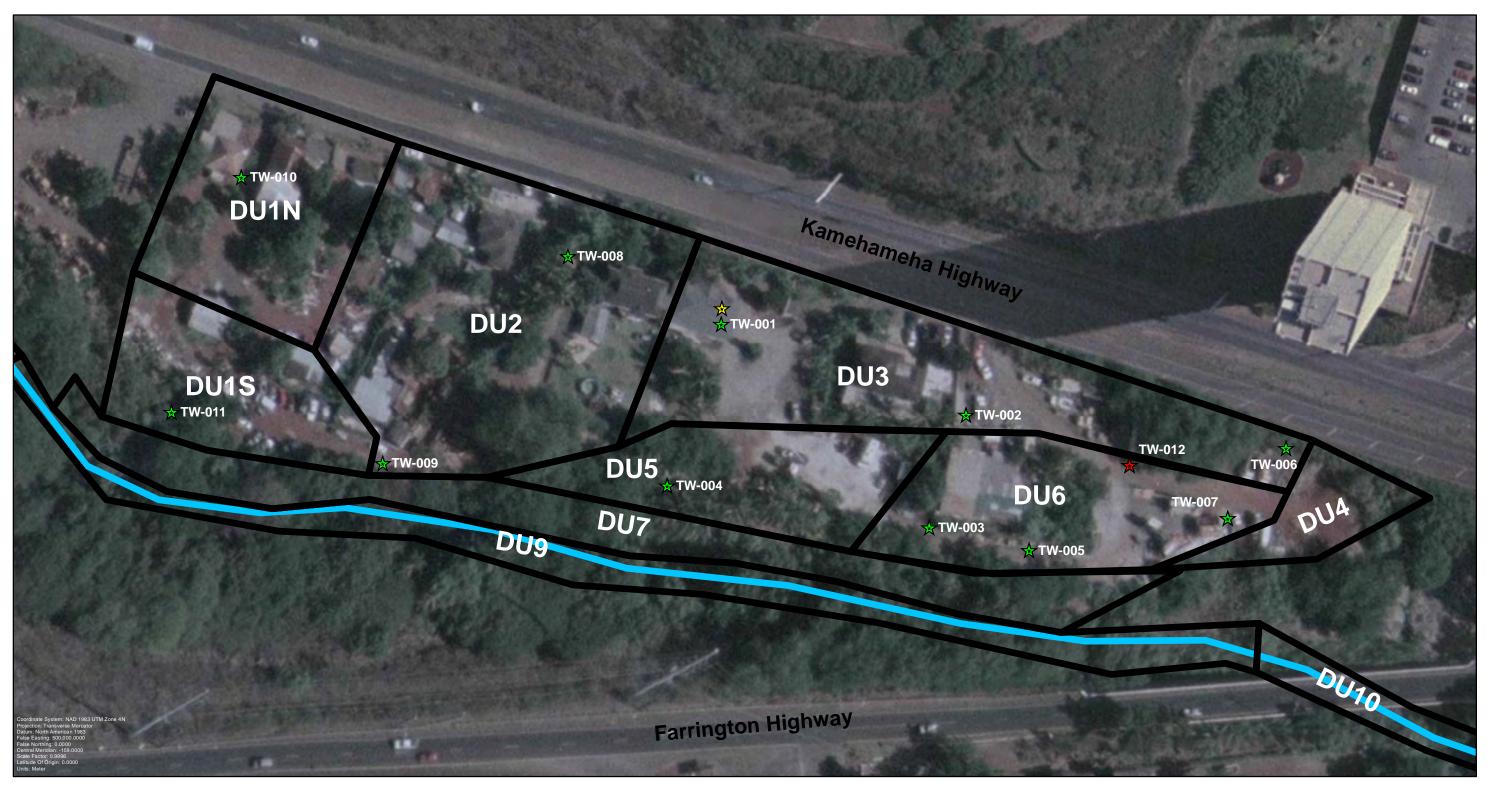
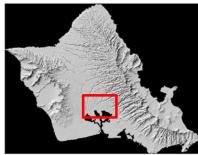




Figure 3-2
Soil Boring and Test
Pit Locations

Site Characterization Report of Banana Patch Properties Pearl City, Oahu, Hawaii Honolulu Rail Transit Project

Legend

Decision Unit (DU)

Existing Monitoring Well

Temporary Monitoring Well

5-inch Thin Wall Steel Cased Well

Note: Note: Temporary Monitoring Well locations were surveyed usingTrimble global positioning system instrument. Locations are approximate.
TW-012 corresponds to an existing Monitoring

Acronym List: DU: Decision Unit TW: Temporary Well

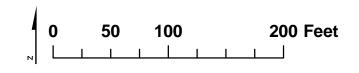
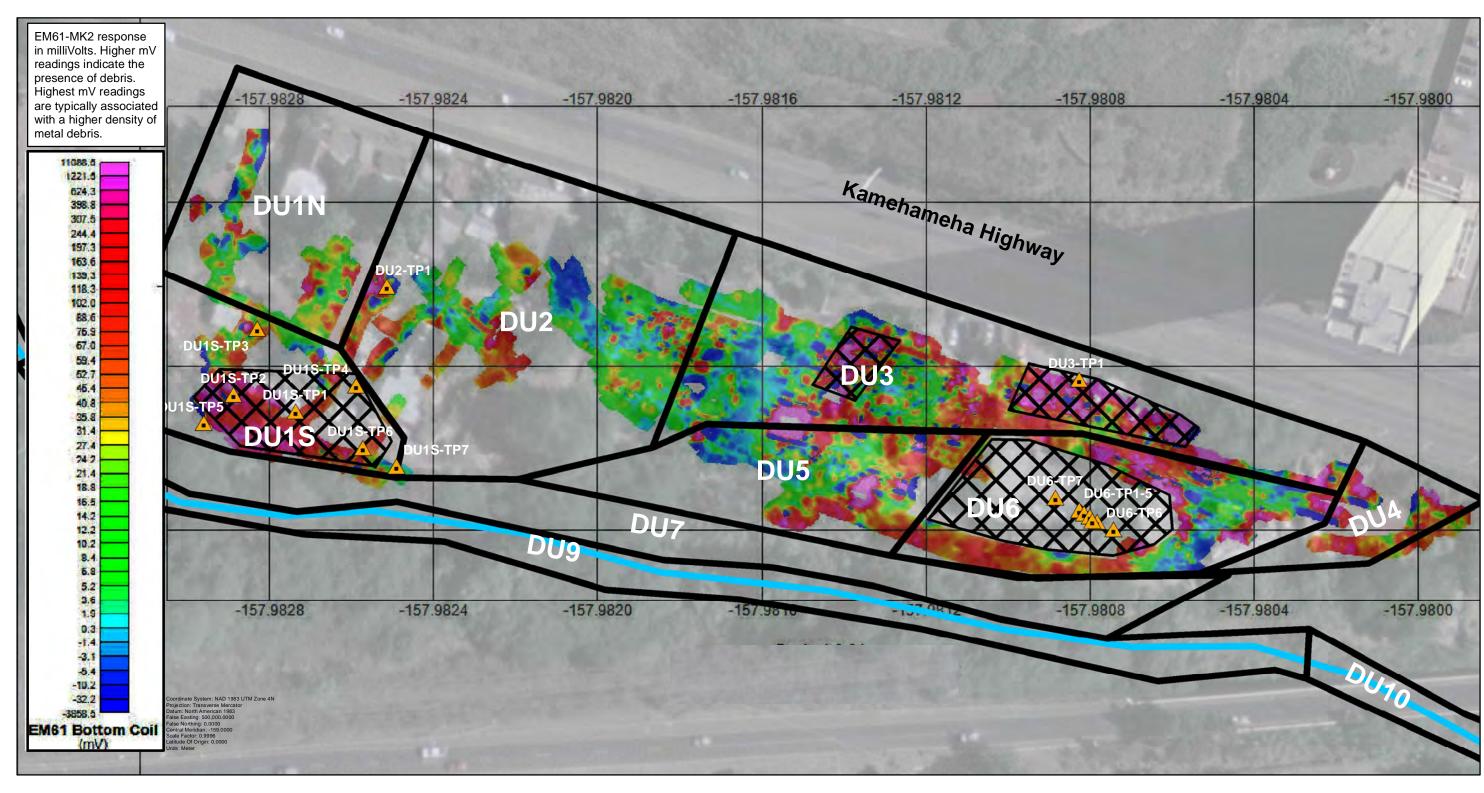
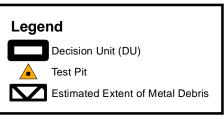




Figure 3-3 Temporary Monitoring Well Locations

Site Characterization Report of Banana Patch Properties Pearl City, Oahu, Hawaii Honolulu Rail Transit Project

Noto:

Note:

1) Test pits were surveyed using a Trimble GPS instrument. Locations are approximate.

2) As discussed in Section 4.1 of the report there were numerous areas containing surface metal objects for construction activities during the geophysical investigation. These areas show high EM61 response, but do not indicate subsurface debris are present.

3) Additional geophysical figures are provided in Appendix B.

Acronym List: DU: Decision Unit mV: millivolt TP: Test Pit

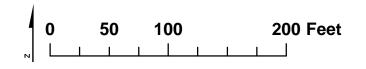
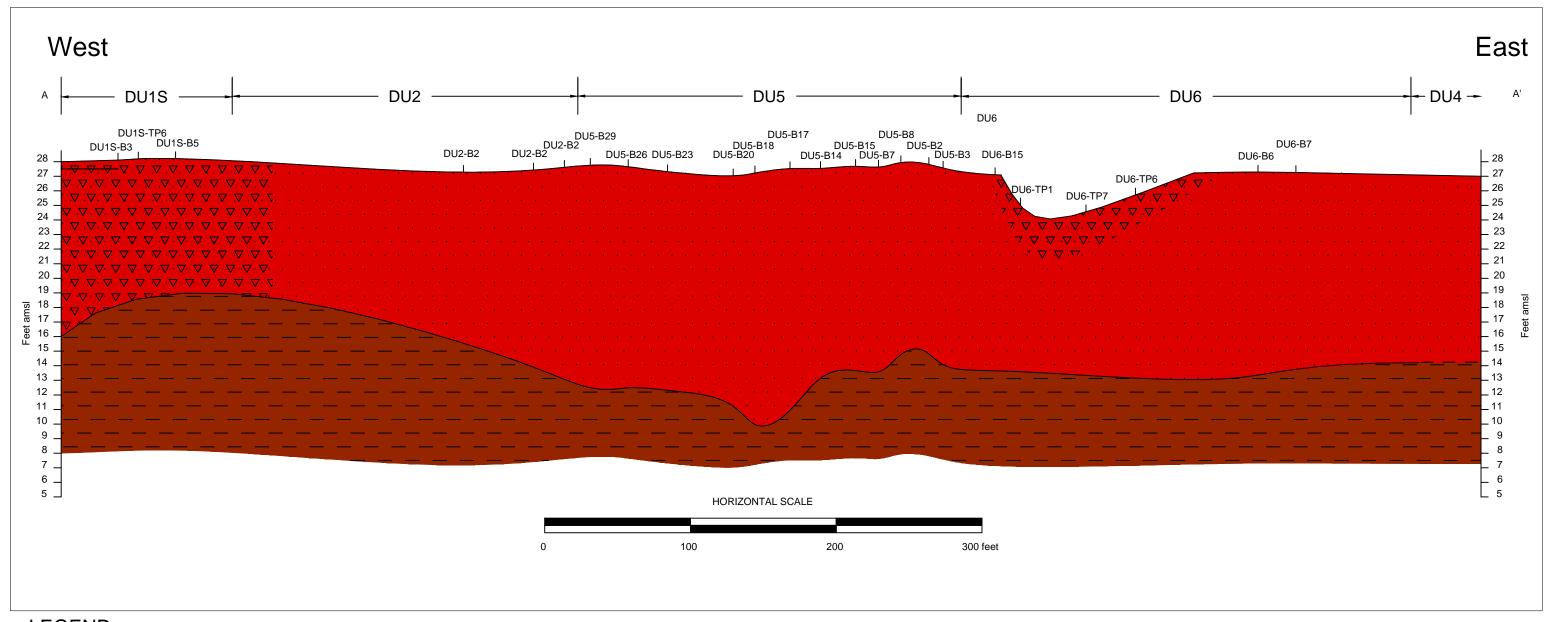



Figure 4-1 Geophysical Anomalies and Test Pit Locations

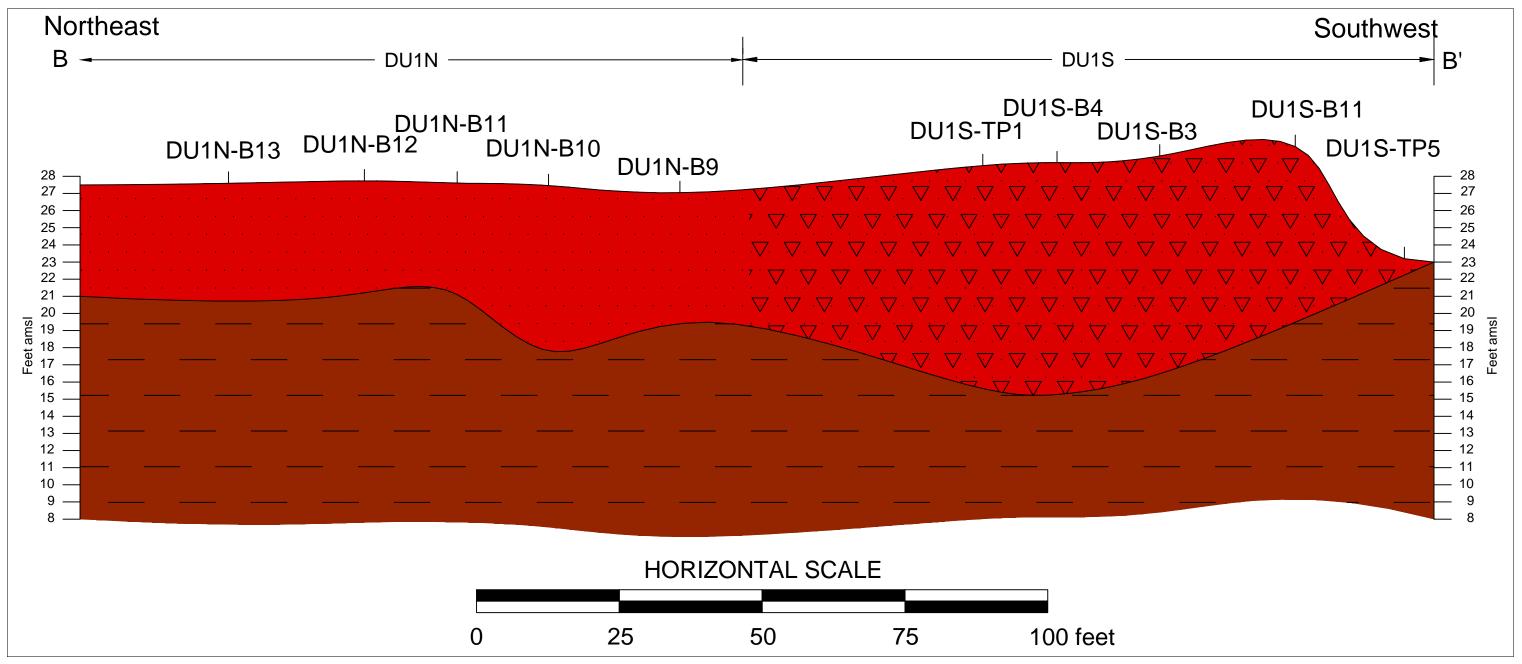
Site Characterization Report for Banana Patch Properties Pearl City, Oahu, Hawaii Honolulu Rail Transit Project

LEGEND

Fill - Red to brown silt and clay with fragments of coral and basalt. Presence of debris (fragments of concrete, asphalt and glass). Dry to moist. Consistency ranges from medium stiff to stiff in fine sediments and loose to dense in coarser sediments. Clays have medium plasticity. Stiff to medium plasticity.

Fill Mixed with Metal Debris- Red to brown silt and clay with fragments of coral and basalt. Presence of concrete and metal debris (based on geophysical investigation results [see Figure 4] and visual evidence). Dry to moist. Consistency ranges from medium stiff to stiff in fine sediments and loose to dense in coarser sediments. Clays have medium plasticity. Stiff to medium plasticity.

Native Soil - Red to dark brown silty clay, with trace fine sand and organic matter in some borings. Moist in borings without fine sand or organic matter, and moist to wet in some borings with fine sand and/or organic matter present. Low to medium plasticity clays.


Notes:

- This cross section is intended to show the approximate location of fill/debris and native soil. No detailed lithological logging was conducted (see test pit and boring logs in Appendices C and D, respectively). No lithology shown beyond maximum investigation depth of approximately 20 feet.
- Locations are based on GPS coordinates. Handheld GPS instrument theoretical precision is submeter, but precision may have been affected by thick vegetation. Please refer to Figure 3-1 for cross section location.
- Vertical exageration 10x.

amsl = above mean sea level bgs = below ground surface DU = decision unit

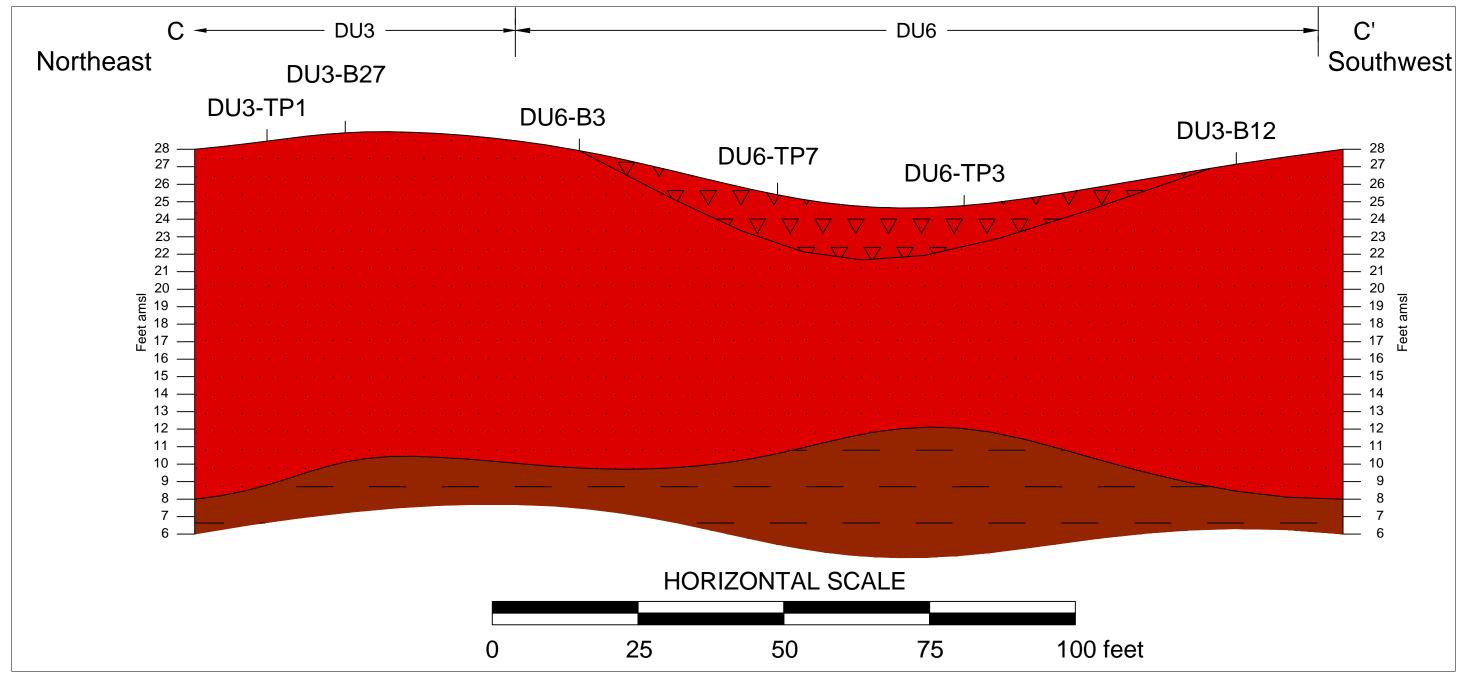
Figure 4-2a
Cross Section A-A' (West-East)
Site Characterization Report for
Banana Patch Properties
Pearl City, Oahu, Hawaii

Honolulu Rail Transit Project

LEGEND

Fill - Red to brown silt and clay with fragments of coral and basalt. Presence of debris (fragments of concrete, asphalt and glass). Dry to moist. Consistency ranges from medium stiff to stiff in fine sediments and loose to dense in coarser sediments. Clays have medium plasticity. Stiff to medium plasticity.

Fill Mixed with Metal Debris- Red to brown silt and clay with fragments of coral and basalt. Presence of concrete and metal debris (based on geophysical investigation results [see Figure 4] and visual evidence). Dry to moist. Consistency ranges from medium stiff to stiff in fine sediments and loose to dense in coarser sediments. Clays have medium plasticity. Stiff to medium plasticity.


Native Soil - Red to dark brown silty clay, with trace fine sand and organic matter in some borings. Moist in borings without fine sand or organic matter, and moist to wet in some borings with fine sand and/or organic matter present. Low to medium plasticity clays.

Notes

- This cross section is intended to show the approximate location of fill/debris and native soil. No detailed lithological logging was conducted (see test pit and boring logs in Appendices C and D, respectively). No lithology shown beyond maximum investigation depth of approximately 20 feet.
- Locations are based on GPS coordinates. Handheld GPS instrument theoretical precision is submeter, but precision may have been affected by thick vegetation. Please refer to Figure 3-1 for cross section location.
- Vertical exageration 3x.

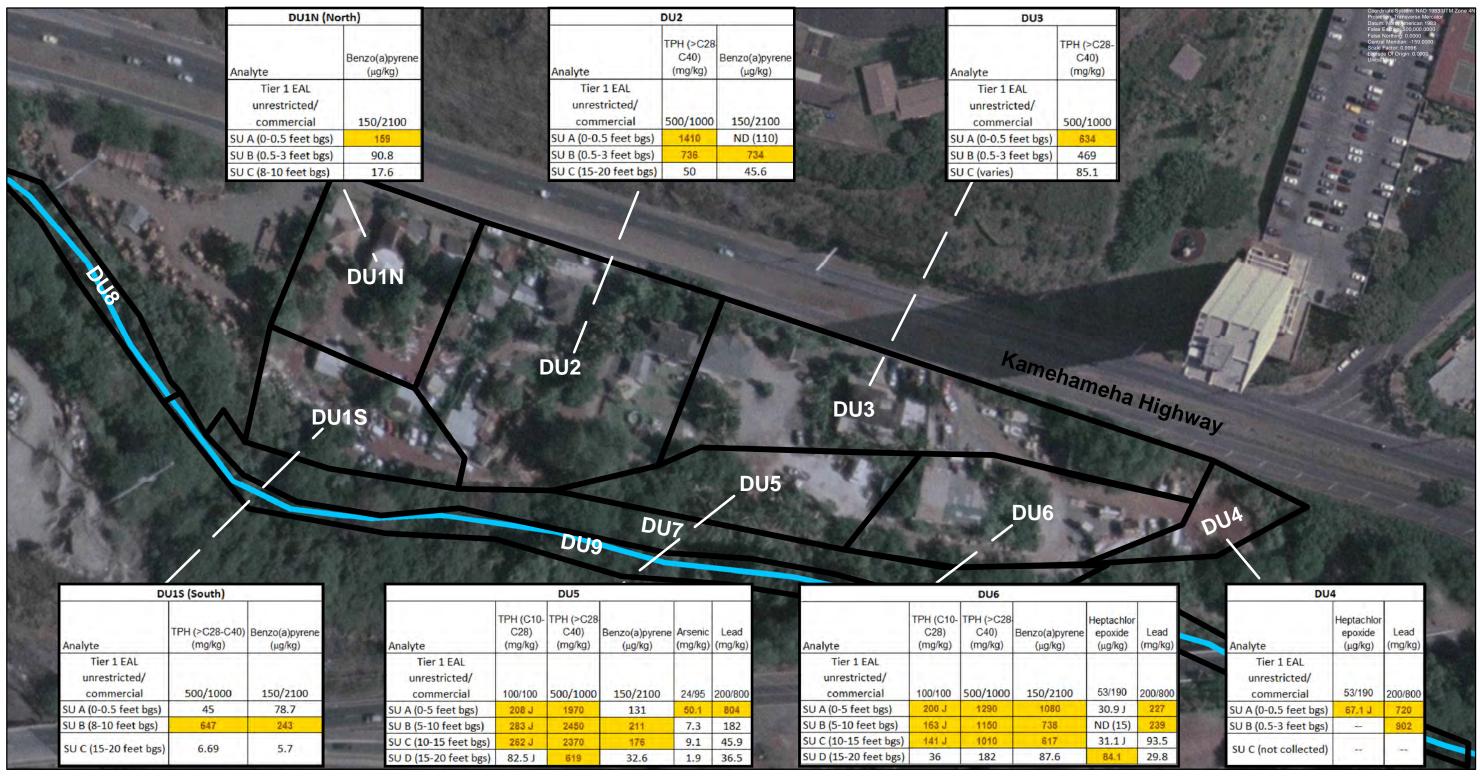
amsl = above mean sea level bgs = below ground surface DU = decision unit

Figure 4-2b
Cross Section B-B'
(Northeast-Southwest)

LEGEND

Fill - Red to brown silt and clay with fragments of coral and basalt. Presence of debris (fragments of concrete, asphalt and glass). Dry to moist. Consistency ranges from medium stiff to stiff in fine sediments and loose to dense in coarser sediments. Clays have medium plasticity. Stiff to medium plasticity.

Fill Mixed with Metal Debris- Red to brown silt and clay with fragments of coral and basalt. Presence of concrete and metal debris (based on geophysical investigation results [see Figure 4] and visual evidence). Dry to moist. Consistency ranges from medium stiff to stiff in fine sediments and loose to dense in coarser sediments. Clays have medium plasticity. Stiff to medium plasticity.


Native Soil - Red to dark brown silty clay, with trace fine sand and organic matter in some borings. Moist in borings without fine sand or organic matter, and moist to wet in some borings with fine sand and/or organic matter present. Low to medium plasticity clays.

Notes:

- This cross section is intended to show the approximate location of fill/debris and native soil. No detailed lithological logging was conducted (see test pit and boring logs in Appendices C and D, respectively). No lithology shown beyond maximum investigation depth of approximately 20 feet.
- Locations are based on GPS coordinates. Handheld GPS instrument theoretical precision is submeter, but precision may have been affected by thick vegetation. Please refer to Figure 3-1 for cross section location.
- Vertical exageration 3x.

amsl = above mean sea level bgs = below ground surface DU = decision unit

Figure 4-2c
Cross Section C-C'
(Northeast-Southwest)
Site Characterization Repo

Note:

1) Soil analytical data were compared to the State of Hawaii Department of Health Tier 1 Environmental Action Levels (EALs) for sites within 150 meters of a surface water body, where drinking water is threatened (HDOH, 2011, Table A-2).

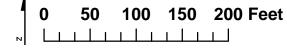
2) Exceedences of Tier 1 EALs are highlighted in yellow. 3) All results reported in milligrams per kilogram (mg/kg), except for benzo(a)pyrene and heptachlor epoxide which are reported in micrograms per kilogram (µg/kg).

Acronym List

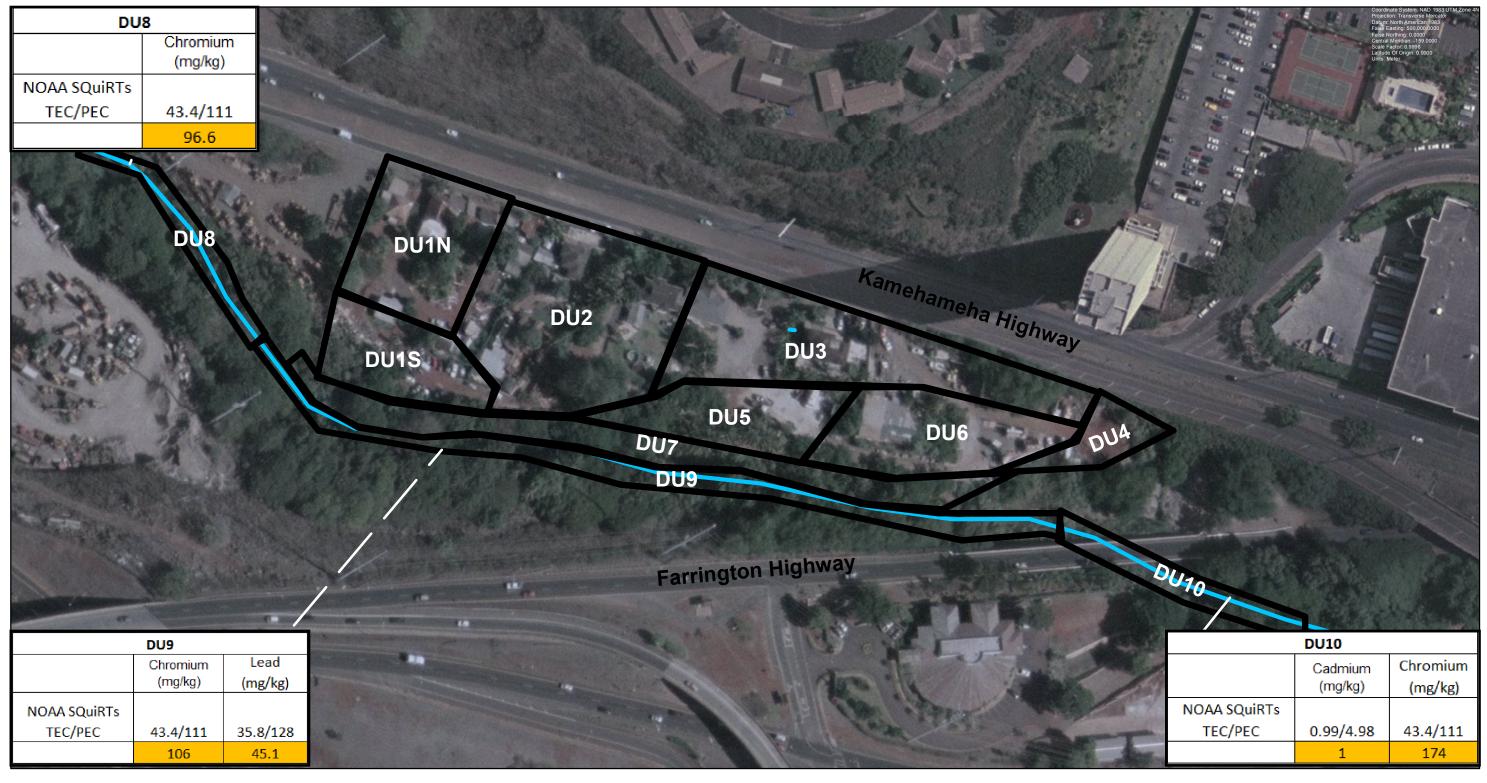
bgs: Below Ground Surface

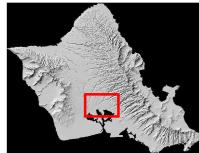
DU: Decision Unit

J: the analyte was positively identified,


the quantitation is an estimate.

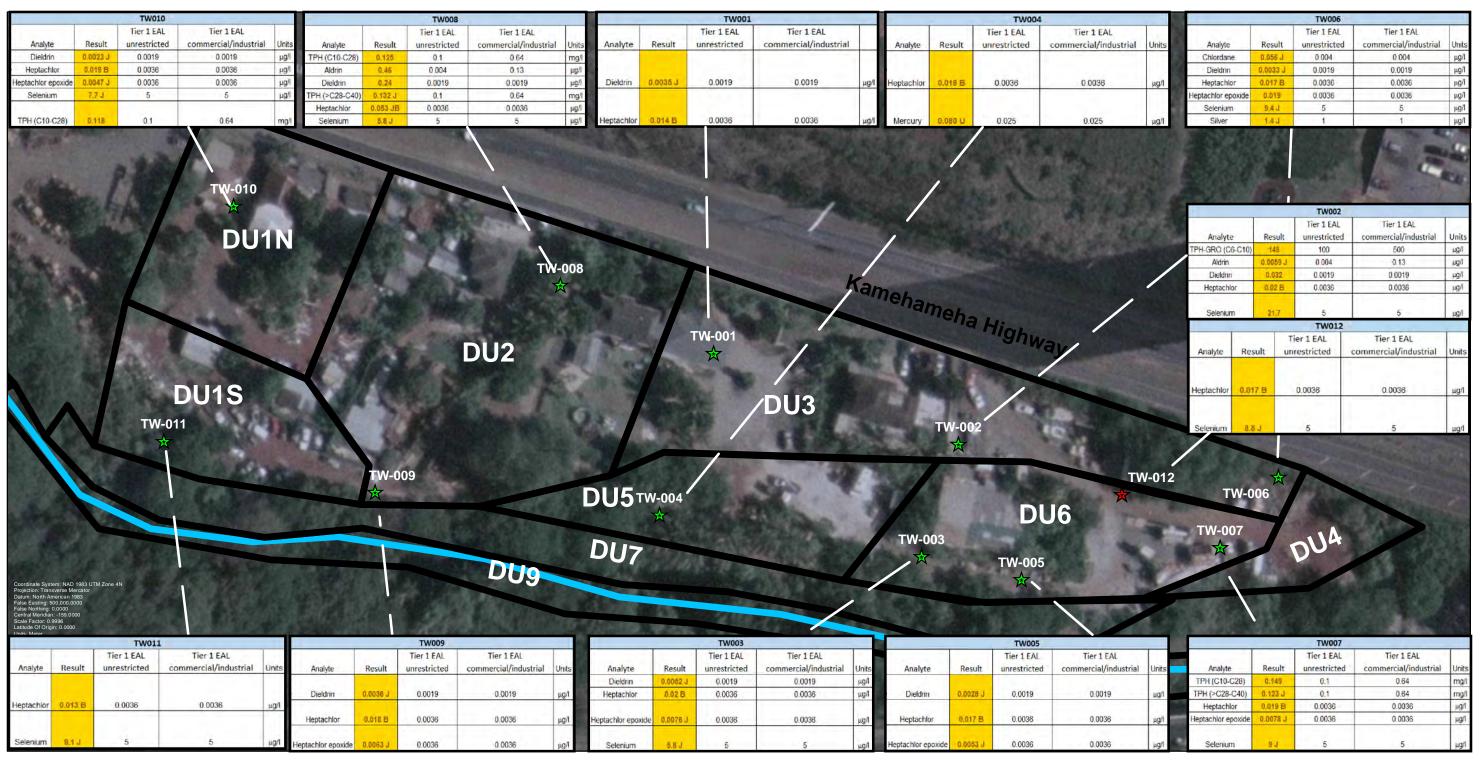
ND: non-detect


SU: sampling unit (sampling depth interval)


TPH: total petroleum hydrocarbons TPH (C10-28) indicates diesel range

TPH (>C28-40) indicates oil range

Figure 4-3 Soil Results above Screening Levels



Note:
1) Sediment analytical data were compared to the National Oceanic and Atmospheric Administration Screening Quick Reference Table (NOAA SQuiRTs) Threshold Effects Concentration (TECs) and Probable Effects Levels (PELs) (NOAA, November 2008). Exceedences are highlighted in

Acronym List DU: Decision Unit

50 100 200 Feet

Figure 4-4 **Sediment Results** above Screening Levels

Legend Decision Unit (DU) Existing Monitoring Well Temporary Monitoring Well Waiawa Stream

Acronym List:

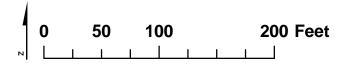
B: Quantitation between primary and confirmation differed by > 40%. Lower value reported.

bgs: Below Ground Surface

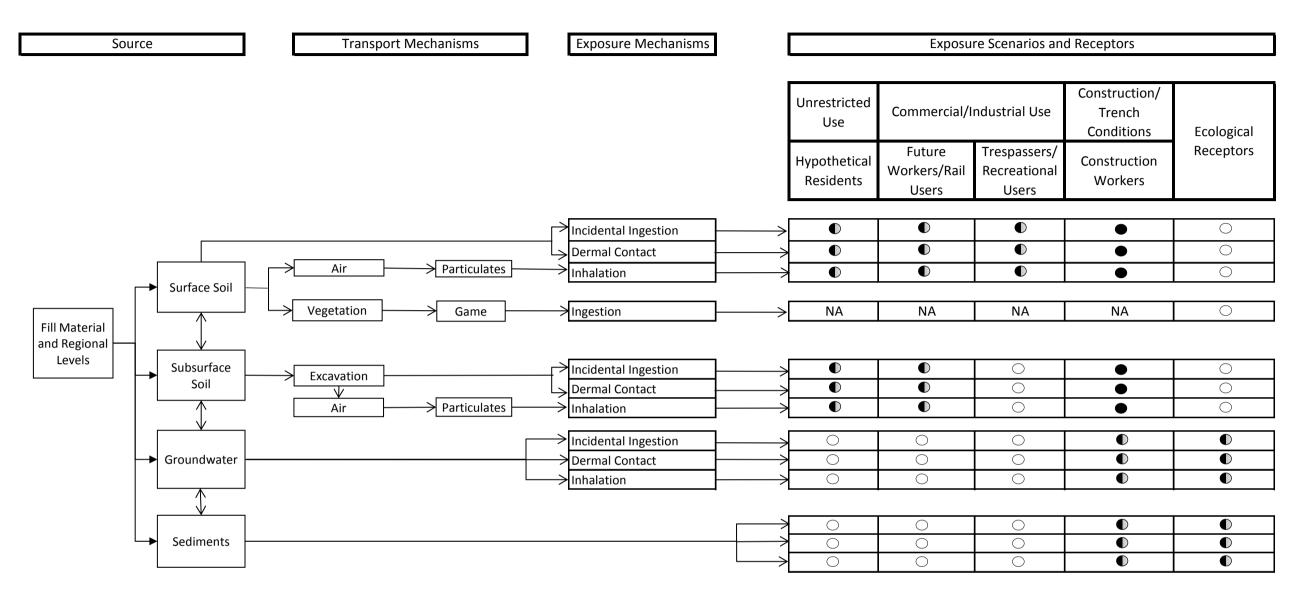
C/I: Commercial / Industrial

DU: Decision Unit FAL: environmental action level

HDOH: State of Hawaii Department of Health J: the analyte was positively identified,


the quantitation is an estimate mg/L: milligrams per liter

TPH: total petroleum hydrocarbons TPH (C10-28) indicates diesel range

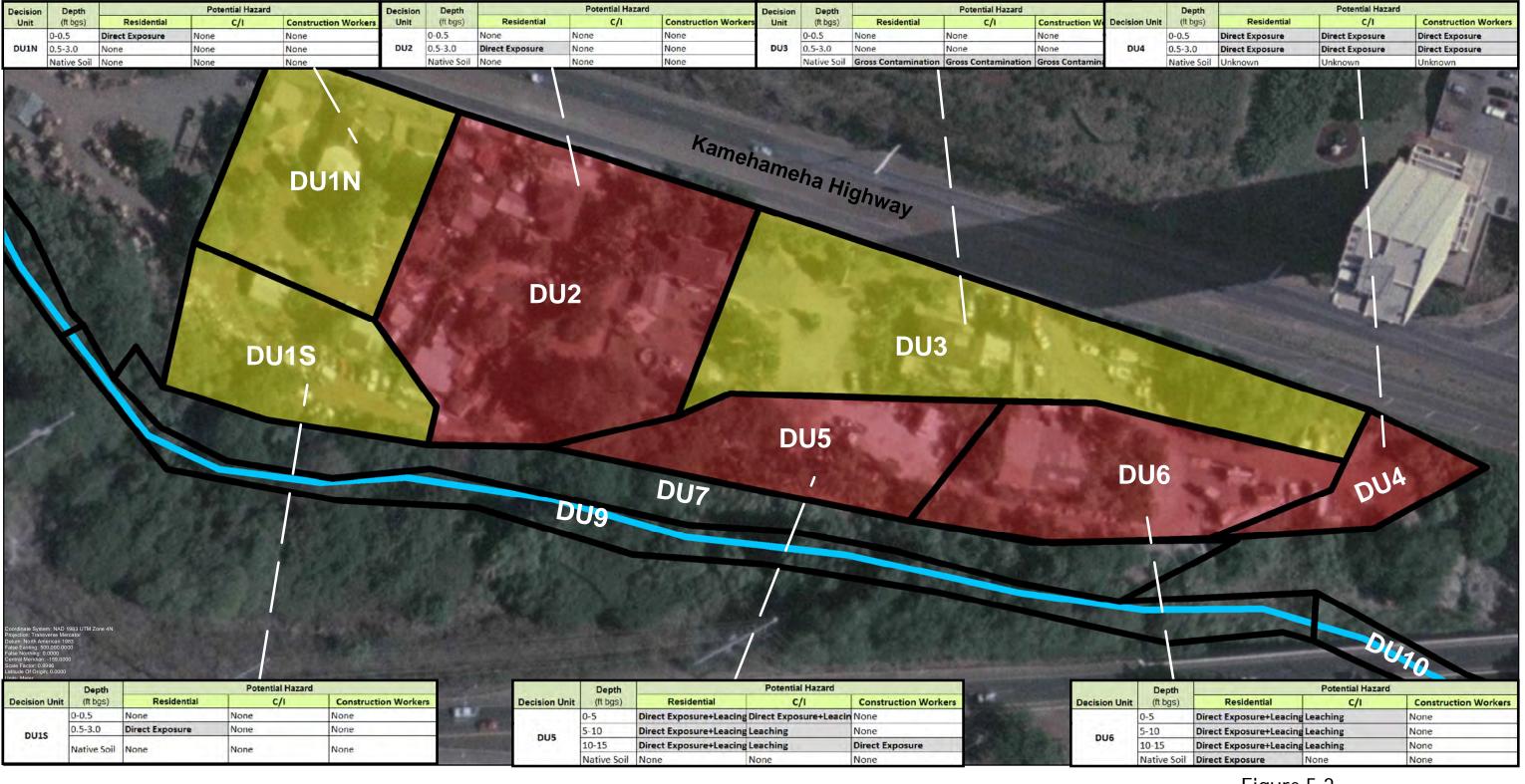

TPH (>C28-40) indicates oil range TW: Test Well μg/L: micrograms per liter

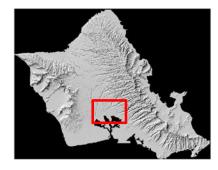
1) Groundwater analytical data were compared to the unrestricted HDOH Tier 1 EALs for sites within 150 meters of a surface water body where drinking water is threatened (Tier 1 EAL unrestricted); and C/I HDOH Tier 1 EALs for sites within 150 meters of a surface water body where drinking water is not threatened (Tier 1 EAL C/I).

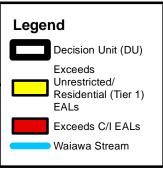
2) TW-012 cooresponds to an existing monitoring well

Figure 4-5 **Groundwater Results Above Screening Levels**

Legend:

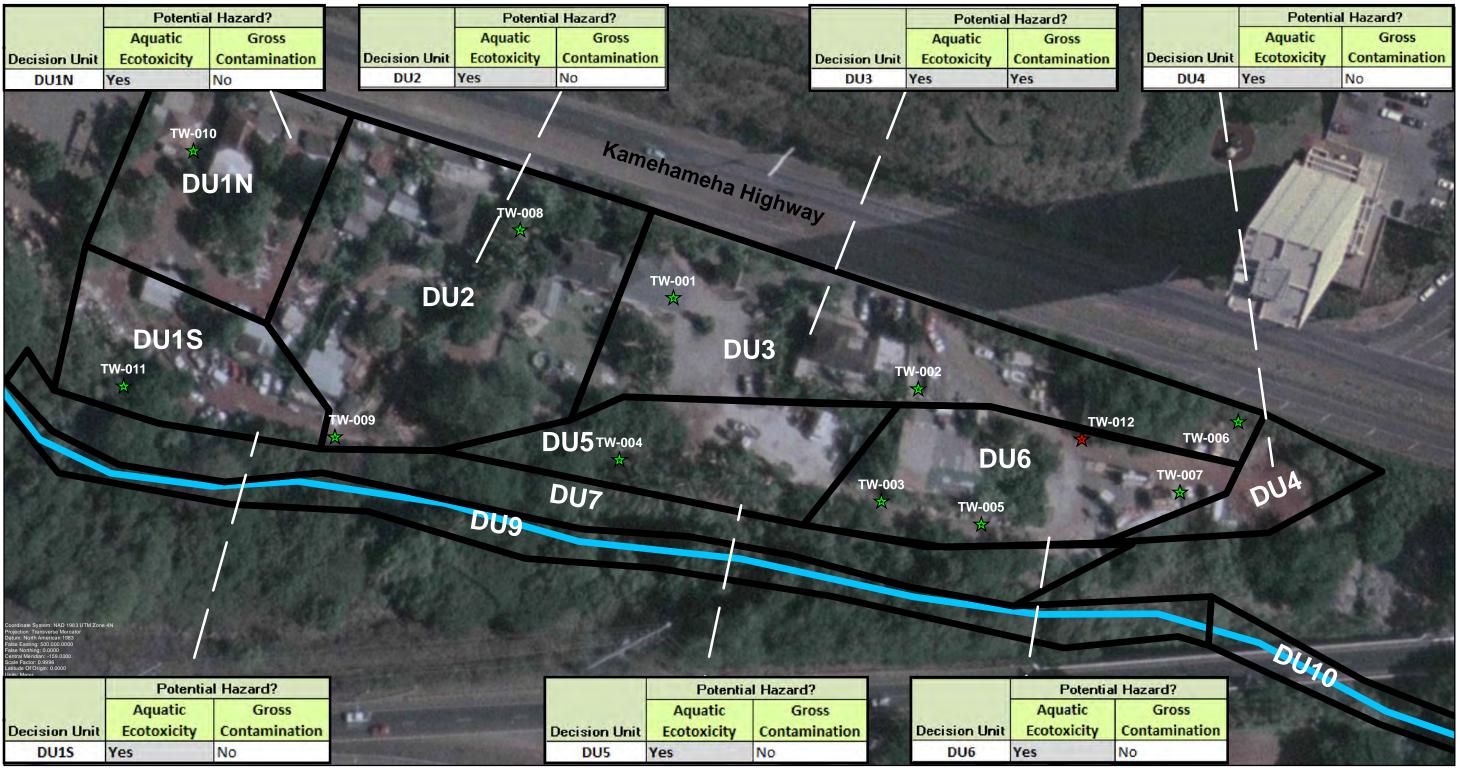

○ = Incomplete Pathway

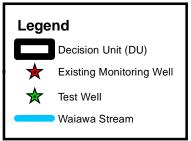

● = Potentially Complete Pathway


● = Complete Pathway

NA = Not Applicable

FIGURE 5-1
Conceptual Site Model
Site Characterization Report for Banana Patch Properties,
Pearl City, Oahu, Hawaii
Honolulu Rail Transit Project




Acronym List:
bgs: Below Ground Surface
C/i: Commercial / Industrial
DU: Decision Unit
EAL: State of Hawaii Environmental Action Level
ft: Feet

0 50 100 200 Feet

Figure 5-2 Environmental Hazard Evaluation Summary - Soil

Note: TW-012 cooresponds to existing Monitoring Well

Acronym List: DU: Decision Unit TW: Test Well

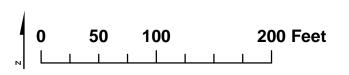
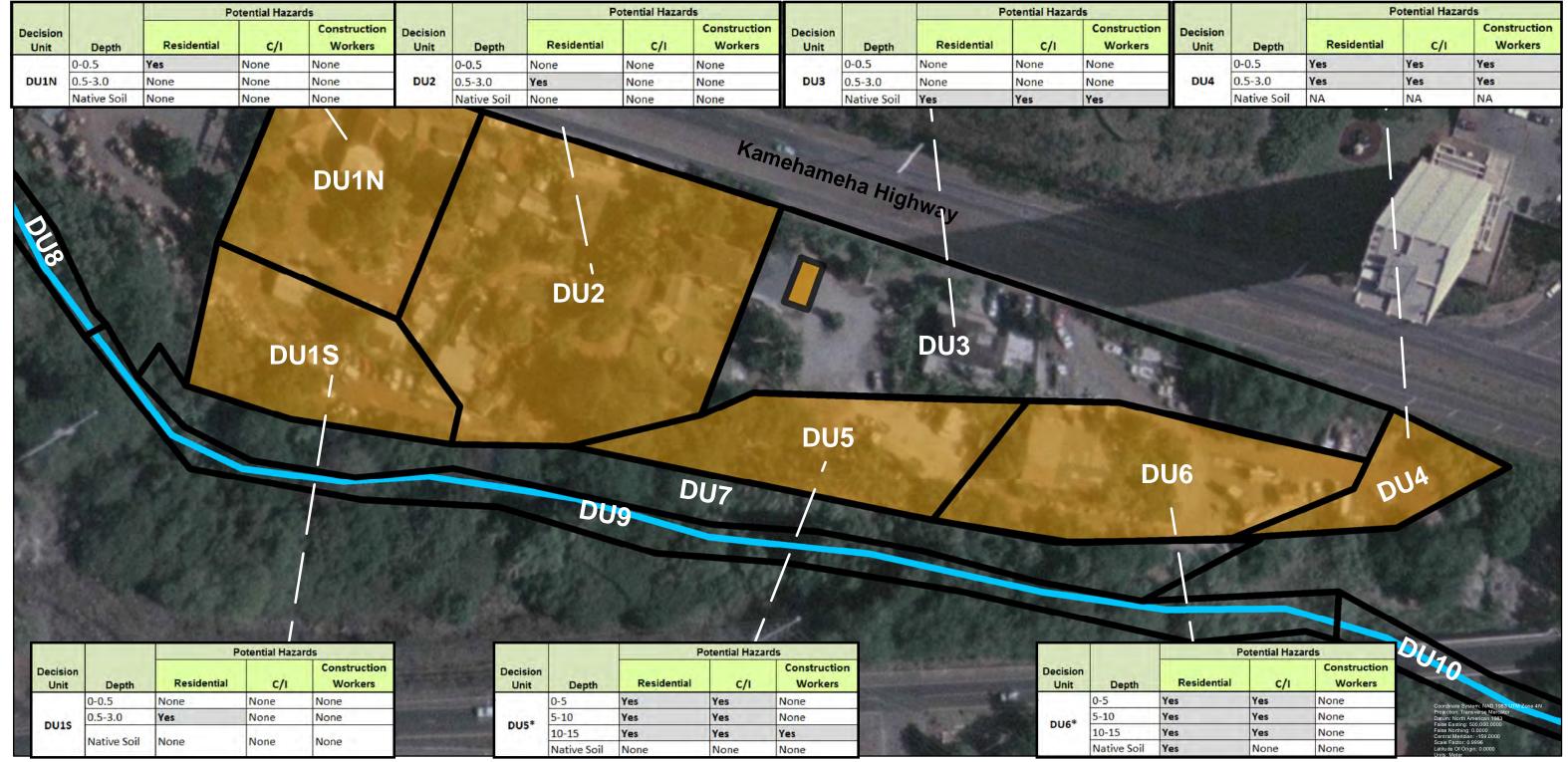
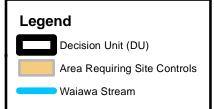
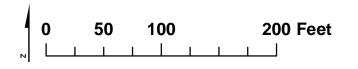
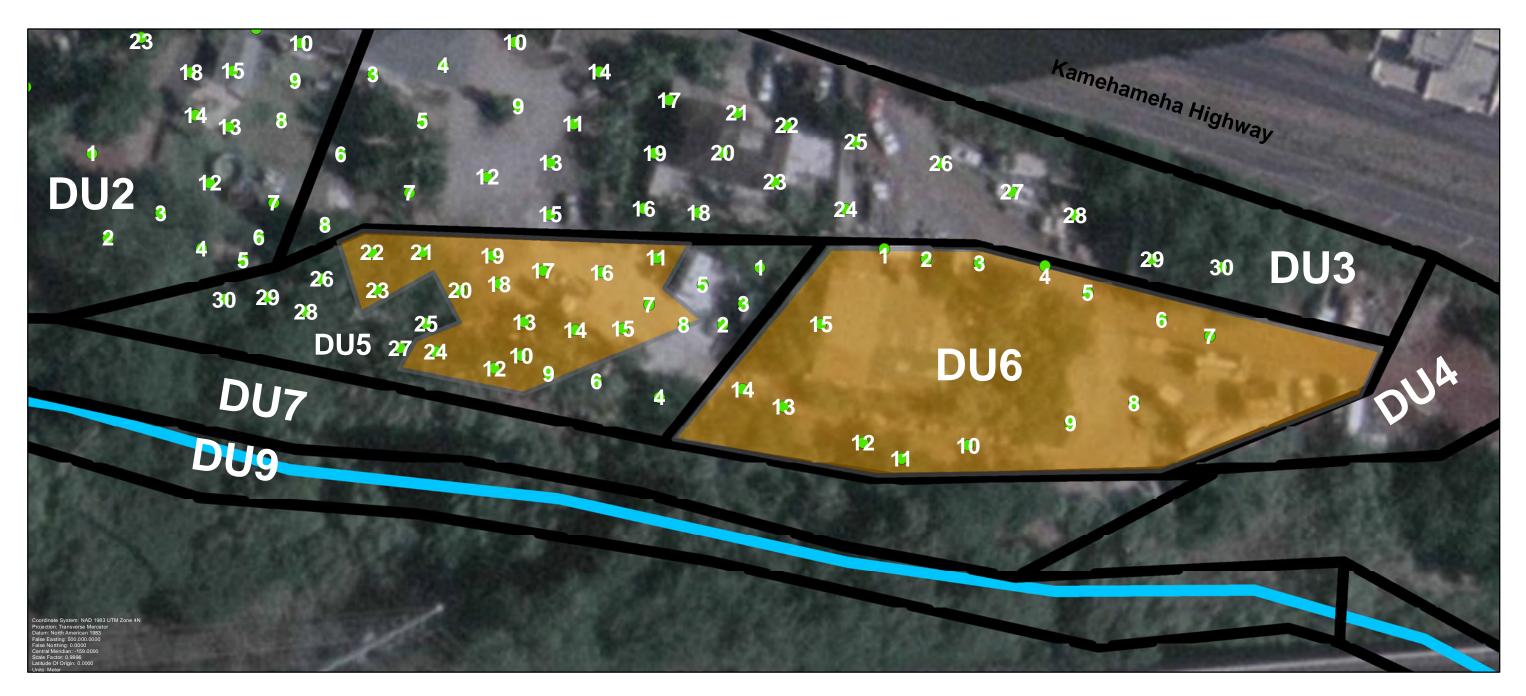




Figure 5-3 Environmental Hazard Evaluation Summary -Groundwater



Not


*Environmental hazard present only in a portion of the DU. Refer to Figure 6-2 for more details.

Area requiring site controls within DU3 is approximate.

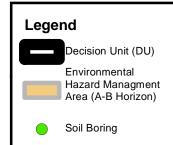

Acronym List: bgs: Below Ground Surface C/I: Commercial / Industrial DU: Decision Unit

Figure 6-1 Site-wide Environmental Hazard Management Area - Soil

Note: The "A-B" horizons correspond to the following depths.

- DU5/6: 0-10 foot depth interval, requiring site controls because of direct exposure concerns in a limited portion of the DUs.

Area of Environmental Hazard Management Areas: DU5: 10291.4 square feet DU6: 29837.8 square feet

Acronym List: bgs: Below Ground Surface DU: Decision Unit LNAPL: Non-Aqueous Phase Liquid

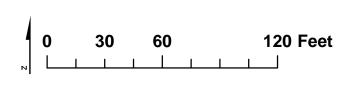
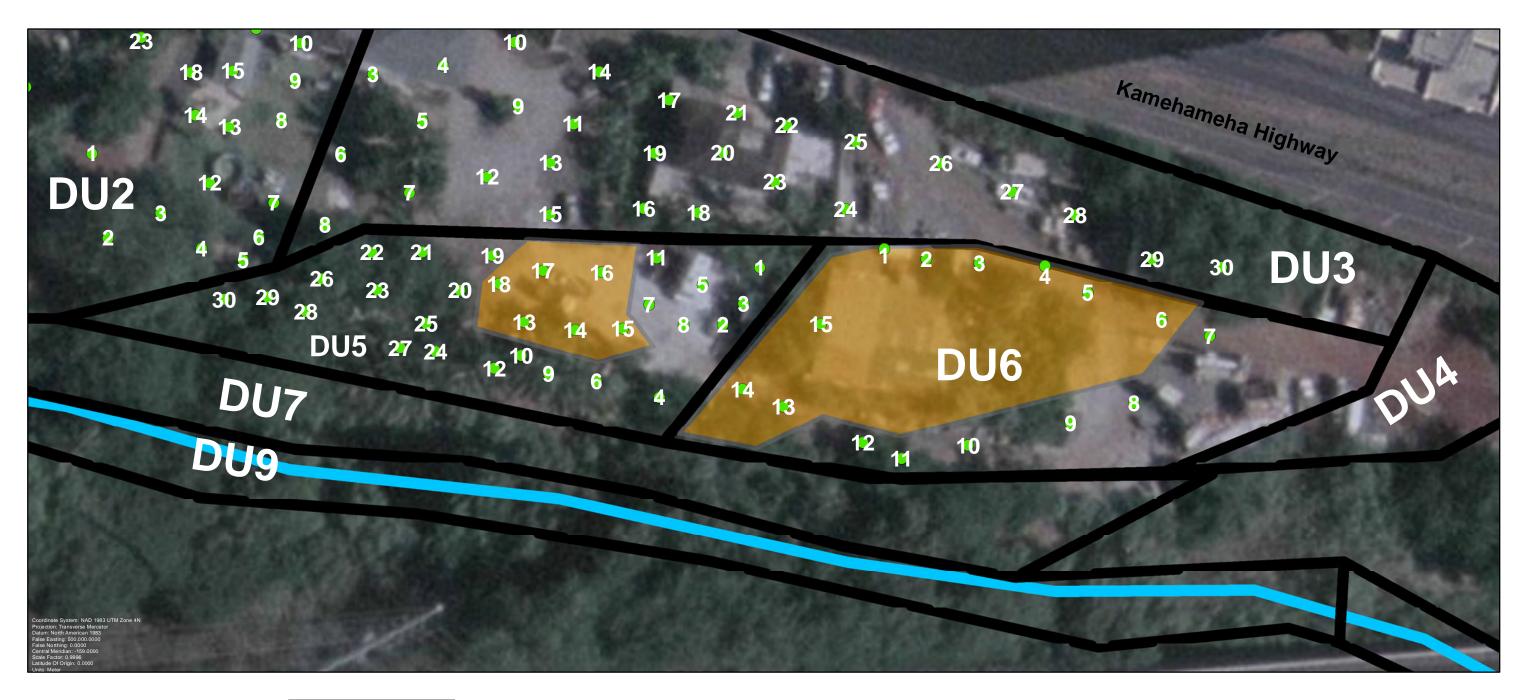
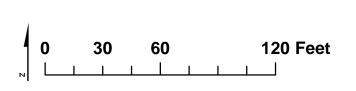
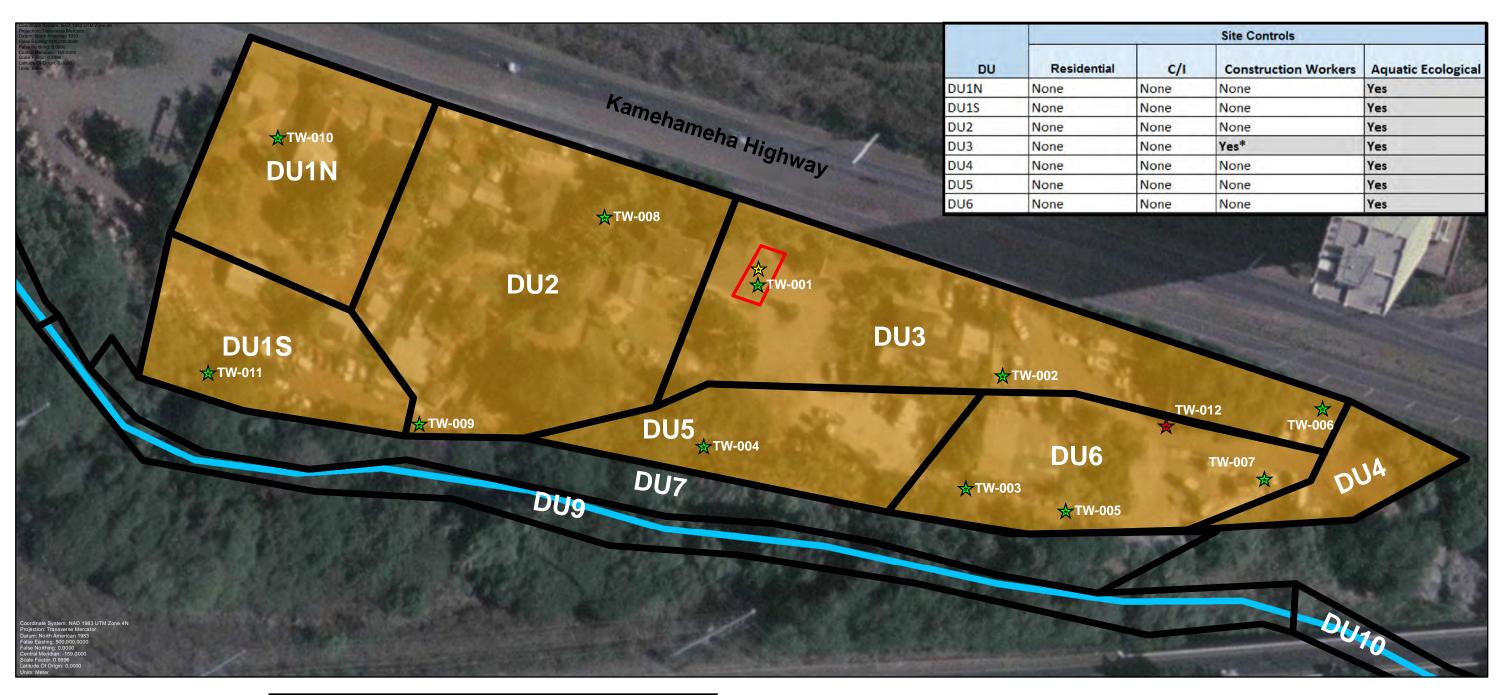



Figure 6-2a Specific Environmental Hazard Management Areas for Soil - DU5 and DU6 A-B Horizon



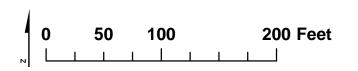
Note: The "C" horizons corresponds to the following depths.


- DU5/6: 10-15 foot depth interval, requiring site controls because of

Areas of Environmental Hazard Management Areas: DU5: 4784.8 square feet DU6: 17389.5 square feet

Acronym List: bgs: Below Ground Surface DU: Decision Unit LNAPL: Non-Aqueous Phase Liquid

Figure 6-2b Specific Environmental Hazard Management Areas for Soil - DU5 and DU6 C Horizon



Note: Groundwater from the site should not be discharged to surface water without further evaluation/treatment. TW-012 cooresponds to existing Monitoring Well.

*Site Controls in DU3 under a construction workers scenario is limited to the source around TW-001 because of the presence of LNAPL.

Acronym List: C/I: Commercial/Industrial DU: Decision Unit TW: Test Well

Figure 6-3 Environmental Hazard Management Area - Groundwater

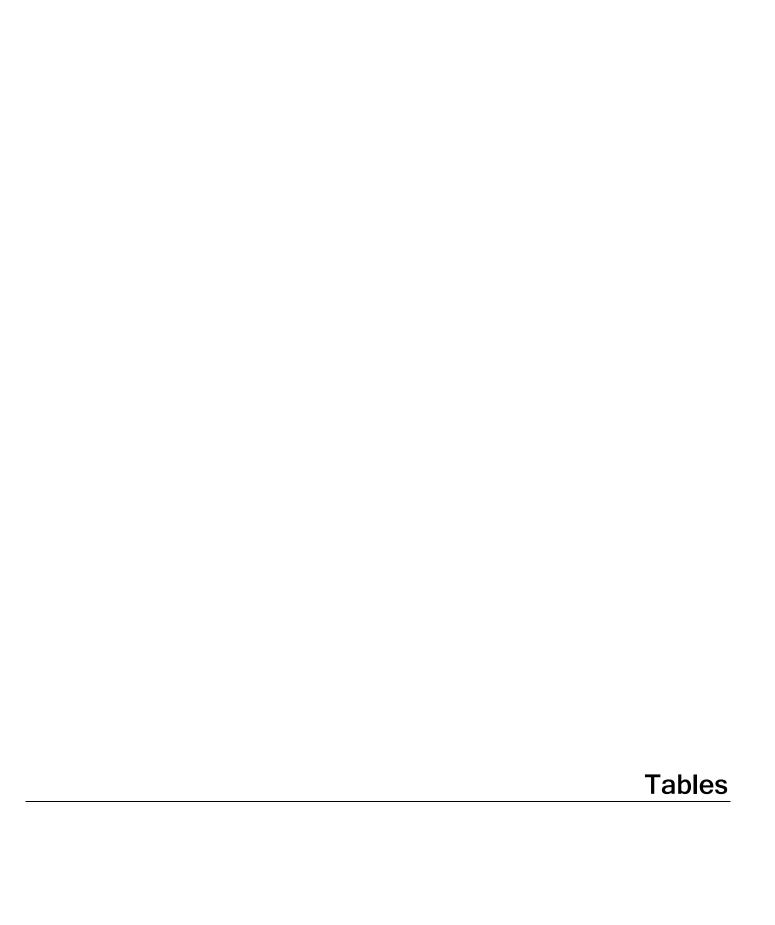


TABLE 3-1

Test Pit Excavation Summary

Site Characterization Report for Banana Patch Properties, Pearl City, Oahu, Hawaii

Honolulu Rail Transit Project

			Test	Pit Dimensi	ons	Field Obser		ations				Relative	Percentage of	of Debris	
Decision Unit	Test Pit	Excavation Date	Length (ft)	Width (ft)	Depth (ft)	Visual Contamination	Olfactory Contamination	PID (ppmv)	LEL (%)	H₂S (ppmv)	# of Increments Collected per SU (A/B/C/D)	Concrete	Metal	Other	Notes/ Observations
	1								ı						Our prote makes times weeten heaten a satisfal draws weige
		E/00/004 4	40	40	0.5	Nie	No	0.0	0.00/	0	0	200/	4.50/	F 0/	Concrete, rebar, tires, water heater, partial drum, misc.
	1	5/20/2014	16	12	9.5	No	No	0.0	0.0%	U	0	20%	15%	5%	metal debris
	_	5/20/2014	40	8	40	Nie	Na	0.0	0.00/	0	0	450/	4.50/	4.00/	Concrete, rebar, tires, stove, partial drum, tyvek suits, misc. metal debris
	2		12	_	10	No	No	0.0	0.0%	•		15%	15%	10%	
DU1	3	5/20/2014	11	4	9.5	No	No	0.0	0.0%	0	0	0%	<1%	0%	One metal hub cap. No other debris encountered
	4	E/00/004 4	40	4	40.5	Nie	Na	0.0	0.00/	0	0	450/	4.50/	4.00/	Congrete vehas metal nine Diagtic chamical ansayas
	4	5/20/2014	12 12	4	10.5	No No	No No	0.0	0.0%	0	0	15% 0%	15% 0%	10%	Concrete, rebar, metal pipe. Plastic chemical sprayer
	5	5/20/2014			10.5							20%	15%	0%	No debris encountered
	6	5/21/2014 5/21/2014	30 30	9	10.5 10.5	No No	No No	0.0	0.0%	0	0	20%	15%	5%	Concrete, rebar, metal pipe
	/	5/21/2014	30	9	10.5	INO	INO	0.0	0.0%	U	U	20%	15%	5%	Concrete, rebar, metal pipe
DU2	1	5/22/2014	11	3.5	3	No	No	0.0	0.0%	0	0	0%	0%	0%	2-inch steel clothesline post/cross-support located under vegetation on the surface. Likely source for geophysical anomaly.
DU3	1	5/21/2014	10	8	8	No	No	0-8.2	0.0%	0	0	10%	10%	5%	Concrete, metal, tarp (maybe super sack)
200	•	0,21,2011	. •	J				0 0.2	0.070			, .	. 6 / 6	0,0	Constant tarp (may be eaper each)
	1	5/21/2014	10	3	15	No	No	0.0	0.0%	0	4/4/0/0	40%	20%	10%	Asphalt, concrete, wood, plastic only in upper 5 feet
	2	5/21/2014	10	3	15	No	No	0.0	0.0%	0	4/4/0/0	35%	10%	10%	Asphalt, concrete, wood, plastic only in upper 5 feet 10% concrete, 5% asphalt,5% other below 5 feet
DU6	3	5/22/014	10	3	15	No	No	0.0	0.0%	0	3/3/3/0	5%	5%	5%	Asphalt, concrete, wood in upper 2 feet and then metal cable at approximately 8 feet Debris is sparse
	4	5/22/2014	10	3	15	No	No	0.0	0.0%	0	4/4/0/0	5%	5%	5%	Concrete, rebar throughout but sparse
	5	5/22/2014	10	3	15	No	No	0.0	0.0%	0	3/3/3/0	5%	5%	5%	Concrete and metal throughout but sparse
	6	5/22/2014	16	3	18	No	No	0.0	0.0%	0	6/6/0/0	10%	5%	5%	Concrete and metal throughout but sparse
	7	5/22/2014	10	3	3	No	No	0.0	0.0%	0	6/6/0/0	0%	0%	0%	Undocumented cesspool uncovered at approximately 3 feet bgs.

Notes

bgs = below ground surface

ft= feet

LEL = lower explosive limit

PID = photoionization detector

ppmv = parts per million by volume

SU = sample unit

^a Test pits were not excavated within DU4 and DU5 due to limited access and/or lack of definitive subsurface anomalies identified during the geophysical survey. <u>Acronyms:</u>

TABLE 3-2

Decision Unit Soil Sample Collection and Analysis Summary

Site Characterization Report for Banana Patch Properties, Pearl City, Oahu, Hawaii

Honolulu Rail Transit Project

													Analytes				
Area	Decision Unit	Sample ID	Sample Date	Sample Unit (SU)	SU Depth (ft bgs) ^a	Collection Method	Number of Incremental Samples (IS)	voc	TPH-g	TPH-d	TPH-o	PAH	Pesticides	РСВ	Herbicides	RCRA Metals	Note
		FASC-DU1NA-0514	5/23/2014	Α	0-0.5	Hand Drill	30			Х	Х	Х	X	Х	Х	Х	
Flat Area with Future Fill	DU1N	FASC-DU1NB-0514	5/28/2014	В	0.5-3.0	DPS	15	x	x	х	х	х	x	x	x	х	After geophysical/test pit investigation, DU1 was split into two DUs. Because of time constraints and lack of evidence of
		FASC-DU1NC-0514	5/28/2014	С	varies	DPS	15	x	X	X	Х	x	x	x	X	x	contamination, a limited number of increments were collected for the subsurface SUs.
		FASC-DU1SA-0514	5/23/2014	А	0-0.5	Test Pit	30			х	х	Х	Х		х	х	30 IS from collected from test pits TP1 through TP7
		FASC-DU1SB-0514	5/28/2014	В	0.5-3.0	Test Pit	30	х	х	х	х	х	х	х	х	х	30 IS from collected from test pits TP1 through TP7
Flat Area with Future Fill	DU1S	FASC-DU1SC-0514	5/28/2014	С	varies	DPS	12	x	x	x	x	X	×	x	x	x	After geophysical/test pit investigation, DU1 was split into two DUs. Because of time constraints and drilling refusal at many locations, a limited number of increments were collected for the deepest SU.
Flat Area with no		FASC-DU2A-0514	5/22/2014	Α	0-0.5	DPS	30			Х	Х	Х	Х	Х	Х	Х	
Excavation	DU2	FASC-DU2B-0514	5/22/2014	В	0.5-3.0	DPS	30	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Excavation		FASC-DU2C-0514	5/22/2014	С	varies	DPS	30	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Flat Area with no		FASC-DU3A-0514	5/19/2014	Α	0-0.5	DPS	30			Х	Х	Х	Х	Х	Х	Х	
Excavation	DU3	FASC-DU3B-0514	5/19/2014	В	0.5-3.0	DPS	30	Х	Х	Х	Х	Х	х	Х	х	Х	
LACAVALIOII		FASC-DU3C-0514	5/19/2014	С	varies	DPS	28	Х	Х	Х	Х	Х	Х	Х	х	Х	No C sample at B24 and B26
		FASC-DU4A-0514	5/23/2014	А	0-0.5	Hand Drill	30			Х	Х	Х	Х	Х	Х	Х	Primary
Flat Area with	DU4	FASC-DU204A-0514	5/23/2014	A Rep.	0-0.5	Hand Drill	30			Х	Х	Х	Х	Х	Х	Х	Replicate
Future Fill	504	FASC-DU304A-0514	5/23/2014	A Trip.	0-0.5	Hand Drill	30			х	Х	Х	X	Х	Х	Х	Triplicate
		FASC-DU4B-0514	6/5/2014	В	0-3.0	Hand Drill	30									Х	
		FASC-DU5A-0514	5/21/2014	Α	0-5.0	DPS	30	Х		Х	Х	Х	Х	Х	Х	Х	
Flat Area with	DU5	FASC-DU5B-0514	5/21/2014	В	5.0-10.0	DPS	30	Х	Х	Х	Х	Х	Х	Х	Х	Х	
Excavation	503	FASC-DU5C-0514	5/21/2014	С	10.0-15.0	DPS	28	Х	Х	Х	Х	Х	Х	Х	Х	Х	No C sample at B5 and B8
		FASC-DU5D-0514	5/21/2014	D	15.0-20.0	DPS	30	Х	Х	Х	Х	Х	Х	Х	Х	Х	

TABLE 3-2

Decision Unit Soil Sample Collection and Analysis Summary

Site Characterization Report for Banana Patch Properties, Pearl City, Oahu, Hawaii Honolulu Rail Transit Project

								Analytes									
Area	Decision Unit	Sample ID	Sample Date	Sample Unit (SU)	SU Depth (ft bgs) ^a	Collection Method	Number of Incremental Samples (IS)	voc	TPH-g	TPH-d	TPH-o	PAH	Pesticides	РСВ	Herbicides	RCRA Metals	Note
		FASC-DU6A-0514	5/20/2014	А	0-5.0	DPS/Test Pit	30	х		х	х	х	х	х	х	х	Duplicate and triplicate samples
		FASC-DU206A-0514	5/20/2014	A Rep.	0-5.0	DPS/Test Pit	30	х		х	х	х	х	х	х	х	collected for A interval. Samples from
		FASC-DU306A-0514	5/20/2014	A Trip.	0-5.0	DPS/Test Pit	30	х		х	х	х	х	х	х	х	each SU composed of 15 soil increments collected from soil
		FASC-DU6B-0514	5/20/2014	В	5.0-10.0	DPS/Test Pit	30	х	Х	х	х	х	х	х	х	х	borings and 15 increments collected
Flat Area with	DU6	FASC-DU6C-0514	5/20/2014	С	10.0-15.0	DPS/Test Pit	29	х	х	х	х	х	х	х	х	х	from test pits TP1 through TP5 (3 per test pit depth). No C sample from B4
Excavation	500	FASC-DU6D-0514	5/20/2014	D	15.0-20.0	DPS/Test Pit	20	x	x	х	x	x	x	х	x		Sample from SU/depth interval D composed of 14 soil increments collected from soil borings and 6 increments collected from test pit TP6 (other test pit did not reach depth interval D, and more increments from a single test pit would have biased the sample)
Stream Bank	DU7	BKSC-DU7-0514	5/28/2014	А	0-1.0	Hand Drill	100			x	х	х	х	х	х	х	
Upgradient Stream	DU8	SBSD-DU8-0514	5/17/2014	А	0-0.5	Hand	30			х	х	х	х	х	х	х	
Adjacent Stream	DU9	SBSD-DU9-0514	5/20/2014	А	0-0.5	Hand	30			Х	х	х	х	Х	x	х	30 IS also collected for both duplicate
,		SBSD-DU209-0514	5/20/2014	A Rep.	0-0.5	Hand	30			Х	Х	Х	х	Х	х	Х	and triplicate analysis
		SBSD-DU309-0514	5/20/2014	A Trip.	0-0.5	Hand	30			Х	Х	Х	Х	Х	Х	Х	
Downgradient Stream	DU10	SBSD-DU10-0514	5/17/2014	А	0-0.5	Hand	30			х	х	х	х	х	х	х	

Notes:

^aSampling Depths

A = 0 - 0.5 ft bgs, except for DU5 A and DU6 A (0 to 5 ft bgs), and DU7 A = 0 to 1 ft bgs.

B = 0.5 - 3 ft bgs, except for DU5 B and DU6 B (5 to 10 ft bgs)

C = 3 ft interval below the fill for DUs 1N, 1S, 2, and 3

C = 10-15 ft bgs in DUs 5 and 6

D = 3 ft interval below the fill for DUs 5 and 6

Acronyms:

bgs = below ground surface

DU = Decision Unit

ft= feet

PAH = polycyclic aromatic hydrocarbons

PCB = polychlorinated biphenyls

RCRA = Resource Conservation and Recovery Act

TPH-g = total petroleum hydrocarbons, gasoline-range organics (C6-C10)

TPH-d = total petroleum hydrocarbons, diesel-range organics (C10-C28)

TPH-o = total petroleum hydrocarbons, oil-range organics (>C28-C40)

VOC = volatile organic compound

TABLE 3-3
Temporary Well Construction and Groundwater Analysis Summary
Site Characterization Report for Banana Patch Properties, Pearl City, Oahu, Hawaii

Honolulu Rail Transit Project

										Α	nalytes			
LOC ID ^a	Decision Unit Location	Sample ID	Sample Date	Screen Interval (ft bgs)	Depth to Water (ft btoc)	voc	TPH-g	TPH-d	TPH-o	PAH	Pesticides	РСВ	Herbicides	RCRA Metals
TW-001	DU3	FASC-TW001-0514	5/29/2014	15-25	11.78	х	х	х	x	Х	х	Х	х	х
TW-002	DU3	FASC-TW002-0514	5/30/2014	15-25	20.79	Х	Х	Х	Х	Х	х	Х	X	Х
TW-003	DU6	FASC-TW003-0514	5/30/2014	22.7-27.7	17.99	Х	Х	Х	Х	Х	х	Х	Х	Х
TW-004	DU5	FASC-TW004-0514	6/2/2014	15-25	15.97	Х	Х	Х	Х	Х	х	Х	х	Х
TW-005	DU6	FASC-TW005-0514	5/30/2014	20-30	17.21	Х	Х	Х	Х	Х	х	Х	Х	Х
TW-006	DU3	FASC-TW006-0514	5/30/2014	15-25	17.08	Х	Х	Х	Х	Х	Х	Х	Х	Х
TW-007	DU4	FASC-TW007-0514	5/30/2014	15-25	17.33	Х	Х	Х	Х	Х	Х	Х	Х	Х
TW-008	DU2	FASC-TW008-0514	5/30/2014	20-30	17.92	Х	Х	Х	Х	Х	х	Х	Х	Х
TW-009	DU2	FASC-TW009-0514	5/29/2014	20-30	20.29	Х	Х	Х	Х	Х	х	Х	Х	Х
TW-010	DU1N	FASC-TW010-0514	6/2/2014	11.8-21.8	19.24	Х	Х	Х	Х	Х	х	Х	х	x
TW-011	DU1S	FASC-TW011-0514	5/29/2014	5-15	8.84	Х	Х	Х	Х	Х	х	Х	Х	Х
TW-011FD	DU1S	FASC-TW111-0514	5/29/2014	5-15	8.84	х	х	х	х	Х	x	х	x	Х
TW-012 ^b	DU6	FASC-TW-012-0514	5/30/2014	20-30	17.12	Х	х	х	х	Х	Х	х	х	Х

Notes:

Abbrevations:

bgs = below ground surface

btoc = below top of casing (Note: Top of casing elevation was not surveyed)

DU = Decision Unit

FD = field duplicate

ft= feet

PAH = polycyclic aromatic hydrocarbons

PCB = polychlorinated biphenyls

RCRA = Resource Conservation and Recovery Act

TPH-g = total petroleum hydrocarbons, gasoline-range organics (C6-C10)

TPH-d = total petroleum hydrocarbons, diesel-range organics (C10-C28)

TPH-o = total petroleum hydrocarbons, oil-range organics (>C28-C40)

VOC = volatile organic compound

^aAll temporary wells (TW) constructed within 3.25-inch boreholes using a Strataprobe 6600 rig with 1" polyvinyl chloride (PVC) casing and prefilter packed 0.020 slotted screens.

^bTW-012 is an existing 3-inch diameter PVC monitoring well located in DU6. The screen length on this well is esimted based on the total well depth.

TABLE 4-1
Preliminary Fill and Debris Volume Estimate
Site Characterization Report For Banana Patch Properties, Pearl City, Oahu, Hawaii

Decision Unit ^a	Approximate Areal Extent of Fill (ft²)	Approximate Thickness of Fill (ft)	Estimated Volume of Fill ^b (ft ³)	Relative % Concrete Debris	Relative % Metal Debris	Estimated Volume of Concrete Debris ^b (ft ³)	Estimated Volume of Metal Debris ^b (ft ³)	Comment
DU1S	8,700	10	87,000	20	15	17,400	13 050	Debris from 2-3 feet to 10-15 feet based on test pits and borings that indicate debris ends 10-15 feet bgs.
DU3 East	4,400	10	44,000	10	10	4,400	4,400	Only 1 test pit completed within DU3.
DU3 West ^c	2,200	10	22,000	15	12.5	3,300	2,750	
DU6	8,700	3	26,100	20	10	5,220	2,610	
DU7	48,000	3	144,000	10	5	14,400	7,200	Geophysical survey and test pits could not be performed along stream bank. The estimated thickness of debris is estimated based on visual survey only.
Totals	72,000		323,100			44,720	30,010	

Notes:

Honolulu Rail Transit Project

The data developed during the investigation are not comprehensive for the entire Site because of limited site access, and thus are inherently limited in accuracy.

In addition, fill and debris observed within borings and test pits were highly variable, and therefore, estimates of fill and debris may not account for variability in areas between borings and test pits.

Therefore, these estimates are preliminary, and actual volumes may vary significantly.

^cDU3 west was not investigated with test pits during the site investigation. The depth and composition of debris is unknown, and was estimated based on other test pit characteristics and borings.

Acronyms:

ft = feet

^aSee Figure 4-1 for debris areas listed above.

^bAll volume estimates provided in this table are based on data collected during visual surveys, geophysical investigation, the advancement of soil borings, and test pitting.

TABLE 4-2

Chemicals Detected in Soil

Sample ID		HDOH Tier 1	HDOH EALs ²	HDOH EALs ¹	HDOH EALs ²	FASC-DU1NA-0514	FASC-DU1NB-0514	FASC-DU1NC-0514	FASC-DU1SA-0514	FASC-DU1SB-0514	FASC-DU1SC-0514	FASC-DU2A-0514
		EALs ¹	IIDOII LALS	IIDOII LALS	IIDOII LALS							
Sample Date				Commoraial	Commoraial	5/23/2014	5/28/2014	5/28/2014	5/22/2014	5/22/2014	5/28/2014	5/22/2014
Decision Unit (DU)		Unrestricted	Unrestricted	Commercial/ Industrial	Commercial/ Industrial	DU1N	DU1N	DU1N	DU1S	DU1S	DU1S	DU2
Sub Unit (SU)		DW, <150m to SW	NDW, <150m to SW	DW, <150m to SW	NDW, <150m to SW	A (0-0.5 feet bgs)	B (0.5-3 feet bgs)	C (varies)	A (0-0.5 feet bgs)	B (8-10 feet bgs)	C (varies)	A (0-0.5 feet bgs)
GC/MS Volatile Organic O	Compour	ds (SW846 8260B)										
Tetrachloroethylene	µg/kg	88	88	250	250	-	ND (16)	ND (19)	-	ND (17)	ND (19)	-
TPH-g (C6-C10)	μg/kg	100000	100000	100000	400000	-	ND (1400)	ND (1500)	-	ND (1500)	ND (1600)	-
GC Total Petroleum Hydr									. .			
TPH-d (C10-C28)	mg/kg	100	500	100	500	29.4 J	17.4	14	45.0 J	84.5	6.69	ND (170)
TPH-o (>C28-C40)	mg/kg	500	500	1000	1000	267	135	61.5	359	647	31.6	1410
GC/MS Polynuclear Arom	natic Hyd	rocarhons (PAHs) (S	W846 8270C RV S	IM)								
Acenaphthene	μg/kg	120000	120000	120000	120000	ND (6.6)	ND (6.6)	ND (1.7)	ND (6.7)	ND (8.3)	ND (1.7)	ND (330)
Acenaphthylene	μg/kg	13000	13000	13000	13000	ND (6.6)	ND (6.6)	ND (1.7)	ND (6.7)	ND (8.3)	ND (1.7)	ND (330)
Anthracene	µg/kg	4300	4300	4300	4300	12.5 J	8.4 J	1.7 J	ND (6.7)	22.0 J	ND (1.7)	ND (330)
Benzo(a)anthracene	μg/kg	1500	1500	10000	10000	123	79.6	14.2	53.1	200	4.3	ND (170)
Benzo(a)pyrene	μg/kg	150	150	2100	2100	159	90.8	17.6	78.7	243	5.7	ND (110)
Benzo(b)fluoranthene	μg/kg	1500	1500	9200	21000	174	99	13.6	78.1	234	4.6	ND (130)
Benzo(g,h,i)perylene	μg/kg	27000	27000	27000	27000	86.8	66.8	12.5	54.1	166	4.7	ND (150)
Benzo(k)fluoranthene	μg/kg	15000	15000	39000	39000	162	82.2	17.3	72.6	203	5.7	ND (150)
Chrysene	μg/kg	10000	10000	10000	10000	165	102	22.7	72.5	260	6.5	ND (130)
Dibenzo(a,h)anthracene	μg/kg	150	150	2100	2100	25.3	14.9	ND (0.93)	6.0 J	22.5	ND (0.93)	ND (190)
Fluoranthene	μg/kg	87000	87000	87000	87000	260	180	40.4	102	359	9.9 J	ND (330)
Fluorene	μg/kg	100000	100000	100000	100000	ND (6.6)	ND (6.6)	ND (1.7)	ND (6.7)	ND (8.3)	ND (1.7)	ND (330)
Indeno(1,2,3-cd)pyrene	μg/kg	1500	1500	21000	21000	106	69.7	14.2	54.3	186	5	ND (170)
1-Methylnaphthalene	μg/kg	790	790	790	790	ND (13)	ND (13)	ND (3.3)	ND (13)	ND (17)	ND (3.3)	ND (660)
2-Methylnaphthalene	μg/kg	870	870	870	870	ND (13)	ND (13)	ND (3.3)	ND (13)	ND (17)	ND (3.3)	ND (660)
Naphthalene	μg/kg	4400	4500	4400	6200	ND (13)	ND (13)	ND (3.3)	ND (13)	ND (17)	ND (3.3)	ND (660)
Phenanthrene	μg/kg	69000 44000	69000 44000	69000 44000	69000 44000	87.1 319	50.7 J 139	23.5 36.9	26.7 J 141	158 447	3.7 J 7.4 J	ND (330) ND (330)
Pyrene	μg/kg	44000	44000	44000	44000	319	139	30.9	141	447	7.43	ND (330)
GC Pesticides (SW846 80	181Δ)											
Chlordane	µg/kg	16000	16000	29000	29000	ND (330)	182	57.8	1210 J	2740	7.1 J	793 J
Dieldrin	μg/kg	1500	1500	11000	11000	ND (60)	21.2	2.7 J	316	959	ND (0.60)	ND (30)
4,4'-DDD	µg/kg	2000	2000	7200	7200	ND (70)	ND (2.1)	ND (0.70)	ND (28)	ND (28)	ND (0.70)	ND (35)
4,4'-DDE	μg/kg	1400	1400	5100	5100	ND (60)	74.2	32.5	62.2 J	86.2 J	5	ND (30)
4,4'-DDT	μg/kg	1700	1700	5600	5600	ND (50)	24.7	6.5	33.0 J	90.4 J	3.6	ND (25)
Endrin	µg/kg	3700	3700	30000	30000	ND (60)	ND (1.8)	ND (0.60)	ND (24)	ND (24)	ND (0.60)	ND (30)
Heptachlor	μg/kg	110	110	380	380	ND (46)	ND (1.4)	ND (0.47)	ND (19)	ND (19)	ND (0.47)	ND (23)
Heptachlor epoxide	μg/kg	53	53	190	190	ND (50)	3.8 J	ND (0.50)	ND (20)	27.8 J	ND (0.50)	ND (25)
		<u> </u>				·		·	·		·	
GC Polychlorinated Bipho												
Aroclor 1248	μg/kg	1100	1100	6300	6300	ND (170)	ND (17)	51.3	ND (170)	ND (170)	ND (17)	ND (170)
Aroclor 1260	μg/kg	1100	1100	6300	6300	ND (66)	7.9 J	ND (6.7)	ND (67)	ND (67)	ND (6.6)	ND (66)
GC Herbicides (SW846 81	151A)											
Dinoseb	μg/kg	-	-	-	-	ND (20)	ND (21)	ND (22)	21.5 J ^b	57.1 J ^b	ND (23)	ND (19)
Pentachlorophenol	µg/kg	820	890	820	2700	ND (0.63)	6	1.9 J	3.9 J	15.1	1.3 J	ND (0.59)
	1.99						of 8					(3.33)

TABLE 4-2

Chemicals Detected in Soil

Site Characterization Report for Banana Patch Properties, Pearl City, Oahu, Hawaii Honolulu Rail Transit Project

Sample ID		HDOH Tier 1 EALs ¹	HDOH EALs ²	HDOH EALs ¹	HDOH EALs ²	FASC-DU1NA-0514	FASC-DU1NB-0514	FASC-DU1NC-0514		FASC-DU1SB-0514	FASC-DU1SC-0514	
Sample Date						5/23/2014	5/28/2014	5/28/2014	5/22/2014 5/22/2014		5/28/2014	5/22/2014
Decision Unit (DU)		Unrestricted	Unrestricted	Commercial/ Industrial	Commercial/ Industrial	DU1N	DU1N	DU1N	DU1S	DU1S	DU1S	DU2
Sub Unit (SU)		DW, <150m to SW	NDW, <150m to SW	DW, <150m to SW	NDW, <150m to SW	A (0-0.5 feet bgs)	B (0.5-3 feet bgs)	C (varies)	A (0-0.5 feet bgs)	B (8-10 feet bgs)	C (varies)	A (0-0.5 feet bgs)
RCRA Metals Analysis				•								
Arsenic	mg/kg	24	24	95	95	6.4 ^c	5.0 ^d	3.4 J ^d	4.5 °	6.0 °	4.8 J ^d	1.9 J ^c
Barium	mg/kg	1000	1000	2500	2500	58.8 ^c	98.6 ^d	109 ^d	102 ^c	155 ^c	98.0 ^d	67.6 ^c
Cadmium	mg/kg	14	14	120	120	0.18 J ^c	0.22 J ^d	0.73 J ^d	0.015 U ^c	0.55 J ^c	0.42 J ^d	0.015 J ^c
Chromium	mg/kg	1100	1100	1100	1100	218 ^c	258 ^d	257 ^d	198 ^c	144 ^c	234 ^d	156 ^c
Lead	mg/kg	200	200	800	800	24.1 ^c	33.3 ^d	153 ^d	33.3 ^c	124 ^c	16.9 ^d	25.4 ^c
Mercury	mg/kg	4.7	4.7	61	61	0.2	0.17	0.12	0.18	0.25	0.086	0.53
Selenium	mg/kg	78	78	1000	1000	2.7 ^c	11.5 ^d	12.1 ^d	2.8 ^c	3.7 °	9.7 ^d	2.6 ^c
Silver	mg/kg	78	78	1000	1000	0.99 °	1.4 J ^d	3.2 ^d	0.75 J ^c	1.2 °	1.0 J ^d	1.5 °
General Chemistry												
Moisture, Percent	%	-	-	-	-	19.2	20.2	26.2	18.5	17.7	28.1	14

Notes:

Acronyms:

μg/kg = micrograms per kilogram

bgs = below ground surface

DU = Decision Unit

ft= feet

Bold

GC = gas chromatography

MS = mass spectrometry

ND = not detected (the analyte is below the method detection limit indicated in parenthesis)

PAH = polycyclic aromatic hydrocarbons

PCB = polychlorinated biphenyls

RCRA = Resource Conservation and Recovery Act

TPH-g = total petroleum hydrocarbons, gasoline-range organics (C6-C10)

TPH-d = total petroleum hydrocarbons, diesel-range organics (C10-C28)

TPH-o = total petroleum hydrocarbons, oil-range organics (>C28-C40)

HITS ONLY. Only parameters detected in at least one sample are shown.

The sample/compound concentration exceeds the specific EAL

-" Compound not analyzed

^a Quantitation between primary and confirmation differed by >40%. Lower value reported.

^b Primary and confirmation results differ by more than 40%. Lower value reported due to possible coelution.

^c Elevated reporting limit(s) due to dilution required for high interfering element.

^d Elevated reporting limit(s) due to matrix interference and/or dilution required for high interfering element.

J = The analyte was positively identified; the quantitation is an estimation

¹ HDOH Tier 1 Environmental Action Levels are for sites over a drinking water resource and less than 150 meters to nearest surface water (HDOH, summer 2008 and subsequent updates).

² HDOH Tier 1 Environmental Action Levels are for sites over a non-drinking water resource and less than 150 meters to nearest surface water (HDOH, summer 2008 and subsequent updates).

TABLE 4-2 Chemicals Detected in Soil

Site Characterization Report for Banana Patch Properties, Pearl City, Oahu, Hawaii Honolulu Rail Transit Project

Sample ID		HDOH Tier 1 EALs ¹	HDOH EALs ²	HDOH EALs ¹	HDOH EALs ²	FASC-DU2B-0514	FASC-DU2C-0514	FASC-DU3A-0514	FASC-DU3B-0514	FASC-DU3C-0514	FASC-DU4A-0514	FASC-DU204A-
Sample Date						5/22/2014	5/22/2014	5/19/2014	5/19/2014	5/19/2014	5/23/2014	5/23/2014
Decision Unit (DU)		Unrestricted	Unrestricted	Commercial/ Industrial	Commercial/ Industrial	DU2	DU2	DU3	DU3	DU3	DU4	DU4
Sub Unit (SU)		DW, <150m to SW	NDW, <150m to SW	DW, <150m to SW	NDW, <150m to SW	B (0.5-3 feet bgs)	C (varies)	A (0-0.5 feet bgs)	B (0.5-3 feet bgs)	C (varies)	A (0-0.5 feet bgs)	A (0-0.5 feet bgs)- duplicate
GC/MS Volatile Organic (Compour	nds (SW846 8260B)										
Tetrachloroethylene	μg/kg	88	88	250	250	ND (17)	ND (23)	-	ND (13)	ND (24)	-	-
TPH-g (C6-C10)	μg/kg	100000	100000	100000	400000	ND (1400)	ND (1900)	-	ND (1100)	ND (2000)	-	-
GC Total Petroleum Hydr	ocarbon	e (TPH) (SW846 801	SR M\									
TPH-d (C10-C28)	mg/kg	100	500	100	500	100	11.5	64.4 J	46.1 J	10.3 J	37.6	50.2
TPH-o (>C28-C40)	mg/kg	500	500	1000	1000	736	50	634	469	85.1	289	378
GC/MS Polynuclear Arom					400000	F0.4.1	ND (0.0)	L ND (42)	ND (00)	ND (0.0)	L ND (0.0)	ND (0.7)
Acenaphthene	μg/kg	120000	120000	120000	120000	58.4 J	ND (3.3)	ND (17)	ND (33)	ND (3.3)	ND (3.3)	ND (6.7)
Acenaphthylene	μg/kg	13000	13000	13000	13000	ND (49)	ND (3.3)	ND (17)	ND (33)	ND (3.3)	ND (3.3)	ND (6.7)
Anthracene Benzo(a)anthracene	μg/kg	4300 1500	4300 1500	4300 10000	4300 10000	173 J 744	4.6 J 42.5	ND (17) 101	ND (33) 100	ND (3.3) 4.4 J	8.5 J 79.1	16.1 J 131
Benzo(a)pyrene	μg/kg μg/kg	150	150	2100	2100	734	45.6	122	117	4.4 J 4.1 J	86.2	147
Benzo(b)fluoranthene	μg/kg μg/kg	1500	1500	9200	21000	686	46.8	117	86.2	4.1 J	92.3	152
Benzo(g,h,i)perylene	µg/kg	27000	27000	27000	27000	328	21.4	77.1	67.4	3.9 J	36.8	58
Benzo(k)fluoranthene	µg/kg	15000	15000	39000	39000	731	39.6	165	138	6.2 J	100	170
Chrysene	µg/kg	10000	10000	10000	10000	969	50	137	134	5.7 J	108	189
Dibenzo(a,h)anthracene	μg/kg	150	150	2100	2100	53.4 J	3.7 J	23.9 J	ND (19)	ND (1.9)	13.3	16.2
Fluoranthene	μg/kg	87000	87000	87000	87000	1850	75.2	178	183 J	9.3 J	150	283
Fluorene	μg/kg	100000	100000	100000	100000	ND (49)	ND (3.3)	ND (17)	ND (33)	ND (3.3)	ND (3.3)	ND (6.7)
Indeno(1,2,3-cd)pyrene	μg/kg	1500	1500	21000	21000	412	27.4	78	57.6 J	3.4 J	46.7	71.7
1-Methylnaphthalene	μg/kg	790	790	790	790	ND (99)	ND (6.6)	ND (33)	ND (67)	ND (6.7)	ND (6.6)	ND (13)
2-Methylnaphthalene	μg/kg	870	870	870	870	ND (99)	ND (6.6)	ND (33)	ND (67)	ND (6.7)	ND (6.6)	ND (13)
Naphthalene	μg/kg	4400	4500	4400	6200	ND (99)	ND (6.6)	ND (33)	ND (67)	ND (6.7)	ND (6.6)	ND (13)
Phenanthrene	μg/kg	69000	69000	69000	69000	1060	19.7 J	61.8 J	65.7 J	5.6 J	59	124
Pyrene	μg/kg	44000	44000	44000	44000	1690	66.2	230	212 J	10.5 J	180	353
GC Pesticides (SW846 80)81A)											
Chlordane	µg/kg	16000	16000	29000	29000	873 J	ND (33)	741 J	2110	85.4 J	2390	2180
Dieldrin	μg/kg	1500	1500	11000	11000	64.1 J	ND (6.0)	123	95.4 J	ND (6.0)	129 J	129 J
4,4'-DDD	µg/kg	2000	2000	7200	7200	ND (28)	ND (7.0)	35.0 J	ND (21)	ND (7.0)	ND (28)	ND (28)
4,4'-DDE	µg/kg	1400	1400	5100	5100	31.5 J	34.3	52.5 J	56.1 J	20.4 J	41.1 J	39.6 J
4,4'-DDT	µg/kg	1700	1700	5600	5600	ND (20)	62	877	112	ND (5.0)	53.8 J	38.6 J
Endrin	μg/kg	3700	3700	30000	30000	ND (24)	ND (6.0)	ND (18)	ND (18)	ND (6.0)	ND (24)	ND (24)
Heptachlor	μg/kg	110	110	380	380	ND (19)	ND (4.7)	ND (14)	ND (14)	ND (4.7)	ND (19)	ND (19)
Heptachlor epoxide	μg/kg	53	53	190	190	ND (20)	ND (5.0)	17.4 J	23.9 J	ND (5.0)	67.1 J	61.6 J
OC Debrebbering (15)	amil- /54	DD-) (0)40.40.0000°										
GC Polychlorinated Biph Aroclor 1248		CBs) (SW846 8082) 1100	1100	6300	6300	ND (170)	ND (50)	ND (17)	ND (17)	ND (17)	ND (170)	ND (170)
Aroclor 1248 Aroclor 1260	μg/kg μg/kg	1100	1100	6300	6300	ND (170) ND (66)	ND (50) ND (20)	44.7	23.4 J	9.0 J	ND (170) ND (66)	ND (170) ND (66)
,	פיישייון					(55)	(=0)		20	1 0.00	1 (55)	1.2 (33)
GC Herbicides (SW846 87	151A)											
Dinoseb	μg/kg	-	-	-	-	ND (20)	40.4 J	ND (20)	22.7 J ^b	ND (26)	ND (20)	64.5 J
Pentachlorophenol	μg/kg	820	890	820	2700	2.2 J	1.4 J ^b	10	3.8 ^b	5.2	1.9 J	9.7
							β of 8					

Chemicals Detected in Soil

Site Characterization Report for Banana Patch Properties, Pearl City, Oahu, Hawaii Honolulu Rail Transit Project

Sample ID		HDOH Tier 1 EALs ¹	HDOH EALs ²	HDOH EALs ¹	HDOH EALs ²	FASC-DU2B-0514	FASC-DU2C-0514	FASC-DU3A-0514	FASC-DU3B-0514	FASC-DU3C-0514	FASC-DU4A-0514	FASC-DU204A-
Sample Date						5/22/2014	5/22/2014	5/19/2014	5/19/2014	5/19/2014	5/23/2014	5/23/2014
Decision Unit (DU)		Unrestricted	Unrestricted	Commercial/ Industrial	Commercial/ Industrial	DU2	DU2	DU3	DU3	DU3	DU4	DU4
Sub Unit (SU)		DW, <150m to SW	NDW, <150m to SW	DW, <150m to SW	NDW, <150m to SW	B (0.5-3 feet bgs)	C (varies)	A (0-0.5 feet bgs)	B (0.5-3 feet bgs)	C (varies)	A (0-0.5 feet bgs)	A (0-0.5 feet bgs)- duplicate
RCRA Metals Analysis												
	1 0			l 05 I		1016	0.070.11.0	7.0.0	0.76	1016		4 7 1 6
Arsenic	mg/kg	24	24	95	95	1.6 J ^c	0.070 U ^c	7.9 ^c	9.7 ^c	1.3 J ^c	3.0 ^c	1.7 J ^c
Barium	mg/kg	1000	1000	2500	2500	87.5 ^c	75.6 ^c	107 ^c	81.0 ^c	33.1 °	149 ^c	130 ^c
Cadmium	mg/kg	14	14	120	120	0.32 J ^c	0.090 J ^c	1.0 ^c	0.66 J ^c	0.59 J ^c	0.14 J ^c	0.12 J ^c
Chromium	mg/kg	1100	1100	1100	1100	142 ^c	134 ^c	135 ^c	114 ^c	91.0 ^c	103 ^c	122 ^c
Lead	mg/kg	200	200	800	800	41.6 ^c	87.6 ^c	157 ^c	62.6 ^c	21.7 °	720 ^c	851 °
Mercury	mg/kg	4.7	4.7	61	61	0.17	0.058	0.21	0.16	0.066	0.14	0.13
Selenium	mg/kg	78	78	1000	1000	2.3 °	2.3 ^c	1.8 J ^c	1.7 J ^c	2.0 ^c	3.0 °	1.9 J ^c
Silver	mg/kg	78	78	1000	1000	0.96 ^c	1.0 °	0.043 U ^c	0.082 J ^c	0.13 J ^c	0.61 J ^c	1.2 ^c
General Chemistry												
Moisture, Percent	%	-	-	-	-	15.8	30.6	15.3	6	35.2	17.2	17.6

Notes:

J = The analyte was positively identified; the quantitation is an estimation

Acronyms:

μg/kg = micrograms per kilogram

bgs = below ground surface

DU = Decision Unit

ft= feet

GC = gas chromatography

MS = mass spectrometry

ND = not detected (the analyte is below the method detection limit indicated in parenthesis)

PAH = polycyclic aromatic hydrocarbons

PCB = polychlorinated biphenyls

RCRA = Resource Conservation and Recovery Act

TPH-g = total petroleum hydrocarbons, gasoline-range organics (C6-C10)

TPH-d = total petroleum hydrocarbons, diesel-range organics (C10-C28)

TPH-o = total petroleum hydrocarbons, oil-range organics (>C28-C40)

HITS ONLY. Only parameters detected in at least one sample are shown.

Bold The sample/compound concentration exceeds the specific EAL

'-" Compound not analyzed

^a Quantitation between primary and confirmation differed by >40%. Lower value reported.

^b Primary and confirmation results differ by more than 40%. Lower value reported due to possible coelution.

^c Elevated reporting limit(s) due to dilution required for high interfering element.

^d Elevated reporting limit(s) due to matrix interference and/or dilution required for high interfering element.

¹ HDOH Tier 1 Environmental Action Levels are for sites over a drinking water resource and less than 150 meters to nearest surface water (HDOH, summer 2008 and subsequent updates).

² HDOH Tier 1 Environmental Action Levels are for sites over a non-drinking water resource and less than 150 meters to nearest surface water (HDOH, summer 2008 and subsequent updates).

TABLE 4-2 Chemicals Detected in Soil

Site Characterization Report for Banana Patch Properties, Pearl City, Oahu, Hawaii Honolulu Rail Transit Project

Section Date Commercial Commercial Commercial Commercial Industrial Duta	D	HDOH Tier 1	HDOH EALs ²	HDOH EALs ¹	HDOH EALs ²	FASC-DU304A-	FASC-DU4B-0614	FASC-DU5A-0514	FASC-DU5B-0514	FASC-DU5C-0514	FASC-DU5D-0514	FASC-DU6A-0514	FASC-DU206A-
Commercial Dust D		EALs'											5/20/2014
Decision Col. Display Col.		A		Commercial/	Commercial/								
Color Colo	Unit (DU)	Unrestricted	Unrestricted			DU4	DU4	DU5	DU5	DU5	DU5	DU6	DU6
Februaris Sept 88 88 250 250 - ND (17) ND (18) ND (18) ND (23) ND (22) ND (22) Februaris Februaris ND (17) ND (18) ND (1	(SU)	DW, <150m to SW	· ·	DW, <150m to SW	•		B (0-3 feet bgs)	A (0-5 feet bgs)	B (5-10 feet bgs)	C (10-15 feet bgs)	D (15-20 feet bgs)	A (0-5 feet bgs)	A (0-5 feet bgs)- duplicate
Februaric Part Pa	olatile Organic Compou	nds (SW846 8260B)											
TFH-g (56-C10)			88	250	250	-	<u> </u>	ND (17)	ND (16)	ND (16)	ND (23)	ND (20)	ND (16)
Company Comp						-	-			. ,			ND (1300)
First Circ Circ mg/kg 100 500 100 500 403 - 286 J 283 J 282 J 122 J 185 J 1970	, [100		<u>.</u>				<u>.</u>	, ,	, ,	,	. , ,		, ,
FPH o C283-C40	Petroleum Hydrocarbor	is (TPH) (SW846 801											
Common	, ,						-						200 J
Acompathylene μg/kg 120000 120000 120000 120000 ND (67) ND (50) ND	C28-C40) mg/kg	500	500	1000	1000	324	-	1970	2450	2370	619	1070	1290
Aconsphthylane µg/kg 120000 120000 120000 120000 ND (67) ND (50) ND			01110102000										
Approximation 1994g 13000 1300					400000	ND (0.3)		ND (EQ)	ND /FO	ND /EO)	ND (0.0)	00.0.1	0501
Anthrisenee Ug/Ng 4300 4300 4300 4300 4300 128 J ND (50) ND (50) ND (60)						, ,		. ,	` ,	` ,	, ,		25.3 J
Benzo(a)printanene up/kg 1500 1500 1500 10000 10000 85.4 - 101 176 101 18.6 947							-		` ,				ND (25)
Benzeciplymene µ34kg 150 150 2100 2100 88.3 - 131 211 176 32.6 1808	100						-			, ,			88.7 J 731
Benzolphiusramhene µyKg 1500 1500 9200 21000 82.3 117 264 220 41.5 853 Benzolghiusramhene µyKg 27000 27000 27000 39000							-						905
Benzo(Alpure) ug/kg 27000 27000 27000 54.2 - 103 14.2 10.2 17.6 37.3 Benzo(Alpure) ug/kg 15000 15000 39000 39000 39000 17.3 - 110 18.2 19.4 36.6 1370 Chrysne ug/kg 1500 1500 10000 10000 12.2 - 141 230 22.0 41.4 1370 Dibenzo(Alpure) ug/kg 1500 1500 2700 2700 8.8 J - ND (28) ND (28) 30.5 J 4.5 J 137 Fluoranthene ug/kg 87000 87000 87000 87000 190 - 165 J 260 J 94.5 J 23.4 J 1440 Fluoranthene ug/kg 1500000 100000 100000 100000 ND (6.7) - ND (50) ND (50) ND (50) Indesnot 2.3-ccllyvene ug/kg 1500 1500 21000 21000 51.6 - 89.3 J 143 10.2 20.3 42.7 Hell-trynaphthelene ug/kg 1500 1500 21000 21000 51.6 - 89.3 J 143 10.2 20.3 42.7 Hell-trynaphthelene ug/kg 870 870 870 870 ND (13) - ND (100) ND (100) ND (10) ND (10) ND (100) ND (100) ND (100) ND (100) ND (100) ND (100) Pleasanthrene ug/kg 4400 4500 4400 6200 ND (13) - ND (100) ND (100) ND (100) ND (100) Pleasanthrene ug/kg 68000 68000 68000 68000 83.5 - 52.9 J 86.1 J ND (50) Pleasanthrene ug/kg 44000 44000 44000 44000 4200 43000 83.5 - 52.9 J 86.1 J ND (50) Pleasanthrene ug/kg 44000 44000 44000 44000 44000 30.0 15.6 - 30.0 J 35.9 J ND (30) ND (13) ND (50) Pleasanthrene ug/kg 44000 44000 44000 44000 44000 30.0 15.6 - 30.0 J 35.9 J ND (30) ND (12) 471 Chlertrine ug/kg 44000 44000 44000 44000 44000 44000 30.0 15.6 - 30.0 J 35.9 J ND (30) ND (12) 471 Chlertrine ug/kg 44000													592
Benzo(Ntucranthene 19/kg 15000 15000 39000 39000 97.3 - 110 182 194 36.6 1370							-						309
Chrysnen													1210
Dibenzo(a,h)anthracene ug/kg 150 150 2100 2100 8.8.J							-						1110
Fluoranthene							_						96.7
Fluorene													1100
Indeno(1,2,3-cd)pyene μg/kg 1500 1500 21000 21000 51.6 . 89.3 J 143 102 20.3 427							_						ND (25)
1-Methylnaphthalene µg/kg 790 790 790 790 790 ND (13) - ND (100) ND (100) ND (100) ND (13) 52.3 J 2-Methylnaphthalene µg/kg 870 870 870 870 870 870 ND (13) - ND (100) ND (100													381
2-Methylnaphthalene μg/kg 870 870 870 870 870 ND (13) - ND (100) ND (100) ND (100) ND (100) ND (13) ND (50) Naphthalene μg/kg 4400 4500 4400 6200 ND (13) - ND (100)	7. 7						-						ND (50)
Naphthalene							-		· · · · · · · · · · · · · · · · · · ·	, ,	, ,		ND (50)
Phenanthrene µg/kg 6900 69000 69000 69000 69000 93.5 -							-		· · · · · · · · · · · · · · · · · · ·	, ,			ND (50)
Pyrene							-	, ,		` ,			781
GC Pesticides (SW846 8081 A) Chlordane μg/kg 16000 16000 29000 29000 3080 - 1680 J 753 J 565 J 935 1710 Dieldrin μg/kg 1500 1500 11000 11000 186 - 50.0 J 35.9 J ND (30) ND (12) 471 4,4-DDD μg/kg 2000 2000 7200 7200 ND (28) - ND (35) ND (21) ND (35) ND (14) ND (21) 4,4-DDT μg/kg 1400 1400 5100 5100 42.0 J - 33.1 J ND (18) ND (30) 12.9 J 25.4 J 4,4-DDT μg/kg 1700 1700 5600 5600 80.8 J - ND (25) 16.6 J ND (30) 12.9 J 25.4 J 4,4-DDT μg/kg 3700 3700 30000 30000 ND (24) - ND (25) ND (18) ND (25) ND (10) 24.9 J 25.4 J 40.0 L 10.0 L 10							-			, ,			2060
Chlordane	1							•	•		•		•
Dieldrin	cides (SW846 8081A)												
4,4'-DDD μg/kg 2000 2000 7200 7200 ND (28) - ND (35) ND (21) ND (35) ND (14) ND (21) 4,4'-DE μg/kg 1400 1400 5100 5100 42.0 J - 33.1 J ND (18) ND (30) 12.9 J 25.4 J 4,4'-DET μg/kg 1700 1700 5600 5600 80.8 J - ND (25) 16.6 J ND (25) ND (10) 24.9 J Endrin μg/kg 3700 33000 30000 ND (24) - ND (30) ND (10) ND (10) ND (10) ND (10) ND (10) ND (11) ND (10) ND (11) ND (11) ND (11) ND (11) ND (12) ND (18) ND (10) ND (10) ND (11) ND (11) ND (12) ND (18) ND (14) ND (12) ND (18) ND (14) ND (12) ND (13) ND (14) ND (12) ND (14) ND (12) ND (14) ND (14) ND (14) ND (14) ND (14) ND (14)	μg/kg	16000	16000	29000	29000	3080	-	1680 J	753 J	565 J	935	1710	1670
4,4'-DDE μg/kg 1400 1400 5100 5100 42.0 J - 33.1 J ND (18) ND (30) 12.9 J 25.4 J 4,4'-DDT μg/kg 1700 1700 5600 5600 80.8 J - ND (25) 16.6 J ND (25) ND (10) 24.9 J Endrin μg/kg 3700 3700 30000 30000 ND (24) - ND (30) ND (18) ND (30) ND (12) ND (18) Heptachlor μg/kg 110 110 380 380 ND (19) - ND (23) ND (14) ND (23) ND (14) ND (23) ND (14) ND (25) ND (10) 25.5 J GC Polychlorinated Biphenyls (PCBs) (SW846 8082) Arcclor 1248 μg/kg 1100 1100 6300 6300 ND (170) - ND (330) ND (330) ND (170) ND (170) Arcclor 1260 μg/kg 1100 1100 6300 6300 ND (66) - ND (130) ND (130) ND (130) ND (67) ND (67) GC Herbicides (SW846 8151A	μg/kg	1500	1500	11000	11000	186	-	50.0 J	35.9 J	ND (30)	ND (12)	471	529
4,4'-DDE μg/kg 1400 1400 5100 5100 42.0 J - 33.1 J ND (18) ND (30) 12.9 J 25.4 J 4,4'-DDT μg/kg 1700 1700 5600 5600 80.8 J - ND (25) 16.6 J ND (25) ND (10) 24.9 J Endrin μg/kg 3700 3700 30000 30000 ND (24) - ND (30) ND (18) ND (30) ND (12) ND (18) Heptachlor μg/kg 110 110 380 380 ND (19) - ND (23) ND (14) ND (23) ND (14) ND (23) ND (14) ND (25) ND (10) 25.5 J GC Polychlorinated Biphenyls (PCBs) (SW846 8082) Arcclor 1248 μg/kg 1100 1100 6300 6300 ND (170) - ND (330) ND (330) ND (170) ND (170) Arcclor 1260 μg/kg 1100 1100 6300 6300 ND (66) - ND (130) ND (130) ND (130) ND (67) ND (67) GC Herbicides (SW846 8151A		2000	2000	7200	7200	ND (28)	-	ND (35)	ND (21)	ND (35)	ND (14)	ND (21)	ND (21)
4,4-DDT							-	1		. ,			20.8 J
Endrin μg/kg 3700 3700 3000 3000 ND (24) - ND (30) ND (18) ND (30) ND (12) ND (18) Heptachlor μg/kg 110 110 380 380 ND (19) - ND (23) ND (14) ND (23) ND (14) Heptachlor epoxide μg/kg 53 53 190 190 79.3 J - ND (25) ND (15) ND (25) ND (10) 25.5 J GC Polychlorinated Biphenyls (PCBs) (SW846 8082) Aroclor 1248 μg/kg 1100 1100 6300 6300 ND (170) - ND (330) ND (330) ND (330) ND (170) ND (170) Aroclor 1260 μg/kg 1100 1100 6300 6300 ND (66) - ND (130) ND (130) ND (130) ND (67) ND (67) GC Herbicides (SW846 8151A) Dinoseb μg/kg 19.6 J b - 32.8 J 23.2 J ND (18) ND (23) 52.3 J						80.8 J	-			` ,			24.6 J
Heptachlor		3700	3700		30000	ND (24)	-		ND (18)	ND (30)		ND (18)	ND (18)
Heptachlor epoxide μg/kg 53 53 190 190 79.3 J - ND (25) ND (15) ND (25) ND (10) 25.5 J GC Polychlorinated Biphenyls (PCBs) (SW846 8082) Aroclor 1248 μg/kg 1100 1100 6300 6300 ND (170) - ND (330) ND (330) ND (330) ND (170) ND (170) Aroclor 1260 μg/kg 1100 1100 6300 6300 ND (66) - ND (130) ND (130) ND (130) ND (67) ND (67) GC Herbicides (SW846 8151A) Dinoseb μg/kg 19.6 J b - 32.8 J 23.2 J ND (18) ND (23) 52.3 J		110	110			ND (19)	-		ND (14)	ND (23)	ND (9.3)		ND (14)
Aroclor 1248 μg/kg 1100 1100 6300 6300 ND (170) - ND (330) ND (330) ND (330) ND (170) ND (170) Aroclor 1260 μg/kg 1100 1100 6300 6300 ND (66) - ND (130) ND (130) ND (130) ND (67) ND (67) GC Herbicides (SW846 8151A) Dinoseb μg/kg - - - 19.6 J b - 32.8 J 23.2 J ND (18) ND (23) 52.3 J		53	53	190	190	79.3 J	-	ND (25)	ND (15)	ND (25)	ND (10)	25.5 J	25.7 J
Aroclor 1248 μg/kg 1100 1100 6300 6300 ND (170) - ND (330) ND (330) ND (330) ND (170) ND (170) Aroclor 1260 μg/kg 1100 1100 6300 6300 ND (66) - ND (130) ND (130) ND (130) ND (67) ND (67) GC Herbicides (SW846 8151A) Dinoseb μg/kg - - - 19.6 J b - 32.8 J 23.2 J ND (18) ND (23) 52.3 J													
Aroclor 1260 μg/kg 1100 1100 6300 6300 ND (66) - ND (130) ND (130) ND (130) ND (67) ND (67) GC Herbicides (SW846 8151A) Dinoseb μg/kg 19.6 J b - 32.8 J 23.2 J ND (18) ND (23) 52.3 J		, ,	1400	0000	0000	ND (470)		ND (000)	ND (000)	ND (000)	ND (470)	ND (470)	ND (470)
GC Herbicides (SW846 8151A) Dinoseb μg/kg - - 19.6 J b - 32.8 J 23.2 J ND (18) ND (23) 52.3 J						` ,		, ,	. ,	` ,	` ,	` ,	ND (170)
Dinoseb µg/kg 19.6 J b - 32.8 J 23.2 J ND (18) ND (23) 52.3 J	.оо јµg/кд	1100	1100	0300	0300	ואט (סס)	-	IND (130)	(130) אטו	ND (130)	(פע) אווו	עט) (און	ND (67)
Dinoseb µg/kg 19.6 J - 32.8 J 23.2 J ND (18) ND (23) 52.3 J	cides (SW846 8151A)												
	· , , , ,	T -	-	-	-	19.6 J ^b	-	32.8 J	23.2 J	ND (18)	ND (23)	52.3 J	53.8 J ^b
11 VINGUINI		820	890	820	2700	21	-	2.6 J	5.6	2.1 J	1.1 J ^b	4.8 ^b	7.4
5 of 8	IMB/NB	1 020	1 200				5 of 8		0.0		•		

Chemicals Detected in Soil

Site Characterization Report for Banana Patch Properties, Pearl City, Oahu, Hawaii

Honolulu Rail Transit Project

Sample ID		HDOH Tier 1 EALs ¹	HDOH EALs ²	HDOH EALs ¹	HDOH EALs ²	FASC-DU304A-	FASC-DU4B-0614			FASC-DU5C-0514			
Sample Date						5/23/2014	5/23/2014	5/21/2014	5/21/2014	5/21/2014	5/21/2014	5/20/2014	5/20/2014
Decision Unit (DU)		Unrestricted	Unrestricted	Commercial/ Industrial	Commercial/ Industrial	DU4	DU4	DU5	DU5	DU5	DU5	DU6	DU6
Sub Unit (SU)		DW, <150m to SW	NDW, <150m to SW	DW, <150m to SW	NDW, <150m to SW	A (0-0.5 feet bgs)- triplicate	B (0-3 feet bgs)	A (0-5 feet bgs)	B (5-10 feet bgs)	C (10-15 feet bgs)	D (15-20 feet bgs)	A (0-5 feet bgs)	A (0-5 feet bgs)- duplicate
RCRA Metals Analysis	S												
Arsenic	mg/kg	24	24	95	95	1.8 J ^c	0.50 J ^d	50.1 °	7.3 °	9.1 °	1.9 J ^c	6.2 ^c	8.5 ^c
Barium	mg/kg	1000	1000	2500	2500	132 °	162 ^d	115 °	139 °	99.1 °	112 ^c	113 °	98.5 ^c
Cadmium	mg/kg	14	14	120	120	0.19 J ^c	1.0 J ^d	0.045 J ^c	0.20 J ^c	0.14 J ^c	0.015 U ^c	1.0 ^c	1.2 ^c
Chromium	mg/kg	1100	1100	1100	1100	122 ^c	101 ^d	193 °	122 ^c	139 °	165 ^c	103 °	119 °
Lead	mg/kg	200	200	800	800	873 °	902 ^d	804 ^c	182 ^c	45.9 ^c	36.5 ^c	118 ^c	227 ^c
Mercury	mg/kg	4.7	4.7	61	61	0.13	0.11	0.14	0.15	0.15	0.081	0.14	0.21
Selenium	mg/kg	78	78	1000	1000	2.4 ^c	2.8 ^d	4.0 ^c	2.5 ^c	2.8 ^c	2.7 ^c	1.1 J ^c	2.1 ^c
Silver	mg/kg	78	78	1000	1000	0.044 U ^c	0.49 J ^d	0.39 J ^c	0.69 J ^c	1.1 °	0.84 J ^c	0.12 J ^c	0.044 U ^c
General Chemistry													
Moisture, Percent	%	-	-	-	-	6.3	17.9	16.9	12.8	12.7	30.2	16.3	14

Notes:

J = The analyte was positively identified; the quantitation is an estimation

Acronyms:

μg/kg = micrograms per kilogram

bgs = below ground surface

DU = Decision Unit

ft= feet

Bold

GC = gas chromatography

MS = mass spectrometry

ND = not detected (the analyte is below the method detection limit indicated in parenthesis)

PAH = polycyclic aromatic hydrocarbons

PCB = polychlorinated biphenyls

RCRA = Resource Conservation and Recovery Act

TPH-g = total petroleum hydrocarbons, gasoline-range organics (C6-C10)

TPH-d = total petroleum hydrocarbons, diesel-range organics (C10-C28)

TPH-o = total petroleum hydrocarbons, oil-range organics (>C28-C40)

HITS ONLY. Only parameters detected in at least one sample are shown.

The sample/compound concentration exceeds the specific EAL

" Compound not analyzed

6 of 8

^a Quantitation between primary and confirmation differed by >40%. Lower value reported.

^b Primary and confirmation results differ by more than 40%. Lower value reported due to possible coelution.

^c Elevated reporting limit(s) due to dilution required for high interfering element.

^d Elevated reporting limit(s) due to matrix interference and/or dilution required for high interfering element.

¹ HDOH Tier 1 Environmental Action Levels are for sites over a drinking water resource and less than 150 meters to nearest surface water (HDOH, summer 2008 and subsequent updates).

² HDOH Tier 1 Environmental Action Levels are for sites over a non-drinking water resource and less than 150 meters to nearest surface water (HDOH, summer 2008 and subsequent updates).

TABLE 4-2
Chemicals Detected in Soil

Site Characterization Report for Banana Patch Properties, Pearl City, Oahu, Hawaii Honolulu Rail Transit Project

Sample ID		HDOH Tier 1	HDOH EALs ²	HDOH EALs ¹	HDOH EALs ²	FASC-DU306A-	FASC-DU6B-0514	FASC-DU6C-0514	FASC-DU6D-0514	FADS-DU6D1-0514	FADS-DU6D2-0514	FADS-DU6D3-0514	BKSC-DU7-0514
Sample Date		EALs ¹						5/20/2014		5/23/2014			
•				Commercial/	Commercial/	5/20/2014	5/20/2014		5/20/2014		5/23/2014	5/28/2014	5/28/2014
Decision Unit (DU)		Unrestricted	Unrestricted	Industrial	Industrial	DU6	DU6	DU6	DU6	DU6	DU6	DU6	DU7
Sub Unit (SU)		DW, <150m to SW	NDW, <150m to SW	DW, <150m to SW	NDW, <150m to SW	A (0-5 feet bgs)- triplicate	B (5-10 feet bgs)	C (10-15 feet bgs)	D (15-20 feet bgs)	Discrete (14-17 feet bgs)	Discrete (14-17 feet bgs)	Discrete (14-17 feet bgs)	Stream Bank (0-1 feet bgs
GC/MS Volatile Organic (Compour	ds (SW846 8260B)											
Tetrachloroethylene	μg/kg	88	88	250	250	ND (17)	ND (17)	ND (22)	ND (20)	ND (21)	ND (23)	ND (21)	-
TPH-g (C6-C10)	μg/kg	100000	100000	100000	400000	ND (1400)	ND (1400)	ND (1800)	ND (1700)	ND (1700)	ND (1900)	ND (1800)	-
		(====) (===============================											
GC Total Petroleum Hydr				100	500	450 1	100.1	1 444 1	20.0.1	0.00	2.22.1	4.04.1	22.4
TPH-d (C10-C28) TPH-o (>C28-C40)	mg/kg mg/kg	100 500	500 500	100 1000	500 1000	158 J 1140	163 J 1150	141 J 1010	36.0 J 182	6.23 22.3	3.32 J 6.73 J	4.24 J 25.1	33.4 257
1711-0 (>020-040)	IIIg/kg	300	300	1000	1000	1140	1150	1010	102	22.3	0.733	20.1	231
GC/MS Polynuclear Arom	natic Hvd	rocarbons (PAHs) (S	SW846 8270C BY S	IM)									
Acenaphthene	µg/kg	120000	120000	120000	120000	ND (25)	27.4 J	ND (25)	ND (8.3)	ND (4.7)	ND (2.6)	3.0 J	ND (6.6)
Acenaphthylene	μg/kg	13000	13000	13000	13000	28.4 J	ND (25)	ND (25)	ND (8.3)	ND (4.7)	ND (2.6)	2.3 J	ND (6.6)
Anthracene	μg/kg	4300	4300	4300	4300	100 J	101 J	73.7 J	15.3 J	ND (4.7)	ND (2.6)	12.1 J	15.0 J
Benzo(a)anthracene	μg/kg	1500	1500	10000	10000	666	671	539	84.1	7.2 J	ND (1.3)	64.7	130
Benzo(a)pyrene	μg/kg	150	150	2100	2100	856	738	617	87.6	15.7	ND (0.88)	63.2	123
Benzo(b)fluoranthene	μg/kg	1500	1500	9200	21000	563	674	480	80.2	15.4	ND (1.0)	45.4	92.3
Benzo(g,h,i)perylene	μg/kg	27000	27000	27000	27000	325	235	207	36.2	17.3	ND (1.1)	33.4	67.9
Benzo(k)fluoranthene	μg/kg	15000	15000	39000	39000	1130	1020	805	122	18.2	ND (1.2)	51.5	109
Chrysene Dibenzo(a,h)anthracene	μg/kg	10000 150	10000 150	10000 2100	10000 2100	999 125	936 106	726 77.3	109 14.4 J	10.5 4.7 J	ND (1.0) ND (1.5)	93.2 10.9	149 19.8
Fluoranthene	μg/kg μg/kg	87000	87000	87000	87000	1060	950	786	14.4 3	6.1 J	ND (1.5) ND (2.6)	10.9	19.6
Fluorene	μg/kg	100000	100000	100000	100000	ND (25)	ND (25)	ND (25)	ND (8.3)	ND (4.7)	ND (2.6)	2.7 J	ND (6.6)
Indeno(1,2,3-cd)pyrene	μg/kg	1500	1500	21000	21000	354	291	254	45.4	16.9	ND (1.3)	36.4	73.4
1-Methylnaphthalene	μg/kg	790	790	790	790	ND (50)	ND (50)	ND (50)	ND (17)	ND (9.4)	ND (5.2)	11.8 J	ND (13)
2-Methylnaphthalene	μg/kg	870	870	870	870	ND (50)	ND (50)	ND (50)	ND (17)	ND (9.4)	ND (5.2)	8.0 J	ND (13)
Naphthalene	μg/kg	4400	4500	4400	6200	ND (50)	ND (50)	ND (50)	ND (17)	ND (9.4)	ND (5.2)	4.0 J	ND (13)
Phenanthrene	μg/kg	69000	69000	69000	69000	767	596	437	75.3 J	ND (4.7)	ND (2.6)	126	98
Pyrene	μg/kg	44000	44000	44000	44000	1920	1590	1220	201	7.0 J	ND (2.6)	128	233
GC Pesticides (SW846 80	191 A \												
Chlordane	µg/kg	16000	16000	29000	29000	2000	1410	3810	2100	12.3 J	ND (5.2)	48.1 J	526
Dieldrin	μg/kg	1500	1500	11000	11000	539	105	140	ND (18)	ND (0.85)	ND (0.93)	ND (1.2)	6.9 J ^a
4,4'-DDD	μg/kg	2000	2000	7200	7200	ND (21)	ND (21)	ND (21)	ND (21)	ND (0.99)	ND (1.1)	3.1 J ^a	ND (2.1)
4,4'-DDE	μg/kg μg/kg	1400	1400	5100	5100	23.2 J	ND (21)	32.2 J	ND (21)	12	ND (1.1)	13.9	8.0 J
4,4'-DDT	μg/kg	1700	1700	5600	5600	25.9 J	44.9 J	137	ND (15)	1.7 J	ND (0.77)	11.6	11.9
Endrin	μg/kg	3700	3700	30000	30000	ND (18)	ND (18)	ND (18)	ND (18)	1.8 J	ND (0.93)	ND (1.2)	ND (1.8)
Heptachlor	μg/kg	110	110	380	380	ND (14)	ND (14)	ND (14)	ND (14)	0.80 J	ND (0.72)	ND (0.93)	ND (1.4)
Heptachlor epoxide	μg/kg	53	53	190	190	30.9 J	ND (15)	31.1 J	84.1 J	ND (0.71)	ND (0.77)	ND (1.0)	8.3 J
	. (5)	D \ (0)M(0.40.0000)											
GC Polychlorinated Biph			1100	6200	6200	ND (170)	ND (470)	ND (170)	ND (470)	ND (24)	ND (26)	ND (47)	ND (47)
Aroclor 1248 Aroclor 1260	μg/kg μg/kg	1100 1100	1100 1100	6300 6300	6300 6300	ND (170) ND (66)	ND (170) ND (67)	ND (170) ND (67)	ND (170) ND (66)	ND (24) ND (9.4)	ND (26) ND (10)	ND (17) ND (6.7)	ND (17) 26.2 J
A100101 1200	Įμg/Ng	1100	1100	0000	0000	ND (00)	IND (OI)	IND (OI)	ND (00)	ND (3.4)	ND (10)	ND (0.7)	20.2 J
GC Herbicides (SW846 8	151A)												
Dinoseb	μg/kg	-	-	-		47.5 J ^b	34.2 J	58.6 J ^b	ND (22)	47.1 J ^b	ND (25)	ND (24)	ND (22)
Pentachlorophenol	μg/kg	820	890	820	2700	5.3 ^b	7.8	20.9	13.2 ^b	28.3	1.4 J	1.8 J	1.3 J
							7 of 8						

Chemicals Detected in Soil

Site Characterization Report for Banana Patch Properties, Pearl City, Oahu, Hawaii

Honolulu Rail Transit Project

Sample ID		HDOH Tier 1 EALs ¹	HDOH EALs ²	HDOH EALs ¹	HDOH EALs ²	FASC-DU306A-	FASC-DU6B-0514	FASC-DU6C-0514	FASC-DU6D-0514	FADS-DU6D1-0514	FADS-DU6D2-0514	FADS-DU6D3-0514	BKSC-DU7-0514
Sample Date		_,0				5/20/2014	5/20/2014	5/20/2014	5/20/2014	5/23/2014	5/23/2014	5/28/2014	5/28/2014
Decision Unit (DU)		Unrestricted	Unrestricted	Commercial/ Industrial	Commercial/ Industrial	DU6	DU6	DU6	DU6	DU6	DU6	DU6	DU7
Sub Unit (SU)		DW, <150m to SW	NDW, <150m to SW	DW, <150m to SW	NDW, <150m to SW	A (0-5 feet bgs)- triplicate	B (5-10 feet bgs)	C (10-15 feet bgs)	D (15-20 feet bgs)	Discrete (14-17 feet bgs)	Discrete (14-17 feet bgs)	Discrete (14-17 feet bgs)	Stream Bank (0-1 feet bgs
RCRA Metals Analysis													
Arsenic	mg/kg	24	24	95	95	6.6 ^c	11.0 °	8.4 ^c	6.4 °	1.2 J ^d	0.99 J ^d	4.2 J ^d	5.5 ^d
Barium	mg/kg	1000	1000	2500	2500	94.7 ^c	174 ^c	119 °	75.7 ^c	86.7 ^d	67.6 ^d	128 ^d	121 ^d
Cadmium	mg/kg	14	14	120	120	1.0 °	1.2 °	0.68 J ^c	0.66 J ^c	0.78 J ^d	0.64 J ^d	0.53 J ^d	0.73 J ^d
Chromium	mg/kg	1100	1100	1100	1100	119 °	97.5 ^c	96.6 ^c	100 ^c	164 ^d	154 ^d	245 ^d	234 ^d
Lead	mg/kg	200	200	800	800	74.5 ^c	239 °	93.5 ^c	29.8 ^c	30.4 ^d	3.0 ^d	362 ^d	141 ^d
Mercury	mg/kg	4.7	4.7	61	61	0.15	0.36	0.31	0.14	0.092	0.057 J	0.13	0.1
Selenium	mg/kg	78	78	1000	1000	1.9 J ^c	0.93 J ^c	1.7 J ^c	2.1 ^c	3.0 ^d	2.5 J ^d	13.6 ^d	10.7 ^d
Silver	mg/kg	78	78	1000	1000	0.043 U ^c	2.8 ^c	0.044 U ^c	0.18 J ^c	0.20 J ^d	0.072 J ^d	1.4 J ^d	3.1 ^d
General Chemistry													
Moisture, Percent	%	-	-	-	-	16.6	7.4	26.3	25.4	29.9	36.1	29.7	25.4

Notes:

J = The analyte was positively identified; the quantitation is an estimation

Acronyms:

μg/kg = micrograms per kilogram

bgs = below ground surface

DU = Decision Unit

ft= feet

Bold

GC = gas chromatography

MS = mass spectrometry

ND = not detected (the analyte is below the method detection limit indicated in parenthesis)

PAH = polycyclic aromatic hydrocarbons

PCB = polychlorinated biphenyls

RCRA = Resource Conservation and Recovery Act

TPH-g = total petroleum hydrocarbons, gasoline-range organics (C6-C10)

TPH-d = total petroleum hydrocarbons, diesel-range organics (C10-C28)

TPH-o = total petroleum hydrocarbons, oil-range organics (>C28-C40)

HITS ONLY. Only parameters detected in at least one sample are shown.

The sample/compound concentration exceeds the specific EAL

"-" Compound not analyzed

^a Quantitation between primary and confirmation differed by >40%. Lower value reported.

^b Primary and confirmation results differ by more than 40%. Lower value reported due to possible coelution.

^c Elevated reporting limit(s) due to dilution required for high interfering element.

^d Elevated reporting limit(s) due to matrix interference and/or dilution required for high interfering element.

¹ HDOH Tier 1 Environmental Action Levels are for sites over a drinking water resource and less than 150 meters to nearest surface water (HDOH, summer 2008 and subsequent updates).

² HDOH Tier 1 Environmental Action Levels are for sites over a non-drinking water resource and less than 150 meters to nearest surface water (HDOH, summer 2008 and subsequent updates).

Soil Samples Analyzed for Additional Waste Characterization

Site Characterization Report for Banana Patch Properties, Pearl City, Oahu, Hawaii

Honolulu Rail Transit Project

Sample ID		HDOH Tier 1 EALs ¹	HDOH EALs ²	RCRA TCLP Limit ³	FASC-DU1SA- 0514	FASC-DU1SB- 0514	FASC-DU2A-0514	FASC-DU2B-0514	FASC-DU2C-0514	FASC-DU3A-0514	FASC-DU3B-0514
Sample Date					5/22/2014	5/22/2014	5/22/2014	5/22/2014	5/19/2014	5/19/2014	5/19/2014
Decision Unit (DU)		Unrestricted	C/I		DU1S (South)	DU1S (South)	DU2	DU2	DU2	DU3	DU3
Sample Unit (SU)	Units	DW, <150m SW	NDW, <150m SW		A (0-0.5 feet bgs)	B (8-10 feet bgs)	A (0-0.5 feet bgs)	B (0.5-3 feet bgs)	C (varies)	A (0-0.5 feet bgs)	B (0.5-3 feet bgs)
GC Total Petroleum Hydrocarbons (TPH) (SW846 80	015B M)										
TPH-d (C10-C28)	mg/kg	100	500	_	45.0 J	84.5	ND (170)	100	11.5	64.4 J	46.1 J
TPH-ORO (>C28-C40)	mg/kg	500	1000	-	359	647	1410	736	50	634	469
Metals Analysis											
Chromium	mg/kg	1100	1100	-	198 °	144 ^c	156 °	142 °	134 °	135 °	114 ^c
Lead	mg/kg	200	800	-	33.3 °	124 ^c	25.4 ^c	41.6 ^c	87.6 ^c	157 ^c	62.6 ^c
TCLP Metals Analysis											
Chromium	mg/L	-	-	5	0.0021 U	0.0021 U	0.0021 U	0.0035 J	0.0021 U	0.030 J	0.022 J
Lead	mg/L	-	-	5	-	0.0043 U	-	-	-	0.015 J	0.0045 J
General Chemistry											
Moisture, Percent	%	-	-	-	18.5	17.7	14	15.8	30.6	15.3	6

Notes:

derived from Resource Conservation and Recovery Act (RCRA) (40 CFR 261, Appendix II, 1993).

Samples below had total metals results >20Xs the TCLP limit and were additionally analyzed for TCLP.

Acronyms:

bgs = below ground surface

C/I = commercial/industrial

DU = Decision Unit

ft= feet

GC = gas chromatography

MS = mass spectrometry

PAH = polycyclic aromatic hydrocarbons

PCB = polychlorinated biphenyls

RCRA = Resource Conservation and Recovery Act

HITS ONLY. Only parameters detected in at least one sample are shown.

Bold Indicates that soil may be considered "special waste" with higher pricing if disposed at landfill.

Contractor to verify additional waste sampling/characterization requirements with landfill.

"-" Compound not analyzed

^a Quantitation between primary and confirmation differed by >40%. Lower value reported.

^b Primary and confirmation results differ by more than 40%. Lower value reported due to possible coelution.

^c Elevated reporting limit(s) due to dilution required for high interfering element.

^d Elevated reporting limit(s) due to matrix interference and/or dilution required for high interfering element.

J = The analyte was positively identified; the quantitation is an estimation

U = The analyte was not detected (below the indicated detection limit)

¹ HDOH Tier 1 Environmental Action Levels are for unrestricted/residential sites within 150 meters of surface water bodies, where groundwater is threatened (HDOH, summer 2008 and subsequent updates).

² HDOH Environmental Action Levels are for commercial/industrial sites within 150 meters

of surface water bodies, where groundwater is not threatened (HDOH, summer 2008 and subsequent updates).

³ Toxicity Characteristic Leaching Procedure (TCLP) limit

Soil Samples Analyzed for Additional Waste Characterization

Site Characterization Report for Banana Patch Properties, Pearl City, Oahu, Hawaii

Honolulu Rail Transit Project

Sample ID		HDOH Tier 1 EALs ¹	HDOH EALs ²	RCRA TCLP Limit ³	FASC-DU4A-0514	FASC-DU5A-0514	FASC-DU5B-0514	FASC-DU5C-0514	FASC-DU5D-0514	FAWC-DU50106AB-	FAWC-DU50106C-
Sample Date					5/23/2014	5/21/2014	5/21/2014	5/21/2014	5/21/2014	5/21/2014	5/21/2014
Decision Unit (DU)		Unrestricted	C/I		DU4	DU5	DU5	DU5	DU5	DU5	DU5
Sample Unit (SU)	Units	DW, <150m SW	NDW, <150m SW		Δ (0-0 5 feet has)	Δ (0-0 5 feet has)	B (5-10 feet has)	C (10-15 feet has)	D (15-20 feet bgs)	A and B	С
Sample Offic (SO)	Offics	544, <130iii 344	NDW, CISOIII SW		A (0-0.5 feet bgs)	A (0-0.5 feet bgs)	D (3-10 leet bgs)	C (10-13 leet bgs)	D (13-20 leet bgs)	borings 1-6	borings 1-6
00 T-(-1 D-(-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	(FD 14)										
GC Total Petroleum Hydrocarbons (TPH) (SW846 801	15B M)	Г		I					1		1
TPH-d (C10-C28)	mg/kg	100	500	_	37.6	208 J	283 J	262 J	82.5 J	102	9.65
TPH-ORO (>C28-C40)	mg/kg	500	1000	-	289	1970	2450	2370	619	683	57.7
Metals Analysis											
		1		ı	1 0	2					1
Chromium	mg/kg	1100	1100	-	103 °	193 ^c	122 ^c	139 °	165 ^c	-	-
Lead	mg/kg	200	800	-	720 ^c	804 ^c	182 ^c	45.9 ^c	36.5 °	-	-
TCLP Metals Analysis											
					T	T					
Chromium	mg/L	-	<u>-</u>	5	0.0021 U	0.0021 U	0.0021 U	0.0021 U	0.018 J	-	-
Lead	mg/L	-	-	5	0.19	0.13	0.028 J	-	-	-	-
General Chemistry											
Maistura Parcent	0/	T		I	17.2	16.9	12.8	12.7	30.2	16.2	27.5
Moisture, Percent	%	-	-	-	11.2	10.9	12.0	12.7	30.2	10.2	C. 12

Notes:

derived from Resource Conservation and Recovery Act (RCRA) (40 CFR 261, Appendix II, 1993).

Samples below had total metals results >20Xs the TCLP limit and were additionally analyzed for TCLP.

Acronyms:

bgs = below ground surface

C/I = commercial/industrial

DU = Decision Unit

ft= feet

GC = gas chromatography

MS = mass spectrometry

PAH = polycyclic aromatic hydrocarbons

PCB = polychlorinated biphenyls

RCRA = Resource Conservation and Recovery Act

HITS ONLY. Only parameters detected in at least one sample are shown.

Bold Indicates that soil may be considered "special waste" with higher pricing if disposed at landfill.

Contractor to verify additional waste sampling/characterization requirements with landfill.

-" Compound not analyzed

^a Quantitation between primary and confirmation differed by >40%. Lower value reported.

^b Primary and confirmation results differ by more than 40%. Lower value reported due to possible coelution.

^c Elevated reporting limit(s) due to dilution required for high interfering element.

^d Elevated reporting limit(s) due to matrix interference and/or dilution required for high interfering element.

J = The analyte was positively identified; the quantitation is an estimation

U = The analyte was not detected (below the indicated detection limit)

¹ HDOH Tier 1 Environmental Action Levels are for unrestricted/residential sites within 150 meters of surface water bodies, where groundwater is threatened (HDOH, summer 2008 and subsequent updates).

² HDOH Environmental Action Levels are for commercial/industrial sites within 150 meters of surface water bodies, where groundwater is not threatened (HDOH, summer 2008 and subsequent updates).

³ Toxicity Characteristic Leaching Procedure (TCLP) limit

Soil Samples Analyzed for Additional Waste Characterization

Site Characterization Report for Banana Patch Properties, Pearl City, Oahu, Hawaii

Honolulu Rail Transit Project

Sample ID		HDOH Tier 1 EALs ¹	HDOH EALs ²	RCRA TCLP Limit ³	FAWC-DU50712AB-	FAWC-DU50712C-	FAWC-DU51318AB-	FAWC-DU51318C-	FAWC-DU51924AB-	FAWC-DU51924C-
Sample Date					5/21/2014	5/21/2014	5/21/2014	5/21/2014	5/21/2014	5/21/2014
Decision Unit (DU)		Unrestricted	C/I		DU5	DU5	DU5	DU5	DU5	DU5
Sample Unit (SU)	Units	DW, <150m SW	NDW, <150m SW		A and B	С	A and B	С	A and B	С
Sample offic (50)	Onits	5W, <130m 6W	11011, <100111 011		borings 7-12	borings 7-12	borings 13-18	borings 13-18	borings 19-24	borings 19-24
(TDII) (OM640 00	45D 14)									
GC Total Petroleum Hydrocarbons (TPH) (SW846 80	15B M)		T T	1						
TPH-d (C10-C28)	mg/kg	100	500	_	180 J	6.97 J	161 J	545	159 J	20.7 J
TPH-ORO (>C28-C40)	mg/kg	500	1000	-	1550	47	1600	3020	1460	222
Metals Analysis										
	1		T	1	1	T	T	1	1	1
Chromium	mg/kg	1100	1100	-	-	-	-	-	-	-
Lead	mg/kg	200	800	-	-	-	-	-	-	-
TCLP Metals Analysis										
	I		r	_	T	1	T	1	T	,
Chromium	mg/L	-	-	5	-	-	-	-	-	-
Lead	mg/L	-	-	5	-	-	-	-	-	-
Compared Chamileton										
General Chemistry										
Moisture, Percent	%	-	-	-	14.9	29.7	12.4	19	13	23.8
· · · · · · · · · · · · · · · · · ·			<u> </u>					-	-	

Notes

derived from Resource Conservation and Recovery Act (RCRA) (40 CFR 261, Appendix II, 1993).

Samples below had total metals results >20Xs the TCLP limit and were additionally analyzed for TCLP.

Acronyms:

bgs = below ground surface

C/I = commercial/industrial

DU = Decision Unit

ft= feet

GC = gas chromatography

MS = mass spectrometry

PAH = polycyclic aromatic hydrocarbons

PCB = polychlorinated biphenyls

RCRA = Resource Conservation and Recovery Act

HITS ONLY. Only parameters detected in at least one sample are shown.

Bold Indicates that soil may be considered "special waste" with higher pricing if disposed at landfill.

Contractor to verify additional waste sampling/characterization requirements with landfill.

-" Compound not analyzed

^a Quantitation between primary and confirmation differed by >40%. Lower value reported.

^b Primary and confirmation results differ by more than 40%. Lower value reported due to possible coelution.

^c Elevated reporting limit(s) due to dilution required for high interfering element.

^d Elevated reporting limit(s) due to matrix interference and/or dilution required for high interfering element.

J = The analyte was positively identified; the quantitation is an estimation

U = The analyte was not detected (below the indicated detection limit)

¹ HDOH Tier 1 Environmental Action Levels are for unrestricted/residential sites within 150 meters of surface water bodies, where groundwater is threatened (HDOH, summer 2008 and subsequent updates).

² HDOH Environmental Action Levels are for commercial/industrial sites within 150 meters

of surface water bodies, where groundwater is not threatened (HDOH, summer 2008 and subsequent updates).

³ Toxicity Characteristic Leaching Procedure (TCLP) limit

Soil Samples Analyzed for Additional Waste Characterization

Site Characterization Report for Banana Patch Properties, Pearl City, Oahu, Hawaii

Honolulu Rail Transit Project

Sample ID		HDOH Tier 1 EALs ¹	HDOH EALs ²	RCRA TCLP Limit ³	FAWC-DU52530AB-	FAWC-DU52530C-	FASC-DU6A-0514	FASC-DU6B-0514	FASC-DU6D-0514	FAWC-DU60106AB-
Sample Date					5/21/2014	5/21/2014	5/20/2014	5/20/2014	5/20/2014	5/20/2014
Decision Unit (DU)		Unrestricted	C/I		DU5	DU5	DU6	DU6	DU6	DU6
Sample Unit (SU)	Units	DW, <150m SW	NDW, <150m SW		A and B borings 25-30	C borings 25-30	A (0-5 feet bgs)	B (5-10 feet bgs)	D (15-20 feet bgs)	A and B borings 1-6
GC Total Petroleum Hydrocarbons (TPH) (SW846 801	5B M)									
TPH-d (C10-C28)	mg/kg	100	500	_	73.2 J	21.8 J	185 J	163 J	36.0 J	105 J
TPH-ORO (>C28-C40)	mg/kg	500	1000	-	671	237	1070	1150	182	1200
Metals Analysis										
Chromium	mg/kg	1100	1100	-	-	-	119 ^c	97.5 ^c	100 ^c	-
Lead	mg/kg	200	800	-	-	-	227 ^c	239 °	29.8 ^c	-
TCLP Metals Analysis										
Chromium	mg/L	-	-	5	-	-	0.0021 U	0.0021 U	0.0021 U	-
Lead	mg/L	-	-	5	-	-	0.0043 U	0.0043 U	0.0043 U	-
General Chemistry										
Moisture, Percent	%	-	-	-	16.5	27.9	16.3	7.4	25.4	14.2

Notes:

derived from Resource Conservation and Recovery Act (RCRA) (40 CFR 261, Appendix II, 1993).

Samples below had total metals results >20Xs the TCLP limit and were additionally analyzed for TCLP.

Acronyms:

bgs = below ground surface

C/I = commercial/industrial

DU = Decision Unit

ft= feet

GC = gas chromatography

MS = mass spectrometry

PAH = polycyclic aromatic hydrocarbons

PCB = polychlorinated biphenyls

RCRA = Resource Conservation and Recovery Act

HITS ONLY. Only parameters detected in at least one sample are shown.

Bold Indicates that soil may be considered "special waste" with higher pricing if disposed at landfill.

Contractor to verify additional waste sampling/characterization requirements with landfill.

"-" Compound not analyzed

^a Quantitation between primary and confirmation differed by >40%. Lower value reported.

^b Primary and confirmation results differ by more than 40%. Lower value reported due to possible coelution.

^c Elevated reporting limit(s) due to dilution required for high interfering element.

^d Elevated reporting limit(s) due to matrix interference and/or dilution required for high interfering element.

J = The analyte was positively identified; the quantitation is an estimation

U = The analyte was not detected (below the indicated detection limit)

¹ HDOH Tier 1 Environmental Action Levels are for unrestricted/residential sites within 150 meters of surface water bodies, where groundwater is threatened (HDOH, summer 2008 and subsequent updates).

² HDOH Environmental Action Levels are for commercial/industrial sites within 150 meters of surface water bodies, where groundwater is not threatened (HDOH, summer 2008 and subsequent updates).

³ Toxicity Characteristic Leaching Procedure (TCLP) limit

Soil Samples Analyzed for Additional Waste Characterization

Site Characterization Report for Banana Patch Properties, Pearl City, Oahu, Hawaii Honolulu Rail Transit Project

Sample ID		HDOH Tier 1 EALs ¹	HDOH EALs ²	RCRA TCLP Limit ³	FAWC-DU60106C-	FAWC-DU60712AB-	FAWC-DU60712C-	SBSD-DU9-0514	SBSD-DU10-0514
Sample Date					5/20/2014	5/20/2014	5/20/2014	5/20/2014	5/17/2014
Decision Unit (DU)		Unrestricted	C/I		DU6	DU6	DU6	DU9	DU10
Sample Unit (SU)	Units	DW, <150m SW	NDW, <150m SW		С	A and B	С	Stream Bed	Stream Bed
cample om (eo)	Office	511, \100m 511	NDII, CIOOM OII		borings 1-6	borings 7-12	borings 7-12	(adjacent)	(downgradient)
CO Tatal Datalana III. Incoming (TDII) (ONO 40 004	5D M)								
GC Total Petroleum Hydrocarbons (TPH) (SW846 801	5B M)			I			I I		
TPH-d (C10-C28)	mg/kg	100	500	-	94.0 J	265	22.6 J	32.9 J	52.4 J
TPH-ORO (>C28-C40)	mg/kg	500	1000	-	1150	2200	297	294	395
Metals Analysis									
				T		Ī			
Chromium	mg/kg	1100	1100	-	-	-	-	106 °	174 ^c
Lead	mg/kg	200	800	-	-	-	-	11.9 °	17.6 ^c
TCLP Metals Analysis									
				_					
Chromium	mg/L	-	-	5	-	-	-	0.012 J	0.0021 U
Lead	mg/L	-	-	5	-	-	-	-	-
General Chemistry									
Moisture, Percent	%	_			19.5	12.7	30.2		
Ministure, Fercent	/0	-	-	-	13.0	12.7	30.2		

Notes

derived from Resource Conservation and Recovery Act (RCRA) (40 CFR 261, Appendix II, 1993).

Samples below had total metals results >20Xs the TCLP limit and were additionally analyzed for TCLP.

Acronyms:

bgs = below ground surface

C/I = commercial/industrial

DU = Decision Unit

ft= feet

GC = gas chromatography

MS = mass spectrometry

PAH = polycyclic aromatic hydrocarbons

PCB = polychlorinated biphenyls

RCRA = Resource Conservation and Recovery Act

HITS ONLY. Only parameters detected in at least one sample are shown.

Bold Indicates that soil may be considered "special waste" with higher pricing if disposed at landfill.

Contractor to verify additional waste sampling/characterization requirements with landfill.

-" Compound not analyzed

^a Quantitation between primary and confirmation differed by >40%. Lower value reported.

^b Primary and confirmation results differ by more than 40%. Lower value reported due to possible coelution.

^c Elevated reporting limit(s) due to dilution required for high interfering element.

^d Elevated reporting limit(s) due to matrix interference and/or dilution required for high interfering element.

J = The analyte was positively identified; the quantitation is an estimation

U = The analyte was not detected (below the indicated detection limit)

¹ HDOH Tier 1 Environmental Action Levels are for unrestricted/residential sites within 150 meters of surface water bodies, where groundwater is threatened (HDOH, summer 2008 and subsequent updates).

² HDOH Environmental Action Levels are for commercial/industrial sites within 150 meters

of surface water bodies, where groundwater is not threatened (HDOH, summer 2008 and subsequent updates).

³ Toxicity Characteristic Leaching Procedure (TCLP) limit

Chemicals Detected in Sediment

Site Characterization Report for Banana Patch Properties, Pearl City, Oahu, Hawaii

Honolulu Rail Transit Project

Sample ID		NOAA SQuIRTs TEC	NOAA SQuIRTs PEC	SBSD-DU8-0514	SBSD-DU9-0514	SBSD-DU209-0514	SBSD-DU309-0514	SBSD-DU10-0514
Sample Date		(11/2008) ¹	(11/2008) ¹	5/17/2014	5/20/2014	5/20/2014	5/20/2014	5/17/2014
Decision Unit	Units	1	` ´	DU8 (upgradient)	DU9 (adjacent)	DU9-duplicate (adjacent)	DU9-triplicate (adjacent)	DU10 (downgradient)
								-
TPH-d and ORO								
TPH-d (C10-C28)	mg/kg	-	-	46.9 J	32.9 J	40.2 J	39.4 J	52.4 J
TPH-o (>C28-C40)	mg/kg	-	-	333	294	370	360	395
PAHs		1						
Benzo(a)anthracene	μg/kg	108	385	58.5 J	52	40.3	41.5	48.7
Benzo(a)pyrene	μg/kg	150	1450	72.8	61.1	49.4	47.9	58.7
Benzo(b)fluoranthene	μg/kg	-	-	79.7	66.8	43.1	42.9	69.8
Benzo(g,h,i)perylene	μg/kg	-	300 (UET)	42.4 J	30.0 J	28.0 J	24.4 J	28.4 J
Benzo(k)fluoranthene	μg/kg	-	13400 (UET)	79.3	71.9	51.8	62.7	69.9
Chrysene	μg/kg	166	1290	77.6	73.1	50.6	56.5	67.8
Dibenzo(a,h)anthracene	μg/kg	33	100 (UET)	ND (19)	ND (9.3)	ND (9.3)	ND (9.3)	11.2 J
Fluoranthene	μg/kg	423	2230	109 J	107 J	56.1 J	72.3 J	87.5 J
Indeno(1,2,3-cd)pyrene	μg/kg	-	330 (UET)	51.2 J	33.1	26.3 J	26.1 J	34.7
Phenanthrene	μg/kg	204	1170	35.8 J	56.0 J	27.2 J	32.7 J	32.0 J
Pyrene	μg/kg	195	1520	117 J	133 J	75.4 J	88.1 J	110 J
PCBs								
Aroclor 1260	μg/kg	34.1 (sum)		ND (6.6)	8.3 J	ND (6.7)	7.1 J	7.1 J
7 (100)01 1200	P9/119	o iii (ouiii)		112 (6.6)	0.0 0	112 (6.1)	7.1.0	7.1.5
Herbicides								
Pentachlorophenol	μg/kg	-	-	ND (0.69)	ND (0.69)	25.3	ND (0.67)	ND (0.70)
Metals Analysis								
Arsenic	mg/kg	9.79	33	1.5 J ^c	1.5 J ^c	1.9 J ^c	1.5 J °	2.5 °
Barium	mg/kg	-	-	48.2 °	46.3 °	42.7 °	48.9 °	94.8 ^c
Cadmium	mg/kg	0.99	4.98	0.73 J ^c	0.54 J ^c	0.63 J °	0.69 J ^c	1.0 °
Chromium	mg/kg	43.4	111	96.6 °	99.1 ^c	93.1 °	106 °	174 °
Lead	mg/kg	35.8	128	8.4 ^c	45.1 °	12.1 °	11.9 °	17.6 °
Mercury	mg/kg	0.18	1.06	0.066	0.056	0.057	0.059	0.069
Selenium	mg/kg	-	-	1.2 J ^c	1.2 J ^c	0.75 J ^c	2.1 ^c	2.2 ^c
Silver	mg/kg	-	4.5 (UET)	0.33 J ^c	0.51 J ^c	0.21 J ^c	0.11 J ^c	0.35 J ^c

Notes:

Acronyms:

μg/kg = micrograms per kilogram

bgs = below ground surface

DU = Decision Unit

ft= feet

GC = gas chromatography

MS = mass spectrometry

ND = not detected (the analyte is below the detection limit indicated in parenthesis)

PAH = polycyclic aromatic hydrocarbons

PCB = polychlorinated biphenyls

RCRA = Resource Conservation and Recovery Act

TPH-g = total petroleum hydrocarbons, gasoline-range organics (C6-C10)

TPH-d = total petroleum hydrocarbons, diesel-range organics (C10-C28)

TPH-o = total petroleum hydrocarbons, oil-range organics (>C28-C40)

HITS ONLY. Only parameters detected in at least one sample are shown.

The sample/compound concentration exceeds screening criteria.

Bold Page 1 of 1

^a Quantitation between primary and confirmation differed by >40%. Lower value reported.

^b Primary and confirmation results differ by more than 40%. Lower value reported due to possible coelution.

^c Elevated reporting limit(s) due to dilution required for high interfering element.

^d Elevated reporting limit(s) due to matrix interference and/or dilution required for high interfering element.

J = The analyte was positively identified; the quantitation is an estimation

¹ Sediment samples were screened against NOAA SQuiRTs in order or priority:

¹⁾ Threshold Effects Concentration (TECs) (November 2008).

²⁾ Probable Effects Concentration (PECs) (November 2008).

In the absence of TECs and PECs, UETs or PELs were used:

³⁾ Upper Effects Threshold (UETs) (November 2008).

⁴⁾ Probable Effects Levels (PELs) (November 2008).

Chemicals Detected in Groundwater

Site Characterization Report for Banana Patch Properties, Pearl City, Oahu, Hawaii Honolulu Rail Transit Project

Sample ID		HDOH Tier 1 EAL	HDOH Tier 1 EAL	FASC-TW001-0514	FASC-TW002-0514	FASC-TW003-0514	FASC-TW004-0514	FASC-TW005-0514	FASC-TW006-0514	FASC-TW007-0514	FASC-TW008-0514
Sample Date		DW,<150m SW	NDW, <150m SW	5/29/2014	5/30/2014	5/30/2014	6/2/2014	5/30/2014	5/30/2014	5/30/2014	5/30/2014
Decision Unit (DU)		Unrestricted	Commercial/ industrial	DU3	DU3	DU6	DU5	DU6	DU3	DU4	DU2
Well ID	Units	11/2011) ¹	(11/2011) ²	TW-001	TW-002	TW-003	TW-004	TW-005	TW-006	TW-007	TW-008
GC/MS Volatile Organic Compounds (SW846 8260B)											
Acetone	μg/L	1500	1500	ND (4.0)	ND (4.0)	ND (4.0)	ND (4.0)	ND (4.0)	ND (4.0)	ND (4.0)	5.0 J
Trichlorofluoromethane	μg/L	-	-	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)
TPH-g (C6-C10)	μg/L	100	500	ND (25)	148	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)
GC Total Petroleum Hydrocarbons (TPH) (SW846 8015)	B M)										
, , ,	Í										
TPH-d (C10-C28)	mg/L	0.1	0.64	0.0340 J	0.0612 J	0.0284 J	ND (0.025)	ND (0.025)	0.0436 J	0.149	0.125
TPH-o (>C28-C40)	mg/L	0.1	0.64	ND (0.049)	0.0784 J	ND (0.048)	ND (0.049)	ND (0.050)	0.0883 J	0.123 J	0.132 J
GC Pesticides (SW846 8081A)											
Aldrin	μg/L	0.004	0.13	ND (0.0019)	0.0059 J	ND (0.0020)	ND (0.0020)	ND (0.0020)	ND (0.0020)	ND (0.0019)	0.46
Chlordane	μg/L	0.004	0.004	ND (0.0095)	ND (0.0099)	ND (0.010)	ND (0.010)	ND (0.0099)	0.056 J	ND (0.0094)	ND (0.097)
Dieldrin	μg/L	0.0019	0.0019	0.0035 J	0.032	0.0052 J	ND (0.0021)	0.0028 J	0.0033 J	ND (0.0020)	0.24
Heptachlor	μg/L	0.0036	0.0036	0.014 B ^d	0.020 B ^d	0.020 B ^d	0.016 B ^d	0.017 B ^d	0.017 B ^d	0.019 B ^d	0.053 JB ^d
Heptachlor epoxide	μg/L	0.0036	0.0036	ND (0.0033)	ND (0.0035)	0.0076 J ^b	ND (0.0035)	0.0053 J ^b	0.019	0.0078 J ^b	ND (0.034)
GC Herbicides (SW846 8151A)											
Pentachlorophenol	μg/L	1	7.9	ND (0.011)	0.013 J	0.017 J	ND (0.011)	ND (0.011)	ND (0.011)	ND (0.011)	0.065
RCRA Metals Analysis											
Arsenic	μg/L	10	36	2.7 J	4.4 J	1.3 J	3.4 J	0.65 U	0.65 U	3.4 J	0.65 U
Barium	μg/L	200	200	9.7 J	54.1 J	14.2 J	19.5 J	8.4 J	86.3 J	37.7 J	48.0 J
Cadmium	μg/L	3	3	1.0 J	1.6 J	1.8 J	0.90 J	0.15 U	0.15 U	0.15 U	1.7 J
Chromium	μg/L	74	74	0.41 U	0.41 U	6.6 J	0.41 U	0.41 U	0.41 U	1.7 J	0.41 U
Selenium	μg/L	5	5	4.3 J	21.7	5.8 J	2.2 U	4.3 J	9.4 J	9.0 J	5.8 J
Silver	μg/L	1	1	0.47 U	0.47 U	0.47 U	0.47 U	0.47 U	1.4 J	0.47 U	0.47 U

Notes:

Sample confirmed by re-extraction and reanalysis.

J = The analyte was positively identified; the quantitation is an estimation

Acronyms:

 μ g/L = micrograms per liter

bgs = below ground surface

DU = Decision Unit

ft= feet

GC = gas chromatography

mg/L = milligrams per liter

MS = mass spectrometry

ND = not detected (the analyte below the detection limit indicated in parenthesis)

RCRA = Resource Conservation and Recovery Act

TPH-g = total petroleum hydrocarbons, gasoline-range organics (C6-C10)

TPH-d = total petroleum hydrocarbons, diesel-range organics (C10-C28)

TPH-o = total petroleum hydrocarbons, oil-range organics (>C28-C40)

HITS ONLY. Only parameters detected in at least one sample are shown.

Bold The sample/compound concentration exceeds the specific EAL

^a CCV outside of control limits (biased high); not detected in sample.

^b Quantitation between primary and confirmation differed by >40%. Lower value reported.

^c Results from signal #2.

^d Value due to contamination. Associated Method Blank is outside QC limits.

^e Value due to contamination. Associated Method Blank is outside QC limits; insufficient sample volume available for re-extraction.

¹ HDOH Tier 1 Environmental Action Levels are for sites over a drinking water resource and less than 150 meters to nearest surface water (HDOH, 2011).

² HDOH Tier 1 Environmental Action Levels are for sites over a non-drinking water resource and less than 150 meters to nearest surface water (HDOH, 2011).

Chemicals Detected in Groundwater

Site Characterization Report for Banana Patch Properties, Pearl City, Oahu, Hawaii Honolulu Rail Transit Project

Sample ID		HDOH Tier 1 EAL	HDOH Tier 1 EAL	FASC-TW009-0514	FASC-TW010-0514	FASC-TW011-0514	FASC-TW111-0514	FASC-TW012-0514
Sample Date		DW,<150m SW	NDW, <150m SW	5/29/2014	6/2/2014	5/29/2014	5/29/2014	5/30/2014
Decision Unit (DU)		Unrestricted	Commercial/ industrial	DU1S	DU1N	DU1S	DU3	DU6
Well ID	Units	11/2011) ¹	(11/2011) ²	TW-009	TW-010	TW-011	TW-011	TW-012
00/110 V-1-('1-0'-0								
GC/MS Volatile Organic Compounds (SW846 8260B)								
Acetone	μg/L	1500	1500	ND (4.0)	ND (4.0)	ND (4.0)	ND (4.0)	ND (4.0)
Trichlorofluoromethane	μg/L	-	-	39.9	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)
TPH-g (C6-C10)	μg/L	100	500	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)
, , , , , , , , , , , , , , , , , , ,		•			· · · ·	, ,		
GC Total Petroleum Hydrocarbons (TPH) (SW846 8015	B M)							
			1					1
TPH-d (C10-C28)	mg/L	0.1	0.64	0.0285 J	0.118	ND (0.025)	ND (0.024)	ND (0.024)
TPH-o (>C28-C40)	mg/L	0.1	0.64	ND (0.048)	0.0665 J	ND (0.050)	ND (0.048)	ND (0.048)
GC Pesticides (SW846 8081A)								
GC Festicides (SW040 0001A)								
Aldrin	μg/L	0.004	0.13	ND (0.0020)	ND (0.0020)	ND (0.0019)	ND (0.0019)	ND (0.0019)
Chlordane	μg/L	0.004	0.004	ND (0.010)	ND (0.010)	ND (0.0095)	ND (0.0094)	ND (0.0097)
Dieldrin	μg/L	0.0019	0.0019	0.0036 J	0.0023 J ^b	ND (0.0020)	ND (0.0020)	ND (0.0020)
Heptachlor	μg/L	0.0036	0.0036	0.018 B ^d	0.019 B ^e	0.013 B ^d	0.011 B d	0.017 B ^d
Heptachlor epoxide	μg/L	0.0036	0.0036	0.0063 J ^b	0.0047 J ^b	ND (0.0033)	ND (0.0033)	ND (0.0034)
	1 10	L	1	ı		,	,	,
GC Herbicides (SW846 8151A)								
Pentachlorophenol	μg/L	1	7.9	0.018 J	0.055	ND (0.011)	ND (0.011)	ND (0.011)
RCRA Metals Analysis								
Arsenic	μg/L	10	36	0.65 U	0.65 U	0.65 U	0.65 U	3.9 J
Barium	μg/L μg/L	200	200	17.6 J	23.8 J	50.7 J	50.8 J	26.2 J
Cadmium	μg/L	3	3	1.4 J	0.60 J	1.0 J	0.15 U	2.2
Chromium	μg/L	74	74	0.41 U	0.41 U	0.41 U	1.5 J	0.41 U
Selenium	μg/L	5	5	2.2 J	7.7 J	9.1 J	5.7 J	8.8 J
Silver	μg/L	1	1	0.47 U	0.47 U	0.60 J	0.47 U	0.50 J

Notes:

Sample confirmed by re-extraction and reanalysis.

J = The analyte was positively identified; the quantitation is an estimation

Acronyms:

μg/L = micrograms per liter

bgs = below ground surface

DU = Decision Unit

ft= feet

GC = gas chromatography

mg/L = milligrams per liter

MS = mass spectrometry

ND = not detected (the analyte below the detection limit indicated in parenthesis)

RCRA = Resource Conservation and Recovery Act

TPH-g = total petroleum hydrocarbons, gasoline-range organics (C6-C10)

TPH-d = total petroleum hydrocarbons, diesel-range organics (C10-C28)

TPH-o = total petroleum hydrocarbons, oil-range organics (>C28-C40)

HITS ONLY. Only parameters detected in at least one sample are shown.

Bold The sample/compound concentration exceeds the specific EAL

^a CCV outside of control limits (biased high); not detected in sample.

^b Quantitation between primary and confirmation differed by >40%. Lower value reported.

^c Results from signal #2.

^d Value due to contamination. Associated Method Blank is outside QC limits.

^e Value due to contamination. Associated Method Blank is outside QC limits; insufficient sample volume available for re-extraction.

¹ HDOH Tier 1 Environmental Action Levels are for sites over a drinking water resource and less than 150 meters to nearest surface water (HDOH, 2011).

² HDOH Tier 1 Environmental Action Levels are for sites over a non-drinking water resource and less than 150 meters to nearest surface water (HDOH, 2011).

TABLE 5-1
Environmental Hazard Evaluation Summary - Soil
Site Characterization Report For Banana Patch Properties, Pearl City, Oahu, Hawaii
Honolulu Rail Transit Project

Exposure Scenario					Unrestricte	ed Land Use Sce	enario	Commercial/Ir	ndustrial Land U	se Scenario	Construction/Trench Worker Scenraio
					HDOH gross	НДОН	HDOH Direct	HDOH gross Contamination	НДОН	HDOH Direct	
Sample ID	Analyte	Result		Units	Contamination EAL1			EAL1	Leaching EAL ¹	Exposure EAL ¹	HDOH Direct Exposure EAL ¹
5400 BUILDIA 0544		1 0.450		/1		DU1N (North		1.000			10
FASC-DU1NA-0514	Benzo[a]pyrene	0.159		mg/kg	500	5.7	0.15	1,000	5.7	2.1	18
EACO DUACE OFAA	TDLL - (000 040)	0.47	П		500	DU1S (South		0.500	1 000	4 000 000	4 000 000
FASC-DU1SB-0514	TPH-o (>C28-C40)	647		mg/kg	500	1,000	180,000	2,500	1,000	1,000,000	1,000,000
FASC-DU1SB-0514	Benzo[a]pyrene	0.243		mg/kg	500	5.7 DU2	0.15	1,000	5.7	2.1	18
FASC-DU2A-0514	TPH-o (>C28-C40)	1,410		ma/ka	500	1,000	180,000	2,500	1,000	1,000,000	1,000,000
FASC-DU2B-0514	TPH-0 (>C26-C40)	736		mg/kg	500	1,000	180,000	2,500	1,000	1,000,000	1,000,000
FASC-DU2B-0514	Benzo[a]pyrene	0.734		mg/kg mg/kg	500	5.7	0.15	1,000	5.7	2.1	1,000,000
1 A3C-D02B-0314	Benzolajpyrene	0.734		ilig/kg	300	DU3	0.13	1,000	J.7	2.1	10
FASC-DU3A-0514	TPH-o (>C28-C40)	634		mg/kg	500	1,000	180,000	2,500	1,000	1,000,000	1,000,000
1 AGC-DGSA-0314	1111-0 (>020-040)	004		mg/kg	300	DU4	100,000	2,300	1,000	1,000,000	1,000,000
FASC-DU4A-0514	Heptachlor epoxide	0.0671	J	mg/kg	1,000	12	0.053	2,500	12	0.19	3.8
FASC-DU4A-0514	Lead	720	Ť	mg/kg	1,000	NA	200	2,500	NA	800	800
FASC-DU204A-0514	Heptachlor epoxide	0.0616	J	mg/kg	1,000	12	0.053	2,500	12	0.19	3.8
FASC-DU204A-0514	Lead	851	Ť	mg/kg	1,000	NA	200	2,500	NA	800	800
FASC-DU304A-0514	Heptachlor epoxide	0.0793	J	mg/kg	1,000	12	0.053	2,500	12	0.19	3.8
FASC-DU304A-0514	Lead	873		mg/kg	1,000	NA	200	2,500	NA	800	800
FASC-DU4B-0614	Lead	902		mg/kg	1,000	NA	200	2,500	NA	800	800
					·	DU5		·			
FASC-DU5A-0514	TPH-d (C10-C28)	208	J	mg/kg	500	500	500	500	500	500	500
FASC-DU5A-0514	TPH-o (>C28-C40)	1,970		mg/kg	500	1,000	180,000	2,500	1,000	1,000,000	1,000,000
FASC-DU5A-0514	Arsenic	50.1		mg/kg	1,000	NA	23	2,500	NA	95	130
FASC-DU5A-0514	Lead	804		mg/kg	1,000	NA	200	2,500	NA	800	800
FASC-DU5B-0514	TPH-d (C10-C28)	283	J	mg/kg	500	500	500	500	500	500	500
FASC-DU5B-0514	TPH-o (>C28-C40)	2,450		mg/kg	500	1,000	180,000	2,500	1,000	1,000,000	1,000,000
FASC-DU5B-0514	Benzo[a]pyrene	0.211		mg/kg	500	5.7	0.15	1,000	5.7	2.1	18
FASC-DU5C-0514	TPH-d (C10-C28)	262	J	mg/kg	500	500	500	500	500	500	500
FASC-DU5C-0514	TPH-o (>C28-C40)	2,370		mg/kg	500	1,000	180,000	2,500	1,000	1,000,000	1,000,000
FASC-DU5C-0514	Benzo[a]pyrene	0.176		mg/kg	500	5.7	0.15	1,000	5.7	2.1	18
FASC-DU5D-0514	TPH-o (>C28-C40)	619		mg/kg	500	1,000	180,000	2,500	1,000	1,000,000	1,000,000
FAWC-DU50106AB-0514	TPH-d (C10-C28)	102		mg/kg	500	500	500	500	500	500	500
FAWC-DU50106AB-0514	TPH-o (>C28-C40)	683		mg/kg	500	1,000	180,000	2,500	1,000	1,000,000	1,000,000
FAWC-DU50712AB-0514	TPH-d (C10-C28)	180	J	mg/kg	500	500	500	500	500	500	500
FAWC-DU50712AB-0514	TPH-o (>C28-C40)	1,550		mg/kg	500	1,000	180,000	2,500			
FAWC-DU51318AB-0514	TPH-d (C10-C28)	161	J	mg/kg	500	500	500	500	500	500	500
FAWC-DU51318AB-0514	TPH-o (>C28-C40)	1,600	\vdash	mg/kg	500	1,000	180,000	2,500	1,000	1,000,000	1,000,000
FAWC-DU51318C-0514	TPH-d (C10-C28)	545	\vdash	mg/kg	500	500	500	500	500	500	500
FAWC-DU51318C-0514	TPH-o (>C28-C40)	3,020		mg/kg	500	1,000	180,000	2,500	1,000	1,000,000	1,000,000
FAWC-DU51924AB-0514 FAWC-DU51924AB-0514	TPH-d (C10-C28) TPH-o (>C28-C40)	159 1,460	J	mg/kg	500 500	500 1,000	500 180,000	500 2,500	500 1,000	500 1,000,000	500 1,000,000
FAWC-DU51924AB-0514	TPH-0 (>C28-C40)	671	\vdash	mg/kg	500	1,000	180,000	2,500	1,000	1,000,000	
FAWG-DU3233UAD-0314	1711-0 (>020-040)	0/1		mg/kg	300	1,000	100,000	2,500	1,000	1,000,000	1,000,000

TABLE 5-1
Environmental Hazard Evaluation Summary - Soil
Site Characterization Report For Banana Patch Properties, Pearl City, Oahu, Hawaii

Honolulu Rail Transit Project

Exposure Scenario				Unrestricted Land Use Scenario			Commercial/In	dustrial Land U	se Scenario	Construction/Trench Worker Scenraio	
Sample ID	Analyte	Result		Units	HDOH gross Contamination EAL1	HDOH Leaching EAL ¹	HDOH Direct Exposure EAL ¹	HDOH gross Contamination EAL1	HDOH Leaching EAL ¹	HDOH Direct Exposure EAL ¹	HDOH Direct Exposure EAL ¹
			<u> </u>			DU6			J		Process
FASC-DU6A-0514	TPH-d (C10-C28)	185	J	mg/kg	500	500	500	500	500	500	500
FASC-DU6A-0514	TPH-o (>C28-C40)	1,070		mg/kg	500	1,000	180,000	2,500	1,000	1,000,000	1,000,000
FASC-DU6A-0514	Benzo[a]pyrene	1.08		mg/kg	500	5.7	0.15	1,000	5.7	2.1	18
FASC-DU206A-0514	TPH-d (C10-C28)	200	J	mg/kg	500	500	500	500	500	500	500
FASC-DU206A-0514	TPH-o (>C28-C40)	1,290		mg/kg	500	1,000	180,000	2,500	1,000	1,000,000	1,000,000
FASC-DU206A-0514	Lead	227		mg/kg	1,000	NA	200	2,500	NA	800	800
FASC-DU206A-0514	Benzo[a]pyrene	0.905		mg/kg	500	5.7	0.15	1,000	5.7	2.1	18
FASC-DU306A-0514	TPH-d (C10-C28)	158	J	mg/kg	500	500	500	500	500	500	500
FASC-DU306A-0514	TPH-o (>C28-C40)	1,140		mg/kg	500	1,000	180,000	2,500	1,000	1,000,000	1,000,000
FASC-DU306A-0514	Benzo[a]pyrene	0.856		mg/kg	500	5.7	0.15	1,000	5.7	2.1	18
FASC-DU6B-0514	TPH-d (C10-C28)	163	J	mg/kg	500	500	500	500	500	500	500
FASC-DU6B-0514	TPH-o (>C28-C40)	1,150		mg/kg	500	1,000	180,000	2,500	1,000	1,000,000	1,000,000
FASC-DU6B-0514	Lead	239		mg/kg	1,000	NA	200	2,500	NA	800	800
FASC-DU6B-0514	Benzo[a]pyrene	0.738		mg/kg	500	5.7	0.15	1,000	5.7	2.1	18
FASC-DU6C-0514	TPH-d (C10-C28)	141	J	mg/kg	500	500	500	500	500	500	500
FASC-DU6C-0514	TPH-o (>C28-C40)	1,010		mg/kg	500	1,000	180,000	2,500	1,000	1,000,000	1,000,000
FASC-DU6C-0514	Benzo[a]pyrene	0.617		mg/kg	500	5.7	0.15	1,000	5.7	2.1	18
FASC-DU6D-0514	Heptachlor epoxide	0.0841	J	mg/kg	1,000	12	0.053	2,500	12	0.19	3.8
FAWC-DU60106AB-0514	TPH-d (C10-C28)	105	J	mg/kg	500	500	500	500	500	500	500
FAWC-DU60106AB-0514	TPH-o (>C28-C40)	1,200		mg/kg	500	1,000	180,000	2,500	1,000	1,000,000	1,000,000
FAWC-DU60106C-0514	TPH-o (>C28-C40)	1,150		mg/kg	500	1,000	180,000	2,500	1,000	1,000,000	1,000,000
FAWC-DU60712AB-0514	TPH-d (C10-C28)	265		mg/kg	500	500	500	500	500	500	500
FAWC-DU60712AB-0514	TPH-o (>C28-C40)	2,200		mg/kg	500	1,000	180,000	2,500	1,000	1,000,000	1,000,000
FADS-DU6D3-0514	Lead	362		mg/kg	1,000	NA	200	2,500	NA	800	800

Notes:

Acronyms:

bgs = below gund surface

DU = Decision Unit

ft= feet

mg/kg = milligrams per kilogram

RCRA = Resource Conservation and Recovery Act

TPH-d = total petroleum hydcarbons, diesel-range organics (C10-C28)

TPH-o = total petroleum hydcarbons, oil-range organics (>C28-C40)

Bold The sample/compound concentration exceeds the specific EAL

J = The analyte was positively identified; the quantitation is an estimation

¹ HDOH Environmental Action Levels are for sites within 150 meters of surface water bodies, where drinking water is not threatened (HDOH, 2008 and subsequent updates).

^{*} Only samples with exceedances of the Tier 1 EALs for sites within 150 meters of surface water bodies, where drinking water is not threatened (HDOH, Fall 2011), were evaluated and are included in this table.

^{**} Direct exposure EAL for TPH-d is based on saturation limit. The risk-based EAL (based on a hazard quotient of 0.5) is 1,200 mg/kg for unrestricted land use scenario, and 8,500 mg/kg for commercial/industrial land use scenario.

TABLE 5-2

Environmental Hazard Evaluation Summary - Groundwater

Site Characterization Report For Banana Patch Properties, Pearl City, Oahu, Hawaii

Honolulu Rail Transit Project

					HDOH Aquatic	HDOH Gross
Sample ID	Analyte	Result		Units	Ecotoxicity EAL	Contamination EAL
		DU1N (North	h)			
FASC-TW010-0514	Dieldrin	0.0023	J	μg/L	0.0019	41
FASC-TW010-0514	Heptachlor	0.019	В	μg/L	0.0036	20
FASC-TW010-0514	Heptachlor epoxide	0.0047	J	μg/L	0.0036	100
FASC-TW010-0514	Mercury	0.08	U	μg/L	0.025	30
FASC-TW010-0514	Selenium	7.7	J	μg/L	5	50,000
		DU1S (South	h)			
FASC-TW011-0514	Heptachlor	0.013	В	μg/L	0.0036	20
FASC-TW011-0514	Mercury	0.08	U	μg/L	0.025	30
FASC-TW011-0514	Selenium	9.1	J	μg/L	5	50,000
FASC-TW111-0514	Heptachlor	0.011	В	μg/L	0.0036	20
FASC-TW111-0514	Mercury	0.08	U	μg/L	0.025	30
FASC-TW111-0514	Selenium	5.7	J	μg/L	5	50,000
		DU2				
FASC-TW008-0514	Aldrin	0.46		μg/L	0.13	8.5
FASC-TW008-0514	Dieldrin	0.24		μg/L	0.0019	41
FASC-TW008-0514	Heptachlor	0.053	JB	μg/L	0.0036	20
FASC-TW008-0514	Mercury	0.08	U	μg/L	0.025	30
FASC-TW008-0514	Selenium	5.8	J	μg/L	5	50,000
FASC-TW009-0514	Dieldrin	0.0036	J	μg/L	0.0019	41
FASC-TW009-0514	Heptachlor	0.018	В	μg/L	0.0036	20
FASC-TW009-0514	Heptachlor epoxide	0.0063	J	μg/L	0.0036	100
		DU3	•			
FASC-TW001-0514	Dieldrin	0.0035	J	μg/L	0.0019	41
FASC-TW001-0514	Heptachlor	0.014	В	μg/L	0.0036	20
FASC-TW002-0514	Dieldrin	0.032		μg/L	0.0019	41
FASC-TW002-0514	Heptachlor	0.02	В	μg/L	0.0036	20
FASC-TW002-0514	Mercury	0.08	U	μg/L	0.025	30
FASC-TW002-0514	Selenium	21.7		μg/L	5	50,000
FASC-TW006-0514	Chlordane	0.056	J	μg/L	0.004	3
FASC-TW006-0514	Dieldrin	0.0033	J	μg/L	0.0019	41
FASC-TW006-0514	Heptachlor	0.017	В	μg/L	0.0036	20
FASC-TW006-0514	Heptachlor epoxide	0.019		μg/L	0.0036	100
FASC-TW006-0514	Mercury	0.08	U	μg/L	0.025	30
FASC-TW006-0514	Selenium	9.4	J	μg/L	5	50,000
FASC-TW006-0514	Silver	1.4	J	μg/L	1	100
		DU5				
FASC-TW004-0514	Heptachlor	0.016	В	μg/L	0.0036	20
FASC-TW004-0514	Mercury	0.08	U	μg/L	0.025	30
	_	DU6				
FASC-TW003-0514	Dieldrin	0.0052	J	μg/L	0.0019	41
FASC-TW003-0514	Heptachlor	0.02	В	μg/L	0.0036	20
FASC-TW003-0514	Heptachlor epoxide	0.0076	J	μg/L	0.0036	100
FASC-TW003-0514	Selenium	5.8	J	μg/L	5	50,000
FASC-TW005-0514	Dieldrin	0.0028	J	μg/L	0.0019	41
FASC-TW005-0514	Heptachlor	0.017	В	μg/L	0.0036	20
FASC-TW005-0514	Heptachlor epoxide	0.0053	J	μg/L	0.0036	100
FASC-TW005-0514	Mercury	0.08	U	μg/L	0.025	30
FASC-TW007-0514	Heptachlor	0.019	В	μg/L	0.0036	20
FASC-TW007-0514	Heptachlor epoxide	0.0078	J	μg/L	0.0036	100
FASC-TW007-0514	Selenium	9	J	μg/L	5	50,000
FASC-TW012-0514	Heptachlor	0.017	В	μg/L	0.0036	20
FASC-TW012-0514	Mercury	0.08	U	μg/L	0.025	30
FASC-TW012-0514	Selenium	8.8	J	μg/L	5	50,000

Notes:

- B = Value due to contamination. Associated Method Blank is outside QC limits. Sample confirmed by re-extraction and reanalysis.
- F = The analyte was detected at concentrations greater than the method detection limit, but less than the limit of quantitation
- J = The analyte was positively identified; the quantitation is an estimation
- U = The analyte was analyzed for, but not detected. The concentration is at or below the sample-specific method detection limit
- ¹ HDOH Tier 1 Environmental Action Levels are for sites over a non-drinking water resource and less than 150 meters to nearest surface water (HDOH, 2011).
- * Only samples with exceedances of the Tier 1 (lowest) EALs for sites within 150 meters of surface water bodies, where drinking water is not threatened (HDOH, Fall 2011), were evaluated and are included in this table.
- ** Mercury was not detected. However, it is reported as an exceedance because the detection limit is higher than the Tier 1 EAL.

Acronyms:

DU = Decision Unit

 μ g/L = micrograms per liter

The sample/compound concentration exceeds the specific EAL

TABLE 6-1
Environmental Hazard Management Summary - Soil
Site Characterization Report For Banana Patch Properties
Honolulu Rail Transit Project, Oahu, Hawaii

	Depth		Potential Hazard		
Decision Unit	(feet bgs)	Residential	Commercial/Industrial	Construction Workers	Hazard Management
	0-0.5	Direct Exposure	None	None	LUC to control direct exposure of hypothetical residents.
DU1N	0.5-3.0	None	None	None	None
	Native Soil	None	None	None	None
	0-0.5	None	None	None	None
DU1S	0.5-3.0	Direct Exposure	None	None	LUC to control direct exposure of hypothetical residents.
	Native Soil	None	None	None	None
					LUCs to avoid future use of soil in residential and offsite C/I areas because
					of potential leaching concerns. No actions if soil is not excavated because
					leaching to groundwater is not confirmed (i.e., soil COC concentrations are
DU2					below relevant EALs in groundwater), but LUCs remains to prevent offsite
	0-0.5	None	None	None	use.
	0.5-3.0	Direct Exposure	None	None	LUC to control direct exposure of hypothetical residents.
	Native Soil	None	None	None	None
	0-0.5	None	None	None	None
DU3	0.5-3.0	None	None	None	None
D03					LUC to address presence of LNAPL in well, limited to western portion of
	Native Soil	Gross Contamination	Gross Contamination	Gross Contamination	DU around TW-001 (see Figure 6-1).
	0-0.5	Direct Exposure	Direct Exposure	Direct Exposure	LUC to control direct exposure of hypothetical residents, C/I receptors, and
DU4	0-3	Direct Exposure	Direct Exposure	Direct Exposure	construction workers.
	>3.0	Unknown	Unknown	Unknown	Unknown
					LUC to control direct exposure of hypothetical residents and C/I receptors,
	0-5	Direct Exposure+Leaching	Direct Exposure+Leaching	None	and monitor groundwater to address leaching concerns.
					LUC to control direct exposure of hypothetical residents and monitor
	5-10	Direct Exposure+Leaching	Leaching	None	groundwater to address leaching concerns.
DU5					
					LUC to control direct exposure of hypothetical residents and leaching to
					groundwater. LUC also to control exposure of construction workers limited
	10-15	Direct Exposure+Leaching	Leaching	Direct Exposure	to the area around boring locations 13 through 18.
	Native Soil	None	None	None	None
	0-5	Direct Exposure+Leaching	Leaching	None	
DUC	5-10	Direct Exposure+Leaching	Leaching	None	LUC to control direct exposure of hypothetical residents limited to soil
DU6	10-15	Direct Exposure+Leaching	Leaching	None	within depressed area footprint.
	Native Soil	Direct Exposure	None	None	
lotes:	1	1		1	I .

Notes:

Acronyms:

bgs = below ground surface

C/I = commercial/industrial

DU = decision unit

TW = temporary well

TABLE 6-2

Environmental Hazard Management Summary - Groundwater

Site Characterization Report For Banana Patch Properties, Pearl City, Oahu, Hawaii Honolulu Rail Transit Project

Decision Unit	Aquatic Ecotoxicity	Gross Contamination	Hazard Management
DU1N	Yes	None	Surface water monitoring needed during construction.
DU1S	Yes	None	Surface water monitoring needed during construction.
DU2	Yes	None	Surface water monitoring needed during construction.
DU3	Yes	Yes	Surface water monitoring needed during construction. LNAPL to be removed to the extent practicable.
DU4	NA*	NA	Surface water monitoring needed during construction.*
DU5	Yes	None	Surface water monitoring needed during construction.
DU6	Yes	None	Surface water monitoring needed during construction.

Notes:

Acronyms:

DU = decision unit

^{*} No groundwater sample collected within DU4. No excavation is expected in this DU during future construction. However, if excavation is conducted groundwater should be managed the same way as for other DUs (assuming that no additional data will be available in the future and aquatic ecotoxicity concerns are present also within DU4).

TABLE 6-3
Site Controls and Long-Term Management Activities
Site Characterization Report For Banana Patch Properties, Pearl City, Oahu, Hawaii
Honolulu Rail Transit Project, Oahu, Hawaii

	Assumed Future	Decision	Depth		Recommended Long-Term Management Activities		
Subarea	Activities	Unit	(feet bgs)	Site Controls	Soil	Groundwater	
Flat Area with Future Fill	Filling activities to bring current grade to the future station/parking structure level. The parking structure will occupy this area in the future.	DU1N		LUCs to limit land use to C/I and restrict future use of soil in residential areas. Stream surface water sampling necessary to evaluate if groundwater/sediment are impacting aquatic ecological receptors.	None if left onsite. No offsite reuse in residential areas. Surface debris may require removal.	No direct discharge to stream. Stream surface water sampling necessary during construction.	
			0.5-3.0	Stream surface water sampling necessary during	None		
				construction to evaluate if groundwater/sediment are impacting aquatic ecological receptors.			
		DU1S	Native Soil 0-0.5	Stream surface water sampling necessary during construction to evaluate if groundwater/sediment are impacting aquatic ecotoxicity.	None	No direct discharge to stream. Stream surface water sampling necessary during construction.	
				LUCs to limit land use to C/I and restrict future use of soil in residential areas. Stream surface water sampling necessary to evaluate if groundwater/sediment are impacting aquatic ecotoxicity.	None if left onsite. No offsite reuse in residential areas. Construction debris present in this DU (~1,100 cubic yards, of which ~650 cubic yards are concrete and ~450 cubic yards are metal debris) may need removal.		
				Stream surface water sampling necessary during construction to evaluate if groundwater/sediment are impacting aquatic ecotoxicity.	None		
		DU4	0-3	equipment).	Cover area with at least 3 feet of soil meeting C/I EALs from onsite sources (e.g., DUs 5 and 6).	More data necessary to evaluate. In absence, no direct discharge to stream. Stream surface water sampling may be necessary.	
				Need further delineation to evaluate site controls. In absence, assume LUCs to restrict future use of soil in offsite residential and C/I areas, and control exposure to construction workers (may require upgrade in level of protection).	Need further delineation to evaluate long-term man delineation, assume LUCs to restrict future use of s exposure to construction workers if soil is excavate	soil in offsite residential and C/I areas, and control	
Area With No or Limited	Construction activities with limited soil removal to install columns that will be part of the rail guideway/station.		0-0.5	LUCs to restrict future use of soil in residential and offsite C/I areas.	Soil excavated for column installation may be reused on site. No actions if soil remains in place, but LUCs will apply to prevent offsite use because of potential leaching concerns. None if soil remains onsite (in place or reused in	No direct discharge to stream. Stream surface water sampling necessary during construction.	
			0.5-3.0	LUCs to restrict future use of soil in residential areas.	other areas within Site boundary).		
			Native Soil	None	None		
		DU3		None None	None for soil. However, construction debris present in this DU (~550 cubic yards, of which ~300 cubic yards are concrete and ~250 cubic yards are metal debris) may need removal.	No direct discharge to stream. Stream surface water sampling necessary during construction.	
				If LNAPL-impacted soil is not removed, LUCs will apply to monitor LNAPL, limit land use, and control use of soil.	LNAPL removal to the extent practicable. Removal of impacted soil (~200 cubic yards) around steel pipe and boring 4 recommended. Excavated soil will need offsite disposal or treatment.		

TABLE 6-3
Site Controls and Long-Term Management Activities
Site Characterization Report For Banana Patch Properties, Pearl City, Oahu, Hawaii
Honolulu Rail Transit Project, Oahu, Hawaii

	Assumed Future	Decision	Depth		m Management Activities	
Subarea	Activities	Unit	(feet bgs)	Site Controls	Soil	Groundwater
	Removal of soil down to approximately 15 feet bgs to reestablish the 100-year flood plain. Railstation will be constructed in this area.	DU5	0-5 5-10	Soil removal with no controls or LUCs to limit site use and control use of the soil. Direct human exposure to soil between 10 and 15 feet bgs for construction workers will require excavation with personnel who is HAZWOPER certified (upgrade in level of protection may also be necessary).	Soil removal. Soil from area around borings 1 through 6 and 25 through 30 (~3,700 cubic yards) can be reused onsite. Soil from remaining portions of the DU (~5,200) will need to be disposed offsite as non hazardous waste.	No direct discharge to stream. Stream surface water sampling necessary during construction.
			10-15			
Area With Future Excavation			Native Soil	None	None	
Excavation		DU6		Soil removal with no controls or LUCs to control use of the	Soil removal. All soil removed from this depth interval (~11,600 cubic yards) will need to be disposed offsite as non hazardous waste. Construction debris present in this DU (~300 cubic yards, of which ~200 cubic yards are concrete and ~100 cubic yards are metal debris) may need	No direct discharge to stream. Stream surface water sampling necessary during construction.
			10-15	soil and monitor groundwater. LUCs to limit site use (and use of soil) to C/I.	removal Soil removal. Soil from area around borings 7 through 12 (~2,300 cubic yards) can be reused onsite. Soil from remaining portions of the DU (3,500 cubic yards) will need to be disposed offsite as non hazardous waste. None	
Waiawa Stream Bank	Excavation planned in the eastern portion of the north bank to re-establish 100-year floodplain.	DU7		LUCs may apply for presence of debris/waste if not removed	Concrete (~550 cubic yards) and metal debris (~250 cubic yards) present in this DU may need removal. Concrete meeting the inert fill requirements can be reused on site; remaining concrete and metal debris should be	No direct discharge to stream. Stream surface water sampling necessary during construction.

Notes

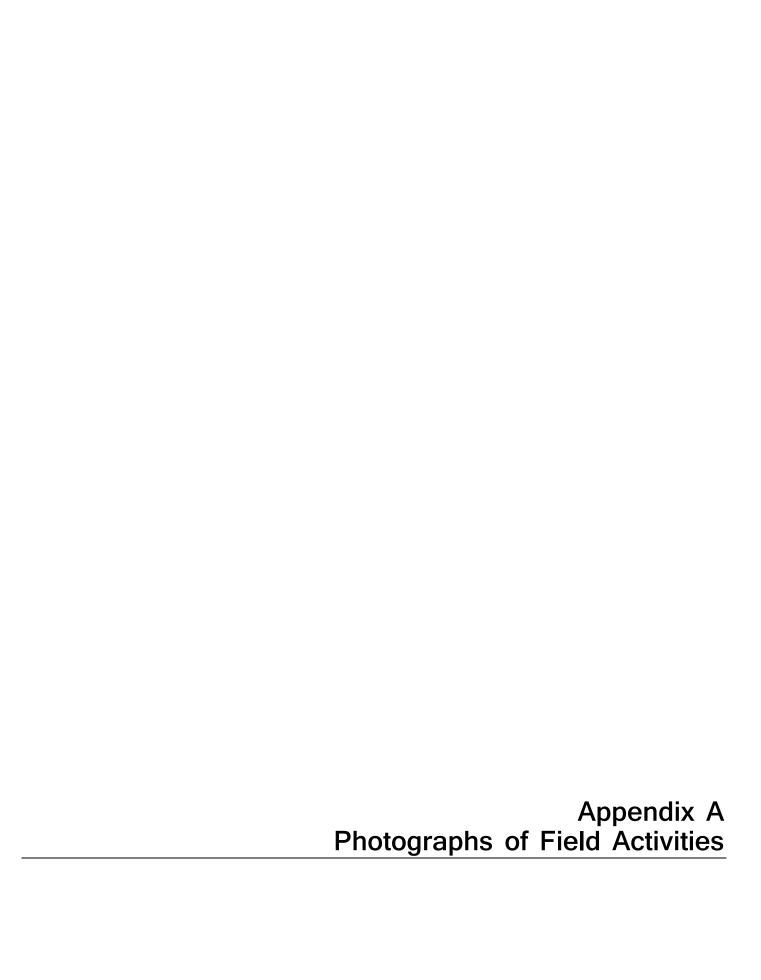
- If reused offsite in residential areas, all soil will require additional sampling to meet Programmatic EHMP requirements (one sample every 200 cubic yards of soil).

Acronyms:

bgs = below ground surface

C/I = commercial/industrial

DU = decision unit


HAZWOPER = hazardous waste operations and emergency response

LNAPL = light non aqueous phase liquid

LUC = land use control

MNA = monitored natural attenuation

TW = temporary well

Photo 1. Hitachi 135 Excavator for vegetation clearance and test pit excavation.

Photo 2. DU1: Clearing vegetation by trampling with excavator. No grubbing performed.

Photo 3. DU4: Clearing vegetation using trimmers in less accessible areas.

Photo 4. DU2: Clearing vegetation by trampling with mini excavator. No grubbing performed.

Photo 5. EM61 cart for geophysical survey.

Photo 6. Ridgid Seek Tech SR-60 for utilities locating/clearing.

Photo 7. DU1: Area cleared for geophysical survey/utilities locating.

Photo 8. DU1: Area with significant surface debris where geophysical survey could not be performed.

Photo 9. DU1: Area with structures where geophysical survey could not be performed.

Photo 10. DU1: Area with structures where geophysical survey could not be performed.

Photo 11. DU1: Area with structures where geophysical survey could not be performed.

Photo 12. DU1: Area with structures where geophysical survey could not be performed.

Photo 13. DU2: Area cleared for geophysical survey/utility clearance.

Photo 14. DU2: Area with significant surface debris where geophysical survey could not be performed.

Photo 15. DU2: Area of significant debris and chicken coops where geophysical survey could not be performed.

Photo 16. DU2: Area of significant debris and chicken coops where geophysical survey could not be performed.

Photo 17. DU2: Area with soil stockpiles where geophysical survey could not be performed.

Photo 18. DU6: Area with surface debris and depression where geophysical survey could not be performed.

Photo 19. DU1, Test Pit 1: Excavating test pit.

Photo 20. DU1, Test Pit 1: Debris

Photo 21. DU1, Test Pit 2: Excavating test pit.

Photo 22. DU1, Test Pit 2: Debris

Photo 23. DU1, Test Pit 4: Debris within excavation.

Photo 24. DU1, Test Pit 6: Debris.

Photo 25. DU1, Test Pit 3: No debris.

Photo 26. DU3, Test Pit 1 Debris and potential concrete pipe at bottom of test pit

Photo 27. DU6, Test Pit 1 within depression. Note: Debris on surface.

Photo 28. DU1, Test Pit 1 within depression. Note: Debris on surface.

Photo 29. DU6, Test Pit 7: Excavating within depression.

Photo 30. DU1, Test Pit 7 undocumented cesspool.

Photo 31. Track rig used for drilling.

Photo 33. Drilling.

Photo 35. Soil sampling station.

Photo 32. Truck-mounted drill rig used for drilling.

Photo 34. Soil sampling station.

Photo 36. Soil core

Photo 37. Soil core.

Photo 39. Soil core showing fill and native soil interface.

Photo 41. DU3: Temporary monitoring well.

Photo 38. Soil core.

Photo 40. Drilling/installing temporary monitoring well.

Photo 42. DU3, Borehole #8: Abandoned borehole.

Photo 45. DU7 Waiawa Stream Bank Debris Note: Water heater and concrete.

Photo 46. DU7 Waiawa Stream Bank Debris

Photo 47. DU7 Waiawa Sttream Bank Debris.

Photo 48. D7 Waiawa Stream Bank Debris.

Photo 49. DU7 Waiawa Stream Bank Debris.

Photo 50. DU7 Waiawa Stream Bank Debris.

Photo 51. DU7 Waiawa Stream Bank Debris.

Photo 52. DU7 Waiawa Stream Bank Debris

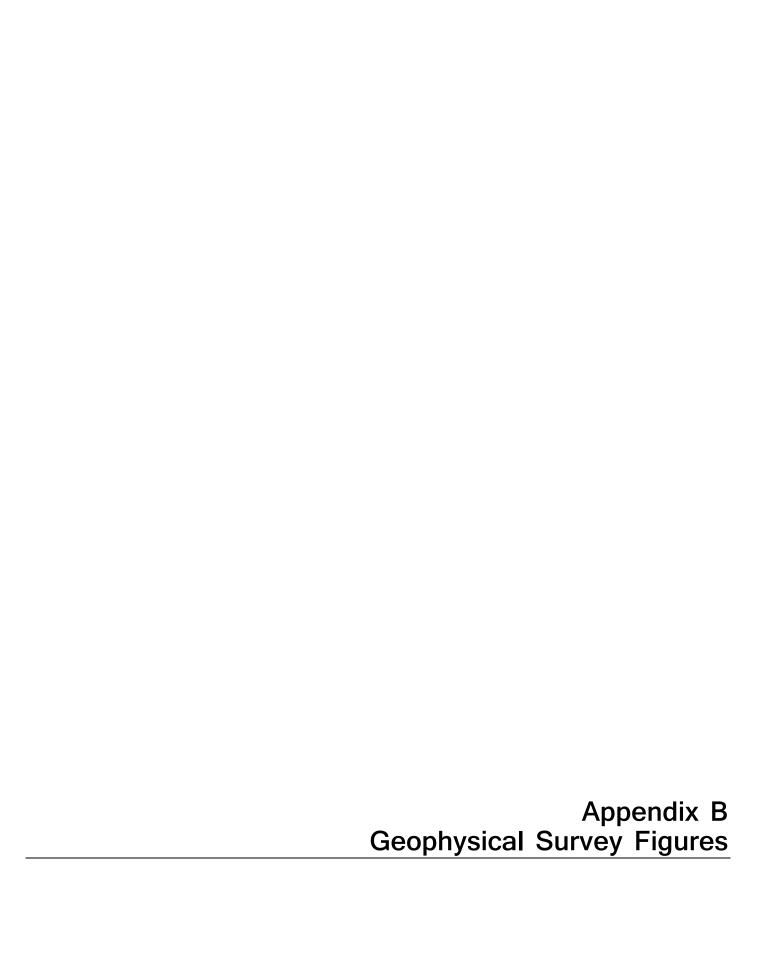
Photo 53. DU9 Waiawa Stream Bed Sampling.

Photo 54. DU9 Waiawa Stream Bed Sampling.

Photo 55. DU9 Waiawa Stream Bed Sampling

Photo 56. DU9 Waiawa Stream Bed Sampling

Photo 57. DU9 Waiawa Stream Bed Sampling.


Photo 58. DU9 Waiawa Stream Bed Sampling

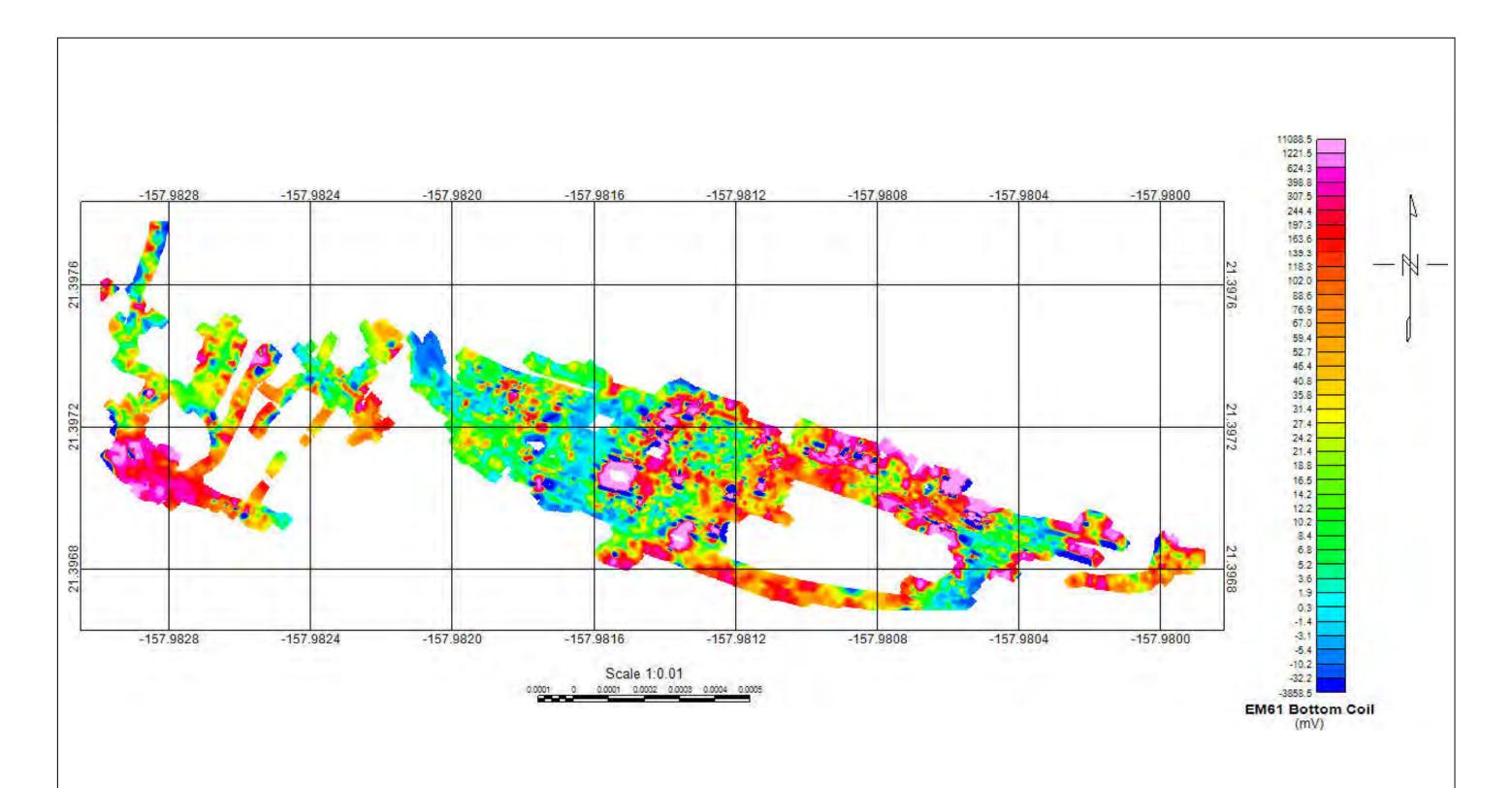
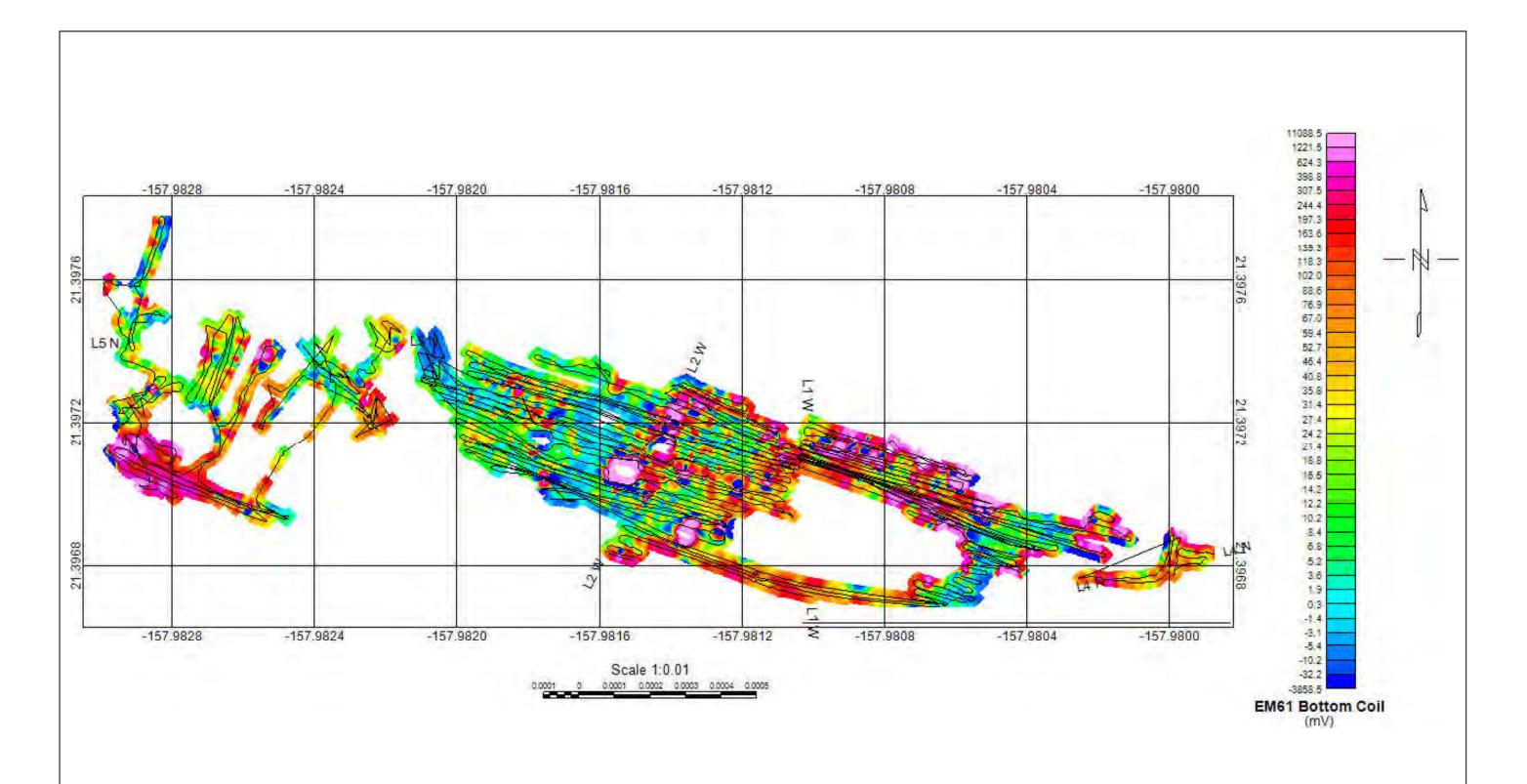


Photo 59. DU10 Waiawa Stream Bed Sampling.

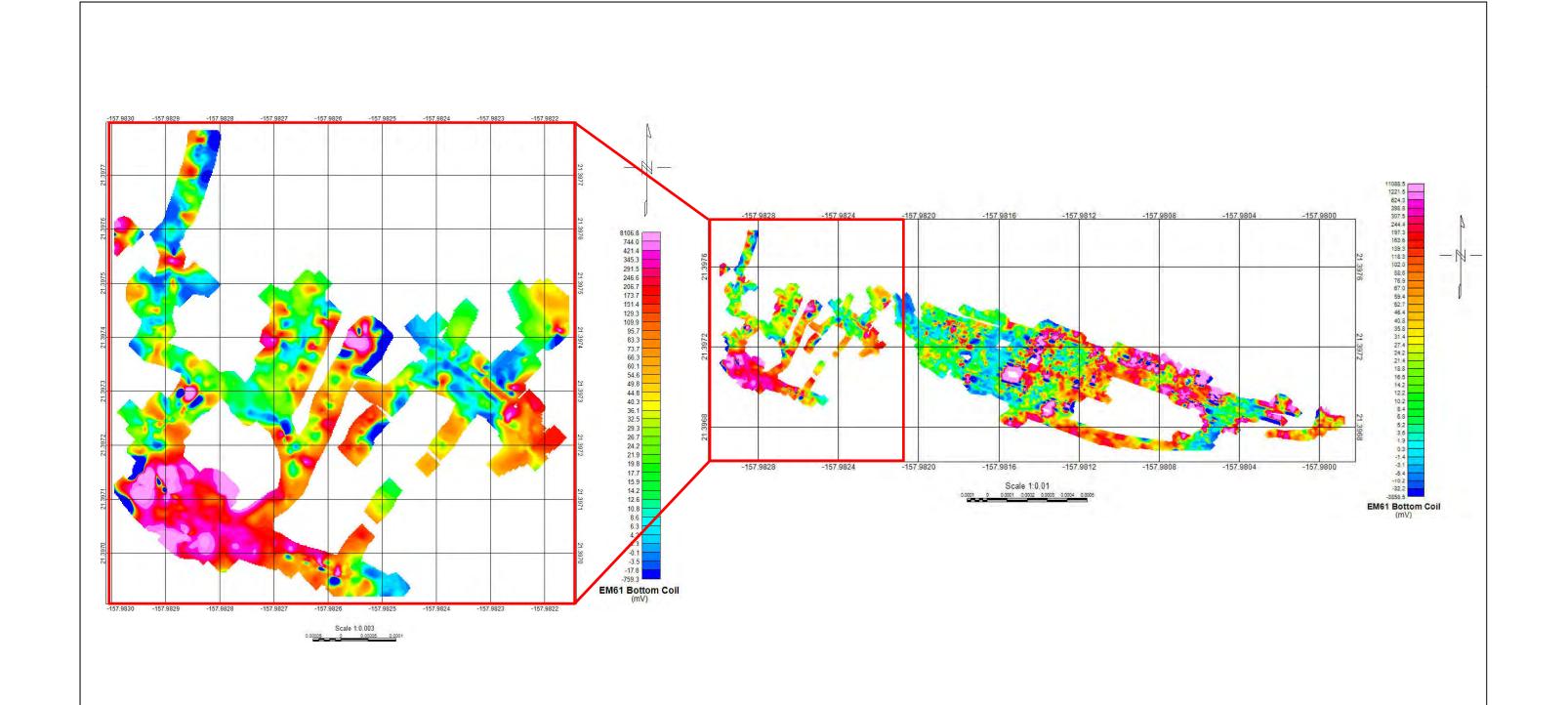
Photo 60. DU10 Waiawa Stream Bed Sampling.



Banana Patch, Honolulu, HI

EM61 Color Contour Map – Bottom Coil

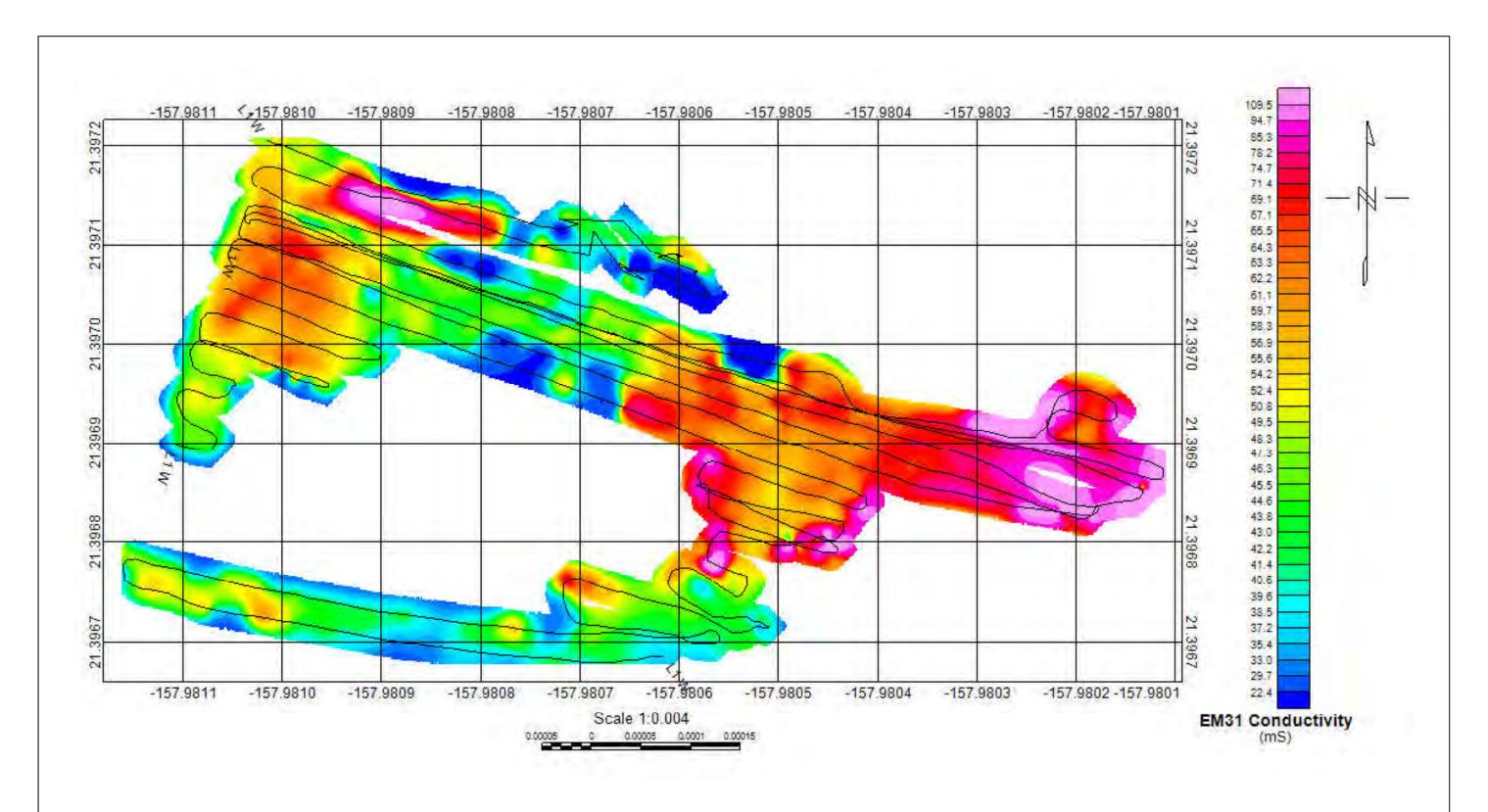
Created By:	Date:	Figur
CN	5/18/2014	
GeoTek Project No:	File Path:	
HP-14-019		



Banana Patch, Honolulu, HI

EM61 Color Contour Map – Bottom Coil (w/ Line Paths)

Created By:	Date:	Figur
CN	5/18/2014	
GeoTek Project No:	File Path:	
HP-14-019		

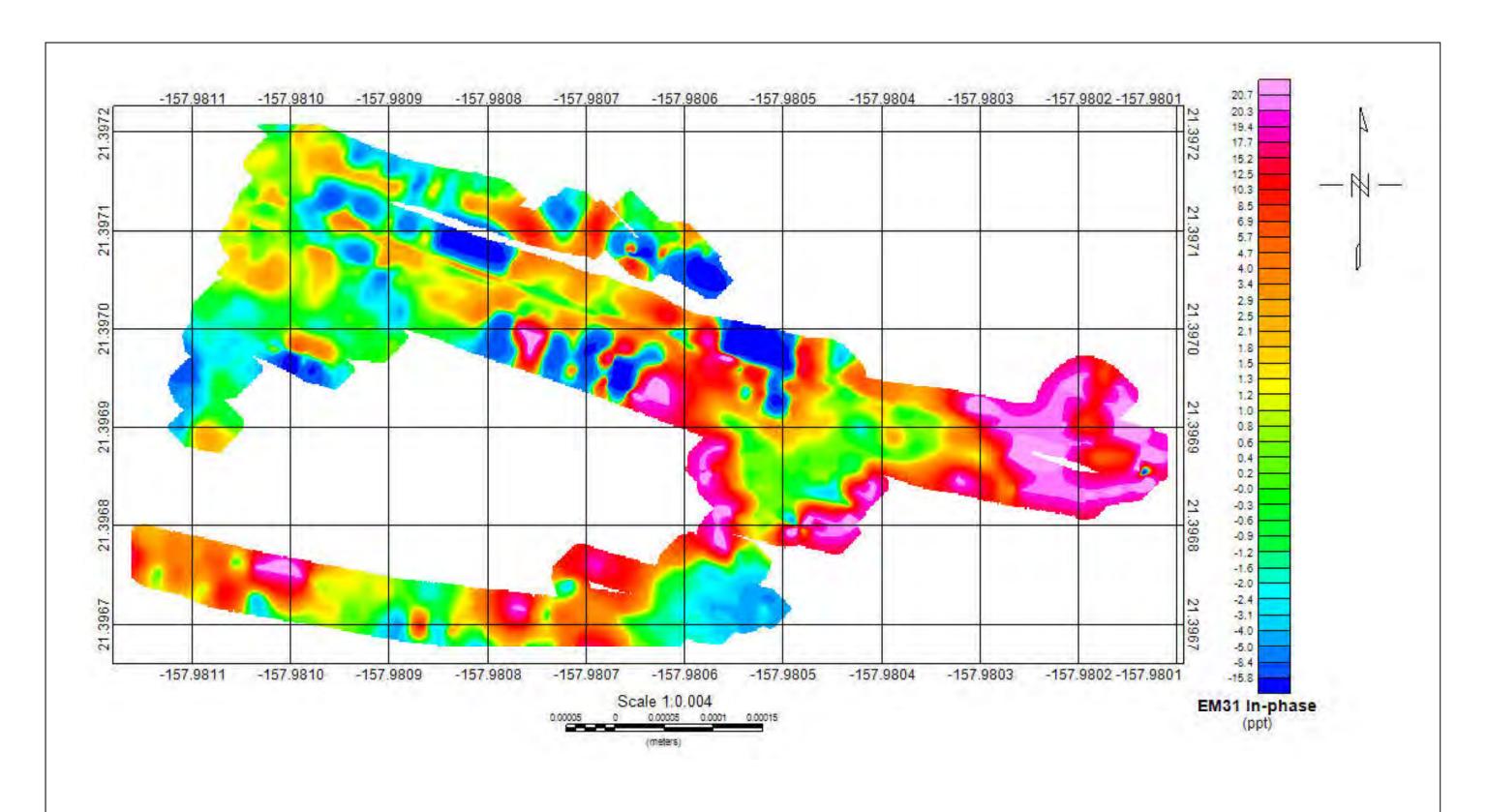


Banana Patch, Honolulu, HI

EM61 Color Contour Map – Bottom Coil

Created By:	Date:	F
CN	5/20/2014	
GeoTek Project No:	File Path:	
HP-14-019		

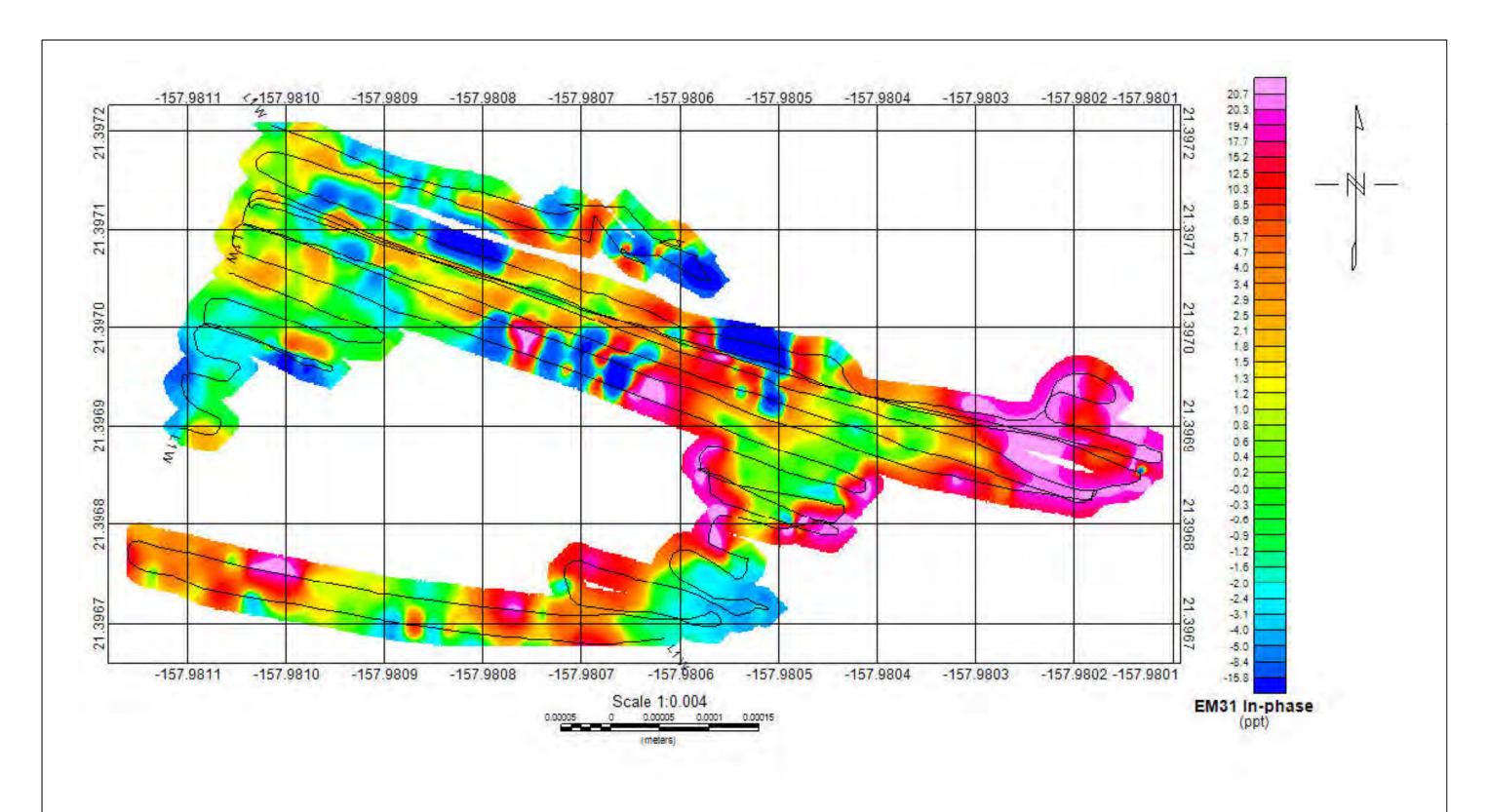
Figure:



Banana Patch, Honolulu, HI

EM31 Color Contour Map – Conductivity (w/ Line Paths)

Created By:	Date:	Figure:
CN	5/18/2014	
GeoTek Project No:	File Path:	
HP-14-019		



Banana Patch, Honolulu, HI

EM31 Color Contour Map – In-phase

Created By:	Date:	F
CN	5/18/2014	
GeoTek Project No: HP-14-019	File Path:	

Banana Patch, Honolulu, HI

EM31 Color Contour Map – In-phase (w/ Line Paths)

Created By:	Date:	Figure
CN	5/18/2014	
GeoTek Project No: HP-14-019	File Path:	

495560.01.03.04

TEST PIT NUMBER

DU1 TP1

DATE:

SHEET 1 OF 2

5/21/2014

TEST PIT LOG

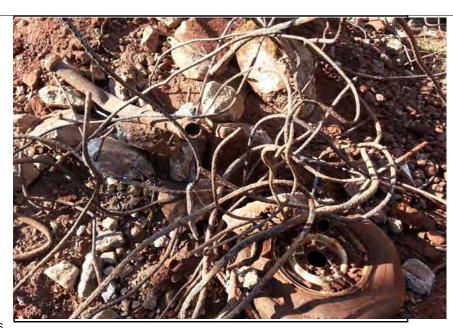
PROJECT: Site Characterization for Banana Patch Property

LOCATION: **EXCAVATION CONTRACTOR:**

Pacific Commercial Services

WEATHER: Partly cloudy, hot, humid, 80s deg F EXCAVATION METHOD AND EQUIPMENT USED:

Hitachi 135 Track Excavator DATE/TIME Start:


1600 LOGGER: FDH

TEST PIT PROFILE

Surface 0' BGS

WATER LEVEL:

Compass NE-SW Direction

Pit Dimensions 16 12 W 9.5

Bottom of Pit 9.5 BGS

DEBRIS IDENTIFIED

Examples: Drums, steel or plastic and size; spray cans/bottles; newspapers; plastic; appliances; vehicles and/or parts; clothing; hazardous waste and type; chemical containers;

Concrete, rebar, metal pipe, metal strap, water heater, tires, debris from 2-3 feet bgs throughout entire depth to 9.5 feet bgs.

Debris layer includes 20% concrete, 15% metal, 5% Other

Could not excavate further due to concrete and rebar at bottom.

Photo Number	Compass Direction	Time	Description
			See photos 20140521-153626 through 20140521-155516 and 20140521-163052 through 20140521-163145
			20140521-172117

Logger Signature:	Date:
-------------------	-------

Logger Signature:_

PROJECT NUMBER

495560.01.03.04

TEST PIT NUMBER

DU1, TP1

SHEET 2

OF 2

TEST PIT LOG

PROJECT: Site Characterization for Banana Pate	LOCATION:	DU1, TP1	DATE:	5/21/2014
WEATHER: Partly cloudy, hot, humid, 80s deg F	EXCAVATION CONTRACTOR:	Pacific Commercial Services (PCS)		
EXCAVATION METHOD AND EQUIPMENT USED	Hitachi 135 Track Excavator			

WATER LEVEL :	N/A	DATE/TII	ME Start:	1535	End:	1600 LOGGER: FDH	
	SOIL S	SAMPLES			BR	EATHING SPACE M	ONITORING
	Inci	rement Soil Sample			Time	MultiRAE	Landtech
Sample ID: DU1A (S	South)	Depth: 0 - 0.5 feet bgs			1545	VOC 0.0 ppm	Not Measured
Sampler Name:	FDH	Sample Date/Time:	5/21/2014	1600		Oxygen 20.9%	
Soil Description:						LEL 0%	
0-0.5 feet bgs - Silty cl	lay, 7.5YR 5/6 R	Reddish Brown, Very Fine, S	oft, Dry			CO 0 ppm	
Parameters Sampled t	for: 4 increme	ents collected				H2S 0.0 ppm	
TPH-DRO, -RRO, PAI	Hs, pesticides/P	CBs, herbicides, RCRA8 me	etals				
	Inci	rement Soil Sample					
Sample ID: DU1B (S	South)	Depth: 8 - 10 feet bgs					
Sampler Name:	FDH	Sample Date/Time:	5/21/2014	1610			
Soil Description:							
8 - 10 feet bgs - Silty o 7.5 YR 6/0 gray, very f		prown very fine, trace sand, soft, dry	soft, dry mixed tog	gether with			
Parameters Sampled t	for: 4 increme	ents collected					
VOCs, TPH-GRO, -DF	RO, -RRO, PAH	s, pesticides/PCBs, herbicid	les, RCRA8 metals	3			
	Inci	rement Soil Sample					
Sample ID: Not Colle	ected	Depth:					
Sampler Name:		Sample Date/Time:					
Soil Description:							
Parameters Sampled t	for:						
			N	IOTES			
Debris identified throu	ghout southern	portion of DU1 and within te	est pit and extends	deeper than	the bottom	of excavation.	
DU1 - Test Pit #1 had	fill/debris from 2	2-3 feet bgs and extended d	eeper than the bot	tom of the ex	cavation.		
Consequently, increme	ents from only 2	of 3 vertical sub-units (SUs	s) A (0-0.5), B (8-10	0) were subn	nitted. Vertic	cal SU C will be collected via drilling.	
The gray color and tra	ce sand may be	associated with the concre	te debris.				
Explanation of exceptions to SAP, PI's and SOP(s) including why, under what conditions, who authorized exception, anything considered in the decision:							

495560.01.03.04

TEST PIT NUMBER

DU1 TP2

SHEET 1

OF 2

TEST PIT LOG

PROJECT: Site Characterization for Banana Patch Property

LOCATION: **EXCAVATION CONTRACTOR:**

Pacific Commercial Services

WEATHER: Partly cloudy, hot, humid, 80s deg F EXCAVATION METHOD AND EQUIPMENT USED

Hitachi 135 Track Excavator

DATE:

5/21/2014

WATER LEVEL:

DATE/TIME Start:

1710 LOGGER: FDH

TEST PIT PROFILE

Surface 0' BGS

Compass W-E Direction

8 W

Pit Dimensions

12

Bottom of Pit 10' BGS

DEBRIS IDENTIFIED

Examples: Drums, steel or plastic and size; spray cans/bottles; newspapers; plastic; appliances; vehicles and/or parts; clothing; hazardous waste and type; chemical containers;

Concrete, rebar, metal pipe, tires, debris from 2-3 feet bgs throughout entire depth to 10 feet bgs.

Tyvek suits observed in test pit at ~ 3.0 feet bgs.

Metal debris: Stove, commercial vacuum cleaner, radiator, metal sheets, electric motors, pipe, rebar, wheel rotor

Miscellaneous: VHS tape (Little Mermaid circa 1990)

Debris layer includes 15% concrete, 15% metal, 10% other

Could not excavate further due to concrete and rebar at bottom.

Photo Number	Compass Direction	Time	Description
			See photos 20140521-161756 through 20140521-162952 and 20140521-163919 through 20140521-172110

Logger	Signature:	Date:
--------	------------	-------

Logger Signature:__

PROJECT NUMBER

495560.01.03.04

TEST PIT NUMBER

DU1, TP2

SHEET 2

OF 2

TEST PIT LOG

PROJECT: Site Characterization for Banana Patch		LOCATION:	DU1, TP2	DATE:	5/21/2014
WEATHER: Partly cloudy, hot, humid, 80s deg F	EXCAVATIO	N CONTRACTOR :	Pacific Commercial Services (PCS)		
EXCAVATION METHOD AND EQUIPMENT USED :	Hitachi 135 T	rack Excavator			
WATER LEVEL : N/A	DATE/TIME Start:	1615 End:	1710 LOGGER: FDH		

SOIL SAMPLES	BREATHING SPACE MONITORING		
Increment Soil Sample	Time	MultiRAE	Landtech
Sample ID: DU1A (South) Depth: 0 - 5 feet bgs	1545	VOC 0.0 ppm	Not Measured
Sampler Name: FDH Sample Date/Time: 5/21/2014		Oxygen 20.9%	
Soil Description:		LEL 0%	
0-0.5 feet bgs - Silty clay, 7.5YR 5/6 Reddish Brown, Very Fine, Soft, Dry		CO 0 ppm	
0.5-5.0 feet bgs - Transitions to Silty clay, 7.5YR 5/2 Brown, Very Fine, Trace Sand/Concrete, Soft, Dry		H2S 0.0 ppm	
Parameters Sampled for: 4 increments collected			
VOCs, TPH-GRO, -DRO, -RRO, PAHs, pesticides/PCBs, herbicides, RCRA8 metals			
Increment Soil Sample			
Sample ID: DU1B (South)			
Sampler Name: FDH Sample Date/Time: 5/21/2014			
Soil Description:			
8-10 feet bgs - Silty clay, 7.5YR 4/2 brown, very fine, trace sand, soft, moist			
Parameters Sampled for: 4 increments collected			
VOCs, TPH-GRO, -DRO, -RRO, PAHs, pesticides/PCBs, herbicides, RCRA8 metals			
Increment Soil Sample			
Sample ID: Not collected			
Sampler Name: Sample Date/Time:			
Soil Description:			
Parameters Sampled for:			
NOTES			
Debris identified throughout southern portion of DU1 and within test pit and extends deeper than	the bottom	of excavation.	
DU1 - Test Pit #2 had fill/debris from 2-3 feet bgs and extended deeper than bottom of excavation	on.		
Consequently, increments from only 2 of 3 vertical sub-units (SUs) A (0-0.5), B (8-10) were sub	mitted. Vertic	cal SU C will be collected via drilling.	
The gray color and trace sand may be associated with the concrete debris.			
Explanation of exceptions to SAP, PI's and SOP(s) including why, under what conditions,	who authori	ized exception, anything considered	in the decision:

495560.01.03.04

TEST PIT NUMBER

DU1 TP3

SHEET 1 OF 2

DATE:

5/22/2014

TEST PIT LOG

PROJECT: Site Characterization for Banana Patch Property

LOCATION: **EXCAVATION CONTRACTOR:**

Pacific Commercial Services

WEATHER: Partly cloudy, humid, 80 deg F EXCAVATION METHOD AND EQUIPMENT USED :

Hitachi 135 Track Excavator DATE/TIME Start:

930 LOGGER: FDH

TEST PIT PROFILE

Surface 0' BGS

WATER LEVEL :

Compass N-S Direction

Pit Dimensions 11 4 W 9.5

Bottom of Pit 9.5 BGS

DEBRIS IDENTIFIED

batteries									
Examples.	. Drums, steel or p	piastic ariu size, spraj	/ caris/bollies,	newspapers, piastic,	appliances, ver	nicies and/or par	rts, ciotriing, nazardous	wasie and type, t	memicai containers,

One metal hub cap at 5-feet BGS. Few chunks of concrete. No other debris.

Photo Number	Compass Direction	Time	Description
			See photos 20140522-085520 through 20140522-092410 and 20140522-094238

Logger	Signature:	Date:
--------	------------	-------

	CH2MHIII	PROJECT NUMBER	TEST PIT NUMBER
-	CHZIVINILL	Т	EST PIT LOG

PROJECT :	Site Characterization for Bar	nana Patch	LOCATION :	DU1, TP3	DATE:	5/22/2014
V/EVTHED:	Partly cloudy humid 80 dog	Е	EXCAVATION CONTRACTOR :	Pacific Commercial Services (PCS)		

SHEET 2

OF 2

EXCAVATION CONTRACTOR : Hitachi 135 Track Excavator EXCAVATION METHOD AND EQUIPMENT USED :

Logger Signature:_

SOIL SAMPLES	BE	REATHING SPACE M	ONITORING
Increment Soil Sample	Time	MultiRAE	Landtech
Sample ID: DU1A (South) Depth: 0 - 0.5 feet bgs	855	VOC 0.0 ppm	Not Measured
Sampler Name: FDH Sample Date/Time: 5/22/2014		Oxygen 20.9%	
Soil Description:		LEL 0%	
0-0.5feet bgs - Silty clay, 7.5YR 4/2 Brown, Very Fine, Soft, Dry		CO 0 ppm	
Parameters Sampled for: 3 increments collected		H2S 0.0 ppm	
VOCs, TPH-GRO, -DRO, -RRO, PAHs, pesticides/PCBs, herbicides, RCRA8 metals	930	VOC 0.0 ppm	Not Measured
Increment Soil Sample		Oxygen 20.9%	
Sample ID: DU1B (South) Depth: 0.5 - 3 feet bgs		Oxygen 20.9%	
Sampler Name: FDH Sample Date/Time: 5/22/2014		LEL 0%	
Soil Description:		CO 0 ppm	
0.5-3 feet bgs - Silty clay, 7.5YR 4/2 brown, very fine, trace sand, soft, moist		H2S 0.0 ppm	
Parameters Sampled for: 3 increments collected			
VOCs, TPH-GRO, -DRO, -RRO, PAHs, pesticides/PCBs, herbicides, RCRA8 metals			
Increment Soil Sample			
Sample ID: DU1C (South) Depth: 8 - 10 feet bgs			
Sampler Name: FDH Sample Date/Time: 5/22/2014			
Soil Description:			
8-10 feet bgs - Silty clay, 7.5YR 5/4 reddish brown to gray, very fine, stiff, moist			
Parameters Sampled for: 3 increments collected			
VOCs, TPH-GRO, -DRO, -RRO, PAHs, pesticides/PCBs, herbicides, RCRA8 metals			
NOTE	-s		
NOTE			
DU1 - Test Pit #3 had very little fill/debris so all three vertical sub-units A (0-0.5), B (0.5 - 3),	and C (8-10) su	bmitted.	
Explanation of exceptions to SAP, PI's and SOP(s) including why, under what condition	ons, who author	rized exception, anything considered	I in the decision:

495560.01.03.04

TEST PIT NUMBER

DU1, TP4

SHEET 1

DATE:

OF 2

5/22/2014

TEST PIT LOG

PROJECT: Site Characterization for Banana Patch Property

LOCATION:

Pacific Commercial Services

WEATHER: Partly cloudy, humid, 80 deg F EXCAVATION METHOD AND EQUIPMENT USED :

Hitachi 135 Track Excavator **DATE/TIME** Start: 945 E

EXCAVATION CONTRACTOR:

1045 LOGGER: FDH

TEST PIT PROFILE

Surface 0' BGS

WATER LEVEL:

Compass NE-SW Direction

Pit Dimensions
12 L
4 W
10.5 H

Bottom of Pit 10.5 BGS

DEBRIS IDENTIFIED

Examples: Drums, steel or plastic and size; spray cans/bottles; newspapers; plastic; appliances; vehicles and/or parts; clothing; hazardous waste and type; chemical containers; batteries

Concrete, rebar, metal pipe throughout from 2-3 feet bgs to 10 feet bgs. Plastic chemical sprayers.

Excavation was terminated due to sidewall sloughing and large concrete chunks on bottom that could not be excavated.

Sidewall collapse and undermining at 5 feet bgs.

Debris layer includes 15% concrete, 15% metal, 10% other.

Photo Number	Compass Direction	Time	Description
			See photos 20140522-094212 and 20140522-103920 through 20140522-104706

Logger	Signature:	Date:
--------	------------	-------

Logger Signature:_

PROJECT NUMBER

495560.00

TEST PIT NUMBER

DU1, TP4

SHEET 2

OF 2

TEST PIT LOG

PROJECT: Site Characterization for Banana Patch	L	LOCATION :	DU1, TP4	DATE:	5/22/2014
WEATHER: Partly cloudy, humid, 80 deg F	EXCAVATION	CONTRACTOR:	Pacific Commercial Services (PCS)		
EXCAVATION METHOD AND EQUIPMENT USED :	Hitachi 135 Tra	ack Excavator			
WATER LEVEL : N/A	DATE/TIME Start:	945 End:	1045 LOGGER: FDH		

WATER LEVEL :	N/A	DATE/TIME Start: 945	End:	1045 LOGGER: FDH	
	SOIL	SAMPLES	BR	EATHING SPACE M	ONITORING
	In	crement Soil Sample	Time	MultiRAE	Landtech
Sample ID: DU1A (Sout	th)	Depth: 0 - 0.5 feet bgs	1000	VOC 0.0 ppm	Not Measured
Sampler Name:	FDH	Sample Date/Time: N/A		Oxygen 20.9%	
Soil Description:				LEL 0%	
0-0.5feet bgs - Silty clay,	7.5YR 5/8	reddish brown, very fine, soft, slightly moist		CO 0 ppm	
Parameters Sampled for:	4 increr	ments collected		H2S 0.0 ppm	
TPH-DRO, -RRO, PAHs,	pesticides	/PCBs, herbicides, RCRA8 metals			
	In	crement Soil Sample			
Sample ID: DU1B (Sout	th)	Depth: 8 - 10 feet bgs			
Sampler Name:	FDH	Sample Date/Time: 5/22/2014			
Soil Description:		4 brown very fine, trace sand, soft, dry mixed together with			
8 - 10 feet bgs - Silty clay 7.5 YR 6/0 gray, very fine	, 7.5YR 5/4 , trace san	4 brown very fine, trace sand, soft, dry mixed together with d, soft, dry			
Parameters Sampled for:	4 increr	ments collected			
VOCs, TPH-GRO, -DRO,	-RRO, PA	Hs, pesticides/PCBs, herbicides, RCRA8 metals			
	In	crement Soil Sample			
Sample ID: No sample	collected	Depth:			
Sampler Name:	FDH	Sample Date/Time: 5/22/2014			
Soil Description:					
Parameters Sampled for:					
		NOTES			
		n 2-3 feet bgs and extended deeper than the bottom of the e			
• •	•	v 2 of 3 vertical sub-units (SUs) A (0-0.5), B (8-10) were sub	mitted. Verti	cal SU C will be collected via drilling.	
The gray color and trace	sand may	be associated with the concrete debris.			
Explanation of exceptio	ns to SAP	, PI's and SOP(s) including why, under what conditions,	who author	ized exception, anything considered	in the decision:
	-		 		

	CH2MHILL
_	CHZIVINILL

495560.01.03.04

TEST PIT NUMBER

DU1, TP5

SHEET 1 OF 2

TEST PIT LOG

PROJECT: Site Characterization for Banana Patch Property DATE: LOCATION: 5/22/2014 **EXCAVATION CONTRACTOR:** Pacific Commercial Services

WEATHER: Partly cloudy, humid, 80 deg F EXCAVATION METHOD AND EQUIPMENT USED : Hitachi 135 Track Excavator

WATER LEVEL : DATE/TIME Start: 1130 LOGGER: FDH

TEST PIT PROFILE

Compass W-E Direction

W

Pit Dimensions

12 4

10.5

Surface 0' BGS

Bottom of Pit 10.5 BGS

DEBRIS IDENTIFIED

batteries									
Examples.	. Drums, steer or p	nasuc and size, spraj	/ caris/bollies,	newspapers, piastic,	appliances, veni	licies and/or parts,	ciouring, nazardous	wasie and type, c	nemicai containers,

No debris encountered in test pit.

Photo Number	Compass Direction	Time	Description
			See photos 20140522-1123235 through 20140522-112303

Logger Signature:	Date:
-------------------	-------

Logger Signature:_

PROJECT NUMBER

_____ Date:__

495560.00

TEST PIT NUMBER

DU1, TP5

SHEET 2

OF 2

TEST PIT LOG

PROJECT: Site Characterization for B	anana Patch	LOCATION :	DU1, TP5	DATE:	5/22/2014
WEATHER: Partly cloudy, humid, 80 de	eg F E	XCAVATION CONTRACTOR:	Pacific Commercial Services (PCS)		

EXCAVATION METHOD AND EQUIPMENT USED: Hitachi 135 Track Excavator

WATER LEVEL: N/A DATE/TIME Start: 1110 End: 1130 LOGGER: EDE

	1110 End:	1130 LOGGER: FDH	
SOIL SAMPLES	BR	REATHING SPACE M	ONITORING
Increment Soil Sample	Time	MultiRAE	Landtech
Sample ID: DU1A (South) Depth: 0 - 0.5 feet bgs	1135	VOC 0.0 ppm	Not Measured
Sampler Name: FDH Sample Date/Time: N/A		Oxygen 20.9%	
Soil Description:		LEL 0%	
0-0.5feet bgs - Silty clay, 7.5YR 6/2 yellowish brown, very fine, soft, slightly moist		CO 0 ppm	
Parameters Sampled for: 3 increments collected		H2S 0.0 ppm	
TPH-DRO, -RRO, PAHs, pesticides/PCBs, herbicides, RCRA8 metals			
Increment Soil Sample			
Sample ID: DU1B (South) Depth: 0.5 - 3 feet bgs			
Sampler Name: FDH Sample Date/Time: 5/22/2014			
Soil Description:			
0.5-3.0 feet bgs - Silty clay, 7.5YR 5/4 reddish brown, very fine, soft, moist			
Parameters Sampled for: 3 increments collected			
VOCs, TPH-GRO, -DRO, -RRO, PAHs, pesticides/PCBs, herbicides, RCRA8 metals			
Increment Soil Sample			
Sample ID: DU1C (South) Depth: 8 - 10 feet bgs			
Sampler Name: FDH Sample Date/Time: 5/22/2014			
Soil Description:			
8-10 feet bgs - Silty clay, 7.5YR 5/4 reddish brown to gray, very fine, stiff, moist			
Parameters Sampled for: 3 increments collected			
NOT	ES		
No debris encountered within test pit.			
Explanation of exceptions to SAP, PI's and SOP(s) including why, under what conditi	ions, who author	ized exception, anything considered	I in the decision:

495560.01.03.04

TEST PIT NUMBER

DU1 TP6

SHEET 1 OF 2

TEST PIT LOG

PROJECT: Site Characterization for Banana Patch Property LOCATION: DATE: 5/22/2014 **EXCAVATION CONTRACTOR:** Pacific Commercial Services

WEATHER: Partly cloudy, hot, humid EXCAVATION METHOD AND EQUIPMENT USED: Hitachi 135 Track Excavator

DATE/TIME Start: WATER LEVEL: 1415 LOGGER: FDH

TEST PIT PROFILE

Surface 0' BGS

Compass W-E Direction

Pit Dimensions 30 W

Bottom of Pit 10 BGS

DEBRIS IDENTIFIED

Examples: Drums, steel or plastic and size; spray cans/bottles; newspapers; plastic; appliances; vehicles and/or parts; clothing; hazardous waste and type; chemical containers;

Concrete, rebar, metal pipe throughout from 2-3 feet bgs to 10 feet bgs.

Excavation was terminated due to sidewall sloughing and large concrete chunks on bottom that could not be excavated.

Sidewall collapse and undermining at 3-5 feet bgs.

Debris layer includes 20% concrete, 15% metal, 5% other

Photo Number	Compass Direction	Time	Description
			See photos 20140522-131647 through 20140522-142606

Logger	Signature:	Date:
--------	------------	-------

495560.00

TEST PIT NUMBER

DU1, TP6

SHEET 2

OF 2

TEST PIT LOG

PROJECT:	Site Characterization for Bar	nana Patch	LOCATION :	DU1, TP6	DATE:	5/22/2014
WEATHER:	Partly cloudy, hot, humid		EXCAVATION CONTRACTOR:	Pacific Commercial Services (PCS)		

EXCAVATION METHOD AND EQUIPMENT USED: Hitachi 135 Track Excavator

NATER LEVEL : N/A DATE/	TIME Start: 1315	End:	1415 LOGGER: FDH	
SOIL SAMPLES		BR	EATHING SPACE M	ONITORING
Increment Soil Sample		Time	MultiRAE	Landtech
Sample ID: DU1A (South) Depth: 0 - 0.5 feet bg	gs	1335	VOC 0.0 ppm	Not Measured
Sampler Name: FDH Sample Date/Time:	N/A		Oxygen 20.9%	
Soil Description:			LEL 0%	
0-0.5feet bgs - Silty clay, 7.5YR 5/8 reddish brown, very fine, so	oft, dry		CO 0 ppm	
Parameters Sampled for: 6 increments collected			H2S 0.0 ppm	
TPH-DRO, -RRO, PAHs, pesticides/PCBs, herbicides, RCRA8	metals	1400	VOC 0.0 ppm	
Increment Soil Sample			Oxygen 20.9%	
Sample ID: DU1B (South) Depth: 8 - 10 feet bg	S		Oxygen 20.9%	
Sampler Name: FDH Sample Date/Time:	5/22/2014		LEL 0%	
Soil Description:			CO 0 ppm	
8 - 10 feet bgs - Silty clay, 7.5YR 5/4 brown very fine, trace sar 7.5 YR 6/2 brown, very fine, trace sand, soft, dry	nd, soft, dry mixed together with		H2S 0.0 ppm	
Parameters Sampled for: 6 increments collected				
VOCs, TPH-GRO, -DRO, -RRO, PAHs, pesticides/PCBs, herbi	icides, RCRA8 metals			
Increment Soil Sample				
Sample ID: No sample collected Depth:				
Sampler Name: Sample Date/Time:				
Soil Description:				
Parameters Sampled for:				
No sample collected because did not encounter native material	1			
	NOTES			
	NOTES			
DU1 - Test Pit #6 had fill/debris from 2 feet bgs and extended o	deeper than the bottom of the exc	avation.		
Consequently, increments from only 2 of 3 vertical sub-units (S	SUs) A (0-0.5), B (8-10) were subr	mitted. Vertic	cal SU C will be collected via drilling.	
The gray color and trace sand may be associated with the cond				

ogger	Signature:		Date:	
--------	------------	--	--------	--

495560.01.03.04

TEST PIT NUMBER

DU1 TP7

SHEET 1 OF 2

TEST PIT LOG

PROJECT: Site Characterization for Banana Patch Property LOCATION: DATE: 5/22/2014 **EXCAVATION CONTRACTOR:** Pacific Commercial Services WEATHER: Partly cloudy, hot, humid

EXCAVATION METHOD AND EQUIPMENT USED: Hitachi 135 Track Excavator

WATER LEVEL: DATE/TIME Start: 1445 LOGGER: FDH

TEST PIT PROFILE

Surface 0' BGS

Compass W-E Direction

Pit Dimensions 30 9 W

Bottom of Pit 10 BGS

DEBRIS IDENTIFIED

Examples: Drums, steel or plastic and size; spray cans/bottles; newspapers; plastic; appliances; vehicles and/or parts; clothing; hazardous waste and type; chemical containers; batteries

Concrete, rebar, metal pipe throughout from 2-3 feet bgs to 10 feet bgs.

Excavation was terminated due to sidewall sloughing and large concrete chunks on bottom that could not be excavated.

Large chunks of concrete encountered. The ground surface around the test pit started to move when excavator pulled on concrete chunk.

Indicates that concrete extends well beyond the footprint of the test pit.

Debris layer includes 20% concrete, 15% metal, 5% other

Photo Number	Compass Direction	Time	Description
			See photos 20140522-131647 through 20140522-142606

Logger Signature:	Date:
-------------------	-------

495560.00

TEST PIT NUMBER

DU1, TP7

SHEET 2

OF 2

TEST PIT LOG

PROJECT : Site Characterization for Banana Patch	LOCATION :	DU1, TP7	DATE:	5/22/2014
WEATHER: Partly cloudy, hot, humid	EXCAVATION CONTRACTOR:	Pacific Commercial Services (PCS)		

EXCAVATION METHOD AND EQUIPMENT USED : Hitachi 135 Track Excavator WATER LEVEL : DATE/TIME Start: 1420 End: 1445 LOGGER: FDH SOIL SAMPLES **BREATHING SPACE MONITORING Increment Soil Sample** MultiRAE Time Landtech Sample ID: DU1A (South) 1445 VOC 0.0 ppm Not Measured Depth: 0 - 0.5 feet bgs FDH Sampler Name: Sample Date/Time: N/A Oxygen 20.9% Soil Description: LEL 0% 0-0.5feet bgs - Silty clay, 7.5YR 6/2 yellowish brown, very fine, soft, slightly moist CO 0 ppm Parameters Sampled for: 6 increments collected H2S 0.0 ppm TPH-DRO, -RRO, PAHs, pesticides/PCBs, herbicides, RCRA8 metals **Increment Soil Sample** Sample ID: DU1B (South) Depth: 8 - 10 feet bgs FDH Sample Date/Time: 5/22/2014 Sampler Name: Soil Description: 8 - 10 feet bgs - Silty clay, 7.5YR 5/4 reddish brown, very fine, soft, moist Parameters Sampled for: 6 increments collected VOCs, TPH-GRO, -DRO, -RRO, PAHs, pesticides/PCBs, herbicides, RCRA8 metals **Increment Soil Sample** Sample ID: No increment collected Depth: Sampler Name: Sample Date/Time: Soil Description: Parameters Sampled for: No increments collected because did not encounter native material **NOTES** DU1 - Test Pit #7 had fill/debris from 2 feet bgs and extended deeper than the bottom of the excavation. Consequently, increments from only 2 of 3 vertical sub-units (SUs) A (0-0.5), B (8-10) were submitted. Vertical SU C will be collected via drilling. The gray color and trace sand may be associated with the concrete debris.

Explanation of exceptions to SAP, PI's and SOP(s) including why, under what conditions, who authorized exception, anything considered in the decision:

_oaaer	Signature:	Date	
- 33	- 3		

	CH2MHILL
-	

495560.01.03.04

TEST PIT NUMBER

DU2 TP1

SHEET 1 OF 2

TEST PIT LOG

PROJECT: Site Characterization for Banana Patch Property DATE: 5/22/2014 LOCATION: **EXCAVATION CONTRACTOR:** Pacific Commercial Services

EXCAVATION METHOD AND EQUIPMENT USED : Hitachi 135 Track Excavator

WATER LEVEL : DATE/TIME Start: 1605 LOGGER: FDH

TEST PIT PROFILE

Surface 0' BGS

Compass N-S Direction

W

Pit Dimensions

3.5

Bottom of Pit 3 BGS

DEBRIS IDENTIFIED

Examples: Drums,	steel or plastic and si	ize; spray cans/bottles	; newspapers; plastic	; appliances; \	vehicles and/or pa	ırts; clothing; l	nazardous was	te and type; c	hemical (containers;
batteries										

2-inch metal clothesline pipe on surface beneath dense vegetation likely the source of the anomaly

No subsurface debris observed.

Photo Number	Compass Direction	Time	Description
			See photos 20140522-155038 through 20140522-155629

Logger	Signature:	Date:
--------	------------	-------

495560.00

TEST PIT NUMBER

DU2, TP1

SHEET 2

OF 2

TEST PIT LOG

PROJECT:	Site Characterization for Bar	nana Patch	LOCATION :	DU2, TP1	DATE:	5/22/2014
WEATHER:	Partly cloudy, hot, humid, 80	s deg F	EXCAVATION CONTRACTOR:	Pacific Commercial Services (PCS)		

EXCAVATION METHOD AND EQUIPMENT USED: Hitachi 135 Track Excavator

WATER LEVEL: N/A DATE/TIME Start: 1550 End: 1605 LOGGER: EDH

WATER LEVEL:	N/A	DATE/TIME	= Start: 1550	Ena.	1605 LOGGER: FDH		
	SOIL SA	AMPLES	BREATHING SPACE MONITORING				
	Incre	nent Soil Sample		Time	MultiRAE	Landtech	
Sample ID: No sample	collected	Depth: 0 - 0.5 feet bgs			Not Measured	Not Measured	
Sampler Name:	FDH	Sample Date/Time:	N/A				
Soil Description:							
0-0.5feet bgs - Silty clay,	7.5YR 6/2 yello	wish brown, very fine, soft,	slightly moist				
Parameters Sampled for	:						
No sample collected							
	Incre	ment Soil Sample					
Sample ID: No sample	collected	Depth: 0.5 - 3 feet bgs					
Sampler Name:	FDH	Sample Date/Time:	5/22/2014				
Soil Description:							
0.5-3.0 feet bgs - Silty cla	ay, 7.5YR 5/4 re	ddish brown, very fine, soft	, moist				
Parameters Sampled for	:						
No sample collected							
	Incre	ment Soil Sample					
Sample ID: No sample	collected	Depth:					
Sampler Name:		Sample Date/Time:					
Soil Description:							
Parameters Sampled for	:						
			NOTES				
No debris encountered w	vithin test pit. M	etal pipe on surface benea	th vegetation likely source of	geophysical	anomaly.		
Explanation of exception	ons to SAP, PI's	s and SOP(s) including wl	ny, under what conditions,	who authoriz	zed exception, anything considered in	the decision:	

_oaaer	Signature:	Date	
- 33	- 3		

495560.01.03.04

TEST PIT NUMBER

DU3, TP1

SHEET 1

DATE:

Pit Dimensions

10 8 OF 2

TEST PIT LOG

PROJECT: Site Characterization for Banana Patch Property

LOCATION : EXCAVATION CONTRACTOR :

Pacific Commercial Services

5/21/2014

WEATHER: Partly cloudy, hot, humid, 80s deg F EXCAVATION METHOD AND EQUIPMENT USED : WATER LEVEL : N/A

Hitachi 135 Track Excavator **DATE/TIME** Start: 1414 E

1510 LOGGER: FDH

TEST PIT PROFILE

Surface 0' BGS

Compass E-W Direction

W

Bottom of Pit 8 BGS

DEBRIS IDENTIFIED

Examples: Drums, steel or plastic and size; spray cans/bottles; newspapers; plastic; appliances; vehicles and/or parts; clothing; hazardous waste and type; chemical containers; batteries

Debris starting from 1-2 feet bgs and then from 3 feet to bottom of test pit. Note: Potential concrete pipe located at bottom of test pit approximately 4-feet west of east end trending N-S.

Concrete, metal, tarp

Debris layer includes 10% concrete, 10% metal, 5% other

Photo Number	Compass Direction	Time	Description
			See photos 20140521-141426 to 20140521-150220

Logger	Signature:	Date:
--------	------------	-------

495560.01.03.04

TEST PIT NUMBER

DU3, TP1

CH2MHILL					200, 11 1	OFFICE 1 2	01 2	
CHZIVIHILL			TES	EST PIT LOG				
PROJECT: Site Characterization for Ba WEATHER: EXCAVATION METHOD AND EQUIPME	NT USED :	EXCAVATION Hitachi 135 Tra			DU3, TP1 Pacific Commercial Services (PCS)	DATE:	5/21/2014	
WATER LEVEL : N/A	DATE/TIM	E Start:	1414 End:	<u> </u>	1510 LOGGER: FDH	ONITODI	NO	
SOIL SA	MIPLES			BK	REATHING SPACE M	ONITORI	NG	
Incren	nent Soil Sample		Tir	me	MultiRAE	Land	tech	
Sample ID: No sample collected	Depth: 0 - 0.5 feet bgs				Not Measured	Not Me	asured	
Sampler Name: FDH Soil Description:	Sample Date/Time:	N/A						
0-0.5feet bgs - Silty clay, 7.5YR 6/2 yello	wish brown, very fine, soft	t, slightly moist						
Parameters Sampled for:								
No sample collected								
Incren	nent Soil Sample							
Sample ID: No sample collected	Depth: 0.5 - 3 feet bgs							
Sampler Name: FDH	Sample Date/Time:	N/A						
Soil Description:								
0.5-3.0 feet bgs - Silty clay, 7.5YR 5/4 red	ddish brown, very fine, so	ft, moist						
Parameters Sampled for:								
No sample collected								
Incren	nent Soil Sample							
Sample ID: No sample collected	Depth: 3 - 8 feet bgs							
Sampler Name: FDH	Sample Date/Time:	N/A						
Soil Description:								
8-10 feet bgs - Silty clay, 7.5YR 5/4 reddi	sh brown to gray, very fin	e, stiff, moist						
Parameters Sampled for:								
No sample collected								
		N	OTES					
Potential concrete pipe at bottom of exca	vation. OneCall did not in	dicate any utilities	s though could be	old/ab	pandoned utility.			
Checked road for storm drains/grates. N	one found.							
Pipe trends N-S within the test pit in direct	tion toward depression w	ithin DU6.						

Explanation of exceptions to SAP, Pl's and SOP(s) including why, under what conditions, who authorized exception, anything considered in the decision:

_oaaer	Signature:	Date	
- 33	- 3		

495560.01.03.04

TEST PIT NUMBER

DU6 TP1

DATE:

SHEET 1 OF 2

5/20/2014

TEST PIT LOG

PROJECT: Site Characterization for Banana Patch Property

LOCATION: **EXCAVATION CONTRACTOR:**

DU6, TP1 Pacific Commercial Services

WEATHER: Partly cloudy, hot, humid, 80s deg F EXCAVATION METHOD AND EQUIPMENT USED: WATER LEVEL:

Hitachi 135 Track Excavator DATE/TIME Start:

1340 LOGGER: FDH

TEST PIT PROFILE

Surface 0' BGS

Compass W-E Direction

Pit Dimensions 10 3 W

Bottom of Pit 10 BGS

DEBRIS IDENTIFIED

Examples: Drums, steel or plastic and size; spray cans/bottles; newspapers; plastic; appliances; vehicles and/or parts; clothing; hazardous waste and type; chemical containers;

Asphalt, concrete, metal, tires, wood, plastic debris only in upper 3-4 feet bgs.

Debris does not appear to extend below that depth but sidewalls caving in so hard to tell.

Debris layer is 40% concrete, 20% asphalt, 10% other

Photo Number	Compass Direction	Time	Description
			See photos 20140520-124407 through 20140520-133743and 20140521-163052 through 20140521-163145

Logger	Signature:	Date:
--------	------------	-------

495560.01.03.04

TEST PIT NUMBER
DU6, TP1

SHEET 2

OF 2

TEST PIT LOG

PROJECT : Site Characterization for Banana Patch	LOCATION :	DU6, TP1	DATE:	5/20/201
WEATHER: Partly cloudy, hot, humid, 80s deg F	EXCAVATION CONTRACTOR:	Pacific Commercial Services (PCS)		

EXCAVATION METHOD AND EQUIPMENT USED : Hitachi 135 Track Excavator

WATER LEVEL: N/A DATE/TIME Start: 1240		1340 LOGGER: FDH	
SOIL SAMPLES	BR	EATHING SPACE MO	ONITORING
Increment Soil Sample	Time	MultiRAE	Landtech
Sample ID: DU6A Depth: 0 - 5 feet bgs	1300	VOC 0.0 ppm	Not Measured
Sampler Name: FDH Sample Date/Time: 5/20/2014		Oxygen 20.9%	
Soil Description:		LEL 0%	
0-5 feet bgs - Silty clay, 7.5YR 5/6 Reddish Brown, Very Fine, Trace Sand, Soft, Dry		CO 0 ppm	
Parameters Sampled for: 3 increments collected		H2S 0.0 ppm	
TPH-DRO, -RRO, PAHs, pesticides/PCBs, herbicides, RCRA8 metals			
Increment Soil Sample			
Sample ID: DU6B Depth: 5 - 10 feet bgs			
Sampler Name: FDH Sample Date/Time: 5/20/2014			
Soil Description:			
5 - 10 feet bgs - Silty clay, 7.5YR 3/3 dark brown, very fine, medium soft, dry to slightly moist			
Parameters Sampled for: 3 increments collected			
VOCs, TPH-GRO, -DRO, -RRO, PAHs, pesticides/PCBs, herbicides, RCRA8 metals			
Increment Soil Sample			
Sample ID: DU6C Depth: 10 - 15 feet bgs			
Sampler Name: FDH Sample Date/Time: 5/20/2014			
Soil Description:			
Silty clay 7.5YR 3/3 dark brown, very fine, firm, slightly moist to moist			
Parameters Sampled for: 3 increments collected			
VOCs, TPH-GRO, -DRO, -RRO, PAHs, pesticides/PCBs, herbicides, RCRA8 metals			
NOTES			
DU6 - Test Pit #1 had fill/debris from surface to 3-4 feet bgs.			
Debris appears to be limited to upper portion of depression.			
Explanation of exceptions to SAP, PI's and SOP(s) including why, under what conditions,	who authori	ized exception, anything considered i	n the decision:

.ogger Si	ignature:	::Date:	
-----------	-----------	---------	--

495560.01.03.04

TEST PIT NUMBER

DU6 TP2

SHEET 1

DATE:

OF 2

5/20/2014

TEST PIT LOG

PROJECT: Site Characterization for Banana Patch Property

LOCATION: **EXCAVATION CONTRACTOR:**

DU6, TP2 Pacific Commercial Services

WEATHER: Partly cloudy, hot, humid, 80s deg F EXCAVATION METHOD AND EQUIPMENT USED:

Hitachi 135 Track Excavator DATE/TIME Start:

1410 LOGGER: FDH

TEST PIT PROFILE

Compass W-E Direction

Surface 0' BGS

WATER LEVEL:

Pit Dimensions 10 3 W

Bottom of Pit 10 BGS

DEBRIS IDENTIFIED

Examples: Drums, steel or plastic and size; spray cans/bottles; newspapers; plastic; appliances; vehicles and/or parts; clothing; hazardous waste and type; chemical containers;

Asphalt, concrete debris in upper 2 feet bgs and then metal cable at approximately 8 feet bgs. Debris is sparse.

Debris appears to relatively sparse throughout test pit.

Debris layer in upper 1-2 feet includes 35% concrete, 10% asphalt, 10% other

Debris beneath the upper 1-2 feet includes 10% concrete, 5% asphalt, 5% other

Photo Number	Compass Direction	Time	Description
			See photos 20140520-135815 through 20140520-141002

Logger	Signature:	::Date:	
--------	------------	---------	--

Logger Signature:_

PROJECT NUMBER

495560.01.03.04

TEST PIT NUMBER

DU6, TP2

SHEET 2

OF 2

TEST PIT LOG

PROJECT:	Site Characterization for Bar	nana Patch	LOCATION :	DU6, TP2	DATE:	5/20/2014
WEATHER:	Partly cloudy, hot, humid, 80	s deg F	EXCAVATION CONTRACTOR:	Pacific Commercial Services (PCS)		

WATER LEVEL: N/A DATE/TIME Start: 1340 End: 1410 LOGGER: FDH

SOIL SAMPLES	BREATHING SPACE MONITORING			
Increment Soil Sample	Time	MultiRAE	Landtech	
Sample ID: DU6A Depth: 0 - 5 feet bgs	1300	VOC 0.0 ppm	Not Measured	
Sampler Name: FDH Sample Date/Time: 5/20/2014		Oxygen 20.9%		
TPH-DRO, -RRO, PAHs, pesticides/PCBs, herbicides, RCRA8 metals		LEL 0%		
Soil Description:		CO 0 ppm		
0-5 feet bgs - Silty clay, 7.5YR 5/6 Reddish Brown, Very Fine, Trace Sand, Soft, Dry		H2S 0.0 ppm		
Parameters Sampled for: 2 increments collected from sidewall of depression,				
1 increment collected from 1 foot bgs in test pit				
TPH-DRO, -RRO, PAHs, pesticides/PCBs, herbicides, RCRA8 metals				
Increment Soil Sample				
Sample ID: DU6B Depth: 5 - 10 feet bgs				
Sampler Name: FDH Sample Date/Time: 5/20/2014				
Soil Description:				
5 - 10 feet bgs - Silty clay, 7.5YR 3/3 dark brown, very fine, medium soft, dry to slightly moist				
Parameters Sampled for: 3 increments collected				
VOCs, TPH-GRO, -DRO, -RRO, PAHs, pesticides/PCBs, herbicides, RCRA8 metals				
Increment Soil Sample				
Sample ID: DU6C Depth: 10 - 15 feet bgs				
Sampler Name: FDH Sample Date/Time: 5/20/2014				
Soil Description:				
Silty clay 7.5YR 3/3 dark brown, very fine, firm, slightly moist to moist				
Parameters Sampled for: 3 increments collected				
VOCs, TPH-GRO, -DRO, -RRO, PAHs, pesticides/PCBs, herbicides, RCRA8 metals				
NOTES				
DU6 - Test Pit #2 had fill/debris from surface to 2-3 feet bgs and then sparse/few debris below the	nat depth.			
Dense volume of debris appears to be limited to upper portion of depression.				
Explanation of exceptions to SAP, PI's and SOP(s) including why, under what conditions,	who authori	zed exception, anything considered	in the decision:	

	CH2MHILL
-	

495560.01.03.04

TEST PIT NUMBER

DU6 TP3

SHEET 1

OF 2

TEST PIT LOG

PROJECT: Site Characterization for Banana Patch Property LOCATION: DATE: 5/20/2014 WEATHER: Partly cloudy, hot, humid, 80s deg F EXCAVATION METHOD AND EQUIPMENT USED: **EXCAVATION CONTRACTOR:** Pacific Commercial Services

Hitachi 135 Track Excavator

DATE/TIME Start: WATER LEVEL: 1420 LOGGER: FDH

TEST PIT PROFILE

Surface 0' BGS

Compass Direction

Pit Dimensions		
10	L	
3	W	
10	Н	

Bottom of Pit 10 BGS

DEBRIS IDENTIFIED

Examples: Drums, steel or plastic and size; spray cans/bottles; newspapers; plastic; appliances; vehicles and/or parts; clothing; hazardous waste and type; chemical containers;

Asphalt, concrete debris in upper 2 feet bgs and then metal cable at approximately 8 feet bgs. Debris is sparse.

Debris appears to relatively sparse throughout test pit.

Debris beneath the surface includes 5% concrete, 5% asphalt, 5% other

Photo Number	Compass Direction	Time	Description
			See photos 20140520-142005 and 20140520-142555

Logger Signature:	Date:
-------------------	-------

Logger Signature:_

PROJECT NUMBER

495560.01.03.04

TEST PIT NUMBER

DU6, TP3

SHEET 2

OF 2

TEST PIT LOG

PROJECT: Site Characterization for Banana Patch	LOCATION :	DU6, TP3	DATE:	5/20/201
WEATHER: Partly cloudy, hot, humid, 80s deg F	EXCAVATION CONTRACTOR:	Pacific Commercial Services (PCS)		
EXCAVATION METHOD AND EQUIPMENT USED :	Hitachi 135 Track Excavator			
WATER LEVEL : N/A	DATE/TIME Start: 1410 End:	1420 LOGGER: FDH		

WATER LEVEL : N/A	DATE/TIME Sta	art: 1410 E	nd:	1420 LOGGER: FDH	
SOIL SAMPLES		BREATHING SPACE MONITORING			
	Increment Soil Sample		Time	MultiRAE	Landtech
Sample ID: DU6A	Depth: 0 - 5 feet bgs		1420	VOC 0.0 ppm	Not Measured
Sampler Name: FDH	Sample Date/Time: 5/2	20/2014		Oxygen 20.9%	
Soil Description:				LEL 0%	
0-5 feet bgs - Silty clay, 7.5YR 5/	6 Reddish Brown, Very Fine, Trace Sar	nd, Soft, Dry		CO 0 ppm	
Parameters Sampled for: 3 inc	crements collected			H2S 0.0 ppm	
TPH-DRO, -RRO, PAHs, pesticio	des/PCBs, herbicides, RCRA8 metals				
	Increment Soil Sample				
Sample ID: DU6B	Depth: 5 - 10 feet bgs				
Sampler Name: FDH	Sample Date/Time: 5/2	20/2014			
Soil Description:					
5 - 10 feet bgs - Silty clay, 7.5YR	3/3 dark brown, very fine, medium soft	t, dry to slightly moist			
	crements collected				
•	PAHs, pesticides/PCBs, herbicides, RC	CRA8 metals			
	Increment Soil Sample				
Sample ID: DU6C	Depth: 10 - 15 feet bgs				
Sampler Name: FDH		20/2014			
Soil Description:					_
•	very fine, firm, slightly moist to moist				
Parameters Sampled for: 3 inc	crements collected				
VOCs, TPH-GRO, -DRO, -RRO,	PAHs, pesticides/PCBs, herbicides, RC	CRA8 metals			
		NOTES			
DU6 - Test Pit #3 had sparse/fev	debris throughout. Not much at all.				
Explanation of exceptions to SAP, PI's and SOP(s) including why, under what conditions, who authorized exception, anything considered in the decision:					

495560.01.03.04

TEST PIT NUMBER

DU6 TP4

DATE:

Pit Dimensions

10

SHEET 1 OF 2

5/20/2014

TEST PIT LOG

PROJECT: Site Characterization for Banana Patch Property LOCATION: WEATHER: Partly cloudy, hot, humid, 80s deg F EXCAVATION METHOD AND EQUIPMENT USED:

EXCAVATION CONTRACTOR:

Pacific Commercial Services

Hitachi 135 Track Excavator DATE/TIME Start:

1500 LOGGER: FDH

TEST PIT PROFILE

Surface 0' BGS

WATER LEVEL:

Compass W-E Direction

W

Bottom of Pit 10 BGS

DEBRIS IDENTIFIED

Examples:	Drums, ste	eel or plasti	ic and size; s	spray cans/bot	tles; newspape	rs; plastic; a _l	ppliances;	vehicles and/o	r parts; clotl	hing; hazard	ous waste and	type; cł	nemical (containers
batteries														

Concrete, rebar debris throughout test pit but debris is sparse.

Debris beneath the surface includes 5% concrete, 5% asphalt, 5% other

PHOTO LOG

Photo Number	Compass Direction	Time	Description
			See photo 20140520-143457 through 20140520-145902

Logger Signature:	Date:
-------------------	-------

495560.01.03.04

TEST PIT NUMBER

DU6, TP4

SHEET 2 OF 2

TEST PIT LOG

PROJECT : Site Characterization for Banana Patch	LOCATION:	DU6, TP4	DATE:	5/20/2014
WEATHER: Cloudy, hot, humid, 80s deg F	EXCAVATION CONTRACTOR:	Pacific Commercial Services (PCS)		
EXCAVATION METHOD AND EQUIPMENT USED:	Hitachi 135 Track Excavator			

WATER LEVEL: N/A DATE/TIME Start: 1425		1500 LOGGER: FDH			
SOIL SAMPLES	BREATHING SPACE MONITORING				
Increment Soil Sample	Time	MultiRAE	Landtech		
Sample ID: DU6A Depth: 0 - 5 feet bgs	1500	VOC 0.0 ppm	Not Measured		
Sampler Name: FDH Sample Date/Time: 5/20/2014		Oxygen 20.9%			
Soil Description:		LEL 0%			
0-5 feet bgs - Silty clay, 7.5YR 5/6 Reddish Brown, Very Fine, Trace Sand, Soft, Dry		CO 0 ppm			
Parameters Sampled for: 3 increments collected		H2S 0.0 ppm			
TPH-DRO, -RRO, PAHs, pesticides/PCBs, herbicides, RCRA8 metals					
Increment Soil Sample					
Sample ID: DU6B Depth: 5 - 10 feet bgs					
Sampler Name: FDH Sample Date/Time: 5/20/2014					
Soil Description:					
5 - 10 feet bgs - Silty clay, 7.5YR 3/3 dark brown, very fine, medium soft, dry to slightly moist					
Parameters Sampled for: 3 increments collected					
VOCs, TPH-GRO, -DRO, -RRO, PAHs, pesticides/PCBs, herbicides, RCRA8 metals					
Increment Soil Sample					
Sample ID: DU6C Depth: 10 - 15 feet bgs					
Sampler Name: FDH Sample Date/Time: 5/20/2014					
Soil Description:					
Silty clay 7.5YR 3/3 dark brown, very fine, firm, slightly moist to moist					
Parameters Sampled for: 3 increments collected					
VOCs, TPH-GRO, -DRO, -RRO, PAHs, pesticides/PCBs, herbicides, RCRA8 metals					
NOTES					
DU6 - Test Pit #4 had sparse/few debris throughout. Not much at all.					
Heavy rain from 1500-1545					
Explanation of exceptions to SAP, PI's and SOP(s) including why, under what conditions,	who author	ized exception, anything considered	in the decision:		

Logger	Signature:	Date:

495560.01.03.04

TEST PIT NUMBER

DU6 TP5

DATE:

Pit Dimensions

10

SHEET 1 OF 2

5/20/2014

TEST PIT LOG

PROJECT: Site Characterization for Banana Patch Property

LOCATION: **EXCAVATION CONTRACTOR:**

DU6, TP5 Pacific Commercial Services

WEATHER: Partly cloudy, hot, humid, 80s deg F EXCAVATION METHOD AND EQUIPMENT USED: WATER LEVEL:

Hitachi 135 Track Excavator DATE/TIME Start:

1620 LOGGER: FDH

TEST PIT PROFILE

Surface 0' BGS

Compass W-E Direction

W

Bottom of Pit 10 BGS

DEBRIS IDENTIFIED

Examples: Drums, steel or plastic and size; spray cans/bottles; newspapers; plastic; appliances; vehicles and/or parts; clothing; hazardous waste and type; chemical containers;

Concrete and metal debris sparse throughout test pit.

Debris includes 5% concrete, 5% asphalt, 5% other

PHOTO LOG

Photo Number	Compass Direction	Time	Description
			See photo 20140520-161214

Logger	Signature:	Date:
--------	------------	-------

Logger Signature:_

PROJECT NUMBER

495560.01.03.04

TEST PIT NUMBER

DU6, TP5

SHEET 2

OF 2

TEST PIT LOG

PROJECT: Site Characterization for Banana Pa	tch LOCATION :	DU6, TP5	DATE:	5/20/2014
WEATHER: Partly cloudy, hot, humid, 80s deg F	EXCAVATION CONTRACTO	OR: Pacific Commercial Serv	rices (PCS)	
EXCAVATION METHOD AND FOLIDMENT LISE	D · Hitachi 135 Track Evcayator			

WATER LEVEL :	N/A	DATE/III	VIE Start: 155	Ena:	1620 LOGGER: FDH	
	SOIL S	SAMPLES		BR	EATHING SPACE M	ONITORING
	Inci	rement Soil Sample		Time	MultiRAE	Landtech
Sample ID: DU6A		Depth: 0 - 5 feet bgs		1620	VOC 0.0 ppm	Not Measured
Sampler Name:	FDH	Sample Date/Time:	5/20/2014		Oxygen 20.9%	
Soil Description:					LEL 0%	
0-5 feet bgs - Silty clay,	7.5YR 5/6 Re	ddish Brown, Very Fine, Tra	ce Sand, Soft, Dry		CO 0 ppm	
Parameters Sampled for	or: 3 increme	ents collected			H2S 0.0 ppm	
TPH-DRO, -RRO, PAH	s, pesticides/P	CBs, herbicides, RCRA8 me	etals			
	Inci	rement Soil Sample				
Sample ID: DU6B		Depth: 5 - 10 feet bgs				
Sampler Name:	FDH	Sample Date/Time:	5/20/2014			
Soil Description:						
5 - 10 feet bgs - Silty cla	ay, 7.5YR 3/3 (dark brown, very fine, mediu	m soft, dry to slightly moist			
Parameters Sampled for		ents collected	, , , ,			
VOCs, TPH-GRO, -DR		s, pesticides/PCBs, herbicid	les, RCRA8 metals			
	Inci	rement Soil Sample				
Sample ID: DU6C		Depth: 10 - 15 feet bgs				
Sampler Name:	FDH	Sample Date/Time:	5/20/2014			
Soil Description:						
Silty clay 7.5YR 3/3 dar	k brown, very	fine, firm, slightly moist to m	oist			
Parameters Sampled for	or: 3 increme	ents collected				
VOCs, TPH-GRO, -DRO	O, -RRO, PAH	s, pesticides/PCBs, herbicid	les, RCRA8 metals			
			NOTES			
			ITOTE			
DU6 - Test Pit #5 had s	parse/few deb	ris throughout. Not much at	all.			
Explanation of except	ions to SAP, I	PI's and SOP(s) including	why, under what conditions	, who authori	zed exception, anything considered	in the decision:

Date:_

495560.01.03.04

TEST PIT NUMBER

DU6 TP6

SHEET 1 OF 2

TEST PIT LOG

PROJECT: Site Characterization for Banana Patch Property DATE: LOCATION: 5/21/2014 WEATHER: Partly cloudy, hot, humid, 80s deg F EXCAVATION METHOD AND EQUIPMENT USED: **EXCAVATION CONTRACTOR:** Pacific Commercial Services

Hitachi 135 Track Excavator DATE/TIME Start: WATER LEVEL:

1000 LOGGER: FDH

TEST PIT PROFILE

Compass N-S

Direction

Surface 0' BGS

Pit Dimensions 10 3 W

Bottom of Pit 18 BGS

DEBRIS IDENTIFIED

Examples: I	Drums, steel or pla	stic and size; spray	cans/bottles; nev	vspapers; plastic;	appliances; v	ehicles and/or ہ	parts; clothing;	hazardous wa	aste and type;	chemical containe
batteries										

Concrete and metal debris sparse throughout test pit.

Metal pipe in sidewall at approximately 2-3 feet bgs trends E-W

Debris includes 10% concrete, 5% metal, 5% other

PHOTO LOG

Photo Number	Compass Direction	Time	Description
			See photos 20140521-092642 through 20140521-095703

Logger Signature:	Date:
-------------------	-------

PROJECT NUMBER 495560.01.03.04

TEST PIT NUMBER

DU6, TP5

SHEET 2

OF 2

TEST PIT LOG

LOCATION: DU6, TP6 DATE: 5/21/2014 PROJECT: Site Characterization for Banana Patch EXCAVATION CONTRACTOR: WEATHER: Partly cloudy, hot, humid, 80s deg F EXCAVATION METHOD AND EQUIPMENT USED Pacific Commercial Services (PCS)

EXCAVATION METHOD AND EQUIPMENT USED: Hitachi 135 Track Excavate WATER LEVEL: N/A DATE/TIME Start: 925	or End:	1000 LOGGER: FDH	
SOIL SAMPLES	BR	EATHING SPACE MO	NITORING
Increment Soil Sample	Time	MultiRAE	Landtech
Sample ID: [No increments collected Depth: 0 - 5 feet bgs	1000	VOC 4.7 ppm*	Not Measured
Sampler Name: FDH Sample Date/Time:		Oxygen 20.9%	
Soil Description:		LEL 0%	
0-5 feet bgs - Silty clay, 7.5YR 5/6 Reddish Brown, Very Fine, Trace Sand, Soft, Dry		CO 0 ppm	
Parameters Sampled for:		H2S 0.0 ppm	
Increment Soil Sample		PID measurement may be false.	
Sample ID: No increments collected		No visual, olfactory	
Sampler Name: FDH Sample Date/Time:		evidence of contamination	
Soil Description:			
5 - 10 feet bgs - Silty clay, 7.5YR 3/3 dark brown, very fine, medium soft, dry to slightly moist			
Parameters Sampled for:			
Increment Soil Sample			
Sample ID: DU6D 15-20 feet bgs			
Sampler Name: FDH Sample Date/Time:			
Soil Description:			
Silty clay 7.5YR 3/3 dark brown, very fine, firm, slightly moist to moist			
Parameters Sampled for: 6 increments collected			
VOCs, TPH-GRO, -DRO, -RRO, PAHs, pesticides/PCBs, herbicides, RCRA8 metals			
	<u> </u>		
NOTES			
DU6 - Test Pit #6 had sparse/few debris throughout and concrete at bottom of test pit.			
DU6A, DU6B, and DU6C SUs collected from other test pits and borings. Only DU6D SU require	ed.		
Increments from bottom of test pit to be combined with increments from borings to obtain DU6D	(15-20 feet b	ogs) coverage for DU6.	

Explanation of exceptions to SAP, PI's and SOP(s) including why, under what conditions, who authorized exception, anything considered in the decision:

Logger Signature:	Date:
-	

495560.01.03.04

TEST PIT NUMBER

DU6 TP7

SHEET 1 OF 2

DATE:

5/21/2014

TEST PIT LOG

PROJECT: Site Characterization for Banana Patch Property

LOCATION: **EXCAVATION CONTRACTOR:**

DU6, TP7 Pacific Commercial Services

WEATHER: Partly cloudy, hot, humid, 80s deg F EXCAVATION METHOD AND EQUIPMENT USED WATER LEVEL:

Hitachi 135 Track Excavator DATE/TIME Start:

1330 LOGGER: FDH

TEST PIT PROFILE

Surface 0' BGS

Compass N-S Direction

Pit Dimensions 10 10 W

Bottom of Pit 5 BGS

DEBRIS IDENTIFIED

Examples: Drums, steel or plastic and size; spray cans/bottles; newspapers; plastic; appliances; vehicles and/or parts; clothing; hazardous waste and type; chemical containers;

Cesspool is 8-9 feet diameter and at least 10 feet bgs to bottom that is filled with dry silt. Cesspool has partial rock ring on N and E

N portion of cesspool has very large column footing that extends deeper than bottom of cesspool.

PHOTO LOG

Photo Number	Compass Direction	Time	Description
			See photos 20140521-103716 through 20140521-131629

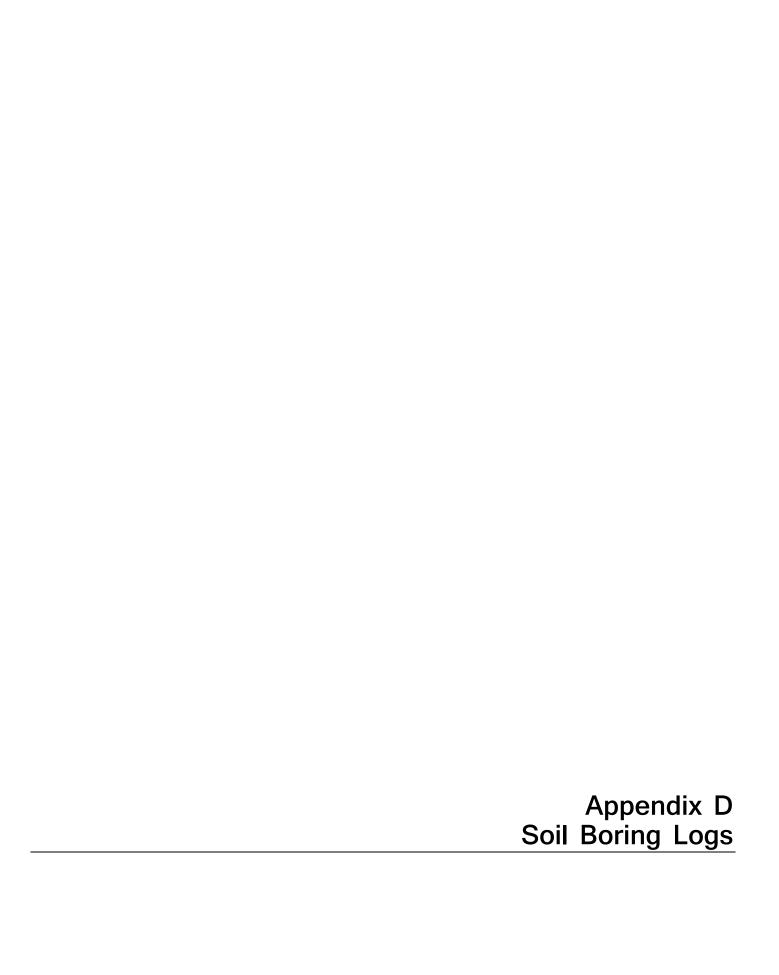
Logger	Signature:	Date:
--------	------------	-------

495560.01.03.04

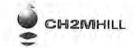
TEST PIT NUMBER

DU6, TP7

SHEET 2


OF 2

TEST PIT LOG


PROJECT: Site Characterization for Ban	nana Patch	LOCATION :	DU6, TP7	DATE:	5/21/201
WEATHER: Partly cloudy, hot, humid, 80:	s deg F	EXCAVATION CONTRACTOR:	Pacific Commercial Services (PCS)		
EVOAVATION METLIOD AND FOLUDIALS	IT LICED :	Hitaalii 405 Taaali Eiraanataa			

WATER LEVEL: N/A	DATE/TIME Start: 101	ator 15 End:	1330 LOGGER: FDH		
SOIL S	AMPLES	BREATHING SPACE MONITORING			
Incre	ment Soil Sample	Time	MultiRAE	Landtech	
Sample ID: No increments collected	Depth: 0 - 5 feet bgs	1000	VOC 0 ppm	Not Measured	
Sampler Name:	Sample Date/Time:		Oxygen 20.9%		
Soil Description:			LEL 0%		
0-5 feet bgs - Silty clay, 7.5YR 5/6 Redo	lish Brown, Very Fine, Trace Sand, Soft, Dry		CO 0 ppm		
Parameters Sampled for:			H2S 0.0 ppm		
Incre	ment Soil Sample				
Sample ID: No increments collected	Depth:				
Sampler Name:	Sample Date/Time:				
Soil Description:					
Parameters Sampled for:					
Incre	ment Soil Sample				
Sample ID: No increments collected	Depth:				
Sampler Name:	Sample Date/Time:				
Soil Description:					
Parameters Sampled for:					
	NOTES	S			
DU6 - Test Pit #7 uncovered undocume	nted cesspool. Relatively empty but dry silt at bottom	along with reb	ar and concrete.		
May collect a discrete sample at capillar	y fringe using drill rig.				
Explanation of exceptions to SAP, Pl	s and SOP(s) including why, under what condition	s, who author	ized exception, anything considered ir	n the decision:	

_ogger	Signature:	Date	<u> </u>

augnaum)	PROJECT NUMBER	Decision Unit	Boring ID DU-
CH2MHILL		SOIL BORING LO	OG
ROJECT: HART		LOCATION:	nana Patch
AT/LONG:	Maria and an analysis and	DRILLING CONTRA	ACTOR: Geotek
RILLING METHOD AND EQUATER LEVELS :	JIPMENT USED: START: 1430	END: 1500 L	000ED: 000
EPTH BELOW SURFACE (FT)		RE DESCRIPTION	OGGER: PAP COMMENTS
RECOVERY (FJ. 9). #/TYPE F	READING MOISTURE CONTE (ppm) OR CONSISTENCY MINERALOGY.	NT, RELATIVE DENSITY , SOIL STRUCTURE,	mple Collection Information mple Sub-Unit Decision
- 1 60 Ful 5- V 60 T	0-3: MISTU (GM), large Coral grav + coverete Native 3-5 dark reddish Moist Med.	re of sity graved basalt fragments el. some asphalt gravel. Following (1), 1) lasticité (5) est 2/2).	0.5-3
80	same as	3-5°, Med	3-6
50 CV	Same as a	3.5° 50ft	
15_	Some as Saturate 18-20 MO SHIF.	above dais-18ft ist, moderated	

PROJECT NUMBER	Decision Unit	Boring ID	

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED :

DPS HAS TP

Geophysica anomalies/ Fi Exist?

	DU1	DU2	DU3	DU4	DU5	DUS
Yes	В	В	В	В	С	c
No	A	В	В	A	C	C

Did you see

NAPL/Char/Ashes?

YES NO

IF YES:

Analysis

Replicate collected here?

IF YES:

Sample ID's:

Collect into 8-oz jar

Dioxins, Furans

NO YES

Sample ID's:

Sample

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis	
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
3-60	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs

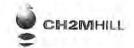
- 5 to 10' bgs

- 10 bgs to 15 bgs

- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis		
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb		
	1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs Into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)


POST SAMPLING:

Soil remaining from each core will be kepts and stored.

> One archive for shallow (0-10) One archive for deep (10'+)

SUs)	Sample	Analysis
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
	All remaining soil from 6 adjacent borings	s will be consolidated

		CT NUMBER	Decision Unit DU 1 -	N Boring ID 8-2	
CH2MHILI			SOIL BORING		
PROJECT: HART			LOCATION :	Banana Patch	
LAT/LONG:			DRILLING CO	NTRACTOR: Geotek	
DRILLING METHOD AND E	EQUIPMENT	USED :			
WATER LEVELS :	STAP	IT: (530	END: 1550	LOGGER: BR	
DEPTH BELOW SURFACE (FT)		SOIL COF	RE DESCRIPTION	COMMENTS	
INTERVAL (FT) RECOVERY (アブ) りょ	PID READING (ppm)	MOISTURE CONTE	GROUP SYMBOL, COLOR NT, RELATIVE DENSITY , SOIL STRUCTURE,	t, Sample Collection Information Sample Sub-Unit Decision	
- 1 80 Tu	0	gradiel Do (5/123/3)	y with some ark redelish by. Stightly mol Slightly mol plasticity condi- ags FILL with some as	oun 0.5-31	1 1 1 1
10 TO L	٥	Same as	3-5.	- 3-6° -	The state of the state of
15					The Land of the land
20				-	OF BUILDING
					T

PROJECT NUMBER	Decision Unit	Boring ID	
A Committee of the Comm	1010000	10000	

PROJECT: HART

LOCATION:

DRILLING CONTRACTOR:

Banana Patch

Geotek

LAT/LONG:

UTILITY CLRNCE CONFRMD:

YES NO

DRILLING METHOD AND EQUIPMENT USED :

DPS HAS TP

Geophysical anomalies/ Fill	
anomalies/ Fill	ŀ
Exist?	I.

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	С	С
No	A	В	8	A	c	Ċ

Did you see

NAPL/Char/Ashes?

YES NO IF YES: Sample Analysis Collect into 8-oz jar Dioxins, Furans

Replicate collected here?

YES NO IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs

- 0.5 to 3' bgs

- 8-10 bgs OR 3 interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis		
	Collect 10 plugs into ziptock	TPH-g/d/o, PAH, RCRAB, Pest/Herb, PCB		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	nto TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Hei		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

^{1 -} If no fill exists, completed boring to 10 bgs

2 - If fill exists, complete boring 3' below bottom of fill

- Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs

- 5 to 10' bgs

- 10' bgs to 15' bgs

- 15 to 28' bgs (native)

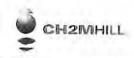
ACTUAL SUs)	Sample	Analysis	
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	1 VOA	o TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb	
Co	1 VQA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs	

^{1 -} If no fill exists, completed boring to 18' bgs

2 - If fill exists, complete boring 3' below bottom of fill

- Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:


Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
7-1	All remaining soil from 6 adjacent boring	s will be consolidated	

CHOREHIII					PROJECT NUMBER Decision Unit DV 1-N		J Boring ID B-3	
CH2MHILL			SOIL BORING LOG					
PROJE	ECT :	HAR	r 📗			LOCATION :	Banana Patch	
LAT/LO	ONG:					DRILLING CON	TRACTOR: Geotek	
DRILL	ING M	ЕТНО	D AND E	QUIPMENT	USED:			
WATE	R LEV	ELS:		STAR	T: 1550	END: 1615	LOGGER:	
DEPTH I			CE (FT)		SOIL COP	RE DESCRIPTION	COMMENTS	
	INTERVA		ERY (FT) #/TYPE	PID READING (ppm)	MOISTURE CONTE	GROUP SYMBOL, COLOR, NT, RELATIVE DENSITY , SOIL STRUCTURE,	Sample Collection Information Sample Sub-Unit Decision	
5	\uparrow	90	+26-1	0	Silty day (gravel Br Brown Sin SHFF. Low Concrete of fragments	CL) with some rown to reddish ignity moist.	0.5-3	
- 10	↑	90	31	0	Silty clay (1) Lovory (4.5) MOIST. Sti Plasticute	ff. Low.	5-8'	
10_					EOB @	(0'		
15_								
							-	
20 _								
	7						1	

PROJECT NUMBER			
PHOSECT NUMBER	Decision Unit	Boring ID	

PROJECT:

LOCATION:

DRILLING CONTRACTOR:

Banana Patch

Geotek

LAT/LONG:

YES NO

UTILITY CLRNCE CONFRMD: DRILLING METHOD AND EQUIPMENT USED

TP

	DPS	HAS
1		_

Geophysical anomalies/ Fill	LI	DU1	DU2	DU3	DU4	DU5	DU6
Exist?	Yes	В	В	В	В	С	С
	No	Α	В	8	Α	c	c

Did you see

NAPL/Char/Ashes?

NO

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

NO IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10 bgs OR 3 interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis		
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs		
	Callect 10 plugs into ziplock, 3 plugs into 1 VOA	to TPH-g/d/o, VOCs, PAH. RCRA8, Pest/Heri PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb. PCBs		

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical

SUs

- 0 to 5' bgs

- 5 to 10' bgs

- 10' bgs to 15' bgs

- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis		
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb PCBs ato TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	IVOA			
	IVUA	TPH-g/d/o, VOCs. PAH, RCRA8, Pest/Herb.		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
	All remaining soil from 6 adjacent borings	1000	

		T NUMBER	Decision Unit	J Boring ID B4			
CH2MHILL		SOIL BORING LOG					
PROJECT: HART			LOCATION:	Banana Patch			
LAT/LONG:			DRILLING CON	TRACTOR: Geotek			
DRILLING METHOD AND EQ	UIPMENT	USED: DPS					
WATER LEVELS :	START		END: 1130	LOGGER: SC			
DEPTH BELOW SURFACE (FT) INTERVAL (FT) RECOVERY (FT)	PID READING (ppm)	SOIL TYPE, USCS (E DESCRIPTION GROUP SYMBOL, COLOR, NT, RELATIVE DENSITY , SOIL STRUCTURE,	COMMENTS Sample Collection Information Sample Sub-Unit Decision	7		
- HLL		Solfy day (1) Some fragues and concrete 11.5 YR 413 to Same as O	STIFF to Cord, bush 254R 4/6) 254R 4/6) 1.54R 4/6) 1.54R 4/6) 1.54R 4/6)	6=0.5-3° 1-418 C=5-8'			
10			Folay increases				
20		€08	= 15 bgs	-	-		
-							

PROJECT NUMBER	Decision Unit	Boring ID	
Name of the same of	DULK	84	

PROJECT:

HART

LOCATION:

DRILLING CONTRACTOR:

Banana Patch

LAT/LONG:

NO

Geotek

UTILITY CLRNCE CONFRMD:

YES

DRILLING METHOD AND EQUIPMENT USED :

DPS HAS TP

Geophysical anomalies/ Fill Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	(8)	В	В	В	С	c
No	A	В	В	A	c	C

Did you see NAPL/Char/Ashes?

YES

NO

NO

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES

IF YES:

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis		
3-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs		
0,5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
5-8	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

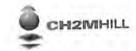
Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 18' bgs (native)

ACTUAL SUs)	Sample	Analysis		
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
Collect 10 plugs into ziplock, 1 VOA	Collect 10 plugs into ziplock, 3 plugs into	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	Server of Black How Williams College His	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:


Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

ACTUAL SUs)	Sample	Analysis
03-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
5-8	All remaining soil from 6 adjacent boring	s will be consolidated

One archive for deep (10'+) NOTE: Do not combine native material and fill

			T NUMBER	Du I N	Boring ID B 5			
CH	12IVIHILL		SOIL BORING LOG					
PROJECT: H	IART			LOCATION :	Banana Patch			
LAT/LONG:				DRILLING CON	NTRACTOR: Geotek			
DRILLING ME	THOD AND E	QUIPMENT	USED: DPS					
WATER LEVE	LS:	STAR	1130	END: (150				
DEPTH BELOW SU INTERVAL		PID READING (ppm)	SOIL TYPE, USCS O	E DESCRIPTION GROUP SYMBOL, COLOR NT, RELATIVE DENSITY SOIL STRUCTURE,	COMMENTS Sample Collection Information Sample Sub-Unit Decision			
-	100% FILL		Silty clay (c Red das box Dry low mois Plackie @ ~ 1	(2 sifty sen) (2 sight 418). Thre LOW plasho	p=0.5-3 bys	17		
100	SUTTAN SODI		Reduct Solt Reduct boo Dry . Stiff. Solt and so increase at	or for brown (+) and content ~ 8 lags.	54R4/3 to 2 5 4R4/3) - (-4-7-1595			
10			EOB = 10	bys	-			
20					-			
-								

PROJECT NUMBER	Decision Unit	Boring ID
11000 1 NO 1770 L	DUIN	12.7

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

YES

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED :

DPS

HAS

Geophysical anomalies/ Fill Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	B	В	В	В	С	С
No	A	В	В	A	c	С

Did you see

NAPL/Char/Ashes?

NO YES

NO

IF YES:

Sample Collect into 8-oz jar Analysis Dioxins, Furans

Replicate collected here?

YES

IF YES:

Sample ID's: Sample ID's

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
2000	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
9-7	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

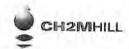
Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 18' bgs (native)

ACTUAL SUs)	Sample	Analysis	
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs. PAH, RCRA8. Pest/Herb PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:


Soil remaining from each core will be kepts and stored

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
0.5-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
4-7	All remaining soil from 6 adjacent boring	s will be consolidated	

LZ7W II II	PROJE	CT NUMBER	Decision Unit	Boring IC	B-6
CH2MHIL	L	SOIL BORING LOG			
PROJECT: HART			LOCATION :	Banana Pat	ch
LAT/LONG:			DRILLING CO	NTRACTOR:	Geotek
DRILLING METHOD AND		,			0.50
WATER LEVELS :	STAP	T: 1600	END: 1028	D LOGGER:	1302
DEPTH BELOW SURFACE (FT)		SOIL CO	RE DESCRIPTION	CC	OMMENTS
INTERVAL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)	MOISTURE CONT	GROUP SYMBOL, COLOR ENT, RELATIVE DENSITY Y, SOIL STRUCTURE,	Sample Collect Sample Sub-Ur	
- 1 80 7	, 0	showel Br brown C & concre sugarty plasticulty	i. Stiff. Fly	0.5-	31
40 40	v	5-7: Sam Silty day brown t Stiff, soft Med. Pla	e ac 0-5; (CL) very dar 1.5YR 2.5/3). - @ 18' Morst. 1.Struty	K 7-10	
10		E	08@10		
				1	
				1	
15				-	1
				-	
				G.	9
-				-	
20_				-	
	4				
				9	
				7	l)÷

PROJECT NUMBER	March 12 Comment of the Comment of t		
THOUSE THOMBEN	Decision Unit	Boring (D	

PROJECT:

HART

LOCATION :

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

TP

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED :

NO DPS HAS

Geophysical anomalies/ Fil Exist?

	_	_				
1	DU1	DU2	DU3	DU4	DUS	DU6
Yes	0	В	В	В	c	c
No	A	В	В	A	C	- 6

Did you see NAPL/Char/Ashes?

YES

IF YES:

Sample Collect into 8-oz jar Analysis Dioxins, Furans

Replicate collected here?

YES NO

IF YES:

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bas
- 0.5 to 3' bgs
- 8-10 bgs OR 3 interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
Drock	Collect 10 plugs into ziplock		
05-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA		
7-10	Callect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5 bgs
 - 5 to 10' bgs
 - 10' bgs to 15' bgs
 - 15 to 28 bgs (native)

ACTUAL SUS)	Sample	Analysis		
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Hert PCBs		
	I VOA	to TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb PCBs		
	IVOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
3 10	Collect 1 VOA from shallow (0-10 bgs) and one from deep (10'+)	Archive	
	All remaining soil from 6 adjacent borings	will be consolidated	_

		T NUMBER Decision Unit	Boring ID B7		
CH2IVIHILL		SOIL BORING LOG			
PROJECT: HART		LOCATION :	Banana Patch		
LAT/LONG:		DRILLING CON	TRACTOR: Geotek		
DRILLING METHOD AND E	QUIPMENT	USED:			
WATER LEVELS :		T: 0830 END: 0850	LOGGER: SC		
DEPTH BELOW SURFACE (FT) INTERVAL (FT) RECOVERY (FT) #/TYPE READ (ppr		SOIL CORE DESCRIPTION SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	COMMENTS Sample Collection Information Sample Sub-Unit Decision		
10%		Sindy silt reddish brown. Dry No Plasticity Sandand growel. Brownin Well justice (SW). Dry (104Re/2) Silty day w/ spine to ze yrule Brown to reddish brown,			
- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		Silty don w/ some and ad	-		
	No. of	gravel Very dark brown (75 YR 2.5/3), Soft Moist. Satzerated @14'whe there is more sad and gravel.	- c=10'-13' (c) -		
15		EOB= 15 bgs			

PROJECT NUMBER	Decision Unit	Boring ID	
	DO1 N	B.T	

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

C.

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

YES

DRILLING METHOD AND EQUIPMENT USED :

DPS HAS TP

Geophysical anomalies/ Fill Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	B.	В	В	В	С	c
No	A	В	В	Α	c	C

NO

Did you see NAPL/Char/Ashes?

YES

NO IF YES:

Sample
Collect into 8-oz jar

Analysis

Dioxins, Furans

Replicate collected here?

YES NO

IF YES:

Sample ID's:

Campie

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs

- 0.5 to 3' bgs

 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0-05	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
05-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5 13	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs

- 5 to 10' bgs

- 10' bgs to 15' bgs

- 15 to 18' bgs (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

mple	Analysis
llect 1 VOA from shallow (0-10' bgs) d one from deep (10'+)	Archive
1	lect 1 VOA from shallow (0-10' bgs)

		ľ
	CH2MHILL	H
-		ı

LAT/LONG:

Boring ID **Decision Unit** PROJECT NUMBER DUIN

SOIL BORING LOG

LOCATION: Banana Patch PROJECT: HART DRILLING CONTRACTOR: Geotek

DRILLING METHOD AND EQUIPMENT USED : DPS

VATER LEVELS :	STAR	T: 0855 END: 0915	LOGGER: 3 C
EPTH BELOW SURFACE (FT)		SOIL CORE DESCRIPTION	COMMENTS
INTERVAL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision
3.0- 100 t		gravel Brown to red the syre of Coral besalt and corrected from to Dry low placed by Shift	13 to 2.548.4/6) B = 0.53-3 (B)
5		Same as 0-5', Silty day. Reddish brow to dark brown (7.5 VR 2.5/3). Vey Stiff, book, Moist atn9.	c= 3-6' (c)
15_		60B 10' bgs	-
20			-
25			-

PROJECT NUMBER	Decision Unit	Boring ID	152	
	DUI	KJ	00	

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

1

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

YES NO

DRILLING METHOD AND EQUIPMENT USED :

DPS HAS TP

Geophysical anomalies/ Fill Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	(B)	В	В	В	С	С
No	A	В	В	A	C	C

Did you see NAPL/Char/Ashes?

YES NO

IF YES:

Sample
Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES NO

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical

- 0 to 0.5' bgs

- 0.5 to 3' bgs

 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0.05	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRAB, Pest/Herb, PCBs
05-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
3-6	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs

- 5 to 10' bgs

- 10' bgs to 15' bgs

- 15 to 18' bgs (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
3-6	All remaining soil from 6 adjacent boring	s will be consolidated

-		PROJEC	T NUMBER	Decision Unit	Boring ID		
9	CH2IVIHILL	-		SOIL BORING	LOG		
PROJECT	: HART		LOCATION : Banana Patch				
LAT/LONG				DRILLING CON	TRACTOR: Geotek		
	METHOD AND E	QUIPMENT	USED:				
WATER LI		STAR		END: 0930	LOGGER: SC		
	W SURFACE (FT)		SOIL CORE	DESCRIPTION	COMMENTS		
INTE	RVAL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS G MOISTURE CONTEN OR CONSISTENCY, MINERALOGY.	ROUP SYMBOL, COLOR, IT, RELATIVE DENSITY SOIL STRUCTURE,	Sample Collection Information Sample Sub-Unit Decision		
-	100% FILL		GITY clay (c Brown to red Graf bosol to applied fragment noist Louplass Coral fragment 4-5 bgs	and oncrete The Dry to shall be the increase star	B=0.5-3		
5	DOY NATIVE		Same as 0-5'	hills day Red	-(2,548 414) - C=5-81		
			OB 3	101 bgs			
20			161/				
-							

PROJECT NUMBER	Decision Unit	Boring ID	
The same of the sa	100 N	(6.7)	

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

(Ves

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

YES

DRILLING METHOD AND EQUIPMENT USED :

NO

DPS HAS TP

Geophysical anomalies/ Fill Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	B	В	В	В	С	С
No	A	В	В	A	С	С

Did you see NAPL/Char/Ashes?

NO

IF YES:

Sample

Collect into 8-oz jar

Analysis

Dioxins, Furans

Replicate collected here?

YES YES

IF YES:

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs

- 0.5 to 3' bgs

 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
1-0-5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
03-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5-8	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

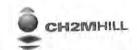
Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 18' bgs (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:


Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
0,5-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
5-8	All remaining soil from 6 adjacent boring	s will be consolidated

	PROJE	CT NUMBER	Decision Unit	Boring ID
CH2MHILL			SOIL BORING	LOG
PROJECT: HART			LOCATION :	Banana Patch
LAT/LONG:			DRILLING CON	NTRACTOR: Geotek
DRILLING METHOD AND EQ	UIPMENT	USED: DPS		
WATER LEVELS :	STAR	T: 094	END: 1000	LOGGER: JC
DEPTH BELOW SURFACE (FT) INTERVAL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS O	RE DESCRIPTION GROUP SYMBOL, COLOR, NT, RELATIVE DENSITY , SOIL STRUCTURE,	COMMENTS Sample Collection Information Sample Sub-Unit Decision
5 - 100%		Brown To 2.5 YR 4/6). Concrete fra Stiff. Glass frage	(CL) w/ gravel red (754R 4/3 to Gral, buselt and greents. Dry. neuts@8'bys. rements blw 10:12'b	B=0.5'-3'
10		Very moist	(ec) Darar bru.). Med plashedy B = 15' bys	C= 12'-15'
20				

PROJECT NUMBER	Decision Unit	Boring ID	
	0010	1310	

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED :

DPS

HAS TP

Geophysical anomalies/ Fil Exist?

17	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	С	c
No	A	В	В	A	С	С

NO

Did you see

Replicate collected here?

YES NAPL/Char/Ashes?

NO

IF YES: IF YES: Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

YES

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0 65	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
13-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

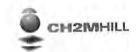
Each boring to be divided into 4 vertical

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 18' bgs (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:


Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
53	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
2-16	All remaining soil from 6 adjacent boring	s will be consolidated	

-	. Zazanie		T NUMBER	Decision Unit	Boring ID			
90	H2IVIHILI		SOIL BORING LOG					
PROJECT :	HART			LOCATION:	Banana Patch			
LAT/LONG:				DRILLING CON	ITRACTOR: Geotek			
DRILLING M	ETHOD AND E	QUIPMENT	USED: DPS					
WATER LEV	/ELS :	STAR	T: 1000	END: (015	LOGGER: 5 C			
	SURFACE (FT)		SOIL CORE	DESCRIPTION	COMMENTS			
INTERV	RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GR MOISTURE CONTENT OR CONSISTENCY, S MINERALOGY.		Sample Collection Information Sample Sub-Unit Decision			
- - - - 5_	75% FLC	(btw 3-5 bys . Darn reddish br (54R 2.5/4 to	4/6)	B-0.5-3'			
- - - - 10_	1005 NATIVE			g. Dry Still 1-6'bgs.	- 6-9'			
- - - -			E0B=	101 bg s				
20								
					-			

PROJECT NUMBER	Decision Unit	Boring ID	
	Dul M	(5/1)	

PROJECT:

HART

LOCATION:

HAS

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

TP

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED :

DPS)

Geophysical anomalies/ Fil Exist?

	DU1	DU2	DU3	DU4	DUS	DUG
Yes	(B)	В	В	В	С	С
No	A	В	В	A	C	С

NO

Did you see

NAPL/Char/Ashes?

NO NO

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES YES

IF YES:

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
5 - 0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
6.9	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10" bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

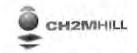
Each boring to be divided into 4 vertical

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 18' bgs (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:


Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis		
0.5-3-	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive		
0 9	All remaining soil from 6 adjacent borings will be consolidated			

	PROJEC	T NUMBER	Decision Unit	Boring ID
CH2IVIHILL			SOIL BORING	LOG
PROJECT: HART			LOCATION:	Banana Patch
LAT/LONG:			DRILLING CON	TRACTOR: Geotek
DRILLING METHOD AND E	QUIPMENT	USED: DR		
WATER LEVELS :	STAR	T: 1015	END: (030	LOGGER: SC
DEPTH BELOW SURFACE (FT)		SOIL COR	RE DESCRIPTION	COMMENTS
RECOVERY (FT) #/TYPE	PID READING (ppm)	MOISTURE CONTE	GROUP SYMBOL, COLOR, NT, RELATIVE DENSITY , SOIL STRUCTURE,	Sample Collection Information Sample Sub-Unit Decision
- (00) File		Sandy silt Reddit 5 18 411 Same basall at 4.5' basa Some placke	(ne)/filty day in . Dry . St. FL t/woral fragments own to 6' 59s o 5' 59s	B=0.5-2'59s
- (00%)			reddish brown, Dy. Stiff. Baselt	-
15_		508	= 10 bgs	
				-

PROJECT NUMBER	Decision Unit	Boring ID
	601 N	13 1 5

PRO.	IEC.	T A
- RU		

HART

LOCATION:

Banana Patch

LAT/LONG:

Geotek

UTILITY CLRNCE CONFRMD:

YES,

NO

DRILLING METHOD AND EQUIPMENT USED :

DPS

HAS TP

DRILLING CONTRACTOR:

Geophysical anomalies/ Fil Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	(3)	В	В	В	С	С
No	A	В	В	A	c	C

Did you see

NAPL/Char/Ashes?

NO YES

IF YES: IF YES Sample Collect into 8-oz jar Analysis Dioxins, Furans

Replicate collected here?

NO YES

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0-05	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
05-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
7-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

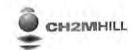
Each boring to be divided into 4 vertical

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 18' bgs (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:


Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
03-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
7-10	All remaining soil from 6 adjacent borings will be consolidated	

	1 1 1 1 1 1 1	TNUMBER	Decision Unit	Boring ID	
CH2MHILL		SOIL BORING LOG			
PROJECT: HART			LOCATION:	Banana Patch	
_AT/LONG:			DRILLING CON	NTRACTOR: Geotek	
DRILLING METHOD AND EQ	UIPMENT	USED: DE			
VATER LEVELS :		1: 1030	END: 104	J LOGGER: SC	
DEPTH BELOW SURFACE (FT)		SOIL CORE	DESCRIPTION	COMMENTS	
RECOVERY (FT) #/TYPE	PID READING (ppm)		ROUP SYMBOL, COLOR, T, RELATIVE DENSITY SOIL STRUCTURE,	, Sample Collection Information Sample Sub-Unit Decision	
- 80% - 80%		Silty day (CL) will concrete a Reddish trows		Dall I had I	
- POZ ANTIVE		5/17 day (c) 5-00 D7 (c) 5-00 D7 (c) 5-18-416)	i). Reddigh Stiff fuguruss.	- C= 7-10 bys	
		Ē03 =	101693		
15					
20					

PROJECT NUMBER	Decision Unit	Boring ID
	DUIN	151.3

ROJECT	HART
KOSESI	

LOCATION:

DRILLING CONTRACTOR:

TP

Banana Patch

LAT/LONG:

Geotek

UTILITY CLRNCE CONFRMD:

NO

DRILLING METHOD AND EQUIPMENT USED :

DPS HAS

Geophysical anomalies/ Fil Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	(B)	В	В	В	c	С
No	A	В	В	A	c	С

Did you see NAPL/Char/Ashes?

YES

NO

IF YES: IF YES: Sample Collect into 8-oz jar Analysis Dioxins, Furans

NO Replicate collected here? YES

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs

- 0.5 to 3' bgs

- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis	
0.05	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
05-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
7-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical

- 0 to 5' bgs

- 5 to 10' bgs

- 10' bgs to 15' bgs

- 15 to 18' bgs (native)

ACTUAL SUs)	Sample	Analysis	
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
5-5-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
7-10	All remaining soil from 6 adjacent boring	s will be consolidated	

	CH2MHILL	2011	T NUMBER	Decision Unit	Boring ID B14
			SOIL BORING LOG		
ROJEC	T: HART			LOCATION:	Banana Patch
AT/LON	G:			DRILLING CON	TRACTOR: Geotek
RILLING	METHOD AND EC	QUIPMENT	USED:		
	LEVELS :		T: 10151100	END: 65	LOGGER:
	OW SURFACE (FT)	4		RE DESCRIPTION	COMMENTS
	RECOVERY (FT) #/TYPE	PID READING (ppm)	MOISTURE CONTE	GROUP SYMBOL, COLOR, ENT, RELATIVE DENSITY Y, SOIL STRUCTURE,	Sample Collection Information Sample Sub-Unit Decision
-	1				- B=05-3'b9s
	FILL		Reddish bro (7.5 YR, 2.5/ Mail. Orga at 14 bgs	who dark brows who dark brows 3). Med plashials mic material	
	,vatiue		4		- C= (0-13
	b		ବେ	B=15'bgs	
					-

PROJECT NUMBER	Decision Unit	Boring ID
	DUL	(3) 4

ROJECT: HAR	T
-------------	---

LOCATION:

TP

DPS HAS

Banana Patch

LAT/LONG:

UTILITY CLRNCE CONFRMD:

YES

NO

DRILLING CONTRACTOR:

Geotek

DRILLING METHOD AND EQUIPMENT USED : Geophysical anomalies/ Fil

Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	(B)	В	В	В	С	С
18			D	A	r.	0

Did you see NAPL/Char/Ashes?

YES

NO

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES NO

IF YES:

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis	
04-0	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
0.3-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
(m) - (3)	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 18' bgs (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:


Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
6/5-8	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
10-13-	All remaining soil from 6 adjacent boring	s will be consolidated

0	11.547.255	111777	CT NUMBER	Decision Unit	Boring ID 3 15		
CH2MHILL				SOIL BORING	LOG		
PROJECT :	HART		LOCATION : Banana Patch				
LAT/LONG:				DRILLING CON	TRACTOR: Geotek		
DRILLING N	METHOD AND E	QUIPMENT	USED: DPS				
WATER LE	VELS:	STAR	T: 1045	END: 1100	LOGGER: SC		
	V SURFACE (FT) VAL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS G	E DESCRIPTION ROUP SYMBOL, COLOR, IT, RELATIVE DENSITY SOIL STRUCTURE,	COMMENTS Sample Collection Information Sample Sub-Unit Decision		
-	70% FILL		Silty day (CL) , sand (ML),	Reduced silt of Reduced at 13's	B=0.5-3'		
5	(68)2			(cr) Redtot For F.SYR 4/3)	C= 4-71		
10	NATIVE		Weathered be bottompsh yell exide him (Bo Dr): (104RG)	1 1 1			
-	100%		5:14 and,	Will graded (sw). Laborated. , 3/4)			
15			FOB =	15'bgs			
20			h je				
				5	-		

PROJECT NUMBER	Decision Unit	Boring (D
	DOLO	1315

n	D	0	EC	~		
ᆮ	K	U	EC	_	-	

HART

LOCATION:

DU6

C

TP

Banana Patch

LAT/LONG:

NO

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DPS HAS

DU5

DRILLING METHOD AND EQUIPMENT USED : Geophysical anomalies/ Fill

	DU1	DU2	DU3	DU4
Yes	(B)	В	В	В
do Co	7.	12.11		

Did you see

Exist?

NAPL/Char/Ashes?

YES NO

IF YES:

Sample Collect into 8-oz jar Sample ID's:

Dioxins, Furans

Analysis

Replicate collected here?

YES

IF YES:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical

- 0 to 0.5' bgs

- 0.5 to 3' bgs

- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample .	Analysis
0.40.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
4-7	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs

- 5 to 10' bgs

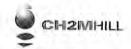
- 10' bgs to 15' bgs

- 15 to 18' bgs (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:


Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
033	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
4-1	All remaining soil from 6 adjacent borings	s will be consolidated

-			N.	PROJE	CT NUMBER	Decision Unit DU 1-S	Boring ID B-1		
CH2MHILL					SOIL BORING LOG				
PROJE	CT:	HART				LOCATION :	Banana Patch		
LAT/LC	ONG:		- 1 - 1			DRILLING CON	TRACTOR: Geote	k	
DRILLI	NG ME	THOE	AND E	QUIPMENT	USED: DPS				
WATE	R LEVE	ELS:		STAR	T: 0945	END: (000	LOGGER : PSK		
DEPTH E	BELOW S	URFACI	E (FT)		SOIL CORE	DESCRIPTION	COMMENTS		
	INTERVA		RY (57) % #/TYPE	PID READING (ppm)	MOISTURE CONTEN OR CONSISTENCY, MINERALOGY.		Sample Collection Information Sample Sub-Unit Decision	on	
5		10	T	0	silty clay (Cl gravel. Redd (2.5 YR 2.5 moist: Med Loose: Med Asphalt mad	J with trace Jsh brown J4). Slightly Journ Stiff. Brum PlasHuity. Terial @5: File			
- 10	1	90	Flut	0	Brown day From 200 Asphalt h	wi basalt grave 6-7! naterial 9-10!	2		
15_	4	40	+	0	brown 17.	Vonjdark 5/R 2.5/2).	15.10		
20_		10	-5-	0	same a medium s moist a	s 11-15? -			
25					EOB (o _y 2-0,			

PROJECT NUMBER	Description (1)		
CONTRACTOR OF THE PROPERTY OF	Decision Unit	Boring ID	

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

NO

DRILLING CONTRACTOR:

Geotek

UTILITY CLANCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED :

HAS TP

Geophysical anomalies/ Fil Exist?

	DU1	DU2	DU3	DU4	DU5	DUG
Yes	(B)	В	В	В	С	c
No	Y	В	В	A	c	C

Did you see

NAPL/Char/Ashes?

IF YES:

Sample Collect into 8-oz jar Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10 bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb PCBs
13-16	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10 bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bas
- -5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

SUS)	Sample	Analysis		
	Collect 10 plugs into ziplock	PCRs		
	IVOA			
	IVOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb.		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 18 bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18 bgs)

POST SAMPLING:

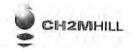
Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

SUs)	Sample	Analysis
	Collect 1 VOA from shallow (0-10 bgs) and one from deep (10+)	Archive
	All remaining soil from 6 adjacent borings	s will be consolidated

One archive for deep (10'+) NOTE: Do not combine native material and fill PROJECT NUMBER

Decision Unit


DM 1-S

Boring ID

B-2

SOIL BORING LOG

LOCATION: **Banana Patch** PROJECT: HART DRILLING CONTRACTOR: Geotek LAT/LONG: DRILLING METHOD AND EQUIPMENT USED: DPS LOGGER: BR END: NR START: WATER LEVELS: SOIL CORE DESCRIPTION COMMENTS DEPTH BELOW SURFACE (FT) INTERVAL (FT) SOIL TYPE, USCS GROUP SYMBOL, COLOR, Sample Collection Information PID RECOVERY (F) 9 MOISTURE CONTENT, RELATIVE DENSITY Sample Sub-Unit Decision READING #/TYPE (ppm) OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY. Sity day (CL) w/trace gravel Reddish brown 12.51R 25/4). Slighth moist Med. Stiff. Low 50 0 plasticity debote @ 5. 5_ concrete debris 5-6. FILL Same as 0-5' from 6-10' Dry Stiff. Some gravel. 40 0 FILL 10_ Nothing recovered 0 15_ SILHy clay (CL). Dark brun (7.548 3/3). Morst. 15-17 15/29/ea hed. SOFF. Med. 50 CV 0 plasticity. 20 EOB @ 20'

PROJECT NUMBER	6 1. 10. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17		
PHOSECTIONBEN	Decision Unit	Boring ID	

PROJECT:	HART
HOULGI	HAR

LOCATION:

Banana Patch

LAT/LONG:

UTILITY CLANCE CONFRMD:

NO

DRILLING CONTRACTOR:

Geotek

Geophysica

DRILLING METHOD AND EQUIPMENT USED :

DPS

HAS

Geophysical anomalies/ Fill		DU1	DU2	DU3	DU4	DU5	DU6
Exist?	Yes	(B)	В	В	В	C	C
	No	A	В	В	A	С	С

Did you see

NAPL/Char/Ashes?

YES NO NO

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES

IF YES: Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bas
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis		
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs		
		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no till exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs.
 - 5 to 10' bgs
 - 10' bgs to 15' bgs
 - 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8. Pest/Herb, PCBs
	IVOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	TVOA	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs
15-17	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	_
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
vative	All remaining soil from 6 adjacent borings	Will be consolidated	_

A	PROJE	CT NUMBER	Decision Unit	Boring ID
CH2MHILL			SOIL BORING	LOG
PROJECT: HART			LOCATION:	Banana Patch
LAT/LONG:			DRILLING CONT	TRACTOR: Geotek
DRILLING METHOD AND EC	QUIPMENT	USED: PPS		
WATER LEVELS :	STAR	T:0915	END: 0945	LOGGER: BR
DEPTH BELOW SURFACE (FT) INTERVAL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS MOISTURE CONT OR CONSISTENC MINERALOGY.	GRE DESCRIPTION GROUP SYMBOL, COLOR, ENT, RELATIVE DENSITY Y, SOIL STRUCTURE,	COMMENTS Sample Collection Information Sample Sub-Unit Decision
- 1 402 - V	0	STIFF.	(CL) with trace addish brown	
30%	0	Sity clay (concrete present to	non. Dry. stff. fragments hvorashout.	£ .
70%	D	Same as Fill-Inds Silty Clay((7.54R 3/2 dry. Stiff.	510° to 12°. at 12°. (CL). Dark bruing 3). Moderately Low plastiaty.	12-151
15%	O	Same as very mok soft. won plastice	to med.	
25		E013	@ 90°	

* Hit refusal @15'. Stepped out 6 ft, made it through to 20 ft.

PROJECT NUMBER	a la		
PHODECT NUMBER	Decision Unit	Boring ID	
	The state of the s		

PROJECT: LAT/LONG: UTILITY CLRN DRILLING MET	70000	NFRMD:	IPMENT		NO		DRILLIN HAS	ON: IG CONTRACTOR:	Banana Patch Geotek
Geophysical anomalies/ Fill Exist?	Yes	DU1	DU2	DU3	DU4	DU5	DU6		
	No	A	В	В	B A	С	c		
Did you see NAPL/Char/Asl	hes?		YES /	/08	IF YES:	Sampl	e into 8-o	z jar	Analysis Dioxins, Furans
Replicate colle	cted he	re?	YES (NO)	FYES:	Sampl	e ID's:		
						Sampl	e ID's:		

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs

- 0.5 to 3' bgs

- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis		
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
2-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH. RCRA8, Pest/Herb, PCBs		

- 1 If na fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs

- 5 to 10' bgs

- 10' bgs to 15' bgs

- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis		
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	IVOA			
	IVOA			
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored

e kepts and stored.	SUs)	Sample	Analysis
One archive for shallow (0-10)		Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
One archive for deep (10'+)	Native	All remaining soil from 6 adjacent borings	s will be consolidated

0			PROJE	CT NUMBER	Decision Unit DU 1 - S	Boring ID B-4		
CH2IVIHILL			3	SOIL BORING LOG				
ROJECT :	HART				LOCATION:	Banana Patch		
AT/LONG:					DRILLING CON	TRACTOR: Geotek		
RILLING M	ETHO	ANDE	QUIPMENT	USED:				
VATER LEV	ELS:		STAR	T: MR	END: UR	LOGGER: BR		
EPTH BELOW		E (FT)		SOIL CO	RE DESCRIPTION	COMMENTS		
INTERVA		RY (PT) 7, #/TYPE	PID READING (ppm)	MOISTURE CONTE OR CONSISTENCY MINERALOGY.	GROUP SYMBOL, COLOR, ENT, RELATIVE DENSITY 7, SOIL STRUCTURE,	Sample Collection Information Sample Sub-Unit Decision		
-	60	T	0		(L) W/trace ddish brown (4). Slightly 1. Soft. Loose.			
- 10	60	Fild Fild	O	asphaes	ai 0-5: ragments, brown silty nents \$			
- 15_	60	-	0	situ day	s S-10' down 13ft. (U). Dark brui 3). Slightly FF, Low plastic	· · · · · · · · · · · · · · · · · · ·		
15 -	80	ci ci	O	Same as	= 1820 13-15	13-16		

_	_	_	_		-	
PA	OJ	ECT	NL	IME	E	R

Decision Unit DUI

FLOW CHART FOR SAMPLING RATIONALE

PROJECT:

HART

LOCATION:

HAS TP Banana Patch

LAT/LONG:

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED :

NO

DRILLING CONTRACTOR:

Geotek

Geophysical anomalies/ Fill Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	(B)	В	В	В	G	c

Did you see

NAPL/Char/Ashes?

YES

IF YES:

Sample Collect into 8-oz jar Analysis

Dioxins, Furans

Replicate collected here?

YES

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUS

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis	
Co	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis		
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	I VOA	PCBs PCBs		
	IVOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
3-14	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18 bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

SUs)	Sample	Analysis	
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
Native	All remaining soil from 6 adjacent boring	s will be consolidated	

One archive for deep (10+) NOTE: Do not combine native material and fill

		JECT NUMBER	Du i-S	Boring ID	B-5
CH2MH	ILL		SOIL BORING	LOG	
ROJECT: HART			LOCATION :	Banana Patch	
AT/LONG:		0.00	DRILLING CON	NTRACTOR:	Geotek
RILLING METHOD A	ND EQUIPME	NT USED: DPS			
ATER LEVELS :	STA	RT: 1330	END:	LOGGER:	3R
EPTH BELOW SURFACE (F	T)	SOIL CORE	DESCRIPTION	COM	IMENTS
INTERVAL (FT) RECOVERY (PID YPE READING (ppm)		ROUP SYMBOL, COLOR, T, RELATIVE DENSITY SOIL STRUCTURE,	Sample Collection Sample Sub-Unit	
5		0-10' not i	recovered ged during thing.		
100	T o	17.54R 2.5 10052	Whith trace dark brown 13). Slightly Moderately Native		
15	0	Sitydry (CL) (7.5 YR 3/2 Moist. Long SOFT at 10). Dark brown 2). OHFF. Plasticity. 3.		

1	CH2MHILL
---	----------

PROJECT NUMBER	Decision Unit -		
A CONTRACTOR OF THE PARTY	Decision Unit	Baring ID	
	The second secon		

PRO.I	ECT:	HAR

TF

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED :

HAS

Geophysical anomalies/ Fill Exist?

-				$\overline{}$		
	DU1	DU2	DU3	DU4	DU5	DU6
Yes	(B)	В	В	В	С	С
No	A	8	В	A	C	c

NO

Did you see

NAPL/Char/Ashes?

YES

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES

IF YES:

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis		
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs		
		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	o TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb		

- 1 If no fill exists, completed boring to 10 bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical | ACTUAL SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

SUs)	Sample	Analysis	
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs	
	IVOA	PCBs	
10-13	IVOA	PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
	Collect 1 VOA from shallow (0-10 bgs) and one from deep (10'+)	Archive	
Jative	All remaining soil from 6 adjacent borings	Will be consolidated	

	CH2MHILL
-	

PROJECT NUMBER

Decision Unit

Boring ID

B-6

SOIL BORING LOG

PROJE	CT:	HART			LOCATION :	Banana Patch
AT/LONG.					TRACTOR: Geotek	
RILLI	NG ME	THOE	AND E	QUIPMENT		0.0
NATER	LEVE	LS:		STAR	T: 1400 END: 1430	LOGGER: POR
	BELOW S	(FT)	E (FT) RY (PTS), #/TYPE	PID READING (ppm)	SOIL CORE DESCRIPTION SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	COMMENTS Sample Collection Information Sample Sub-Unit Decision
5_				-	0-10 not magged recovered. Logged/sampled during test pitting	
10						
1 1	1	80	Tu	0	slityday (CL). Dark bin (154% 3/3) Slightlymois Stiff. Low plasticity. Native	E 10-13'
15		10		0	silty day (CL). Very dark brown (7.5 YR 2.5/2). Moderately SHIFF. Mois Med. plasticity.	
20					EUB @ 20"	
25 _	-					

9	CH2MHILL
700	

PROJECT NUMBER	Date to the last			
, HOUSE THOMBEN	Decision Unit	Boring ID	-	

PROJECT: HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED :

HAS TP

Geophysical anomalies/ Fill Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	(8)	В	В	В	С	С
No	A	В	В	A	c	G

Did you see

NAPL/Char/Ashes?

YES

NO IF YES: Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis	
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
	Callect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs. PAH, RCRA8, Pest/Herb. PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10 bas
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
		TPH-g/d/o, VOCs. PAH, RCRA8, Pest/Herb, PCBs
10-13	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb,
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18 bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
, fid i	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
Native	All remaining soil from 6 adjacent borings	will be consolidated	_

CATION: Banana Patch ILLING CONTRACTOR: Geotek
TANK SEVERSEES - TEACHT
ILLING CONTRACTOR: Geotek
D:1530 LOGGER: PAR
TION COMMENTS
BOL, COLOR, Sample Collection Information Sample Sub-Unit Decision CTURE,
ected.
n to nedt. No
/

9	CH2MHILL
-	

PROJECT NUMBER	In .		
NO CONTROL	Decision Unit	Boring ID	
		the cartie of the base of the same	

PROJECT:

HART

LOCATION :

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLANCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED :

DPS HAS

Geophysical anomalies/ Fill Exist?

	DU1	DU2	DU3	DU4	DUS	DU6
Yes	(B)	В	В	В	C	c
No	V	В	В	A	c	C

Did you see

NAPL/Char/Ashes?

YES

IF YES:

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES NO

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0,5 bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis	
-	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
10-13	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb
	1 1000	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb,
	1,100	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb,
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs

- 1 If na fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

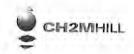
POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
1 100	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
	All remaining soil from 6 adjacent borings	complex secretors of	-


	PROJECT NUMBER	D	DU
CH2MHILL		SOIL	BO

Boring ID

B-8

SOIL BORING LOG

				7/2/2/
ROJECT :	HART		LOCATION :	Banana Patch
AT/LONG:			DRILLING CON	TRACTOR: Geotek
DRILLING M	ETHOD AND	EQUIPMENT	USED:	
NATER LEV		START		LOGGER:
DEPTH BELOW	SURFACE (FT)		SOIL CORE DESCRIPTION	COMMENTS
INTERV	AL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision
- - - 5			0-10' not collected. Loggeted/sampled during test pitting	5.
10				
-	60 T	0	Sity day (Ce). Very dark brown (7.5 yr 7.5/3). Moist Stff low plasticity.	10-13'
15	90	D	same ac 10-15! Soft to med. Soft. Very worst. EOB @ 20'	

PROJECT NUMBER	Design of the second		
NO CONTROL OF THE PROPERTY OF	Decision Unit	Boring ID	
		and Debits I was a second	

PROJECT:

HART

LOCATION:

HAS

DRILLING CONTRACTOR:

TP

Banana Patch

LAT/LONG:

UTILITY CLRNCE CONFRMD: DRILLING METHOD AND EQUIPMENT USED :

YES NO

DPS

Geotek

Geophysical anomalies/ Fill Exist?

11	DU1	DU2	DU3	DU4	DUS	DU6
Yes	В	В	В	В	С	С
No	A	В	В	Α	c	C

Did you see NAPL/Char/Ashes?

YES NO

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES NO IF YES

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- + 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

-	ACTUAL SUs)	Sample	Analysis
1		Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
1			TPH-g/d/o, VOCs, PAH, RCRA8, PesVHerb, PCBs
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH. RCRAB, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
 - 5 to 10' bgs
 - 10' bgs to 15' bgs
 - 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	IVOA	TPH-g/d/o, VOCs. PAH, RCRA8, Pest/Herb, PCBs
	IVOA	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18 bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
1027	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
	All remaining soil from 6 adjacent borings	will be consolidated	

		T NUMBER	Decision Unit	Bor	Ing ID B9
CH2MHIL	L		SOIL BORIN	IG LOG	
PROJECT: HART			LOCATION		77 7 2 7 12 12 13 13 13 13
AT/LONG:			DRILLING C	CONTRACTO	R: Geotek
RILLING METHOD AND E	QUIPMENT	USED: DPS			
VATER LEVELS :	STAR	T: 0830		15 LOGG	
RECOVERY (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS	RE DESCRIPTION GROUP SYMBOL, COL ENT, RELATIVE DENSI' Y, SOIL STRUCTURE,		COMMENTS Collection Information Sub-Unit Decision
- 1		Nó So	impling	-	
5			"a" and " 6" during test pr		
10 _	9	Silty clay bown (3.5 moist sh	brown to de FR 2.5/3). Styl FE. Low placks	11/15 - C.	= 10-131 (c)
15		Same as moist, sof plashic.	10-15', more Fer, and mo	re]	
20		50	B=201 bgs		

PROJECT NUMBER	Decision Unit	Boring ID	
	0015	67	

PROJECT: HART LOCATION:

DRILLING CONTRACTOR:

Banana Patch

LAT/LONG:

Geotek

UTILITY CLRNCE CONFRMD:

NO

DRILLING METHOD AND EQUIPMENT USED :

DPS

TP HAS

Geophysical anomalies/ Fill		DU1	DU2	DU3	DU4	DUS	DU6
Exist?	Yes	(B)	В	В	В	C	c
	No	A	В	В	A	С	C

Did you see NAPL/Char/Ashes?

NO.

IF YES:

Sample Collect into 8-oz jar Analysis Dioxins, Furans

Replicate collected here?

NO YES

IF YES:

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

YES

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical

- 0 to 0.5' bgs

- 0.5 to 3' bgs

- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0 -05	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
BE 8 10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
C-19-14	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs

- 5 to 10' bgs

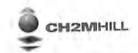
- 10' bgs to 15' bgs

- 15 to 18' bgs (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:


Soil remaining from each core will be kepts and stored.

> One archive for shallow (0-10) One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
-	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
11-13	All remaining soil from 6 adjacent boring	s will be consolidated

		111111111111111111111111111111111111111	CT NUMBER	Decision Unit	Boring ID	310
C	H2IVIHILL			SOIL BORING	LOG	
PROJECT :	HART			LOCATION :	Banana Patci	h
LAT/LONG:				DRILLING CON	TRACTOR:	Geotek
DRILLING N	METHOD AND E	QUIPMENT	USED: DAS			
WATER LEV	VELS :	STAR	T: 0936	END: 1010	LOGGER:	20
DEPTH BELOW	THE RESERVE AND DESCRIPTION OF THE PERSON OF	PID READING (ppm)	SOIL TYPE, USCS O	E DESCRIPTION SROUP SYMBOL, COLOR, NT, RELATIVE DENSITY SOIL STRUCTURE,	CO Sample Collection Sample Sub-Uni	
- - - - 5_			Silty day Brown to r Low ploshody Wilderle. Sh 91 bgs	eddish bown. Mory pluthic	(7.54R 4/3	to 2.54R4/6)
- - - - 10	NATIVE				- - -	* €
-				V	- - - -	0-13
15			EOF	3 = 15' bgs		
- - 25_					-	

* 6-located V/ TWOIL

PROJECT NUMBER	Decision Unit	Boring ID	
	DOI 3	Bro	

PROJECT:

HART

LOCATION:

HAS

TP

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

YES

DPS

DRILLING METHOD AND EQUIPMENT USED :

Geophysical anomalies/ Fill

Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	С	С
No	A	В	В	A	c	c

NO

Did you see

NAPL/Char/Ashes?

YES NO

NO

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES

IF YES:

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis	
) = 0.5	Collect 10 plugs into zíplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
8 10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
10 443	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

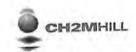
Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 18' bgs (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:


Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
10-13	All remaining soil from 6 adjacent boring	s will be consolidated

•	71000	T NUMBER	Decision Unit	Boring ID
CH2IVIHILL		\$	OIL BORING	LOG
PROJECT: HART			LOCATION :	Banana Patch
LAT/LONG:			DRILLING CON	NTRACTOR: Geotek
DRILLING METHOD AND EQ	UIPMENT	USED: DPS		
WATER LEVELS :	STAR	1: 1020	END: 1045	LOGGER: Je
DEPTH BELOW SURFACE (FT)	PID		DESCRIPTION ROUP SYMBOL, COLOR	COMMENTS Sample Collection Information
RECOVERY (FT) #/TYPE	READING (ppm)		Γ, RELATIVE DENSITY	Sample Sub-Unit Decision
-			1	-
- 5				-
-		No 20	in logs	
			V	
10 - 1007 NATIVE		moist Shift	to hard plash	dby. c=10-13 bgs
15				-
-			V	
-		6013	= 20 bgs	
-				

PROJECT NUMBER	Decision Unit	Boring ID	
PROJECT HOMES	DOI S -	(31)	

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED :

HAS TP

DRILLING CONTRACTOR:

Geophysical anomalies/ Fil Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	С	С
No	Δ	B	В	A	C	C

Did you see NAPL/Char/Ashes?

NO YES

NO

IF YES:

Sample Collect into 8-oz jar Analysis Dioxins, Furans

Replicate collected here?

YES

IF YES:

Sample ID's: Sample ID's:

DPS

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs

- 0.5 to 3' bgs

- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis	
0-05	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
8-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
10-13	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs

- 5 to 10' bgs

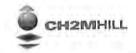
- 10' bgs to 15' bgs

- 15 to 18' bgs (native)

ACTUAL SUs)	Sample	Analysis		
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	 TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb PCBs 		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA			

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:


Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

Sample	Analysis	
Collect 1 VOA from snallow (0-10' bgs) and one from deep (10'+)	Archive	
	Collect 1 VOA from shallow (0-10' bgs)	

0			W. Viceri	T NUMBER	Decision Unit	Boring ID	312		
	:H2IV	THIL	-		SOIL BORING LOG				
PROJECT	: HART				LOCATION :	Banana Patch			
LAT/LONG	;				DRILLING CON	TRACTOR:	Geotek		
DRILLING	METHOD	AND E	QUIPMENT	USED: DPS					
WATER LE				T: 1100	END: 1135	LOGGER:	SC		
DEPTH BELOV		(FT)		SOIL COI	RE DESCRIPTION	COM	MENTS		
INTER	RVAL (FT)	RY (FT) #/TYPE	PID READING (ppm)	MOISTURE CONTE	GROUP SYMBOL, COLOR, ENT, RELATIVE DENSITY Y, SOIL STRUCTURE,	Sample Collection Sample Sub-Unit D			
7-					1	4			
-									
_					1/4				
5		-	_	, , , , , , , , , , , , , , , , , , ,	MAINE				
-				N ²					
10	100%	NATIVE	A JUNE	Source of the Silly sand, Poorly soute.	Barck add in brown d. (SP) (5/R, 3/4)	c = 10-1	3' bys		
- 20	(00%		Contraction of the contraction o	Sandy clayers content inc Brown to day Maist, Law	y silt.(HH). Blay reeses w/depth. h bown (75/72 2) plasticity.	- (3) -			
-				EOB =	= 201 bgs				

PROJECT NUMBER	Decision Unit	Boring ID
	0012	512

P	R	OJ	E	C	Τ.	:	
-		<u>~~</u>	_	=	-	-	

HART

LOCATION:

DRILLING CONTRACTOR:

TP

Banana Patch

LAT/LONG:

UTILITY CLRNCE CONFRMD:

YES

Geotek

DRILLING METHOD AND EQUIPMENT USED :

DPS HAS

Geophysical anomalies/ Fill Exist?

	DU1	DU2	DU3	DU4	DUS	DU6
Yes	(B)	В	В	В	С	С
No	A	В	В	À	c	C

NO

Did you see

NAPL/Char/Ashes?

NO NO

IF YES

Sample Collect into 8-oz jar Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

YES

YES

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis		
0-05	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs		
8-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Her PCBs		
10=13	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
 - 5 to 10' bgs
 - 10' bgs to 15' bgs
 - 15 to 18' bgs (native)

ACTUAL SUs)	Sample	Analysis		
12.14	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	 TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb PCBs 		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	to TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Her PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

ACTUAL SUs)	Sample	Analysis			
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive			
10-13	All remaining soil from 6 adjacent borings will be consolidated				

One archive for deep (10'+) NOTE: Do not combine native material and fill

CH2MHILL		CT NUMBER D	DU2	Boring ID
•		SOIL	BORING	LOG
PROJECT: HART			OCATION :	Banana Patch
AT/LONG:	·		RILLING CON	TRACTOR: Geotek
RILLING METHOD AND E	QUIPMENT	USED: DPS Tr	rack R	iq
ATER LEVELS :	START			LOGGER: VM
EPTH BELOW SURFACE (FT)		SOIL CORE DESCRI	PTION	COMMENTS
INTERVAL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SY MOISTURE CONTENT, RELAT OR CONSISTENCY, SOIL STR MINERALOGY.	IVE DENSITY UCTURE,	Sample Collection Information Sample Sub-Unit Decision
-11	0	dr loose, roots	sound	Sample
- 4 20% 5 - HIT		Coraline gravel,	Lg,A,_	Sample O-0.5
5	0			0.5-3.0' 695
~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				NO Sample -Shoe jamnkol Woravel poor recovery
	0	1	Ā	Sample
5_ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		NATIVE: SILTY SAI damp,	ND-BIS	sample 13-16 bgs
- 1 1 2 2	0	DRIATIVE : DK grey	can not	Seawaple 150000 logs
0-1414		DNATIVE: DK grey of soft, plastic. Dan EOB @ 20		9
		7506 20	03	
		D readings tak		

PROJECT NUMBER	Decision Unit	Boring ID	
	Du2	181	

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

HAS TP

Geophysical anomalies/ Fill		DU1	DU2	DU3	DU4	DU5	DU6
Exist?	Yes	В	B	В	8	С	С
	No	Δ.	B				

Did vou see

NAPL/Char/Ashes?

IF YES:

Sample Collect into 8 pz jar

Analysis Dioxins, Furans

IF YES:

NO

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis		
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs		
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
13-14	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

SUs)	Sample	Analysis		
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
X	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (2 +)

ACTUA SUs)	Sample	Analysis
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
3-2	All remaining soil from 6 adjacent boring	s will be consolidated

		CT NUMBER	Decision Unit	Boring ID B2	
CH2MHILL		SOIL BORING LOG			
PROJECT: HART			LOCATION:	Banana Patch	
LAT/LONG:			DRILLING CO	ONTRACTOR: Geotek	
DRILLING METHOD AND EC	UIPMENT	USED: DPS			
WATER LEVELS :	STAR	T: NR	END:NR	LOGGER: BR	
DEPTH BELOW SURFACE (FT)		SOIL COF	RE DESCRIPTION	COMMENTS	
INTERVAL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)	MOISTURE CONTE	GROUP SYMBOL, COLOF INT, RELATIVE DENSITY , SOIL STRUCTURE,	R, Sample Collection Information Sample Sub-Unit Decision	
70%	0		L)W/Some grainwn. Dy. ose. debris @4. PILL	vel. 0-0.5' - 0.5-3.0'	
80%	0	some as	0-5) ete @9!		
15	O .	Same as C Abundant Silty clay (C Stiff to me Sand 13-15!	0-5. Fillends@1: Coral gravel.: W, brwn. Moised. SHff, Some	12-(5)	
902	0		t, soft, darker		
20 V V		EB C	20		

C

25

PROJECT NUMBER	Decision Unit	Boring ID	8

PROJECT:

HART

LOCATION:

DRILLING CONTRACTOR:

Banana Patch

LAT/LONG:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED

DPS HAS TP

Geophysical anomalies/ Fill Exist?

II F	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	B	В	В	С	С
No	A	В	В	A	С	С

Did you see

NAPL/Char/Ashes?

YES

IF YES:

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here? YES

NO

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis		
0-0,5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs		
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
12-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

SUs)	Sample	Analysis	
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
25.0	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
,	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
3-20	All remaining soil from 6 adjacent borings	s will be consolidated

5/22/14

		CT NUMBER Decision Unit	Boring ID -3		
CH2MHILL		SOIL BORING LOG			
PROJECT: HART		LOCATION:	Banana Patch		
LAT/LONG:		DRILLING COM	NTRACTOR: Geotek		
DRILLING METHOD AND E	EQUIPMENT				
WATER LEVELS :	STAR	T: 1615 END: 1630	LOGGER: BR		
DEPTH BELOW SURFACE (FT) INTERVAL (FT)		SOIL CORE DESCRIPTION	COMMENTS		
RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Sub-Unit Decision		
-17		Sifty day (U) W/trace grav Reddish torwn. Dry, SHFF,			
- 102	٥	100Se.	- 0.5-3.0		
5		FILL			
70	٥	Same as 0-5: Brown @ 6.			
10		Same as At			
70	0	Same as 0-5? Concrete @ 14! Slity day @ 14.5?			
- 1 80 cu	0	Silty day (U). Brown. Moist. Med. SHFF. Med. plasficity.	15-18'		
20		tOB@ 20'			

		CITIC NO.	
PROJECT NUMBER	Decision Unit	Boring ID	
	<u> </u>		

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

NO

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

HAS TP

Geophysical anomalies/ Fil Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	B	В	В	С	С
No	Α	В	В	А	С	С

Did you see

NAPL/Char/Ashes?

IF YES:

Sample Collect into 8-oz jar Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-18	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

	ACTUAL SUs)	Sample	Analysis
		Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
3	1 41	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	- 1	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis		
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive		
3-20	All remaining soil from 6 adjacent boring	s will be consolidated		

1	CH2MHILL
400	

PROJECT NUMBER

Decision Unit

Boring ID

SOIL BORING LOG

	Joile Borling Loa		
PROJECT: HART	LOCATION :	Banana Patch	
LAT/LONG:	DRILLING CO	ONTRACTOR: Geotek	
DRILLING METHOD AND EC	QUIPMENT USED: DPS TYACK	Rio	
WATER LEVELS :	START: 0830 END: 804	O LOGGER: VM	
DEPTH BELOW SURFACE (FT)	SOIL CORE DESCRIPTION	COMMENTS	
RECOVERY (FT)	PID READING (ppm) SOIL TYPE, USCS GROUP SYMBOL, COLOR MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	R, Sample Collection Information Sample Sub-Unit Decision	
712	FILL RABOR SILT 100SE, WI Draganics, dres FILL Coraline growe W/ bt SILT & debris V Greotextile Fabric (LIACH)		
30% 10%-	Native: br GLAYETSIL trace sand. Dry. Frm. o mothes to 17'.	- Semple 12-15	
20	ia'		

PROJECT NUMBER	Decision Unit \	Boring ID C
V # 10 120	Duz	104

P	LOF	ECT	1	HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLANCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED :

HAS TP

Geophysica anomalies/ Fi Exist?

	DU1	DU2	DU3	DU4 D	DU5	U5 DU6
Yes	В	(8)	В	В	c	c
No	Α	В	В	A	C	- C

Did you see

NAPL/Char/Ashes?

IF YES:

NO

IF YES:

Sample	Analysis
Collect into 8-oz jar	Dioxins, Fura
Consect Mile G-02 Jan	Dioxins, FL

Replicate collected here?

YES

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis	
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
0,5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
12-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10 bgs
- 2 If fill exists, complete baring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5 bgs
- 5 to 10' bgs
- 10 bgs to 15' bgs
- 15 to 28' bgs (native)

SUs)	Sample	Analysis	
1	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
X	1 VOA	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs	
	1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
1	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 18 bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
3-20	All remaining soil from 6 adjacent borings	s will be consolidated

CH2MHILL

PROJECT NUMBER

Decision Unit

Boring ID

SOIL BORING LOG

PROJECT:	HAR	г		LOCATION :	Banana Patch
LAT/LONG:				DRILLING CON	TRACTOR: Geotek
DRILLING M	ETHO	D AND E	QUIPMENT	rused: DPS Truck May	inted Ria
WATER LEV	/ELS:		STAR	T: 0900 END: 0930	LOGGER: VA
DEPTH BELOW		E (FT)		SOIL CORE DESCRIPTION	COMMENTS
INTERV		#/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision
	- XOK -	FIL	0	FILL Rd bt SILT, LOOSE, 1 Fissile, Wisand Forganics F FILL: Red-tan SILT, Wisand and gravel throughout, with rack Concrete rubble,	Sample 0-0,5 Sample 0.5-3
10_ \	-20%-		0	dry. Fiss. 10.	
15	1001/-	1	0 0	Rd br SILT dry - Trace Sand grading into Dk br clay njarganics Dampe jai	Sample 13:5-16:5-
20	109-	NATIVE	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	tobe 20	
25		18			5

ROJECT NUMBER	Decision Unity	Boring ID AA
	1/42	B-100

PROJECT : HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLANCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED :

DPS HAS TP

Geophysical anomalies/ Fil Exist?

	DU1	DU2	DU3	DU4	DUS	DU6
Yes	В	(B)	8	В	o	c
No	A	В	В	A	C	c

Did you see

NAPL/Char/Ashes?

IF YES:

NO

Analysis Dioxins, Furans

Replicate collected here?

YES

IF YES:

Sample ID's:

Collect into 8-oz jar

Sample ID's:

Sample

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5 bgs

- 0.5 to 3' bgs

- 8-10 bgs OR 3 interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0-05	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
05.3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
13.5-16,	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 It no fill exists, completed boring to 10' bas
 - 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUS

- 0 to 5' bgs
- 5 to 10 bgs
- 10' bgs to 15' bgs
- 15 to 28 bgs (native)

SUs)	Sample	Analysis
1	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs
	1 VOA	PCBs
Λ	1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18 bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18 bgs)

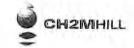
POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	_
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
3-20	All remaining soil from 6 adjacent borings	s will be consolidated	


	CHORAUI
-	CH2WHILL

PROJECT NUMBER Decision Unit

Boring ID

SOIL BORING LOG

ROJE	CT:	HART			LOCATION :	Banana Patci	h
AT/LO	NG:		-		DRILLING CON	TRACTOR:	Geotek
RILLIN	IG ME	THOE	AND	QUIPMENT	USED: Track Rig		
VATER	LEVE	LS:		STAR	T: END:	LOGGER:	VM
EPTH BE	LOW SI		(FT)		SOIL CORE DESCRIPTION	con	MMENTS
		RECOVE	RY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Sample Sub-Unit	Decision
	4	Yob.	J.L.—		FILL: Rd SILT 1008, dry, PISSILE W/ some F Sand Trace organics	Sample Sample	0.0.5
			1				
10	1	40%			& FILL Br SILTW/ Coraling gravel and concrete	Q	
1 1 1 1	1	707			gravel and concrete - rubble throughout. Wood fragment @ 13'		
15	1	40.4	NATIVE -		NATHVE BY SILT W/Little sand orange mothes, manuet Native: Dk br CLAV domp, med-rlastic wet scan @ 19.5	Sample	15-18
	10						

PROJECT NUMBER	Decision Unit	Boring ID 10
	Duz	1 16-16

PROJECT :

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

TP

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED :

HAS

Geophysical anomalies/Fi Exist?

	DU1	DU2	DU3	DU4	pus	DU6
Yes	В	(B)	В	В	С	С
No	A	В	В	A	c	0

Did you see

NAPL/Char/Ashes?

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES

IF YES:

NO

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUS

- 0 to 0.5 bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0-05	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
0,5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-18	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical ACTUA SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

SUs)	Sample	Analysis	
11	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
X	1 VOA	PCBs	
	1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs	

- 1 if no fill exists, completed boring to 18 bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
3-20	All remaining soil from 6 adjacent borings	s will be consolidated	

		CT NUMBER	Decision Unit	2 Boring ID BT
CH2MHIL	L		SOIL BORING	LOG
PROJECT: HART			LOCATION:	Banana Patch
LAT/LONG:			DRILLING COM	NTRACTOR: Geotek
DRILLING METHOD AND	EQUIPMENT	USED :		
VATER LEVELS :	STAR	T: NR	END: NR	LOGGER: BR
EPTH BELOW SURFACE (FT)		SOIL COF	RE DESCRIPTION	COMMENTS
INTERVAL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)	MOISTURE CONTE OR CONSISTENCY, MINERALOGY.	GROUP SYMBOL, COLOR, NT, RELATIVE DENSITY , SOIL STRUCTURE,	Sample Collection Information Sample Sub-Unit Decision
90%			JW/tracegranol in. Dry. SHFF, plagtic ignents@2! FILL	0.5-3.0
10_		Some as Coonerate Co	0-51. 27! FILL	
30%		some as concrete, 2th silty do	Q 16;	15-18
- 80% cr		Stity day(Sound. Bro Very moist SOFF, LOW. plasticity	Whith trace wn. Moist, -017. Med. to med.	
-		EOB	€20°	

PROJECT NUMBER	Decision Unit	In	
PROCEST NOMBER	Decision Unit	Boring ID	
n na marki			

PR	O.	JEC	: T:

HART

LOCATION:

HAS

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

TP

Geotek

UTILITY CLRNCE CONFRMD:

NO

DRILLING METHOD AND EQUIPMENT USED: Geophysical anomalies/ Fil

Exist?

	DU1	DU2	DU3	DU4	DU5	DU6	
Yes	В	B	В	В	С	С	
No	Α	Y	В	Α	C.	С	

Did you see

NAPL/Char/Ashes?

Replicate collected here?

YES YES

IF YES: IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis		
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs		
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
15-18	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
157	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
3-20	All remaining soil from 6 adjacent borings	s will be consolidated

	PROJECT NUMBER	Decision Unit 2 Boring ID B8
CH2MHILL	Sc	DIL BORING LOG
PROJECT: HART		LOCATION: Banana Patch
LAT/LONG:		DRILLING CONTRACTOR: Geotek
DRILLING METHOD AND EQU	IPMENT USED :	
WATER LEVELS :	START: 1545	END: 1600 LOGGER POR
DEPTH BELOW SURFACE (FT) INTERVAL (FT)	SOIL CORE DE	SCRIPTION COMMENTS
RECOVERY (FT)	PID SOIL TYPE, USCS GROUM MOISTURE CONTENT, ROIL MINERALOGY.	ELATIVE DENSITY Sample Sub-Unit Decision
95%	Silty day (CU) is Reddish lawn Dry. Stiff, low Conerate @ 1' Conerate @ 1'	98e, 0.5-3,0°
10_	o Asphalt mat	delants @8" ental @wi.
- 60% - GM	Asphalt mater Siltyday (U) 6 6" chusted con berow,	tal 10-12: 10:6" thuck erete@12.5! well(GM)
20_	Saturated, Sity day(CL)	M); dark bruh.
-	E0B@ 20	

PROJECT NUMBER	Decision Unit	Boring ID	
1. 10 I - D - 2 - 2		Y 11-1011	

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

10 =

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

ES

) :

DRILLING METHOD AND EQUIPMENT USED:

DPS HAS TP

Geophysical
anomalies/ Fill
Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	(g)	В	В	С	С
No	A	В	В	A	C	С

Did you see

NAPL/Char/Ashes?

YES

ď

IF YES:

Sample
Collect into 8-oz jar

Analysis

Dioxins, Furans

Replicate collected here?

YES

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0-0-5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-18	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill.
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
, = ,# 	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
F F 18	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
2 4 C	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

	ACTUAL SUs)	Sample	Analysis	Ī	
	0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive		
	3-20	All remaining soil from 6 adjacent borings will be consolidated			

		CT NUMBER	Decision Unit		Boring ID B9	
CH2MHILI		so	IL BORING	LOG	2	
PROJECT: HART	72		LOCATION:	Bana	na Patch	
LAT/LONG:		3	DRILLING CON	TRACT	OR: Geotek	
DRILLING METHOD AND E	QUIPMENT	USED:				1,
WATER LEVELS :	STAR	т: 1020	END: 1635	LOG	GER: POR	955
DEPTH BELOW SURFACE (FT) INTERVAL (FT)		SOIL CORE DES	CRIPTION	E)	COMMENTS	
RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP MOISTURE CONTENT, RE OR CONSISTENCY, SOIL S MINERALOGY.	LATIVE DENSITY STRUCTURE,	Sample	Collection Information Sub-Unit Decision	
-1 90%		Sitty day (CL) N Brown to reddle Dry. Stiff, loc Basalt & coral	I trace grow sh bown.	rel,	0-0.5'	
- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0	Basalt & Coral	_		0.5-3.0	-
5	<u> </u>	Ca1400 (10 0 0)	PIU.			-
90%	0	Came as 0-5' Gravel-rich les Silty clay w/tra 511ty gravel (Gr FIL	لـــا	P P		
15_	0	Same as 0- Silty clay (a) @ Moist. Med. I low to med. pro till ands @ 18	5:3: Brwn SHFF. Isticity. =	(2-15	-
602 a	0	Same as 18- Very moist & @18:	20: med soft			
20	· ·	E018@21	o`]		8	
						-

Set.

PROJECT NUMBER	Decision Unit	Boring ID	

PROJECT:

HART

LOCATION:

DRILLING CONTRACTOR:

Banana Patch

LAT/LONG:

NO

Geotek

UTILITY CLRNCE CONFRMD:

YES

DRILLING METHOD AND EQUIPMENT USED:

DPS HAS TP

Geophysical
anomalies/ Fill
Friet?

11	DU1	DU2	DU3	DU4	DU5	DU6
Yes	B	В	В	В	С	С
No	A	В	В	1 1 A	C	C

Did you see

NAPL/Char/Ashes?

YES NO IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

NO

IF YES:

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical

- 0 to 5' bgs

- 5 to 10' bgs

- 10' bgs to 15' bgs

- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis		
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

	ACTUAL SUs)	Sample	Analysis	
		Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
		All remaining soil from 6 adjacent borings will be consolidated		

5/23/N PROJECT NUMBER **Decision Unit** Boring ID DU102 CH2MHILL **SOIL BORING LOG** PROJECT: HART LOCATION: **Banana Patch** LAT/LONG: DRILLING CONTRACTOR: Geotek DRILLING METHOD AND EQUIPMENT USED: START: JM WATER LEVELS: END: 0350 LOGGER: DEPTH BELOW SURFACE (FT) SOIL CORE DESCRIPTION COMMENTS INTERVAL (FT) RECOVERY (FT) PID SOIL TYPE, USCS GROUP SYMBOL, COLOR, Sample Collection Information #/TYPE READING MOISTURE CONTENT, RELATIVE DENSITY Sample Sub-Unit Decision OR CONSISTENCY, SOIL STRUCTURE, (ppm) MINERALOGY. FILL: Rd-for SILT W/Coralin 0 gravel throughout, congrete rubble, pea gravel (basalt), Wisand. Dry. Pasile ХQX FI 0 10_ 0 Q WATTIVE: Br s. Ityciay Trace sand. Damp. Med Soft, plastic. orange Sample @ 12.5-15/bgs 15 0 SANDY SILTY CLAY-WEA seam Br. 20 EU8@ 201

PROJECT NUMBER	Decision Unit 2	Boring ID B-(O	
	10.4		

PROJECT:	
----------	--

HART

DRILLING METHOD AND EQUIPMENT USED:

LOCATION:

HAS

Banana Patch

LAT/LONG:

6

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

(FE)

G

Geophysical anomalies/ Fill Exist?

				,	<u>~~</u>	
,	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В		В	В	С	С
No	A	В	В	A	C	С

NO

Did you see

NAPL/Char/Ashes?

Replicate collected here?

YES

IF YES:

Sample
Collect into 8-oz jar

Analysis

Dioxins, Furans

Conect mile

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ıł	ACTUAL SUs)	Sample	Analysis
	0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
	0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	12.5-15		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
Λ	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
1	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
Λ	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
3-20	All remaining soil from 6 adjacent borings	will be consolidated

5/23/14

	CH2MHILL
--	----------

PROJECT NUMBER

Decision Unit

	SOIL BORING LOG
PROJECT: HART	LOCATION: Banana Patch
LAT/LONG:	DRILLING CONTRACTOR: Geotek
DRILLING METHOD AND EQUI	IPMENTUSED: Truck Maynted DPS
WATER LEVELS :	START: (900 END: 0920 LOGGER: VM
DEPTH BELOW SURFACE (FT)	SOIL CORE DESCRIPTION COMMENTS
#/TYPE RE	PID SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.
	O FILL: Rd BILT. DRY LODGE Sample 0-0.5' bg.
- X O V	FILL: Rd BILT. DRY LOUSE Sample 0-0.5' bg. FILL: Br SILT W/ Coraline Browels, concrete rubble, Sample 0.5-3/ b
10_ 10_ 10_	FILL: Rober SILT mothed
15_	When I wome Ceand Pry, very Byith. Fissiv NATIVE: Br SILTY CLAY Sample Both Damp, med Arm. Legs
30./. Sey.	
	£08@20'
-	

PROJECT NUMBER	Decision Unit	Boring ID P
	1 0012	+

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED: Geophysical anomalies/ Fill

Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	(3)	В	В	С	С
No	^		В			

Did you see

NAPL/Char/Ashes?

Replicate collected here?

IF YES:

NO

IF YES:

Sample Analysis Collect into 8-oz jar Dioxins, Furans

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

YES

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
11-14	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis	
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
X	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
3-20	All remaining soil from 6 adjacent boring	s will be consolidated

CHOREUM I	PROJECT NUMBER Decision Unit Borin	B-13
CH2MHILL	SOIL BORING LOG	
PROJECT: HART	LOCATION: Banana P	atch
LAT/LONG:	DRILLING CONTRACTOR	
DRILLING METHOD AND E		-1
WATER LEVELS :	START: 0930 END: 0940 LOGGER	
DEPTH BELOW SURFACE (FT)		COMMENTS
INTERVAL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm) SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY. Sample Sub-	ection Information Unit Decision
60% 70%	PILL Rd by SILT W/Goral PILL Rd by SILT W/Goral Gravej and Concrete rubble, and Sand O Morey out, Dry, Fissile	ple 0.5-3
10 - X 20 X - 30 X X - 20 X -	Grades to DK br dry-dainy (only SILTY CLAY	e 15-20/bg
- - - - 25	201 hg	

PROJECT NUMBER	Decision Unit	Boring ID	
	1000		

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

UTILITY CLRNCE CONFRMD:

DRILLING CONTRACTOR:

Geotek

DRILLING METHOD AND EQUIPMENT USED:

Sample

Geophysic	al
anomalies/	Fill
Exist?	

						_	
ii iii		DU1	DU2	DU3	DU4	DU5	DU6
	Yes	В	B	В	В	С	С
	No	Α	В	В	. A	C	C

Did you see

NAPL/Char/Ashes?

IF YES:

Collect to 8-oz jar Analysis Dioxins, Furans

Replicate collected here?

IF YES:

NO

Sam Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis	
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis	
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
\bigvee	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	7
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	9
3-20	All remaining soil from 6 adjacent borings	s will be consolidated	

5/23/H

	PROJECT NUMBER Decision Unit Boring ID 2-13
CH2MHILL	SOIL BORING LOG
PROJECT: HART	LOCATION: Banana Patch
LAT/LONG:	DRILLING CONTRACTOR: Geotek
DRILLING METHOD AND EQUIP	
WATER LEVELS :	START: 0950 END: 1000 LOGGER: VM
DEPTH BELOW SURFACE (FT)	SOIL CORE DESCRIPTION COMMENTS
#/TYPE REA	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.
60%	FILL: Rd SILTIW/organis Sunpa 0-0.5 Cons, Pissile [FILL: Br Sitt W/gravel Coralling & concrete rubble, and sand, throughout Ony
10 - 1 0 0 - 15 - 15 - 15 - 10 0 0	NATIVE: Rd br Silty - Sample 13-16'- SIND, dry, Stiff, bys.
60% - 60% -	Grades to DK brown SMMY SIE SMW, to DK br Clay ed @18' wet@16-18' in Sandy Seam
25_	E08@ 20

Note PID every 69

PROJECT NUMBER	Decision Unit	Boring ID 12	
Ril	1042	0.0	

PROJECT	:
---------	---

HART

LOCATION:

DRILLING CONTRACTOR:

Banana Patch

LAT/LONG:

UTILITY CLRNCE CONFRMD:

Geotek

DRILLING METHOD AND EQUIPMENT USED:

Geophysical anomalies/Fi Exist?

il 111	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	0	В	В	С	С
No	A	В	В	Α	С	C

Did you see

NAPL/Char/Ashes?

IF YES:

Sample Collectinto 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

IF YES:

e ID's: Sam Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample ·	Analysis	
0-0,5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
0.2-3	Collect 10 plugs into zíplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
13-16	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

'	SUs)		Sample	Analysis
	1	1	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
		Χ	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
			Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	1		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 if fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

SUs)	Sample	Analysis
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
3-20	All remaining soil from 6 adjacent borings	will be consolidated

0	PROJECT NUM	BER Decision Unit	Boring ID B-14
CH2MHILL		SOIL BORING	LOG
PROJECT: HART		LOCATION:	Banana Patch
LAT/LONG:		DRILLING CON	TRACTOR: Geotek
DRILLING METHOD AND EC	QUIPMENT USED	: Track Rias	
WATER LEVELS :	START:	END:	LOGGER: VM
DEPTH BELOW SURFACE (FT)		SOIL CORE DESCRIPTION	COMMENTS
RECOVERY (FT) #/TYPE	(ppm) MOIS OR CO	TYPE, USCS GROUP SYMBOL, COLOR, TURE CONTENT, RELATIVE DENSITY DNSISTENCY, SOIL STRUCTURE, RALOGY.	Sample Collection Information Sample Sub-Unit Decision
	O Rdi	or SILT FILL:	Samylo 0-051
- . .	1 dry	, pissile, some gravel	Sample 05-21
- 1 0 7		i i	1 000
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	
	O FIL	: Bir SILT W/ Corallin	
	900	: Br SILT W/Coralling reland concrete rubble sand throughout.	
- %	and	sand throughout	
	Dry	, 1	
10	4		
	©		
	1 1	_	
- 112911		1	
-	No Non	We: Br SILT WI -	Soundle W 101
15	V Nat	Charles Sich	Sample 14-17'
- 1 1 1 1 1	o wet	Sand, dus @1769s.in dy sitty seam.	bgs
- (3)	Sam	dy 5.140 com	
1 9 1		st stant.	
Led-	DKK	or CLAY Damp	
		POB@20'	Fig. 3
- 1 1 1			
1	1		
5			

PROJECT NUMBER	Decision Unit DY 2	Boring ID B14	
	19		

PR	CO	EC.	Γ :

HART

LOCATION:

HAS TP

DRILLING CONTRACTOR:

Banana Patch

LAT/LONG:

NO

UTILITY CLRNCE CONFRMD:

Geotek

DRILLING METHOD AND EQUIPMENT USED:

anomalies/ Fill		DU1	DU2	DU3	DU4	DU5	DU6
Eviat2	Yes	В	(B)	В	В	С	С
	No	Α	В	В	А	С	С
		B A			B A	٦	(

Did you see

NAPL/Char/Ashes?

IF YES:

Sample Collect not 8-oz jar Analysis Dioxins, Furans

Replicate collected here?

IF YES:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

al	ACTUAL SUs)	Sample	Analysis
	0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
	0.5-3		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	14-17		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

	UAL Js)	Sample	Analysis
1		Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Χ	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
/		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis		
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive		
3-20	All remaining soil from 6 adjacent borings will be consolidated			

SOIL BORING LOG PROJECT: HART LATILONG: DRILLING CONTRACTOR: Geotek DRILLING METHOD AND EQUIPMENT USED: Truck Rig WATER LEVELS: START: [OIS END: [O3O LOGGER: VIA DEPTH BELOW SURFACE (FT) NOTERVAL (FT) PID READING (Spm) PID RECOVERY (FT) RECOVERY (FT) READING (Spm) PID READING (Spm) PID: READING (Spm) SOIL TYPE USES GROUP SYMBOL, COLOR, Sample Collection Information Soil Type USES GROUP SYMBOL, COLOR, Sample Collection Information Soil Type USES GROUP SYMBOL, COLOR, Sample Collection Information Soil Type USES GROUP SYMBOL, COLOR, Sample Collection Information Soil Type USES GROUP SYMBOL, COLOR, Sample Collection Information Soil Type USES GROUP SYMBOL, COLOR, Sample Collection Information Soil Type USES GROUP SYMBOL, COLOR, Sample Collection Information Soil Type USES GROUP SYMBOL, COLOR, Sample Collection Information Soil Type USES GROUP SYMBOL, COLOR, Sample Collection Information Soil Type USES GROUP SYMBOL, COLOR, Sample Collection Information Soil Type USES GROUP SYMBOL, COLOR, Sample Collection Information Soil Type USES GROUP SYMBOL, COLOR, Sample Collection Information Soil Type USES GROUP SYMBOL, COLOR, Sample Collection Information Soil Type USES GROUP SYMBOL, COLOR, Sample Collection Information Soil Type USES GROUP SYMBOL, COLOR, Sample Collection Information Soil Type USES GROUP SYMBOL, COLOR, Sample Collection Information Soil Type USES GROUP SYMBOL, COLOR, Sample Collection Information Soil Type USES GROUP SYMBOL, COLOR, Sample Collection Information Soil Type USES GROUP SYMBOL, COLOR, Sample Collection Information Soil Type USES GROUP SYMBOL, COLOR, Sample Collection Information Soil Type USES GROUP SYMBOL, COLOR, Sample Collection Information Soil Type USES GROUP SYMBOL, COLOR, Sample Collection Information Soil Type USES GROUP SYMBOL, COLOR, Sample Collection Information Soil Type USES GROUP SYMBOL, COLOR, Sample Collection Info	© CH2MHILL				ECT NUMBER	Decision Unit	Boring ID			
DRILLING CONTRACTOR: Geotek DRILLING METHOD AND EQUIPMENT USED: TYLCK Rig WATER LEVELS: START: OS END: O30 LOGGER: VM DEPTH BELOW SURFACE (FT) PID RECOVERY (FT) RECOVERY (FT) READING (ppm) SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOSY. DEPTH BELOW SURFACE (FT) PID OR CONSISTENCY SOIL STRUCTURE, Sample Collection Information on CONSISTENCY, SOIL STRUCTURE, MINERALOSY. DEPTH BELOW SURFACE (FT) PID OR CONSISTENCY SOIL STRUCTURE OR SILT W/ COZAIN(NE SAMPLE O · O · S Cample O · S · 3 FILL: BY SILT w/ COZAIN(NE Grand Turbushart ON NATIVE: BY SILT OF SAMP. SAMPLE O · O · S Cample O · S · 3 VALUE OF SILT OF SAMP. SAMPLE O · O · S SAMPLE O · O · S Cample O · S · 3 SAMPLE O · O · S SAMPLE O · O · S Cample O · S · 3 SAMPLE O · O · S SAMPLE O · O · S Cample O · S · 3 SAMPLE O · O · S SAMPLE O · O · S Cample O · S · S SAMPLE O · O · S Cample O · S · S SAMPLE O · O · S Cample O · O · O · S Cample O · O · O · O · O · O · O · O · O · O	4	CH2MHILL			-	SOIL BORING LOG				
DRILLING METHOD AND EQUIPMENT USED: TRUCK Rig WATER LEVELS: START: LOIS END: 1030 LOGGER: VMA DEPTH BELOW SURFACE (FT) PID RECOVER (FT) SOIL TOPE (SOIL TOLOR) Sample Collection Information Sample Collection Informatio	PRO	PROJECT: HART LOCATION						Banana Patch		
WATER LEVELS: START: LOIS END: 1030 LOGGER: VM DEPTH BELOW SURFACE (FT) NTERVAL (FT) RECOVERY (FT) RECOVERY (FT) READING ((ppm)) PID READING ((ppm)) SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTENCY, SOIL STRUCTURE, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, Sample Collection Information Sample Soll-Unit Decision Sample OF OR'S Sample OF	LAT/L	.ONG:					DRILLING CON	NTRACTOR: Geotek		
WATER LEVELS: START: LOIS END: 1030 LOGGER: VM DEPTH BELOW SURFACE (FT) NTERVAL (FT) RECOVERY (FT) RECOVERY (FT) READING ((ppm)) PID READING ((ppm)) SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTENCY, SOIL STRUCTURE, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, Sample Collection Information Sample Soll-Unit Decision Sample OF OR'S Sample OF	DRILL	ING M	ETHO	D AND	EQUIPMENT	USED: Th	ick Rig			
NTERVALIFIT RECOVERY (PT) READING (ppm) READ							· · · · · · · · · · · · · · · · · · ·	LOGGER: VM		
RECOVERY (ET) READING (ppm) READING	DEPTH			E (FT)		SOIL CO	RE DESCRIPTION	COMMENTS		
FILL: BY SILT W/coralline graves and concrete hybrid swood fragments Sand throughout NATIVE: BY SILT COMPAND, damp ned plastic SANDY SILT from 17-18,5 V wet in seam or by by clay, damp. to BG 20' bas		INTERVA			READING	MOISTURE CONT OR CONSISTENC	ENT, RELATIVE DENSITY	Sample Collection Information Sample Sub-Unit Decision		
FILL: BY SILT W/coralline graves and concrete hybrid swood fragments Sand throughout NATIVE: BY SILT of SANDY 12.5- damp ned plastic SANDY SILT from 17-18.5 V wet in seam Dx by clay, damp. to BG 20' bas		1			0	FILL: Rd S	SIUT W/ sand.	sample 0-0,5		
FILL: BY SILT W/coralline graves and concrete hybrid swood fragments Sand throughout NATIVE: BY SILT of SANDY 12.5- damp ned plastic SANDY SILT from 17-18.5 V wet in seam Dx by clay, damp. to BG 20' bas	_		~			ons	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Sample 0.5-3		
9 Sand throughout NATIVE: Br SILT of Sample 12.5- damp med plastic SANDY SIDT From 17-18.5 Wet in Seam Dx br Clay, damp. to BC 20' bos	1					BILL BY	SIT w/coalling			
Sand throughout NATIVE: Br SILT of SAMP, Sample 12.5- damp ned plastic SAMPN SILT from 17-18.5 Wet in seam Dx br clay, damp.	-		0	0		graves our	deoncrete	1		
NATIVE: Br SILT OF GAME, Sample 12.5- damp med plastic SANDY SILT From 17-18.5 Wet in seam Ox br clay, damp. to BC 20' bas	5	*		1						
NATIVE: Br SILT OF SAMPIE 12.5- damp Med plastic SAMPY SILT Rom 17-18.5 Wet in seam Dr br clay, damp.	-	,),		1 }	0	sand thin	oughout			
NATIVE: Br SILT of SAMP, Sample 12.5- damp ned plastic SAMPN SILT from 17-18,5 V wet in seam DK br Clay, damp. to B@ 20' bas	1 1					1	-			
NATIVE: Br SILT of SAMP, Sample 12.5- damp med plastic SAMPN SILT from 17-18,5 wet in seam or br clay, damp. to B@ 20' bas			7				-	-		
NATIVE: Br SILT of SAMP, Sample 12.5- damp med plastic SAMPN SILT from 17-18,5 wet in seam or br clay, damp. to B@ 20' bas	10	1					-			
NATIVE: Br SILT 00 9900, Sample 12.5- damp med plastic SANDY SILT Rom 17-18,5 wet in seam or br clay, damp. to BE 20' bas		1			0					
NATIVE: Br SILT ROMPY 12.5- damp wed plastic SANDY SILT From 17-18.5 Wet in seam DK br Clay, damp. 20 to B@ 20' bas	_		1		0			1		
SANDY SIDT From 17-18,5 Wet in seam TOBE 20' bas	_		9	X			V			
SANDY SIDT From 17-18,5 Wet in seam TOBE 20' bas	-		r			NATIVE . BI	- SILT OUT SHOW!	Sample 12.5-		
SANDY SIDT From 17-18,5 Wet in Seam Dx br clay, damp. toB@20' bas	15_	V				damp nec	x plastic _	13.5		
to B@ 20' bas	-	11		12	0		_			
to B@ 20' bas	-	11	1	7.		SAWDY S	15 from 17-18,5	-		
to B@ 20' bas	-	- 1 3 8						4		
tobe 20' bas	-		9	~	14 4 7					
	20	20						<		
25	-						FORCE CO. DO			
25							_			
25							7	1		
	25						-	11		

PROJECT NUMBER	Decision Unit	Boring ID	B	15	
			100		

22	~	-0-	-
PR	LID	- (: 1	
			_

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILL

_

UTILITY CLRNCE CONFRMD:

YES (NO

DRILLING CONTRACTOR:

Geotek

DRILLING METHOD AND EQUIPMENT USED :

Geophysical anomalies/ Fill DU1 DU2 DU3

Exist?

			_			
	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	С	С
No	A	B	В	Δ	_	_

Did you see

NAPL/Char/Ashes?

YES

IF YES:

Sample

Collect into 8 oz jar

Analysis

Dioxins, Furans

Replicate collected here?

YES

IF YES:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

١	ACTUAL SUs)	Sample	Analysis	
	0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
	3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	12.5-15		TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

	ACTUAL Süs)	Sample	Analysis	
	\	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	$\sqrt{}$	1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
		1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
0~3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
3-20	All remaining soil from 6 adjacent borings	s will be consolidated

© CH2MHILL		ECT NUMBER	Decision Unit DU 2	Boring ID 8-16
		SOIL BORING LOG		
PROJECT: HART			LOCATION :	Banana Patch
AT/LONG:			DRILLING CON	
PRILLING METHOD AND E	QUIPMENT	USED: Truck		- COOLOR
/ATER LEVELS :	STAR		END: 035	LOGGER: VM
EPTH BELOW SURFACE (FT)		SOIL CORE DE	The state of the s	COMMENTS
INTERVAL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUMOISTURE CONTENT, ROR CONSISTENCY, SOIL MINERALOGY.	ELATIVE DENSITY	Sample Collection Information Sample Sub-Unit Decision
- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	D	FILL: MIX Roand br SILT W/ gooded (or and concrete throughout	Fitis,	Sample 0.5-3
	ð			
5_	D	Rd br SiLT, Sand, med & Br SiLT: org	_	sample 11-14/bgs
NATIVE	0	med soft, da	nrp. Trace	
	,	okbr SILTY SAND Shoe	seam in	tobe 20' by s

Q	CH2R	MHILL

PROJECT NUMBER	Decision Unit	Boring ID	
	1042	616	

PROJECT:	
----------	--

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT US

HAS TP

Geophysical anomalies/ Fill Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	(B)	В	В	С	С
No	А) в	В	A	С	С

Did you see

NAPL/Char/Ashes?

IF YES:

NO

Sample Collectinto 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0-05	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
11-14	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
1	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
X	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
1	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

	ACTUAL SUs)	Sample	Analysis
	5-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
[3-10	All remaining soil from 6 adjacent borings	will be consolidated

	PROJECT NUMBER	Decision Unit	Boring ID B-17		
CH2MHILL		SOIL BORING LOG			
PROJECT: HART		LOCATION:	Banana Patch		
LAT/LONG:		DRILLING CON			
DRILLING METHOD AND EC	UIPMENT USED : TV		-		
WATER LEVELS :	START: 1045	. END: 1100	LOGGER: VM		
DEPTH BELOW SURFACE (FT)	SOI	L CORE DESCRIPTION	COMMENTS		
RECOVERY (FT) #/TYPE	READING MOISTURE C	USCS GROUP SYMBOL, COLOR, CONTENT, RELATIVE DENSITY ENCY, SOIL STRUCTURE, Y.	Sample Collection Information Sample Sub-Unit Decision		
111d	O FILLIRE	SILT, dry, Fissile, SILT, dry, Fissile, line gravel and sand throughout	sample 0-0.5 sample 0.5.3		
- 10 C C	0				
15_	TOM MOT	Rd br sandy SILT se mothers and thes, w/sm gravet	Sample 12-15/		
10 NATTIVE	o wet sa,	A C 16-19,5	0		
25_		TY OLY, Plastic, dan EOB@ 20 -	bgs		

Note: PIP every 6"

PROJECT NUMBER	Decision Unit	Boring ID (/)	
1	1 "104"2_	6-17	
	700		

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

NO

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

s iai

DRILLING METHOD AND EQUIPMENT USED: Geophysical anomalies/ Fil Exist?

1	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В		В	В	c	С
No	Α	В	B 41	Δ		- C

Did you see

NAPL/Char/Ashes?

IF YES:

Collect into 8-

Sample

Analysis

Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs ·
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis			
0-05	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs			
05-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs			
12-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs			

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis		
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
N	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
Λ	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
3-20	All remaining soil from 6 adjacent borings	s will be consolidated

G.	CHANALIII						CT NU	MBER		Decision Unit		Boring ID	<u> </u>
	CH2MHILL								SO	L BORING	G LO	G	
PROJ	ECT :	HAR	T							LOCATION:	Bana	ana Patch	
LAT/L	ONG:									DRILLING CO	NTRAC	TOR: G	ieotek
DRILL	ING M	1ETHO	D A	ND E	QUIPME	ENT	USE	D: TYO	CK	RIO			
WATE	R LE	/ELS :			ST	ΓAR	T :	030		END: 1045	LOC	GER: V/	V
DEPTH		SURFAC	E (F	r)				SOIL CO	RE DESC	CRIPTION		СОММЕ	NTS
	INTERV	RECOV	ERY (I	_	PID READIN (ppm)		MOI OR (ENT, REL	SYMBOL, COLOR ATIVE DENSITY TRUCTURE,		e Collection Info e Sub-Unit Deci	
_	<u> </u>]						W'Rd			Sa	ruple 0	-0.5
~		I X		1	0		900	welsea	ے ر _ا	lru,	Sar	riple i	-0.5 0.5-3
-	9	96%	0	\$			10	058, Gi	ss, U		-	7	
-	6	0					0.1	Q.	01.7	W.C.	-		-
5			\vdash				FIL	Li Br.	ZILL	w Coraline	-		
-					_		gia	Mei, COV	cheste	rubble,	-		-
_		1,08			0		5 4	na im	ı	co	-		-
-		00									-		-
10						1			4		-		-
,0						7		·	-				
		×		ı	0	Ì			1				-
_		709		/				_ \				,	
_			~	-			Vat	ive: Re	dbr	SILT	-13.5	Samp	_e]
15						4	A	ttest +	11 10	L		13.5-1	14.5
_			1				Sni	f, dry-	dawp	. Morang	1		
-		89%	1		0			, ,					
-		8	711			ŀ	SANT	Y STRAG	SAAT	M sand, we			_
_			NATINE	:		n	delle	www	him	A WA	2		_
20			_			ľ		3 - 3 - 3	V	1 0	—		
-									E	OBE 20'			
-										Maria Maria			_
-													-
-													-
25	1												

PROJECT NUMBER	Decision Unit	Boring ID B-18

PROJECT:

HART

DRILLING METHOD AND EQUIPMENT USED:

Banana Patch

LAT/LONG:

LOCATION:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING CONTRACTOR:

HAS

Geophysical anomalies/ Fill Exist?

		DU1	DU2	DU3	DU4	DU5	DU6
	Yes	В	B	В	В	С	C ·
١	No	A	В	В	Α	С	C

Did you see

NAPL/Char/Ashes?

IF YES:

NO

Sample Collect int Analysis

Dioxins, Furans

Replicate collected here?

IF YES:

Sample 12 s Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
13,5-16		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis		
1	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
V	1 VOA	to TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs		
\triangle	1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Ż

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

SUs)	Sample	Analysis
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
340	All remaining soil from 6 adjacent borings	will be consolidated

				Decision Unit Boring ID B-19
	HZN	MHIL		SOIL BORING LOG
ROJECT :	HAR	آ		LOCATION : Banana Patch
AT/LONG:				DRILLING CONTRACTOR: Geotek
RILLING N	/ETHO	D AND I	EQUIPMENT	11001 10
ATER LE	VELS:		STAR	T: 1045 END: 1105 LOGGER: VM
PTH BELOW		E (FT)	-	SOIL CORE DESCRIPTION COMMENTS
	RECOVE	RY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.
1		1	0	FILL: Rd SILT, 100SR, Sample 0-0.5
-	12	1	Ŭ	FILL: Rd SILT, 10058, Sample 0-0.5 dry, PISSILE, some - sample 0.5-3 gravel throughout - sample 0.5-3
5	1	7	44	FILL'. BY SILT and GRAVEL - coral and
-	1.0		0	construction peagrave. dry. Wisand - throughout
, _ <u> </u>	50	¥		
-11			0	NATINE: Rd Ir SILT Sample 13-16/
-	30%			Br Silt, damp, trace (poor recovery)
		(1)		
-11		F	0	-
	40%	ンエネス		
- 1	112			↓
	1			EOB@ 20 /635
				<u> </u>
1				
				PID sampled every 10"

PROJECT NUMBER	Decision Unit 2	Boring ID B - 19	
		V	3

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

UTILITY CLRNCE CONFRMD:

DRILLING CONTRACTOR:

Geotek

DRILLING METHOD AND EQUIPMENT USED:

HAS TP

Geophysical anomalies/ Fil Exist?

 }		DU1	DU2	DU3	DU4	DU5	DU6
	Yes	В	(in	В	В	С	С
	No	Α		В	Α	С	С

Did you see

NAPL/Char/Ashes?

YES

IF YES:

NO

Sample Collect into

Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample D's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

YES

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

al .	ACTUAL SUs)	Sample	Analysis
	6-05	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
	0,53	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	13-16		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis		
\ /		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
X	1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
l .	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

	ACTUAL SUs)	Sample	Analysis					
		Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive					
3-20 All remaining soil from 6 adjacent borings will be consolidated								

					JECT NUMBER	Decision Unit	Boring ID B-20		
	C	H21	VIHIL	L	SOIL BORING LOG				
PRO	JECT :	HAR	т			LOCATION:	Banana Patch		
LAT/	LONG:					DRILLING CON	TRACTOR: Geotek		
DRIL	LING M	IETHO	D AND	EQUIPMEN	NT USED: Truck	mounted	ria		
	ER LE\				GO(1:TR	END: 1115	LOGGER: \//\/\		
DEPTH	BELOW		CE (FT)		SOIL CORE	DESCRIPTION	COMMENTS		
	INTERV		#/TYPE	PID READING (ppm)	OR CONSISTENCY, SO	RELATIVE DENSITY DIL STRUCTURE,	Sample Collection Information Sample Sub-Unit Decision		
	1			0	FILL: Rd 1005	SILTIday	Sample 0-6.5		
	1				FILL. BR SILT	w/covalline	Sample 0-6.5 Sample 0.5-3		
	11	00	1		gravel and c	oncrete rubbi	۴ ` <u>-</u>		
	1.	'0	FIL	ł	invaga out,	Ly, hisa	<u> </u>		
5_	A		1		1				
-	1 7		11	0		_	-		
-		09	П		1 1	7	4		
-		9			1 (i i	1		
10	1				1		-		
10_	1			0		-			
		. ~				7	for recovery		
		25					\		
_									
15_	1		V		CLAY IN SHOE	@ 15' _			
-	1		1	D	NATIVE: SILTY	CLAY,	Sample		
-					DK br. Trace S	ana, aurup.	17-20'		
-		55	NATIVE			_	due to limited -		
-		บา	AT				100000 -		
20_	V		2		V	-1 020 12	•		
-					*	104 620 , pas	-		
-			_			0-	-		
-						-	9		
25									

PID sampled every 6.1

PROJECT NUMBER	Decision Unit	Boring ID
	1117	, , , , , , , , , , , , , , , , , , ,
1	1 1)11//	1 トラング
	1///	

PROJECT:

HART

DRILLING METHOD AND EQUIPMENT USED:

LOCATION:

DRILLING CONTRACTOR:

Banana Patch

LAT/LONG:

UTILITY CLRNCE CONFRMD:

NO

Geotek

Geophysical anomalies/ Fill Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	(B)	В	В	С	C
No	Α	Ω	B	Δ.	_	

Did you see

NAPL/Char/Ashes?

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis			
0-0,5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs			
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs			
17-20		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs			

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis				
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs				
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs				
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs				
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs				

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis			
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive			
3-20	All remaining soil from 6 adjacent borings will be consolidated				

			11	ECT NUMBER		DUZ-	Вог	ring ID 21
	CH2N	MHIL	_		SOIL BORING LOG			
PROJECT	: HAR	Г				OCATION :	Banana	Patch
LAT/LONG	à:					DRILLING CON	ITRACTO	R: Geotek
DRILLING	METHO	D AND I	EQUIPMENT	USED: D	ps ti	rackeri	9	
WATER LE	EVELS:		STAR	T:1130		ND: 1145	LOGGE	ER: VM
DEPTH BELO		E (FT)		SOIL	CORE DESCR	IPTION		COMMENTS
INTE	RECOVI	#/TYPE	PID READING (ppm)	SOIL TYPE, USO MOISTURE CON OR CONSISTEN MINERALOGY.	NTENT, RELAT			ollection Information ub-Unit Decision
- 1				FILL , PEO	gravel	w/gress	Samp	160-0.5
, -	\ \cdot \c			FILL: PEO	try, 100	se _	San	ple 05-3
-	707	17				_	'	
-		打工		CILL DA	0.75	CLCO	100	
5		1		PILL. NO	1	ly, stiff		
- 1	×	Co.			1	. = 7	V. F	DOON
11	9			1	1		rec	poor overy
						1		
10	T R							
- 1	`						POON	recovers
-	1 ×					4		
-	10 %		1 0					
-				V	/	-		
15		4		Native:	Red by	TIP NEW	0	
		122		Native: I	, c san	d through	ut su	MPC
	y of	3		. 3		0_		13-18
	2	NATIVE	1	Noutive . D	Lebr SIL	TY CIALL		
10		Ž		damp. Tr	ace c so	in d		
						EOB.	220	
_								
-						_		
4 .						_		
5	1 0	- 1						

I

1 DUZ	15-27	
7,00		

PROJECT:

HART

DRILLING METHOD AND EQUIPMENT USED:

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

TP

Geotek

UTILITY CLRNCE CONFRMD:

Geophysical anomalies/ Fil Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	(B)	В	В	С	С
No	A	В	В	Α	С	C

NO

Did you see

NAPL/Char/Ashes?

Replicate collected here?

YES YES

IF YES: IF YES: Sample Collect into 8 Sample ID

Analysis Dioxins, Furans

Sample (D's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertica SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

al	ACTUAL SUs)	Sample	Analysis
	0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
		•	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
'	15-18		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

1	ACTUAL SUs)		Sample	Analysis	
	1		Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	X		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	to TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
			Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	,		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
3-20	will be consolidated	

© CH2MHILI		CT NUMBER Decision Unit	Boring ID B22
*		SOIL BORING	LOG
ROJECT: HART		LOCATION:	Banana Patch
AT/LONG;		DRILLING CON	TRACTOR: Geotek
RILLING METHOD AND E	QUIPMENT	USED: Track Rig	
ATER LEVELS :	STAR	T: 115 END: 130	LOGGER: VM
PTH BELOW SURFACE (FT)		SOIL CORE DESCRIPTION	COMMENTS
INTERVAL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision
-1	0	FILL: PEA grand w/black	Sample 0-0.5
	1	silt, dry, loose	Sample 0-0.5 Sample 05-3
		FILL: Rd SILT W/garbage_	1
- 5,		Houghout dwg, N/graws	H .
5	*		
1 1 4	0	FILL: br SILT W/ sand	
- > 1		and sm gravel, dry.	
-181		-	
- 1/11/1			
°			
-17 2 11	0		
1110111		l	
		1	
5 -	V	J -	
a ,	0	-	
	Ĭ	Ī	poor recovery
1 2 1	V	-	Canalo
(C)	NATIV	1)K by SI4, damp, med soft.	Sample 18-20/295
- 1 2		medplastic.	18-20-00
		EOBE 20_	
		1	
	A 9-1	()	
5_			
	PIE	sampled every 64	

CH2MHILL	
CH2MHILL	

PROJECT NUMBER	Decision Unit	Boring (D
1		Lacting to C
ŀ	1 1010	1 471
	I DULL	1 1002

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED :

Geophysical anomalies/ Fill Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	(B)	В	В	С	С
No	A	В	В	Α	С	С

Did you see

NAPL/Char/Ashes?

IF YES:

NO

Sample Collect into 8-oz jar Analysis

Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ai	ACTUAL SUs)	Sample	Analysis
	0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
9	5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	18-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUA SUs)	L Sample	Analysis	
/	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
Δ	1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
$\backslash \Lambda$	1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
• (Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

	ACTUAL SUs)	Sample	Analysis
		Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
i	3-20	All remaining soil from 6 adjacent borings	will be consolidated

0	CH2N	ЛНIL		ECT NUMBER	Decision Unit DU 2	Boring ID 8-23
•		4		5	SOIL BORING	LOG
PROJECT :	: HART	<u> </u>			LOCATION:	Banana Patch
LAT/LONG:	ı:				DRILLING CON	NTRACTOR: Geotek
		I DNA C	EQUIPMENT	TUSED: Truck	k Rig	
WATER LE			STAR	सः ११३०	END: 1145	LOGGER: VM
DEPTH BELOW	W SURFACE	Ē (FT)		SOIL CORE I	DESCRIPTION	COMMENTS
	RECOVE	ERY (FT) #/TYPE	PID READING (ppm)	MOISTURE CONTENT, OR CONSISTENCY, SO MINERALOGY.	DIL STRUCTURE,	Sample Sub-Unit Decision
1			0	FILL: Pea G	RAVEL W/dk	Sample 0-0.5
1	1 1		1	br-b) Sitt. Lo	100K, dry	Sample 0-0.5 Sumple 0.5-3
	× 98	引		FILL: Red SIL W/ Coraline throughout	.T, dry, stiff gravel/sand.	1
5_V		1	0	Moughan	ing.	+
-	40x	111				1
	1					
10		1				
1	×		0			Poor recover
1	5		1		-	
15		1		\vee	ciayey _	
-	Xao	E CE		Native : Red-la med plastic. dan wet: Sandy sil	or silt, stift, mp	sample 16-17.3
	의	F	· - 1	Wet Sandy 31	ng crass Marie	l.

Wet: Sandy silty class Msand. Clay: Back br damp, plast

E08@20

PROJECT NUMBER	Decision Unit	Boring ID B-23	

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

NG:

ES NO

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED :

PS H

HAS TE

Geophysical			
anomalies/ Fill			
Exist?			

	DU1	DUE	DU3	DU4	DU5	DU6	
Yes	В	(B)	В	В	С	С	
No	А	В	В	Α	c	С	

Did you see

NAPL/Char/Ashes?

_YES

IF YES:

Sample
Collect into 8-oz ja

Analysis
Dioxins, Furans

Replicate collected here?

YES

IF YES:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
16-17.	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

	ACTUAL SUs)		Sample	Analysis		
			Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	Λ		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
			Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	l	/	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

i	ACTUAL SUs)	Sample	Analysis	
	0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	= M
	3-10	All remaining soil from 6 adjacent borings	will be consolidated	

OBS.	NEW 111		Decision Unit	Boring ID B-24		
S CH2	2NHIL	-	SOIL BORING LOG			
PROJECT: HA	RT		LOCATION:	Banana Patch		
LAT/LONG:			DRILLING CON			
DRILLING METH	OD AND	EQUIPMENT	TUSED: Track Mounted	Rig		
WATER LEVELS			RT: 1625 END:	LOGGER: VM		
DEPTH BELOW SURF			SOIL CORE DESCRIPTION	COMMENTS		
INTERVAL (FT	OVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision		
	EUC.	0	W/covalline grave / through	Sample 0-0.5 Sample 0.5-3		
5	17		FILL: Peagravel w/dkbr SILT. Dry. 100sl			
10	./66	0	FILL: Red-br SILT, dry, - very stipf, coralline gravel throughout. Asphut paper			
	100 ×	0	at 8-8.5°.	-		
20	MATINE	0	Native: Greybr SILTYCLA; Damp. Plastic. Med Firm.			
- - - - 25_			E08@ 2014	ے - - -		

Note PID every-6"

PROJECT NUMBER	Decision Unit DU2	Boring ID B-24	

PR	1	T	
EDS		ட	i

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

UTILITY CLRNCE CONFRMD:

Geotek

DRILLING METHOD AND EQUIPMENT USED:

DPS) HAS

Geophysical anomalles/ Fil Exist?

	-	DU1	DU2	DU3	DU4	DU5	DU6
"[Yes	В	B	В	В	С	С
	No	Α	В	В	А	С	· c

Did you see

NAPL/Char/Ashes?

YES

IF YES:

NO

Sample Collect into oz jar

Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample I Sample ID's

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ŀ	ACTUAL SUs)	Sample	Analysis
	0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
4).5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	14-17		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis		
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
X	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
Y	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
3-20	All remaining soil from 6 adjacent boring	s will be consolidated

			PROJE	Decision Unit	Boring ID B-25		
CH2MHILL				SOIL BORING LOG			
PROJECT :	HART			LOCATION :	Banana Patch		
AT/LONG:				DRILLING CON	TRACTOR: Geotek		
PRILLING ME	ETHOD AN	ND EQL	JIPMENT	used: Track Ria			
VATER LEVE	ELS :		STAR	T: 1010 END: 1625	LOGGER: VM		
EPTH BELOW S		7		SOIL CORE DESCRIPTION	COMMENTS		
INTERVA	RECOVERY (F	PE R	PID EADING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision		
	- %%-	7	0	FILL: Red SILT, dry, FISSILE FILL: BY SILT W/Gravel and sand throughout. Dry	Sample 0.5-31		
	1 %%	4	0	MATIVE: Br SILTY CLAY Dry, Med Plastic.	Sample 8-11'bgs		
5	- 75% -		0	Wet, soft SAA@ 14			
			0				
				EOBO	20		
					× 1		
-							

Note: PID every 6"

PROJECT NUMBER	Decision Unit	Boring ID
		B-25

PROJECT:	
----------	--

HART

LOCATION:

Banana Patch

LAT/LONG:

.

ES NO

Dananar

UTILITY CLRNCE CONFRMD:

YES

DRILLING CONTRACTOR:

Geotek

DRILLING METHOD AND EQUIPMENT USED :

Geophysical anomalies/ Fill DU1 DU2 DU3

Exist?

I	DU1	DU2	DU3	DU4	DU5	DU6	
Yes	В	(B)	В	В	С	С	
No			ь			0	

Did you see

NAPL/Char/Ashes?

YES

(O) IF

IF YES:

Sample
Collect into 8 oz jar

Analysis

Dioxins, Furans

Replicate collected here?

YES

IF YES:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis	
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
05-3		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
8-11	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
 - 5 to 10' bgs
 - 10' bgs to 15' bgs
 - 15 to 28' bgs (native)

ll	SUs)		Sample	Analysis		
			Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	_X		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
			Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
1		/		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
3-20	All remaining soil from 6 adjacent borings	s will be consolidated

			CT NUMBER	DU2	Boring ID	-26
CH2MHILL			SOIL BORING LOG			
ROJECT: H	ART			LOCATION:	Banana Patc	h
AT/LONG:				DRILLING CON	TRACTOR:	Geotek
RILLING MET	HOD AND E	QUIPMENT	USED: TVA	ck ria		
ATER LEVEL	S:	STAR	т: 1645	END: 1610	LOGGER:	VM
PTH BELOW SUF	RFACE (FT)		SOIL COR	E DESCRIPTION		MMENTS
INTERVAL (F	COVERY (FT) #/TYPE	PID READING (ppm)		RROUP SYMBOL, COLOR, NT, RELATIVE DENSITY SOIL STRUCTURE,	Sample Collectio Sample Sub-Unit	n Information
			FILL: Red.	SILT, dry, fissile	Jorganics	Sample
- - - 5	がデート	0		T w/coraline I sand through pea gravel		Sample 0.5
		O	Native: Br trace San	SILTYCLAY d, damp	sampy	? 8-1511 ⁻ 0(
	NATIVE	O	Native: Dk			-
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	O		.s@ 19'		
				EOB@ 201		
			OTE PID =			

PROJECT NUMBER	Decision Unit 2	Boring ID	76
			Co

PROJECT:

HART

DRILLING METHOD AND EQUIPMENT USED:

LOCATION:

HAS

DRILLING CONTRACTOR:

Banana Patch

LAT/LONG:

UTILITY CLRNCE CONFRMD:

NO

Geotek

Geophysical anomalies/Fi Exist?

d itt		DU1	DU2	DU3	DU4	DU5	DU6
	Yes	В	(B)	В	В	С	C
	No	A) в	R	- Δ		(

Did you see

NAPL/Char/Ashes?

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ı	ACTUAL SUs)	Sample	Analysis
	0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
	0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	8-11	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis	
\	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
Y	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
7 4	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill

- Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
3-20	All remaining soil from 6 adjacent borings	will be consolidated

O CLIOSEI III I	PROJECT NUMBER	Decision Unit	Boring ID		
CH2MHILL		SOIL BORING LOG			
PROJECT: HART		LOCATION:	Banana Patch		
LAT/LONG:		DRILLING CON	TRACTOR: Geotek		
DRILLING METHOD AND EQ	UIPMENT USED :	DPS Track Ric	(
WATER LEVELS :	START:	END:	LOGGER: VM		
DEPTH BELOW SURFACE (FT)		SOIL CORE DESCRIPTION	COMMENTS		
INTERVAL (FT) RECOVERY (FT) #/TYPE	READING MOISTUR	E, USCS GROUP SYMBOL, COLOR, IE CONTENT, RELATIVE DENSITY SISTENCY, SOIL STRUCTURE, OGY.	Sample Collection Information Sample Sub-Unit Decision		
(60%) FILL	dry.	: Br-grey SILT and and gravel Loose.	Sample 0-0.5 Sample 0.5-3		
10_	PIL!	Pea growel and black. Dry. SANDY SILT by W/ MOTHES. Damp,			
15_	0 Coval	Stiff Gvaver Reddish brawn 5'ILT _ Hiff. MottleS.	Sample 13-15' bgs -		
30 %	0		poor recovery		
20	Brau	NEY SILT, West trace			
25		-	3.5		

PIP readings every 69

220 (202)	<u> </u>		
PROJECT NUMBER	Decision Unit	Boring ID	
1	1 417	1 レクコ	
	- U Z		

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

HAS TP

Geophysical anomalies/ Fill		DU1	DU2	DU3	DU4	DU5	DU6
Exist?	Yes	В	(B)	В	В	С	С
	No	Α	В	В	A	С	С

Did you see

NAPL/Char/Ashes?

YES

IF YES:

Sample Collect into

Analysis Dioxins, Furans

Replicate collected here?

IF YES:

NO

Sample Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bas
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0-0,5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
13-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
/	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
X	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
Λ	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

Sample	Analysis	
Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
All remaining soil from 6 adjacent boring	s will be consolidated	
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Collect 1 VOA from shallow (0-10' bgs) Archive

PROJECT: HART LOCATION: Banana Patch DRILLING CONTRACTOR: Geotek DRILLING METHOD AND EQUIPMENT USED: Track Mounted DPS WATER LEVELS: START: 1430 END: 150D LOGGER: VM DEPTH BELOW SURFACE (FT) INTERVAL (FT) PID RECOVERY (FT) RECOVERY (FT) PID RECOVERY (FT) PID READING (ppm) PID READING (ppm) PID READING (ppm) PIL: Red SILT (10R 2.5 6) Sample O-0.5 sample Sub-Unit Decision FILL: Br SILT (57R 5/2) V/g ravel and sand throughout (coral:nu) PIL: Red brown SILT Wegard AND START (Arg) PIL: Red brown SILT Wegard And Coral:nu PIL: Red brown SILT Wegard And Coral:nu PIL: Red brown SILT Wegard And Coral:nu Gard PIL: Red brown SILT Wegard PIL: Red b		PROJECT NUMBER Decision Unit DU 2 Boring ID 3-28				
DRILLING CONTRACTOR: Geotek DRILLING METHOD AND EQUIPMENT USED: Track Mounted DPS WATER LEVELS: START: 1430 END: 1500 LOGGER: VM DEPTH BELOW SURFACE (FT) PID RECOVERY (FT) PID RECOVERY (FT) PID READING (ppm) PIL: Red SILT (10R 2.5) AUY A 35: LE FILL: BY SILT (5 YR 5/2) V/gravel and sand Throughout FILL: Gry CLAY, v snff, Plash c day FILL: Red brown SILT We gard THL: Red brown SILT We gard Auy Pill: Red brown SILT We gard Garne W Coraline Gravel	CH2MHILL					
DRILLING METHOD AND EQUIPMENT USED: Track Mounted DPS WATER LEVELS: START: 1430 END: 1500 LOGGER: VM DEPTH BELOW SURFACE (FT) PID RECOVERY (FT) READING (ppm) PID READING (ppm) READING (ppm) PID READING (ppm) PILL: Red SILT (10R 2.5.6) Sample D-0.5 Sample Sub-Unit Decision Sample Sub-	PROJECT: HART	LOCATION : Banana Patch				
DEPTH BELOW SURFACE (FT) DEPTH BELOW SURFACE (FT) PID RECOVERY (FT) RECOVERY (FT) PID READING (ppm) PID READING (ppm) PILL: Red SILT (IDR 2.5) FILL: BY SILT (5YR 5/2) V/gravel and sand Throughout FILL: Red brown SILT w/gravel 10 FILL: Red brown SILT w/gravel 10 FILL: Red brown SILT w/gravel	LAT/LONG:	DRILLING CONTRACTOR: Geotek				
WATER LEVELS: START: 1430 END: GDD LOGGER: VM DEPTH BELOW SURFACE (FT) PID RECOVERY (FT) RECOVERY (FT) RECOVERY (FT) READING (ppm) PILL: Red SILT (10R 2.5/6) Sample Collection Information Sample Sub-Unit Decision ON COMMENTS SOIL CORE DESCRIPTION COMMENTS Sample Collection Information Sample Sub-Unit Decision OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY. FILL: BY SILT (5YR 5/2) V/gravel and sand Throughout (coraline) FILL: Grey CLAY, V SIRF, Plastic day FILL: Red Brown SILT W/Sand THE: Red Brown SILT W/Sand COMMENTS Sample Collection Information Sample Sub-Unit Decision COMMENTS Sample Collection Information Sample Collection Information Sample Sub-Unit Decision OR COMMENTS Sample Collection Information Sample Sub-Unit Decision OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY. FILL: Red SILT (10R 2.5/6) Sample 0.5-3 FILL: BY SILT (5YR 5/2) FILL: GRey CLAY, V SIRF, Plastic day FILL: Red Brown SILT W/Sand COMMENTS	DRILLING METHOD AND EQ					
SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY. FILL: Red SILT (IDR 2.56) Sample Sub-Unit Decision FILL: Br SILT (57R 5/2) V/gravel and sand Throughout (coraline) FILL: Argy CLAY, v snff, Plashic day FILL: Red brown SILT w/gard damp w/coraline gravel	WATER LEVELS :					
SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY. FILL: Red SILT (10R 2.5,6) Sample 0-0.5 sample 0.5-3 FILL: Br SILT (5YR 5/2) V/gravel and sand throughout (coraline) FILL: Grey CLAY, v snff, plash c dry FILL: Red brown SILT w/gard damp w/coraline gravel	DEPTH BELOW SURFACE (FT)					
FILL: Br SILT (5/R 5/2) V/gravel and sand throughout (coraline) Bry CLAY, v snff, plash c day FILL: Red brown SILT W/Sand damp w/coraline gravel	RECOVERY (FT)	READING MOISTURE CONTENT, RELATIVE DENSITY Sample Sub-Unit Decision (ppm) OR CONSISTENCY, SOIL STRUCTURE,				
	5 -	FILL: Br SILT (5YR 5/2) W/gravel and sand throughout (coraline)				
Black organics @ 19' 3' Gravel rans @19.5 wet	25	EOB@ 20' bgs				

PROJECT NUMBER	Decision Unit	Boring ID	
	Du2	B-29	

-	•		_
ν_{\varkappa}	rni	EC1	
ш	~~		_

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

NO

DRILLING METHOD AND EQUIPMENT USED:

HAS TP

Geophysical anomalies/ Fill Exist?	I
anomalies/ Fill	ŀ
Exist?	ŀ

li		DU1	DU2	DU3	DU4	DU5	DU6
	Yes	В	(B)	В	В	C	C
-	No	Α	В	В	A	С	С

Did you see

NAPL/Char/Ashes?

YES

IF YES:

Sampl Collect in 8-oz jar Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Samp

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis	
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
13-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
/\	1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
1 \		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
3-20	All remaining soil from 6 adjacent borings will be consolidated		

		ECT NUMBER Decision Unit Boring ID DU2 B-29
CH2MHILL		SOIL BORING LOG
PROJECT: HART		LOCATION : Banana Patch
LAT/LONG:		DRILLING CONTRACTOR: Geotek
DRILLING METHOD AND E	QUIPMENT	TUSED: Track Mounted Rig *
WATER LEVELS :		RT: 1530 END: HOLGER: VM
DEPTH BELOW SURFACE (FT)		SOIL CORE DESCRIPTION COMMENTS
INTERVAL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.
70% FILL	0	FILL: Red sit , dry, Fissile, Sample 0-0.5'logs w/Coralline gravel sand throughout - Sumple a5-3' bgs
-	O	NATIVE: Brown SILTECLAY Sample 9-11 bg
50% NATIVE	0	Dry, Little plastic Wet SAA, whood chunk Damp SAA, trace sand in Some lenses. Med Firm
20_	0	
		EOBO20'bgs

PROJECT NUMBER	Decision Unit	Boring ID	
	DU 2	8.29	

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

ON (

arattı

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED :

(DPS)

HAS TE

DRILLING CONTRACTOR:

Geophysical anomalies/ Fill Exist?

11	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	(B)	В	В	С	С
No	A	В	В	Α	С	С

Did you see

NAPL/Char/Ashes?

Replicate collected here?

s (

IF YES:

IF YES:

Sample

Collect into 8-oz jar

Sample ID's:

Analysis
Dioxins, Furans

Sample ID

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

al	ACTUAL SUs)	Sample	Analysis
	0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
4).5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	9-11	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

	ACTUAL SUs)	Sample	Analysis	
L		Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

	ACTUAL SUs)	Sample	Analysis
-		Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
	3-20	All remaining soil from 6 adjacent borings	will be consolidated

		Decision Unit Boring ID DU2 B 30						
CH2MHILL		SOIL BORING LOG						
PROJECT: HART		LOCATION: Banana Patch						
LAT/LONG:		DRILLING CONTRACTOR: Geotek						
DRILLING METHOD AND E	QUIPMENT	USED: Track Ria						
WATER LEVELS :	STAR	T: 1400 END: 1430 LOGGER: VM						
DEPTH BELOW SURFACE (FT)		SOIL CORE DESCRIPTION COMMENTS						
INTERVAL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.						
- 10.7	0	FILL: BY Sitt w/gravel Sample 0-0.5 Coasatt) throughout Sample 05-3						
5_ 5_		FILL: Green CLAY (80-10) 1 564) Worange mothes. V. Stiffsdry						
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	Snift, V Stiff, drysplastic						
10		FILL coral grave (Native: Br SILT (5/R 2.5/2)						
40X 40X 1	0	med stiff. Damp Sumple @						
7 3 3	0							
20	DK	Grey SILT W/black Organt &, damp 3"gravel lens @ 19.5, wet in Grey 1 N/205) EDB@ 20' bgS						
		EDB@ 20' bgs						
25								

PROJECT NUMBER	Decision Unit	Boring ID	
1	I Du o	222	
	1000	טס עין	

PROJECT:

HART

Banana Patch

LAT/LONG:

NO

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

HAS TP

LOCATION:

Geophysical anomalies/ Fi Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	B	В	В	С	С
No	Α_	В	В	Α	С	C

Did you see

NAPL/Char/Ashes?

IF YES:

Santple Collect o 8-<u>oz jar</u>

Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample S'OI Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0.0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
11-14	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis	_
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	-
V	Collect 10 plugs into zipłock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	_
		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	_

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

SUs)	Sample	Analysis
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
3-20	All remaining soil from 6 adjacent borings	will be consolidated

14			- J-PJ-W				
		CT NUMBER Decision Unit	Boring ID 1				
CH2MHILL		SOIL BORING LOG					
PROJECT: HART		LOCATION : Bana	ana Patch				
LAT/LONG:		DRILLING CONTRAC	TOR: Geotek				
DRILLING METHOD AND E	QUIPMENT	USED: DPS, truck-mount.	ed				
WATER LEVELS :	STAR		GGER: B. Roder				
DEPTH BELOW SURFACE (FT)		SOIL CORE DESCRIPTION	COMMENTS				
RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	e Collection Information e Sub-Unit Decision				
- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0 0	Silty Clay (SC) reddish Cor Strown dry, non-plastic- trace gravel. Sam FILL	upressed in eeve 50%. uple 0-0.5 ft uple 0.5-8 ft see log book				
10_	0 0 0	Silty Clay (SC) with Some Sand, reddish brown (SYR 3/4), dry then moist at 8 ft, non-plastic, trace gravel FILL					
15_	D	10-11 ft - same as 5-10 ft deb	ris-green lass fragments ut 11-12/2 ft.				
100	0	15-16 ft-same as to 15 ft. 16-20 ft-dark brown sam (5 VR 2.5/1) fifty Clay, moist, medium plasticity trace gravel. Organics.	nple from 17-20 ft bgs.				
	4	EDB @ 20'bgS	-				
25	湖		, š				

	CH2MHILL
-	

PROJECT NUMBER	Deplaion Unit	Boring ID	

							** 011	ANT FOR	SAMPLIN	IG RATI	JNALE	
PROJECT : LAT/LONG: UTILITY CLRN	HAR		(YES	NO		LOCATI DRILLIN	ION : IG CONTRACT		nana Patch	Geotek	, ,
DRILLING MET Geophysical anomalies/ Fill	THOD		_		DU4	DU5	HAS DU6	TP				
Exist?	Yes	В	В	B	В	С	C:					
	No	A	В	B /	=() A	С	С	9.27				
Did you see		1				Sampl	е		An	alysis		

NAPL/Char/Ashes?

YES NO IF YES:

Collect into 8-oz jar

Dioxins, Furans

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
 - 0.5 to 3' bgs
 - 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis		
0-0,5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs		
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
17-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs	ACTUAL SUs)	Sample	Analysis
- 0 to 5' bgs		Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
- 5 to 10' bgs	. .	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
- 10' bgs to 15' bgs	Щ.	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
- 15 to 28' bgs (native)			TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
10	All remaining soil from 6 adjacent borings	s will be consolidated

O	PROJECT NUMBER	Decleton Unit	Boring ID
CH2MHILL	, 111	SOIL BORING L	OG
ROJECT: HART		LOCATION: B	Banana Patch
AT/LONG:	V	DRILLING CONTR	RACTOR: Geotek
RILLING METHOD AND EQUI	PMENT USED : TYAL	Λ Λ	
VATER LEVELS :	START: 5/19 NR		LOGGER: T.Wird
EPTH BELOW SURFACE (FT)	SOIL COR	E DESCRIPTION	COMMENTS
O; #/TYPE REA	ADING MOISTURE CONTE opm) OR CONSISTENCY, MINERALOGY.	NT, RELATIVE DENSITY Sa	ample Collection Information ample Sub-Unit Decision
- 1 100 CL (X CLAY with	noun SIFFI Some sand egrovelidry	Sample 00.5
5_	concrete a	+ 3.75 FILL	0.5-3' see log book
- 1 80 SW (SILTY SAN asphalt a	10, trace gravel	WD Sample
6 ch	ReddishBrow	5 8	
60 sm	Readish Brownel asphaltati	un, SILTY SOWD John, FILL 31695	No sample
5 CL	13-15 Redaish Br	avelmissit.	
	16.5' Oark 13	starts Native	sande ser
5 V J		lorgan & Matter S went Allwiwm	17-20' 107bool
-	Total set	3-5	
# PIO every		<u> </u>	ke t

PROJECT NUMBER	Decision Unit 3	Boring ID & B }	
-,			

								7,55					
PROJECT:	HART	f					LOCATI	ON:		Banana Patch			
LAT/LONG:				\sim			DRILLIN	IG CONTRAC	TOR:		Geotek		
UTILITY CLRN	CE CO	NFRMD:	(YES	NO	- 47							
DRILLING MET	HOD A	ND EQU	IPMEN	USED:		DPS	HAS	TP					167
Geophysical anomalies/ Fill		DU1	DU2	(DU3)	DU4	DU5	DU6				æ		
Exist?	Yes	В	В		В	С	С						
	No	A	В	В	А	С	С	- 100					
				1					The same				
Did you see						Sampl	le			Analysis			
NAPL/Char/Asi	nes?	M	YES	(NO)	IF YES:	Collec	t into 8-c	oz jar		Dioxins, Furans			13
Replicate colle	cted he	ere?	YES	NO	IF YES:	Samp	le ID's:		-		0 5c		d,
					ă Wa	Samp	le ID's:				2 T T	5	2.11

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical

- 0 to 0.5' bgs

- 0.5 to 3' bgs

- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis		
5-8.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs		
0.5-31	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
17-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation Each boring to be divided into 4 ve	rtica
- 0 to 5' bgs	
- 5 to 10' bgs	
10' bgs to 15' bgs	
- 15 to 28' bgs (native)	
1 - If no fill exists, completed boring	to

ACTUAL SUs)	Sample	Analysis		
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
1	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
T.	All remaining soil from 6 adjacent boring	s will be consolidated

CH2MHIL	PROJECT NUMBER	Decision Unit	-
		SOIL BORING	LOG
PROJECT: HART	N. Committee of the com	LOCATION:	Banana Patch
LAT/LONG:		DRILLING COL	NTRACTOR: Geotek
DRILLING METHOD AND	EQUIPMENT USED:	DPS, truck-mor	inted
WATER LEVELS :	START: NR	END: NR	LOGGER: Behindar 12
DEPTH BELOW SURFACE (FT)		DIL CORE DESCRIPTION	COMMENTS
INTERVAL (FT) RECOVERY (FT) #/TYPE	READING MOISTURE (ppm) OR CONSIS MINERALOG		Sample Sub-Unit Decision
75 60	O Silty C Sounds dry in Fragme	day with some graddish brown, on plastic. Punice uts (1-3 an) at 5 fl	Sample from 00,5 ft. Sample from 0.5-3 ft.
5	V	y reddish brown, with gravely. Ight gray. Dry. iashc. 3 concret ft.	
15_	al lower trace	und with grave LS lower dry for lastic conecete fragments @ 16 ft. y, reddish brown, med plasticity. Is at the ft. 13 ft.	10000
30 J	etsilty	clausidark brown m plasticity, Due foot of wm 16-16	
	EOB	@ 20' bys	

*NOTE PID collected every 64

PROJECT NUMBER	Decision Unit 2	Boring ID	
			192

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

YES

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

DPS HAS TP

Geophysical anomalies/ Fill Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	B	В	С	С
No	A	В	В	Sel A	С	С

Did you see

NAPL/Char/Ashes?

YES (

IF YES:

Sample
Collect into 8-oz jar

Analysis

Dioxins, Furans

Replicate collected here?

A C

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

	ACTUAL SUs)	Sample	Analysis		
l	0-05	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs		
	05-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	14-18	41/04	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

	ACTUAL SUs)	Sample	Analysis
	0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
-	3-20	All remaining soil from 6 adjacent borings	s will be consolidated

	PROJECT	NUMBER Decision Unit	Boring ID B				
CH2MHILL	•	SOIL BORING LOG					
PROJECT: HART		LOCATION:	Banana Patch				
LAT/LONG:		DRILLING CONTRACTOR: Geotek					
DRILLING METHOD AND E							
WATER LEVELS :	START:	5/19/14 10 AM END: 1030	LOGGER: I. Wrong				
DEPTH BELOW SURFACE (FT) INTERVAL (FT)	*	SOIL CORE DESCRIPTION	COMMENTS				
RECOVERY (FT) #/TYPE	READING M (ppm) O	OIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision				
CLA	4	SZLTYCLAYandgrowel	0-0.5				
10gm	0	aspholt at 3.5, FILL Maderial	0.5-3 lbgs				
5_ \\$	A. A.	-	-				
7 95 50	8	Gravel, FILL,	Wone				
- Bm		Gravel, FILL, asphatianel corn manels mined with sitt/clay	-				
10 - - - - - - - - - - - - - - - - - - -	7	STLTY Grave, Coralling, runel, road fill touter, hanges 131, morst	None -				
15_ V CL N	ative R	ledalth Brunn CLAY, Stiff					
100 5/11	1 coture 1 3	Browinsh Black SELTY AN Of Case, West	16-19'				
20_		-	20 to 1				
-		Shop at 20' bas -					
25_		·					

& PIO at each set every 6" along all core.

PROJECT NUMBER	Decision Unit	Boring ID	

PROJECT:

HART

LOCATION:

DRILLING CONTRACTOR:

Banana Patch

LAT/LONG:

NO

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

HAS

Geophysical anomalies/ Fi Exist?

, <u> </u>	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	B	В	С	С
No	Α	В	В	Α	С	С

Did you see

NAPL/Char/Ashes?

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
6.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
16-19	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

		•	
C-Per	form intrusive in Each boring to SUs		4 vertica
- 1	- 0 to 5' I	bgs	
	- 5 to 10	' bgs	
	- 10' bgs	to 15' bgs	
	15 to 28	8' bgs (native)	
l	1 - If no till exist	s, completed t	ooring to

ACTUAL SUs)	Sample	Analysis	
	Collect 10 plugs into zíplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	(8
1 1	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
T iv	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
3-19	All remaining soil from 6 adjacent boring	s will be consolidated

NOTE: Do not combine native material and fill

separatino fell vs. Natine

5-19-14

			ECT NUMBER	Decision Unit	3	Boring ID	5
	H2MHIL		11,0	SOIL BORIN	IG LOC	à	
PROJECT:	HART			LOCATION :	Bana	na Patc	h
LAT/LONG:		7		DRILLING C		1.0	Geotek
DRILLING ME	ETHOD AND	EQUIPMEN"	TUSED: DPS	truck-moun);
WATER LEVE			RT: NK	END: NR		GER:	B. Poder
DEPTH BELOW S				ORE DESCRIPTION			MMENTS
INTERVAL	L (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS MOISTURE CONT OR CONSISTENC MINERALOGY	G GROUP SYMBOL, COLO ENT, RELATIVE DENSITY Y, SOIL STRUCTURE,	Sample	e Collection e Sub-Unit	n Information
- - - 5_	80	0	silty day (said prod dry, non- with silt dark broi	(CL) with some ldrsh brown plastic. Mysi y gravei (GM un, dy, nop-		mple	0-5-3
-	106	0	Siltygrave brown to dry, non- pragment	dark brown, plastic. Aspha 8 @ 9.5 ft.	and,	N	
-	714	0	- x	(CL) dark notst, plast at 16 ft.	-	yle	13-15 FA
20	75 75	0	Silty day net from ned. plas	(EL), brown, 15-18ff. Herty.	-		, NO 200
-			EDB@	201 lays	-		

KNOTE-PLD collected every 6"

			26.0
PROJECT NUMBER	Decision Unit	Boring ID	

PROJECT:

HART

LOCATION:

DRILLING CONTRACTOR:

Banana Patch

LAT/LONG:

YES NO

UTILITY CLRNCE CONFRMD:

Geotek

DRILLING METHOD AND EQUIPMENT USED:

DPS HAS TP

Geophysical anomalies/ Fill Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	С	С
No	A	В	В	A	С	С

Did you see

NAPL/Char/Ashes?

YES (

YES

IF YES:

Sample
Collect into 8-oz jar

Analysis
Dioxins, Furans

Replicate collected here?

(NO

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis		
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs		
0.5-3	Collect 10 plugs into zíplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb PCBs		
13-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
 - 5 to 10' bgs
 - 10' bgs to 15' bgs
 - 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis	
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
le 4	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
m - 13	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
1	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
3-20	All remaining soil from 6 adjacent borings	s will be consolidated	a de la companya della companya della companya de la companya della companya dell

	9-14-16-	ECT NUMBER Decision Unit Boring ID
CH2MHILI		SOIL BORING LOG
PROJECT: HART		LOCATION: Banana Patch
LAT/LONG:		DRILLING CONTRACTOR: Geotek
DRILLING METHOD AND I	EQUIPMENT	TUSED: TVALLE RIG DPS
WATER LEVELS :	STAR	
DEPTH BELOW SURFACE (FT)	X	SOIL CORE DESCRIPTION COMMENTS
RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.
- T 90 CL	Ø	Reddish Brown STLTY CLAY, with grand and soud, desermed dense 0,5-3/ to loose, day FTLL see 109 book
- 75 CL - 75 Y	Ø	Charrese to whitish grony - Corulline gravels present - CLAY mosst ned sitisff wed plastraty with grave - FELL WUNC
- 100 EL	Ø Grand	CLAY, with grave I and - sund, med Stilf, motit-
- 1 100 SC	Native	CLAYBY SAND, with Somegrows, bosse, wet see log book. NATEVB= 16-20 - see log book.
		END Boring 201
25_	CO E	every 61 track

CT NUMBER	Decision Unit	U
		11"

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

UTILITY CLRNCE CONFRMD:

PROJ

DRILLING CONTRACTOR:

Geotek

DRILLING METHOD AND EQUIPMENT USED: Ge

HAS TP

Geophysical anomalies/ Fill		DU1	DU2	DU3	DU4	DU5	DU6_
Exist?	Yes	В	В	В	В	С	С
7 3.50	No	Α	В	В) _A	С	С

Did you see

NAPL/Char/Ashes?

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis	
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
0.5-31	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
16-19	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill

Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical - 0 to 5' bgs - 5 to 10' bgs - 10' bgs to 15' bgs 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
99	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
3-20	All remaining soil from 6 adjacent horizon	will be seemlideted	

NOTE: Do not combine native material and fill
- Separa fer FIN native for archive samples

PROJECT NUMBER Boring ID **Decision Unit** CH2MHILL SOIL BORING LOG PROJECT: HART LOCATION: **Banana Patch** LAT/LONG: **DRILLING CONTRACTOR:** Geotek DRILLING METHOD AND EQUIPMENT USED: DPS, truck-mounted WATER LEVELS: START: 1100 END: 1120 LOGGER: DEPTH BELOW SURFACE (FT) SOIL CORE DESCRIPTION COMMENTS INTERVAL (FT) PID RECOVERY (FT) SOIL TYPE, USCS GROUP SYMBOL, COLOR, Sample Collection Information READING' #/TYPE MOISTURE CONTENT, RELATIVE DENSITY Sample Sub-Unit Decision OR CONSISTENCY, SOIL STRUCTURE, (ppm) MINERALOGY. sample 0-0.5' 695 Silty clay (SC) with sand brown mysed wydark brun. 60 pry. Nonplastic. Pumice Frage @ 4:5 St. sample 0.5-3.0' bys 0 Sitty clay with sand and gravel. Feddish brown (00) 0 FILL 10 Silty gravel (AM) reddish brown to dark brown dry, nonplastic. Clayed and morst at 14 ft. Fill ends at 14 ft. 75 0 Sample collecte 15_ silty day (a), dark brown, mast, med. 0 plastic 20 \mathcal{S} 20 _ EUB @ 20' bgs

*NOTE PID readings taken every 6"

PROJECT NUMBER	Decision Unit	Boring ID	
	7	استر المستر	

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

HAS TP

Geophysical anomalies/ Fill Exist?

		DU1	DU2	DU3	DU4	DU5	DU6
	Yes	В	В	В		С	С
	No	Α	В	В	A	С	С

NO

Did you see

NAPL/Char/Ashes?

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

IF YES: IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis	
O-O-S Collect 10 plugs into ziplock		TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
0.5-3 Collect 10 plugs into ziplock, 3 plugs into 1 VOA		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
14-16 Collect 10 plugs into ziplock, 3 plugs into 1 VOA		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis		
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs		
11-16,1	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
1.	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

ACTUAL SUs)	Sample	Analysis			
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)				
3-20	s will be consolidated				

One archive for deep (10'+) NOTE: Do not combine native material and fill

	PROJECT NUMBER	Decision Unit	Boring ID &			
CH2MHILL	5	SOIL BORING LOG				
PROJECT: HART		LOCATION:	Banana Patch			
LAT/LONG:		DRILLING CONT	RACTOR: Geotek			
DRILLING METHOD AND EQUIP		ruck RIG				
WATER LEVELS :	START: 5/19/14 11:10	END: 11:20	LOGGER: I-WOOd			
DEPTH BELOW SURFACE (FT)	SOIL CORE	DESCRIPTION	COMMENTS			
RECOVERY (FT)	DING MOISTURE CONTENT Om) OR CONSISTENCY, SO MINERALOGY.	, RELATIVE DENSITY SIL STRUCTURE,	Sample Collection Information Sample Sub-Unit Decision			
	Redd. 32 Bro	on STLTY	0-0.5			
50 GM	Gravel, i	uose,dry _	0.5-3'bgs			
5	Rondish Brn		- 1			
1650	CLAY and Meddens Grayith wh	Grave (NIME			
10 GM X	Bray it wh	hove), wose, di				
- La. Cu O	10.5' Redaish	Brunn	-			
75	13/0 sahalt	Youth gravel ned dense, day fragments				
15_PDL	11					
- 95 CL Navt	ove Gray ish Brow CLA4, med	M, SILTY SKEF, Moist	16-19 691			
-	CLAY, med trace fine	, surely				
20	20	1 stop	-			
	4.					
		- 4				

& PDO every 6" of core

PROJECT NUMBER	Decision Unit
10	1 13111 2

Boring ID

FLOW CHART FOR SAMPLING RATIONALE

PROJECT:

HART

LOCATION:

HAS

Banana Patch

LAT/LONG:

UTILITY CLRNCE CONFRMD:

DRILLING CONTRACTOR: NO DPS

Geotek

DRILLING METHOD AND EQUIPMENT USED : Geophysical anomalies/ Fil

Exist?

	DU1	DU2	DU3	DU4	DU5	DU6		
Yes	В	В	В	В	С	С		
No	Α	В	В) _A	c	С		

Did you see

NAPL/Char/Ashes?

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
16-19	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

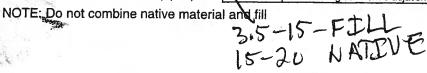
C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0√o 5' bgs
 - 5 to 10' bgs
 - 10' bgs to 15' bgs
 - 15 to 28' bgs (native)

	ACTUAL SUs)	Sample	Analysis
	. 1	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
1	3.00	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- Q fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)


POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
Ores	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
1	All remaining soil from 6 adjacent boring	s will be consolidated

20-31

	lano in	OT NUMBER	15 34	5-19-14			
	PROJE	CT NUMBER	Decision Unit	Boring ID 9			
CH2MHILL		SOIL BORING LOG					
PROJECT: HART			LOCATION:	Banana Patch			
LAT/LONG:			DRILLING CON	TRACTOR: Geotek			
DRILLING METHOD AND EQU	IPMENT	USED: DPS-	truck moun	nted			
WATER LEVELS :	STAR	T: 1140	END: 1200	LOGGER: B. Pode			
DEPTH BELOW SURFACE (FT)		SOIL CORE	DESCRIPTION	COMMENTS			
	PID EADING (ppm)	SOIL TYPE, USCS GR MOISTURE CONTENT OR CONSISTENCY, S MINERALOGY.	OUP SYMBOL, COLOR, , RELATIVE DENSITY OIL STRUCTURE,	Sample Collection Information Sample Sub-Unit Decision			
1		to arravel. U) with sound	Sample 0-0.5' Sample 0.5-3!			
	6	most, won Rock fragme	eddish brong -plaste. uts 3-484. Flu	Sample 0.5-31			
5 - 4 90	Ø O	silty clay (cl gravel: por moist, me large pumi at 9-10 f	Julth some own (15483): d. plasticity ce frags J: t. Stiff:	s)			
90	0	silty day (a light gray brun dry mors f beto plastre. Fr	SHIFT-MERIFF	Sumple 14-151			
20_ \ 80 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	6	Sty day Ec Sand & org Morst. Mea Med. SHFF) with some anic frags. I. plasticity. to soft:				
		т					

NOTE! PID readings taken every 6"

PROJECT NUMBER	Decision Unit	Boring ID	

PROJECT: LAT/LONG:	HART	f ²					LOCATION DRILLIN	ON:	Banana Patch Geotek
UTILITY CLRN			IPMENT		NO	DPS	HAS	TP	
Geophysical anomalies/ Fill		DU1	DU2	DWE)	DU4	DU5	DU6]	
Exist?	Yes	В	В	В	В	С	С		
	No	Α	В	В	Α	С	G C		
Did you see NAPL/Char/Asi	hes?		YES (F YES:	Sample	e t into 8-o	z jar	Analysis Dioxins, Furans
Replicate colle	cted he	ere?	YES ((NO) II	F YES:	Samp	le ID's:		
						Samp	le ID's:	(2)	

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
14-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs

- 5 to 10' bgs

- 10' bgs to 15' bgs

- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
A Park	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
5-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
3-20	All remaining soil from 6 adjacent borings will be consolidated		

	PROJECT NUMBER	Decision Unit	Boring ID 81_0	
CH2MHILL	SOIL BORING LOG			
PROJECT: HART		LOCATION: B	anana Patch	
AT/LONG:		DRILLING CONTR	ACTOR: Geotek	
RILLING METHOD AND EQU	IPMENT USED: 065	Track Rig -	truck	
VATER LEVELS :	START:5/19/14 11:3	30 END: 11:45 L	OGGER: I.WOON	
EPTH BELOW SURFACE (FT) INTERVAL (FT)	SOIL CORE	DESCRIPTION	COMMENTS	
RECOVERY (FT) #/TYPE RE	PID SOIL TYPE, USCS GF MOISTURE CONTENT OR CONSISTENCY, S MINERAL OGY	F, RELATIVE DENSITY Sa SOIL STRUCTURE,	mple Collection Information mple Sub-Unit Decision	
- Ct/	Kedish Br CLAY, and G SILTY CL Gravel (co	wy STLTY	0-0.5	
- 50 SM	CLAY, and G	mayor black	0-0.5	
-	SOLTY CL	iralline)		
- '	1201			
5 5	FALL			
5 80 (× Same	as above -	None	
- 0 (10	
- 1 1 7		4		
10 (3)		-		
10	1			
-11 ben 17 1 0	/) <i>(</i> ************************************	- 1	None	
1 70 3	Dodah D.	was / Grain-	4.	
	Brown St.	TY CLAY	*	
5 15 NG	true med stiff, n	MSA (RP)		
THE COL	, washe at	41656	44	
	- /	in CLAY,	10/	
1 95) Softweet !	mun -	17-17	
(5P)	17 8000			
0 20 644	SILTYGN	WEL -	£ 1	
	/ 18.5 Dark	Graytsh		
"] CL ()	& Brown CLF	MERSIN-	14	
	I mith was	dy delonis	EN.	
1/2	Warenest,	man M. Louis	The state of the s	
Har LU	18-51-20 Denk	med SAVEL Me	Ash	
(V X DED &	Who !	core	11/1	

PROJECT NUMBER	Decision Unit	Boring ID (B 10	

PROJECT:

HART

LAT/LONG:

YES

LOCATION:

Banana Patch

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED :

DP

HAS TP

Geophysical
anomalies/ Fill Exist?
Exist?

"C	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	С	C
No	A	В	В	А	С	С

NO

Did you see

NAPL/Char/Ashes?

Replicate collected here?

YES NO

IF YES:

Sample
Collect into 8-oz jar

Analysis
Dioxins, Furans

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis	
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
0.5-3	Collect 10 plugs into zíplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
17-19	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH; RCRA8, Pest/Herb, PCBs	

1 - If no fill exists, completed boring to 10' bgs

Each boring to be divided into 4 vertical

- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
4	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5 -,	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
V X I	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

ACTUAL SUs)	Sample	Analysis	
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
3-19	All remaining soil from 6 adjacent borings	s will be consolidated	

One archive for deep (10'+)

NOTE: Do not combine native material and fill

Their Delision to carrishe nature and RI'N street

	1 1	ECT NUMBER	Decision Unit	Boring ID	'IV
CH2MHIL		h = <u>H1 =</u>	SOIL BORIN	G LOG	
PROJECT: HART			LOCATION :	: Banana Patci	eh
LAT/LONG:			E	ONTRACTOR:	Geotek
DRILLING METHOD AND	EQUIPMENT	rused:			
WATER LEVELS :	STAR	₹T:	END:	LOGGER:	
DEPTH BELOW SURFACE (FT)		SOIL COR	RE DESCRIPTION		MMENTS
INTERVAL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS G MOISTURE CONTEN OR CONSISTENCY, MINERALOGY.	GROUP SYMBOL, COLOR NT, RELATIVE DENSITY , SOIL STRUCTURE,	DR, Sample Collection Sample Sub-Unit	
- \ \ 90 \ \ - \ \ 5_		Silty Clay (C) Sand & an brun to v dry to slight oft. Non- FILL	CL) with some and light reddish bru thy moist at -plastic, shi	sample FF.	0.5-3
- 10_ 80 FILL		silty day in hight lown concrete as to modern Plastic-med		mn.	
- 1 (e0 1		a gravel. U Perovir. A SHFF. Shar med. pta	moderately noty most	o Sample 19	3-151
- 60	P	Gray-brown 3" black Wet & Soft Moist & Mi below th from 17-18	n Silty Clay Wood @ 15 f H @ 15-12 ft. ed. SHFF \$ at. Wet Off.		
-		tobe 2	OPt.	- 4	

PROJECT NUMBER	Decision Unit	Boring ID	
	- [®] .,		

PR	OJ	EC1	<u> </u>

HART

LOCATION:

DRILLING CONTRACTOR:

Banana Patch

LAT/LONG:

Geotek

UTILITY CLRNCE CONFRMD:

(ES)

DRILLING METHOD AND EQUIPMENT USED :

(DPS)

HAS TP

Geophysical anomalies/ Fill Exist?

ı		DU1	DU2	DU3	DU4	DU5	DU6
\	/es	В	В	B	В	С	C
_	Vo.	Α .	В	В	Α	С	С

NO

Did you see

NAPL/Char/Ashes?

YES

) IF YES:

Sample
Collect into 8-oz jar

Analysis
Dioxins, Furans

Replicate collected here?

= 0

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs

- 0.5 to 3' bgs

- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
13-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs

- 5 to 10' bgs

- 10' bgs to 15' bgs

- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
3-20	All remaining soil from 6 adjacent borings	s will be consolidated	

a cuantilli	PHOJECT NUMBER	Decision Unit	Boring (B)
CH2MHILL		SOIL BORING LO	og
PROJECT: HART		LOCATION: Ba	anana Patch
LAT/LONG:		DRILLING CONTRA	
DRILLING METHOD AND EQ	UIPMENT USED :		
WATER LEVELS :	The state of the s	300 END: 1315 L	LOGGER: I. Wood
DEPTH BELOW SURFACE (FT)		RE DESCRIPTION	COMMENTS
RECOVERY (FT) #/TYPE F	READING MOISTURE CONTEI OR CONSISTENCY, MINERALOGY.	NT, RELATIVE DENSITY , SOIL STRUCTURE,	ample Collection Information ample Sub-Unit Decision
- T 90/8CL	Reddish B CRAY with Stiff, dry	from SILTY - 0. th gravelimed of	-0.5
- T 80 GM	dense, der -asphalt and carahine	TELL -	Wone
15	1/ 1/ 1/ 1/4	1. Madeizi	16.5 -18.5'
20	CLAY, &	LAYBY - wose, wet - The Brown Ferner Stiff ands Del' b95	

PROJECT NUMBER	Decision Unit 3	Boring ID B12	

PROJECT: HART **LOCATION:** Banana Patch LAT/LONG: **DRILLING CONTRACTOR:** Geotek **UTILITY CLRNCE CONFRMD:** NO DRILLING METHOD AND EQUIPMENT USED : HAS TP Geophysical DU1 DU2 DU3 DU4 DU6 anomalies/ Fill Exist? В В С В С Sample Analysis Did you see NAPL/Char/Ashes? IF YES: Collect into 8-oz jar Dioxins, Furans Replicate collected here? IF YES: YES Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs

- 0.5 to 3' bgs

- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
0.5-3	Collect 10 plugs into zíplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
18,51		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perfe	orm intrusive investigation Each boring to be divided into 4 verti	ical
	- 0 to 5' bgs	6)
\wedge	- 5 to 10' bgs	
	- 10' bgs to 15' bgs	
	- 15 to 28' bgs (native)	
	1 - If no fill exists, completed boring t	0 18

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into zíplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
1-	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- o 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis					
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive					
3-18,5							

		5	PROJE	CT NUMBER		Decision Unit	Boring II	13
	CH2N	MHILI			SOI	L BORING	LOG	
PROJECT	: HAR	r		10°°		LOCATION :	Banana Pat	ch
LAT/LONG	i:				2	DRILLING CON	ITRACTOR:	Geotek
DRILLING	METHO	D AND E	QUIPMENT	USED:				
WATER LE	VELS:	NR	STAR	T: NR	- 1	END: NR	LOGGER:	B. Roder
DEPTH BELOV	W SURFAC	E (FT)		SOIL C	ORE DESC	RIPTION	C	OMMENTS
3		ERY (FT) #/TYPE	PID READING (ppm)	MOISTURE CON OR CONSISTEN	ITENT, RELA CY, SOIL ST	RUCTURE,	Sample Collect Sample Sub-Ur	nit Decision
- 1				Sity day	with	Sand \$	Same	le 0-0-5
-	80		d'o	gravel, re W/dark non plas	eddish Lower Hc, st	bown max	ged Samp	0-0-5 04 0.5-3
5_					-	ni -		10
10	60	FILL	0	Sand & Sound from 9- from 9- morst. I Moderat	gravel 10 ft.	ry (CL) w/ reddish n Coneret strontry Nastronty HIFF pul	e	\$ \$1
15_	60	1	Ó	Silty grav Light Lu SOFT. Dr Fill eluds below is brown, me	un to	1) to 13 for 13	y.	e 13-15
	20		0	Gilty Clar	4 (ci)), dark _ .ed : plastic -	" -	
20				EB @	20 ft	- logs -		

C.		
V	CH2N	BHILL
-		
-		

PROJECT NUMBER	Decision Unit	Boring (D

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

NO

DRILLING METHOD AND EQUIPMENT USED:

HAS TP

Geophysica anomalies/ Fi Exist?

l ill		DU1	DU2	DU3	DU4	DU5	DU6
i	Yes	В	В	B	В	С	С
	No	Α	В	B	A	С	С

Did you see

NAPL/Char/Ashes?

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs

- 0.5 to 3' bgs

- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
13-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs - 0 to 5' bgs - 5 to 10' bgs

> - 10' bgs to 15' bgs - 15 to 28' bgs (native)

SUs)	Sample	Analysis
1021	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
20 04	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis				
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive				
3-20	All remaining soil from 6 adjacent borings will be consolidated					

		ECT NUMBER	Decision U	3	Boring ID 4
CH2MHILI		so	IL BOF	RING	LOG
PROJECT: HART			LOCATIO	ON:	Banana Patch
LAT/LONG:			DRILLING	G CON	TRACTOR: Geotek
DRILLING METHOD AND E		TUSED: RT:5/19/14 13/5	K45 15	1224	Time
WATER LEVELS : DEPTH BELOW SURFACE (FT)	STAH	SOIL CORE DES	END:	586	LOGGER: T. Wood
INTERVAL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL CORE DES SOIL TYPE, USCS GROUP MOISTURE CONTENT, RE OR CONSISTENCY, SOIL S MINERALOGY.	SYMBOL, C	SITY	COMMENTS Sample Collection Information Sample Sub-Unit Decision
- 80 CL	6	Reddith Brun CLAY with granel, med dry, PEL	CuraM	ر <u>. </u>	0-0.5'
- (60 CL	FILL	8/-9/ FI Somm selts	rano m k	- -	None
10 - 1 80 CL	Naghare O	Same as 0-8 Some asphilt Dark Brown Cl	with Gragmen ATRY	rgs -	- 15-16'
15	0	SOLTWAN G		d -	

sume as above

total depth 20-

90 PAL

PROJECT NUMBER	Decision Unit 🐷 .	Boring (D	0	101	
i and the second	1)11/4		15	LM	
	1 0000		.0	<u> </u>	

PROJECT:

HART

LOCATION:

ΤP

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

HAS

Geophysical anomalies/ Fill Exist?

ı	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	С	С
No	Α	В		Α	С	С

NO

Did you see

NAPL/Char/Ashes?

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs

- 0.5 to 3' bgs

- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0,-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
05-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
12-16,	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill

- Do not drill deeper than water table (exp. 15-18' bgs)

rform intrusive investigation Each boring to be divided into 4 vertical SUs 0√o 5' bgs 5 to 10' bgs 0' bgs to 15' bgs p 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	i, .	,
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive		
3-16	All remaining soil from 6 adjacent borings	s will be consolidated		

		CT NUMBER	Decision Unit	Boring ID 15
CH2MHIL			SOIL BORING	
PROJECT: HART			LOCATION:	Banana Patch
AT/LONG:			DRILLING CON	TRACTOR: Geotek
RILLING METHOD AND	EQUIPMENT	USED : DPS .	truck-mount	-
ATER LEVELS :		T: NR	END: NR	LOGGER:
EPTH BELOW SURFACE (FT)		SOIL CO	ORE DESCRIPTION	COMMENTS
INTERVAL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)	MOISTURE CONT	G GROUP SYMBOL, COLOR, TENT, RELATIVE DENSITY SY, SOIL STRUCTURE,	Sample Collection Information Sample Sub-Unit Decision
- 1 90 7	Ð	Silty Clay (3 trace of brun slig low plass	CL) with Sand ravel. Reddish Notly moister, Hearty. Stiff.	Jample 0-0.51 Sample 0.5-31
- 1 80 Fill	0	Silty Grave brown, lo frags at Moist m moderat	arge Lasalt Total Ed plassicity, - ey Stiff.	
- 1 90 - V 50	0	Silty Clay moret, m med. st. sand as Fill ends	(CL), dark low ned plasticity ff. Coar Coral gravel @ 15 to FI at the ft.	n, sample 13-15
- 1 60 CL	0	silty clay dk brown moist lo plasheuty	(CL), brun to n, wet 15-16 ff selow, ned. , ned SHFR.	,
		EOB @	20 St. bgs -	

PROJECT NUMBER	Decision Unit	Boring ID	
	2 202		

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

NO

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED :

HAS

Geophysical anomalies/ Fil Exist?

,	DU1	DU2	DU3	DU4	DU5	DU6		
Yes	В	В	0	Or .	С	С		
No	A	В) A	С	С		

Did you see

NAPL/Char/Ashes?

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

l	ACTUAL SUs)	Sample	Analysis
	0-05	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
	05-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	13-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs	ACTUAL SUs)	Sample	Analysis
- 0 to 5' bgs		Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
- 5 to 10' bgs		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
- 10' bgs to 15' bgs		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
- 15 to 28' bgs (native)		Collest 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis		
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive		
3-20	All remaining soil from 6 adjacent boring	s will be consolidated		

		CT NUMBER	Decision Unit	Boring ID BI 6	
CH2MHILL		SOI	IL BORING	LOG	
PROJECT: HART			LOCATION:	Banana Patch	
LAT/LONG:			DRILLING CONT	TRACTOR: Geote	ek
DRILLING METHOD AND EC			- 4		
WATER LEVELS :	START	5/19/14 1340	END: 1350	LOGGER: T.W	N
DEPTH BELOW SURFACE (FT)		SOIL CORE DESC	RIPTION	COMMENTS	
RECOVERY (FT)	PID READING (ppm)	SOIL TYPE, USCS GROUP S MOISTURE CONTENT, REL OR CONSISTENCY, SOIL S' MINERALOGY.	ATIVE DENSITY TRUCTURE,	Sample Collection Informat Sample Sub-Unit Decision	
- 60 cy	,Ø	Reddish Brown CLAY with a grane 1, means Dry (PILL	~ SILTY - orwane SHTF, -	0-0.5	3 1
70 CY	Ø	Same Convent lieca 7-8/ Asphalt 8-9 fracionals			
G/M	3L	Cement picce. SAME às as in Reddish Boo Men. stiff, mui	e (RELL) -		
is Ci,		SAME AS U- from 15-17 Reus Lowm CLAN with	13 FILL-	19-20)	
		MEN STIFF, MATEUR	moth, 17-20-		

and the same			
PROJECT NUMBER	Decision Unit	Boring ID	>
<u> </u>			

PROJECT: HART LAT/LONG:				LOCATION : DRILLING CONTRACTOR :			Banana Patch Geotek					
UTILITY CLRN	CE CO	NFRMD:	2	YES)	NO							
DRILLING MET	HOD A	IND EQU	IPMENT	USED :		(DPS)	HAS	TP				
Geophysical anomalies/ Fill		DU1	DU2	DU3	DU4	DU5	DU6					
Exist?	Yes	В	В	В	В .	С	С		140		4	
	No	A	В	В	A	С	С	Mill				
						Total In			7			
Did you see NAPL/Char/Ash	es?		YES (IF YES:	Sample Collect	e t into 8-o	oz jar		Analysis Dioxins,		
Replicate collec	ted he	re?	YES (NO) 1	IF YES:	Sampl	le ID's:				16 Tu	
						Sample	le ID's:				Şa	7 = h d'

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
19-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
14.	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
100	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
3,5-19	All remaining soil from 6 adjacent borings	s will be consolidated

		Decision Unit	Boring ID			
CH2MHILI		SOIL BORING LOG				
PROJECT: HART		LOCATION:	Banana Patch			
LAT/LONG:		DRILLING CON	TRACTOR: Geotek			
DRILLING METHOD AND E	EQUIPMENT	USED: DPS, truck-moun				
WATER LEVELS :	STAR		LOGGER: BiPoder			
DEPTH BELOW SURFACE (FT)		SOIL CORE DESCRIPTION	COMMENTS			
RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision			
- 1 T		Silty clay (CL) W/ Sand & Some graves. Brun to	sample 0-0.5.			
- - - - - - - - -	0	light bown. Dry to shipto motest. Soft to med stiff. non-plastic to low plasticity. Ful	sample 0.5-3.			
- 10_ 60 Fill	0	silty clay (U) with large rock fragments. Brown. Slightly moist. Med Plasticity & med. Stiff.				
- A 80 _	S	Sity gravel (GM) to 14 ft. Sity clay (CU) 14-15 ft. Gray to bown 8+1ff Sightly motst, low plast FILL ends @ 14 ft	sample 14-17'			
50 01	0	Solty day (CL), reddish sown, valst, soft, med. plasticity				
20		50B @ 20 ft. bgs.				
25						

PROJECT NUMBER	Decision Unit	Boring ID	
	# 1		
	No. 1 Vertilet		

PROJECT:

HART

LOCATION:

HAS

Banana Patch

LAT/LONG:

NO

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

DRILLING CONTRACTOR:

TP

Geotek

Geophysical anomalies/ Fill Exist?

	,						
	DU1	DU2	DU3	DU4	DU5	DU6	
Yes	В	В	B	В	С	С	
No	Α	В	В	А	С	С	

Did you see

NAPL/Char/Ashes?

YES

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs

- 0.5 to 3' bgs

- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
14-17	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each being to be divided into 4 vertical SUs	ACTUAL SUs)	Sample	Analysis
- 0 to 5' bgs	The state of the s	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
- 5 to 10' bgs		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
- 10' bgs to 15' bgs	7,1	Collect 10 plugs into ziplock, 3 plugs into	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
- 15 to 28' bgs (native)	- 192 - 192	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
3-20	All remaining soil from 6 adjacent borings	s will be consolidated	

			ECT NUMBER Decision Unit 0.0.3	Boring ID
CH2	MHILI		SOIL BORING	LOG
PROJECT: HAI	RT		LOCATION:	Banana Patch
LAT/LONG:			DRILLING CON	
DRILLING METH	OD AND I			6
WATER LEVELS	:	STAP	RT:5119114 1400 END:1415	LOGGER: I. wood
DEPTH BELOW SURFA		*	SOIL CORE DESCRIPTION	COMMENTS
INTERVAL (FT)	OVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision
- 40	6M	Ø	Redaish Brown SZLTY CLAY with grave 1,54FFF. dry, FILL	0-0.5
5_	\coprod		-	
50	,	Ø	Present 9-107 Graves -	Novol
- 50	,		SAMB,	NUNZ -
15	ct		14-16 Reditias above - but CLAY newsfift, muist FILL	
	cin		Cement fragments	
20	el	1	18.5 Reddish Brown	
-	el	native	graver, med stiff, motst, trunishim to	19-20

PED every 6" of core

PROJECT NUMBER	Decision Unit	Boring ID 8	

PROJECT: LAT/LONG:	HAR1	f					LOCAT	ION : NG CONTRACTOR :	Banana Patch Geotek	
UTILITY CLRN	CE CO	NFRMD:	(YES)	NO	_				
DRILLING MET	HOD A	ND EQU	IPMENT	USED:		DP	HAS	TP		
Geophysical anomalies/ Fill		DU1	DU2	DU3	DU4	DU5	DU6			
Exist?	Yes	В	В	В	В	С	С			
	No	А	В		A	С	С	J		
Did you see NAPL/Char/Ash	es?		YES (NO	IF YES:	Sampl	e t into 8-c	oz jar	Analysis Dioxins, Furans	
Replicate collec	ted he	ere?	YES		IF YES:		le ID's:			
						Samp	le ID's:			C I C C

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ul	ACTUAL SUs)	Sample	Analysis		
	0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs		
	0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	o TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	19-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform	intrusive	investigation
-------------	-----------	---------------

Each boring to be divided into 4 vertical SUs 0 to 5' bgs 5 to 10' bgs - 10' bgs to 15' bgs 5 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

> One archive for shallow (0-10) One archive for deep (10'+)

	ACTUAL SUs)	Sample	Analysis	
-3	1	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
l	3~18.5	All remaining soil from 6 adjacent borings	s will be consolidated	

NOTE: Do not combine native material and fill 18.5-20 - nextwo

	12	ECT NUMBER	Decision Unit 3	Boring ID 19
CH2MHILL	9		SOIL BORING	LOG
PROJECT: HART			LOCATION:	Banana Patch
LAT/LONG:		40	DRILLING CON	
DRILLING METHOD AND E	EQUIPMENT	rused: DPS, 1		
WATER LEVELS :		RT: NR	END: NR	LOGGER: BRoder
DEPTH BELOW SURFACE (FT)			PRE DESCRIPTION	COMMENTS
INTERVAL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)	MOISTURE CONTE	GROUP SYMBOL, COLOR, ENT, RELATIVE DENSITY Y, SOIL STRUCTURE,	
- 1 60 7	Ф	Silty clay (C grower: Li Dry to str Non-plastic Soft to s	SHOTE ION PLASTI SHIFF.	sample 0.5-3
- 1 90 PNL	6	oilty day (c gravel. Br lorwn. Cora Cement fr Slightly in SHFF.	CU) with some run to reddish all sand 6.5-7: rags 9.5-10! with the plast	
- 10 - 70 - 15_	0	plasterty. SHFR FILL	· Moderately ende @14 ft.	Sample 15 = 1 ft.
- 1 50 CL	D	Silty day (brown. N plasticity stiffness	CU). Reddish Moist. Med. \$ med. 5.	sample 15-18 A.
20		EOB@2	OFF.	
25	*			

	CH2MHILL
-	

PROJECT NUMBER	Decision Unit	Boring ID	
		(*)	

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

NO

DRILLING METHOD AND EQUIPMENT USED:

HAS TP

Geophysical anomalies/ Fill Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	B	В	С	С
No	Α	В	(B)	Α	С	С

Did you see

NAPL/Char/Ashes?

IF YES:

Sample Collect into 8-oz jar

Analysis

Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

YES

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
05-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-18	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs

- 5 to 10' bgs

- 10' bgs to 15' bgs - 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
le l	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
3-20	All remaining soil from 6 adjacent borings	s will be consolidated	

0	CH2MHILL
-	CHZIVITILL

Decision Unit PROJECT NUMBER

Boring IB 20 **SOIL BORING LOG** PROJECT: HART LOCATION: **Banana Patch** LAT/LONG: DRILLING CONTRACTOR: Geotek DRILLING METHOD AND EQUIPMENT USED: 1 15 THACK RIG START: \$19/14 1445 END: 1500 WATER LEVELS: LOGGER: I. Wood DEPTH BELOW SURFACE (FT) SOIL CORE DESCRIPTION COMMENTS INTERVAL (FT) RECOVERY (FT) PID SOIL TYPE, USCS GROUP SYMBOL, COLOR, Sample Collection Information READING #/TYPE MOISTURE CONTENT, RELATIVE DENSITY Sample Sub-Unit Decision 0/6 (ppm) OR CONSISTENCY, SOIL STRUCTURE. MINERALOGY. Redish Brown SZLTY CLAY with Growth 0-0.51 95 0.5-31 Verystiff, dry (Fill) No somples Reddish Brown & SZLTY -1005e 5-71 - stiff 7-101 95 (LAY and Grave) Musemples 85 AVITAN IFI 8 SELT, Soft, 15 80 20

PROJECT NUMBER	Decision Unit	Boring ID	
FLO	W CHART FOR SAM	PLING RATIONALE	

PROJECT: HART

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED :

DPS HAS TP

LOCATION:

Geophysical anomalies/ Fill	=	DU1	DU2	DUR	DU4	DU5	DU6
Exist?	Yes	В	B	В	В	С	С
	No	A	В	\ _B /	Α	С	C -

Did you see NAPL/Char/Ashes?

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Banana Patch

Replicate collected here?

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

YES

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs

- 0.5 to 3' bgs

- 8-10' bgs OR 3' interval below bottom of fill (native)

ıl	ACTUAL SUs)	Sample	Analysis
	0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
9	0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	19-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

•	Daviases	imenicaliza	inhanatanata	_
	Perioni	LIIIIGUSIVE	irivestigatio	n

Each boring to be divided into 4 vertical SUs - 0 to 5' bgs - 5 to 10' bgs

> 0' bgs to 15' bgs 28' bgs (native)

		_	

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10

One archive for deep (10'+)

	EALL
•	Fall

	ACTUAL SUs)	Sample	Analysis	
1	0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
•	3-17	All remaining soil from 6 adjacent borings	will be consolidated	

NOTE: Do not combine native material and fill

was voto orafine

CH2MHILL

PROJECT NUMBER **Decision Unit**

Boring ID

SOIL BORING LOG

PROJECT: HART LOCATION: **Banana Patch** LAT/LONG: **DRILLING CONTRACTOR:** Geotek DRILLING METHOD AND EQUIPMENT USED: DPS, truck-mounted START: NR WATER LEVELS: B. Poder END: NR LOGGER: DEPTH BELOW SURFACE (FT) SOIL CORE DESCRIPTION COMMENTS INTERVAL (FT) RECOVERY (FT) PID SOIL TYPE, USCS GROUP SYMBOL, COLOR. Sample Collection Information READING MOISTURE CONTENT, RELATIVE DENSITY Sample Sub-Unit Decision OR CONSISTENCY, SOIL STRUCTURE, (ppm) MINERALOGY. silty clay (cu) with sund & gravel light brun to reddish sample 0-0.5 brun. Slightly moist, perlow oplasticity soft to moderately stiff. Concrete @ 3-4: cample 0.5-3 90 6 Siltyday (CU) with trace gravel. Brown Moist. Med. plasticity. Med. SHFF. Cement & rock from 7-10 ft. 100 0 10 Same as 5-10 ft. concrete & rock frags at 13-15 ft. 0 40 15 Sitty day (cl), reddish brown. Trace rock frage sample basalt. Moist to wet ... Med. plasticity. Med. SHAP. Fill ends @ to ft. 0 80 20 60B@#20 ft. Lgs

PROJECT NUMBER	Decision Unit 3	Boring ID 21	
----------------	-----------------	--------------	--

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED :

HAS TP

Geophysical anomalies/ Fil Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	B	В	c	С
No	Α	В	(B)	Α	С	С

NO

Did you see

NAPL/Char/Ashes?

YES YES IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

IF YES: Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical

- 0 to 0.5' bgs

- 0.5 to 3' bgs

- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
17-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical
SUs
- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)
1 - If no fill exists, completed boring to 18

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
22	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- g to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
3-20	All remaining soil from 6 adjacent boring	s will be consolidated	0

	CH2MHILL

PROJECT NUMBER 457998

Decision Unit

Boring ID 23 22

SOIL BORING LOG

PROJECT: HART LOCATION: **Banana Patch** LAT/LONG: **DRILLING CONTRACTOR:** Geotek DRILLING METHOD AND EQUIPMENT USED : PS START: NR B. Roder WATER LEVELS: NR END: LOGGER: DEPTH BELOW SURFACE (FT) SOIL CORE DESCRIPTION COMMENTS INTERVAL (FT) RECOVERY (FT) PID SOIL TYPE, USCS GROUP SYMBOL, COLOR. Sample Collection Information READING MOISTURE CONTENT, RELATIVE DENSITY Sample Sub-Unit Decision (ppm) OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY. Silty clay (CL) with sand to reddish bown. Slightly worst. Low plasticity. Coral graves & 4 ft. Moderately SHFF. Ó 50 Silty clay (CL), trace gravel. peddish brun hoist, med. plasticity 100 0 med. SHFFness. 10 5-10 ft. Basalt frags at 13 ft. 70 0 15 same as above. Wet at 19 ft. Dark sample 17:20 brown. 70 ঠ Fill ends @ 17 ft. a 20 50B@20P+ logs.

	CH2MHILL	
-		

PROJECT NUMBER	Decision Unit 3	Boring ID 22

PRO)J	EC	T.	Ŀ
				_

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

TP

Geotek

UTILITY CLRNCE CONFRMD:

NO

DRILLING METHOD AND EQUIPMENT USED :

HAS

Geophysical anomalies/ Fil Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	B	В	С	С
No	Α	В	В	b. A	С	С

Did you see

NAPL/Char/Ashes?

YES

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES

IF YES:

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
1720	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs
- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)
1 - If no fill exists, completed boring to 1

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- xists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
3-20 All remaining soil from 6 adjacent borings will be consolidated		s will be consolidated

	CH2MHILL	

PROJECT NUMBER	Decipion Unit
	1 I) W

Boring ID

FLOW CHART FOR SAMPLING RATIONALE

PROJECT: HART **LOCATION:** Banana Patch LAT/LONG: **DRILLING CONTRACTOR:** Geotek **UTILITY CLRNCE CONFRMD:** NO DRILLING METHOD AND EQUIPMENT USED : HAS TP Geophysical DU1 ้อบสิ DU2 DU4 DU5 DU6 anomalies/ Fill Exist? Yes В В С Sample Analysis Did you see NAPL/Char/Ashes? IF YES: YES Collect into 8-oz jar Dioxins, Furans Replicate collected here? IF YES: Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15.5-	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs

- 5 to 10' bgs

-10' bgs to 15' bgs

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
uh I g	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

1 - If no fill exists, completed boring to 18' bgs

- 15 to 28' bgs (native)

- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

ACTUAL SUs)	Sample	Analysis	
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
315	All remaining soil from 6 adjacent boring	s will be consolidated	

NOTE: Do not combine native material and fill 16.5

15.5-17

0	CH2N	#HILL		CINUMBER	Decision Unit	Boring ID
				SOIL BORING LOG		
PROJECT	: HART			· ·	LOCATION:	Banana Patch
LAT/LONG	3:				DRILLING CONT	TRACTOR: Geotek
DRILLING	METHO	AND EQ				
WATER L	EVELS:		STAR	T: 5/29/14 18/	5 END: 530	LOGGER: T. With
DEPTH BELC	W SURFAC	E (FT)	1	SOIL CORE D	ESCRIPTION	COMMENTS
01	DECOVE		PID READING (ppm)	SOIL TYPE, USCS GRO MOISTURE CONTENT, I OR CONSISTENCY, SOI MINERALOGY.	RELATIVE DENSITY	Sample Collection Information Sample Sub-Unit Decision
-				refusal at s times then 17' tota refusal at	pass to -	
06				concrete-	dry	
A	100	CLIG	M	Reddish Brown	monds.	0-0,5
200_	02		Ø	lusse, dry	FILL	0-0.5
-	80		Ø	-6' concrete -8' asphalt	fragments -	
16					PTLL-	
-	90		X	+ Readish Brun + Stiff, dry very	RILL FILL	
*		1	y		÷	
1	80	1	0	20		15.5 -17' right above concrete
-				Redusal at 1 on concre No histilve Present	te bas	concrete
28				no hative	madern	

CH2MHILL

PROJECT NUMBER 457998

Decision Unit

Boring

oring ID 24

SOIL BORING LOG

PROJECT: HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

DRILLING METHOD AND EQUIPMENT USED: DPS, track-mounted

WATER LEVELS: START: NR END: NR LOGGER: B. RODER

DEPTH BELOW SURFACE (FT) SOIL CORE DESCRIPTION COMMENTS

DEPTH BELOW SURFACE (FT)			SOIL CORE DESCRIPTION	COMMENTS	
INTER\	AL (FT)	ERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision
- - - 5_	70		0	Silty clay (CL) with trace gravel and sand. Light gray intermixed with - lorown. Dry to moist Non-plastic soft to SHFF. to low plasticity.	0-0.51
- - - - 10_	70	Ftu	. 0	sifty day (CL) with trace gravel. Brown. Low plasticity. Moderately - stiff. Stightly moist concrete frags @ 5-6 ft.	-
15_	5 20	-	0	Same as 5-10 ft. FILL. Refusal @ 12 ft. EOB @ 12 ft. So loose, only 5% recoveral: Drillers Gald wet@ 15 ft.	
20_	0	STONE WAY	0	5 ft. of water in - acetate Sleeve. Pea - gravel appears to be present, preventing Sample collection.	
- - - - 25_				* constructing temp well at this locatron screened from 15-20-4	

* Refusal, 10st rod down hole. Stepped out ~3 Ft. Ht refusal again at 12 ft. Stepped out a third time, ~10 Ft away.

PROJECT NUMBER	Decision Unit	Boring ID	

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

TP

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

HAS

Geophysical anomalies/ Fill	Γ
anomalies/ Fill	ŀ
	ŀ

ı		DU1	DU2	DU3	DU4	DU5	DU6
	Yes	В	В	В	8	O	O
	No	Α	В	В	Α	С	C

Did you see

NAPL/Char/Ashes?

IF YES:

NO

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

	ACTUAL SUs)	Sample	Analysis
L	0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
L	0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

1 - If no fill exists, completed boring to 10' bgs

2 - If fill exists, complete boring 3' below bottom of fill

No Sample collected. No native materia

- Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

	ACTUAL SUs)	Sample	Analysis	
		Collect 10 plugs into ziplock	TPH-g/d/c, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
L		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	to TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
L		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
3-15	All remaining soil from 6 adjacent borings	s will be consolidated	

NOTE: Do not combine native material and fill

0% recovered 15-20 ft.

	CH2MHILL
4	

PROJECT NUMBER 451998

Decision Unit

Boring ID

25

SOIL BORING LOG

PROJECT: HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

DRILLING METHOD AND EQUIPMENT USED :

WATE	WATER LEVELS :			STAR	T: NR END: NR	LOGGER:
DEPTH	BELOW INTERV	SURFAC AL (FT) RECOVE		PID READING (ppm)	SOIL CORE DESCRIPTION SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	COMMENTS Sample Collection Information Sample Sub-Unit Decision
5	1	80		0	silty clay (CL) with some graved of send. Soft down to 3 ft. Hard but loose 3-5 ft. Reddish brown wixed with gray. Dry. Nonplastic. FILL	0-0.5'
- - - 10_	$\qquad \qquad $	70		0	Silty clay (CL) with some grower. Peddish brown. Singhtly moist. Nonplash Stiff. Concrete frags - at 8-9.5 ft. FILL	
- - - 15	\\	80		6	Game as 5-10 ft. Concrete debris from - 11-13 ft. FILL -	-
		80		0	Same as 5-10 ft. until 18 ft. Concrete frags & debris 18-19 ft. FILL Silty clay (CL) at 19 ft Pedaish brun. Moist. Low to med. plasticity Med. Stiff. Fill ends at 19 ft.	19-20'
25					EOB @ 20'	

PROJECT NUMBER	Decision Unit	Boring ID	
	·	İ	

PROJECT: HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

HAS TP

Geophysical anomalies/ Fill Exist?

,	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	С	С
No	Α	В	В	Α	O	С

Did you see

NAPL/Char/Ashes?

YES

IF YES:

NO

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
05-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
19-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

	ACTUAL SUs)	Sample	Analysis	
		Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA		
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
			TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
3-20	All remaining soil from 6 adjacent boring	s will be consolidated	

CH2MH	ILI

PROJECT NUMBER 457998

Decision Unit

Boring ID

26

SOIL BORING LOG

PROJECT: HART

LOCATION: Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

DRILLING METHOD AND EQUIPMENT USED: DPS, track-mounted						
					T: NR END: NR	LOGGER: B. Roder
DEPTH BELOW SURFACE (FT) INTERVAL (FT)			E (FT)	1	SOIL CORE DESCRIPTION	COMMENTS
	INTERV		#/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision
- - 5_	←	60		0	Silty clay (CL) with some gravel. Brown. Some coral gravel. Dry. Non-plastic. Soft to moderal Stiff. Metal debris at 5 ft. FILL	*
- - - 10		80	1000	0	Silty gravel (GM), Brown. Dry. Moderately stiff. Nonplastic. Friable Concrete 7-9 ft.	
- - - 15		60		O	Same as 5-10 ft. Concrete frags ##18 16-17. Some glass frags. PILL	
20	$\qquad \qquad \longrightarrow$	40		0	same as 5-10 ft.	
- 25_						-

PROJECT NUMBER	Decision Unit	Boring ID

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

HAS TP

Geophysical anomalies/ Fill Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	С	С
No	Α	В	В	A	С	С

Did you see

NAPL/Char/Ashes?

YES

IF YES:

NO

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

YES

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

1	ACTUAL SUs)	Sample	Analysis
i	0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
	0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ا [ACTUAL SUs)	Sample	Analysis
		Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis		
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive		
3-20	All remaining soil from 6 adjacent borings will be consolidated			

	CH2MHILL
CONTRACTOR OF THE PARTY OF	

PROJECT	NHM	REA

Boring ID

SOIL BORING LOG

PROJECT: HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

DRILL	ING N	1ETHO	D AND	EQUIPMENT	USED:	
WATE	WATER LEVELS: STA		STAR	T: END:	LOGGER:	
DEPTH	BELOW		ERY (FT) #/TYPE	PID READING (ppm)	SOIL CORE DESCRIPTION SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	COMMENTS Sample Collection Information Sample Sub-Unit Decision
- - - 5		60			Sitty day (CL) with some gravel. 6.5-1' coral gravel. 1-3 bayalt rock frage. 3-5 reddish brown dry, friable, med. SHFF.	0-0.5'
_ _ _ _ 10		50	FIV		Silty day (a) w/gravel. Brown to reddish bown. Large (5-10cm) basalt frags Dry: Soft to moderately SHFF. Nonplastic.	
_ _ _ _ 15		90			Silty gravel (GM). 30% coral gravel. White to - brown Dry. Soft to - moderately Stiff. Nonplastic	
20		40	71-37	£	Same as 10-15 ft. Silty Clay (CL) at 18 ft. Redaish brown. Moist. Med. Plasticity Med. Moderately Stiff. FILL ends at 18 ft.	(8-20'
-	-			*	tob@ 20° -	

PROJECT NUMBER	Decision Unit	Boring (D	
O FLOY	W CHART FOR SAN	ADLING RATIONALE	

PROJECT:

LOCATION:

Banana Patch

LAT/LONG:

HART

DRILLING CONTRACTOR: NO

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

HAS TP

Geophysical anomalies/ Fill Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	B	В	С	C
No	Α	В	В	A	С	С

Did you see

NAPL/Char/Ashes?

YES NO.

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES

IF YES:

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
05-3	Collect 10 plugs into zíplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
18-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
11	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18 bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
D-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
3-20	all remaining soil from 6 adjacent borings will be consolidated		

THE STATE OF THE S				ECT NUMBER	Decision Unit	Boring ID & 28
	CH2N	/IHILI			SOIL BORING	
PROJEC	T: HART	<u>r</u>			LOCATION :	Banana Patch
LAT/LON				200	DRILLING CONT	TRACTOR: Geotek
		DAND E	EQUIPMENT	1 /	Kig	the regression
DEPTH BELO	LEVELS : LOW SURFACE	F (FT)	STAF		E DESCRIPTION	LOGGER: T. WOOD
_	RECOVE		PID READING (ppm)	SOIL TYPE, USCS G MOISTURE CONTEN OR CONSISTENCY, S MINERALOGY.	ROUP SYMBOL, COLOR, NT, RELATIVE DENSITY SOIL STRUCTURE,	Sample Collection Information Sample Sub-Unit Decision
-		FILL			asphalt? ranels tan SPLTY the gravelong.	0-0.5'
5	- +0	SAN	0	SAND WILL SAND WILL	tan SILITI the grave lang-	0.53'
	40	SM	0	Reddish Bro CLAY WITH Conallivers	um SZLTY - grave J stiffidry -	
10		1	0		nstlty squo -	
-	80	SM		4-10 Centra pres A 3r Same	ent, coral -	
/hb/ - 15			\cup		FILL -	-
=	10.0		0	SAME	FILL -	
20		CL	0	Redish Brown Med Stroff M trace grave 1 Stoped 5top o	n clay, noist NATIVE	18.5 - 20
-				Stop a	1201	
	*			695.	,	1

PROJE	CT NUMBER	Decision Unit 3	Boring ID B28	- 1/2 - 1/2

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

NO

DRILLING METHOD AND EQUIPMENT USED:

HAS TP

Geophysical anomalies/ Fil Exist?

	DU1	DU2	DUQ	DU4	DU5	DU6
Yes	В	В	(BX)	В	С	С
No	À	В		Α	С	C

Did you see

NAPL/Char/Ashes?

YES

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

	ACTUAL SUs)	Sample	Analysis
20	0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
	0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	18.5-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs - 0 to 5' bgs - 5 to 10' bgs 10' bgs to 15' bgs 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
6	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis			
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive			
3-17	All remaining soil from 6 adjacent horings will be consolidated				

NOTE: Do not combine native material and fill

17-20NATEN

	4 2	A _				CT NUMBER	Decision Unit	Boring IC	29
		C	H2N	SOIL BORING LOG					
	PROJ	IECT :	HAR	Γ .			LOCATION :	Banana Pate	>h
	-	.ONG:					DRILLING CON	TRACTOR:	Geotek
				D AND	EQUIPMENT	USED: PS, 1		,	
		R LEV			STAR	T: NR	END: UR	LOGGER:	B. Roder
	DEPTH	INTERV	SURFAC	E (FT)	1	SOIL CORE DESC	CRIPTION	CC	MMENTS
			RECOVE	#/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP S MOISTURE CONTENT, REL OR CONSISTENCY, SOIL S' MINERALOGY.	ATIVE DENSITY	Sample Collecti Sample Sub-Un	
		1	70		b	Silty day (CL) wi Briwn to readd Dry to slightly Soft in 01; gr Stiff 1-5'. Bric Nonplastic to low	ish Brown. worst. much wich. k frags@3.		.0'
	10	1	30		O	Silty gravel (GIN brown. Dry. Fri Soft. Nonplace Basaltic growe	1). Dark : iable : SHC : -		
	- - - 15	← →	20		6	same as 5-10; coral gravel. T debris (possibly pressboard)	Sone Trash cataloo at 6		
	- - - - 20	$\leftarrow \rightarrow$	40	3	U	same as 5-10. frags at 19 ft. ends at 19 ft. silty clay (CL)! broom. Houst. I med. Stiffness	Conerete f. Fill 9-20'. Reddis Med. plastic	19-20° h 1ty,	-
72	-			9		FOB @ 20'			_

PROJECT NUMBER	Decision Unit	Boring (D	

PROJECT:

HART

DRILLING METHOD AND EQUIPMENT USED:

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

HAS TP

Geophysical anomalies/ Fill Exist?

	DU1	DU2	DVA	DU4	DU5	DU6
Yes	В	В	В	В	С	С
No	A	В	В	Α	С	С

Did you see

NAPL/Char/Ashes?

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis	
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
19-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

¹ [ACTUAL SUs)	Sample	Analysis
		Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

	ACTUAL SUs)	Sample	Analysis			
		Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	0-10' bgs) Archive			
	3-20	All remaining soil from 6 adjacent borings will be consolidated				

	PROJECT NUMBER	3	Boring ID
CH2MHILL		SOIL BORING LO	DG

PROJECT: HART LOCATION: Banana Patch

LAT/LONG: DRILLING CONTRACTOR: Geotek

DRILLING METHOD AND EQUIPMENT USED:

WATER	LEVE	LS:		STAR	T: UR END: NR	LOGGER: BRoder
DEPTH BEL			E (FT)		SOIL CORE DESCRIPTION	COMMENTS
IN)	TERVAL (RY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision
5		90		0	Silty Clay (CL) With trace gravel. Reddish lovown, sughtly moist. Stiff, Low plasticity. Pumice - frags 4-5 ft.	n ä
- 10_		00	- 44 -	Ó	Silty clay (CL) w/trace grave Brown to reddish lordwin Mostly dry SHFF to moderas SHFF. Basalt & concrete - frags 9-10ft. FILL	el. Ely
-		0D		O	same as 5-10 ft. Basalt & metal frags at 15 ft. Perusal at 15 ft. FILL	
20_		70	CL	o	Silty day (CL). Beddish _ brown. Moist. Low _ plasticity. Med. Stiff Basalt frags 19-19.5 _	15-18 Ft.
-					tob @ 20'	

* Refusal @ 15 ft on first attempt. Reached 15-20' on second attempt, after ~5 ft Step out

PROJECT NUMBER	Decision Unit	Boring ID	
l .	_		6

PROJECT:

HART

LOCATION:

HAS

Banana Patch

LAT/LONG:

0

DRILLING CONTRACTOR:

TP

Geotek

UTILITY CLRNCE CONFRMD:

(VE)S

NO

DRILLING METHOD AND EQUIPMENT USED :

Geophysical anomalies/ Fill DU1 DU2 DU3

Exist?

ا،		DU1	DU2	DU3	DU4	DU5	DU6
	Yes	В	В	В	В	С	С
	No	Α	В	В	A	С	С

Did you see

NAPL/Char/Ashes?

YES

IF YES:

Sample

Collect into 8-oz jar

Analysis

Dioxins, Furans

Replicate collected here?

YES

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5 bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
0-0.5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
0.5-3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-18	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
BBEJ	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
0-3	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
3-20	All remaining soil from 6 adjacent borings	s will be consolidated

			U G G Gast N					The Lat	idy tag.	i ^t	5/21/1	14
-						CT NUMBER	Decisio	n Unit	-	Boring ID	1	
4	C	H2F	VIHIL	_L		.01:10	SOIL BC	RING	LOG			
PROJ	JECT :	HAR	T .			a	LOCA	TION :	Bana	na Patch		
LAT/L	ONG:		,				DRILL	NG CON	TRACT	OR:	Geotek	
			D AND	EQUIP	MEN	USED : DOS					2 2 4	
	R LEV			T.	STAF			NR	LOG	GER:	b. Pode	
DEPTH	BELOW INTERV	AL (FT)		-		SOIL CORE	DESCRIPTION	<u> </u>		СОМ	MENTS	
		RECOV	ERY (FT) #/TYPE	REA	ID DING om)	SOIL TYPE, USCS GR MOISTURE CONTENT OR CONSISTENCY, SO MINERALOGY.	, RELATIVE D	ENSITY		Collection Sub-Unit [Information Decision	
- - - 5_	Digital	70			1	1 2-3.	L) with a dish brug odst. St 1: Coned FILL	iff		0-5	- (=
-		50	FILL			same as converted through)-5: fragme	_	ć	5-10		
10		10	"Ankhous A			Concrete from Shy. No S Collect	rament	ζ.				
- - - - 20		80	+ 0-			Silty day (CL Med. Soft low to med Moist. Nat Native start	to soft blasti	aty:	Q.	15-	20'	1
-	•					ENBC 2	01	-		7	2	

PROJECT NUMBER	Decision Unit	Boring ID	
FLO	W CHART FOR SAM	PLING RATIONALE	

PROJECT: HART

LOCATION:

Banana Patch

LAT/LONG:

NO

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

DRILLING CONTRACTOR:

HAS

Geotek

Geophysical anomalies/ Fil Exist?

il	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	С	0
No	Δ .	R	В			,

Did you see

NAPL/Char/Ashes?

YES

IF YES: IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here? YES

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

1	ACTUAL SUs)	Sample	Analysis
		Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical - 0 to 5' bgs

- 5 to 10' bgs

- 10' bgs to 15' bgs

- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
\times	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18 bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis				
0-10	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive				
15-20	All remaining soil from 6 adjacent borings will be consolidated					

		ECT NUMBER Decision L	Unit 5	Boring ID 2
CH2MHII		SOIL BOF	RING LC)G
PROJECT: HART		LOCATION	ION: Ba	nana Patch
LAT/LONG:		DRILLIN	NG CONTRA	CTOR: Geotek
DRILLING METHOD AND) EQUIPMEN	TUSED: DPS, track		
WATER LEVELS :	STAF	RT: NR END: 1	NR LO	OGGER: BiRvoler
DEPTH BELOW SURFACE (FT)	T	SOIL CORE DESCRIPTION		COMMENTS
INTERVAL (FT) RECOVERY (FT) #/TYPE		SOIL TYPE, USCS GROUP SYMBOL, O MOISTURE CONTENT, RELATIVE DEN OR CONSISTENCY, SOIL STRUCTURE MINERALOGY.	NSITY Sam	nple Collection Information uple Sub-Unit Decision
- - - - - - - -	0	Silty day (CL) with so gravel. Brown. Mors Dry 05-5'. Nonplay Soft. Concrete dela throughout. FILL	stc.	` 0-5'
- 10 60 61	0	silfy clay (OL) with fra gravel. Reddish brow Soft. Nonplastic. Plastic debris @ 9.		5-10
50	0	conerate delaris # 10-12 10 10 12 10 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10	nuh nu _	10-15
70 CI	ь	same as 10-15?	-	15-20
			-	_

PROJECT NUMBER	Decision Unit	Boring ID	

PROJECT:

HART

LOCATION:

DRILLING CONTRACTOR:

Banana Patch

LAT/LONG:

Geotek

UTILITY CLRNCE CONFRMD:

YES NO

DRILLING METHOD AND EQUIPMENT USED:

DPS HAS TP

Geophysical	11
anomalies/ Fill	
Exist?	Yes

1	11	DU1	DU2	DU3	DU4	DU5	DU6
	Yes	В	В	В	В	С	С
1	No	A	В	В	A	С	С

Did you see NAPL/Char/Ashes?

YES NO IF YES:

Sample Collect into 8-oz jar Analysis

Dioxins, Furans

Replicate collected here?

YES NO

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis		
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

SUs)	Sample	Analysis				
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive				
	All remaining soil from 6 adjacent borings will be consolidated					

	A				PROJ	ECT NUMBER	Decision Unit	5	Boring ID 3
CH2MHILL					SOIL BORING LOG				
PROJECT: HART LOCATION: Banana Patch									
LAT/LC	ONG:						DRILLING	CONTRAC	TOR: Geotek
DRILLI	NG M	ETHO	D AND	EQUIP	MENT	r used :			
WATER	R LEV	ELS:			STAF	IT: NP	END: N	R LOC	GER: BRoder
DEPTH B	ELOW S		CE (FT)	-		SOIL CORE DESC	RIPTION		COMMENTS
		RECOV	ERY (FT) #/TYPE	REA	ID DING om)	SOIL TYPE, USCS GROUP S MOISTURE CONTENT, RELA OR CONSISTENCY, SOIL ST MINERALOGY.	ATIVE DENSI		e Collection Information e Sub-Unit Decision
5	<>	80	T	6)	Silty day (CL) w gravel. Brown Bry. SHFF to SO! Concrete @ 3' FILL	to gra ft. and S	y.]	0-5`
	1	80	Fil	6		Same as 0-5' Conerete @ 7 FILL		-	5-10'
- - - - 15	1	60	+	Ð		Same as 0- & Silty day (CL) a Reddish brun. Moderately st low to med.	at 14. Mors	+ D'-	10-15
	1	50	23	0)	Silty day (C1), brown. Moist. Soft SHFF. Mode high plasticity	Med.		15-20
-	24.2			1		tob @ 10'	7	-	

PROJECT NUMBER	Decision Unit	Boring ID	186
		-	
FLO	W CHAPT FOR SAM	IDI ING PATIONALE	

PROJECT:

HART

LOCATION:

DRILLING CONTRACTOR:

Banana Patch

LAT/LONG:

UTILITY CLRNCE CONFRMD:

NO

Geotek

DRILLING METHOD AND EQUIPMENT USED:

HAS TP

Geophysica anomalies/ Fi Exist?

l HI		DU1	DU2	DU3	DU4	DU5	DU6
	Yes	В	В	В	В	O	0
	No	, , , , , , , , , , , , , , , , , , ,	В	В	Α	C) O

Did you see

NAPL/Char/Ashes?

Replicate collected here?

YES YES

IF YES: IF YES: Sample Collect into 8-oz jar Analysis Dioxins, Furans

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

1	ACTUAL SUs)	Sample	Analysis
		Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
	· · · <u>-</u>	Collect 10 plugs into zíplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
			TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
10-12	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis			
0-10	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive			
10-20	All remaining soil from 6 adjacent borings will be consolidated				

6		2 2 2 5		100	ECT NUMBER Decision Unit	Boring ID
1		HZI	VIHIL		SOIL BORING	LOG
PRO.	JECT :	HAR	T		LOCATION:	Banana Patch
LAT/L	LONG:				DRILLING CON	TRACTOR: Geotek
DRILI	LING M	IETHO	D AND	EQUIPMENT		
WATI	ER LEV	/ELS:		STAF	RT: 5/21/14/3:15 END: 13:35	LOGGER: I. WOOD
DEPTH	BELOW		CE (FT)	-	SOIL CORE DESCRIPTION	COMMENTS
· ·	INTERV		#/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOSTURE CONTENT, RELATIVE DENSITY OF CONSISTENCY, SOIL STRUCTURE, MIN PALOGY.	Sample Collection Information Sample Sub-Unit Decision
-		71	cl	CX	Reddish brown SILTYCLAY with fine school and grave)	R-C
-		+0		4	MSLICE dw	
5_					-coalline grave 1 4.5 (FILL)	-
1	7111	60	1	Ø	-comme some 4.5 (FILL) -concrete fragments 8.5-9 FILL Reddish Brown CLAYEY	5-10
10_			WH	Ø	Redaith Brown CLAYER SILT, Soft, dry	
-		50	STA	Ø		10-15
15_			SM		Reddis Brown SILTY SAND = with concrete fragments, Loose, dry Sameas 9:5-41-13	
-	:	5	CL	Fill A Water	Redutin Brown SELTY - CLAY, med stiff, mosst -	15-20
20_			cl	Nature	at 171 - tracy concrete fragments -	
-					total depth 220 -	
-		i ca			-	

PID every 6-mohes

PROJECT NUMBER Decision Unit Boring ID		The state of the s		
	PROJECT NUMBER		Boring ID B 4	

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

DPS HAS TP

Geophysical anomalies/ Fill Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В.	В	В	В	c	С
No	A	В	В	A	(0)	С

Did you see

NAPL/Char/Ashes?

IF YES:

Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES

IF YES:

Sample ID's:

Sample

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SŲs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

a!	ACTUAL SUs)	Sample	Analysis
	-77	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
16-15	1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

> One archive for shallow (0-10) One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis		
(\-(1)	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive		
10-2e	All remaining soil from 6 adjacent borings will be consolidated			

		ECT NUMBER	Decision Unit 5	Boring ID 5	
CH2MHILI		SOIL BORING LOG			
PROJECT: HART			LOCATION:	Banana Patch	
LAT/LONG:			DRILLING CON	ITRACTOR: Geot	tek
DRILLING METHOD AND E	EQUIPMENT	rused: DPS			
WATER LEVELS :		RT: NR	END: NR	LOGGER: B. Ro	der
DEPTH BELOW SURFACE (FT)		SOIL CORE DE	ESCRIPTION	COMMENTS	-
INTERVAL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROU MOISTURE CONTENT, F OR CONSISTENCY, SOIL MINERALOGY.	RELATIVE DENSITY	Sample Collection Informa Sample Sub-Unit Decision	
- - - 80 T	Ō	Slify clay (CL) gravel. Feddi Slightly Mon Wose. Konpl Plastic delonis Fil	sh brown, Vst. Soft \$ - lastic. @ 3'. _L	0-5'	
30	0	Top foot san Black filbrous (3" Huick) b sity day (ci) w grand & g. B coral grands dry Nonplastic	ne as 0-5'. material elow. inth trace frown. sone.	5-10'	
15_		Nothing Re Other borngs suggest this i ber silt.		y to ts	PLE
- 1 60 a	0	Silty clay (CL). brun. Motst med. Soft. M high plastic Native Mat	Reddish. Soft to Noderatery: ity. tertal	15-20	
		50B@ 20	,,		

ROJECT NUMBER	Decision Unit	Boring ID	7

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

NO

DRILLING CONTRACTOR:

TF

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED :

HAS

Geophysical anomalies/ Fill

Exist?

					_	
	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	С	(c)
No	A	В	В	A	С	c

Did you see

NAPL/Char/Ashes?

YES

NO

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bas
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis	
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

ACTUAL

SUs)

Sample

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs NO - 5 to 10' bgs

- 15 to 28' bgs (native)

RECOVERY - 10' bgs to 15' bgs

Collect 10 plugs into ziplock Collect 10 plugs into ziplock, 3 plugs into 1 VOA Collect 10 plugs into ziplock, 3 plugs into 1 VOA Collect 10 plugs into ziplock, 3 plugs into 12 1 VOA

Analysis TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, **PCBs** TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, **PCBs** TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb. PCBs TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb,

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
0-10	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
15-20	All remaining soil from 6 adjacent borings	will be consolidated	

PCBs

				1	ECT NUMBER	Decision Ur	^{1it} 5	Boring	IID 6
3	CH2MHILL				S	OIL BOR	IŅG	LOG	
PROJE	CT:	HAR	т .			LOCATIO	N:	Banana Pa	atch
LAT/LO	NG:							RACTOR:	
DRILLIN	NG M	IETHO	D AND	EQUIPMENT	USED: DPS	Ø .			GOOG
WATER				STAF	.0	END:	JR	LOGGER	: B. Roder
DEPTH BE			CE (FT)		SOIL CORE I	DESCRIPTION			COMMENTS
11	NTERV		ERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GRO MOISTURE CONTENT, OR CONSISTENCY, SO MINERALOGY.	RELATIVE DENS	SITY	Sample Colle Sample Sub-l	ction Information Unit Decision
5	\	70	T	0	Silty clay (CL) Reddish bond Slightly mov. SHEF to sof Plastic tarp in FILL	aterial (%)	5 ff.		5`
-	1	50		0	Silty clay (CL) Redaish Brun Dry. Soft to S Acphalt mat Rasalt coldile	w/some of to gray. tiff. Nonpletal @ enal @ \$@ 91.	jrane lastic 7: -	i. :. 5-	lo ^c
- - - - 15	<>	60	+ a	D	Concrete 10- Silty Clay (CL) Med. Stiffnes Med. plastic Fill ends at), reddish is. Low to ity. Mors	bruis St-	n. to-	-15'
20	1	60	1	0	Same as 10 More moist, Darker bron	almost un @ 16.	wel.	15-1	20
-	-						1 1 1		

PROJECT NUMBER	Decision Unit	Boring ID	Boring ID	
FLC	W CHART FOR SAM	IDI INO DAZIONI		

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

NO

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

HAS

Geophysical anomalies/ Fil Exist?

11		DU1	DU2	DU3	DU4	DU5	DU6
	Yes	В	В	В	В	С	0
	No	Α	В	В	A	С	С

Did you see

NAPL/Char/Ashes?

Replicate collected here?

YES

YES

IF YES:

IF YES:

Sample Collect into 8-oz jar

Dioxins, Furans

Analysis

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
(4	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis			
0-10	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive			
All remaining soil from 6 adjacent borings will be consolidated					

29			
STATE OF THE PARTY	-	EED 400 8	
	CH2	Wil	11LL
		11/12/12	

PROJECT NUMBER	Decision Uni
	Du h t
	1 (J/ N 2

Boring ID

		SOIL BORING	LOG
PROJECT: HART		LOCATION:	Banana Patch
LAT/LONG:	4	DRILLING CON	TRACTOR: Geotek
DRILLING METHOD AND EC	QUIPMENT	USED: OPS 1345 truck m	59
WATER LEVELS :		T:5/21/14 H TJEND: 1405	LOGGER T Wood
DEPTH BELOW SURFACE (FT)		SOIL CORE DESCRIPTION	COMMENTS
INTERVAL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision
70 4	Ø	Reddin brown SILTP - CLAY with from sand and grovel, stiffidry, - asphalt present at 3'	0-5
5 M	Ø	SILTY SAND, with Coralline grave and as phult, white/sray/black BILTY CLAY with concrete and coralline grave by stiffidry, reddish brinn	5-10
15_	Ø Fæll	Stiffidry, reddish briwn -FILL mided with native- clay,	10-15
GH COLOR	Vafire Ø	Same as above but Watre SILTY CLAY Med. Stiff, neddish brown no gravel fragments, - moist at 16; - moist to wet 17.5! - trace fine sand 18.5-19.	15-20
		end boring -	

PROJECT NUMBER	Decision Unit	n	Boring ID	0	
ì		$IIII \subseteq$	"	K _	
			1	D = 1	

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

DRILLING CONTRACTOR:

Geotek

NO

HAS

Geophysical anomalies/ Fill Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	С	С
No	A	В	В	Α	CO	С

Did you see

NAPL/Char/Ashes?

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES

IF YES:

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis		
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA			
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 10" bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to bgs (native)

	ACTUAL SUs)	Sample	Analysis
i	0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

 ACTUAL SUs)	Sample	Analysis
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
10-20	All remaining soil from 6 adjacent borings	will be consolidated

OLIOPSI III				ECT NUMBER Decision Unit	5	Boring ID 8		
CH2MHILL				SOIL BORING LOG				
PROJECT :	HART			LOCATION : Banana Patch				
LAT/LONG:				DRILLING CO	ONTRACT	OR: Geotek		
DRILLING M	METHOD A	ND EQUI	PMENT	USED:				
VATER LEV	/ELS:		STAR	IT: NP END: NP	LOG	GER: BR		
EPTH BELOW		T)		SOIL CORE DESCRIPTION		COMMENTS		
INTERV	RECOVERY (YPE REA	PID ADING ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.		Collection Information Sub-Unit Decision		
	600	0		Red for SILTY Clay(a) with trace gravel. Sughtly worst. JHFF. No plaste. Some coral gravel.	n-	0-5'		
10	70		>	Same as 0-5? Nove brown. Conerete @ 7?	- (5-10'		
-	20 7	should be)	Concrete fragments & metal debris only. No soll to collect sample from.	-			
-	50 a			sity day (a). Reddish brown. Mast. Med. south stiff to soft. low to med plastla	H	15-20		
-				tob @ 20'				

PROJECT NUMBER	Decision Unit	Boring ID	
	DUG	1 R-8	

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

UTILITY CLRNCE CONFRMD:

DRILLING CONTRACTOR:

Geotek

DRILLING METHOD AND EQUIPMENT USED: Geophysical

Exist?

anomalies/ Fi

DPS HAS TP

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	()	С
No	Α	В	В	1/4 A	С	С

Did you see

NAPL/Char/Ashes?

Replicate collected here?

YES YES

IF YES:

IF YES:

NO

Analysis Dioxins, Furans

Sample ID's:

Sample

Sample ID's:

Collect into 8-oz jar

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
57.1	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

erform intrusive investigation

Each boring to be divided into 4 vertical

- 0 to 5' bgs

- 5 to 10' bgs

- 10' bgs to 15' bgs

- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5-10	1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
0-10	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
15-20	All remaining soil from 6 adjacent borings	s will be consolidated	

	CH2MHIL	L
and the same		

PROJECT NUMBER	Decision
	OV

Boring ID

		,			SOIL BORING	LOG
PROJE	CT:	HAR	т `		LOCATION :	Banana Patch
LAT/LC	NG:				DRILLING CON	TRACTOR: Geotek
DRILLII	NG M	ETHO	D AND	EQUIPMEN	TUSED: DPS frucking 1445	
WATER	R LEV	ELS:		STAF	RT: 5(21/14 1430 END: 44+7	LOGGER: T. Wood
DEPTH BI	ELOW S		E (FT)	-	SOIL CORE DESCRIPTION	COMMENTS
1			#/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision
1.0	66	60	CL	\varnothing	SILTYCLAY, Stiff _ dry, readish brown concrede fragments _	0-5
5 <u> </u>			smy		1 at 315'	-
			GM		SILTY SAND AND GRAVEL	
10		80	CL		STLTY CLAP with gravely Stiffidry, — conscrete fragments 8-197 Same as 3-61 - basalt rocks 11.57	10-15
-		[00	SM	Pill Native	SELTY CLAY, STIFF,	10-15
15			,		Mosst, graytin brown	A. C.
-		600			same -	15-20
20			1		20' end	

F==			
PROJECT NUMBER	Decision Unit	Boring ID	
1	0	129	
	9005		_
	,		

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED: Geophysical anomalies/ Fill

Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В -	В	С	С
No	Α	В	В	A	(م	С

Did you see

NAPL/Char/Ashes?

YES

NO

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES NO IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

35	ACTUAL SUs)	Sample	Analysis
		Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
0.00	10-20	All remaining soil from 6 adjacent borings	will be consolidated

PROJECT NUMBER	Decision Unit	Boring ID
	DW2	810

SOIL BORING LOG

Geotek

PROJECT:	HART	LOCATION:	Panana Datah
	*******	LOCATION.	Banana Patch

DRILLING METHOD AND EQUIPMENT USED: DIS acetale sleeves

/ 15 1 W

CH2MHILL

WATER LEVELS: START: 5/24/14 14:45 END: 1500 LOGGER: I. WOOD

DEPTH	BELOW S		E (FT)		SOIL CORE DESCRIPTION	COMMENTS
	INTERVA	L (FT) RECOVE	ERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision
- - 5		36	CL		SILTY CLAY, Stiff, - dry, reddish brown, - - concrete antonto - fragments throughout -	
- - - 10		60	CLY		SILTYSAMDand SILTYCLAY, loose siltysand, stiffsiltyclay	
-		50				
15		60	CL		Moist, gray to brown - fine sandin &L 18-20', moist - west.	-
- - - - 25					end Lo	-

PROJECT NUMBER	Decision Unit	Boring ID	
	10013	0,0	

PROJECT:

HART

LAT/LONG:

LOCATION:

Banana Patch

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

HAS

Geophysical anomalies/ Fill		DU1	DU2	DU3	DU4	DU5	DU6
Eviat2	Yes	В	В	В	В	Ŋ	С
	No	A	В	В	Α	C	C

NO

Did you see

NAPL/Char/Ashes?

Replicate collected here?

YES NO YES

IF YES:

IF YES:

Collect into 8-oz jar

Analysis Dioxins, Furans

Sample ID's:

Sample

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

۱ ا	ACTUAL SUs)	Sample	Analysis
		Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
			TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
			TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10 bgs
- 10' bgs to 15' bgs
- 15 to 8' bgs (native)

ACTUAL SUs)	Sample	Analysis
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
10-20	All remaining soil from 6 adjacent borings	will be consolidated

6					PROJE	CT NUMBER	Decision Unit	Boring ID	
3		rizi	MHIL	.l.,		SOII	_ BORING	LOG	
PRO	JECT :	HAR	т				LOCATION :	Banana Patch	
LAT/L	ONG:					085	DRILLING CON	TRACTOR: G	eotek
DRILI	LING M	ETHO	D AND	EQUIPA	/ENT		5		
WAT	ER LEV	/ELS :			STAR	T:5/2114 1515	END: 1530	LOGGER:	
DEPTH	BELOW	SURFAC	E (FT)	-		SOIL CORE DESCR	RIPTION	COMMEN	ITS
			#/TYPE	PID READING (ppm)		SOIL TYPE, USCS GROUP S MOISTURE CONTENT, RELA OR CONSISTENCY, SOIL ST MINERALOGY.	TIVE DENSITY	Sample Collection Info Sample Sub-Unit Decis	
5		80	CL			SILT'r CLAY gravel, Stiff, of coalline gravels present	with - dry, osthalt -	0-5	-
- - - 10		70	CL	FILL	1	SILTY CLAY, 5 dry, readish bu	tiff, moist	5-10	-
15		(06	,	Nati	Ne			10-15	
- - - - 20		80				18-20 fine graned scano	- - 1 within = -	15-20	
-	٠					=	-		

F-12			
PROJECT NUMBER	Decision Unit $\mathcal{O}\mathcal{U}\mathcal{S}$	Boring ID BIL	

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

HAS TP

Geophysic	al
anomalies/	Fil
Exist?	

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	С	ź C
No	Α	В	В	. A	0	С

NO

Did you see

NAPL/Char/Ashes?

YES NO

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical

- 0 to 5' bgs
 - 5 to 10' bgs
 - 10' bgs to 15' bgs
 - 15 to bgs (native)

ACTUAL SUs)	Sample	Analysis
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
71 - 117	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
10-20	All remaining soil from 6 adjacent borings	will be consolidated

OLIOPELIII.				CT NUMBER Decision Unit	Boring ID 12			
-	CH2MHILL			SOIL BORING LOG				
PROJECT :	HAR	Γ		LOCATION:	Banana Patch			
LAT/LONG:				DRILLING CO	NTRACTOR: Geotek			
DRILLING N	NETHO I	D AND	EQUIPMENT	rused: DPS, track				
WATER LEV			STAP		O LOGGER: BR			
DEPTH BELOW		E (FT)		SOIL CORE DESCRIPTION	COMMENTS			
INTERV	RECOVE	ERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	s, Sample Collection Information Sample Sub-Unit Decision			
5_	50	T	0	Silty clay (CL) W/some gravel. Red-brown. Slightly moist. SHFF, Lon plasticity. Concrete fragments throughout. FILL	- 0-5'			
- - - - 10	00	FIV	b	Silty gravel (GM). Gray to dark brown. Dry. Nonplastic, Stiff, loose. Bacaltic gravel. Some asphalt material.	5-10			
15_	50		0	Same as 5-10' HI 13' Sityclay (CL). Dark brown Morst. Med. Soft to Soft. Med to high plasticity. Fill ands @ 13'	10-15			
20_	70	CL V	0	Same as 13-15'. Very noist to wet @ 18'. EOB@ 20'	15-20'			
-								

PROJECT NUMBER	Decision Unit	Boring ID

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

NO

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED :

HAS TP

Geophysical anomalies/ Fil Exist?

	ta i	DU1	DU2	DU3	DU4	DU5	DU6
	Ye s	В	В	В	В	O	6
	No	Α	В	В	W A	С	0

Did you see

NAPL/Char/Ashes?

Replicate collected here?

YES YES

IF YES: IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

1	ACTUAL SUs)	Sample	Analysis
-	1 30 5 5	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	1
0-10	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
10-20	All remaining soil from 6 adjacent borings	s will be consolidated	

О СН2М НІІ	1	CT NUMBER Decision Unit	Boring ID 13			
CHZMINI		SOIL BORING LOG				
PROJECT: HART		LOCATION :	Banana Patch			
LAT/LONG:		DRILLING CON				
DRILLING METHOD AND	EQUIPMENT					
VATER LEVELS :	STAR	T: 1530 END: 1545	LOGGER: BR			
EPTH BELOW SURFACE (FT)		SOIL CORE DESCRIPTION	COMMENTS			
INTERVAL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision			
90	0	Sity day (CL) with some gravel. Bry. SHFF, 1005e in some sections, brun to dark gray. Rasaltitional some asphalt material Nonplastic.				
- 10 90 PM	D	Sity clay(CL) w/trace grave Red-brown. Dry. Nonplash SHFF. Platy structure Concrete frags 9-10! -	l. 5-10`			
5 40	٥	Sity clay (a) w/trace grave Dark gray. Dry. Nonplast BHFF: Concrete frags. Sityclay (U) at 14'. Dark brown. Moust Moderately Stiff. Med. plasticity. Filty end	10-15			
30 CL	0	Same as 14-15. Very moist, Soft.	15-20			
0 4		EOB @ 20'				

PROJECT NUMBER	Decision Unit	Boring ID	

PROJECT:

HART

LOCATION:

HAS

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

TP

DRILLING METHOD AND EQUIPMENT USED: Geophysica

						_	
Geophysical anomalies/ Fill		DU1	DU2	DU3	DU4	DU5	DUS
Exist?	Yes	В	В	В	В	С	()
	183	90 . 51		1 2518)	

Did you see

NAPL/Char/Ashes?

YES

NO

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES

IF YES:

NO

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
- 154	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
574 11	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
-504.50	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

1	ACTUAL SUs)	Sample	Analysis
7.1	0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	5-60	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
10-20	All remaining soil from 6 adjacent boring	s will be consolidated	

5/21/14

6					ECT NUMBER	Decision Unit 5	Boring ID
CH2MHILL			VIHIL		sc	OIL BORING	LOG
PRO	JECT :	HAR	, Т			LOCATION:	Banana Patch
LAT/I	LONG:					DRILLING CON	TRACTOR: Geotek
DRIL	LING M	METHO	D AND	EQUIPMENT	USED:		
WAT	ER LE	/ELS:		STAF	T: NR	END: NR	LOGGER: POR
DEPTH		SURFAC	CE (FT)		SOIL CORE DE		COMMENTS
	INTERV		ERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROU MOISTURE CONTENT, RI OR CONSISTENCY, SOIL MINERALOGY.	ELATIVE DENSITY	Sample Collection Information Sample Sub-Unit Decision
- - 5	1	90	T	0	Silty clay (ci) gravel. Red-i SHIFF. Loose, for Platy Structu Asplant & Con throughout.) W/some brown. Dry. abde. re. chete frags FILL	0-5'
	1	100	FUL PULL	D	same as 0-50 Silty gravel Cot dk brown. Dry. In some area Asphalt frag), Brown to SHFF. Loose s. juents.	5-10'
- - - 15	\	70		0	same as 6-1 crushed concr silty day (U) borown. Knoist till lends @	0' to 12'. ete 12-13'. at 13'. Dar . Med. SHA	k 10-15'
	>		a	0	Same as 13-1 Very moist	\$ Soft,]	15-20
20	V		V		EOB @ 20		

PROJECT NUMBER	Decision Unit	Boring ID	

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

NO

panana Patch

UTILITY CLRNCE CONFRMD:

Yes

(YES)

DRILLING CONTRACTOR:

Geotek

Geophysical anomalies/ Fill Du1 Du2 Du3

Exist?

ID EQU	PMENT	DSED:		PS) HAS
DU1	DU2	DU3	DU4	DU5	DU6
В	В	В	В	С	(2)

Did you see

NAPL/Char/Ashes?

Replicate collected here?

YES N

IF YES:

Sample
Collect into 8-oz jar

Analysis
Dioxins, Furans

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis		
-	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
gj in se	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	to TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb PCBs		

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
 - 5 to 10' bgs
 - 10' bgs to 15' bgs
 - 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis		
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

SUs)	Sample	Analysis
	Collect 1 VOA from shallow (0-1.0' bgs) and one from deep (10'+)	Archive
10-20	All remaining soil from 6 adjacent borings	s will be consolidated

O CH2MHIL		Decision Unit DUS	Boring ID B 15
S CHIZINIII		SOIL BORING	LOG
PROJECT: HART		LOCATION:	Banana Patch
AT/LONG:		DRILLING COM	NTRACTOR: Geotek
PRILLING METHOD AND	EQUIPMENT	rused: DPS + was	Krig
VATER LEVELS :	STAF	T: 0840 END: 0900	LOGGER: VM
EPTH BELOW SURFACE (FT) INTERVAL (FT)		SOIL CORE DESCRIPTION	COMMENTS
RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision
1. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0	Surficial FILL: Red-lor SILTY CLAY, dry, Arm, trace graves	Sample 0-5'bo
5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		FILL: Red CLAY, very stiff, dry, trace M growe), angular.	
€-90-> F1LL		M gravel throughout, wisand throughout. PS. Angular. Also, concrete Chunks and coral fill throughout, day to damp	Sample 5-10'
78 - Y	9	<u></u>	Sample 10-15'b
15 15	1	CLAYEY SILT: Red by Laminal Structures. Howers, 91:94tly	noist
26		PANNS ILT: READY. CAP PRANYELS MONTHES), SOLF, dance SILY SAND, REGER, WAST. SOME	sample sample bys
-	1	Medium Soft: EDB@20	
-		-	Å
25	0.5	readings collected every	1 6"

PROJECT NUMBER	Decision Unit	Boring B 15	

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

UTILITY CLRNCE CONFRMD:

DRILLING CONTRACTOR:

TP

Geotek

DRILLING METHOD AND EQUIPMENT USED:

HAS

Geophysical anomalies/Fil Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	6	c
No	А	В	В	Α	0	С

Did you see

NAPL/Char/Ashes?

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL ŞUs)	Sample	Analysis	
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
/	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

- Perform intrusive investigation

Each boring to be divided into 4 vertical

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
0-5	Collect 10 plugs into ziplock, into IVDA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
0-10	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
10-20	All remaining soil from 6 adjacent borings	s will be consolidated	и «

	PROJECT NUMBER	Decision Unit 045	Boring ID (6
CH2MHILL		SOIL BORING LO	G
PROJECT: HART		LOCATION: Bar	nana Patch
LAT/LONG:		DRILLING CONTRAC	CTOR: Geotek
DRILLING METHOD AND EQU		· <u></u>	211,
WATER LEVELS :	START: 5/22/14 830	845 LC	OGGER: I.word
PEPTH BELOW SURFACE (FT)	SOIL CORE	DESCRIPTION	COMMENTS
1 177 1	EADING MOISTURE CONTENT (ppm) OR CONSISTENCY, S MINERALOGY.	T, RELATIVE DENSITY SOIL STRUCTURE,	ple Collection Information ple Sub-Unit Decision
- 1 90 CL	SILTY CL dry, little -coraline or gravels rua	AY, SHIFF, gravel, ad beself	0-5
5	growell rua brownish	gray with	1
100 61	D _		5-10
Say Say	-asphaltshi SILTY SAND	inglesof91 /SILTY GANEL	1 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1
- 100 V	< / med yensera	ry, tantoblack	10-15
FI	ative correcte for stiff. (FIL	s(asphaltanel_ ispents) neel_	€,
	SILTYCLE Med. plus he		5-20
0	2 3		
	total de	reth 220'	A.
			W _ E

PROJECT NUMBER	Decision Unit	Boring ID	
	1 00,5	1 1316	

PROJECT:	HAR	ŕ					LOCATI	ON:	Banana Pat	ch
LAT/LONG:				7			DRILLIN	IG CONTRACTOR:		Geotek
UTILITY CLRN	CE CO	NFRMD:		YES	NO	_		89		
DRILLING MET	HOD A	AND EQUI	PMENT	USED :		(DPS)	HAS	TP		
Geophysical						$\widetilde{}$		7		
anomalies/ Fill		DU1	DU2	DU3	DU4	DU5	DU6			
Exist?	Yes	В	В	В	В	٤	С			

Did you see
NAPL/Char/Ashes?

YES
NO
IF YES:
Collect into 8-oz jar
Dioxins, Furans

Sample ID's:
Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample Analysis				
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs			
		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs			
		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs			

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to Pi has (notive)

	- 13	to ago	bgs	(native)	
14	. z:a				

ACTUAL SUs)	Sample	Analysis
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	5
10-20	All remaining soil from 6 adjacent borings	s will be consolidated	

ii (maa	CH ₂	飛飛	1111
	0882	16.1	
-			

PROJECT NUMBER

Boring ID B 17

SOIL BORING LOG

		10.00	0.0		
PROJEC	T: HAR	<u>T</u>		LOCATION:	Banana Patch
LAT/LON	IG:			DRILLING CON	TRACTOR: Geotek
DRILLING	G METHO	D AND	EQUIPMENT		
WATER L	LEVELS:	2)"	STAF	17:5122114 900 END:915	LOGGER I WOOD
	OW SURFAC	CE (FT)		SOIL CORE DESCRIPTION	COMMENTS
1 1 5		#/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision
-	70	SM GM FIII	Ø	SILTYCLAY, STIFF, Moist	0-5'
5		EL		reddish brown, with true	
-	60	GM	\emptyset	SILTY GANELY WOSE - dry, coralline grovels - and as Mott fragments -	5-10
10_	\prod			SILTY CLAY, SLIFE	
	50	Ci.	ϕ	STLTY CLAY, Stiff. with corolline gravels and asphalt fragments, Stiff, and ten/black/brown. -121 concrete fragments.	10-15
			(X)	FILL	15-20
20				NATIVE GEASTLTY CLAY, Med Stiff, moist, statish Spown	
-					
-			se la		¥ 1, 4

PZD every 6" of core

PROJECT NUMBER	Decision Unit	Boring ID B17	c
FLO	OW CHART FOR SAMP	LING RATIONALE	- "

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

YES

NO

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

DPS

HAS TP

Geophysical
anomalies/ Fill
Exist?

V	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	9	С
No	A	В	В	Α	6	С

Did you see

NAPL/Char/Ashes?

YES

IF YES:

. .

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here? YES

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
118	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 8' bgs (native)

ACTUAL SUs)	Sample	Analysis
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
8-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	n n
040	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
10-20	All remaining soil from 6 adjacent borings	s will be consolidated	

© CH2MHILI		CT NUMBER Decision Unit	Borjag ID		
CHZIVIHIL	446	SOIL BORING LOG			
PROJECT: HART		LOCATION:	Banana Patch		
LAT/LONG:		DRILLING CON	TRACTOR: Geotek		
DRILLING METHOD AND E	QUIPMENT	USED: DPS track rig			
WATER LEVELS :	STAR	T: 0910 END: 0920	LOGGER:		
DEPTH BELOW SURFACE (FT) INTERVAL (FT)		SOIL CORE DESCRIPTION	COMMENTS		
RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision		
- 106-		FILL: Loose rubble ontop of Red SILTY CLAY w/growe A. Dry. Very stiff. With- 19 gravel and Sand throughout	Sample 0-5' bgp		
- 42%->			Sample 5-10' loop		
15_	0	FILL: Debrown-back sitty 5AND w/sm gravel, A. Dry. Loose. Asphalt-like odor. No PID readings.	10-17' bgs		
20 X - 50 X	1,7	Br-red BILT W/SAWD. Trace - E grave, A. seams mc sand wf- king shells. Wet. Br Ped 5. Hty CAY. Stiff,	Sample - 15-20/6g		
25		Dryto moist Orange Mottles _ EOB@ 20'hgs			
the state of the s	ston s	PiD = 6" interval			

PROJECT NUMBER	Decision Unit	Boring ID - 18	
		EM 1501 1500	

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:							HAS	TP
Geophysical anomalies/ Fill Exist?	''''.	DU1	DU2	DU3	DU4	DU5	DU6]
	Yes	В	В	В	В	0	С	
	No	A	В	В	Α		C	

Did you see

NAPL/Char/Ashes?

YES YES

IF YES:

Collect into 8-oz jar IF YES: Sample ID's:

Analysis Dioxins, Furans

Replicate collected here?

Sample ID's:

Sample

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis	
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
X	Collect 10 plugs into zíplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

	ACTUAL SUs)	Sample	Analysis			
	0-10	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive			
I	10.15	All remaining soil from 6 adjacent borings will be consolidated				

		PROJECT NUMBER
	CH2MHILL	
_		

Decision Unit

Boring ID

SOIL BORING LOG

PROJECT: HART		LOCATION:	Banana Patch
LAT/LONG:		DRILLING CON	
DRILLING METHOD AND E	EQUIPMENT	0.01	deoler
WATER LEVELS :	STAR	T:5/22/19 9:40 END: 1000	LOGGER : Thusand
DEPTH BELOW SURFACE (FT)		SOIL CORE DESCRIPTION	COMMENTS
RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision
- 80 GM	Ø	SURFFETAL FELL SILTY SAND/SILTY GRAVELI Wase joby -asphalt from mats, corolline Sharel FILL	0-5
- 10	Ø	SILTY CLAY, soft, moist gray is h brown, FILL -increasing road gravel content, color varies (RDLL)	5-10
GM	Fill 1 Native	SILTY GRAVEL, Koncreta and asphelt road fril SILTY STLT, Stiff CLAY EY SILT, Stiff dry, reddish browns in creasing clay content wi	457
80 SC		Moist do wet, grayish (brown, -same	15-20
		20' total deptr	
-		,	

PROJECT NUMBER	Decision Unit	Boring ID	
	I Dus	1819	

Р	R	OJ	E	CI	T :

HART

DRILLING METHOD AND EQUIPMENT USED:

LOCATION:

Banana Patch

LAT/LONG:

()

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

YES

NO

HAS TP

Geophysical anomalies/ Fill -

Exist?

1 111		DU1	DU2	DU3	DU4	DU5	DU6
	Yes	В	В	В	В	c	С
	No	А	В	В	A	(0)	С

Did you see

NAPL/Char/Ashes?

(yea

IF YES:

Collect into 8-oz jar

Analysis

Dioxins, Furans

Replicate collected here?

NC

Sample ID's:

Sample

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

YES

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
9	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 8' bgs (native)

l	ACTUAL SUs)	Sample	Analysis
	0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

politica man

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
040	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
IK WA	All remaining soil from 6 adjacent borings	s will be consolidated

		CT NUMBER Decision Unit	Boring ID B 20
CH2MHILL		SOIL BORING	LOG
PROJECT: HART		LOCATION:	Banana Patch
LAT/LONG:		DRILLING CON	TRACTOR: Geotek
DRILLING METHOD AND E	QUIPMENT	USED: DPS Track	
WATER LEVELS :	STAR		LOGGER: VM
DEPTH BELOW SURFACE (FT)		SOIL CORE DESCRIPTION	COMMENTS
INTERVAL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision
- FILL	Comp 0	FILL: SILTY CLAY, tan-orange, any, stiff. Trave M grave!	Sample 0-5'bgs
- d d d d d d d d d d d d d d d d d d d	V	throughout FILL: Loose any F gravel W/SILT & SAND FILL: Concrete, grave) w/- SILT & SAND. Gray, Dry. compact	Sample 5'-10'bys Refused, step out
NATIVE A 100%		FILL: SILTY CLAY, coraline gravel and sand throughout our, shift. I wative: Br silt without Sand. Orange mottles throughout Dany. Wet @ 17-18' by Damp below.	Sample 10-15/bgs 10-15/bgs 10-15/bgs 10-15/bgs 10-15/bgs 10-15/bgs 10-15/bgs
		E08@201695	

Note: PID collected every 6"

PROJECT NUMBER	Decision Unit	Boring ID	
- 12 12 14	1042	13-20	

PROJECT:

HART

DRILLING METHOD AND EQUIPMENT USED:

LOCATION:

Banana Patch

LAT/LONG:

NO

DRILLING CONTRACTOR:

TP

Geotek

UTILITY CLRNCE CONFRMD:

HAS

Geophysical anomalies/ Fil Exist?

=	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	6	С
No	А	В	В	. A	С	С

Did vou see

NAPL/Char/Ashes?

IF YES:

Sample Collect into 8-oz jar Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis	
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
X	Collect 10 plugs into zíplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
/\	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

SUs)	Sample	Analysis
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
10-20	All remaining soil from 6 adjacent borings	will be consolidated

© CH2MHILL	PROJECT NUMBER	Decision Unit	Boring IB 2
GHZIVIHILL	21	SOIL BORING	LOG
PROJECT: HART	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LOCATION:	Banana Patch
LAT/LONG:		DRILLING CONT	TRACTOR: Geotek
DRILLING METHOD AND EQ		P5	1 学に sin g ring
WATER LEVELS :	START :5/22/14	930 END: 945	LOGGER: BR
DEPTH BELOW SURFACE (FT) INTERVAL (FT)	SOIL	CORE DESCRIPTION	COMMENTS
RECOVERY (FT)	READING MOISTURE CO	NCY, SOIL STRUCTURE,	Sample Collection Information Sample Sub-Unit Decision
- 60%	sity day sown, on to med.	y (CL), dark gray, over, slightly oose, stiff, (CL) at 3' Reddish orst, stiff, how plasticity, ful	
902	ally sta	0-3: Ithtermixed ons of dry, platy ons all \$ coral is up to 5 on.	5-10
- A	game as		
too),			10-15
15		FILL STATE	
20_ (60% ce	brown wet. So high pla	y (CL). Dark Very moist to off med to asticity.	15-20
	FOR (9 20'	8-9/5

25_

PROJECT NUMBER	Decision Unit	Boring ID	
	7.5	BA	

<u>PROJ</u>	

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING METHOD AND EQUIPMENT USED :

UTILITY CLRNCE CONFRMD:

DRILLING CONTRACTOR:

Geotek

NO

HAS

Geophysical anomalies/ Fil Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	С	(0)
No	A	В	В	Α	С	°

Did you see

NAPL/Char/Ashes?

YES

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

SUs)	Sample	Analysis
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
0-10	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
10-20	All remaining soil from 6 adjacent boring	s will be consolidated

O CH2MHILL	PROJECT NUMBER Decision Unit Boring ID)-2		
CHZIVIFILL	SOIL BORING LOG			
PROJECT: HART	LOCATION: Banana Patch			
LAT/LONG:	DRILLING CONTRACTOR:	Geotek		
DRILLING METHOD AND EC				
WATER LEVELS :	START: (000 END: 1030 LOGGER: \	M		
DEPTH BELOW SURFACE (FT)	SOIL CORE DESCRIPTION COMM	ENTS		
RECOVERY (FT) #/TYPE	PID READING (ppm) SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY. Sample Collection In Sample Sub-Unit De			
\$0% \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	FILL: Red silt w/Fgravel, loge, FILL: Br Silt, hard, dry, compact w/gravel throughout F- C, A-SUBA, WS. ()-	194 5'bap		
10_10	Sam 5-	14 10'bap		
- X S Q	WOOD	py s'bgp		
20 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	O throughout. Med soft. Mast, wet @ 19' bgs. Orange mottles throughout 15.	yol 20 bg		
25	EOB@zerbgs	-		

Note: PID collected every 64

PROJECT NUMBER	Decision Unit	Boring ID B - 2.2
		ME ON S 1151 WID 1975 IL 1169

PROJECT:

HART

LOCATION:

HAS

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

NO

TP

DRILLING METHOD AND EQUIPMENT USED: Geophysical anomalies/ Fil Exist?

1 35	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	0	С
No	A	В	В	A		C

Did you see

NAPL/Char/Ashes?

YES

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis	
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
X	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis	
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
15.20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
0-12	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
045	All remaining soil from 6 adjacent borings	s will be consolidated

		ECT NUMBER	Decision Unit	Boring ID B223
CH2MHILL	147		SOIL BORING	LOG
PROJECT: HART			LOCATION:	Banana Patch
LAT/LONG:			DRILLING CON	
DRILLING METHOD AND E	QUIPMENT	USED: DPS	truck	
WATER LEVELS :	STAR	IT: 1015		LOGGER: PSR
DEPTH BELOW SURFACE (FT)		SOIL CORE	DESCRIPTION	COMMENTS
RECOVERY (FT) #/TYPE	PID READING (ppm)		ROUP SYMBOL, COLOR, T, RELATIVE DENSITY SOIL STRUCTURE,	Sample Collection Information Sample Sub-Unit Decision
602	0	Silty clay (O) Brown to gro) w/some grave ny. Dry. Loose. agnents @ 3'.	t.
5_			F14L -	
90% 612	O	same as U-S to 7'. Brun Structure 4	5. Reddish bruito 10! Platy - thronghout -	η 5-10°
10			FW]	•
- 40%	0	Same as 0- Vanun.	= = = =	10-15'
- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0	Sity clay (a) Moist. low plasticity. Soft \$ very n), brown.) to med. Med. Stiff Norst-@ 19.	15-20
-		EDB (201.	

The State of the s

PROJECT NUMBER	Decision Unit	Boring ID	Т
			_

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD: **DRILLING METHOD AND EQUIPMENT USED:**

NO

HAS

Geophysical anomalies/ Fil Exist?

			- 22			
,	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	С	6
No	A	В	В	A	c	С

Did you see

NAPL/Char/Ashes?

YES NO

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

NO IF YES:

IF YES:

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

YES

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)		Sample	Analysis	
-	1.41	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
0-10	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	eq
10-20	All remaining soil from 6 adjacent boring	s will be consolidated	

OLIOPEUU.	PROJE	CT NUMBER Decision Unit			
CH2MHILL		SOIL BORING LOG			
PROJECT: HART		LOCATION	: Banana Patch		
LAT/LONG:		DRILLING	CONTRACTOR: Geotek		
DRILLING METHOD AND EC	QUIPMENT	USED: DPS-Track Ri	a		
WATER LEVELS :	STAR	T: 1030 END: 110			
DEPTH BELOW SURFACE (FT)		SOIL CORE DESCRIPTION	COMMENTS		
INTERVAL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COL MOISTURE CONTENT, RELATIVE DENSI OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	OR, Sample Collection Information Sample Sub-Unit Decision		
		Red Sitt, organics, dry, l FILL: MIX Red and by cle W/SILT & SAND. Gravel (coralline) Coarse, through Despleable Dlack Smath	45		
- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		arieve t	sample 5-10'bgs		
- S2 - 15_	ľ	FILL: Black small grave wisit & sand PS, A. So c black gravel through Native: Br SILT, damp Crumbly, Little & Clay.			
- 20%		SARUDY SILTY SAA BARA, Wet @ 12019' bgs	Sample 15-20' logs		
		E08@20'	-		
25_		*	-		

PROJECT NUMBER	Decision Unit	Boring 10 B - 24
	THE RESERVE TO BE A STATE OF THE PERSON OF T	DITTE OF THE STATE

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

YES

DRILLING METHOD AND EQUIPMENT USED:

HAS

Geophysica anomalies/ Fi Exist?

I H	W E	DU1	DU2	DU3	DU4	DU5	DU6
	Yes	В	В	В	В	6	С
	No	Α	В	В	A A	0	С

NO

NAPL/Char/Ashes?

YES

IF YES:

Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES

IF YES:

Sample ID's:

Sample

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)		Sample	Analysis	
1	1	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
	X	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	\	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
0-10	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
10-20	All remaining soil from 6 adjacent borings	s will be consolidated

	PROJECT NUMBER	Decision Unit	Boring ID B 25		
CH2MHILL		SOIL BORING LOG			
PROJECT: HART		LOCATION:	Banana Patch		
LAT/LONG:		DRILLING CON			
DRILLING METHOD AND E	QUIPMENT USED :				
WATER LEVELS :	START: 1045	END: 1100	LOGGER: BK		
DEPTH BELOW SURFACE (FT)	//	CORE DESCRIPTION	COMMENTS		
INTERVAL (FT) RECOVERY (FT) #/TYPE	READING MOISTURE CO	CS GROUP SYMBOL, COLOR, NTENT, RELATIVE DENSITY NCY, SOIL STRUCTURE,	Sample Collection Information Sample Sub-Unit Decision		
-	Ollty clay (Brown to Soft. Non Asphal	CL) W/some gravel o gray. Dry. 100se. plastic. of @1', throughou	6 0-5'		
- 1009	Silty clay graviel. & bown. Di some soft	(a) w/trace brun fo reddish y. Mostly hard, - loose areas	5-10'		
80%	Same as brown. basalt fr	5-10: Reddish Dy, wose. Large agnerits @14" -	10-15'		
50%	o silty day (notst. b Med. sof very mois	CL). Brown. Med. plasticity. If to soft. St@19! @20!	15-20'		

PROJECT NUMBER	Destates Help	10 10	
PROJECT NUMBER	Decision Unit	Boring ID	

	-		-
00	a.	EC]	r •
	~		_

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED :

HAS TP

Geophysical anomalies/ Fil Exist?

	1	1				
	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	С	0
No	A	В	В	Α	c	\circ

Did you see

NAPL/Char/Ashes?

YES

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES

NO

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis	
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
= _0 22	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
5 AL	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

	ACTUAL SUs)	Sample	Analysis	
ī,	11-111	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
	10-20	All remaining soil from 6 adjacent borings	will be consolidated	

5/22/14

O CHARLES	PROJECT NUMBER Decision Unit Boring ID B-24
CH2MHILL	SOIL BORING LOG
PROJECT: HART	LOCATION : Banana Patch
LAT/LONG:	DRILLING CONTRACTOR: Geotek
DRILLING METHOD AND E	QUIPMENT USED: DPS Track Rig
WATER LEVELS :	START: 1100 END: 1140 LOGGER: 11M
DEPTH BELOW SURFACE (FT)	SOIL CORE DESCRIPTION COMMENTS
INTERVAL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm) SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY. Sample Collection Information Sample Sub-Unit Decision
	FILL: Red-br SILT w/ F-c gravel PS, A. Dry, Loose FILL: Br SILT W/F-c gravel PS, stry(covalling), THEF-c gravel (basalt)
	W/Sand F-C WS, A. Sample 5-10' bgs
- 100/ - 15_	Sample 10-15' bgs
- 100% - NATIVE	NATIVE: Clayey SILT, by, orange mottles. Dry todamp. Sample - 15-20'bgs wet SAA
25	

* Note PID readings every 69

PROJECT NUMBER	Decision Unit DU 5	Boring ID B-26	
FL	OW CHART FOR SAMPL	ING RATIONALE	1 1 2

PROJECT:

HART

DRILLING METHOD AND EQUIPMENT USED:

LOCATION:

Banana Patch

LAT/LONG:

NO

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

HAS

Geophysical anomalies/ Fil Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	(C)	С
No	Α	В	В	A	С	С

Did you see

NAPL/Char/Ashes?

Replicate collected here?

IF YES:

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis	
1	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
$\perp \chi$	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
/ \	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
0-10	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	T :_ 1
10-20	All remaining soil from 6 adjacent borings	s will be consolidated	

0	CH2MHILL
	OB BESTEEN HEL

PROJECT NUMBER 457998

Decision Unit

Boring ID 2

SOIL BORING LOG

PROJECT: HART LOCATION: Banana Patch

LAT/LONG: DRILLING CONTRACTOR:

Geotek

DRILLING METHOD AND EQUIPMENT USED :

WATE	R LEV	ELS:		STAR	T: 1120 END: 1135	LOGGER: BK
DEPTH	BELOW	SURFACI	E (FT)		SOIL CORE DESCRIPTION	COMMENTS
	INTERV	RECOVE	RY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision
- - - 5	1	80%		ð	Silty day (CL) w/trace/grave Brun to dk gray. Dry, 180se. Soft. Silty day (CL) at 4.5. Dk brue Med. Stff. Low plasticity. Filt.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
- - - 10	1	100%	PIL	0	Silty day w/trace gravel. Brown: SHFF. Dry. construction debris@5.5:	5-0'
- - - - 15	\uparrow	70%		0	Same as 0-5. Reddish. bnun. DRy, louse. Concrete @14!	10-15'
20	1	80%	a J	0	Silty clay (a) Dark brown. Moist Med. Stiff. Med. plasticity Very moist & soft @18:- 508 @ 20'	15-20
- - - 25_						

PROJECT NUMBER	Decision Unit	Boring ID	

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED :

NO

HAS TP

Geophysical anomalies/ Fil Exist?

1 1 1 1 1 1 1 1	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	С	(c)
No	A	В	В	A	С	С

Did you see

NAPL/Char/Ashes?

YES

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis	
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herl PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

	ACTUAL SUs)	Sample	Analysis
	0-2	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	15-20	Collect 10 plugs into zipłock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis		1 12
0-10	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive		
10-20	All remaining soil from 6 adjacent boring	s will be consolid	ated	

© CH2MHILL	PROJE	CT NUMBER Decision Unit 5	Boring ID B28
GHZIVIFILL		SOIL BORING	LOG
PROJECT: HART		LOCATION :	Banana Patch
LAT/LONG:		DRILLING CON	TRACTOR: Geotek
DRILLING METHOD AND EQI	UIPMENT	USED:	*
WATER LEVELS :	STAR	T: 1400 END: 1420	LOGGER: BR
DEPTH BELOW SURFACE (FT)		SOIL CORE DESCRIPTION	COMMENTS
RECOVERY (FT) #/TYPE F	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision
70%	0	Bilty clay (OU) N/trace grave Rodd str brun. Dry, SHFF. Nonplastic. Concrete fragments @ 2'	l. 0-5`
10 100% FILL C)	Silty day (CI) w/somegravel. 8Hff. Loose . Brown to reddish brown. Concrete @9'. FILL	5-10'
15_	O	Same as 5-to. 13.5' Sity clay (CL) @ 855 Brown Moist. Moderately SHFF. LOW to med plasticity. Fill ends @ 25.13.5'	10-15'
802	0	Same as 8503 13.5-15!- Very motst \$ 50ft - (a 18:	15-20
1007	3	20-30': Same as 15-20'. Saturated/Wet EOB@ 30'.	

PROJECT NUMBER	Decision Unit	Boring ID	
	n st F - g		

PROJECT:	
----------	--

HART

LOCATION:

Banana Patch

LAT/LONG:

Anı

S NO

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

(YES

DRILLING METHOD AND FOL

DRILLING METHOD AND EQUIPMENT USED :

DPS

HAS TP

Geophysic	al
anomalies/	Fill
Exist?	

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	С	(3)
No	A	В	В	A	С	°

Did you see

NAPL/Char/Ashes?

YES

IF YES:

3

Analysis

Dioxins: Furans

Replicate collected here?

YES NO

IF YES:

Sample ID's:

Collect into 8-oz jar

Sample

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
4 1	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
4 2 H	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis			
0-0	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	h' - a,		
10-20	All remaining soil from 6 adjacent borings will be consolidated				

	PROJECT NUMBER	Decision Unit	Boring ID	9
CH2MHILL	5	OIL BORING	LOG	
PROJECT: HART		LOCATION:	Banana Patch	
AT/LONG:		DRILLING CON	TRACTOR:	Geotek
PRILLING METHOD AND EQUIPM		Track B	IG	
VATER LEVELS : S	START: 330	END: 1420	LOGGER:	M
EPTH BELOW SURFACE (FT) INTERVAL (FT)	SOIL CORE I	DESCRIPTION	СОММ	ENTS
RECOVERY (FT) PIL #/TYPE READ (ppr	ING MOISTURE CONTENT	DUP SYMBOL, COLOR, , RELATIVE DENSITY DIL STRUCTURE,	Sample Collection Ir Sample Sub-Unit De	
15%	FILL: Red sil M gravel A FILL: Br SIL sand another Coralline : bas F-C Angular Sand PS. Dr	T W/Grave e-	Sample 5-10	
15	Native: Br s	-	5ampl 10-15	'bgs
	Clay. Dry to Trace VF so Motteling Sto Wet @ 18'	damp.	Samp 15-20' b	95 95
	EDB(20' bgs		

PROJECT NUMBER	Decision Unit	Boring ID	
FLO	OW CHART FOR SAMI	PI ING RATIONAL F	

PRO	IJЕ	CT	÷

HART

LOCATION:

HAS

DRILLING CONTRACTOR:

Banana Patch

LAT/LONG:

....

s) NO

Danie

Geotek

UTILITY CLRNCE CONFRMD:

(Es)

DRILLING METHOD AND EQUIPMENT USED :

Geophysical anomalies/ Fill DU1 DU2 DU3

Exist?

_						4
	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	6	С
No	A	В	В	A	c	ć

Did you see

NAPL/Char/Ashes?

Replicate collected here?

YES

NO IF YES:

IF YES:

Sample

Collect into 8-oz jar

Sample ID's:

Analysis

Dioxins, Furans

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)			Sample	Analysis	
_		_	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
	Y		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	/	1	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis					
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive					
10-20 All remaining soil from 6 adjacent borings will be consolidated							

		CT NUMBER		Decision Unit		Boring ID B 30
CH2MHILI		SOIL BORING LOG				
PROJECT: HART				LOCATION:	Bana	ana Patch
LAT/LONG:				DRILLING COI	NTRAC	TOR: Geotek
DRILLING METHOD AND I	EQUIPMENT	USED: DP	5	Track	Ric	
WATER LEVELS :		T: (140		END:	- 2.0	GGER: VM
DEPTH BELOW SURFACE (FT)			CORE DES		T	COMMENTS
INTERVAL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)		NTENT, RE	SYMBOL, COLOR, ATIVE DENSITY STRUCTURE,		le Collection Information le Sub-Unit Decision
-70%	0	FILL: Rea	Fissi (w/c grave, 100 se w/ Basa H avel F-C sand, dry	1	Sample 0.5'
- 1 X X 1 1 X S 1 1 1 1 1 1 1 1 1 1 1 1 1	0		V		-	Sample 605 by
- 00 0	0		V			Sample 10-15'- bys-
100 - 100 -	0	SILTY SI	and in	Tologo oranger STIFF SET Med Sti to soft		Samply = 15-20' bys =
25						

PROJECT NUMBER	Decision Unit	Boring ID 30
FI	OW CHART FOR SAMPI	ING DATIONALE

PROJECT: HART

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

TP

LOCATION:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

HAS

Geophysical anomalies/ Fil Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В		c
No	A	В	В	_ A	С	С

Did you see

NAPL/Char/Ashes?

IF YES:

Sample Analysis Collect into 8 x jar Sample ID's:

Dioxins, Furans

Replicate collected here?

IF YES:

mple ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

1	ACTUAL SUs)		Sample	Analysis
1			Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
	X		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
Ľ	/ \ 		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
6-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
10-80	All remaining soil from 6 adjacent borings	will be consolidated	

		CT NUMBER Decision Unit	Boring ID		
CH2MHILI		SOIL BORING LOG			
PROJECT: HART		LOCATION :	Banana Patch		
LAT/LONG:		DRILLING CON	TRACTOR: Geotek		
DRILLING METHOD AND E	QUIPMENT	USED: DPS, track			
WATER LEVELS :	STAR	T: NR END: NR	LOGGER: B. Poder		
DEPTH BELOW SURFACE (FT)		SOIL CORE DESCRIPTION	COMMENTS		
INTERVAL (FT) RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision		
- \\ 70 T	0	Sittyday (CL) with some Sand and growel. Light bown to reddish brown Dry to swithy moish soft to stiff. Kon-plastic to low plasticity. Some congcrete fragments. Fill.	0-5' + duplicate 3 triplicate		
- 1 90 P	6	sith clay (CL) with trace gravel. Reddish bown. Slight moist. Med. Stiff. Med. plasticity. Punice frags. From 7-8. Bosalt frags (5cm 9-10.	thy 5-10°		
- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	O	Same as 5-10: Basalt frags 12-13: Concrete delvis 14-15: FILL	10-15		
70 d	0	Concrete debris He 15-16. Silty day (a) n/ trace gravel. Dark brun. Moil Soft. Med. plasticity.	15-20		

EDB @ 20'

PROJECT NUMBER	Decision Unit	Boring ID	
	\$00 L		

PROJECT:

HART

LOCATION:

DRILLING CONTRACTOR:

Banana Patch

LAT/LONG:

NO

UTILITY CLRNCE CONFRMD:

Geotek

DRILLING METHOD AND EQUIPMENT USED:

HAS TP

Geophysical anomalies/ Fil Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	С	(0)
No	Α	В	В	Α -	С	c

Did you see

NAPL/Char/Ashes?

YES

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YE\$

IF YES:

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5 bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

al	ACTUAL SUs)	Sample	Analysis
	·	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
			TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

SUs)	Sample	Analysis		
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
10-20	All remaining soil from 6 adjacent borings	s will be consolidated

a chai		ECT'NUMBER	Decision Ur	nit 6	Boring ID 2		
GHZI	MHILI		SOIL BORING LOG				
PROJECT: HAR	ıT			LOCATIO	ON: E	Banana Patch	
LAT/LONG:				DRILLING	3 CONTR	RACTOR: Geotek	
DRILLING METHO	D AND F	EQUIPMENT	TUSED: DP	'S = 2			
WATER LEVELS:		STAF	RT: NR	END: N	IR -	LOGGER: B. Roder	
DEPTH BELOW SURFAC	CE (FT)		SOIL	L CORE DESCRIPTION		COMMENTS	
INTERVAL (FT) RECOV	VERY (FT) #/TYPE	PID READING (ppm)	MOISTURE CO	SCS GROUP SYMBOL, CO ONTENT, RELATIVE DENS ENCY, SOIL STRUCTURE,	SITY S	ample Collection Information ample Sub-Unit Decision	
70	T	Ò_	Sity clay Brown: Basalt fro blasticit	(CL) With some Slightly moisings (1-3cm). Low y. Stiff. FILL	m	1. 0-5° +duplicate \$ Triplicate	
	Fil	O	brown. at 6.	5 0-5°. Reddis Concrete del FILL		5-10'	
50		0	Same a Concrete Asphalt	as 5-10'. e at 13'. material @ 11	5'.	10-15'	
50	+ 0	O	Moist. P	y (CL), Dark by ded. SHFF. Med	vonin.	15-20	
-	100		FOI	B@20°.			

3	CH2MHILL
	CH2MHILL

PROJECT NUMBER	Decision Unit	Boring ID	•
4-			

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

HAS

Geophysica anomalies/ Fi Exist?

l ill		DU1	DU2	DU3	DU4	DU5	DU6
	Yes	В	В	В	В	С	0
	No	A .	В	B	A	C.	0

Did you see

NAPL/Char/Ashes?

IF YES:

NO

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis	
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
> 4.Hr	Collect 10 plugs into zíplock, 3 plugs into . 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical

- 0 to 5' bgs
- 5 to 10 bgs
- 10' bgs to 15' bgs
- 15 to 28 bgs (native)

ACTUAL SUs)	Sample	Analysis		
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
15-20	Collect 10 plugs into ziplock, 3 plugs into 1, VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 18 bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

	ACTUAL SUs)	Sample	Analysis	7			
		Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	=			
	10-20	0-20 All remaining soil from 6 adjacent borings will be consolidated					

			ECT NUMBER	Decision Unit	Boring ID	3	
CH2N	VIHIL			SOIL BORING	GLOG	- Vir	
PROJECT: HAR	T			LOCATION:	Banana Patch	F121-2 VI. 12 1	
LAT/LONG:	2003		DRILLING CONTRACTOR: Geotek				
DRILLING METHO	D AND	EQUIPMENT	TUSED: DPS				
WATER LEVELS :			RT: NR	END: NR	LOGGER:	Roder	
DEPTH BELOW SURFAC	CE (FT)		SOIL CO	RE DESCRIPTION	СОММЕ		
INTERVAL (FT) RECOV	ERY (FT) #/TYPE	PID READING (ppm)	MOISTURE CONT	GROUP SYMBOL, COLOR ENT, RELATIVE DENSITY Y, SOIL STRUCTURE,	, Sample Collection Int Sample Sub-Unit Dec	formation cision	
- 1 90	T	6		(CL) with son own to dark greatly moist. In -plastic. FELL	+ duplicatripli	ate & cate	
90	Phy I	O	Same as l Coral San Concrete concrete	d @7; ragments @ 9!	5-10'		
60		0	Same as Friable. Concrete	0-5: @ 14'	(0-15)		
70	+0	0	Same as Concrete Sitty clay(1) Dark John plasticity,	© 17-19! Fills © 17-19! Fills CU) at 19! @19 In, moist, med med. soft.	15-20	`	
-			pop, Co	20'		-	

Decision Unit 6	Boring ID 3	
	6	3

PROJECT:

HART

LOCATION:

DRILLING CONTRACTOR:

Banana Patch

LAT/LONG:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT DSED :

NO

DPS

TP

Geophysical anomalies/ Fill Exist?

Ĺ		DU1	DU2	DU3	DU4	DU5	DU6
Ye	8	В	В	В	В	С	
No		Α Α	В	В	. A	C	С

Did you see

NAPL/Char/Ashes?

YES

NÓ

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

YES

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis		
0-10	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive		
10-20	All remaining soil from 6 adjacent borings will be consolidated			

	CH2MHILL
•	

			_	
PRO.	JECT	NU	MB	ER

Decision Unit

Boring ID B4

SOIL BORING LOG

		SOIL BORING	LUG
PROJECT: HART		LOCATION :	Banana Patch
LAT/LONG:		DRILLING CON	
DRILLING METHOD AND E	QUIPMENT	USED: DPS continous core	acetale sleeves
WATER LEVELS :		T:5/20/14 1345 END: 1400	LOGGER: TINCOOL
DEPTH BELOW SURFACE (FT) INTERVAL (FT)	*	SOIL CORE DESCRIPTION	COMMENTS
RECOVERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision
- 90 GM	Ø	Reddish brown I tan, black 19 ray SILTY SAND and SILTY GRAVEL, with SILTY CLAY, dry, FILL	0-5' + Replicates
- 70 - 50	8	- basult 4-5' 10' - -concrete 7-10' - fragments -	5-10
15_	\geqslant	No Recovery	10-15) Nonele
- 70 CL	FILL lative	Reddish bown CLAY - And med. Stiff, moist- wisome fine sand	15-20
	g.	-	, - -

PID every 6" of core

PROJECT NUMBER	Decision Unit	Boring ID	
----------------	---------------	-----------	--

PROJECT:

HART

DRILLING METHOD AND EQUIPMENT USED:

LOCATION:

DRILLING CONTRACTOR:

TP

Banana Patch

LAT/LONG:

UTILITY CLRNCE CONFRMD:

HAS

Geotek

Geophysical anomalies/ Fill

Exist?

	DU1	DU2	DU3	DU4	DU5	₽₩€
Yes	В	В	В	В	С	
No	A	В	В	A	С	С

Did you see

NAPL/Char/Ashes?

IF YES:

Sample Collect into 8-oz jar

Analysis

Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5 bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample 1 122 February	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
461	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

bas to 15' bas

- 15 to bgs (native)

- 0 to 5' bgs

- 5 to 10' bgs

ACTUAL

SUs)

Sample

Collect 10 plugs into ziplock Collect 10 plugs into ziplock, 3 plugs into -10 1 VOA Collect 10 plugs into ziplock, 3 plugs into 1 VOA Collect 10 plugs into ziplock, 3 plugs into 1 VOA

Analysis TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, **PCBs** TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, **PCBs** TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, **PCBs** TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, **PCBs**

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
0-10	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
10-20	All remaining soil from 6 adjacent borings	s will be consolidated

	PROJECT NUMBER	Decision Unit	Boring ID
CH2MHILL		SOIL BODING I	06

SOIL BORING LOG

PROJECT: HART		LOCATION:	Banana Patch
LAT/LONG:		DRILLING CON	ITRACTOR: Geotek
DRILLING METHOD AND	EQUIPME	NTUSED: DPS Condinuous Cor	re acetale sheves
WATER LEVELS :	STA	ART:5/20114 1320 END: 1335	LOGGER: I,WOOd
DEPTH BELOW SURFACE (FT)	PK.	SOIL CORE DESCRIPTION	COMMENTS
INTERVAL (FT) RECOVERY (FT) #/TYPE		SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision
- 50 SC	× Ø	Redelish bown to tan- and black SPLTY SAND and SILTY CLAY with gravel, two deas her stiff, dry, control EILL	- 6-5' + replizates
- 50 50 I	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Reddish brown to tan SILTY GRAVELY LOOSE dry - a shahalt/concrete prepart	5-10
- 30 30	Ø		15-20
20_	FILL Native	Fresend, Brown CLAY, Med Stiff, Moist	15-20
-			
		-	, (1

of pID every 6" of come

PROJECT NUMBER	Decision Unit U 6	Boring (D B5
----------------	-------------------	--------------

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

HAS

TP

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED: Geophysical anomalies/ Fill

Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes .	В	В	В .	В	С	()
No	Δ	В.				

NO

Did you see

NAPL/Char/Ashes?

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs

- 0.5 to 3' bgs

- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

If no fill exists, completed boring to 10' bgs

- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

1	ACTUAL SUs)	Sample	Analysis
	0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
0-10	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
10-20	All remaining soil from 6 adjacent boring	s will be consolidated

	PROJECT NUMBER	Decision Unit	В
CH2MHILL		SOIL BORING LO)G

THOULDT. FIART	LOCATION: Banana Patch	
LAT/LONG:	DRILLING CONTRACTOR: Geotek	
DRILLING METHOD AND FOLUDMENT USED. DOC	track	_

Boring ID

6

LAT/LONG:		DRILLING CON	TRACTOR: Geotek
DRILLING METHOD AND	EQUIPMEN	TUSED: DPS, truck	
WATER LEVELS :	STAF	RT: UR END: UR	LOGGER: B. Poder
DEPTH BELOW SURFACE (FT) INTERVAL (FT)		SOIL CORE DESCRIPTION	COMMENTS
RECOVERY (FT)	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision
80	0	slity day (cr) with some graver. Reddish brown to light brown. Slightly mo Stiff. Nonplaste to low-plasticity. Trosh debris@5!	0-5' 1st. +duplicate = \$\frac{1}{2}\text{triplicate}
- 50 FILL	0	Same as and some coral & basalt gravel.	5-10'
50	0	same as 0-5: Asphalt & Conerete. Fragments at 13 ft. FILL	10-15'
50 CL	0	Silty day (CL). Reddish - larown. Trace sand. Moist. Med. plasticity, Med. Stiffness.	15-20'
25		-	

PROJECT NUMBER	Decision Unit	Boring ID
<u> </u>		

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

NO

HAS TP

Geophysical anomalies/ Fil Exist?

<u>.</u>	DU1	DU2	DU3	DU4	DU5	DU6		
Yes	В	В	В	В	С	0		
No	A	В	В	A	С	С		

Did you see

NAPL/Char/Ashes?

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

	ACTUAL SUs)	Sample	Analysis	
L		Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
	Acces From	Collect 10 plugs into zíplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10° bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis		
6-10	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive		
10-20	All remaining soil from 6 adjacent borings will be consolidated			

CH2MHILL
,

PROJECT NUMBER	Decision

n Unit Bor

Boring ID ANT 7

SOIL BORING LOG

DRILLING CONTRACTOR DRILLING METHOD AND EQUIPMENT USED: WATER LEVELS: START: 5/20/14/13/5 END: 1330 LOGG DEPTH BELOW SURFACE (FT) INTERVAL (FT) RECOVERY (FT) PID SOIL TYPE, USCS GROUP SYMBOL, COLOR, Sample OF	
DRILLING METHOD AND EQUIPMENT USED: DESCRIPTION WATER LEVELS: START: 5/20/14/13/5 END: 1330 LOGG DEPTH BELOW SURFACE (FT) INTERVAL (FT) RECOVERY (FT) PID SOIL TYPE, USCS GROUP SYMBOL, COLOR, Sample Colors	DER: I. WOOD COMMENTS
WATER LEVELS: START: 5/20/14 13/5 END: 1330 LOGG DEPTH BELOW SURFACE (FT) INTERVAL (FT) RECOVERY (FT) PID SOIL TYPE, USCS GROUP SYMBOL, COLOR, Sample Colors	COMMENTS
DEPTH BELOW SURFACE (FT) INTERVAL (FT) RECOVERY (FT) PID SOIL TYPE, USCS GROUP SYMBOL, COLOR, Sample C	COMMENTS
INTERVAL (FT) RECOVERY (FT) PID SOIL TYPE, USCS GROUP SYMBOL, COLOR, Sample (
RECOVERY (FT) PID SOIL TYPE, USCS GROUP SYMBOL, COLOR, Sample (Collection Information
(ppm) OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sub-Unit Decision
SMY O Reddish brown to black, Eolly tan SILTY SAN Dwith at Clay and Snowels - idny to black, eolly on the start of the clay and snowels - idny to be compared to black, the control of the	0-5' 695
- Concrete 3-4)-S privary plicate riplicate
- 60 0 - asphalt 9-10'	-10
FILL -	
TO I Redaish brown STLTY CLAY, Stiff, dry Some combine gravels, - Native and road filigravels	y-15
15_ CL V Reddish dar 12 FILL	-
- 100 O brown CLAY, med stiff, 15 moist to wet	70
- Strong Has odor - 17-20, no PIO/ - defections for Has or	
- CHYONGEM 5000 - Archi	-50, 10,

* PID every 6" of core

PROJECT NUMBER	Decision Unit	Boring ID R	
	1/0/0		

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

TP

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

HAS

Geophysical anomalies/ Fill Exist?

,[DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	С	
No	Α	В	В	A	С	(c)

Did you see

NAPL/Char/Ashes?

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
 		TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

	ACTUAL SUs)	Sample	Analysis
	0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
Į	10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	15-18	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18 bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis			
0-10	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive			
10-20	All remaining soil from 6 adjacent borings will be consolidated				

NOTE: Do not combine native material and fill

- Filland Native combined 10-20 in 046

a crionalis		Decision Unit 6	Boring ID 8
CH2MHILL		SOIL BORING	LOG
PROJECT: HART		LOCATION :	Banana Pareh
LAT/LONG:		DRILLING CON	ITRACTOR: Geotek
DRILLING METHOD AND EC			
WATER LEVELS :	STAR	RT: NR END: NR	LOGGER: B. Roder
DEPTH BELOW SURFACE (FT) INTERVAL (FT)	1	SOIL CORE DESCRIPTION	COMMENTS
RECOVERY (FT)	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision
- \ 50 T	0	stity clay (CU) with some gravel. Reddish bown. SHFF. slightly moust Nonplaste.	0-5' +duplicate \$ triplicate
5_ - - - - - - - - - - - - - - - - - - -	6	same as 0-5: Asphalt material @7! Silty clay(CL) 8-10! Reddist brain. Proist. Stiff. ion plasticity. FILL	
- 10 - 15_	Ó	Same as 0-5. Coxal, cement & pumice-fragments.	10-15
- 1 90 t	0	Same as 0-5. Silty clay (CL) at 17: Peddish brun, moist, Soft, med. plasticity. Till ends @ 17:	15-20'
		E0B@20`	

ta,

25

PROJECT NUMBER	Decision Unit	Boring ID	

PROJECT:

HART

LOCATION:

DRILLING CONTRACTOR:

Banana Patch

LAT/LONG:

Geotek

UTILITY CLRNCE CONFRMD:

YES NO

DRILLING METHOD AND EQUIPMENT USED:

DPS HAS TP

Geophysical anomalies/ Fill Exist?

,,	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	С	С
No	A	R	В	Δ	C	<u> </u>

Did you see

NAPL/Char/Ashes?

YES NO

NO

IF YES:

Sample

Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis	
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis	
	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
2 11	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
	All remaining soil from 6 adjacent boring	will be consolidated	

© CH2MHILL			VIII III		ECT NUMBER	Decision Unit	Boring I	9
	O I I ZIVII II LL			- Lu	SOIL BORING LOG			
PROJ	IECT :	HAR	т			LOCATION :	Banana Pat	ch
LAT/L	ONG:					DRILLING CO	NTRACTOR:	Geotek
DRILL	ING M	ETHO	D AND	EQUIPMEN	TUSED: DPS			
WATE	R LEV	ELS:		STAF	RT: NR	END: NR	LOGGER:	B. Roder
DEPTH	BELOW		CE (FT)		SOIL COR	E DESCRIPTION		OMMENTS
	INTERV		ERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS G MOISTURE CONTEN OR CONSISTENCY, MINERALOGY.	ROUP SYMBOL, COLOR IT, RELATIVE DENSITY SOIL STRUCTURE,	, Sample Collect Sample Sub-U	ion Information nit Decision
 5	•	40	T	٥		on to reddish why woist, plastic.		plicate plicate
- - - 10	←	50	Rel	0	Silty gravel of frable. Sol plastic. tepl conerete of	(GM). Loose \$ Fill FILL	5-	10'
	<->	50	-	0	Same as O- Concrete of Fill ends @	5: lebus 10-11: 13'	(0-	-15'
- - -	1	30	-d->	D	Silty clay (Soff. Low Brown to brun.	CL). Wet. plasticity. reddisk	15-	-20
20			27	7	DOB @	20'		

PROJECT NUMBER	Decision Unit	Boring ID	
	, a		
	SURTA 4002711		

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

NO

DRILLING METHOD AND EQUIPMENT USED:

TP

Geophysical anomalies/ Fil Exist?

				$\overline{}$		
<u> </u>	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	С	9
No	A	В	В	Α ,	С	0

Did you see

NAPL/Char/Ashes?

YES

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES

NO

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10 bgs OR 3' interval below bottom of fill (native)

ا '	ACTUAL SUs)	Sample	Analysis
		Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
	3	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
			TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical ACTUAL SUs

- 0 to 5' bgs
- 5 to 10' bgs
- * 10' bgs to 15' bgs
- 15 to 28 bgs (native)

SUs)	Sample	Analysis		
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
1520	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	
0-10	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	
10-20	All remaining soil from 6 adjacent borings	s will be consolidated	

	· 60	ECT NUMBER Decision Unit	Boring ID 810		
CH2MH		SOIL BORING LOG			
PROJECT: HART		LOCATION :	Banana Patch		
LAT/LONG:		DRILLING CON	TRACTOR: Geotek		
DRILLING METHOD AN	ID EQUIPMEN	TUSED: DPS truck Rig			
WATER LEVELS :	STAF	RT:5 101/14 915 END: 945	LOGGER: I.WUTA		
DEPTH BELOW SURFACE (FT INTERVAL (FT))	SOIL CORE DESCRIPTION	COMMENTS		
RECOVERY (F		SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision		
- 90 C	Y Ø	Brown to black to tan SILTY GRAVEL panned. dense, dry (FILL) - concrete, as phalt frugments throughout	0-5 flet trip friman, dup Itap.		
- 80	8	- STLTYCLAY 2-31 Stiffidry	5-10		
- 80 - 15_	Patrie - Native	-concrete fragments - 13' -coralline gravel at 14!- Reddish Brunnist (CL)	10-15		
- 60	Ø	Reddish Brownist (CL) SBLTY CLAY, Med. Stiff, Moist, NATIVE	15-20		
-					

Refusal at 10/em on consumete two times. * PID every 6-inches

PROJECT NUMBER	Decision Unit	Boring ID & B10	
----------------	---------------	-----------------	--

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

HAS TP

Geophysical anomalies/ Fil Exist?

11		DU1	DU2	DU3	DU4	DU5	DU6
	Yes	В	В	В	В	C	0
-63	No	А	В	В	Α	С	0

Did you see

NAPL/Char/Ashes?

IF YES:

IF YES:

Analysis Dioxins, Furans

Sample ID's:

Collect into 8-oz jar

Sample

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

	ACTUAL SUs)	Sample	Analysis		
-		Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs		
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
			TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to B bgs (native)

ACTUAL SUs)	Sample	Analysis		
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
16-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis		
1 (1 -1 ()	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive		
10-20	All remaining soil from 6 adjacent borings will be consolidated			

6	A _			1	PROJE	ECT NUMBER	Decision Unit	Boring ID	1
1	G	HZN	VIHIL			SOIL BORING LOG			
PRO	JECT :	HART	<u> </u>				LOCATION:	Banana Patch	1
LAT/L	LONG:						DRILLING CON	TRACTOR:	Geotek
DRILL	_ING M	ETHO	D AND			TUSED: 005			
$\overline{}$	ER LEV			1	STAR	T:5/21/14 10:00	END: 10:15	LOGGER:	I.wood
DEPTH	BELOW S		E (FT)	1		SOIL CORE DES	CRIPTION	COM	MENTS
			#/TYPE	PII READ (ppr	DING	SOIL TYPE, USCS GROUP MOISTURE CONTENT, RE OR CONSISTENCY, SOIL S MINERALOGY.	ELATIVE DENSITY STRUCTURE,	Sample Collection Sample Sub-Unit	
- - - 5_		50	CL GM	Ø		Reddish Brown CLAY, Stiff, -concrete 4-5	- -	0-51 primary our. tripli	inte.
-	~	50		Ø		Grayish Black GRAVEL, answ fix growels, low -concrete 9coralat 9.5		5-10	-
15		60	Ü.	KIL	100	- Coral at 11.5 - concret at 1: SILTYCLAY is brown, med s Molsot NATO	SI 21 readish stiff,	10 -1	۲′ -
-	1000			Ø		same	-	15-20) - - -

PROJECT NUMBER	Decision Unit	Boring ID B 11	
----------------	---------------	----------------	--

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

TP

Geophysical anomalies/ Fill Exist?

		DU1	DU2	DU3	DU4	DU5	DU6
	Yes	В	В	В	В	O	0
1	No	A	В	В	A	С	С

Did you see

NAPL/Char/Ashes?

IF YES:

Sample Collect into 8-oz jar

Analysis

Dioxins, Furans

Replicate collected here?

YES

IF YES:

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical ACTU SUs

- 0 to 0.5' bgs

- 0.5 to 3' bgs

- 8-10' bgs OR 3' interval below bottom of fill (native)

'	SUs)_	Sample	Analysis		
		Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA			
	M	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 25 bgs (native)

	ACTUAL SUs)	Sample	Analysis		
L	0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
L	0-5	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRAB, Pest/Herb, PCBs		
L	10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis		
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	gs) Archive		
	All remaining soil from 6 adjacent borings	s will be consolidated		

		PROJE	ECT NUMBER	Decision Unit	Boring !	0/21/14
CH2	MHIL		SOIL BORING LOG			
PROJECT: HAI	RT			LOCATION:	Banana Pat	ch
LAT/LONG:				DRILLING CON		Geotek
DRILLING METHO	DD AND	EQUIPMENT	USED: DPS			
WATER LEVELS		STAF	IT: NP	END: NR	LOGGER :	B. Roder
DEPTH BELOW SURFA	ACE (FT)	4	SOIL COF	RE DESCRIPTION	C	OMMENTS
	#/TYPE	PID READING (ppm)	MOISTURE CONTE	GROUP SYMBOL, COLOR, NT, RELATIVE DENSITY , SOIL STRUCTURE,	Sample Collect Sample Sub-Ur	
5_ 70			Silty clay (Or Reddish bn SHFF. Low I non-plastic asphalt fro	with gravel. un. Slightly mod plasticity to concrete a agments. FILL		plicate riplicate
30				ne as 0-5.)	5-	w' :
15_ 40		4	M Chan	0-5: Less grave 0.5: Conevete ivel 16.5-17.5: It 19: I), med. plastic noist. Reddish- plasticity to med.	1 1	15°
20_	Ja			-		-20'

PROJECT NUMBER	Decision Unit	Boring ID	
	•		

	_		
DU	n.i	ECT	
\mathbf{L}	~~		

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

DRILLING METHOD AND EQUIPMENT USED:

HAS

Geophysical anomalies/ Fil Exist?

11	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	B	В	В	С	(0)
No	A	В	В	A	c) c

NO

Did you see

NAPL/Char/Ashes?

Replicate collected here?

NO YES NO YES

IF YES:

IF YES:

Sample Analysis Collect into 8-oz jar Dioxins, Furans

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)	Sample	Analysis		
	Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
3 F	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis	*	
	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive	3	
10-20	All remaining soil from 6 adjacent borings	s will be consolic	lated	

	PROJECT NUMBER	Decision Unit	Boring ID B13
CH2MHILL		SOIL BORING I	OG

•		SOIL BORING	LOG
PROJECT: HART		LOCATION :	Banana Patch
LAT/LONG:		DRILLING CON	ITRACTOR: Geotek
DRILLING METHOD AND	D EQUIPMEN	TUSED: DPS	
WATER LEVELS :	STAF	RT:5/21/14 10140 END: 10:55	LOGGER: I Wood
DEPTH BELOW SURFACE (FT)		SOIL CORE DESCRIPTION	COMMENTS
INTERVAL (FT) RECOVERY (FT) #/TYPI	_	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision
-80 CL	Ø	Reddish brown SILTY CLAY with gravel, med stiff/stiff	0-5 primary dup. triplicate
-80 sm	CX	Brown to black fan SILTY GRAVEL, LOUSE, dry	- Plasticat
15_	Ø	-concrete at 12 bss	10-15
20_	?		toot sample and to pror perover
- 10	\Diamond	Drill to 25 and get pour recovery, still no water bearing zone for well, continue to 301	No Sample 20-30 construct well

Concrete at bottom of 151-20' Sample

ND recovery

STLAY GRAVE | 25.5 > 28' Loose, wet

35-30' Brown STLAY GRAVE | 25.5 > 28' Loose, wet

PROJECT NUMBER	Decision Unit	Boring (D	
L	nh	1313	
			24 1 - 2 2 - 2 3 - 2 3 C

-	_		
	m.	ECT	•
ш	~		_

HART

LOCATION:

Banana Patch

LAT/LONG:

VER

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

YES

NO

DRILLING METHOD AND EQUIPMENT USED:

DPS

HAS TE

Geophysical				
anomalies/ Fill				
Geophysical anomalies/ Fill Exist?				

		_				
l ill	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	С	(3)
No	A	В	В	A	С	0

Did you see

NAPL/Char/Ashes?

YES

NO

IF YES:

Sample
Collect into 8-oz jar

poor recovery

Analysis Dioxins, Furans

Replicate collected here?

VEC

IF YES:

Sample ID's: Sample ID's:

Sample

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL Syds)	Sample	Analysis		
V-5	Collect 10 plugs into zíplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs		
<i>(</i> 0, <i>\</i>	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		
	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs		

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28 bgs (native)

	SUs)	Sample	Analysis
	0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
10	5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
	NONE	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
0-10	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
10-15	All remaining soil from 6 adjacent boring	s will be consolidated

NOTE: Do not combine native material and fill No recovery decler.

	PROJECT NUMBER
	457998
CH2MHILL	

Decision Unit

Boring ID

1000 14

SOIL BORING LOG

4

PROJECT: HART LOCATION: Banana Patch

LAT/LONG: DRILLING CONTRACTOR:

Geotek

DRILLING METHOD AND EQUIPMENT USED: DPS

DHILLING	MEINO	D AND	EQUIPMEN	I USED: PS	
WATER L	EVELS :		STAF	RT: NR END: NR	LOGGER: B. Roder
DEPTH BELOW SURFACE (FT) INTERVAL (FT)			SOIL CORE DESCRIPTION	COMMENTS	
INTE		ERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	Sample Collection Information Sample Sub-Unit Decision
5_	60		0	silty day (CU) with some gravel. peddish lown. SHIF. Slightly moist, mostly dry. Nonplastic. Asphalt hydrerial @ 5: FILL	0-5' +duplicate & triplicate.
- 1	60	- >×	0	Same as 0-5: boose, friable. Concrete frags at 7' and 9:	5-10'
10					
15_	60		D	Silty gravel (GM). Brown, Dry. Coose, frate. Soft, Non-plastic. Coral coverete & basalt fragments. FILL	10-15'
20_	100	1-3-	O	Some as 10-15 down to 17. Silty day (CL), reddich brun. Morst. Moderately CHIF to med. SHFF. Low- to med. plasticity. — FILL ends @ 17.	15-20
25	•			#08@20' -	

PROJECT NUMBER	Decision Unit	Boring ID	

PROJECT:

HART

DRILLING METHOD AND EQUIPMENT USED:

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

Geophysical anomalies/ Fil Exist?

	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	В	С	(0)
No	A	В	В	Δ		C

Did you see

NAPL/Char/Ashes?

Replicate collected here?

YES YES

NO NO IF YES: IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Sample ID's:

Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

ACTUAL SUs)		Sample	Analysis	
		Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs	
	=1 151	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	
			TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs	

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs
- 5 to 10' bgs
- 10' bgs to 15' bgs
- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
0-10	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
10-20	All remaining soil from 6 adjacent borings	s will be consolidated

				gro.	ECT NUMBER Decision Unit	6 Boring ID 15
CH2MHILL					SOIL BORIN	IG LOG
PROJE	ECT :	HAR	T		LOCATION	Banana Patch
LAT/LC	ONG:				DRILLING C	ONTRACTOR: Geotek
DRILLI	NG M	IETHO	D AND	EQUIPMEN	T USED :	
WATER	R LEV	/ELS :		STAI	RT: NR END: NR	LOGGER: B. Poder
DEPTH B			CE (FT)	-	SOIL CORE DESCRIPTION	COMMENTS
	INTERV		/ERY (FT) #/TYPE	PID READING (ppm)	SOIL TYPE, USCS GROUP SYMBOL, COLO MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY.	PR, Sample Collection Information Sample Sub-Unit Decision
- - - 5	1	60		0	silty day (CL) with gran brown, slightly day in soft, honplastic. Concrete deloristhrough	olst, +duplicate
10		5 0	FILL		Same as 0-5? Concrete, basalt & coral fragments	5-10'
-	<	60		٥	same as 0-5 to 13: Asphalt material at 12.3: Sitty clay (CL). Reddish brown. Moist. Soft Med Stiff. Moderate to lwg plasticity. FILL ends at 13	10-15°
20	\	90	J J	0	Sity Clay (CL) - Dark brown Moist Med. plasticity Med. Stiff to Soft.	15-20

PROJECT NUMBER	Decision Unit	Boring ID	

PROJECT:

HART

LOCATION:

Banana Patch

LAT/LONG:

DRILLING CONTRACTOR:

Geotek

UTILITY CLRNCE CONFRMD:

NO

DRILLING METHOD AND EQUIPMENT USED:

Geophysical anomalies/ Fill Exist?

,	DU1	DU2	DU3	DU4	DU5	DU6
Yes	В	В	В	B	0	0
No	Α	В	В	Α	С	С

Did you see

NAPL/Char/Ashes?

YE\$

IF YES:

Sample Collect into 8-oz jar

Analysis Dioxins, Furans

Replicate collected here?

YES

IF YES:

Sample ID's: Sample ID's:

A - Collect only surface samples - do not perform intrusive work

B - Perform intrusive investigation.

Each boring to be divided into 3 vertical SUs

- 0 to 0.5' bgs
- 0.5 to 3' bgs
- 8-10' bgs OR 3' interval below bottom of fill (native)

u	ACTUAL SUs)	Sample	Analysis
		Collect 10 plugs into ziplock	TPH-g/d/o, PAH, RCRA8, Pest/Herb, PCBs
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
		Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 10' bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)

C - Perform intrusive investigation

Each boring to be divided into 4 vertical SUs

- 0 to 5' bgs

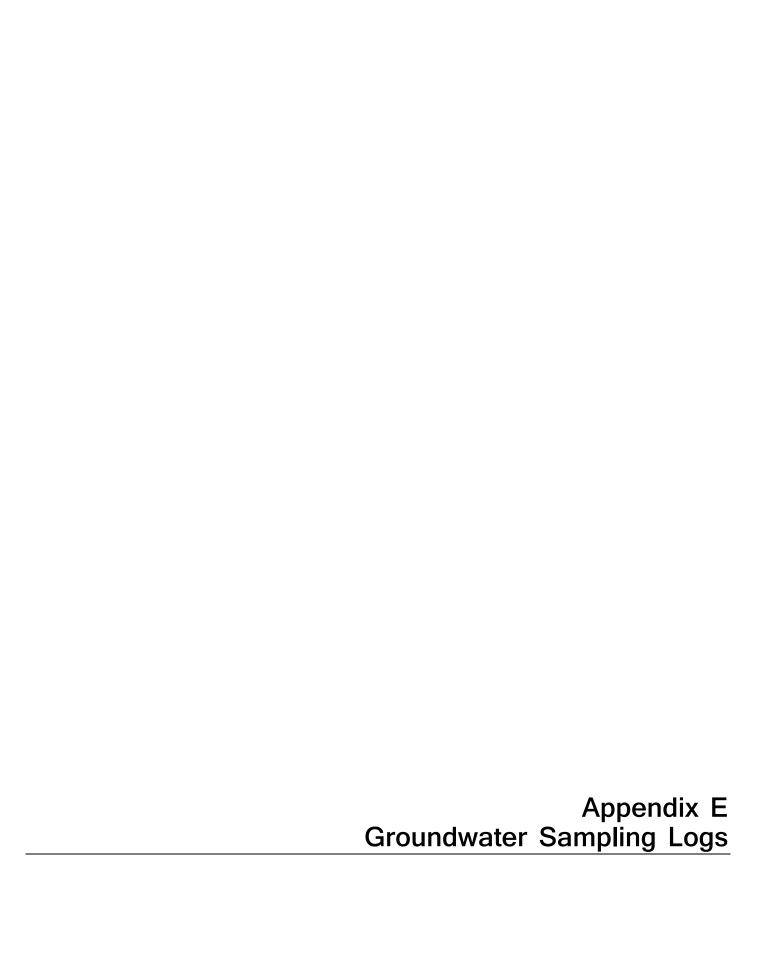
- 5 to 10' bgs

- 10' bgs to 15' bgs

- 15 to 28' bgs (native)

ACTUAL SUs)	Sample	Analysis
0-5	Collect 10 plugs into ziplock	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
5-10	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
10-15	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs
15-20	Collect 10 plugs into ziplock, 3 plugs into 1 VOA	TPH-g/d/o, VOCs, PAH, RCRA8, Pest/Herb, PCBs

- 1 If no fill exists, completed boring to 18 bgs
- 2 If fill exists, complete boring 3' below bottom of fill
 - Do not drill deeper than water table (exp. 15-18' bgs)


POST SAMPLING:

Soil remaining from each core will be kepts and stored.

One archive for shallow (0-10)

One archive for deep (10'+)

ACTUAL SUs)	Sample	Analysis
0-10	Collect 1 VOA from shallow (0-10' bgs) and one from deep (10'+)	Archive
10-20	All remaining soil from 6 adjacent borings	s will be consolidated

0	СН2М	HILL				oundwate urge and S									
Project:	Banana Patch Site Ch	aracterization				Site:	Banana Pa								
′	No : 495560					Well ID:	TW-001								
_	ew: A. Nelson, W.	Irich				Date:	5/29/2014								
	nterval (ft bgs):	15 to	25	■ bgs □	btoc	Climatic Cor			- cur	ny 🗖 dayd	y partially o	loudy D roi	my		
	meter (in):	1.5	25	■ bys ∟	1 DIOC	Purge Metho							ble l bladder		
	ling (ppmv):	0.0		(at top of ca	asing)	Pump Intake		bgs):	Г	18.5		- Gas	Side Side Side Side Side Side Side Side		
	evel Indicator:	Oil/Water Pr	robe	Water Level N	Meter	Ground Surf	ace to TO	C (ft):		0.5					
		☐ Probe (PRC	BE)	Tape (TAPE)		Length of Sa		ne (ft):		13.24					
	ell Depth (ft/in bgs)			300.24		Pump Rate (150-250					
-	Water (ft/in bgs):	11.78		141.36		Casing Volu	_		— 5	1.2					
Liquid ir	n Well:	WATER (V		☐ LNAPL	(L)	Sampling	VOCs		■ Bladde						
		☐ DNAPL (D)	☐ DRY (Y	")	Method	nonVOCs		■Bladde	er Pump	☐ Perist	altic Pump			
Depth to	LNAPL (ft bgs):	11.76				Sampling De		s):	18.50						
	1	T			1	Field Par	ameters	1		1	Т				
Time	Depth to Water (ft bgs)	Purge Rate (ml/min)	Liters Removed	Turbidity (NTU)	Temp (°C)	DO (mg/L)	Cond. (uS/cm)	Salinity (ppt)	рН	ORP (mV) field	ORP (mV) corrected		Comments		
Requirem	ents for Parameter Sta	abilization*		NTU	± 1°	±10% or <1 mg/L	± 3%	NA	± 0.1	± 10 mV	NA				
1635	Start pump				1	1		1		1					
1641	11.85 11.87	150	0.60	4.24	25.24	4.73	629	0.30	6.77	44.0	268.4				
1645	11.90	150	0.75	3.14	25.08	4.72	624	0.30	6.78	44.8	269.2				
1650	12.00	200	1.00	2.75	24.03	4.78	609	0.30	6.78	44.9	269.3				
1655	12.05	250	11.25	2.70	24.00	4.56	605	0.30	6.72	49.2	273.6				
1700	12.05	250	11.25	2.71	23.90	4.58	600	0.30	6.75	47.9	272.3				
				<u> </u>	ample Do	/elopment, or	Purgo Wat	tor Informa	tion						
Color		Clear		3	ample, Dev	IDW Disposal N		lei iiiioiiiia	Analytical		Accutest				
Odor		None				-			Laboratory	:	Acculest				
Turbidity		Low				Reinfiltration Ne	ext to Well		Transporte	d via:	☐ Hand		Overnight		
	y Analysis	VOCs SW	8260C	GRO SW82	60	RRO SW8015	D	Metals SW6							
(No. of Bo	ittles)	☐ PAHs SW	8270C-SIM	DRO SW80	15D	Pesticides SV	V8081A	Herbicides	d? ■Y □ SW8151	N					
		☐ PCBs SW	/8082			See COC									
			Samı	ole ID	Laborator	y Sample Sample	Date	Samp	le Time		Tota	al No. of Bottle	s		
Normal Sa	ample		•	/001-0514		5/29/2		•	702			s, 6 amber L, 1			
Field Dupl	licate														
Matrix Spike FASC-TW001-0514MS						5/29/2	2014	1	745		3 VOAs	s, 6 amber L, 1	poly		
Matrix Spike Duplicate FASC-TW001-0514MSD						5/29/2	2014	18	800		3 VOAs	s, 6 amber L, 1	poly		
Notes:															
		Water Level	Make	Model	SN GTHR006	Water Quality	Make YSI	Model 550	SN GTHR010	Pump	Make Geotech	Model geocontrol	SN 1374		
Equipmen	nt used:	Indicator:	GT		31111000	Instrument:	131	330	31111010	Controller:	GOOGGII	PRO	13/7		
		Turbidity Meter:	GT	21007	GTHR014	Pump:	Geotech	geocontrol PRO	1374	PID:	RAE	MultiRAE	6-103111		
Signatura	o/Camplar:		•	•		•		•	•	•	•	•	•		

 °C = degree Celsius
 DO = dissolved oxygen
 in = inch
 mV = millivolts
 PID = photolonization detector

 bgs = below ground surface
 ft = foot
 LNAPL = light nonaqueous phase liquid
 NTU = nephelometric turbidity unit
 pmv = part per million by volume

 btoc = below top of casing
 ml/min = milliliters per minute
 uS/cm = microsiemens per centimeter
 ORP = oxidation reduction potential
 VOC = volatile organic compound

Capacity of Casing (galdinear feet): 1*-0.041; 2*-0.16; 4*-0.65; 6*-1.47; 8*-2.61; 10*-4.08

^{*} Per the Installation-Wide Field Sampling Plan, well purging should be considered complete when three successive readings of all of the indicator parameters stabilize to within the tolerances indicated in this form.

•	СН2М	HILL				roundwate urge and S										
Project:	Banana Patch Site Cha	aracterization				Site:	Banana Pa	tch								
Project N	lo : 495560					Well ID:	TW-002									
_	w: A. Nelson, W.	lrish				Date:	5/30/2014									
	nterval (ft bgs):	11.5 to	21.5	■ bgs □	btoc	Climatic Con			■ sun	ny 🗆 cloudy	partially clo	oudy 🔲 rainy	1			
	neter (in):	1.0	21.5	0.08333333	Dioc	Purge Metho						submersible				
	ing (ppmv):	0.0		(at top of ca	ısing)	Pump Intake		gs):		23.0						
	vel Indicator:	Oil/Water Pr	obe \Box	Water Level M	leter	Ground Surfa	ace to TOC	(ft):		3.5						
		☐ Probe (PRO	BE)	Tape (TAPE)		Length of Sa	turated Zo	ne (ft):	4.02							
	ll Depth (ft/in bgs)	25.00	btoc	300		Pump Rate (r				350						
-	Water (ft/in bgs):	20.98	btoc	251.76		Casing Volur	_		_	0.2						
Liquid in	Well:	WATER (W)	☐ LNAPL	(L)	Sampling	VOCs		■ Bladde							
		☐ DNAPL (D)		☐ DRY (Y))	Method	nonVOCs		■Bladde	er Pump	☐ Perista	altic Pump				
Depth to	LNAPL (ft bgs):	None				Sampling De	pling Depth (ft bgs):			23.00						
						Field Par	ameters									
Time	Depth to Water (ft bgs)	Purge Rate (ml/min)	Liters Removed	Turbidity (NTU)	Temp (°C)	DO (mg/L)	Cond. (uS/cm)	Salinity (ppt)	рН	ORP (mV) field	ORP (mV) corrected	C	comments			
Requireme	ents for Parameter Sta	bilization*		NTU	± 1°	±10% or <1 mg/L	± 3%	NA	± 0.1	± 10 mV	NA					
1420	Start pump				I		I		I	1	I					
1630 1635	20.79	350	1.75	29.9	26.54	4.76	2008	0.99	4.48	-45.2	178.6					
1640	20.80	350	1.75	12.3	26.49	2.65	2004	0.99	4.40	-45.5	178.3					
1645	20.79	350	1.75	5.71	26.45	2.35	1993	0.98	4.37	-49.6	174.2					
1650	20.78	350	1.75	4.65	26.46	2.22	1998	0.98	4.48	-52.4	171.4					
					I- D		D 14/-4		4.1							
				5	ampie, Dev	velopment, or					_					
Color		Clear/Slightly	yellow			USPOSAI IV	ietnoa		Analytical Laboratory:		Accutest					
Odor Turbidity		None Low				Reinfiltration Nex	xt to Well		Transported	l via·	☐ Hand		Overnight			
Laboratory	/ Analysis	VOCs SW8	260C	GRO SW82	50	RRO SW8015[)	Metals SW6					overnight			
(No. of Bot	tles)	□ PAHs SW8	270C-SIM I	DRO SW801	15D	Pesticides SW	/8081A	Field Filtered Herbicides	i? ■Y □ i SW8151	N						
		☐ PCBs SW	3082			See COC										
			Samp	le ID	Laborator	y Sample Sample	Date	Sampl	le Time		Total	No. of Bottles				
Normal Sa	mple		FASC-TW			5/30/2		· ·	700			6 amber L, 1 p	oly			
Field Dupli	icate			-												
Matrix Spike																
Matrix Spike Duplicate																
Notes:																
		Water Level	Make	Model	SN	Mator Quality	Make	Model	SN	Pump	Make	Model geoconrol	SN			
Equipment	t used:	Indicator:	Heron	H.Oil	C102864	Instrument:	YSI	556 MPS geocontrol	GTHR 012	Controller:	Geotech	PRO	1563			
Cianot:	Turbidity Meter: Hach 2100P GTHRO					Pump:	Geotech	PRO	1563	PID:	RAE	MultiRAE	C103111			

 °C = degree Celsius
 DO = dissolved oxygen
 in = inch
 mV = millivolts
 PID = photolonization detector

 bgs = below ground surface
 ft = foot
 LNAPL = light nonaqueous phase liquid
 NTU = nephelometric turbidity unit
 pmv = part per million by volume

 btoc = below top of casing
 ml/min = milliliters per minute
 uS/cm = microsiemens per centimeter
 ORP = oxidation reduction potential
 VOC = volatile organic compound

Capacity of Casing (gal/linear feet): 1*-0.041; 2*-0.16; 4*-0.65; 6*-1.47; 8*-2.61; 10*-4.08

^{*} Per the Installation-Wide Field Sampling Plan, well purging should be considered complete when three successive readings of all of the indicator parameters stabilize to within the tolerances indicated in this form.

•	СН2М	HILL				oundwate urge and S										
Project:	Banana Patch Site Ch	aracterization				Site:	Banana Pa	itch								
Project N	No : 495560					Well ID:	TW-003									
_		lutu lu														
	ew: A. Nelson, W.				1	Date:	5/30/2014	+								
	nterval (ft bgs):	23 to	28	bgs 🗆	btoc	Climatic Cor			□ sunny ■ cloudy □ partially cloudy □ rainy							
	meter (in):	1.0				Purge Metho Pump Intake		hac).	☐ per		iler 🔲 waterra	r 🗌 waterra 🔲 submersible 🔳 bladder				
	ling (ppmv):	0.1		(at top of ca		Ground Surf		• .	25.0							
water Le	evel Indicator:	Oil/Water Pr		Tape (TAPE)	ieter	Length of Sa			0							
Total Wa	ell Depth (ft/in bgs)		IDE)	332.04		Pump Rate (nie (it).	9.68							
	Water (ft/in bgs):	17.99		215.88		Casing Volu				0.4						
Liquid in		WATER (W	١Λ	LNAPL	(1.)	_	VOCs		■ Bladde							
Liquid II	i won.					Sampling Method										
		☐ DNAPL (D))	☐ DRY (Y)	wethod	nonVOCs		■Bladde	er Pump	☐ Perista	altic Pump				
Depth to	LNAPL (ft bgs):	None				Sampling De	pth (ft bgs	s):		25.0						
						Field Par	ameters									
Time	Depth to Water (ft bgs)	Purge Rate (ml/min)	Liters Removed	Turbidity (NTU)	Temp (°C)	DO (mg/L)	Cond. (uS/cm)	Salinity (ppt)	pН	ORP (mV) field	ORP (mV) corrected		Comments			
Requireme	ents for Parameter Sta	bilization*		NTU	±1°	±10% or <1 mg/L	± 3%	NA	± 0.1	± 10 mV	NA					
	Start pump			1	1	T	1	1	Į.			Mataryanyt	ushid uuhan numan firat			
1435	17.99	200			21.00							turned on. >1	rbid when pump first 1000 NTU			
1440	18.39	200	1.00	>1000	26.39	2.95	836	0.40	4.58	10.4	234.7	_				
1445 1450	18.41 18.39	200	1.00	>1000	26.42 26.54	2.11	821 816	0.39								
1455	18.39	200	1.00	341	26.35	1.89	807	0.39	5.17	-17.0	207.3	1				
1500	18.41	200	1.00	234	26.23	1.67	803	0.38	5.18	-24.3	200.0					
1505	18.42	200	1.00	156	25.49	1.41	797	0.38	5.23	-27.0	197.3	1				
												<u> </u>				
												_				
								-				_				
-								1				<u> </u>				
				6	I- D		D 14/-1	I	41							
				5	ampie, Dev	elopment, or		ter informa	Analytical							
Color		Tan				IDW Disposal N	netnoa		Laboratory		Accutest					
Odor		None				Reinfiltration Ne	xt to Well				☐ Hand		Overnight			
Turbidity Laborator	y Analysis	High VOCs SW	8260C	GRO SW82	60	RRO SW8015	n =	Metals SW6	Transporte	ı vıa:	<u></u> Напо		Overnight			
(No. of Bo				_	_		_	Field Filtered	d? ■Y □	N						
		☐ PAHs SW8	3270C-SIM	DRO SW80	15D	Pesticides SV	/8081A	Herbicides	SW8151							
		☐ PCBs SW	8082			See COC										
			C	I- ID	Laborator		Dete	C	I. Time		T-4-	INf D-W-				
Normal Sa	amnle		Samp FASC-TW			5/30/2			le Time 509			No. of Bottle , 6 amber L, 1				
Field Dupl	•		1730111			3/30/2		-			3 VOA3		poly			
Matrix Spi								1								
	ke Duplicate		_					+								
	· · · · · ·	Water is very tu	ırhid. No odor	or sediment in	CUD			1								
Notes:		water is very to	Make	Model	SN		Make	Model	SN Make Model SN				SN			
		Water Level	Heron	H.Oil	C102864	Water Quality	YSI	556 MPS	GTHR 012	Pump	Geotech	geoconrol	1563			
Equipment used: Turbidity Hach 2100P GTHR01:				GTHR013	Instrument: Pump:	Geotech	geocontrol PRO	1563	Controller: PID:	RAE	PRO MultiRAE	C103111				
Signature	e/Sampler	Meter:	<u> </u>		<u> </u>		<u> </u>	1.10	<u> </u>		<u> </u>					

 °C = degree Celsius
 DO = dissolved oxygen
 in = inch
 mV = millivolts
 PID = photolonization detector

 bgs = below ground surface
 ft = foot
 LNAPL = light nonaqueous phase liquid
 NTU = nephelometric turbidity unit
 pmv = part per million by volume

 btoc = below top of casing
 ml/min = milliliters per minute
 uS/cm = microsiemens per centimeter
 ORP = oxidation reduction potential
 VOC = volatile organic compound

Capacity of Casing (gal/linear feet): 1*-0.041; 2*-0.16; 4*-0.65; 6*-1.47; 8*-2.61; 10*-4.08

^{*} Per the Installation-Wide Field Sampling Plan, well purging should be considered complete when three successive readings of all of the indicator parameters stabilize to within the tolerances indicated in this form.

•	СН2М	HILL				oundwate urge and S									
Project:	Banana Patch Site Cha	aracterization				Site:	Banana Pa	itch							
Project I	No : 495560					Well ID:	TW-004								
_	ew: M. Bissell, A. I	Nelson				Date:	6/2/2014								
	nterval (ft bgs):	15 to	25	■ bgs □	btoc	Climatic Cor			■ cur	nny 🗖 cloudy	/ □ partially c	loudy D rai	inv		
	meter (in):	1.5	23	■ bys ∟	ı bioc	Purge Metho					iler 🔲 waterra				
	ling (ppmv):	0.0		(at top of ca	asing)	Pump Intake		bas):	рег	20	ilei 🔲 waterra	I 🔲 Subilicisi	bie biaddei		
		Oil/Water Pr	obe \square	Water Level M		Ground Surf		• .		0					
		☐ Probe (PRO		Tape (TAPE)		Length of Sa				9.06					
Total We	ell Depth (ft/in bgs)	25.03		300.36		Pump Rate (. ,		250					
	Water (ft/in bgs):	15.97		191.64		Casing Volu				0.8					
Liquid ir	ı Well:	WATER (V	V)	☐ LNAPL	(L)	Sampling	VOCs		■ Bladde	er Pump					
		☐ DNAPL (D))	☐ DRY (Y)	Method	nonVOCs		■Bladde	■ Bladder Pump □ Peristaltic Pump					
Donth to			•	_ `	,	Compling Do									
Depth to	LNAPL (ft bgs):	None				Sampling De Field Par		s):		20.00					
						rieiu Pai	ameters								
Ti	Depth to Water (ft bgs)	Purge Rate (ml/min)	Liters Removed	Turbidity (NTU)	Temp (°C)	DO (mg/L)	Cond. (uS/cm)	Salinity (ppt)	pН	ORP (mV) field	ORP (mV) corrected		0		
Time Requirem	ents for Parameter Sta		Kemoved	NTU	± 1°	±10% or <1 mg/L	± 3%	(PPI) NA	± 0.1	± 10 mV	NA		Comments		
	Start pump									1					
1119															
1128	16.02	250	1.25	245	25.26	0.48	994	0.49	6.86	-42.1	182.1				
1133	16.01	250	1.25	118	25.08	0.49	989	0.49	6.93	-47.4	176.8 172.8				
1138	16.02	250	1.25	62.0	24.49	0.49	985	0.48	6.93						
1143	16.02	250	1.25	37.7	25.07	0.39	984	0.48	6.91	-59.8	164.4	+			
1148	16.02	250	1.25	23.4	24.96	0.37	980	0.48	6.90	-59.5	164.7	+			
								-							
												1			
								-							
				S	ample, Dev	elopment, or		ter Informa							
Color		Clear				IDW Disposal N	Method		Analytical Laboratory:		Accutest				
Odor		None				Reinfiltration Ne	xt to Well						- Our milet		
Turbidity Laborator	y Analysis	Low VOCs SW8	82600	GRO SW82	60	RRO SW8015	D	Metals SW6	Transporte	a via:	☐ Hand		Overnight		
(No. of Bo		VOC3 500	0200C	— GRO 3W02	_	_	_		d? ■Y □	N					
		☐ PAHs SW8	3270C-SIM	DRO SW80	15D	Pesticides SV	V8081A	Herbicides	SW8151						
		☐ PCBs SW	8082			See COC									
			C	I- ID	Laborator		Dete	C	I. Time		T-1-	INf D-HI-			
Normal Sa	amnle		Samp FASC-TW			Sample 6/2/2			le Time 150			I No. of Bottle			
Field Dup	•		-					-			3 (0/13		poly		
Matrix Spi			-					1							
	ke Duplicate		-					+							
								<u> </u>							
Notes:			T	L	L	1	L	1	Laur	Т	I	1	Tax		
		Water Level	Make	Model	SN	Water Quality	Make	Model	SN	Pump	Make	Model geoconrol	SN		
Equipmen	it used:	Indicator:	Heron	H.Oil	C102864	Instrument:	YSI	556 MPS	GTHR 012	Controller:	Geotech	PRO	1563		
		Turbidity Meter:	Hach	21002	GTHR013	Pump:	Geotech	geocontrol PRO	1563	PID:	RAE	MultiRAE	C103111		
Signature	e/Sampler							-	-			•	-		

 $^{\circ}$ C = degree Celsius DO = dissolved oxygen in = inch mV = millivolts PID = photoionization detector bgs = below ground surface in the foot thing the fo

Capacity of Casing (gal/linear feet): 1*-0.041; 2*-0.16; 4*-0.65; 6*-1.47; 8*-2.61; 10*-4.08

^{*} Per the Installation-Wide Field Sampling Plan, well purging should be considered complete when three successive readings of all of the indicator parameters stabilize to within the tolerances indicated in this form.

•	СН2М	HILL				oundwate								
Proiect:	Banana Patch Site Ch	aracterization				Site:	Banana Pa							
-														
_	No : 495560					Well ID:	TW-005							
Field Cre	ew: A. Nelson, W.	Irish				Date:	5/30/2014							
	nterval (ft bgs):	19 to	29	bgs 🗆] btoc	Climatic Cor	nditions:		sur	nny 🔲 cloudy	partially c	loudy 🗌 rai	iny	
	meter (in):	1.5				Purge Metho			□ per	istaltic 🗌 ba	iler 🗌 waterra	submersi	ble l bladder	
	ling (ppmv):	0.6		(at top of ca		Pump Intake		• .		23.5				
Water Le	evel Indicator:	Oil/Water Pr	obe	Water Level N	1eter	Ground Surf				0.5				
		☐ Probe (PRO	BE)	Tape (TAPE)		Length of Sa		one (ft):		12.81				
	ell Depth (ft/in bgs)			360.24		Pump Rate (230-250				
-	Water (ft/in bgs):	17.21		206.52		Casing Volu	me (gal):			1.2				
Liquid in	n Well:	WATER (W	/)	☐ LNAPL	(L)	Sampling	VOCs		■ Bladde	er Pump				
		☐ DNAPL (D))	☐ DRY (Y)	Method	nonVOCs		■Bladde	er Pump	☐ Perista	altic Pump		
Denth to	LNAPL (ft bgs):	None				Sampling De	anth (ft has	:).		23.50				
Deptirito	ENAI E (It bg3).	None				Field Par		·)·		23.30				
						T ICIU I UI								
-	Depth to Water (ft bgs)	Purge Rate (ml/min)	Liters Removed	Turbidity	Temp	DO (ma/l.)	Cond.	Salinity	nU	ORP (mV) field	ORP (mV) corrected			
Time	ents for Parameter Sta		Removed	(NTU) NTU	(°C) ± 1°	DO (mg/L) ±10% or <1 mg/L	(uS/cm) ± 3%	(ppt)	pH ± 0.1	± 10 mV	NA		Comments	
Requirem	Start pump	ibilization									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
1435														
1441	17.22	230	0.92	114	25.52	2.95	755	0.36	7.02	-1.2	223.1			
1445	17.25	230	1.15	60.9	25.0	4.47	669	0.32	7.00	17.0	241.4			
1450	17.26	230	1.15	35.1	25.0	5.09	649	0.31	7.03	21.9	246.3			
1455	17.26	250	1.25	25.1	25.09	5.51	641	0.31	7.02	26.8				
1500	17.27	250	1.25	24.1	25.07	5.56	638	0.31	7.02	30.0	254.4			
-														
							5 11/							
				S	ample, Dev	elopment, or		ter Informa						
Color		Clear				IDW Disposal N	Method		Analytical Laboratory:		Accutest			
Odor		None				Reinfiltration Ne	xt to Well							
Turbidity	y Analysis	Moderate	20/00	GRO SW82	.	RRO SW8015		1 1. 014/	Transporte	d via:	☐ Hand		Overnight	
(No. of Bo		VOCs SW8	326UC	■ GRU SW82	60	RRU SW8015	D 	Metals SW6 Field Filtered	0010 d? ■Y □	N				
Ì	,	☐ PAHs SW8	3270C-SIM	DRO SW80	15D	Pesticides SV	V8081A	Herbicides	SW8151					
		☐ PCBs SW	2002			See COC								
		L FCB3 3W	0002		Laborator									
			Samp	ole ID		Sample	Date	Samp	le Time		Tota	I No. of Bottle	S	
Normal Sa	ample		FASC-TW	005-0514		5/30/2	2014	15	500		3 VOAs	s, 6 amber L, 1	poly	
Field Dupl	icate		-	-					==					
Matrix Spi	ke		-	-					==					
Matrix Spi	ke Duplicate		-	-										
Notes:														
			Make	Model	SN		Make	Model	SN		Make	Model	SN	
		Water Level	Geotech		GTHR007	Water Quality	YSI	556 MPS	GTHR 010	Pump	Geotech	geoconrol	1374	
Equipmen	t used:	Indicator: Turbidity Meter:	Hach	2100P	GTHR014	Instrument: Pump:	Geotech	geocontrol PRO	1374	Controller: PID:	RAE	PRO MultiRAE	C103107	
Signature	e/Sampler		<u> </u>	<u> </u>	<u> </u>	1	Į		<u> </u>	ļ			ļ	

 °C = degree Celsius
 DO = dissolved oxygen
 in = inch
 mV = millivolts
 PID = photolonization detector

 bgs = below ground surface
 ft = foot
 LNAPL = light nonaqueous phase liquid
 NTU = nephelometric turbidity unit
 pmv = part per million by volume

 btoc = below top of casing
 ml/min = milliliters per minute
 uS/cm = microsiemens per centimeter
 ORP = oxidation reduction potential
 VOC = volatile organic compound

Capacity of Casing (gal/linear feet): 1*-0.041; 2*-0.16; 4*-0.65; 6*-1.47; 8*-2.61; 10*-4.08

^{*} Per the Installation-Wide Field Sampling Plan, well purging should be considered complete when three successive readings of all of the indicator parameters stabilize to within the tolerances indicated in this form.

	CH2M	HILL				oundwate urge and S									
Project:	Banana Patch Site Ch	aracterization				Site:	Banana Pa								
1	No: 495560					Well ID:	TW-006								
_															
	ew: A. Nelson, W.	1		-	1	Date:	5/30/2014								
	nterval (ft bgs): meter (in):	20 to	30	bgs] btoc	Climatic Cor						loudy 🔲 rai			
	ling (ppmv):	1.5 0.0		(at top of ca	asina)	Purge Metho Pump Intake		oas):	□ peristaltic □ bailer □ waterra □ submersible ■ bladder 21						
	evel Indicator:	Oil/Water Pr	obe	Water Level N		Ground Surf	-	-		0.5					
		☐ Probe (PRO		Tape (TAPE)		Length of Sa				7.94					
Total We	ell Depth (ft/in bgs)	25.02		300.24		Pump Rate (ml/min):			250					
Depth to	Water (ft/in bgs):	17.08		204.96		Casing Volu	me (gal):			0.7					
Liquid in	ı Well:	WATER (V	V)	☐ LNAPL	(L)	Sampling	VOCs		■ Bladde	er Pump					
		☐ DNAPL (D))	☐ DRY (Y)	Method nonVOCs ■ Bladder Pump □ Peristaltic Pump									
Depth to	LNAPL (ft bgs):	None				Sampling De	pth (ft bgs) :		21.00					
						Field Par	ameters								
Time	Depth to Water (ft bgs)	Purge Rate (ml/min)	Liters Removed	Turbidity (NTU)	Temp (°C)	DO (mg/L)	Cond. (uS/cm)	Salinity (ppt)	рН	ORP (mV) field	ORP (mV)		Comments		
Requireme	ents for Parameter Sta	bilization*	•	NTU	± 1°	±10% or <1 mg/L	± 3%	NA	± 0.1	± 10 mV	NA				
1005	Start pump			I					1			-			
1035 1040	17.41	250	1.25	35.0	29.0	2.48	3240	1.56	6.82	-67.2	156.2	_			
1045	17.55	250	1.25	13.3	28.15	1.04	2960	1.44	6.77	-76.0	147.5	_			
1050	17.60	250	1.25	6.73	27.95	0.67	2740	1.33	6.73	6.73 -80.6 142.9					
1055	17.61	250	1.25	3.80	27.90	0.30	2538	1.23	6.71	-81.6	142.0				
							1			1		-			
												_			
					I- D		D 10/-1								
				5	ampie, Dev	relopment, or		er informa	Analytical		_				
Color Odor		Clear				IDW Disposal N	летпоа		Laboratory:		Accutest				
Turbidity		Low				Reinfiltration Ne	xt to Well		Transported	d via:	☐ Hand		Overnight		
Laborator		VOCs SW	8260C	GRO SW82	60	RRO SW8015	D	Metals SW6	010						
(No. of Bo	ttles)	□ PAHs SW8	3270C-SIM	DRO SW80	15D	Pesticides SV	/8081A	Field Filtered Herbicides	i? ■Y □ SW8151	N					
		☐ PCBs SW	8082			See COC									
			Samı	ole ID	Laborator	y Sample Sample	Date	Samp	le Time		Tota	I No. of Bottle	S		
Normal Sa	ample		FASC-TW			5/30/2			100			s, 6 amber L, 1			
Field Dupl	licate		-	-											
Matrix Spike															
Matrix Spike Duplicate															
Notes:							_				_	_			
		Water Level	Make	Model	SN	Water Quality	Make	Model	SN	Pump	Make	Model geoconrol	SN		
Equipmen	t used:	Indicator: Turbidity	Geotech	21000	GTHR007	Instrument:	YSI	556 MPS geocontrol	GTHR 010	Controller:	Geotech	PRO	1374		
Signature	/Caranlar	Meter:	Hach	2100P	GTHR014	Pump:	Geotech	PRO	1374	PID:	RAE	MultiRAE	C103107		

 °C = degree Celsius
 DO = dissolved oxygen
 in = inch
 mV = millivolts
 PID = photolonization detector

 bgs = below ground surface
 ft = foot
 LNAPL = light nonaqueous phase liquid
 NTU = nephelometric turbidity unit
 pmv = part per million by volume

 btoc = below top of casing
 ml/min = milliliters per minute
 uS/cm = microsiemens per centimeter
 ORP = oxidation reduction potential
 VOC = volatile organic compound

Capacity of Casing (galdinear feet): 1*-0.041; 2*-0.16; 4*-0.65; 6*-1.47; 8*-2.61; 10*-4.08

^{*} Per the Installation-Wide Field Sampling Plan, well purging should be considered complete when three successive readings of all of the indicator parameters stabilize to within the tolerances indicated in this form.

•	СН2М	HILL				roundwate urge and S								
Project:	Banana Patch Site Ch	aracterization				Site:	Banana Pa	tch						
Project I	No : 495560					Well ID:	TW-007							
_	ew: A. Nelson, W.	Irish				Date:	5/30/2014							
	nterval (ft bgs):	20 to	25	■ bgs □	btoc	Climatic Cor	nditions:		sun	nny 🗆 cloudy	/ partially cl	oudv 🗆 rai	inv	
	meter (in):	1.0	20	— 293 —	2 Dioc	Purge Metho					iler 🔲 waterra			
	ling (ppmv):	0.0		(at top of ca	asing)	Pump Intake		bgs):		22				
	evel Indicator:	Oil/Water Pr	obe \square	Water Level N		Ground Surf	•	-		2				
		— ☐ Probe (PRO	BE)	Tape (TAPE)		Length of Sa	turated Zo	ne (ft):		7.67				
Total We	ell Depth (ft/in bgs)	25.00		300		Pump Rate (. ,		150				
	Water (ft/in bgs):	17.33	btoc	207.96		Casing Volu				0.3				
Liquid ir		WATER (V	V)	☐ LNAPL	(L)	_	VOCs		■ Bladde	er Pump				
		☐ DNAPL (D)	١	☐ DRY (Y	1	Sampling Method	nonVOCs		■Bladde		☐ Perista	altic Pump		
			,	☐ DIX1 (1	,				- Diaduce		L Felisia	illic Fullip		
Depth to	LNAPL (ft bgs):	None				Sampling De		s):		22.00				
		ı			1	Field Par	ameters	1	1	1				
Time	Depth to Water (ft bgs)	Purge Rate (ml/min)	Liters Removed	Turbidity (NTU)	Temp (°C)	DO (mg/L)	Cond. (uS/cm)	Salinity (ppt)	рН	ORP (mV) field	ORP (mV) corrected		Comments	
Requirem	ents for Parameter Sta	abilization*		NTU	± 1°	±10% or <1 mg/L	± 3%	NA	± 0.1	± 10 mV	NA			
	Start pump	T		1	ı	1	1	1	1	1	1			
0950	17.34											Slow recharg		
0955	18.01											pump set to	130 111/111111	
1000	18.28	150	0.75	60.5	26.17	1.25	1266	0.61	5.97	-32.3	191.8	_		
1005	18.53	150	0.75	61.1	26.10	0.90	1316	0.64	5.74 -29.9 194.2					
1010 1015	18.72 18.77	150 150	0.75 0.75	37.7 18.3	25.98 25.80	0.80	1339 1325	0.65 0.65	5.79 -35.7 188.4 5.80 -40.4 183.7					
1015	10.77	150	0.75	10.3	23.00	0.74	1323	0.03	3.60	-40.4	103.7	1		
												1		
												1		
												_		
				S	ample, Dev	elopment, or	Purge Wat	ter Informa						
Color		Clear/Yellow				IDW Disposal N	Method		Analytical		Accutest			
Odor		None				Reinfiltration Ne	ext to Well		Laboratory:	:				
Turbidity		Low		_		<u> </u>		_	Transported	d via:	☐ Hand	1	Overnight	
Laborator (No. of Bo	y Analysis	VOCs SW	8260C	GRO SW82	60	RRO SW8015	D	Metals SW6	5010 d? ■Y □	N				
(140. 01 00	nticsj	□ PAHs SW8	3270C-SIM	■ DRO SW80	15D	Pesticides SV	V8081A	Herbicides						
		D DOD- CW	10000			See COC								
		☐ PCBs SW	8082		Laborator									
			Samp	ole ID	<u> Laborato</u>	Sample	Date	Samp	le Time		Tota	l No. of Bottle	S	
Normal Sa	ample		FASC-TW	/007-0514		5/30/2	2014	10	018		3 VOAs	, 6 amber L, 1	poly	
Field Dupl	licate		-											
Matrix Spi	ike		-	-										
Matrix Spi	ike Duplicate		-											
Notes:		Only normal sa	mple collected	d. Recharge ra	te too slow to	collect MS/MSD.								
		\A/-+- ' '	Make	Model	SN	\\/ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Make	Model	SN	Divis	Make	Model	SN	
Facilia	ut use als	Water Level Indicator:	Geotech	Interface	GTHR007	Water Quality Instrument:	YSI	556 MPS	GTHR 012	Pump Controller:	Geotech	geoconrol PRO	GTHR 041	
Equipmen	ıı usea:	Turbidity Meter:	Hach	2100P	GTHR013	Pump:	Geotech	geocontrol PRO	GTHR 041		RAE	MultiRAE	C103111	
Signature	e/Sampler·		•	•	*	•	*		•	*	•	*	•	

°C = degree Celsius DO = dissolved oxygen in = inch mV = millivolts PID = photoionization detector
bgs = below ground surface ff = foot LNAPL = light nonaqueous phase liquid NTU = nephelometric turbidity unit ppmv = part per million by volume
btoc = below top of casing ml/min = milliliters per minute uS/cm = microsiemens per centimeter ORP = oxidation reduction potential VOC = volatile organic compound

Capacity of Casing (gal/linear feet): 1*-0.041; 2*-0.16; 4*-0.65; 6*-1.47; 8*-2.61; 10*-4.08

^{*} Per the Installation-Wide Field Sampling Plan, well purging should be considered complete when three successive readings of all of the indicator parameters stabilize to within the tolerances indicated in this form.

	СН2М	HILL				roundwate urge and S									
Project:	Banana Patch Site Ch	aracterization				Site:	Banana Pa								
1	No: 495560	aradionzation				Well ID:	TW-008	1011							
1															
	ew: A. Nelson, W.			_		Date:	5/29/2014								
	nterval (ft bgs):	17.0	27	■ bgs □	btoc		Climatic Conditions: ■ sunny □ cloudy □ partially cloudy □ rainy Purge Method: □ peristaltic □ bailer □ waterra □ submersible ■ bladder								
	meter (in): ling (ppmv):	1.5 0.0		(at top of ca	noing)	Purge Metho Pump Intake		has).	per	istaltic 🔲 ba 27	iler 🔲 waterra	ı 🔲 submersil	ole 🔳 bladder		
	evel Indicator:	Oil/Water Pr	rohe	Water Level N	٠,	Ground Surf	-	_		3.32					
water Le	ever indicator.	Probe (PRC		Tape (TAPE)	notoi	Length of Sa				12.12					
Total We	ell Depth (ft/in bgs)			360.48		Pump Rate (100-250					
	Water (ft/in bgs):	17.92		215.04		Casing Volu				1.1					
Liquid ir	า Well:	WATER (V	V)	☐ LNAPL	(L)	Sampling	VOCs		■ Bladde	er Pump					
		☐ DNAPL (D))	☐ DRY (Y)	Method	nonVOCs		■Bladde	er Pump	☐ Perista	altic Pump			
Depth to	LNAPL (ft bgs):	None				Sampling De	epth (ft bgs	s):		27.00	depth adju	sted due to re	covery rate		
	(***3**/					Field Par		<u>′</u>	<u> </u>			opin adjusted and to receivery rate			
Time	·				Temp (°C)	DO (mg/L)	Cond. (uS/cm)	Salinity (ppt)	pН	ORP (mV)	ORP (mV)		Comments		
	ents for Parameter Sta	abilization*		NTU	±1°	±10% or <1 mg/L	± 3%	NA	± 0.1	± 10 mV	NA				
	Start pump	ı	1		1	1	1	1	1	1		<u> </u>			
1605	18.13	050										Very slow rec	harge rate. ljusted to approximately		
1610	19.08	250 250	1.25	64.0	24.55	0.93	1554	0.76	5.82	-93.3	130.7		luring sampling to allow		
1615 1620	20.91	200	1.25	65.0 64.3	26.27 26.32	0.81	1570 1613	0.76 0.79	5.55 5.73	-109.4 -111.2	114.6 112.8	well to recove	er		
1625	23.45	150	0.75	63.1	26.43	0.78	1623	0.80	5.67	-117.1	106.9	Well purged of	dry		
												-			
												-			
												1			
												1			
				S	ample, Dev	elopment, or		er Informa							
Color		Clear/Yellow				IDW Disposal I	Method		Analytical Laboratory		Accutest				
Odor		None .				Reinfiltration Ne	ext to Well								
Turbidity Laborator	y Analysis	Low VOCs SW	82600	GRO SW82	60	RRO SW8015	D.	Metals SW	Transporte	d via:	☐ Hand		Overnight		
(No. of Bo				■ DRO SW80	_	Pesticides SV			d? ■Y □N						
		☐ PCBs SW	/8082			See COC									
		ı			Laborator						<u> </u>				
Normal Sa	ample			ole ID /008-0514		Sample 5/29/2		·	ole Time 632			No. of Bottle			
Field Dupl	:		-7.00								0 70715		pu.,		
Matrix Spi			-												
Matrix Spi	ike Duplicate		-									==			
Notes:		Only normal sa	mple collected	d. Recharge ra	te too slow to	collect MS/MSD.				•					
		Motor Lavel	Make	Model	SN	Water O : I't	Make	Model	SN	Dumr	Make	Model	SN		
Equipmen	nt used:	Water Level Indicator:	Geotech		GTHR007	Water Quality Instrument:	YSI	556 MPS	GTHR 012	Pump Controller:	Geotech	geoconrol PRO	1563		
		Turbidity Meter:	Hach	2100P	GTHR014	Pump:	Geotech	geocontrol PRO	1563	PID:	RAE	MultiRAE	C103107		
Signatura	o/Compler:					-									

°C = degree Celsius DO = dissolved oxygen in = inch mV = millivolts PID = photoionization detector bgs = below ground surface ft = foot LNAPL = light nonaqueous phase liquid NTU = nephelometric turbidity unit pmv = part per million by volume btoc = below top of casing m/min = milliliters per minute us/cm = microsiemens per centimeter ORP = oxidation reduction potential VOC = volatile organic compound

Capacity of Casing (galdinear feet): 1*-0.041; 2*-0.16; 4*-0.65; 6*-1.47; 8*-2.61; 10*-4.08

^{*} Per the Installation-Wide Field Sampling Plan, well purging should be considered complete when three successive readings of all of the indicator parameters stabilize to within the tolerances indicated in this form.

•	СН2М	HILL				oundwate urge and S										
Project:	Banana Patch Site Cha	aracterization				Site:	Banana Pa	itch								
Project No: 495560							Well ID: TW-009									
1	ew: A. Nelson, W.	Irich				Date:	5/29/2014									
			27	- has	1 6400			1	I =	🗖 alassatı	. 🗖	lavate 🖂 🖘	·			
	nterval (ft bgs): meter (in):	17 to 1.5	27	■ bgs □	btoc	Purge Metho	Climatic Conditions: ■ sunny □ cloudy □ partially cloudy □ rainy Purge Method: □ peristalltic □ bailer □ waterra □ submersible ■ bladder									
	ling (ppmv):	0.0		(at top of ca	ncina)	Purge Metric		hue).	☐ per	25	iler 🔲 waterra	a 🔲 Submersi	ble bladder			
		Oil/Water Pr	ohe	Water Level N		Ground Surf		• .		1.77						
water Le		Probe (PRO		Tape (TAPE)	icici	Length of Sa				9.72						
Total We	ell Depth (ft/in bgs)		,DL)	360.12		Pump Rate (one (it).		250						
	Water (ft/in bgs):	20.29		243.48		Casing Volu				0.9						
Liquid ir		WATER (V	V)	LNAPL	(L)	_	VOCs		■ Bladde							
		DNAPL (D)				Sampling Method	nonVOCs		■Bladde		☐ Perista	altia Dumn				
		U DINAPL (D,)	☐ DRY (Y)				■ Diauus	ei Pullip	☐ Perisi	anic Pump				
Depth to	LNAPL (ft bgs):	None				Sampling De		s):		25.00						
	1			1		Field Par	ameters				1	1				
Time	Depth to Water (ft bgs)	Purge Rate (ml/min)	Liters Removed	Turbidity (NTU)	Temp (°C)	DO (mg/L)	Cond. (uS/cm)	Salinity (ppt)	рН	ORP (mV) field	ORP (mV) corrected		Comments			
Requirem	ents for Parameter Sta	bilization*		NTU	±1°	±10% or <1 mg/L	± 3%	NA	± 0.1	± 10 mV	NA					
	Start pump			T			1	T								
1050	20.40		1.05	20.2	 2F 72	10.4			7.00		124.2					
1055 1100	20.40	250 250	1.25	28.3	25.73 25.57	19.4 13.5	984 969	0.48	7.00 7.00	-90.0 -91.1	134.2 133.1					
1105	20.41	250	1.25 1.25	16.2	25.24	11.1	937	0.47	7.00	-91.1	130.8	_				
1110	20.45	250	1.25	15.6	25.22	10.9	929	0.45	7.02	-92.7	131.6					
1115	20.45	250	1.25	13.0	25.15	10.6	918	0.45	6.98	-91.6	132.7					
								+								
								1								
				9	amnla Day	relopment, or	Durge Wat	tor Informa	tion							
Calar		Olean			ample, Dev	IDW Disposal N		iei iiiioiiiia	Analytical		A = = + + = = +					
Color Odor		Clear				IDW Disposal Method Analytical Accutest Laboratory:										
Turbidity		Low				Reinfiltration Ne	xt to Well		Transporte	d via·		Overnight				
	y Analysis	VOCs SW	8260C	GRO SW82	60	RRO SW8015	D	Metals SW6	1		☐ Hand					
(No. of Bo	ttles)	□ PAHs SW8	3270C-SIM	DRO SW80	15D	Pesticides SV	V8081A	Field Filtered Herbicides	d? ■Y □N SW8151							
		☐ PCBs SW	8082			See COC										
					Laborator					ı						
Normal Sa	ample			ole ID /009-0514		Sample 5/29/2			le Time 120			I No. of Bottle s, 6 amber L, 1				
	•			-		3/24/2	.014	+			3 VOA:		poly			
Field Duplicate Matrix Spike				-				1								
	ke Duplicate			-				+								
								1								
Notes:			Make	Model	SN	1	Make	Model	SN	1	Make	Model	SN			
		Water Level	Geotech	Interface	GTHR006	Water Quality	YSI	556 MPS	GTHR 010	Pump	Geotech	geoconrol	1374			
Equipmen		Indicator: Turbidity	Hach	2100P	GTHR000	Instrument: Pump:	Geotech	geocontrol	1374	Controller: PID:	RAE	PRO MultiRAE	C103111			
Signature	e/Sampler:	Meter:	<u> </u>	<u> </u>	<u> </u>			PRO	<u> </u>	<u> </u>						

 °C = degree Celsius
 DO = dissolved oxygen
 in = inch
 mV = millivolts
 PID = photolonization detector

 bgs = below ground surface
 ft = foot
 LNAPL = light nonaqueous phase liquid
 NTU = nephelometric turbidity unit
 pmv = part per million by volume

 btoc = below top of casing
 ml/min = milliliters per minute
 uS/cm = microsiemens per centimeter
 ORP = oxidation reduction potential
 VOC = volatile organic compound

Capacity of Casing (gal/linear feet): 1*-0.041; 2*-0.16; 4*-0.65; 6*-1.47; 8*-2.61; 10*-4.08

^{*} Per the Installation-Wide Field Sampling Plan, well purging should be considered complete when three successive readings of all of the indicator parameters stabilize to within the tolerances indicated in this form.

	CH2M	HILL				oundwate urge and S								
Project:	Banana Patch Site Ch	aracterization				Site:	Banana Pa							
1		aracterization						tori						
_	No : 495560					Well ID:	TW-010							
	ew: A. Nelson, W.					Date:	5/29/2014							
	nterval (ft bgs):	17 to	27	■ bgs □	btoc	Climatic Cor					y 🔲 partially cl			
	meter (in):	1.5				Purge Method: □ peristaltic □ bailer □ waterra □ submersible ■ bladder Pump Intake Depth (ft bgs): 20.5								
	ling (ppmv): evel Indicator:	0.0	roho 🗆	(at top of call Water Level N		Ground Surf	-	-		20.5				
water Le		Oil/Water Pr		Tape (TAPE)	heter	Length of Sa		` '		2.51				
Total We	ell Depth (ft/in bgs)		,DL)	261		Pump Rate (nie (it).		50-100				
	Water (ft/in bgs):	19.24		230.88		Casing Volu				0.2				
Liquid in		WATER (W	V)	☐ LNAPL	(L)		VOCs		■ Bladde					
'		☐ DNAPL (D))	□ DRY (Y		Sampling Method	nonVOCs		■Bladde		☐ Perista	altic Pumn		
D 4b . 4 .	LAIADI (G.L)		,		,				_ Diadac		- Tonsie	anc r ump		
Depth to	LNAPL (ft bgs):	None				Sampling De		5):		20.50				
	I		1	1	1	Field Par	ameters T	1	1			T .		
	Depth to Water (ft bgs)	Purge Rate (ml/min)	Liters Removed	Turbidity	Temp (°C)	DO (mg/L)	Cond. (uS/cm)	Salinity	nU	ORP (mV) field	ORP (mV) corrected			
Time Requireme	ents for Parameter Sta		Kellioved	(NTU) NTU	± 1°	±10% or <1 mg/L	± 3%	(ppt)	pH ± 0.1	± 10 mV	NA		Comments	
	Start pump					ű								
1415	20.44													
1420	20.98	100	5.00	28.4	29.6	5.58	1632	0.75	7.80	-3.7	220.3			
1425	21.01	75	3.75	24.54	30.01	5.16	1640	0.75	7.82	-3.6	220.4			
1430	21.52	50	2.50	23.5	28.85	5.75	1607	0.75	7.75	-6.9	217.1	Purged dry		
1435	21.75	50	2.50									Fulged diy		
												1		
												1		
												<u> </u>		
												-		
												1		
					ample De	/elopment, or	Durge Wet	or Informa	tion					
				3	ampie, Dev	IDW Disposal N		er informa	Analytical		_			
Color Odor		Start Cloudy; None	Finish Clear			- IDW DISPOSALIN	netriou		Analytical Accutest Laboratory:					
Turbidity		High to Low				Reinfiltration Ne	xt to Well		Transported via: ☐ Hand ☐ Overnight					
	y Analysis	VOCs SW	8260C	GRO SW82	60	RRO SW8015)	Metals SW6	5010					
(No. of Bo	ttles)	□ PAHs SW8	3270C-SIM	■ DRO SW80	15D	Pesticides SV	/8081A	Field Filtered Herbicides	? ■Y □N SW8151					
		☐ PCBs SW	8082			See COC								
Laboratory Sample ID						y Sample Sample	Date	Samn	le Time	T	Tota	l No. of Bottle	<u> </u>	
Normal Sa	ample			/010-0614		6/2/20		†	150			, 5 amber L, 1		
Field Dupl	licate		-	-									· ·	
Matrix Spi	ke		-											
Matrix Spi	ke Duplicate		-	-										
Notes:		Sample not coll	lected followin	ig purge becau	se well was p	urged dry. Returr	ed to collect	sample on 6/2	2/2014.					
		Water Level	Make	Model	SN	Water Ovelle	Make	Model	SN	Dumn	Make	Model	SN	
Equipmen	t used:	Water Level Indicator: Turbidity	Geotech	Interface	GTHR006	Water Quality Instrument:	YSI	556 MPS geocontrol	GTHR 010	Pump Controller:	Geotech	geoconrol PRO	1374 C103107 (5/29/2014)	
Signature	I Committee	Meter:	Hach	2100P	GTHR013	Pump:	Geotech	PRO	1374	PID:	RAE	MultiRAE	C103111 (6/2/2014)	

 °C = degree Celsius
 DO = dissolved oxygen
 in = inch
 mV = millivolts
 PID = photolonization detector

 bgs = below ground surface
 ft = foot
 LNAPL = light nonaqueous phase liquid
 NTU = nephelometric turbidity unit
 pmv = part per million by volume

 btoc = below top of casing
 ml/min = milliliters per minute
 uS/cm = microsiemens per centimeter
 ORP = oxidation reduction potential
 VOC = volatile organic compound

Capacity of Casing (galdinear feet): 1*-0.041; 2*-0.16; 4*-0.65; 6*-1.47; 8*-2.61; 10*-4.08

^{*} Per the Installation-Wide Field Sampling Plan, well purging should be considered complete when three successive readings of all of the indicator parameters stabilize to within the tolerances indicated in this form.

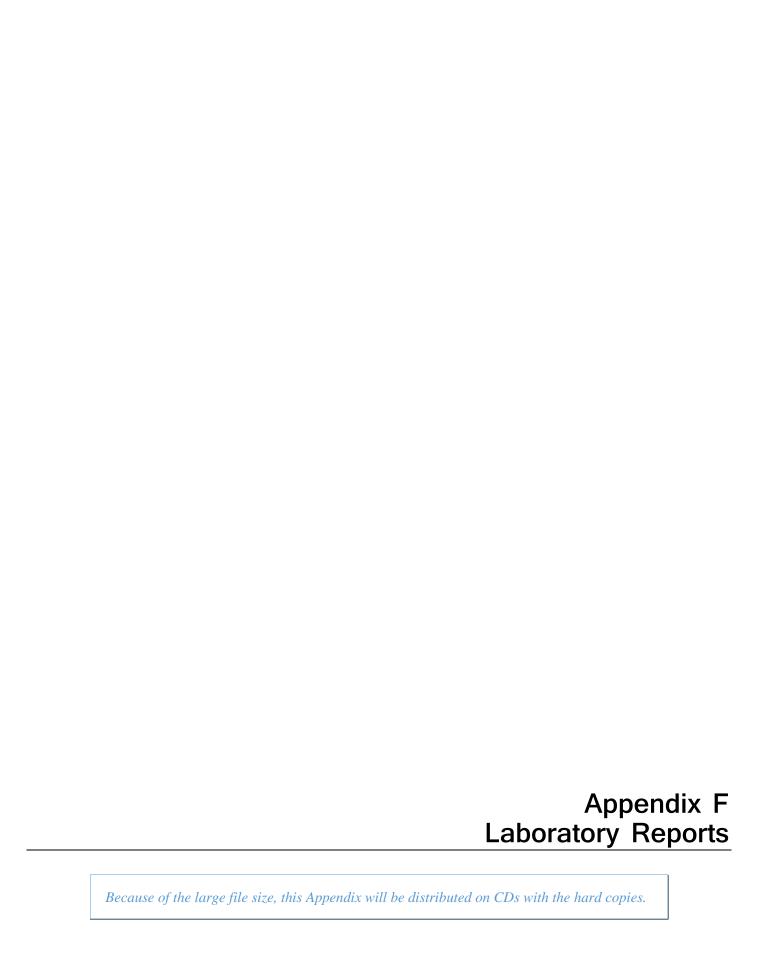
	CH2MI	HILL				oundwate									
Project:	Banana Patch Site Ch	aracterization			1 (Site:	Banana Pa								
′		aracterization						tori							
l ′	No : 495560					Well ID:	TW-011								
	ew: A. Nelson, W.					Date:	5/29/2014								
	nterval (ft bgs):	5 to	15	■ bgs □	btoc		Climatic Conditions: ■ sunny □ cloudy □ partially cloudy □ rainy								
	meter (in):	1.5				Purge Metho		has).	per		iler 🗌 waterra	submersit	ble bladder		
	ling (ppmv): evel Indicator:	0.0	roho 🗆	(at top of call Water Level N		Pump Intake Ground Surf	•	-		12 3.5-inches					
water Le	ever indicator:	Oil/Water Pr		Tape (TAPE)	heter	Length of Sa				6.16					
Total We	ell Depth (ft/in bgs)		btoc	180		Pump Rate (nie (it).		350					
	Water (ft/in bgs):	8.84	btoc	106.08		Casing Volu				0.6					
Liquid ir		WATER (V		☐ LNAPL	(L)		VOCs		■ Bladde						
'		☐ DNAPL (D))	DRY (Y)	Sampling Method	nonVOCs		■Bladde		☐ Perista	altic Pump	Pumn		
Donth to	LNADL (ft bac).				,				- Blada			p			
Depth to	LNAPL (ft bgs):	None				Sampling De Field Par		5):		12.00	btoc				
						rieiu rai	ameters								
Time	Depth to Water (ft bgs)	Purge Rate (ml/min)	Liters Removed	Turbidity (NTU)	Temp (°C)	DO (mg/L)	Cond. (uS/cm)	Salinity (ppt)	pН	ORP (mV) field	ORP (mV) corrected		Comments		
	ents for Parameter Sta		Removed	NTU	± 1°	±10% or <1 mg/L	± 3%	NA NA	± 0.1	± 10 mV	NA	<u> </u>	Comments		
·	Start pump			•	•	•		•	•	•	•				
1200	8.92											,	er error message		
1205	8.93	350	17.50		22.99	0.80	1364	0.75	6.12	41.5	265.5	through first 2 readings. Meter started working normally after			
1210	8.92	350	17.50		22.94	0.63	1536	0.81	5.75	38.8	262.8	2nd reading.			
1215	8.93	350	17.50	6.31	22.86	0.55	1659	0.88	5.53	35.7	259.6	-			
1220 1225	8.92 8.93	350 350	17.50 17.50	6.53 4.03	22.86 22.82	0.52 0.48	1692 1734	0.89	5.77 5.79	31.5 30.3	255.4 254.2	1			
1230	8.93	350	17.50	5.09	22.79	0.45	1743	0.92	5.80	22.7	246.6	1			
												-			
												-			
				S	ample Dev	elopment, or	Purge Wat	er Informa	tion	L					
Color		Clear			umpie, bei	IDW Disposal N		.ci iiiioiiiiu	Analytical		Accutest				
Odor		None				-			Laboratory:						
Turbidity		Low				Reinfiltration Ne	xt to Well		Transporte	d via:	☐ Hand		Overnight		
Laborator	y Analysis	VOCs SW	8260C	GRO SW82	60	RRO SW8015	D	Metals SW6							
(No. of Bo	ittles)	☐ PAHs SW8	3270C-SIM	■ DRO SW80	15D	Pesticides SV	V8081A	Field Filtered Herbicides	ed? ■Y □ N s SW8151						
		☐ PCBs SW	8082			See COC									
			Samı	ole ID	Laborator	y Sample Sample	Date	Samp	le Time		Tota	l No. of Bottle:	<u> </u>		
Normal Sa	ample		•	/011-0514		5/29/2		· ·	235			, 6 amber L, 1			
Field Dupl	licate		FASC-TW	/111-0514		5/29/2	2014	1;	310		3 VOAs	, 6 amber L, 1	poly		
Matrix Spi	ike		-	-		-									
Matrix Spi	ike Duplicate		=	:=					==			==			
Notes:		Sample not coll	lected followin	ig purge becau	se well was p	urged dry. Returr	ned to collect	sample.							
		Water Level	Make	Model	SN	Water Ovelle	Make	Model	SN	Dumo	Make	Model	SN		
Equipmen	nt used:	Water Level Indicator:	Geotech	Interface	GTHR007	Water Quality Instrument:	YSI	556 MPS	GTHR 012	Pump Controller:	Geotech	geoconrol PRO	1563		
_quipineli	4304.	Turbidity Meter:	Hach	2100P	GTHR013	Pump:	Geotech	geocontrol PRO	1563	PID:	RAE	MultiRAE	C103107		
Signature	a/Sampler:		•	•		•		•	•	•	•	•	•		

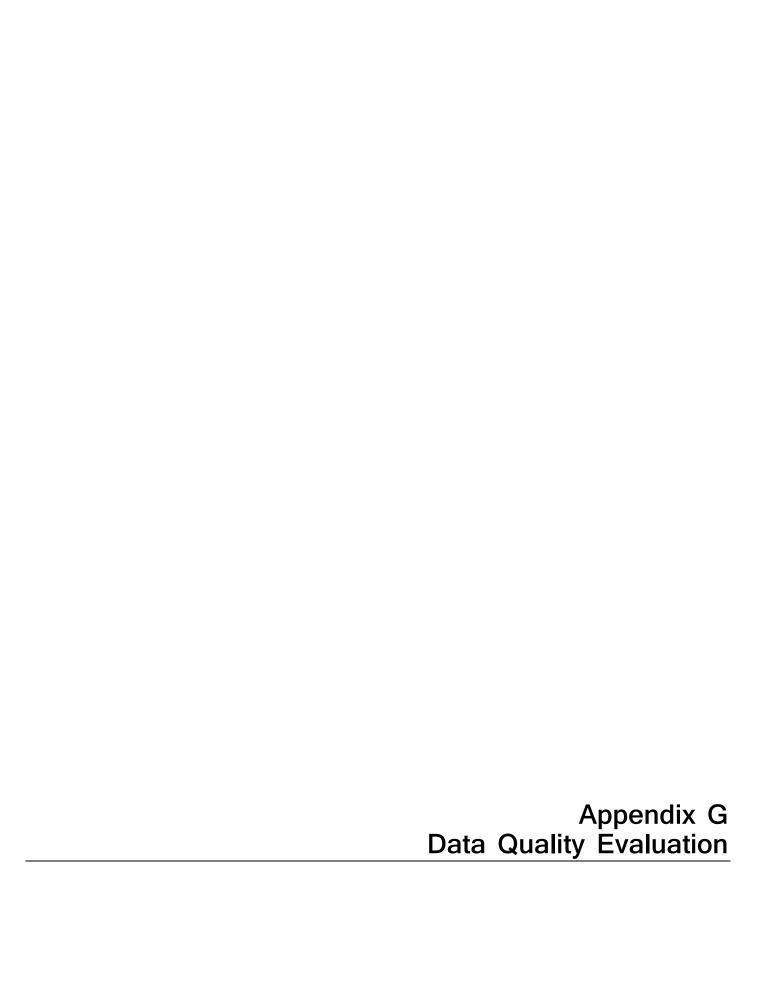
 $^{\circ}$ C = degree Celsius DO = dissolved oxygen in = inch mV = millivolts PID = photoionization detector bgs = below ground surface in the foot thing the fo

Capacity of Casing (galdinear feet): 1*-0.041; 2*-0.16; 4*-0.65; 6*-1.47; 8*-2.61; 10*-4.08

^{*} Per the Installation-Wide Field Sampling Plan, well purging should be considered complete when three successive readings of all of the indicator parameters stabilize to within the tolerances indicated in this form.

	CH2MI	HILL				oundwate urge and S									
Project:	Banana Patch Site Ch	aractorization			1 (Site:									
′		aracterization													
_	No : 495560					Well ID: TW-012 (existing monitoring well installed by others)									
Field Cre	ew: A. Nelson, W.					Date:	5/30/2014								
	nterval (ft bgs):	17 to	30	■ bgs □	btoc		Climatic Conditions: ■ sunny □ cloudy □ partially cloudy □ rainy								
	meter (in):	3.0				Purge Method: □ peristaltic □ bailer □ waterra □ submersible ■ bladder Pump Intake Depth (ft bgs): 23.6									
	ling (ppmv):	0.0		(at top of ca		Ground Surf		-		23.6					
water Le	evel Indicator:	Oil/Water Pr] Water Level N] Tape (TAPE)	heter	Length of Sa				13.08					
Total We	ell Depth (ft/in bgs)	_ `	btoc	362.4		Pump Rate (nie (it).		350					
	Water (ft/in bgs):	17.12	btoc	205.44		Casing Volu				4.8					
Liquid ir		WATER (V		☐ LNAPL	(L)		VOCs		■ Bladde						
'		☐ DNAPL (D))	□ DRY (Y		Sampling Method	nonVOCs		■Bladde		☐ Perist	altic Pumn			
5 11 1	LALADI (G.L)		,		,				_ Diada		- Tonst	anic r amp			
Depth to	LNAPL (ft bgs):					Sampling De		5):		23.60					
			1	1	1	Field Par	ameters	1	1	1		1			
.	Depth to Water (ft bgs)	Purge Rate	Liters	Turbidity	Temp	DO (mg/L)	Cond.	Salinity	nU.	ORP (mV) field	ORP (mV)				
Time Requirem	ents for Parameter Sta	(ml/min)	Removed	(NTU) NTU	(°C)	DO (mg/L) ±10% or <1 mg/L	(uS/cm) ± 3%	(ppt)	pH ± 0.1	± 10 mV	corrected	1	Comments		
rtoquironi	Start pump					J									
1620															
1628	17.7	350	7.00	64.4	27.26	1.03	885	0.41	6.29	-53.5	170.8				
1630	17.7	350	17.50	48.0	26.99	0.74	874	0.41	6.32	-42.0	182.3				
1635	17.7	350	17.50	40.8	26.71	0.83	867	0.41	6.33	-34.8	189.5				
1640 1645	17.7 17.7	350 350	17.50 17.50	33.9 32.8	26.71 26.65	0.94 1.05	869 870	0.41	6.31	-30.0 -30.0	194.3 194.3				
1043	17.7	330	17.50	32.0	20.03	1.05	870	0.41	0.34	-30.0	194.3				
												1			
												_			
												_			
				9	ample Dev	elopment, or	Purge Wat	er Informa	tion	<u> </u>					
Color		Clear			umpie, bei	IDW Disposal N		.ci iiiioiiiiu	Analytical		Accutest				
Odor		None				<u> </u>			Laboratory:						
Turbidity		Low				Reinfiltration Ne	ext to Well		Transporte	Overnight					
	y Analysis	VOCs SW	8260C	GRO SW82	60	RRO SW8015	D	Metals SW6							
(No. of Bo	ittles)	☐ PAHs SW8	8270C-SIM	■ DRO SW80	15D	Pesticides SV	V8081A	Herbicides	ed? ■Y □ N s SW8151						
		☐ PCBs SW	8082			See COC									
Laboratory Sample ID						y Sample Sample	Date	Samp	le Time		Tota	al No. of Bottle	s		
Normal Sa	ample			V012-0514		5/30/2			645			s, 6 amber L, 1			
Field Dupl	licate		-												
Matrix Spi	ike		-	-=											
Matrix Spi	ike Duplicate		-												
Notes:		Sample not coll	lected followin	ng purge becau	se well was p	urged dry. Returr	ned to collect	sample.							
		Water Level	Make	Model	SN	Water Quality	Make	Model	SN	Dumn	Make	Model	SN		
Equipmen	nt used:	Indicator:	Geotech	Interface	GTHR006	Instrument:	YSI	556 MPS	GTHR 012	Pump Controller:	Geotech	geoconrol PRO	1563		
_qaipineli		Turbidity Meter:	Hach	2100P	GTHR014	Pump:	Geotech	geocontrol PRO	1563	PID:	RAE	MultiRAE	C103107		
Signatur	a/Sampler:		•	•	•	•	•	•	•	•	•	•	•		


 °C = degree Celsius
 DO = dissolved oxygen
 in = inch
 mV = millivolts
 PID = photolonization detector


 bgs = below ground surface
 ft = foot
 LNAPL = light nonaqueous phase liquid
 NTU = nephelometric turbidity unit
 pmv = part per million by volume

 btoc = below top of casing
 ml/min = milliliters per minute
 uS/cm = microsiemens per centimeter
 ORP = oxidation reduction potential
 VOC = volatile organic compound

Capacity of Casing (galdinear feet): 1*-0.041; 2*-0.16; 4*-0.65; 6*-1.47; 8*-2.61; 10*-4.08

^{*} Per the Installation-Wide Field Sampling Plan, well purging should be considered complete when three successive readings of all of the indicator parameters stabilize to within the tolerances indicated in this form.

Data Quality Evaluation Report

This report contains the Data Quality Evaluation for soil, water, and waste samples collected as part of the site characterization of the Banana Patch property in Oahu, Hawaii, for the Honolulu Authority for Rapid Transportation (HART) in support of the Honolulu Rail Transit Project (HRTP). The report evaluates whether the analytical data obtained in the investigation are of sufficient quality and quantity to accomplish the project objectives.

Contents

			Page
Data	Quality	Evaluation Report	G-1
Conte	ents		G-i
Abbro	eviation	raluation Report	G-ii
1.0	Intro	duction	G1-1
	1.1	Analytical Laboratories	G1-1
	1.2	Analytical Methods	G1-1
2.0	Field	Sample Collection	G2-1
3.0	Data	Review and Validation Process	G3-1
	3.1	Data Validation Definition	G3-1
	3.2	Overall Data Validation Findings	G3-1
	3.3	Results Detected Between the Detection Limit and Reporting Limit	G3-1
	3.4	Holding Time	G3-1
	3.5	Matrix Spike and Matrix Spike Duplicates	G3-1
	3.6	Surrogate Spikes	G3-2
	3.7	Laboratory Control Samples	G3-2
	3.8	Confirmation Precision	G3-2
	3.9	Blank Contamination	G3-2
4.0	Sum	mary of Precision, Accuracy, Representativeness, Comparability, and Completeness	G4-1
	4.1	Precision	G4-1
	4.2	Accuracy	G4-1
	4.3	Representativeness	G4-1
	4.4	Appropriateness of Reporting limits	G4-1
	4.5	Comparability	G4-1
	4.6	Completeness	G4-1
	4.7	Conclusions	G4-2
5.0	Refe	rences	G5-1
Table	es		
1	Samp	ole Chronology—Data Summary	
2		ole Summary by Chain of Custody—Data Summary	
3	Site C	Completeness by Analyte—Flagging Statistics	
4	Holdi	ng Time —Qualified Data	
5	Matr	ix Spike Precision/Accuracy —Qualified Data	
6	Surro	gate Spike —Qualified Data	
7	Labo	ratory Control Sample —Qualified Data	
8	Confi	rmation Precision —Qualified Data	
9	Blank	Contamination —Qualified Data	
10	Site (Completeness by Analyte—Qualified Data	

Abbreviations and Acronyms

Accutest Laboratory Inc., San Jose, California

DL Detection limit

FD field duplicate

HART Honolulu Authority for Rapid Transportation
HDOH State of Hawaii Department of Health

HRTP Honolulu Rail Transit Project

IS Incremental Sampling

LCS laboratory control sample

MS matrix spike

MSD matrix spike duplicate

PAH polynuclear aromatic hydrocarbons

PARCC precision, accuracy, representativeness, completeness and comparability

PCB polychlorinated biphenyl

QA quality assurance QC quality control

RL reporting limit

RSD relative standard deviation

SDG sample delivery group

SVOC semi-volatile organic compounds

TCLP toxicity characteristic leaching procedure

TPH-d total petroleum hydrocarbons, diesel-range organics
TPH-g total petroleum hydrocarbons, gasoline-range organics
TPH-o total petroleum hydrocarbons, oil-range organics

Work Plan Site Characterization for Banana Patch Property, Pearl City, Oahu, Hawaii

USEPA U.S. Environmental Protection Agency

VOC volatile organic compounds

1.0 Introduction

This Data Quality Evaluation Report contains an assessment of the quality and usability of analytical data from environmental soil, water, and waste samples collected at the Banana Patch property in Oahu, Hawaii, for the Honolulu Authority for Rapid Transportation (HART) in support of the Honolulu Rail Transit Project (HRTP).

The analytical work was conducted in accordance with the project-specific *Site Characterization for Banana Patch Property, Pearl City, Oahu, Hawaii* (Work Plan) (CH2M HILL, 2014). This Work Plan contains all aspects of the project activities.

1.1 Analytical Laboratories

Accutest Laboratory Inc., San Jose, California (Accutest) was the laboratory performing all sample analyses except for the analysis of herbicides, which was subcontracted to the Accutest Laboratory in southern Florida.

1.2 Analytical Methods

After collection, the samples were packed and shipped by overnight carrier to Accutest for analysis. The following methods were used for sample analysis:

- Total petroleum hydrocarbons, diesel-range organics (TPH-d) by U.S. Environmental Protection Agency (USEPA) Method SW8015D
- Total petroleum hydrocarbons, oil-range organics (TPH-o) by USEPA Method SW8015D
- Total petroleum hydrocarbons, gasoline-range organics (TPH-g) by USEPA Method SW8260C
- Volatile organic compounds (VOCs) by USEPA Method SW8260C
- Organochlorine pesticides by USEPA Method SW8081A
- Herbicides by USEPA Method SW8151A
- Polychlorinated biphenyls (PCBs) by USEPA method SW8082
- Polynuclear aromatic hydrocarbons (PAHs) by USEPA Method SW8270-SIM
- Metals by USEPA Methods SW6010B or SW6020
- Mercury by USEPA Methods SW7470A or SW7471A

Eight sample delivery groups (SDG) were evaluated for data quality. Table 1 provides a listing of the SDGs, sample identifications, and collection and analysis chronology associated with the project samples.

2.0 Field Sample Collection

This fieldwork was conducted between May 17, 2014, and June 5, 2014. Using Incremental Sampling (IS) techniques, 29 soil samples were collected with three sets of field duplicates (FD) and triplicate quality assurance/quality control (QA/QC) samples. There were also 14 discreet soil samples. There were 17 soil samples analyzed for toxicity characteristic leaching procedure (TCLP) parameters. There were 12 water samples, with one water FD.

All soil samples collected using the IS approach were collected in accordance with the guidance provided in the State of Hawaii Department of Health (HDOH) *Technical Guidance Manual for the Implementation of the Hawai'i State Contingency Plan* (HDOH, 2009).

Matrix spike/matrix spike duplicates (MS/MSDs) were collected and analyzed in accordance with the Work Plan, with 9 soil MS/MSDs and two water MS/MSDs. Equipment blanks were collected only when all disposable or dedicated equipment was not used. Table 2 includes a summary of the field samples collected by date.

3.0 Data Review and Validation Process

3.1 Data Validation Definition

All analytical data from this investigation were evaluated as described in the Work Plan, and 100 percent of definitive analytical results were validated. The assessment of definitive data includes a review of the following laboratory summary forms as defined in the Work Plan:

- The chain-of-custody documentation
- Holding time
- Surrogate spikes
- Method blanks and field blanks
- Laboratory control samples (LCS)
- MS/MSDs
- FD precision and IS precision
- Case narrative review and other method-specific criteria

3.2 Overall Data Validation Findings

An overall summary of definitive data sample results and the reasons each were flagged is presented in Table 3. The information in Table 3 is presented so that each flag applied to a method/matrix/analyte is shown. In addition, a statistical evaluation of the results are provided so that the percentage of results impacted by a specific data quality condition or flag, with respect to the total results available for any target analyte/matrix, is shown. Only out-of-control conditions noted during the data validation are discussed in Table 3 and in the following subsections.

3.3 Results Detected Between the Detection Limit and Reporting Limit

Analytes that were detected at concentrations greater than the detection limit (DL), but less than the reporting limit (RL), were qualified as "J" per the Work Plan to reflect the uncertainty associated with concentrations of analytical data between the DL and the RL. Non-detected sample results were reported to the DL.

3.4 Holding Time

There were 14 soil samples analyzed for TPH-d and TPH-o that exceeded the extraction holding time by 1 to 2 days each. All results were detections and are considered to be estimated concentrations, flagged "J." Table 4 shows the out of control results of holding time.

3.5 Matrix Spike and Matrix Spike Duplicates

There were a number of MS/MSD recovery or precision issues that required sample data qualification. The out of control results reflect both high and low bias depending on the sample. The samples include VOCs, semi-volatile organic compounds (SVOCs), pesticides, herbicides, PCB, and metals. There are out-of-control MS/MSD recoveries; however, results were not qualified because the sample concentration was significantly greater than the spike concentration and sample results were not qualified. Table 5 shows the out-of-control results of MS/MSDs where results are qualified as estimated concentrations and flagged "J" or "UJ."

3.6 Surrogate Spikes

The surrogate spikes for a number of pesticide and SVOC samples were out of control. All out-of-control surrogate results were bias high, only detected results were flagged with a "J." When surrogate spikes are out of control, re-analysis of the samples was performed to confirm the condition. In some cases, samples may have been diluted to the point where accurate recovery of surrogates was not possible. When this occurred, no flag was applied to the results. Table 6 includes data qualified because of out-of-control surrogate recovery.

3.7 Laboratory Control Samples

LCSs were in control overall. There were a number of SVOC and VOC compounds in soil samples qualified as estimated concentrations due to out-of-control LCSs. These results were flagged with a "J" for detected results and "UJ" for nondetected results.

When an LCS was out of control with a high bias and the associated sample result did not detect that compound, results were not flagged. All results qualified from LCS failure are shown in Table 7.

3.8 Confirmation Precision

If sample results for pesticides or herbicides exceeded a 40 percent difference between the primary column and the confirmation column, results were qualified as estimated concentrations and flagged J. All results qualified from confirmation precision are shown in Table 7.

Also shown in Table 7 are the out-of-control results of the relative standard deviation (RSD) between IS collections of FDs and triplicates sets. Of the three sets collected, almost all results showed RSDs of less than 35 percent. The IS RSD chart below presents IS results where the RSD was greater than 35 percent. Data were flagged only when the RSD exceeded 50 percent, possibly representing soil/sediment heterogeneities, uneven distribution of specific chemical constituents, or both. The flagged results of lead and pentachlorophenol are shown in Table 7.

IS Relat	ive S	tanda	ard De	eviation
----------	-------	-------	--------	----------

	FASC-DU4A-	FASC-DU204A-	FASC-DU304A-	
Analyte	0514	0514	0514	%RSD
4,4'-DDT	53.8	38.6	80.8	37
Pyrene	180	353	192	40
Pentachlorophenol	1.9	9.7	21	88
	FASC-DU6A-	FASC-DU206A-	FASC-DU306A-	
Analyte	0514	0514	0514	%RSD
Lead	118	227	74.5	56
Analyte	SBSD-DU9-0514	SBSD-DU209-0514	SBSD-DU309-0514	%RSD
Lead	45.1	12.1	11.9	83
Phenanthrene	56	27.2	32.7	40

<u>Note</u>: Replicate samples were collected within the shallow sampling interval/sampling unit within DU4 (0 to 0.5 feet bgs), DU6 (0 to 5 feet bgs), and DU9 (0 to 0.5 feet bgs).

3.9 Blank Contamination

The laboratory and field blanks were generally free of contamination at concentrations greater than the RL. In some cases, contaminant concentrations less than the RL were noted but no flag was applied. Due to blank contamination greater than the RL, 12 heptachlor results in water samples were qualified and flagged

"B." Table 9 presents the qualified results. Overall, the analytes detected in blanks were consistent with normal laboratory and field operations and do not negatively impact the use of the data for project objectives.

4.0 Summary of Precision, Accuracy, Representativeness, Comparability, and Completeness

The quality of the field sampling efforts and laboratory results were evaluated for compliance with project data quality objectives through a review of overall precision, accuracy, representativeness, comparability, and completeness (PARCC). Procedures used to assess PARCC are in accordance with the respective analytical methods and the Work Plan requirements.

4.1 Precision

Matrix precision from MS/MSDs was in control overall. Matrix precision is also evaluated through the results of discreet FDs and IS FD and triplicate sample collection. The precision results of discreet FDs are in control while the IS FD and triplicate samples are in control overall.

Laboratory precision is acceptable as shown by the repeated overall in-control performance (accuracy) of the LCSs. The method and matrix precision are acceptable overall.

4.2 Accuracy

Matrix accuracy from MS/MSDs have some out of control results but overall are in control. The accuracy of LCSs are in control overall. Calibrations were in control. The laboratory and matrix accuracy are acceptable overall.

4.3 Representativeness

Sample data are representative of the site conditions at the time of sample collection. All samples were properly stored and preserved. Analytical data are reported from an analysis within the project-specified hold-time. The results of laboratory and field blanks were generally at concentrations less than the RLs.

4.4 Appropriateness of Reporting limits

This project was designed to allow risk-based decisions to be made based on the results of common USEPA-approved analytical methodologies. Detection limits achieved are the best possible based on sample variables.

4.5 Comparability

All samples were reported in industry-standard units. Analytical protocols for the methods were followed. Results obtained are comparable to industry standards in that collection and analytical techniques followed approved, documented procedures.

4.6 Completeness

All results are usable for project objectives. The completeness objective of 90 percent for soil and 95 percent for water was met. Project completeness data are summarized in Table 10.

4.7 Conclusions

The data generated from sample analyses are of sufficient quality and quantity necessary for accomplishing project objectives. Sample results accurately indicate the presence and/or absence of target analyte contamination at sampled locations. Samples were collected and analyzed as specified in the project Work Plan.

Sample results are believed to be representative of site conditions at the time of collection. Results obtained are comparable to industry standards in that collection and analytical techniques followed approved, documented procedures. All results are reported in industry standard units. The results of laboratory and field blanks were generally at concentrations less than the RLs. The results obtained for associated sample/analyses reflect the best achievable data for the site-specific conditions.

5.0 References

CH2M HILL. 2014. Site Characterization for Banana Patch Property, Pearl City, Oahu, Hawaii. May.

State of Hawaii Department of Health (HDOH). 2009 (and subsequent updates). *Technical Guidance Manual for the Implementation of the Hawai'i State Contingency Plan*. November.

U.S. Environmental Protection Agency (USEPA). 1997. SW-846 Test Methods for Evaluating Solid Waste, Latest Update. June.

TABLE 1 Sample Chronology – Data Summary

Laboratory	SDG	Sample ID	Method	Sample Date	Receive Date	Extract Date	Analysis Date
ACTS	ACTO_C3416	FASC-DU3A-0514	SW8151A	5/19/2014	5/22/2014	5/29/2014	6/3/2014
		FASC-DU3B-0514	SW8151A	5/19/2014	5/22/2014	5/29/2014	6/3/2014
		FASC-DU3C-0514	SW8151A	5/19/2014	5/22/2014	5/29/2014	6/2/2014
		SBSD-DU10-0514	SW8151A	5/17/2014	5/22/2014	5/29/2014	6/2/2014
		SBSD-DU209-0514	SW8151A	5/20/2014	5/22/2014	5/29/2014	6/2/2014
		SBSD-DU309-0514	SW8151A	5/20/2014	5/22/2014	5/29/2014	6/2/2014
		SBSD-DU8-0514	SW8151A	5/17/2014	5/22/2014	5/29/2014	6/2/2014
		SBSD-DU9-0514	SW8151A	5/20/2014	5/22/2014	5/29/2014	6/2/2014
	ACTO_C3420	FASC-DU206A-0514	SW8151A	5/20/2014	5/23/2014	5/29/2014	6/3/2014
		FASC-DU306A-0514	SW8151A	5/20/2014	5/23/2014	5/29/2014	6/3/2014
		FASC-DU6A-0514	SW8151A	5/20/2014	5/23/2014	5/29/2014	6/3/2014
		FASC-DU6B-0514	SW8151A	5/20/2014	5/23/2014	5/29/2014	6/3/2014
		FASC-DU6C-0514	SW8151A	5/20/2014	5/23/2014	5/29/2014	6/3/2014
		FASC-DU6D-0514	SW8151A	5/20/2014	5/23/2014	5/29/2014	6/3/2014
	ACTO_C3422	FASC-DU1NA-0514	SW8151A	5/23/2014	5/24/2014	6/2/2014	6/4/2014
	FASC-DU1SA-0514	SW8151A	5/22/2014	5/24/2014	6/2/2014	6/4/2014	
		FASC-DU1SB-0514	SW8151A	5/22/2014	5/24/2014	6/2/2014	6/4/2014
		FASC-DU204A-0514	SW8151A	5/23/2014	5/24/2014	6/2/2014	6/4/2014
		FASC-DU304A-0514	SW8151A	5/23/2014	5/24/2014	6/2/2014	6/4/2014
		FASC-DU4A-0514	SW8151A	5/23/2014	5/24/2014	6/2/2014	6/4/2014
		FASC-DU5A-0514	SW8151A	5/21/2014	5/24/2014	6/2/2014	6/4/2014
		FASC-DU5A-0514MS	SW8151A	6/2/2014	6/2/2014	6/2/2014	6/4/2014
		FASC-DU5A-0514SD	SW8151A	6/2/2014	6/2/2014	6/2/2014	6/4/2014
		FASC-DU5B-0514	SW8151A	5/21/2014	5/24/2014	6/2/2014	6/4/2014
		FASC-DU5C-0514	SW8151A	5/21/2014	5/24/2014	6/2/2014	6/4/2014
		FASC-DU5D-0514	SW8151A	5/21/2014	5/24/2014	6/2/2014	6/4/2014
	ACTO_C3425	FADS-DU6D1-0514	SW8151A	5/23/2014	5/28/2014	6/2/2014	6/4/2014
		FADS-DUD2-0514	SW8151A	5/23/2014	5/28/2014	6/2/2014	6/4/2014
	ACTO_C3425	FASC-DU2A-0514	SW8151A	5/22/2014	5/28/2014	6/2/2014	6/4/2014
		FASC-DU2B-0514	SW8151A	5/22/2014	5/28/2014	6/2/2014	6/4/2014
		FASC-DU2C-0514	SW8151A	5/22/2014	5/28/2014	6/2/2014	6/4/2014
	ACTO_C3431	BKSC-DU7-0514	SW8151A	5/28/2014	5/30/2014	6/5/2014	6/6/2014
		FADS-DU6D3-0514	SW8151A	5/28/2014	5/30/2014	6/5/2014	6/6/2014
		FASC-DU1NB-0514	SW8151A	5/28/2014	5/30/2014	6/5/2014	6/6/2014
		FASC-DU1NC-0514	SW8151A	5/28/2014	5/30/2014	6/5/2014	6/6/2014

June 2014 Table 1 Page 1 of 15

TABLE 1 Sample Chronology – Data Summary

Laboratory	SDG	Sample ID	Method	Sample Date	Receive Date	Extract Date	Analysis Date
ACTS	ACTO_C3431	FASC-DU1NC-0514MS	SW8151A	6/5/2014	6/5/2014	6/5/2014	6/6/2014
		FASC-DU1NC-0514SD	SW8151A	6/5/2014	6/5/2014	6/5/2014	6/6/2014
		FASC-DU1SC-0514	SW8151A	5/28/2014	5/30/2014	6/5/2014	6/6/2014
	ACTO_C3437	FASC-TW002-0514	SW8151A	5/30/2014	6/3/2014	6/5/2014	6/6/2014
		FASC-TW003-0514	SW8151A	5/30/2014	6/3/2014	6/5/2014	6/6/2014
		FASC-TW004-0514	SW8151A	6/2/2014	6/3/2014	6/5/2014	6/6/2014
		FASC-TW005-0514	SW8151A	5/30/2014	6/3/2014	6/5/2014	6/6/2014
		FASC-TW006-0514	SW8151A	5/30/2014	6/3/2014	6/5/2014	6/6/2014
		FASC-TW007-0514	SW8151A	5/30/2014	6/3/2014	6/5/2014	6/6/2014
		FASC-TW008-0514	SW8151A	5/30/2014	6/3/2014	6/5/2014	6/6/2014
		FASC-TW010-0514	SW8151A	6/2/2014	6/3/2014	6/5/2014	6/6/2014
		FASC-TW012-0514	SW8151A	5/30/2014	6/3/2014	6/5/2014	6/6/2014
	ACTO_C3437	FASC-TW001-0514	SW8151A	5/29/2014	6/3/2014	6/5/2014	6/6/2014
		FASC-TW001-0514MS	SW8151A	6/5/2014	6/5/2014	6/5/2014	6/6/2014
		FASC-TW001-0514SD	SW8151A	6/5/2014	6/5/2014	6/5/2014	6/6/2014
		FASC-TW009-0514	SW8151A	5/29/2014	6/3/2014	6/5/2014	6/6/2014
		FASC-TW011-0514	SW8151A	5/29/2014	6/3/2014	6/5/2014	6/6/2014
		FASC-TW111-0514	SW8151A	5/29/2014	6/3/2014	6/5/2014	6/6/2014
	ACTO_C3443	FASC-TW004-EB-0614	SW8151A	6/3/2014	6/6/2014	6/9/2014	6/10/2014
		FASC-TW004-EB-0614EBMS	SW8151A	6/9/2014	6/9/2014	6/9/2014	6/10/2014
		FASC-TW004-EB-0614EBSD	SW8151A	6/9/2014	6/9/2014	6/9/2014	6/10/2014
ACTS_C3416	FASC-DU3A-0514	D2216	5/19/2014	5/22/2014		5/29/2014	
		FASC-DU3A-0514	SW6010C	5/19/2014	5/22/2014	5/30/2014	5/31/2014
		FASC-DU3A-0514	SW7471A	5/19/2014	5/22/2014	5/31/2014	5/31/2014
		FASC-DU3A-0514	SW8015D	5/19/2014	5/22/2014	5/27/2014	5/28/2014
		FASC-DU3A-0514	SW8081A	5/19/2014	5/22/2014	5/27/2014	5/27/2014
		FASC-DU3A-0514	SW8082	5/19/2014	5/22/2014	5/27/2014	5/28/2014
		FASC-DU3A-0514	SW8270D	5/19/2014	5/22/2014	5/27/2014	5/28/2014
		FASC-DU3A-0514MS	SW6010C	5/30/2014	5/30/2014	5/30/2014	5/31/2014
		FASC-DU3A-0514MS	SW7471A	5/30/2014	5/31/2014	5/31/2014	5/31/2014
		FASC-DU3A-0514SD	SW6010C	5/30/2014	5/30/2014	5/30/2014	5/31/2014
		FASC-DU3A-0514SD	SW7471A	5/30/2014	5/31/2014	5/31/2014	5/31/2014
		FASC-DU3B-0514	D2216	5/19/2014	5/22/2014		5/28/2014
		FASC-DU3B-0514	D2216	5/19/2014	5/28/2014		5/28/2014
		FASC-DU3B-0514	SW6010C	5/19/2014	5/22/2014	5/30/2014	5/31/2014

TABLE 1 Sample Chronology – Data Summary

Laboratory	SDG	Sample ID	Method	Sample Date	Receive Date	Extract Date	Analysis Date
ACTS	ACTS_C3416	FASC-DU3B-0514	SW7471A	5/19/2014	5/22/2014	5/31/2014	5/31/2014
		FASC-DU3B-0514	SW8015D	5/19/2014	5/22/2014	5/27/2014	5/28/2014
		FASC-DU3B-0514	SW8081A	5/19/2014	5/22/2014	5/27/2014	5/27/2014
		FASC-DU3B-0514	SW8082	5/19/2014	5/22/2014	5/27/2014	5/28/2014
		FASC-DU3B-0514	SW8260C	5/19/2014	5/22/2014		5/28/2014
		FASC-DU3B-0514	SW8270D	5/19/2014	5/22/2014	5/27/2014	5/28/2014
		FASC-DU3C-0514	D2216	5/19/2014	5/22/2014		5/28/2014
		FASC-DU3C-0514	SW6010C	5/19/2014	5/22/2014	5/30/2014	5/31/2014
		FASC-DU3C-0514	SW7471A	5/19/2014	5/22/2014	5/31/2014	5/31/2014
		FASC-DU3C-0514	SW8015D	5/19/2014	5/22/2014	5/27/2014	5/28/2014
		FASC-DU3C-0514	SW8081A	5/19/2014	5/22/2014	5/27/2014	5/27/2014
		FASC-DU3C-0514	SW8082	5/19/2014	5/22/2014	5/27/2014	5/28/2014
		FASC-DU3C-0514	SW8260C	5/19/2014	5/22/2014		5/28/2014
		FASC-DU3C-0514	SW8270D	5/19/2014	5/22/2014	5/27/2014	5/28/2014
		SBSD-DU10-0514	D2216	5/17/2014	5/22/2014		5/29/2014
		SBSD-DU10-0514	SW6010C	5/17/2014	5/22/2014	5/30/2014	5/31/2014
		SBSD-DU10-0514	SW7471A	5/17/2014	5/22/2014	5/31/2014	5/31/2014
		SBSD-DU10-0514	SW8015D	5/17/2014	5/22/2014	5/27/2014	5/29/2014
		SBSD-DU10-0514	SW8081A	5/17/2014	5/22/2014	5/27/2014	5/27/2014
		SBSD-DU10-0514	SW8082	5/17/2014	5/22/2014	5/27/2014	5/28/2014
		SBSD-DU10-0514	SW8270D	5/17/2014	5/22/2014	5/27/2014	5/28/2014
		SBSD-DU209-0514	D2216	5/20/2014	5/22/2014		5/29/2014
		SBSD-DU209-0514	SW6010C	5/20/2014	5/22/2014	5/30/2014	5/31/2014
		SBSD-DU209-0514	SW7471A	5/20/2014	5/22/2014	5/31/2014	5/31/2014
		SBSD-DU209-0514	SW8015D	5/20/2014	5/22/2014	5/27/2014	5/28/2014
		SBSD-DU209-0514	SW8081A	5/20/2014	5/22/2014	5/27/2014	5/27/2014
		SBSD-DU209-0514	SW8082	5/20/2014	5/22/2014	5/27/2014	5/28/2014
		SBSD-DU209-0514	SW8270D	5/20/2014	5/22/2014	5/27/2014	5/28/2014
		SBSD-DU309-0514	D2216	5/20/2014	5/22/2014		5/29/2014
		SBSD-DU309-0514	D2216	5/20/2014	5/29/2014		5/29/2014
		SBSD-DU309-0514	SW6010C	5/20/2014	5/22/2014	5/30/2014	5/31/2014
		SBSD-DU309-0514	SW7471A	5/20/2014	5/22/2014	5/31/2014	5/31/2014
		SBSD-DU309-0514	SW8015D	5/20/2014	5/22/2014	5/27/2014	5/29/2014
		SBSD-DU309-0514	SW8081A	5/20/2014	5/22/2014	5/27/2014	5/27/2014
		SBSD-DU309-0514	SW8082	5/20/2014	5/22/2014	5/27/2014	5/28/2014

TABLE 1 Sample Chronology – Data Summary

Laboratory	SDG	Sample ID	Method	Sample Date	Receive Date	Extract Date	Analysis Date
CTS	ACTS_C3416	SBSD-DU309-0514	SW8270D	5/20/2014	5/22/2014	5/27/2014	5/28/2014
		SBSD-DU8-0514	D2216	5/17/2014	5/22/2014		5/29/2014
		SBSD-DU8-0514	SW6010C	5/17/2014	5/22/2014	5/30/2014	5/31/2014
		SBSD-DU8-0514	SW7471A	5/17/2014	5/22/2014	5/31/2014	5/31/2014
		SBSD-DU8-0514	SW8015D	5/17/2014	5/22/2014	5/27/2014	5/28/2014
		SBSD-DU8-0514	SW8081A	5/17/2014	5/22/2014	5/27/2014	5/27/2014
		SBSD-DU8-0514	SW8082	5/17/2014	5/22/2014	5/27/2014	5/28/2014
		SBSD-DU8-0514	SW8270D	5/17/2014	5/22/2014	5/27/2014	5/28/2014
		SBSD-DU9-0514	D2216	5/20/2014	5/22/2014		5/29/2014
		SBSD-DU9-0514	SW6010C	5/20/2014	5/22/2014	5/30/2014	5/31/2014
		SBSD-DU9-0514	SW7471A	5/20/2014	5/22/2014	5/31/2014	5/31/2014
		SBSD-DU9-0514	SW8015D	5/20/2014	5/22/2014	5/27/2014	5/28/2014
		SBSD-DU9-0514	SW8081A	5/20/2014	5/22/2014	5/27/2014	5/27/2014
		SBSD-DU9-0514	SW8082	5/20/2014	5/22/2014	5/27/2014	5/28/2014
		SBSD-DU9-0514	SW8270D	5/20/2014	5/22/2014	5/27/2014	5/28/2014
	ACTS_C3416	FASC-DU3A-0514	SW6010C	5/19/2014	5/22/2014	6/6/2014	6/9/2014
		FASC-DU3B-0514	SW6010C	5/19/2014	5/22/2014	6/6/2014	6/9/2014
		SBSD-DU10-0514	SW6010C	5/17/2014	5/22/2014	6/6/2014	6/9/2014
		SBSD-DU9-0514	SW6010C	5/20/2014	5/22/2014	6/6/2014	6/9/2014
	ACTS_C3420	FASC-DU206A-0514	D2216	5/20/2014	5/23/2014		5/29/2014
		FASC-DU206A-0514	SW6010C	5/20/2014	5/23/2014	5/30/2014	5/31/2014
		FASC-DU206A-0514	SW7471A	5/20/2014	5/23/2014	5/31/2014	5/31/2014
		FASC-DU206A-0514	SW8015D	5/20/2014	5/23/2014	5/28/2014	5/30/2014
		FASC-DU206A-0514	SW8081A	5/20/2014	5/23/2014	5/28/2014	5/28/2014
		FASC-DU206A-0514	SW8082	5/20/2014	5/23/2014	5/28/2014	5/29/2014
		FASC-DU206A-0514	SW8260C	5/20/2014	5/23/2014		5/29/2014
		FASC-DU206A-0514	SW8270D	5/20/2014	5/23/2014	5/28/2014	5/28/2014
		FASC-DU306A-0514	D2216	5/20/2014	5/23/2014		5/29/2014
		FASC-DU306A-0514	SW6010C	5/20/2014	5/23/2014	5/30/2014	5/31/2014
		FASC-DU306A-0514	SW7471A	5/20/2014	5/23/2014	5/31/2014	5/31/2014
		FASC-DU306A-0514	SW8015D	5/20/2014	5/23/2014	5/28/2014	5/30/2014
		FASC-DU306A-0514	SW8081A	5/20/2014	5/23/2014	5/28/2014	5/28/2014
		FASC-DU306A-0514	SW8082	5/20/2014	5/23/2014	5/28/2014	5/29/2014
		FASC-DU306A-0514	SW8260C	5/20/2014	5/23/2014		5/29/2014
		FASC-DU306A-0514	SW8270D	5/20/2014	5/23/2014	5/28/2014	5/28/2014

TABLE 1 Sample Chronology – Data Summary

Laboratory	SDG	Sample ID	Method	Sample Date	Receive Date	Extract Date	Analysis Date
CTS	ACTS_C3420	FASC-DU6A-0514	D2216	5/20/2014	5/23/2014		5/28/2014
		FASC-DU6A-0514	SW6010C	5/20/2014	5/23/2014	5/30/2014	5/31/2014
		FASC-DU6A-0514	SW7471A	5/20/2014	5/23/2014	5/31/2014	5/31/2014
		FASC-DU6A-0514	SW8015D	5/20/2014	5/23/2014	5/28/2014	5/30/2014
		FASC-DU6A-0514	SW8081A	5/20/2014	5/23/2014	5/28/2014	5/28/2014
		FASC-DU6A-0514	SW8082	5/20/2014	5/23/2014	5/28/2014	5/29/2014
		FASC-DU6A-0514	SW8260C	5/20/2014	5/23/2014		5/29/2014
		FASC-DU6A-0514	SW8270D	5/20/2014	5/23/2014	5/28/2014	5/28/2014
		FASC-DU6B-0514	D2216	5/20/2014	5/23/2014		5/29/2014
		FASC-DU6B-0514	SW6010C	5/20/2014	5/23/2014	5/30/2014	5/31/2014
		FASC-DU6B-0514	SW7471A	5/20/2014	5/23/2014	5/31/2014	5/31/2014
		FASC-DU6B-0514	SW8015D	5/20/2014	5/23/2014	5/28/2014	5/30/2014
		FASC-DU6B-0514	SW8081A	5/20/2014	5/23/2014	5/28/2014	5/28/2014
		FASC-DU6B-0514	SW8082	5/20/2014	5/23/2014	5/28/2014	5/29/2014
		FASC-DU6B-0514	SW8260C	5/20/2014	5/23/2014		5/29/2014
		FASC-DU6B-0514	SW8270D	5/20/2014	5/23/2014	5/28/2014	5/28/2014
		FASC-DU6C-0514	D2216	5/20/2014	5/23/2014		5/29/2014
		FASC-DU6C-0514	SW6010C	5/20/2014	5/23/2014	5/30/2014	5/31/2014
		FASC-DU6C-0514	SW7471A	5/20/2014	5/23/2014	5/31/2014	5/31/2014
		FASC-DU6C-0514	SW8015D	5/20/2014	5/23/2014	5/28/2014	5/30/2014
		FASC-DU6C-0514	SW8081A	5/20/2014	5/23/2014	5/28/2014	5/28/2014
		FASC-DU6C-0514	SW8082	5/20/2014	5/23/2014	5/28/2014	5/29/2014
		FASC-DU6C-0514	SW8260C	5/20/2014	5/23/2014		5/29/2014
		FASC-DU6C-0514	SW8270D	5/20/2014	5/23/2014	5/28/2014	5/28/2014
		FASC-DU6D-0514	D2216	5/20/2014	5/23/2014		5/29/2014
		FASC-DU6D-0514	SW6010C	5/20/2014	5/23/2014	5/30/2014	5/31/2014
		FASC-DU6D-0514	SW7471A	5/20/2014	5/23/2014	5/31/2014	5/31/2014
		FASC-DU6D-0514	SW8015D	5/20/2014	5/23/2014	5/28/2014	5/31/2014
		FASC-DU6D-0514	SW8081A	5/20/2014	5/23/2014	5/28/2014	5/28/2014
		FASC-DU6D-0514	SW8082	5/20/2014	5/23/2014	5/28/2014	5/29/2014
		FASC-DU6D-0514	SW8260C	5/20/2014	5/23/2014		5/29/2014
		FASC-DU6D-0514	SW8270D	5/20/2014	5/23/2014	5/28/2014	5/28/2014
		FASC-LNAPL01-0514	SW8015D	5/21/2014	5/23/2014	5/27/2014	5/28/2014
		FASC-LNAPL01-0514	SW8260C	5/21/2014	5/23/2014		5/27/2014
	ACTS_C3420	FAWC-DU60106AB-0514	D2216	5/20/2014	5/23/2014		6/5/2014

TABLE 1 Sample Chronology – Data Summary

Laboratory	SDG	Sample ID	Method	Sample Date	Receive Date	Extract Date	Analysis Date
ACTS	ACTS_C3420	FAWC-DU60106AB-0514	D2216	5/20/2014	6/5/2014		6/5/2014
		FAWC-DU60106AB-0514	SW8015D	5/20/2014	5/23/2014	6/5/2014	6/5/2014
		FAWC-DU60106C-0514	D2216	5/20/2014	5/23/2014		6/5/2014
		FAWC-DU60106C-0514	SW8015D	5/20/2014	5/23/2014	6/5/2014	6/5/2014
		FAWC-DU60712AB-0514	D2216	5/20/2014	5/23/2014		6/5/2014
		FAWC-DU60712AB-0514	SW8015D	5/20/2014	5/23/2014	6/5/2014	6/5/2014
		FAWC-DU60712C-0514	D2216	5/20/2014	5/23/2014		6/5/2014
		FAWC-DU60712C-0514	SW8015D	5/20/2014	5/23/2014	6/5/2014	6/5/2014
		FAWC-DU60712C-0514MS	SW8015D	5/20/2014	6/5/2014	6/5/2014	6/5/2014
		FAWC-DU60712C-0514SD	SW8015D	5/20/2014	6/5/2014	6/5/2014	6/5/2014
	ACTS_C3420	FASC-DU6A-0514	SW6010C	5/20/2014	5/23/2014	6/6/2014	6/10/2014
		FASC-DU6B-0514	SW6010C	5/20/2014	5/23/2014	6/6/2014	6/10/2014
		FASC-DU6D-0514	SW6010C	5/20/2014	5/23/2014	6/6/2014	6/10/2014
	ACTS_C3422	FASC-DU1NA-0514	D2216	5/23/2014	5/24/2014		6/2/2014
		FASC-DU1NA-0514	SW6010C	5/23/2014	5/24/2014	6/2/2014	6/3/2014
		FASC-DU1NA-0514	SW7471A	5/23/2014	5/24/2014	5/31/2014	5/31/2014
		FASC-DU1NA-0514	SW8015D	5/23/2014	5/24/2014	5/29/2014	6/3/2014
		FASC-DU1NA-0514	SW8081A	5/23/2014	5/24/2014	5/30/2014	6/3/2014
		FASC-DU1NA-0514	SW8082	5/23/2014	5/24/2014	5/30/2014	6/3/2014
		FASC-DU1NA-0514	SW8270D	5/23/2014	5/24/2014	5/29/2014	5/30/2014
		FASC-DU1SA-0514	D2216	5/22/2014	5/24/2014		6/2/2014
		FASC-DU1SA-0514	SW6010C	5/22/2014	5/24/2014	6/2/2014	6/3/2014
		FASC-DU1SA-0514	SW7471A	5/22/2014	5/24/2014	5/31/2014	5/31/2014
		FASC-DU1SA-0514	SW8015D	5/22/2014	5/24/2014	5/29/2014	6/3/2014
		FASC-DU1SA-0514	SW8081A	5/22/2014	5/24/2014	5/30/2014	6/3/2014
		FASC-DU1SA-0514	SW8082	5/22/2014	5/24/2014	5/30/2014	6/3/2014
		FASC-DU1SA-0514	SW8270D	5/22/2014	5/24/2014	5/29/2014	5/30/2014
		FASC-DU1SA-0514MS	SW8081A	5/30/2014	5/30/2014	5/30/2014	6/3/2014
		FASC-DU1SA-0514SD	SW8081A	5/30/2014	5/30/2014	5/30/2014	6/3/2014
		FASC-DU1SB-0514	D2216	5/22/2014	5/24/2014		6/2/2014
		FASC-DU1SB-0514	SW6010C	5/22/2014	5/24/2014	6/2/2014	6/3/2014
		FASC-DU1SB-0514	SW7471A	5/22/2014	5/24/2014	5/31/2014	5/31/2014
		FASC-DU1SB-0514	SW8015D	5/22/2014	5/24/2014	5/29/2014	6/3/2014
		FASC-DU1SB-0514	SW8081A	5/22/2014	5/24/2014	5/30/2014	6/3/2014
		FASC-DU1SB-0514	SW8082	5/22/2014	5/24/2014	5/30/2014	6/3/2014

TABLE 1 Sample Chronology – Data Summary

Laboratory	SDG	Sample ID	Method	Sample Date	Receive Date	Extract Date	Analysis Date
ACTS	ACTS_C3422	FASC-DU1SB-0514	SW8260C	5/22/2014	5/24/2014		5/31/2014
		FASC-DU1SB-0514	SW8270D	5/22/2014	5/24/2014	6/4/2014	6/4/2014
		FASC-DU204A-0514	D2216	5/23/2014	5/24/2014		6/2/2014
		FASC-DU204A-0514	SW6010C	5/23/2014	5/24/2014	6/2/2014	6/3/2014
		FASC-DU204A-0514	SW7471A	5/23/2014	5/24/2014	5/31/2014	5/31/2014
		FASC-DU204A-0514	SW8015D	5/23/2014	5/24/2014	5/29/2014	6/3/2014
		FASC-DU204A-0514	SW8081A	5/23/2014	5/24/2014	5/30/2014	6/3/2014
		FASC-DU204A-0514	SW8082	5/23/2014	5/24/2014	5/30/2014	6/3/2014
		FASC-DU204A-0514	SW8270D	5/23/2014	5/24/2014	5/29/2014	5/30/2014
		FASC-DU304A-0514	D2216	5/23/2014	5/24/2014		6/2/2014
		FASC-DU304A-0514	SW6010C	5/23/2014	5/24/2014	6/2/2014	6/3/2014
		FASC-DU304A-0514	SW7471A	5/23/2014	5/24/2014	5/31/2014	5/31/2014
		FASC-DU304A-0514	SW8015D	5/23/2014	5/24/2014	5/29/2014	6/3/2014
		FASC-DU304A-0514	SW8081A	5/23/2014	5/24/2014	5/30/2014	6/3/2014
		FASC-DU304A-0514	SW8082	5/23/2014	5/24/2014	5/30/2014	6/3/2014
		FASC-DU304A-0514	SW8270D	5/23/2014	5/24/2014	5/29/2014	5/30/2014
		FASC-DU304A-0514MS	SW8082	5/30/2014	5/30/2014	5/30/2014	6/3/2014
		FASC-DU304A-0514SD	SW8082	5/30/2014	5/30/2014	5/30/2014	6/3/2014
		FASC-DU4A-0514	D2216	5/23/2014	5/24/2014		6/2/2014
		FASC-DU4A-0514	SW6010C	5/23/2014	5/24/2014	6/2/2014	6/3/2014
		FASC-DU4A-0514	SW7471A	5/23/2014	5/24/2014	5/31/2014	5/31/2014
		FASC-DU4A-0514	SW8015D	5/23/2014	5/24/2014	5/29/2014	6/3/2014
		FASC-DU4A-0514	SW8081A	5/23/2014	5/24/2014	5/30/2014	6/3/2014
		FASC-DU4A-0514	SW8082	5/23/2014	5/24/2014	5/30/2014	6/3/2014
		FASC-DU4A-0514	SW8270D	5/23/2014	5/24/2014	5/29/2014	5/30/2014
		FASC-DU5A-0514	D2216	5/21/2014	5/24/2014		6/2/2014
		FASC-DU5A-0514	SW6010C	5/21/2014	5/24/2014	6/2/2014	6/3/2014
		FASC-DU5A-0514	SW7471A	5/21/2014	5/24/2014	5/31/2014	5/31/2014
		FASC-DU5A-0514	SW8015D	5/21/2014	5/24/2014	5/29/2014	5/30/2014
		FASC-DU5A-0514	SW8081A	5/21/2014	5/24/2014	5/30/2014	6/3/2014
		FASC-DU5A-0514	SW8082	5/21/2014	5/24/2014	5/30/2014	6/3/2014
		FASC-DU5A-0514	SW8260C	5/21/2014	5/24/2014		5/30/2014
		FASC-DU5A-0514	SW8270D	5/21/2014	5/24/2014	5/29/2014	5/30/2014
		FASC-DU5A-0514MS	SW7471A	5/31/2014	5/31/2014	5/31/2014	5/31/2014
		FASC-DU5A-0514SD	SW7471A	5/31/2014	5/31/2014	5/31/2014	5/31/2014

TABLE 1 Sample Chronology – Data Summary

Laboratory	SDG	Sample ID	Method	Sample Date	Receive Date	Extract Date	Analysis Date
ACTS	ACTS_C3422	FASC-DU5B-0514	D2216	5/21/2014	5/24/2014		6/2/2014
		FASC-DU5B-0514	SW6010C	5/21/2014	5/24/2014	6/2/2014	6/3/2014
		FASC-DU5B-0514	SW7471A	5/21/2014	5/24/2014	5/31/2014	5/31/2014
		FASC-DU5B-0514	SW8015D	5/21/2014	5/24/2014	5/29/2014	6/3/2014
		FASC-DU5B-0514	SW8081A	5/21/2014	5/24/2014	5/30/2014	6/3/2014
		FASC-DU5B-0514	SW8082	5/21/2014	5/24/2014	5/30/2014	6/3/2014
		FASC-DU5B-0514	SW8260C	5/21/2014	5/24/2014		5/30/2014
		FASC-DU5B-0514	SW8270D	5/21/2014	5/24/2014	5/29/2014	5/30/2014
		FASC-DU5C-0514	D2216	5/21/2014	5/24/2014		6/2/2014
		FASC-DU5C-0514	SW6010C	5/21/2014	5/24/2014	6/2/2014	6/3/2014
		FASC-DU5C-0514	SW7471A	5/21/2014	5/24/2014	5/31/2014	5/31/2014
		FASC-DU5C-0514	SW8015D	5/21/2014	5/24/2014	5/29/2014	5/30/2014
		FASC-DU5C-0514	SW8081A	5/21/2014	5/24/2014	5/30/2014	6/3/2014
		FASC-DU5C-0514	SW8082	5/21/2014	5/24/2014	5/30/2014	6/3/2014
		FASC-DU5C-0514	SW8260C	5/21/2014	5/24/2014		5/31/2014
		FASC-DU5C-0514	SW8270D	5/21/2014	5/24/2014	5/29/2014	5/30/2014
		FASC-DU5D-0514	D2216	5/21/2014	5/24/2014		6/2/2014
		FASC-DU5D-0514	SW6010C	5/21/2014	5/24/2014	6/2/2014	6/3/2014
		FASC-DU5D-0514	SW7471A	5/21/2014	5/24/2014	5/31/2014	5/31/2014
		FASC-DU5D-0514	SW8015D	5/21/2014	5/24/2014	5/29/2014	6/3/2014
		FASC-DU5D-0514	SW8081A	5/21/2014	5/24/2014	5/30/2014	6/3/2014
		FASC-DU5D-0514	SW8082	5/21/2014	5/24/2014	5/30/2014	6/3/2014
		FASC-DU5D-0514	SW8260C	5/21/2014	5/24/2014		5/31/2014
		FASC-DU5D-0514	SW8270D	5/21/2014	5/24/2014	5/29/2014	5/30/2014
	ACTS_C3422	FAWC-DU50106AB-0514	D2216	5/21/2014	5/24/2014		6/5/2014
		FAWC-DU50106AB-0514	SW8015D	5/21/2014	5/24/2014	6/5/2014	6/6/2014
		FAWC-DU50106C-0514	D2216	5/21/2014	5/24/2014		6/5/2014
		FAWC-DU50106C-0514	SW8015D	5/21/2014	5/24/2014	6/5/2014	6/6/2014
		FAWC-DU50712AB-0514	D2216	5/21/2014	5/24/2014		6/5/2014
		FAWC-DU50712AB-0514	SW8015D	5/21/2014	5/24/2014	6/5/2014	6/6/2014
		FAWC-DU50712C-0514	D2216	5/21/2014	5/24/2014		6/5/2014
		FAWC-DU50712C-0514	SW8015D	5/21/2014	5/24/2014	6/5/2014	6/6/2014
		FAWC-DU51318AB-0514	D2216	5/21/2014	5/24/2014		6/5/2014
		FAWC-DU51318AB-0514	SW8015D	5/21/2014	5/24/2014	6/5/2014	6/6/2014
		FAWC-DU51318C-0514	D2216	5/21/2014	5/24/2014		6/5/2014

TABLE 1 Sample Chronology – Data Summary

Laboratory	SDG	Sample ID	Method	Sample Date	Receive Date	Extract Date	Analysis Date
ACTS	ACTS_C3422	FAWC-DU51318C-0514	SW8015D	5/21/2014	5/24/2014	6/5/2014	6/6/2014
		FAWC-DU51924AB-0514	D2216	5/21/2014	5/24/2014		6/5/2014
		FAWC-DU51924AB-0514	SW8015D	5/21/2014	5/24/2014	6/5/2014	6/6/2014
		FAWC-DU51924C-0514	D2216	5/21/2014	5/24/2014		6/5/2014
		FAWC-DU51924C-0514	SW8015D	5/21/2014	5/24/2014	6/5/2014	6/6/2014
		FAWC-DU52530AB-0514	D2216	5/21/2014	5/24/2014		6/5/2014
		FAWC-DU52530AB-0514	SW8015D	5/21/2014	5/24/2014	6/5/2014	6/6/2014
		FAWC-DU52530C-0514	D2216	5/21/2014	5/24/2014		6/5/2014
		FAWC-DU52530C-0514	SW8015D	5/21/2014	5/24/2014	6/5/2014	6/6/2014
	ACTS_C3422	FASC-DU1SA-0514	SW6010C	5/22/2014	5/24/2014	6/10/2014	6/11/2014
		FASC-DU1SB-0514	SW6010C	5/22/2014	5/24/2014	6/10/2014	6/11/2014
		FASC-DU4A-0514	SW6010C	5/23/2014	5/24/2014	6/10/2014	6/11/2014
		FASC-DU5A-0514	SW6010C	5/21/2014	5/24/2014	6/6/2014	6/10/2014
		FASC-DU5B-0514	SW6010C	5/21/2014	5/24/2014	6/6/2014	6/10/2014
		FASC-DU5C-0514	SW6010C	5/21/2014	5/24/2014	6/6/2014	6/10/2014
		FASC-DU5D-0514	SW6010C	5/21/2014	5/24/2014	6/6/2014	6/10/2014
	ACTS_C3425	FASC-DU2A-0514	D2216	5/22/2014	5/28/2014		5/29/2014
		FASC-DU2A-0514	SW6010C	5/22/2014	5/28/2014	6/2/2014	6/3/2014
		FASC-DU2A-0514	SW7471A	5/22/2014	5/28/2014	6/2/2014	6/3/2014
		FASC-DU2A-0514	SW8015D	5/22/2014	5/28/2014	5/30/2014	5/31/2014
		FASC-DU2A-0514	SW8081A	5/22/2014	5/28/2014	5/30/2014	6/2/2014
		FASC-DU2A-0514	SW8082	5/22/2014	5/28/2014	5/30/2014	6/2/2014
		FASC-DU2A-0514	SW8270D	5/22/2014	5/28/2014	6/2/2014	6/2/2014
		FASC-DU2B-0514	SW6010C	5/22/2014	5/28/2014	6/2/2014	6/3/2014
		FASC-DU2B-0514	SW7471A	5/22/2014	5/28/2014	6/2/2014	6/3/2014
		FASC-DU2B-0514	SW8015D	5/22/2014	5/28/2014	5/30/2014	5/31/2014
		FASC-DU2B-0514	SW8081A	5/22/2014	5/28/2014	5/30/2014	6/2/2014
		FASC-DU2B-0514	SW8082	5/22/2014	5/28/2014	5/30/2014	6/2/2014
		FASC-DU2B-0514	SW8270D	5/22/2014	5/28/2014	6/2/2014	6/2/2014
		FASC-DU2C-0514	SW6010C	5/22/2014	5/28/2014	6/2/2014	6/3/2014
		FASC-DU2C-0514	SW7471A	5/22/2014	5/28/2014	6/2/2014	6/3/2014
		FASC-DU2C-0514	SW8015D	5/22/2014	5/28/2014	5/30/2014	5/31/2014
		FASC-DU2C-0514	SW8081A	5/22/2014	5/28/2014	5/30/2014	6/2/2014
		FASC-DU2C-0514	SW8082	5/22/2014	5/28/2014	5/30/2014	6/2/2014
		FASC-DU2C-0514	SW8270D	5/22/2014	5/28/2014	6/2/2014	6/2/2014

TABLE 1 Sample Chronology – Data Summary

Laboratory	SDG	Sample ID	Method	Sample Date	Receive Date	Extract Date	Analysis Date
ACTS	ACTS_C3425	FADS-DU6D1-0514	D2216	5/23/2014	5/28/2014		5/29/2014
		FADS-DU6D1-0514	SW6010C	5/23/2014	5/28/2014	5/30/2014	5/31/2014
		FADS-DU6D1-0514	SW7471A	5/23/2014	5/28/2014	5/31/2014	5/31/2014
		FADS-DU6D1-0514	SW8015D	5/23/2014	5/28/2014	5/29/2014	5/29/2014
		FADS-DU6D1-0514	SW8081A	5/23/2014	5/28/2014	5/29/2014	5/30/2014
		FADS-DU6D1-0514	SW8082	5/23/2014	5/28/2014	5/29/2014	5/30/2014
		FADS-DU6D1-0514	SW8260C	5/23/2014	5/28/2014		5/30/2014
		FADS-DU6D1-0514	SW8270D	5/23/2014	5/28/2014	5/29/2014	5/29/2014
		FADS-DUD2-0514	D2216	5/23/2014	5/28/2014		5/29/2014
		FADS-DUD2-0514	SW6010C	5/23/2014	5/28/2014	5/30/2014	5/31/2014
		FADS-DUD2-0514	SW7471A	5/23/2014	5/28/2014	5/31/2014	5/31/2014
		FADS-DUD2-0514	SW8015D	5/23/2014	5/28/2014	5/29/2014	5/29/2014
		FADS-DUD2-0514	SW8081A	5/23/2014	5/28/2014	5/29/2014	5/30/2014
		FADS-DUD2-0514	SW8082	5/23/2014	5/28/2014	5/29/2014	5/30/2014
		FADS-DUD2-0514	SW8260C	5/23/2014	5/28/2014		5/30/2014
		FADS-DUD2-0514	SW8270D	5/23/2014	5/28/2014	5/29/2014	5/29/2014
		FASC-DU2B-0514	D2216	5/22/2014	5/28/2014		5/29/2014
		FASC-DU2B-0514	SW8260C	5/22/2014	5/28/2014		5/30/2014
		FASC-DU2C-0514	D2216	5/22/2014	5/28/2014		5/29/2014
		FASC-DU2C-0514	SW8260C	5/22/2014	5/28/2014		5/30/2014
	ACTS_C3425	FASC-DU2A-0514	SW6010C	5/22/2014	5/28/2014	6/10/2014	6/11/2014
		FASC-DU2B-0514	SW6010C	5/22/2014	5/28/2014	6/10/2014	6/11/2014
		FASC-DU2C-0514	SW6010C	5/22/2014	5/28/2014	6/10/2014	6/11/2014
	ACTS_C3431	BKSC-DU7-0514	D2216	5/28/2014	5/30/2014		6/3/2014
		BKSC-DU7-0514	SW6010C	5/28/2014	5/30/2014	6/5/2014	6/6/2014
		BKSC-DU7-0514	SW7471A	5/28/2014	5/30/2014	6/4/2014	6/5/2014
		BKSC-DU7-0514	SW8015D	5/28/2014	5/30/2014	6/3/2014	6/3/2014
		BKSC-DU7-0514	SW8081A	5/28/2014	5/30/2014	6/3/2014	6/4/2014
		BKSC-DU7-0514	SW8082	5/28/2014	5/30/2014	6/3/2014	6/3/2014
		BKSC-DU7-0514	SW8270D	5/28/2014	5/30/2014	6/3/2014	6/3/2014
		BKSC-DU7-0514MS	SW8270D	6/3/2014	6/3/2014	6/3/2014	6/3/2014
		BKSC-DU7-0514SD	SW8270D	6/3/2014	6/3/2014	6/3/2014	6/3/2014
		FADS-DU6D3-0514	SW6010C	5/28/2014	5/30/2014	6/5/2014	6/6/2014
		FADS-DU6D3-0514	SW7471A	5/28/2014	5/30/2014	6/4/2014	6/5/2014
		FADS-DU6D3-0514	SW8015D	5/28/2014	5/30/2014	6/4/2014	6/5/2014

 June 2014
 Table 1
 Page 10 of 15

TABLE 1 Sample Chronology – Data Summary

Laboratory	SDG	Sample ID	Method	Sample Date	Receive Date	Extract Date	Analysis Date
ACTS	ACTS_C3431	FADS-DU6D3-0514	SW8081A	5/28/2014	5/30/2014	6/3/2014	6/4/2014
		FADS-DU6D3-0514	SW8082	5/28/2014	5/30/2014	6/3/2014	6/3/2014
		FADS-DU6D3-0514	SW8270D	5/28/2014	5/30/2014	6/3/2014	6/3/2014
		FASC-DU1NB-0514	SW6010C	5/28/2014	5/30/2014	6/5/2014	6/6/2014
		FASC-DU1NB-0514	SW7471A	5/28/2014	5/30/2014	6/4/2014	6/5/2014
		FASC-DU1NB-0514	SW8015D	5/28/2014	5/30/2014	6/3/2014	6/3/2014
		FASC-DU1NB-0514	SW8081A	5/28/2014	5/30/2014	6/3/2014	6/4/2014
		FASC-DU1NB-0514	SW8082	5/28/2014	5/30/2014	6/3/2014	6/3/2014
		FASC-DU1NB-0514	SW8270D	5/28/2014	5/30/2014	6/3/2014	6/3/2014
		FASC-DU1NB-0514MS	SW6010C	6/5/2014	6/5/2014	6/5/2014	6/6/2014
		FASC-DU1NB-0514SD	SW6010C	6/5/2014	6/5/2014	6/5/2014	6/6/2014
		FASC-DU1NC-0514	SW6010C	5/28/2014	5/30/2014	6/5/2014	6/6/2014
		FASC-DU1NC-0514	SW7471A	5/28/2014	5/30/2014	6/4/2014	6/5/2014
		FASC-DU1NC-0514	SW8015D	5/28/2014	5/30/2014	6/3/2014	6/3/2014
		FASC-DU1NC-0514	SW8081A	5/28/2014	5/30/2014	6/3/2014	6/4/2014
		FASC-DU1NC-0514	SW8082	5/28/2014	5/30/2014	6/3/2014	6/3/2014
		FASC-DU1NC-0514	SW8270D	5/28/2014	5/30/2014	6/3/2014	6/3/2014
		FASC-DU1NC-0514MS	SW7471A	6/3/2014	6/4/2014	6/4/2014	6/5/2014
		FASC-DU1NC-0514MS	SW8015D	6/3/2014	6/3/2014	6/3/2014	6/5/2014
		FASC-DU1NC-0514MS	SW8081A	6/3/2014	6/3/2014	6/3/2014	6/4/2014
		FASC-DU1NC-0514MS	SW8082	6/3/2014	6/3/2014	6/3/2014	6/3/2014
		FASC-DU1NC-0514MS	SW8270D	6/3/2014	6/3/2014	6/3/2014	6/3/2014
		FASC-DU1NC-0514SD	SW7471A	6/3/2014	6/4/2014	6/4/2014	6/5/2014
		FASC-DU1NC-0514SD	SW8015D	6/3/2014	6/3/2014	6/3/2014	6/5/2014
		FASC-DU1NC-0514SD	SW8081A	6/3/2014	6/3/2014	6/3/2014	6/4/2014
		FASC-DU1NC-0514SD	SW8082	6/3/2014	6/3/2014	6/3/2014	6/4/2014
		FASC-DU1NC-0514SD	SW8270D	6/3/2014	6/3/2014	6/3/2014	6/3/2014
		FASC-DU1SC-0514	SW6010C	5/28/2014	5/30/2014	6/5/2014	6/6/2014
		FASC-DU1SC-0514	SW7471A	5/28/2014	5/30/2014	6/4/2014	6/5/2014
		FASC-DU1SC-0514	SW8015D	5/28/2014	5/30/2014	6/3/2014	6/3/2014
		FASC-DU1SC-0514	SW8081A	5/28/2014	5/30/2014	6/3/2014	6/3/2014
		FASC-DU1SC-0514	SW8082	5/28/2014	5/30/2014	6/3/2014	6/3/2014
		FASC-DU1SC-0514	SW8270D	5/28/2014	5/30/2014	6/3/2014	6/3/2014
	ACTS_C3431	FADS-DU6D3-0514	D2216	5/28/2014	5/30/2014		6/3/2014
		FADS-DU6D3-0514	SW8260C	5/28/2014	5/30/2014		6/3/2014

June 2014Table 1Page 11 of 15

TABLE 1 Sample Chronology – Data Summary

Laboratory	SDG	Sample ID	Method	Sample Date	Receive Date	Extract Date	Analysis Date
ACTS ACTS_	ACTS_C3431	FASC-DU1NB-0514	D2216	5/28/2014	5/30/2014		6/3/2014
		FASC-DU1NB-0514	D2216	5/28/2014	6/3/2014		6/3/2014
		FASC-DU1NB-0514	SW8260C	5/28/2014	5/30/2014		6/3/2014
		FASC-DU1NC-0514	D2216	5/28/2014	5/30/2014		6/3/2014
		FASC-DU1NC-0514	SW8260C	5/28/2014	5/30/2014		6/3/2014
		FASC-DU1NC-0514MS	SW8260C	5/28/2014	6/3/2014		6/3/2014
		FASC-DU1NC-0514SD	SW8260C	5/28/2014	6/3/2014		6/3/2014
		FASC-DU1SC-0514	D2216	5/28/2014	5/30/2014		6/3/2014
		FASC-DU1SC-0514	SW8260C	5/28/2014	5/30/2014		6/3/2014
	ACTS_C3437	FASC-TW002-0514	SW6010C	5/30/2014	6/3/2014	6/4/2014	6/5/2014
		FASC-TW002-0514	SW7470A	5/30/2014	6/3/2014	6/3/2014	6/4/2014
		FASC-TW002-0514	SW8015D	5/30/2014	6/3/2014	6/3/2014	6/4/2014
		FASC-TW002-0514	SW8081A	5/30/2014	6/3/2014	6/4/2014	6/4/2014
		FASC-TW002-0514	SW8082	5/30/2014	6/3/2014	6/4/2014	6/5/2014
		FASC-TW002-0514	SW8260C	5/30/2014	6/3/2014		6/5/2014
		FASC-TW003-0514	SW6010C	5/30/2014	6/3/2014	6/4/2014	6/5/2014
		FASC-TW003-0514	SW7470A	5/30/2014	6/3/2014	6/3/2014	6/4/2014
		FASC-TW003-0514	SW8015D	5/30/2014	6/3/2014	6/3/2014	6/4/2014
		FASC-TW003-0514	SW8081A	5/30/2014	6/3/2014	6/4/2014	6/4/2014
		FASC-TW003-0514	SW8082	5/30/2014	6/3/2014	6/4/2014	6/5/2014
		FASC-TW003-0514	SW8260C	5/30/2014	6/3/2014		6/5/2014
		FASC-TW004-0514	SW6010C	6/2/2014	6/3/2014	6/4/2014	6/5/2014
		FASC-TW004-0514	SW7470A	6/2/2014	6/3/2014	6/3/2014	6/4/2014
		FASC-TW004-0514	SW8015D	6/2/2014	6/3/2014	6/3/2014	6/4/2014
		FASC-TW004-0514	SW8081A	6/2/2014	6/3/2014	6/4/2014	6/4/2014
		FASC-TW004-0514	SW8082	6/2/2014	6/3/2014	6/4/2014	6/5/2014
		FASC-TW004-0514	SW8260C	6/2/2014	6/3/2014		6/5/2014
		FASC-TW005-0514	SW6010C	5/30/2014	6/3/2014	6/4/2014	6/5/2014
		FASC-TW005-0514	SW7470A	5/30/2014	6/3/2014	6/3/2014	6/4/2014
		FASC-TW005-0514	SW8015D	5/30/2014	6/3/2014	6/3/2014	6/4/2014
		FASC-TW005-0514	SW8081A	5/30/2014	6/3/2014	6/4/2014	6/4/2014
		FASC-TW005-0514	SW8082	5/30/2014	6/3/2014	6/4/2014	6/5/2014
		FASC-TW005-0514	SW8260C	5/30/2014	6/3/2014		6/5/2014
		FASC-TW006-0514	SW6010C	5/30/2014	6/3/2014	6/4/2014	6/5/2014
		FASC-TW006-0514	SW7470A	5/30/2014	6/3/2014	6/3/2014	6/4/2014

June 2014Table 1Page 12 of 15

TABLE 1 Sample Chronology – Data Summary

Laboratory	SDG	Sample ID	Method	Sample Date	Receive Date	Extract Date	Analysis Date
CTS	ACTS_C3437	FASC-TW006-0514	SW8015D	5/30/2014	6/3/2014	6/3/2014	6/4/2014
		FASC-TW006-0514	SW8081A	5/30/2014	6/3/2014	6/4/2014	6/4/2014
		FASC-TW006-0514	SW8082	5/30/2014	6/3/2014	6/4/2014	6/5/2014
		FASC-TW006-0514	SW8260C	5/30/2014	6/3/2014		6/5/2014
		FASC-TW007-0514	SW6010C	5/30/2014	6/3/2014	6/4/2014	6/5/2014
		FASC-TW007-0514	SW7470A	5/30/2014	6/3/2014	6/3/2014	6/4/2014
		FASC-TW007-0514	SW8015D	5/30/2014	6/3/2014	6/3/2014	6/4/2014
		FASC-TW007-0514	SW8081A	5/30/2014	6/3/2014	6/4/2014	6/4/2014
		FASC-TW007-0514	SW8082	5/30/2014	6/3/2014	6/4/2014	6/5/2014
		FASC-TW007-0514	SW8260C	5/30/2014	6/3/2014		6/5/2014
		FASC-TW008-0514	SW6010C	5/30/2014	6/3/2014	6/4/2014	6/5/2014
		FASC-TW008-0514	SW7470A	5/30/2014	6/3/2014	6/3/2014	6/4/2014
		FASC-TW008-0514	SW8015D	5/30/2014	6/3/2014	6/3/2014	6/5/2014
		FASC-TW008-0514	SW8081A	5/30/2014	6/3/2014	6/4/2014	6/4/2014
		FASC-TW008-0514	SW8082	5/30/2014	6/3/2014	6/4/2014	6/5/2014
		FASC-TW008-0514	SW8260C	5/30/2014	6/3/2014		6/6/2014
		FASC-TW010-0514	SW6010C	6/2/2014	6/3/2014	6/4/2014	6/5/2014
		FASC-TW010-0514	SW7470A	6/2/2014	6/3/2014	6/3/2014	6/4/2014
		FASC-TW010-0514	SW8015D	6/2/2014	6/3/2014	6/3/2014	6/5/2014
		FASC-TW010-0514	SW8081A	6/2/2014	6/3/2014	6/4/2014	6/4/2014
		FASC-TW010-0514	SW8082	6/2/2014	6/3/2014	6/4/2014	6/5/2014
		FASC-TW010-0514	SW8260C	6/2/2014	6/3/2014		6/5/2014
		FASC-TW012-0514	SW6010C	5/30/2014	6/3/2014	6/4/2014	6/5/2014
		FASC-TW012-0514	SW7470A	5/30/2014	6/3/2014	6/3/2014	6/4/2014
		FASC-TW012-0514	SW8015D	5/30/2014	6/3/2014	6/3/2014	6/5/2014
		FASC-TW012-0514	SW8081A	5/30/2014	6/3/2014	6/4/2014	6/4/2014
		FASC-TW012-0514	SW8082	5/30/2014	6/3/2014	6/4/2014	6/5/2014
		FASC-TW012-0514	SW8260C	5/30/2014	6/3/2014		6/5/2014
		TB053014	SW8260C	5/30/2014	6/3/2014		6/6/2014
	ACTS_C3437	FASC-TW001-0514	SW6010C	5/29/2014	6/3/2014	6/4/2014	6/4/2014
		FASC-TW001-0514	SW7470A	5/29/2014	6/3/2014	6/3/2014	6/4/2014
		FASC-TW001-0514	SW8015D	5/29/2014	6/3/2014	6/3/2014	6/5/2014
		FASC-TW001-0514	SW8081A	5/29/2014	6/3/2014	6/4/2014	6/4/2014
		FASC-TW001-0514	SW8082	5/29/2014	6/3/2014	6/4/2014	6/5/2014
		FASC-TW001-0514	SW8260C	5/29/2014	6/3/2014		6/4/2014

June 2014Table 1Page 13 of 15

TABLE 1 Sample Chronology – Data Summary

Laboratory	SDG	Sample ID	Method	Sample Date	Receive Date	Extract Date	Analysis Date
ACTS	ACTS_C3437	FASC-TW001-0514MS	SW6010C	6/4/2014	6/4/2014	6/4/2014	6/4/2014
		FASC-TW001-0514MS	SW7470A	6/3/2014	6/3/2014	6/3/2014	6/4/2014
		FASC-TW001-0514MS	SW8015D	6/3/2014	6/3/2014	6/3/2014	6/5/2014
		FASC-TW001-0514MS	SW8081A	6/4/2014	6/4/2014	6/4/2014	6/5/2014
		FASC-TW001-0514MS	SW8082	6/4/2014	6/4/2014	6/4/2014	6/5/2014
		FASC-TW001-0514MS	SW8260C	6/4/2014	6/4/2014		6/4/2014
		FASC-TW001-0514SD	SW6010C	6/4/2014	6/4/2014	6/4/2014	6/4/2014
		FASC-TW001-0514SD	SW7470A	6/3/2014	6/3/2014	6/3/2014	6/4/2014
		FASC-TW001-0514SD	SW8015D	6/3/2014	6/3/2014	6/3/2014	6/5/2014
		FASC-TW001-0514SD	SW8081A	6/4/2014	6/4/2014	6/4/2014	6/5/2014
		FASC-TW001-0514SD	SW8082	6/4/2014	6/4/2014	6/4/2014	6/5/2014
		FASC-TW001-0514SD	SW8260C	6/4/2014	6/4/2014		6/4/2014
		FASC-TW009-0514	SW6010C	5/29/2014	6/3/2014	6/4/2014	6/4/2014
		FASC-TW009-0514	SW7470A	5/29/2014	6/3/2014	6/3/2014	6/4/2014
		FASC-TW009-0514	SW8015D	5/29/2014	6/3/2014	6/3/2014	6/5/2014
		FASC-TW009-0514	SW8081A	5/29/2014	6/3/2014	6/4/2014	6/4/2014
		FASC-TW009-0514	SW8082	5/29/2014	6/3/2014	6/4/2014	6/5/2014
		FASC-TW009-0514	SW8260C	5/29/2014	6/3/2014		6/4/2014
		FASC-TW011-0514	SW6010C	5/29/2014	6/3/2014	6/4/2014	6/5/2014
		FASC-TW011-0514	SW7470A	5/29/2014	6/3/2014	6/3/2014	6/4/2014
		FASC-TW011-0514	SW8015D	5/29/2014	6/3/2014	6/3/2014	6/5/2014
		FASC-TW011-0514	SW8081A	5/29/2014	6/3/2014	6/4/2014	6/4/2014
		FASC-TW011-0514	SW8082	5/29/2014	6/3/2014	6/4/2014	6/5/2014
		FASC-TW011-0514	SW8260C	5/29/2014	6/3/2014		6/4/2014
		FASC-TW111-0514	SW6010C	5/29/2014	6/3/2014	6/4/2014	6/5/2014
		FASC-TW111-0514	SW7470A	5/29/2014	6/3/2014	6/3/2014	6/4/2014
		FASC-TW111-0514	SW8015D	5/29/2014	6/3/2014	6/3/2014	6/5/2014
		FASC-TW111-0514	SW8081A	5/29/2014	6/3/2014	6/4/2014	6/4/2014
		FASC-TW111-0514	SW8082	5/29/2014	6/3/2014	6/4/2014	6/5/2014
		FASC-TW111-0514	SW8260C	5/29/2014	6/3/2014		6/6/2014
		TB052914	SW8260C	5/29/2014	6/3/2014		6/4/2014
	ACTS_C3443	FASC-DU4B-0614	D2216	6/5/2014	6/6/2014		6/10/2014
		FASC-DU4B-0614	SW6010C	6/5/2014	6/6/2014	6/9/2014	6/11/2014
		FASC-DU4B-0614	SW7471A	6/5/2014	6/6/2014	6/9/2014	6/10/2014
		FASC-DU4B-0614MS	D2216	6/9/2014	6/10/2014		6/10/2014

 June 2014
 Table 1
 Page 14 of 15

TABLE 1 Sample Chronology – Data Summary

Laboratory	SDG	Sample ID	Method	Sample Date	Receive Date	Extract Date	Analysis Date
ACTS	ACTS_C3443	FASC-DU4B-0614MS	SW6010C	6/9/2014	6/9/2014	6/9/2014	6/11/2014
		FASC-DU4B-0614SD	SW6010C	6/9/2014	6/9/2014	6/9/2014	6/11/2014
		FASC-DU4-EB-0614	SW6010C	6/5/2014	6/6/2014	6/6/2014	6/10/2014
		FASC-DU4-EB-0614	SW7470A	6/5/2014	6/6/2014	6/9/2014	6/9/2014
		FASC-TB-0614	SW8260C	6/5/2014	6/6/2014		6/9/2014
		FASC-TW004-EB-0614	SW6010C	6/3/2014	6/6/2014	6/6/2014	6/10/2014
		FASC-TW004-EB-0614	SW7470A	6/3/2014	6/6/2014	6/9/2014	6/9/2014
		FASC-TW004-EB-0614	SW7470A	6/3/2014	6/9/2014	6/9/2014	6/9/2014
		FASC-TW004-EB-0614	SW8015D	6/3/2014	6/6/2014	6/6/2014	6/7/2014
		FASC-TW004-EB-0614	SW8081A	6/3/2014	6/6/2014	6/6/2014	6/6/2014
		FASC-TW004-EB-0614	SW8082	6/3/2014	6/6/2014	6/6/2014	6/7/2014
		FASC-TW004-EB-0614	SW8260C	6/3/2014	6/6/2014		6/9/2014
		FASC-TW004-EB-0614	SW8270D	6/3/2014	6/6/2014	6/9/2014	6/9/2014

June 2014 Table 1 Page 15 of 15

TABLE 2 Sample Summary by Chain of Custody – Data Summary

CoC Number	Sample Date	Matrix	Sample ID / QAQC Type	SDG	Laboratory
C34168RV1					
	19-May-14	SOIL	FASC-DU3A-0514 / N	ACTO_C34168R_V1	ACTS
			FASC-DU3B-0514 / N	ACTO_C34168R_V1	ACTS
			FASC-DU3C-0514 / N	ACTO_C34168R_V1	ACTS
	17-May-14		SBSD-DU10-0514 / N	ACTO_C34168R_V1	ACTS
	20-May-14		SBSD-DU209-0514 / N	ACTO_C34168R_V1	ACTS
			SBSD-DU309-0514 / N	ACTO_C34168R_V1	ACTS
	17-May-14		SBSD-DU8-0514 / N	ACTO_C34168R_V1	ACTS
	20-May-14		SBSD-DU9-0514 / N	ACTO_C34168R_V1	ACTS
C34168TV1					
	19-May-14	WATER	FASC-DU3A-0514 / N	ACTS_C34168T_v1	ACTS
			FASC-DU3B-0514 / N	ACTS_C34168T_v1	ACTS
	17-May-14		SBSD-DU10-0514 / N	ACTS_C34168T_v1	ACTS
	20-May-14		SBSD-DU9-0514 / N	ACTS_C34168T_v1	ACTS
C34168V1					
	19-May-14	SOIL	FASC-DU3A-0514 / N	ACTS_C34168_V1	ACTS
	30-May-14		FASC-DU3A-0514MS / MS	ACTS_C34168_V1	ACTS
			FASC-DU3A-0514SD / SD	ACTS_C34168_V1	ACTS
	19-May-14		FASC-DU3B-0514 / N	ACTS_C34168_V1	ACTS
			FASC-DU3C-0514 / N	ACTS_C34168_V1	ACTS
	17-May-14		SBSD-DU10-0514 / N	ACTS_C34168_V1	ACTS
	20-May-14		SBSD-DU209-0514 / N	ACTS_C34168_V1	ACTS
			SBSD-DU309-0514 / N	ACTS_C34168_V1	ACTS
	17-May-14		SBSD-DU8-0514 / N	ACTS_C34168_V1	ACTS
	20-May-14		SBSD-DU9-0514 / N	ACTS_C34168_V1	ACTS
C34207BV1					
	20-May-14	SOIL	FAWC-DU60106AB-0514 / N	ACTS_C34207B_v1	ACTS
			FAWC-DU60106C-0514 / N	ACTS_C34207B_v1	ACTS
			FAWC-DU60712AB-0514 / N	ACTS_C34207B_v1	ACTS
			FAWC-DU60712C-0514 / N	ACTS_C34207B_v1	ACTS
			FAWC-DU60712C-0514MS / MS	ACTS_C34207B_v1	ACTS
			FAWC-DU60712C-0514SD / SD	ACTS_C34207B_v1	ACTS

TABLE 2 Sample Summary by Chain of Custody – Data Summary

CoC Number	Sample Date	Matrix	Sample ID / QAQC Type	SDG	Laboratory
C34207RV1					
	20-May-14	SOIL	FASC-DU206A-0514 / N	ACTO_C34207R_V1	ACTS
			FASC-DU306A-0514 / N	ACTO_C34207R_V1	ACTS
			FASC-DU6A-0514 / N	ACTO_C34207R_V1	ACTS
			FASC-DU6B-0514 / N	ACTO_C34207R_V1	ACTS
			FASC-DU6C-0514 / N	ACTO_C34207R_V1	ACTS
			FASC-DU6D-0514 / N	ACTO_C34207R_V1	ACTS
C34207TV1					
	20-May-14	WATER	FASC-DU6A-0514 / N	ACTS_C34207T_v1	ACTS
	•		FASC-DU6B-0514 / N	ACTS_C34207T_v1	ACTS
			FASC-DU6D-0514 / N	ACTS_C34207T_v1	ACTS
C34207V2					
	20-May-14	SOIL	FASC-DU206A-0514 / N	ACTS_C34207_V2	ACTS
			FASC-DU306A-0514 / N	ACTS_C34207_V2	ACTS
			FASC-DU6A-0514 / N	ACTS_C34207_V2	ACTS
			FASC-DU6B-0514 / N	ACTS_C34207_V2	ACTS
			FASC-DU6C-0514 / N	ACTS_C34207_V2	ACTS
			FASC-DU6D-0514 / N	ACTS_C34207_V2	ACTS
	21-May-14		FASC-LNAPL01-0514 / N	ACTS_C34207_V2	ACTS
C34221BV1					
	21-May-14	SOIL	FAWC-DU50106AB-0514 / N	ACTS_C34221B_V1	ACTS
			FAWC-DU50106C-0514 / N	ACTS_C34221B_V1	ACTS
			FAWC-DU50712AB-0514 / N	ACTS_C34221B_V1	ACTS
			FAWC-DU50712C-0514 / N	ACTS_C34221B_V1	ACTS
			FAWC-DU51318AB-0514 / N	ACTS_C34221B_V1	ACTS
			FAWC-DU51318C-0514 / N	ACTS_C34221B_V1	ACTS
			FAWC-DU51924AB-0514 / N	ACTS_C34221B_V1	ACTS
			FAWC-DU51924C-0514 / N	ACTS_C34221B_V1	ACTS
			FAWC-DU52530AB-0514 / N	ACTS_C34221B_V1	ACTS
			FAWC-DU52530C-0514 / N	ACTS_C34221B_V1	ACTS
C34221RV1					
	23-May-14	SOIL	FASC-DU1NA-0514 / N	ACTO_C34221R_v1	ACTS
	22-May-14		FASC-DU1SA-0514 / N	ACTO_C34221R_v1	ACTS

TABLE 2 Sample Summary by Chain of Custody – Data Summary

CoC Number	Sample Date	Matrix	Sample ID / QAQC Type	SDG	Laboratory
C34221RV1					
	22-May-14	SOIL	FASC-DU1SB-0514 / N	ACTO_C34221R_v1	ACTS
	23-May-14		FASC-DU204A-0514 / N	ACTO_C34221R_v1	ACTS
	•		FASC-DU304A-0514 / N	ACTO_C34221R_v1	ACTS
			FASC-DU4A-0514 / N	ACTO_C34221R_v1	ACTS
	21-May-14		FASC-DU5A-0514 / N	ACTO_C34221R_v1	ACTS
	02-Jun-14		FASC-DU5A-0514MS / MS	ACTO_C34221R_v1	ACTS
			FASC-DU5A-0514SD / SD	ACTO_C34221R_v1	ACTS
	21-May-14		FASC-DU5B-0514 / N	ACTO_C34221R_v1	ACTS
			FASC-DU5C-0514 / N	ACTO_C34221R_v1	ACTS
			FASC-DU5D-0514 / N	ACTO_C34221R_v1	ACTS
C34221TV1					
	22-May-14	WATER	FASC-DU1SA-0514 / N	ACTS_C34221T_V1	ACTS
			FASC-DU1SB-0514 / N	ACTS_C34221T_V1	ACTS
	23-May-14		FASC-DU4A-0514 / N	ACTS_C34221T_V1	ACTS
	21-May-14		FASC-DU5A-0514 / N	ACTS_C34221T_V1	ACTS
			FASC-DU5B-0514 / N	ACTS_C34221T_V1	ACTS
			FASC-DU5C-0514 / N	ACTS_C34221T_V1	ACTS
			FASC-DU5D-0514 / N	ACTS_C34221T_V1	ACTS
C34221V1					
	23-May-14	SOIL	FASC-DU1NA-0514 / N	ACTS_C34221_V1	ACTS
	22-May-14		FASC-DU1SA-0514 / N	ACTS_C34221_V1	ACTS
	30-May-14		FASC-DU1SA-0514MS / MS	ACTS_C34221_V1	ACTS
			FASC-DU1SA-0514SD / SD	ACTS_C34221_V1	ACTS
	22-May-14		FASC-DU1SB-0514 / N	ACTS_C34221_V1	ACTS
	23-May-14		FASC-DU204A-0514 / N	ACTS_C34221_V1	ACTS
			FASC-DU304A-0514 / N	ACTS_C34221_V1	ACTS
	30-May-14		FASC-DU304A-0514MS / MS	ACTS_C34221_V1	ACTS
			FASC-DU304A-0514SD / SD	ACTS_C34221_V1	ACTS
	23-May-14		FASC-DU4A-0514 / N	ACTS_C34221_V1	ACTS
	21-May-14		FASC-DU5A-0514 / N	ACTS_C34221_V1	ACTS
	31-May-14		FASC-DU5A-0514MS / MS	ACTS_C34221_V1	ACTS
			FASC-DU5A-0514SD / SD	ACTS_C34221_V1	ACTS
	21-May-14		FASC-DU5B-0514 / N	ACTS_C34221_V1	ACTS

TABLE 2 Sample Summary by Chain of Custody – Data Summary

CoC Number	Sample Date	Matrix	Sample ID / QAQC Type	SDG	Laboratory
C34221V1					
	21-May-14	SOIL	FASC-DU5C-0514 / N	ACTS_C34221_V1	ACTS
			FASC-DU5D-0514 / N	ACTS_C34221_V1	ACTS
C34253AV1					
	23-May-14	SOIL	FADS-DU6D1-0514 / N	ACTS_C34253A_V1	ACTS
			FADS-DUD2-0514 / N	ACTS_C34253A_V1	ACTS
	22-May-14		FASC-DU2B-0514 / N	ACTS_C34253A_V1	ACTS
			FASC-DU2C-0514 / N	ACTS_C34253A_V1	ACTS
C34253BV1					
	23-May-14	SOIL	FADS-DU6D1-0514 / N	ACTO_C34253B_v1	ACTS
			FADS-DUD2-0514 / N	ACTO_C34253B_v1	ACTS
C34253RV1					
	22-May-14	SOIL	FASC-DU2A-0514 / N	ACTO_C34253R_v1	ACTS
	,		FASC-DU2B-0514 / N	ACTO_C34253R_v1	ACTS
			FASC-DU2C-0514 / N	ACTO_C34253R_v1	ACTS
C34253TV1					
	22-May-14	WATER	FASC-DU2A-0514 / N	ACTS_C34253T_V1	ACTS
	•		FASC-DU2B-0514 / N	ACTS_C34253T_V1	ACTS
			FASC-DU2C-0514 / N	ACTS_C34253T_V1	ACTS
C34253V1					
	22-May-14	SOIL	FASC-DU2A-0514 / N	ACTS_C34253_v1	ACTS
	•		FASC-DU2B-0514 / N	ACTS_C34253_v1	ACTS
			FASC-DU2C-0514 / N	ACTS_C34253_v1	ACTS
C34315AV1					
	28-May-14	SOIL	FADS-DU6D3-0514 / N	ACTS_C34315A_V1	ACTS
	•		FASC-DU1NB-0514 / N	ACTS_C34315A_V1	ACTS
			FASC-DU1NC-0514 / N	ACTS_C34315A_V1	ACTS
			FASC-DU1NC-0514MS / MS	ACTS_C34315A_V1	ACTS
			FASC-DU1NC-0514SD / SD	ACTS_C34315A_V1	ACTS
			FASC-DU1SC-0514 / N	ACTS_C34315A_V1	ACTS

TABLE 2 Sample Summary by Chain of Custody – Data Summary

CoC Number	Sample Date	Matrix	Sample ID / QAQC Type	SDG	Laboratory
C34315RV1					
	28-May-14	SOIL	BKSC-DU7-0514 / N	ACTO_C34315R_v1	ACTS
			FADS-DU6D3-0514 / N	ACTO_C34315R_v1	ACTS
			FASC-DU1NB-0514 / N	ACTO_C34315R_v1	ACTS
			FASC-DU1NC-0514 / N	ACTO_C34315R_v1	ACTS
	05-Jun-14		FASC-DU1NC-0514MS / MS	ACTO_C34315R_v1	ACTS
			FASC-DU1NC-0514SD / SD	ACTO_C34315R_v1	ACTS
	28-May-14		FASC-DU1SC-0514 / N	ACTO_C34315R_v1	ACTS
C34315V1					
	28-May-14	SOIL	BKSC-DU7-0514 / N	ACTS_C34315_V1	ACTS
	03-Jun-14		BKSC-DU7-0514MS / MS	ACTS_C34315_V1	ACTS
			BKSC-DU7-0514SD / SD	ACTS_C34315_V1	ACTS
	28-May-14		FADS-DU6D3-0514 / N	ACTS_C34315_V1	ACTS
			FASC-DU1NB-0514 / N	ACTS_C34315_V1	ACTS
	05-Jun-14		FASC-DU1NB-0514MS / MS	ACTS_C34315_V1	ACTS
			FASC-DU1NB-0514SD / SD	ACTS_C34315_V1	ACTS
	28-May-14		FASC-DU1NC-0514 / N	ACTS_C34315_V1	ACTS
	03-Jun-14		FASC-DU1NC-0514MS / MS	ACTS_C34315_V1	ACTS
			FASC-DU1NC-0514SD / SD	ACTS_C34315_V1	ACTS
	28-May-14		FASC-DU1SC-0514 / N	ACTS_C34315_V1	ACTS
C34370RV1					
	30-May-14	WATER	FASC-TW002-0514 / N	ACTO_C34370R_v1	ACTS
			FASC-TW003-0514 / N	ACTO_C34370R_v1	ACTS
	02-Jun-14		FASC-TW004-0514 / N	ACTO_C34370R_v1	ACTS
	30-May-14		FASC-TW005-0514 / N	ACTO_C34370R_v1	ACTS
			FASC-TW006-0514 / N	ACTO_C34370R_v1	ACTS
			FASC-TW007-0514 / N	ACTO_C34370R_v1	ACTS
			FASC-TW008-0514 / N	ACTO_C34370R_v1	ACTS
	02-Jun-14		FASC-TW010-0514 / N	ACTO_C34370R_v1	ACTS
	30-May-14		FASC-TW012-0514 / N	ACTO_C34370R_v1	ACTS
C34370V1					
	30-May-14	WATER	FASC-TW002-0514 / N	ACTS_C34370_v1	ACTS
			FASC-TW003-0514 / N	ACTS_C34370_v1	ACTS

TABLE 2 Sample Summary by Chain of Custody – Data Summary

CoC Number	Sample Date	Matrix	Sample ID / QAQC Type	SDG	Laboratory
C34370V1					
	02-Jun-14	WATER	FASC-TW004-0514 / N	ACTS_C34370_v1	ACTS
	30-May-14		FASC-TW005-0514 / N	ACTS_C34370_v1	ACTS
			FASC-TW006-0514 / N	ACTS_C34370_v1	ACTS
			FASC-TW007-0514 / N	ACTS_C34370_v1	ACTS
			FASC-TW008-0514 / N	ACTS_C34370_v1	ACTS
	02-Jun-14		FASC-TW010-0514 / N	ACTS_C34370_v1	ACTS
	30-May-14		FASC-TW012-0514 / N	ACTS_C34370_v1	ACTS
			TB053014 / TB	ACTS_C34370_v1	ACTS
C34371RV1					
	29-May-14	WATER	FASC-TW001-0514 / N	ACTO_C34371R_V1	ACTS
	05-Jun-14		FASC-TW001-0514MS / MS	ACTO_C34371R_V1	ACTS
			FASC-TW001-0514SD / SD	ACTO_C34371R_V1	ACTS
	29-May-14		FASC-TW009-0514 / N	ACTO_C34371R_V1	ACTS
			FASC-TW011-0514 / N	ACTO_C34371R_V1	ACTS
			FASC-TW111-0514 / FD	ACTO_C34371R_V1	ACTS
C34371V1					
	29-May-14	WATER	FASC-TW001-0514 / N	ACTS_C34371_v1	ACTS
	03-Jun-14		FASC-TW001-0514MS / MS	ACTS_C34371_v1	ACTS
	04-Jun-14		FASC-TW001-0514MS / MS	ACTS_C34371_v1	ACTS
	03-Jun-14		FASC-TW001-0514SD / SD	ACTS_C34371_v1	ACTS
	04-Jun-14		FASC-TW001-0514SD / SD	ACTS_C34371_v1	ACTS
	29-May-14		FASC-TW009-0514 / N	ACTS_C34371_v1	ACTS
			FASC-TW011-0514 / N	ACTS_C34371_v1	ACTS
			FASC-TW111-0514 / FD	ACTS_C34371_v1	ACTS
			TB052914 / TB	ACTS_C34371_v1	ACTS
C34432RV1					
	03-Jun-14	WATER	FASC-TW004-EB-0614 / EB	ACTO_C34432R_V1	ACTS
	09-Jun-14		FASC-TW004-EB-0614EBMS / MS	ACTO_C34432R_V1	ACTS
			FASC-TW004-EB-0614EBSD / SD	ACTO_C34432R_V1	ACTS
C34432V1					
	05-Jun-14	SOIL	FASC-DU4B-0614 / N	ACTS_C34432_V1	ACTS
	09-Jun-14		FASC-DU4B-0614MS / MS	ACTS_C34432_V1	ACTS
			T.I. 0		

TABLE 2 Sample Summary by Chain of Custody – Data Summary

CoC Number	Sample Date	Matrix	Sample ID / QAQC Type	SDG	Laboratory
C34432V1					
	09-Jun-14	SOIL	FASC-DU4B-0614SD / SD	ACTS_C34432_V1	ACTS
	05-Jun-14	WATER	FASC-DU4-EB-0614 / EB	ACTS_C34432_V1	ACTS
			FASC-TB-0614 / TB	ACTS_C34432_V1	ACTS
	03-Jun-14		FASC-TW004-EB-0614 / EB	ACTS_C34432_V1	ACTS

QAQC Type

N = normal environmental sample
FD = field duplicate
MS = matrix spike
SD = spike duplicate
TB = trip blank
EB = equipment blank
AB = ambient blank

FB = field blank

TABLE 3 Site Completeness by Analyte – Flagging Statistics

Matrix Method Analyte			Number of Sam	ples
SOIL				
SW6010C				
Arsenic			35	
Validation Flag Category: Matrix	1	J	Flags (2.86%)	for Matrix spike recovery less than lower limit
Validation Flag Category: Matrix	1	J	Flags (2.86%)	for Matrix spike recovery greater than upper limit
Validation Flag Category: Matrix	1	J	Flags (2.86%)	for Matrix spike duplicate recovery criteria less than lower limit
Cadmium			35	
Validation Flag Category: Matrix	1	J	Flags (2.86%)	for Matrix spike recovery less than lower limit
Lead			35	
Validation Flag Category: Confirmation	6	J	Flags (17.14%)	for Confirmation Precision Exceeded
Selenium			35	
Validation Flag Category: Matrix	1	J	Flags (2.86%)	for Matrix spike recovery less than lower limit
Validation Flag Category: Matrix	1	J	Flags (2.86%)	for Matrix spike duplicate recovery criteria less than lower limit
Silver			35	
Validation Flag Category: Matrix	1	UJ	Flags (2.86%)	for Matrix spike RPD criteria exceedance
Validation Flag Category: Matrix	1	UJ	Flags (2.86%)	for Matrix spike recovery less than lower limit
Validation Flag Category: Matrix	1	J	Flags (2.86%)	for Matrix spike recovery greater than upper limit
Validation Flag Category: Matrix	1	J	Flags (2.86%)	for Matrix spike duplicate recovery criteria greater than upper limit
SW8015D				
Motor Oil			49	
Validation Flag Category: HoldingTime	14	J	Flags (28.57%)	for Holding time exceeded

TABLE 3 Site Completeness by Analyte – Flagging Statistics

Matrix Method An	alyte			Nun	nber of Sam	ples
SOIL						
SW8015D						
TPH-	Diesel				49	
Validation Flag Category:	HoldingTime	14	J	Flags	(28.57%)	for Holding time exceeded
SW8081A						
4,4'-[DDD				34	
Validation Flag Category:	Confirmation	1	J	Flags	(2.94%)	for Confirmation Precision Exceeded
Validation Flag Category:	Matrix	1	UJ	Flags	(2.94%)	for Matrix spike recovery less than lower limit
Validation Flag Category:	Matrix	1	UJ	Flags	(2.94%)	for Matrix spike duplicate recovery criteria less than lower limit
4,4'-[DDE				34	
Validation Flag Category:	Matrix	1	J	Flags	(2.94%)	for Matrix spike recovery less than lower limit
Validation Flag Category:	Matrix	1	J	Flags	(2.94%)	for Matrix spike duplicate recovery criteria less than lower limit
Validation Flag Category:	SurrogateRecovery	1	J	Flags	(2.94%)	for Surrogate recovery greater than upper limit
4,4'-[DDT				34	
Validation Flag Category:	SurrogateRecovery	1	J	Flags	(2.94%)	for Surrogate recovery greater than upper limit
Aldri	n				34	
Validation Flag Category:	Matrix	1	UJ	Flags	(2.94%)	for Matrix spike duplicate recovery criteria less than lower limit
alpha	a-BHC				34	
Validation Flag Category:	Matrix	1	UJ	Flags	(2.94%)	for Matrix spike duplicate recovery criteria less than lower limit
Chlo	rdane				34	
Validation Flag Category:	SurrogateRecovery	2	J	Flags	(5.88%)	for Surrogate recovery greater than upper limit

TABLE 3 Site Completeness by Analyte – Flagging Statistics

Matrix Method Analyte	Number of Samples
SOIL	
SW8081A	
delta-BHC	34
Validation Flag Category: Matrix	1 UJ Flags (2.94%) for Matrix spike duplicate recovery criteria less than lower limit
Dieldrin	34
Validation Flag Category: Confirmation	1 J Flags (2.94%) for Confirmation Precision Exceeded
Validation Flag Category: Matrix	1 J Flags (2.94%) for Matrix spike recovery greater than upper limit
Validation Flag Category: SurrogateRecovery	1 J Flags (2.94%) for Surrogate recovery greater than upper limit
Heptachlor epoxide	34
Validation Flag Category: Matrix	1 UJ Flags (2.94%) for Matrix spike recovery greater than upper limit
Validation Flag Category: Matrix	1 UJ Flags (2.94%) for Matrix spike duplicate recovery criteria greater than upper limit
Validation Flag Category: SurrogateRecovery	2 J Flags (5.88%) for Surrogate recovery greater than upper limit
SW8082	
Aroclor-1016	34
Validation Flag Category: Matrix	1 UJ Flags (2.94%) for Matrix spike recovery greater than upper limit
Validation Flag Category: Matrix	1 UJ Flags (2.94%) for Matrix spike duplicate recovery criteria greater than upper limit
Aroclor-1260	34
Validation Flag Category: Matrix	1 UJ Flags (2.94%) for Matrix spike recovery greater than upper limit
Validation Flag Category: Matrix	1 UJ Flags (2.94%) for Matrix spike duplicate recovery criteria greater than upper limit
SW8151A	

TABLE 3 Site Completeness by Analyte – Flagging Statistics

Matrix Method Analyte	Number of Samples
SOIL	
SW8151A	
2,4,5-T	34
Validation Flag Category: Matrix	1 UJ Flags (2.94%) for Matrix spike RPD criteria exceedance
Validation Flag Category: Matrix	2 UJ Flags (5.88%) for Matrix spike recovery less than lower limit
Validation Flag Category: Matrix	1 UJ Flags (2.94%) for Matrix spike duplicate recovery criteria less than lower limit
2,4-DB	34
Validation Flag Category: Matrix	1 UJ Flags (2.94%) for Matrix spike RPD criteria exceedance
Validation Flag Category: Matrix	2 UJ Flags (5.88%) for Matrix spike recovery greater than upper limit
Validation Flag Category: Matrix	1 UJ Flags (2.94%) for Matrix spike duplicate recovery criteria greater than upper limit
Dicamba	34
Validation Flag Category: Matrix	1 UJ Flags (2.94%) for Matrix spike RPD criteria exceedance
Validation Flag Category: Matrix	1 UJ Flags (2.94%) for Matrix spike duplicate recovery criteria less than lower limit
Dichloroprop	34
Validation Flag Category: Matrix	1 UJ Flags (2.94%) for Matrix spike RPD criteria exceedance
Validation Flag Category: Matrix	1 UJ Flags (2.94%) for Matrix spike recovery less than lower limit
Dinoseb	34
Validation Flag Category: Confirmation	7 J Flags (20.59%) for Confirmation Precision Exceeded
Pentachlorophenol	34
Validation Flag Category: Confirmation	9 J Flags (26.47%) for Confirmation Precision Exceeded
Validation Flag Category: Matrix	2 J Flags (5.88%) for Matrix spike recovery less than lower limit
Validation Flag Category: Matrix	1 J Flags (2.94%) for Matrix spike duplicate recovery criteria less than lower limit
SW8260C	

TABLE 3 Site Completeness by Analyte – Flagging Statistics

Matrix Method Analyte	Number of Samples
SOIL	
SW8260C	
1,1-DCE	21
Validation Flag Category: Matrix	1 UJ Flags (4.76%) for Matrix spike recovery less than lower limit
Validation Flag Category: Matrix	1 UJ Flags (4.76%) for Matrix spike duplicate recovery criteria less than lower limit
Bromomethane	21
Validation Flag Category: LaboratoryControlSample	4 UJ Flags (19.05%) for LCS recovery less than lower control limit
Validation Flag Category: Matrix	1 UJ Flags (4.76%) for Matrix spike recovery less than lower limit
Validation Flag Category: Matrix	1 UJ Flags (4.76%) for Matrix spike duplicate recovery criteria less than lower limit
Styrene	21
Validation Flag Category: LaboratoryControlSample	9 UJ Flags (42.86%) for LCS recovery less than lower control limit
SW8270D	
1-Methylnaphthalene	34
Validation Flag Category: LaboratoryControlSample	1 J Flags (2.94%) for LCS recovery greater than upper control limit
Acenaphthene	34
Validation Flag Category: LaboratoryControlSample	2 J Flags (5.88%) for LCS recovery greater than upper control limit
Benzo (a) anthracene	34
Validation Flag Category: SurrogateRecovery	1 J Flags (2.94%) for Surrogate recovery greater than upper limit
Benzo (a) pyrene	34
Validation Flag Category: SurrogateRecovery	1 J Flags (2.94%) for Surrogate recovery greater than upper limit

TABLE 3 Site Completeness by Analyte – Flagging Statistics

Matrix Method Ai	nalyte			Number of Sam	ples
SOIL					
SW8270D					
Ben	zo (b) fluoranthene			34	
Validation Flag Category:	SurrogateRecovery 1		J	Flags (2.94%)	for Surrogate recovery greater than upper limit
Ben	zo (g,h,i) perylene			34	
Validation Flag Category:	SurrogateRecovery 1		J	Flags (2.94%)	for Surrogate recovery greater than upper limit
Ben	zo (k) fluoranthene			34	
Validation Flag Category:	SurrogateRecovery 1		J	Flags (2.94%)	for Surrogate recovery greater than upper limit
Chry	/sene			34	
Validation Flag Category:	LaboratoryControlSample 7	•	J	Flags (20.59%)	for LCS recovery greater than upper control limit
Validation Flag Category:	SurrogateRecovery 1		J	Flags (2.94%)	for Surrogate recovery greater than upper limit
Dibe	enzo (a,h) anthracene			34	
Validation Flag Category:	SurrogateRecovery 1		J	Flags (2.94%)	for Surrogate recovery greater than upper limit
Fluo	ranthene			34	
Validation Flag Category:	LaboratoryControlSample 7	•	J	Flags (20.59%)	for LCS recovery greater than upper control limit
Fluo	rene			34	
Validation Flag Category:	LaboratoryControlSample 1		J	Flags (2.94%)	for LCS recovery greater than upper control limit
Inde	no (1,2,3-c,d) pyrene			34	
Validation Flag Category:	LaboratoryControlSample 1		UJ	Flags (2.94%)	for LCS recovery less than lower control limit
Validation Flag Category:	LaboratoryControlSample 1	0	J	Flags (29.41%)	for LCS recovery less than lower control limit
Validation Flag Category:	SurrogateRecovery 1		J	Flags (2.94%)	for Surrogate recovery greater than upper limit

TABLE 3 Site Completeness by Analyte – Flagging Statistics

Matrix Method Analyte	Number of Samples	
SOIL		
SW8270D		
Phenanthrene	34	
Validation Flag Category: LaboratoryControlSample	7 J Flags (20.59%) for LCS recovery greater than upper control limit	
Pyrene	34	
Validation Flag Category: LaboratoryControlSample	7 J Flags (20.59%) for LCS recovery greater than upper control limit	
Validation Flag Category: Matrix	1 J Flags (2.94%) for Matrix spike recovery less than lower limit	
Validation Flag Category: Matrix	1 J Flags (2.94%) for Matrix spike duplicate recovery criteria less than lower limit	
Validation Flag Category: SurrogateRecovery	1 J Flags (2.94%) for Surrogate recovery greater than upper limit	
WATER		
SW8081A		
Dieldrin	13	
Validation Flag Category: Confirmation	1 J Flags (7.69%) for Confirmation Precision Exceeded	
Heptachlor	13	
Validation Flag Category: Blank	12 B Flags (92.31%) for Laboratory blank contamination greater than the RL	
Validation Flag Category: Matrix	1 J Flags (7.69%) for Matrix spike duplicate recovery criteria less than lower limit	
Heptachlor epoxide	13	
Validation Flag Category: Confirmation	5 J Flags (38.46%) for Confirmation Precision Exceeded	

TABLE 3
Site Completeness by Analyte – Flagging Statistics

Matrix	Method	Analyte	Number of Samples

Note: The total number of validation flags may exceed the actual number of samples if multiple flags were applied to the same sample. Consequently, the percentage of total flags (flags applied/number of samples) may exceed 100 percent.

* The most severe flag for each analyte becomes the final validation flag.

Qualifier Description:

B = The analyte was found in an associated blank, as well as in the sample.

= The analyte was positively identified, the quantitation is an estimate.

UJ = The analyte was not detected, the quantitation is an estimate.

TABLE 4 Holding Times – Qualified Data

Method	Matrix	Sample ID	Analyte	Holding Time	Result	Holding Time Qualifier	Final Flag*
SW8015D	SOIL	FAWC-DU5010	6AB-0514				
			Motor Oil	15 Days	683 MG/KG	J	J
			TPH-Diesel	15 Days	102 MG/KG	J	J
SW8015D	SOIL	FAWC-DU5010	6C-0514				
			Motor Oil	15 Days	57.7 MG/KG	J	J
			TPH-Diesel	15 Days	9.65 MG/KG	J	J
SW8015D	SOIL	FAWC-DU5071	2AB-0514				
			Motor Oil	15 Days	1550 MG/KG	J	J
			TPH-Diesel	15 Days	180 MG/KG	J	J
SW8015D	SOIL	FAWC-DU5071	2C-0514				
			Motor Oil	15 Days	47 MG/KG	J	J
			TPH-Diesel	15 Days	6.97 MG/KG	J	J
SW8015D	SOIL	FAWC-DU5131	8AB-0514				
			Motor Oil	15 Days	1600 MG/KG	J	J
			TPH-Diesel	15 Days	161 MG/KG	J	J
SW8015D	SOIL	FAWC-DU5131	8C-0514				
			Motor Oil	15 Days	3020 MG/KG	J	J
			TPH-Diesel	15 Days	545 MG/KG	J	J
SW8015D	SOIL	FAWC-DU5192	4AB-0514				
			Motor Oil	15 Days	1460 MG/KG	J	J
			TPH-Diesel	15 Days	159 MG/KG	J	J
SW8015D	SOIL	FAWC-DU5192	4C-0514				
			Motor Oil	15 Days	222 MG/KG	J	J
			TPH-Diesel	15 Days	20.7 MG/KG	J	J
SW8015D	SOIL	FAWC-DU5253	0AB-0514				
			Motor Oil	15 Days	671 MG/KG	J	J
			TPH-Diesel	15 Days	73.2 MG/KG	J	J

June 2014 Table 4 Page 1 of 2

TABLE 4 Holding Times – Qualified Data

Method	Matrix	Sample ID	Analyte	Holding Time	Result	Holding Time Qualifier	Final Flag*
SW8015D	SOIL	FAWC-DU525	30C-0514				
			Motor Oil	15 Days	237 MG/KG	J	J
			TPH-Diesel	15 Days	21.8 MG/KG	J	J
SW8015D	SOIL	FAWC-DU601	06AB-0514				
			Motor Oil	16 Days	1200 MG/KG	J	J
			TPH-Diesel	16 Days	105 MG/KG	J	J
SW8015D	SOIL	FAWC-DU601	06C-0514				
			Motor Oil	16 Days	1150 MG/KG	J	J
			TPH-Diesel	16 Days	94 MG/KG	J	J
SW8015D	SOIL	FAWC-DU607	12AB-0514				
			Motor Oil	16 Days	2200 MG/KG	J	J
			TPH-Diesel	16 Days	265 MG/KG	J	J
SW8015D	SOIL	FAWC-DU607	12C-0514				
			Motor Oil	16 Days	297 MG/KG	J	
			TPH-Diesel	16 Days	22.6 MG/KG	J	J

^{*} The most severe flag for each analyte becomes the final validation flag.

J = The analyte was positively identified, the quantitation is an estimate.

Criteria:

HTp>UCL = Holding time exceeded

TABLE 5
Matrix Spike Precision/Accuracy – Qualified Data

Method	Matrix	Sample ID	Analyte	Result	MS/MSD Qualifier*	MS Recovery	Criteria
SW6010C	SOIL		Arsenic				
		FASC-DU1NB-0514		5 MG/KG	J	R = 144.3 LCL=75 UCL=12	MS>UCL
		FASC-DU3A-0514		7.9 MG/KG	J	%R = 20 LCL=75 UCL=125	MS <lcl< td=""></lcl<>
		FASC-DU3A-0514		7.9 MG/KG	J	6R = 63.4 LCL=75 UCL=12	SD <lcl< td=""></lcl<>
SW6010C	SOIL		Cadmium				
		FASC-DU3A-0514		1 MG/KG	J	%R = 58 LCL=75 UCL=125	MS <lcl< td=""></lcl<>
SW6010C	SOIL		Selenium				
		FASC-DU3A-0514		1.8 MG/KG	J	%R = 54 LCL=75 UCL=125	MS <lcl< td=""></lcl<>
		FASC-DU3A-0514		1.8 MG/KG	J	6R = 67.5 LCL=75 UCL=128	SD <lcl< td=""></lcl<>
SW6010C	SOIL		Silver				
		FASC-DU1NB-0514		1.4 MG/KG	J	R = 172.3 LCL=75 UCL=12	MS>UCL
		FASC-DU1NB-0514		1.4 MG/KG	J	R = 163.6 LCL=75 UCL=12	SD>UCL
		FASC-DU3A-0514		0.043 MG/KG	UJ	%R = 54 LCL=75 UCL=125	MS <lcl< td=""></lcl<>
		FASC-DU3A-0514		0.043 MG/KG	UJ	MSRPD = 33.85 Limit = 30	MSRPD
SW8081A	SOIL		4,4'-DDD				
		FASC-DU1NC-0514		0.7 UG/KG	UJ	%R = 68 LCL=74 UCL=134	MS <lcl< td=""></lcl<>
		FASC-DU1NC-0514		0.7 UG/KG	UJ	%R = 63 LCL=74 UCL=134	SD <lcl< td=""></lcl<>
SW8081A	SOIL		4,4'-DDE				
		FASC-DU1NC-0514		32.5 UG/KG	J	%R = 49 LCL=73 UCL=131	MS <lcl< td=""></lcl<>
		FASC-DU1NC-0514		32.5 UG/KG	J	%R = 38 LCL=73 UCL=131	SD <lcl< td=""></lcl<>
SW8081A	SOIL		Aldrin				
		FASC-DU1NC-0514		0.4 UG/KG	UJ	%R = 72 LCL=74 UCL=124	SD <lcl< td=""></lcl<>
SW8081A	SOIL		alpha-BHC				
		FASC-DU1SA-0514	•	15 UG/KG	UJ	%R = 66 LCL=70 UCL=127	SD <lcl< td=""></lcl<>
SW8081A	SOIL	17.00 2010/10011	delta-BHC	10 00/110	00	7011 = 00	05 1202
		FASC-DU1SA-0514		16 UG/KG	UJ	%R = 63 LCL=69 UCL=132	SD <lcl< td=""></lcl<>
SW8081A	SOIL	FA3C-D013A-0314	Dieldrin	10 0G/KG	03	%K = 03 ECE=09 UCE=132	SDALGE
C.70001A	JOIL	EACC DIMEA 0544	Dicialiii	316 UG/KG		VD 425 LCL 45 LICL 425	MC- LICI
SW8081A	SOIL	FASC-DU1SA-0514	Hontochlor		J	%R = 135 LCL=45 UCL=132	MS>UCL
300001A	SOIL	=100 BU101 0=1	Heptachlor e	-		VP 400 101 70 115: 15-	
		FASC-DU1SA-0514		20 UG/KG	UJ	%R = 163 LCL=79 UCL=127	MS>UCL
C)M0004 A	\A/A TED	FASC-DU1SA-0514	Houtook!	20 UG/KG	UJ	%R = 150 LCL=79 UCL=127	SD>UCL
SW8081A	WATER		Heptachlor				

TABLE 5
Matrix Spike Precision/Accuracy – Qualified Data

Method	Matrix	Sample ID	Analyte	Result	MS/MSD Qualifier*	MS	Recovery	Criteria
		FASC-TW001-0514		0.014 UG/L	J	%R = 56	LCL=58 UCL=137	SD <lcl< td=""></lcl<>
SW8082	SOIL		Aroclor-101	16				
		FASC-DU304A-0514		66 UG/KG	UJ	%R = 235	LCL=46 UCL=116	MS>UCL
		FASC-DU304A-0514		66 UG/KG	UJ		LCL=46 UCL=116	SD>UCL
SW8082	SOIL		Aroclor-126	60				
		FASC-DU304A-0514		66 UG/KG	UJ	%R = 381	LCL=44 UCL=128	MS>UCL
		FASC-DU304A-0514		66 UG/KG	UJ		LCL=44 UCL=128	SD>UCL
SW8151A	SOIL	1700 000047 0014	2,4,5-T	00 00/10	00	701C = 370	LOL-44 00L-120	ODZOOL
344010174	OOIL	EA 0.0 DUANO 054.4	2,4,5-1	0.0110/1/0		0/ D 40	101 55 1101 447	MO 1 O
		FASC-DU1NC-0514		0.9 UG/KG	UJ	%R = 19	LCL=55 UCL=147	MS <lcl< td=""></lcl<>
		FASC-DU1NC-0514		0.9 UG/KG	UJ	%R = 13	LCL=55 UCL=147	SD <lcl< td=""></lcl<>
		FASC-DU5A-0514		0.8 UG/KG	UJ	%R = 8	LCL=55 UCL=147	MS <lcl< td=""></lcl<>
CW0454A	2011	FASC-DU5A-0514	0.4.00	0.8 UG/KG	UJ	MSRPD =	= 156.76 Limit =50	MSRPD
SW8151A	SOIL		2,4-DB					
		FASC-DU1NC-0514		17 UG/KG	UJ	%R = 150	LCL=51 UCL=137	MS>UCL
		FASC-DU1NC-0514		17 UG/KG	UJ	MSRPD	= 58.87 Limit =50	MSRPD
		FASC-DU5A-0514		15 UG/KG	UJ	6R = 9841	LCL=51 UCL=13	MS>UCL
		FASC-DU5A-0514		15 UG/KG	UJ	6R = 9880) LCL=51 UCL=13	SD>UCL
SW8151A	SOIL		Dicamba					
		FASC-DU5A-0514		1.3 UG/KG	UJ	MSRPD	= 61.26 Limit =50	MSRPD
		FASC-DU5A-0514		1.3 UG/KG	UJ	%R = 39	LCL=51 UCL=146	SD <lcl< td=""></lcl<>
SW8151A	SOIL		Dichloropro	ор				
		FASC-DU1NC-0514		17 UG/KG	UJ	%R = 47	LCL=65 UCL=154	MS <lcl< td=""></lcl<>
		FASC-DU1NC-0514		17 UG/KG	UJ	MSRPD	= 61.33 Limit =50	MSRPD
SW8151A	SOIL		Pentachlor	ophenol				
		FASC-DU1NC-0514		1.9 UG/KG	J	%R = 35	LCL=54 UCL=140	MS <lcl< td=""></lcl<>
		FASC-DU1NC-0514		1.9 UG/KG	J	%R = 36	LCL=54 UCL=140	SD <lcl< td=""></lcl<>
		FASC-DU5A-0514		2.6 UG/KG	J	%R = 50		MS <lcl< td=""></lcl<>
SW8260C	SOIL	17.00 2007.0011	1,1-DCE	2.0 00/110	· ·	701 C = 00	202-01 002-110	1110 1202
2113200		FASC-DU1NC-0514	.,	15 UG/KG	UJ	%R = 65	LCL=76 UCL=123	MS <lcl< td=""></lcl<>
		FASC-DUTNC-0514 FASC-DU1NC-0514		15 UG/KG 15 UG/KG	UJ	%R = 65 %R = 64		SD <lcl< td=""></lcl<>
SW8260C	SOIL	FA30-D0 INC-0314	Bromometh		UJ	/orx = 04	LOL=10 UOL=123	3D <lul< td=""></lul<>
3002000	SOIL		Didilidilett					
		FASC-DU1NC-0514		31 UG/KG	UJ	%R = 77	LCL=82 UCL=124	MS <lcl< td=""></lcl<>

TABLE 5
Matrix Spike Precision/Accuracy – Qualified Data

Method	Matrix	Sample ID	Analyte	Result	MS/MSD Qualifier*	MS Recovery	Criteria
		FASC-DU1NC-0514		31 UG/KG	UJ	%R = 75 LCL=82 UCL=124	SD <lcl< td=""></lcl<>
SW8270D	SOIL		Pyrene				
		BKSC-DU7-0514		233 UG/KG	J	%R = 51 LCL=67 UCL=108	MS <lcl< td=""></lcl<>
		BKSC-DU7-0514		233 UG/KG	J	%R = 60 LCL=67 UCL=108	SD <lcl< td=""></lcl<>

^{*} The most severe flag for each analyte becomes the final validation flag.

J = The analyte was positively identified, the quantitation is an estimate.

UJ = The analyte was not detected, the quantitation is an estimate.

Criteria:

MS <lcl< td=""><td>=</td><td>Matrix spike recovery less than lower limit</td></lcl<>	=	Matrix spike recovery less than lower limit
MS>UCL	=	Matrix spike recovery greater than upper limit
MSRPD	=	Matrix spike RPD criteria exceedance
SD <lcl< td=""><td>=</td><td>Matrix spike duplicate recovery criteria less than lower limit</td></lcl<>	=	Matrix spike duplicate recovery criteria less than lower limit
SD>UCL	=	Matrix spike duplicate recovery criteria greater than upper limit

TABLE 6 Surrogate Recovery – Qualified Data

Method	Matrix	Sample ID	Analyte	Result	Surrogate Qualifier*	Surrogate Recovery	Criteria
SW8081A	SOIL		4,4'-DDE				
		FASC-DU1SB-0514		86.2 UG/KG	J	%R=175 LCL=53 UCL=145	Sur>UCL
SW8081A	SOIL		4,4'-DDT				
		FASC-DU1SB-0514		90.4 UG/KG	J	%R=175 LCL=53 UCL=145	Sur>UCL
SW8081A	SOIL		Chlordane				
		FASC-DU1SB-0514		2740 UG/KG	J	%R=175 LCL=53 UCL=145	Sur>UCL
		FASC-DU6D-0514		2100 UG/KG	J	%R=183 LCL=53 UCL=145	Sur>UCL
SW8081A	SOIL		Dieldrin				
		FASC-DU1SB-0514		959 UG/KG	J	%R=175 LCL=53 UCL=145	Sur>UCL
SW8081A	SOIL		Heptachlor epoxide				
		FASC-DU1SB-0514		27.8 UG/KG	J	%R=175 LCL=53 UCL=145	Sur>UCL
		FASC-DU6D-0514		84.1 UG/KG	J	%R=183 LCL=53 UCL=145	Sur>UCL
SW8270D	SOIL		Benzo (a) anthracene				
		FADS-DU6D1-0514		7.2 UG/KG	J	%R=148 LCL=51 UCL=146	Sur>UCL
SW8270D	SOIL		Benzo (a) pyrene				
		FADS-DU6D1-0514		15.7 UG/KG	J	%R=148 LCL=51 UCL=146	Sur>UCL
SW8270D	SOIL		Benzo (b) fluoranthen	ie			
		FADS-DU6D1-0514		15.4 UG/KG	J	%R=148 LCL=51 UCL=146	Sur>UCL
SW8270D	SOIL		Benzo (g,h,i) perylene	•			
		FADS-DU6D1-0514		17.3 UG/KG	J	%R=148 LCL=51 UCL=146	Sur>UCL
SW8270D	SOIL		Benzo (k) fluoranthen				
		FADS-DU6D1-0514		18.2 UG/KG	J	%R=148 LCL=51 UCL=146	Sur>UCL
SW8270D	SOIL	11.20 2002 1 0011	Chrysene		·	7	
		FADS-DU6D1-0514		10.5 UG/KG	J	%R=148 LCL=51 UCL=146	Sur>UCL
SW8270D	SOIL	1 700-00001-0014	Dibenzo (a,h) anthrac		J	/011-140 LOL-01 OOL-140	Oui/OUL
		FADS-DU6D1-0514	-	4.7 UG/KG	ı	%R=148 LCL=51 UCL=146	Sur>UCL
		FADS-DU0D1-0514		4.7 UG/NG	J	70K=140 LGL=31 UGL=140	Sui>UCL

TABLE 6 Surrogate Recovery – Qualified Data

Method	Matrix	Sample ID	Analyte	Result	Surrogate Qualifier*	Surrogate Recovery	Criteria
SW8270D	SOIL		Indeno (1,2,3-c,d) pyre	ene			
SW8270D	SOIL	FADS-DU6D1-0514	Pyrene	16.9 UG/KG	J	%R=148 LCL=51 UCL=146	Sur>UCL
		FADS-DU6D1-0514		7 UG/KG	J	%R=148 LCL=51 UCL=146	Sur>UCL

^{*} The most severe flag for each analyte becomes the final validation flag.

J = The analyte was positively identified, the quantitation is an estimate.

Criteria:

Sur>UCL

= Surrogate recovery greater than upper limit

TABLE 7
Laboratory Control Sample – Qualified Data

Method	Matrix	Sample ID / QAQC Type	Analyte	Result	LCS Qualifier*	LC	S Recovery	Criteria
SW8260C	SOIL		Bromomethane					
		FADS-DU6D3-0514 / N		35 UG/KG	UJ	%R = 81	LCL=82 UCL=124	LCS <lcl< td=""></lcl<>
		FASC-DU1NB-0514 / N		27 UG/KG	UJ	%R = 81	LCL=82 UCL=124	LCS <lcl< td=""></lcl<>
		FASC-DU1NC-0514 / N		31 UG/KG	UJ	%R = 81	LCL=82 UCL=124	LCS <lcl< td=""></lcl<>
		FASC-DU1SC-0514 / N		31 UG/KG	UJ	%R = 81	LCL=82 UCL=124	LCS <lcl< td=""></lcl<>
SW8260C	SOIL		Styrene					
		FADS-DU6D1-0514 / N		17 UG/KG	UJ	%R = 80	LCL=83 UCL=122	LCS <lcl< td=""></lcl<>
		FADS-DUD2-0514 / N		19 UG/KG	UJ	%R = 80	LCL=83 UCL=122	LCS <lcl< td=""></lcl<>
		FASC-DU1SB-0514 / N		15 UG/KG	UJ	%R = 80	LCL=83 UCL=122	LCS <lcl< td=""></lcl<>
		FASC-DU2B-0514 / N		14 UG/KG	UJ	%R = 80	LCL=83 UCL=122	LCS <lcl< td=""></lcl<>
		FASC-DU2C-0514 / N		19 UG/KG	UJ	%R = 80	LCL=83 UCL=122	LCS <lcl< td=""></lcl<>
		FASC-DU5A-0514 / N		14 UG/KG	UJ	R = 80	LCL=83 UCL=122	LCS <lcl< td=""></lcl<>
		FASC-DU5B-0514 / N		13 UG/KG	UJ	R = 80	LCL=83 UCL=122	LCS <lcl< td=""></lcl<>
		FASC-DU5C-0514 / N		13 UG/KG	UJ	%R = 80	LCL=83 UCL=122	LCS <lcl< td=""></lcl<>
		FASC-DU5D-0514 / N		19 UG/KG	UJ	R = 80	LCL=83 UCL=122	LCS <lcl< td=""></lcl<>
SW8270D	SOIL		1-Methylnaphthalei	ne				
		FADS-DU6D3-0514 / N		11.8 UG/KG	J	%R = 98	LCL=49 UCL=96	LCS>UCL
SW8270D	SOIL		Acenaphthene					
		FADS-DU6D3-0514 / N		3 UG/KG	J	%R = 107	LCL=51 UCL=102	LCS>UCL
		FASC-DU2B-0514 / N		58.4 UG/KG	J	%R = 107	LCL=51 UCL=102	LCS>UCL
SW8270D	SOIL		Chrysene					
		BKSC-DU7-0514 / N		149 UG/KG	J	%R = 117	LCL=79 UCL=111	LCS>UCL
		FADS-DU6D3-0514 / N		93.2 UG/KG	J	%R = 117	LCL=79 UCL=111	LCS>UCL
		FASC-DU1NB-0514 / N		102 UG/KG	J	%R = 117	LCL=79 UCL=111	LCS>UCL
		FASC-DU1NC-0514 / N		22.7 UG/KG	J	%R = 117	LCL=79 UCL=111	LCS>UCL
		FASC-DU1SC-0514 / N		6.5 UG/KG	J	%R = 117	LCL=79 UCL=111	LCS>UCL
		FASC-DU2B-0514 / N		969 UG/KG	J	%R = 117	LCL=79 UCL=111	LCS>UCL
		FASC-DU2C-0514 / N		50 UG/KG	J	%R = 117	LCL=79 UCL=111	LCS>UCL
SW8270D	SOIL		Fluoranthene					
		BKSC-DU7-0514 / N		192 UG/KG	J	%R = 113	LCL=70 UCL=109	LCS>UCL
		FADS-DU6D3-0514 / N		104 UG/KG	J	%R = 113	LCL=70 UCL=109	LCS>UCL

TABLE 7
Laboratory Control Sample – Qualified Data

Method	Matrix Sample ID / QAQC Type	Analyte	Result	LCS Qualifier*	LCS Recovery	Criteria
	FASC-DU1NB-0514 / N		180 UG/KG	J	%R = 113 LCL=70 UCL=109	LCS>UCL
	FASC-DU1NC-0514 / N		40.4 UG/KG	J	%R = 113 LCL=70 UCL=109	LCS>UCL
	FASC-DU1SC-0514 / N		9.9 UG/KG	J	%R = 113 LCL=70 UCL=109	LCS>UCL
	FASC-DU2B-0514 / N		1850 UG/KG	J	%R = 113 LCL=70 UCL=109	LCS>UCL
	FASC-DU2C-0514 / N		75.2 UG/KG	J	%R = 113 LCL=70 UCL=109	LCS>UCL
SW8270D	SOIL	Fluorene				
	FADS-DU6D3-0514 / N		2.7 UG/KG	J	%R = 112 LCL=52 UCL=105	LCS>UCL
SW8270D	SOIL	Indeno (1,2,3-c,	d) pyrene			
	FADS-DU6D1-0514 / N		16.9 UG/KG	J	%R = 71 LCL=72 UCL=122	LCS <lcl< td=""></lcl<>
	FADS-DUD2-0514 / N		1.3 UG/KG	UJ	%R = 71 LCL=72 UCL=122	LCS <lcl< td=""></lcl<>
	FASC-DU1NA-0514 / N		106 UG/KG	J	%R = 71 LCL=72 UCL=122	LCS <lcl< td=""></lcl<>
	FASC-DU1SA-0514 / N		54.3 UG/KG	J	%R = 71 LCL=72 UCL=122	LCS <lcl< td=""></lcl<>
	FASC-DU204A-0514 / N		71.7 UG/KG	J	%R = 71 LCL=72 UCL=122	LCS <lcl< td=""></lcl<>
	FASC-DU304A-0514 / N		51.6 UG/KG	J	%R = 71 LCL=72 UCL=122	LCS <lcl< td=""></lcl<>
	FASC-DU4A-0514 / N		46.7 UG/KG	J	%R = 71 LCL=72 UCL=122	LCS <lcl< td=""></lcl<>
	FASC-DU5A-0514 / N		89.3 UG/KG	J	%R = 71 LCL=72 UCL=122	LCS <lcl< td=""></lcl<>
	FASC-DU5B-0514 / N		143 UG/KG	J	%R = 71 LCL=72 UCL=122	LCS <lcl< td=""></lcl<>
	FASC-DU5C-0514 / N		102 UG/KG	J	%R = 71 LCL=72 UCL=122	LCS <lcl< td=""></lcl<>
	FASC-DU5D-0514 / N		20.3 UG/KG	J	%R = 71 LCL=72 UCL=122	LCS <lcl< td=""></lcl<>
SW8270D	SOIL	Phenanthrene				
	BKSC-DU7-0514 / N		98 UG/KG	J	%R = 110 LCL=55 UCL=104	LCS>UCL
	FADS-DU6D3-0514 / N		126 UG/KG	J	%R = 110 LCL=55 UCL=104	LCS>UCL
	FASC-DU1NB-0514 / N		50.7 UG/KG	J	%R = 110 LCL=55 UCL=104	LCS>UCL
	FASC-DU1NC-0514 / N		23.5 UG/KG	J	%R = 110 LCL=55 UCL=104	LCS>UCL
	FASC-DU1SC-0514 / N		3.7 UG/KG	J	%R = 110 LCL=55 UCL=104	LCS>UCL
	FASC-DU2B-0514 / N		1060 UG/KG	J	%R = 110 LCL=55 UCL=104	LCS>UCL
	FASC-DU2C-0514 / N		19.7 UG/KG	J	%R = 110 LCL=55 UCL=104	LCS>UCL
SW8270D	SOIL	Pyrene				
	BKSC-DU7-0514 / N		233 UG/KG	J	%R = 115 LCL=67 UCL=108	LCS>UCL
	FADS-DU6D3-0514 / N		128 UG/KG	J	%R = 115 LCL=67 UCL=108	LCS>UCL
	FASC-DU1NB-0514 / N		139 UG/KG	J	%R = 115 LCL=67 UCL=108	LCS>UCL
	FASC-DU1NC-0514 / N		36.9 UG/KG	J	%R = 115 LCL=67 UCL=108	LCS>UCL

TABLE 7
Laboratory Control Sample – Qualified Data

Method	Matrix Sample ID / QAQC Type	Analyte	Result	LCS Qualifier*	LCS Recovery	Criteria
	FASC-DU1SC-0514 / N		7.4 UG/KG	J	%R = 115 LCL=67 UCL=108	LCS>UCL
	FASC-DU2B-0514 / N		1690 UG/KG	J	%R = 115 LCL=67 UCL=108	LCS>UCL
	FASC-DU2C-0514 / N		66.2 UG/KG	J	%R = 115 LCL=67 UCL=108	LCS>UCL

^{*} The most severe flag for each analyte becomes the final validation flag.

QAQC Type

N = Normal Environmental Sample

FD = Field Duplicate

Qualifier Description:

= The analyte was positively identified, the quantitation is an estimate.

UJ = The analyte was not detected, the quantitation is an estimate.

Criteria:

LCS<LCL = LCS recovery less than lower control limit

LCS>UCL = LCS recovery greater than upper control limit

TABLE 8 Confirmation Analysis – Qualified Data

Method	Matrix	Sample ID	Analyte	Result	Confirmation Qualifier*	Criteria
SW6010C	SOIL		Lead			
		FASC-DU206A-0514		227 MG/KG	J	CF>RPD
		FASC-DU306A-0514		74.5 MG/KG	J	CF>RPD
		FASC-DU6A-0514		118 MG/KG	J	CF>RPD
		SBSD-DU209-0514		12.1 MG/KG	J	CF>RPD
		SBSD-DU309-0514		11.9 MG/KG	J	CF>RPD
		SBSD-DU9-0514		45.1 MG/KG	J	CF>RPD
SW8081A	SOIL		4,4'-DDD			
		FADS-DU6D3-0514		3.1 UG/KG	J	CF>RPD
SW8081A	SOIL		Dieldrin			
		BKSC-DU7-0514		6.9 UG/KG	J	CF>RPD
SW8081A	WATER		Dieldrin			
		FASC-TW010-0514		0.0023 UG/L	J	CF>RPD
SW8081A	WATER		Heptachlor epoxide			
		FASC-TW003-0514		0.0076 UG/L	J	CF>RPD
		FASC-TW005-0514		0.0053 UG/L	J	CF>RPD
		FASC-TW007-0514		0.0078 UG/L	J	CF>RPD
		FASC-TW009-0514		0.0063 UG/L	J	CF>RPD
		FASC-TW010-0514		0.0047 UG/L	J	CF>RPD
SW8151A	SOIL		Dinoseb			
		FASC-DU1SA-0514		21.5 UG/KG	J	CF>RPD
		FASC-DU1SB-0514		57.1 UG/KG	J	CF>RPD
		FASC-DU206A-0514		53.8 UG/KG	J	CF>RPD
		FASC-DU304A-0514		19.6 UG/KG	J	CF>RPD
		FASC-DU306A-0514		47.5 UG/KG	J	CF>RPD
		FASC-DU3B-0514		22.7 UG/KG	J	CF>RPD

TABLE 8
Confirmation Analysis – Qualified Data

Method	Matrix	Sample ID	Analyte	Result	Confirmation Qualifier*	Criteria
		FASC-DU6C-0514		58.6 UG/KG	J	CF>RPD
SW8151A	SOIL		Pentachlorophenol			
		FASC-DU204A-0514		9.7 UG/KG	J	CF>RPD
		FASC-DU2C-0514		1.4 UG/KG	J	CF>RPD
		FASC-DU304A-0514		21 UG/KG	J	CF>RPD
		FASC-DU306A-0514		5.3 UG/KG	J	CF>RPD
		FASC-DU3B-0514		3.8 UG/KG	J	CF>RPD
		FASC-DU4A-0514		1.9 UG/KG	J	CF>RPD
		FASC-DU5D-0514		1.1 UG/KG	J	CF>RPD
		FASC-DU6A-0514		4.8 UG/KG	J	CF>RPD
		FASC-DU6D-0514		13.2 UG/KG	J	CF>RPD

^{*} The most severe flag for each analyte becomes the final validation flag.

J = The analyte was positively identified, the quantitation is an estimate.

Criteria:

CF>RPD = Confirmation Precision Exceeded

TABLE 9
Blank Contamination – Qualified Data

				Blank Contamination		
Method	Matrix	Analyte / Sample ID	Result	Qualifier*	Criteria	Comments
SW8081A	WATER	Heptachlor				
		FASC-TW001-0514	0.014 UG/L	В	LB>RL	blank target = 0.013UG/L
		FASC-TW002-0514	0.02 UG/L	В	LB>RL	blank target = 0.013UG/L
		FASC-TW003-0514	0.02 UG/L	В	LB>RL	blank target = 0.013UG/L
		FASC-TW004-0514	0.016 UG/L	В	LB>RL	blank target = 0.013UG/L
		FASC-TW005-0514	0.017 UG/L	В	LB>RL	blank target = 0.013UG/L
		FASC-TW006-0514	0.017 UG/L	В	LB>RL	blank target = 0.013UG/L
		FASC-TW007-0514	0.019 UG/L	В	LB>RL	blank target = 0.013UG/L
		FASC-TW009-0514	0.018 UG/L	В	LB>RL	blank target = 0.013UG/L
		FASC-TW010-0514	0.019 UG/L	В	LB>RL	blank target = 0.013UG/L
		FASC-TW011-0514	0.013 UG/L	В	LB>RL	blank target = 0.013UG/L
		FASC-TW012-0514	0.017 UG/L	В	LB>RL	blank target = 0.013UG/L
		FASC-TW111-0514	0.011 UG/L	В	LB>RL	blank target = 0.013UG/L

Blank target = concentration of field or laboratory blank.

Qualifier Description:

B = The analyte was found in an associated blank, as well as in the sample.

Criteria:

LB>RL

Laboratory blank contamination greater than the RL

^{*} The most severe flag for each analyte becomes the final validation flag.

TABLE 10 Site Completeness by Analyte – Qualified Data

Number of Occurrences

Method	Analyte	Units	Analyses	Detects	Non- detects	Blank Flags	J Flags	M Flags	Contractor R Flags	Total R Flags	Contractor Percent Completeness	Overall Percent Completeness
D2216	Percent Moisture	PERCENT	0	53							100	100
SW6010C	Arsenic	MG/KG	35	34	1		18				100	100
SW6010C	Barium	MG/KG	35	35							100	100
SW6010C	Cadmium	MG/KG	35	33	2		28				100	100
SW6010C	Chromium	MG/KG	35	35							100	100
SW6010C	Lead	MG/KG	35	35			6				100	100
SW6010C	Selenium	MG/KG	35	35			11				100	100
SW6010C	Silver	MG/KG	35	30	5		21				100	100
SW6010C	Chromium-TCLP	MG/L	17	5	12		5				100	100
SW6010C	Lead-TCLP	MG/L	9	5	4		3				100	100
SW6010C	Arsenic	UG/L	13	6	7		6				100	100
SW6010C	Barium	UG/L	13	13			13				100	100
SW6010C	Cadmium	UG/L	13	9	4		8				100	100
SW6010C	Chromium	UG/L	13	3	10		3				100	100
SW6010C	Lead	UG/L	13		13						100	100
SW6010C	Selenium	UG/L	13	12	1		11				100	100
SW6010C	Silver	UG/L	13	3	10		3				100	100
SW7470A	Mercury	UG/L	13		13						100	100
SW7471A	Mercury	MG/KG	35	35			1				100	100
SW8015D	Motor Oil	MG/KG	49	49			14				100	100
SW8015D	TPH-Diesel	MG/KG	49	48	1		37				100	100
SW8015D	Motor Oil	MG/L	13	5	8		5				100	100
SW8015D	TPH-Diesel	MG/L	13	8	5		5				100	100
SW8081A	4,4'-DDD	UG/KG	34	2	32		3				100	100
SW8081A	4,4'-DDE	UG/KG	34	22	12		17				100	100
SW8081A	4,4'-DDT	UG/KG	34	20	14		11				100	100
SW8081A	Aldrin	UG/KG	34		34		1				100	100
SW8081A	alpha-BHC	UG/KG	34		34		1				100	100
SW8081A	beta-BHC	UG/KG	34		34						100	100

TABLE 10 Site Completeness by Analyte – Qualified Data

Number of Occurrences

Method	 Analyte	Units	Analyses	Detects	Non- detects	Blank Flags	J Flags	M Flags	Contractor R Flags	Total R Flags	Contractor Percent Completeness	Overall Percent Completeness
	-					- lags		ı iags		- lugo		
SW8081A SW8081A	Chlordane delta-BHC	UG/KG UG/KG	34 34	26	8 34		13 1				100 100	100 100
SW8081A	Dieldrin	UG/KG	34 34	18	3 4 16		10				100	100
SW8081A SW8081A	Endosulfan I	UG/KG	34 34	10	34		10				100	100
SW8081A	Endosulfan II	UG/KG	34 34		34 34						100	100
SW8081A	Endosulfan il Endosulfan sulfate	UG/KG	34 34		34 34						100	100
SW8081A	Endosulian sullate Endrin	UG/KG	34 34	1	33		1				100	100
SW8081A SW8081A		UG/KG	34 34	1	33 34		1				100	100
	Endrin aldehyde		34 34		34 34							
SW8081A SW8081A	gamma-BHC (Lindane) Heptachlor	UG/KG UG/KG	34 34	1	33		1				100 100	100 100
SW8081A	•	UG/KG	34 34	1 13	33 21		14				100	100
SW8081A	Heptachlor epoxide	UG/KG	34 34	13	34		14				100	100
SW8081A	Methoxychlor	UG/KG	34 34		34 34						100	100
SW8081A	Toxaphene 4,4'-DDD	UG/KG	3 4 13		3 4 13						100	100
SW8081A	4,4'-DDE	UG/L	13		13						100	100
SW8081A	4,4'-DDE 4,4'-DDT	UG/L	13		13						100	100
SW8081A	4,4-DD1 Aldrin	UG/L	13	2	11		1				100	100
SW8081A	alpha-BHC	UG/L	13	2	13		'				100	100
SW8081A	beta-BHC	UG/L	13		13						100	100
SW8081A	Chlordane	UG/L	13	1	12		1				100	100
SW8081A	delta-BHC	UG/L	13	1	13		'				100	100
SW8081A	Dieldrin	UG/L	13	8	5		6				100	100
SW8081A	Endosulfan I	UG/L	13	0	5 13		O					100
SW8081A	Endosulfan II	UG/L	13		13						100 100	100
SW8081A	Endosulfan il Endosulfan sulfate	UG/L	13		13						100	100
SW8081A	Endosulian sullate Endrin	UG/L	13		13						100	100
SW8081A	Endrin aldehyde	UG/L	13		13						100	100
SW8081A	gamma-BHC (Lindane)	UG/L	13		13						100	100
SW8081A	Heptachlor	UG/L	13	13	13	11	2				100	100

TABLE 10
Site Completeness by Analyte – Qualified Data

Aroclor-1254

Aroclor-1260

2,4,5-TP (Silvex)

2,4,5-T

2,4-D

2,4-DB

Dalapon

Dicamba

Dinoseb

MCPA

MCPP

2,4,5-T

Dichloroprop

Pentachlorophenol

UG/L

UG/L

UG/KG

UG/L

13

13

34

34

34

34

34

34

34

34

34

34

34

13

SW8082

SW8082

SW8151A

Contractor Total Contractor Overall Non-Blank J М R R Percent Percent Flags Flags Flags Detects detects Flags Flags **Completeness Completeness** Method **Analyte** Units Analyses SW8081A 7 5 Heptachlor epoxide UG/L 13 100 100 UG/L 13 13 100 SW8081A Methoxychlor 100 SW8081A UG/L 13 13 100 100 Toxaphene SW8082 UG/KG 34 1 100 Aroclor-1016 34 100 UG/KG SW8082 Aroclor-1221 34 34 100 100 SW8082 Aroclor-1232 UG/KG 34 34 100 100 SW8082 Aroclor-1242 UG/KG 34 34 100 100 SW8082 Aroclor-1248 UG/KG 34 33 100 100 1 SW8082 UG/KG 34 34 Aroclor-1254 100 100 SW8082 Aroclor-1260 UG/KG 34 8 26 8 100 100 SW8082 Aroclor-1016 UG/L 13 13 100 100 SW8082 Aroclor-1221 UG/L 13 13 100 100 SW8082 UG/L 13 13 100 Aroclor-1232 100 SW8082 Aroclor-1242 UG/L 13 13 100 100 SW8082 Aroclor-1248 UG/L 13 13 100 100

13

13

34

34

34

34

34

34

34

20

34

34

6

13

2

2

1

1

14

18

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

Number of Occurrences

14

28

TABLE 10 Site Completeness by Analyte – Qualified Data

Number of Occurrences

Method	Analyte	Units	Analyses	Detects	Non- detects	Blank Flags	J Flags	M Flags	Contractor R Flags	Total R Flags	Contractor Percent Completeness	Overall Percent Completeness
SW8151A	2,4,5-TP (Silvex)	UG/L	13		13						100	100
SW8151A	2,4-D	UG/L	13		13						100	100
SW8151A	2,4-DB	UG/L	13		13						100	100
SW8151A	Dalapon	UG/L	13		13						100	100
SW8151A	Dicamba	UG/L	13		13						100	100
SW8151A	Dichloroprop	UG/L	13		13						100	100
SW8151A	Dinoseb	UG/L	13		13						100	100
SW8151A	MCPA	UG/L	13		13						100	100
SW8151A	MCPP	UG/L	13		13						100	100
SW8151A	Pentachlorophenol	UG/L	13	5	8		3				100	100
SW8260C	1,1,1,2-Tetrachloroethane	UG/KG	21		21						100	100
SW8260C	1,1,1-TCA	UG/KG	21		21						100	100
SW8260C	1,1,2,2-Tetrachloroethane	UG/KG	21		21						100	100
SW8260C	1,1,2-TCA	UG/KG	21		21						100	100
SW8260C	1,1-DCA	UG/KG	21		21						100	100
SW8260C	1,1-DCE	UG/KG	21		21		1				100	100
SW8260C	1,1-Dichloropropene	UG/KG	21		21						100	100
SW8260C	1,2,3-Trichlorobenzene	UG/KG	21		21						100	100
SW8260C	1,2,3-Trichloropropane	UG/KG	21		21						100	100
SW8260C	1,2,4-Trichlorobenzene	UG/KG	21		21						100	100
SW8260C	1,2,4-Trimethylbenzene	UG/KG	21		21						100	100
SW8260C	1,2-DCA	UG/KG	21		21						100	100
SW8260C	1,2-DCB	UG/KG	21		21						100	100
SW8260C	1,2-Dibromo-3-chloropropane	UG/KG	21		21						100	100
SW8260C	1,2-Dichloropropane	UG/KG	21		21						100	100
SW8260C	1,3,5-Trimethylbenzene	UG/KG	21		21						100	100
SW8260C	1,3-DCB	UG/KG	21		21						100	100
SW8260C	1,3-Dichloropropane	UG/KG	21		21						100	100
SW8260C	1,4-DCB	UG/KG	21		21						100	100

TABLE 10 Site Completeness by Analyte – Qualified Data

Method	Analyte	Units	Analyses	Detects	Non- detects	Blank Flags	J Flags	M Flags	Contractor R Flags	Total R Flags	Contractor Percent Completeness	Overall Percent Completeness
SW8260C	2,2-Dichloropropane	UG/KG	21		21						100	100
SW8260C	2-Chlorotoluene	UG/KG	21		21						100	100
SW8260C	2-Hexanone	UG/KG	21		21						100	100
SW8260C	4-Chlorotoluene	UG/KG	21		21						100	100
SW8260C	Acetone	UG/KG	21		21						100	100
SW8260C	Benzene	UG/KG	21		21						100	100
SW8260C	Bromobenzene	UG/KG	21		21						100	100
SW8260C	Bromochloromethane	UG/KG	21		21						100	100
SW8260C	Bromodichloromethane	UG/KG	21		21						100	100
SW8260C	Bromoform	UG/KG	21		21						100	100
SW8260C	Bromomethane	UG/KG	21		21		4				100	100
SW8260C	Carbon tetrachloride	UG/KG	21		21						100	100
SW8260C	Chlorobenzene	UG/KG	21		21						100	100
SW8260C	Chloroethane	UG/KG	21		21						100	100
SW8260C	Chloroform	UG/KG	21		21						100	100
SW8260C	Chloromethane	UG/KG	21		21						100	100
SW8260C	cis-1,2-DCE	UG/KG	21		21						100	100
SW8260C	cis-1,3-Dichloropropene	UG/KG	21		21						100	100
SW8260C	Dibromochloromethane	UG/KG	21		21						100	100
SW8260C	Dibromomethane	UG/KG	21		21						100	100
SW8260C	Dichlorodifluoromethane	UG/KG	21		21						100	100
SW8260C	Di-Isopropyl ether	UG/KG	21		21						100	100
SW8260C	EDB	UG/KG	21		21						100	100
SW8260C	Ethyl tert-Butyl Ether	UG/KG	21		21						100	100
SW8260C	Ethylbenzene	UG/KG	21		21						100	100
SW8260C	Hexachlorobutadiene	UG/KG	21		21						100	100
SW8260C	Isopropylbenzene	UG/KG	21		21						100	100
SW8260C	MEK (2-Butanone)	UG/KG	21		21						100	100
SW8260C	Methyl tert-butyl ether (MTBE)	UG/KG	21		21						100	100

TABLE 10 Site Completeness by Analyte – Qualified Data

									Contractor	Total	Contractor	Overall
Method	Analyte	Units	Analyses	Detects	Non- detects	Blank Flags	J Flags	M Flags	R Flags	R Flags	Percent Completeness	Percent Completeness
SW8260C	Methylene chloride	UG/KG	21		21						100	100
SW8260C	MIBK (Methyl isobutyl ketone)	UG/KG	21		21						100	100
SW8260C	Naphthalene	UG/KG	21		21						100	100
SW8260C	n-Butylbenzene	UG/KG	21		21						100	100
SW8260C	n-Propylbenzene	UG/KG	21		21						100	100
SW8260C	p-Isopropyltoluene	UG/KG	21		21						100	100
SW8260C	sec-Butylbenzene	UG/KG	21		21						100	100
SW8260C	Styrene	UG/KG	21		21		9				100	100
SW8260C	TCE	UG/KG	21		21						100	100
SW8260C	Tert Butyl Alcohol	UG/KG	21		21						100	100
SW8260C	Tert-Amyl Methyl Ether	UG/KG	21		21						100	100
SW8260C	tert-Butylbenzene	UG/KG	21		21						100	100
SW8260C	Tetrachloroethene	UG/KG	21		21						100	100
SW8260C	Toluene	UG/KG	21		21						100	100
SW8260C	TPH-Gasoline	UG/KG	22	1	21		1				100	100
SW8260C	trans-1,2-DCE	UG/KG	21		21						100	100
SW8260C	trans-1,3-Dichloropropene	UG/KG	21		21						100	100
SW8260C	Trichlorofluoromethane	UG/KG	21		21						100	100
SW8260C	Vinyl chloride	UG/KG	21		21						100	100
SW8260C	Xylene (total)	UG/KG	21		21						100	100
SW8260C	1,1,1,2-Tetrachloroethane	UG/L	13		13						100	100
SW8260C	1,1,1-TCA	UG/L	13		13						100	100
SW8260C	1,1,2,2-Tetrachloroethane	UG/L	13		13						100	100
SW8260C	1,1,2-TCA	UG/L	13		13						100	100
SW8260C	1,1-DCA	UG/L	13		13						100	100
SW8260C	1,1-DCE	UG/L	13		13						100	100
SW8260C	1,1-Dichloropropene	UG/L	13		13						100	100
SW8260C	1,2,3-Trichlorobenzene	UG/L	13		13						100	100
SW8260C	1,2,3-Trichloropropane	UG/L	13		13						100	100

TABLE 10 Site Completeness by Analyte – Qualified Data


		Number of Occurrences										
Method	Analyte	Units	Analyses	Detects	Non- detects	Blank Flags	J Flags	M Flags	Contractor R Flags	Total R Flags	Contractor Percent Completeness	Overall Percent Completeness
SW8260C	1,2,4-Trichlorobenzene	UG/L	13		13						100	100
SW8260C	1,2,4-Trimethylbenzene	UG/L	13		13						100	100
SW8260C	1,2-DCA	UG/L	13		13						100	100
SW8260C	1,2-DCB	UG/L	13		13						100	100
SW8260C	1,2-Dibromo-3-chloropropane	UG/L	13		13						100	100
SW8260C	1,2-Dichloropropane	UG/L	13		13						100	100
SW8260C	1,3,5-Trimethylbenzene	UG/L	13		13						100	100
SW8260C	1,3-DCB	UG/L	13		13						100	100
SW8260C	1,3-Dichloropropane	UG/L	13		13						100	100
SW8260C	1,4-DCB	UG/L	13		13						100	100
SW8260C	2,2-Dichloropropane	UG/L	13		13						100	100
SW8260C	2-Chlorotoluene	UG/L	13		13						100	100
SW8260C	2-Hexanone	UG/L	13		13						100	100
SW8260C	4-Chlorotoluene	UG/L	13		13						100	100
SW8260C	Acetone	UG/L	13	1	12		1				100	100
SW8260C	Benzene	UG/L	13		13						100	100
SW8260C	Bromobenzene	UG/L	13		13						100	100
SW8260C	Bromochloromethane	UG/L	13		13						100	100
SW8260C	Bromodichloromethane	UG/L	13		13						100	100
SW8260C	Bromoform	UG/L	13		13						100	100
SW8260C	Bromomethane	UG/L	13		13						100	100
SW8260C	Carbon tetrachloride	UG/L	13		13						100	100
SW8260C	Chlorobenzene	UG/L	13		13						100	100
SW8260C	Chloroethane	UG/L	13		13						100	100
SW8260C	Chloroform	UG/L	13		13						100	100
SW8260C	Chloromethane	UG/L	13		13						100	100
SW8260C	cis-1,2-DCE	UG/L	13		13						100	100
SW8260C	cis-1,3-Dichloropropene	UG/L	13		13						100	100
SW8260C	Dibromochloromethane	UG/L	13		13						100	100

TABLE 10 Site Completeness by Analyte – Qualified Data

Method	Analyte	Units	Analyses	Detects	Non- detects	Blank Flags	J Flags	M Flags	Contractor R Flags	Total R Flags	Contractor Percent Completeness	Overall Percent Completeness
SW8260C	Dibromomethane	UG/L	13		13						100	100
SW8260C	Dichlorodifluoromethane	UG/L	13		13						100	100
SW8260C	Di-Isopropyl ether	UG/L	13		13						100	100
SW8260C	EDB	UG/L	13		13						100	100
SW8260C	Ethyl tert-Butyl Ether	UG/L	13		13						100	100
SW8260C	Ethylbenzene	UG/L	13		13						100	100
SW8260C	Hexachlorobutadiene	UG/L	13		13						100	100
SW8260C	Isopropylbenzene	UG/L	13		13						100	100
SW8260C	MEK (2-Butanone)	UG/L	13		13						100	100
SW8260C	Methyl tert-butyl ether (MTBE)	UG/L	13		13						100	100
SW8260C	Methylene chloride	UG/L	13		13						100	100
SW8260C	MIBK (Methyl isobutyl ketone)	UG/L	13		13						100	100
SW8260C	Naphthalene	UG/L	13		13						100	100
SW8260C	n-Butylbenzene	UG/L	13		13						100	100
SW8260C	n-Propylbenzene	UG/L	13		13						100	100
SW8260C	p-Isopropyltoluene	UG/L	13		13						100	100
SW8260C	sec-Butylbenzene	UG/L	13		13						100	100
SW8260C	Styrene	UG/L	13		13						100	100
SW8260C	TCE	UG/L	13		13						100	100
SW8260C	Tert Butyl Alcohol	UG/L	13		13						100	100
SW8260C	Tert-Amyl Methyl Ether	UG/L	13		13						100	100
SW8260C	tert-Butylbenzene	UG/L	13		13						100	100
SW8260C	Tetrachloroethene	UG/L	13		13						100	100
SW8260C	Toluene	UG/L	13		13						100	100
SW8260C	TPH-Gasoline	UG/L	13	1	12						100	100
SW8260C	trans-1,2-DCE	UG/L	13		13						100	100
SW8260C	trans-1,3-Dichloropropene	UG/L	13		13						100	100
SW8260C	Trichlorofluoromethane	UG/L	13	1	12						100	100
SW8260C	Vinyl chloride	UG/L	13		13						100	100

TABLE 10 Site Completeness by Analyte – Qualified Data

Number of Occurrences Contractor Total Contractor Overall Non-Blank J M R R Percent Percent Flags Flags Flags Flags Analyses Detects detects Flags **Completeness Completeness** Method Analyte Units SW8260C Xylene (total) UG/L 13 13 100 100 SW8270D UG/KG 34 32 2 100 100 1-Methylnaphthalene 2 SW8270D 2-Methylnaphthalene UG/KG 34 33 1 100 100 SW8270D UG/KG 5 29 5 100 100 Acenaphthene 34 SW8270D UG/KG 3 Acenaphthylene 34 3 31 100 100 SW8270D Anthracene UG/KG 34 17 17 17 100 100 SW8270D Benzo (a) anthracene UG/KG 34 32 2 3 100 100 2 2 SW8270D Benzo (a) pyrene UG/KG 34 32 100 100 2 2 SW8270D Benzo (b) fluoranthene UG/KG 34 32 100 100 2 7 SW8270D Benzo (g,h,i) perylene UG/KG 34 32 100 100 2 2 SW8270D Benzo (k) fluoranthene UG/KG 34 32 100 100 SW8270D Chrysene UG/KG 34 32 2 9 100 100 SW8270D Dibenzo (a,h) anthracene UG/KG 34 22 12 10 100 100 SW8270D Fluoranthene UG/KG 34 32 2 19 100 100 SW8270D Fluorene UG/KG 34 2 32 2 100 100 SW8270D Indeno (1,2,3-c,d) pyrene UG/KG 34 32 2 16 100 100 SW8270D Naphthalene UG/KG 33 34 1 1 100 100 SW8270D Phenanthrene UG/KG 34 30 4 20 100 100 2 SW8270D UG/KG 19 Pyrene 34 32 100 100

Neil Abercrombie

LINDA ROSEN, M.D., M.P.H

In reply, please refer to: File: EHA/HEER Office 2014-511-LMB

October 16, 2014

Mr. Michael Tauchen Lead Permits and Hazardous Materials Coordinator Honolulu Authority for Rapid Transportation Ali'i Place 1099 Alakea Street, Suite 2300 Honolulu, HI 96813

Facility/Site: Honolulu High-Capacity Transit Corridor

Subject: Review of Environmental Site Characterization for Banana

Patch Properties, Pearl City, Oahu, Hawaii, dated July 11, 2014

Dear Mr. Tauchen:

The Hawaii Department of Health (HDOH) Hazard Evaluation and Emergency Response (HEER) Office has reviewed the referenced report and feels that, overall this is a good report with valuable content, including detailed figures, data tables, an Environmental Hazard Evaluation (EHE), and Environmental Hazard Management Plan (EHMP). An impressive amount of site data were collected and compiled in a very short amount of time. However, some revision is required in order to adequately manage contamination during construction activities in the Pearl Highlands Station area. Tabulated comments are attached for your consideration. Primary concerns include:

- Clarify that contaminated media must be properly contained, stored, labeled, and tracked. Soil stockpiles should be covered and labeled. Soil will not be reused outside the Pearl Highlands Station work area (avoid using "onsite/offsite" verbiage).
- Management of debris is discussed in Section 6, but there are additional requirements that need to be discussed (for example, the type and size of debris that can remain in place in accordance with SHWB regulations). To avoid rework or other penalties, coordinate with SHWB to ensure all regulations are closely followed, and communicate these requirements to the site workers.
- Beyond what is discussed in this document, further regulatory supervision is required, including oversight of cesspool closures, work in/near the streams, and well closures. Additional regulatory agencies may have interest in these issues

Mr. Tauchen October 16, 2014

and it is the responsibility of the Honolulu Authority for Rapid Transportation to properly notify these agencies and manage these requirements.

Should there be any questions, please do not hesitate to contact me at 586-4353. Thank you very much for your time and consideration in this matter.

Sincerely,

Lynn M. Bailey

Lynn M Dailey

Brownfields Voluntary Cleanup Program Specialist Hazard Evaluation and Emergency Response Office State of Hawaii Department of Health

Enclosure

Section	Location	Note
		There was no discussion of whether wells were closed or left in place. This closure
		information should include the historical "stick up" wells. If wells are left in place, there must
		be information in the EHMP on how contractors will protect them during grading and what
		they will do if a well is compromised (repair, closure method, notifications, etc.). If wells
		were already closed, please provide information about who was notified and include
Conoral		documentation.
General		documentation.
		Several sections state there was no gross contamination in the soil. However, LNAPL was
		present in groundwater at one well. Somewhere within this report, please clarify that the
General		well was not drilled during this project and so no soil came from this borehole.
		HRS 128 and HAR 11-453 don't really apply to "identification, reporting, and responding to
		releases". They are applicable if you are storing large quantities of reportable materials. HRS
		508-C deals with LUCs. The Clean Water Branch and/or Waste Water Branch should review
		this document to determine which of the regulatory requirements of the last four bullets are
1.2		applicable and to ensure their interests are addressed appropriately.
		Global change: The words "onsite" and "offsite" are used throughout the document. Since
		the entire rail corridor has been called the "Site" in other documents, it is critical this
		document replace "Onsite" with "Within the Pearl Highlands Station work area". It should
2.2	First paragraph	also be clarified that this soil will not be reused outside the Pearl Highlands station work area.
	2nd paragraph,	If accurate, change "no active or buried" to "no active or inactive buried". However, Section
3.1	last sentence	4.1 describes an abandoned pipe discovered during trenching.
		The original plan was to base triplicate sample locations on area, not the volume of sample in
		the core (per Dr. Brewer, May 8, 2014). In the meeting we decided triplicate samples at DU-1
		and 3 (now DUs 4, 6 and 5) would be collected from 0-5 ft bgs. Triplicate samples from what
		was then DUs 2, 4, 5 (Now DUs 1S, 1N, 2, and 3) would be collected from 6 to 10 ft. bgs, and
		one triplicate would be collected from what was then DU6 (is now DU7). Please clarify,
		within Sections 3.5 where, how deep, and how many replicates were collected (also applies to
3.5		Sections 3.6 and 3.7).
3.5, 4.2.1	DU4	Should this be 0.5 to 3 feet bgs?
/		Sections 3.6 and 3.7 have text confirming that IS processing was done at the laboratory.
		Please add text to Section 3.5 confirming that this processing was done and briefly describe
3.5		what it entailed.
		HDOH recommends IS, rather than discrete, confirmation samples be collected after the
3.5		cesspools are removed.
		Note in the text that Wells TW-003 and TW-012 (according to table 3-3) were screened well
		below the capillary fringe and most likely would not show physical signs of NAPL, but should
		detect dissolved-phase contamination. Also note that existing well TW-012 sampled the
		same aquifer as the newly installed wells, rather than the deeper aquifer associated with the
3.8		DLNR production wells (this would make a difference in the required screening criteria).
3.10	Bullets	Should "duplicates" be "triplicates"?

Section	Location	Note
		The soil stockpiles that were present on site during the June sampling event were not covered
4.1	Bullets	or marked. How will this soil be differentiated from soil graded from the various DUs?
		During the trenching, portions of drums and abandoned pipelines were discovered. Were
		these reported as a release (See HDOH comments to work plan)? If so, please provide release
		ID. If not, please explain why not. Also, the "potentially abandoned concrete pipe" was
4.4		found in DU3, where only limited or no excavation is planned. It is in HARTs best interest to
4.1	+	determine the pipe contents prior to construction.
		Stream bed results discussions should also include detections listed on the table and not
		screened (example, TPH-o). Additionally, please add the following text to this section,
		"Although the chromium and lead levels do exceed the NOAA sediment PEC and TEC, the
		concentrations found in the stream are below natural background levels for soil in Hawaii."
		Natural background lead in fines could easily approach 100 mg/kg in volcanic soil and
		sediment derived from the soil. Based on the data there is no reason to further evaluate lead
		in the sediment in portions of the stream that will be channelized.Based on the data there is
		no reason to further evaluate lead in the sediment in portions of the stream that will be
		channelized. Soil in the upland area that exceeds the HDOH Tier 1 EAL of 200 mg/kg for lead
4.6		should be managed in a manner that prevents erosion and runoff into the stream bed.
		Discuss how the laboratory findings for the sediment sample from DU-10, that state,
		"Dilution required due to matrix interference (dark and viscous extract; high concentration of
16		non-target hydrocarbons)." Is this related to anything that was observed in the field, such as
4.6 4.7		NAPL or asphalt? Either this section, or section 3.8 should discuss whether samples were filtered.
17		Elementario Section, or Section S.o. Should discuss whether samples were intered.
		Besides what is stated in Section 6, additional regulatory oversight is required. Include
		information about requirements for cesspool closures, oversight of work in the streams, and
		well closures. Additional regulatory agencies may have interest in these issues and it is the
		responsibility of HART to properly notify and manage these requirements. Also applies to
6	throughout	EHMP and recommendations discussions in Section 7.
		Management of debris is discussed in this section. There are additional requirements not
		discussed here (for example, the size of debris that can remain in place). To avoid rework or
		other penalties, coordinate with SHWB to ensure all regulations are closely followed. Also
6	throughout	applies to EHMP and recommendations discussions in Section 7.
		This section must specify how the contaminated soil and groundwater will be managed on
		site. This includes discussions on how the media will be contained/stored, tracked, and
		marked to avoid mishandling. Consider referring to the appropriate sections of the
		programmatic EHMP. The post-construction EHMP will include information on the final
		disposition and maps of contaminated media remaining on the Pearl Highlands Station
6	throughout	property. Also applies to EHMP and recommendations discussions in Section 7

Section	Location	Note
		This sentence reads, "Soil that is removed from the Site (any DU) and is planned for reuse in
		residential offsite areas will require additional sampling to meet the requirements of pre-
		characterization of soil intended for offsite reuse (i.e. one sample per 200 cubic yards of
		soil)." In order to clarify that any soil taken for reuse from this area must be sampled, change
		to, "planned for reuse anywhere other than within the Pearl Highlands Station footprint"
6.2	Last paragraph	Also applies to EHMP and recommendations discussions in Section 7.
		Good that LUCs will be applied to restrict land use to C/I where soil is left in place, but remove
		all text stating "in residential areas." Clarify all text so workers know that 1) "Onsite"= within
		Pearl Highlands Station footprint, 2) Any soil reused outside of Pearl Highlands Station
6.2.1,		footprint must be sampled and found "clean" (refer to Feb 2014 Programmatic EHMP and
•	2.3 throughout	Corr 12-500-lmb). Also applies to EHMP and recommendations discussions in Section 7
,		Note that before it will be determined no restrictions apply to specific areas, confirmation
7		sampling may be required.
		After the first bullet, add a new bullet estimating the square footage of the DU that could not
		be sampled due to stockpiles in the west and equipment storage in the east. These gaps may
7.3	Bullets	apply to additional contaminants, not just LNAPL.
		After the second bullet, add a new bullet describing the dimension of the large void in DU6
		left by the removed building. Explain the data gap from the shallower SUs. This is somewhat
7.3	Bullets	discussed in section 4.1 but should be detailed here, as well.
		The TPH, PAHs and lead in surface soil samples are typical of urban background, especially
		along roadsides. The deeper TPH and PAHs could be related to asphalt or oil in the original fill
		material. The concentrations of lead reported are typical of roadside impacts from pre-1970s
		era auto exhaust, not that high but not suitable for residential exposure. The TPH is mainly a
		gross contamination issue. It doesn't pose a significant leaching concern even though it
	Figure 4-3. Soil	slightly exceeds the leaching based action level and is initially flagged in the EHE for leaching
	Data	(inferred for DUs 2, 5 and 6; TPH too heavy and groundwater not significantly impacted).
		The cadmium data for DU9 and DU10 in Figure 4-4 are incorrect. According to the lab report
		(and Table 2) the concentration of cadmium was 0.54 mg/kg in the DU-9 sample and 1.0
		mg/kg in the DU-10 sample. The reported concentration of lead in the DU-9 sample is correct
	Figure 4-4.	(45.1 mg/kg), but the reported concentration of lead in the DU-10 sample should be 17.5
	Sediment Data	mg/kg, not 45.1 mg/kg as indicated in the figure.
		If groundwater samples were not filtered prior to testing, the heptachlor is probably related
		to chlordane detected in shallow soils in most of the DUs (low ppm levels but below EALs).
	Figure 4-5.	The presence of organochlorine pesticides suggests that there was sediment in the samples.
	Groundwater	Runoff into the stream should be controlled during future development to minimize the
	Data	movement of chlordane into aquatic habitats.
		Briefly describes the RSDs based on triplicate results, but again, very little information about
	Appendix G,	the locations of the triplicates or what the results mean for the DU where the samples were
	Section 3.8	collected.

HDOH REVIEW COMMENTS Site Characterization Report for Banana Patch, Revision 0 (2014)

The following responses been prepared to address HDOH HEER Office comments on the Site Characterization Report for Banana Patch Properties, Rev 0.

Section	Location	HDOH Comment	Response to Comment	HDOH Follow-Up Comment	Response to Comment
General		There was no discussion of whether wells	Temporary wells will need to be removed/abandoned. Two	Clarify within text that all wells will	The text will clarify that wells will be abandoned in accordance with TGM
		were closed or left in place. This closure	potential production wells were also observed within DU1 and	be closed in accordance with TGM	Section 6.2.5. Because groundwater beneath the Pearl Highlands Work
		information should include the historical	DU6. The well within DU6 was buried during demolition of a	Section 6.2.5. Also state what	Area is not a source of drinking water, the wells will be abandoned in
		"stick up" wells. If wells are left in place,	structure within TMK96003012. This well will need to be	HART will do if wells are	accordance with Option 3 of Section 6.2.5.2 of the TGM. Each well will be
		there must be information in the EHMP on	located and together with the other well within DU1, properly	compromised prior to closure	pulled out and the open hole backfilled with soil and/or bentonite. In the
		how contractors will protect them during	abandoned in coordination with DLNR Commission on Water	(repair, closure method,	event that the well can't be removed or breaks during removal, the well
		grading and what they will do if a well is	Resource Management (CWRM).	notifications, etc.).	casing (and open hole) will be backfilled with hydrated bentonite and left
		compromised (repair, closure method,	No other cesspools or wells were closed or abandoned by		in place. This is believed to be an appropriate method because no
		notifications, etc.). If wells were already	HART.		leaching or gross contamination concerns exist in the portion of the Pearl
		closed, please provide information about who	Stick up wells observed on the property were installed by		Highlands Work Area where no excavation is planned during future
		was notified and include documentation.	geotechnical drillers. These wells do not extend deeper than 10		construction and soil will remain in place, except for a small portion of
			feet and were filled with water to determine the rate of		DU3 where LNAPL was found. This portion of DU3 will be further
			percolation for geotechnical testing. These will be removed		investigated/remediated in the future, removing any potential source of
			and filled during future construction activities.		LNAPL and potentially impacted soil. Soil within areas/depth interval
					where leaching concerns exist are all within decision units (DU5 and DU6)
					where soil (and therefore wells) will be removed and either reused onsite
					with a minimum of 3 feet clean cover or properly disposed of at an off-
					site permitted facility during future construction activities.
					For those wells that are compromised, HART is not planning to conduct
					any repair because all the wells will be abandoned (as described above).
					Groundwater contamination above the commercial/industrial (C/I) EALs i
					limited to organochlorine pesticides and, marginally, selenium and silver.
					No on-site source was found for these constituents (i.e., no exceedances
					of EALs in soil [with the exception of a very marginal exceedance of the
					residential EAL for heptachlor epoxide in surface soil within DU4]).
					Therefore, it is believed that groundwater contamination is from past
					regional pesticides and termiticides agricultural/residential applications,
					and future groundwater monitoring at the Pearl Highlands Work Area is
					not necessary.

Section	Location	HDOH Comment	Response to Comment	HDOH Follow-Up Comment	Response to Comment
General		Several sections state there was no gross contamination in the soil. However, LNAPL was present in groundwater at one well. Somewhere within this report, please clarify that the well was not drilled during this project and so no soil came from this borehole.	Section 5.2.1 states that "gross contamination concerns in soil at the Site are limited to the area in the vicinity of the steelcased well where LNAPL was encountered within DU3"; also, Section 7.1.7 in Conclusions and Recommendations states that "Based on the site investigation data, it is concluded that potential gross contamination, direct exposure, leaching, and ecotoxicity concerns exist in soil and/or groundwater in the flat area of the SiteGross contamination concerns in native soil	Key phrase in this comment = "In the soil". The groundwater sections and summaries clearly stated there was gross contamination in DU 3. It is NOT clear how soil from TW-001, and maybe TW-002 as well as other DU-3 borings, exhibited no signs of gross contamination.	Because of the high viscosity and very low/leachability of oil (and TPH-o), it would not be surprising if the presence of limited volume of oil in the steel-cased well resulted in no or limited impact to soil and groundwater surrounding the well. However, the conclusions and recommendations acknowledge the potential for gross contamination of soil in the vicinity of where LNAPL was observed on groundwater. Additional text will be included in sections 5, 6, and 7 to further discuss and clarify this issue. Finally, as described in Section 7.2 of the report, additional delineation and remedial activities in this small portion of the DU3 can be conducted during future construction activities to remove LNAPL and grossly contaminated soil potentially remaining in the area to the extent practicable.
1.2		HRS 128 and HAR 11-453 don't really apply to "identification, reporting, and responding to releases". They are applicable if you are storing large quantities of reportable materials. HRS 508-C deals with LUCs. The Clean Water Branch and/or Waste Water Branch should review this document to determine which of the regulatory requirements of the last four bullets are applicable and to ensure their interests are addressed appropriately.	The list will be revised to make specific reference to HRS 128D, HAR 11-451 for identification, reporting, and responding to releases associated with pre-existing contamination and for Contractor releases during construction. Reference to 11-453 was made as it may apply to storage and reporting requirements for chemicals stored in reportable quantities and subsequently released by Contractors from larger areas such as Casting Yards or laydown areas. Additional clarification will be added. This section will be shared with the HDOH Clean Water and Waste Water Branches for input.		NA

Section	Location	HDOH Comment	Response to Comment	HDOH Follow-Up Comment	Response to Comment
2.2	First paragraph	Global change: The words "onsite" and "offsite" are used throughout the document. Since the entire rail corridor has been called the "Site" in other documents, it is critical this document replace "Onsite" with "Within the Pearl Highlands Station work area". It should also be clarified that this soil will not be reused outside the Pearl Highlands station work area.	"Existing fill material and native soil may be reused within the	Clarify throughout the document that soil exceeding Tier 1 EALs will be reused within the Pearl Highlands Work Area or properly disposed (not reused outside the Banana Patch).	It will be further clarified throughout the document that soil exceeding Tier 1 EALs will be reused within the Pearl Highlands Work Area or properly disposed of at a permitted facility. No soil exceeding unrestricted use EALs will be reused outside of the Pearl Highlands Work Area.
3.1	2nd paragraph, last sentence	If accurate, change "no active or buried" to "no active or inactive buried". However, Section 4.1 describes an abandoned pipe discovered during trenching.	The sentence will be revised to read: "No active or inactive buried utility lines were identified by either the Hawaii One Call Utility Locating Center or by the third-party utility surveyor in the areas where soil borings or test pits were planned. However, an abandoned pipe was identified during trenching (see Section 4.1)."	None	NA
3.5		locations on area, not the volume of sample in	from the various DUs (replicates approximately 10 percent of the total samples). Sample depths will be added to Table 3-2. Additional clarification and justification for the DUs and vertical intervals will be provided in the text sections 3.5, 3.6, and 3.7.	None	NA
3.5, 4.2.1	DU4	Should this be 0.5 to 3 feet bgs?	independently for construction worker exposure scenarios. Therefore, 0-0.5 foot bgs and <mark>0-3 feet bgs</mark> intervals were evaluated.	0-3 feet and 0.5- 3 feet are not used consistently throughout the document (other discussions on DU-4, as well as discussions about all other DUs). Check all sections, verify which is accurate, and correct accordingly. Make sure the document reflects what actually happened in the field.	The 0-0.5 foot bgs and 0-3 feet bgs soil sampling intervals were evaluated only within DU4. At all other DUs the surface and shallow subsurface soil sampling intervals were consistently 0-0.5 foot bgs and 0.5-3 feet bgs.
3.5		Sections 3.6 and 3.7 have text confirming that IS processing was done at the laboratory. Please add text to Section 3.5 confirming that this processing was done and briefly describe what it entailed.	Additional text will be added to confirm that IS processing was performed at the laboratory and to clarify that stream bed samples were required to be analyzed 'wet' due the excessive amount of time required to dry the samples.	None	NA

Section	Location	HDOH Comment	Response to Comment	HDOH Follow-Up Comment	Response to Comment
3.5		HDOH recommends IS, rather than	The analytical results for the discrete samples collected	None	NA
		discrete, confirmation samples be	from around the cesspools did not identify the cesspool		
		collected after the cesspools are	as a source of contamination and it does not appear that		
		removed.	the cesspool was used to dispose of contaminants.		
			Consequently, barring any new evidence of		
			contamination identified within the cesspool during		
			removal, additional samples are not anticipated to be		
			required following cesspool removal with DU6. Instead,		
			the soil will be handled similar to other soil generated		
			within DU6.		
		Note in the text that Wells TW-003 and TW-	TW-003 was installed at boring location B13. As noted in the	None	NA
		012 (according to table 3-3) were screened	boring log for B13, very poor soil recovery was obtained		
		well below the capillary fringe and most	between 15 and 25 feet bgs. The first water bearing interval		
		likely would not show physical signs of NAPL,	was observed between 25.5 and 28 feet bgs. Since the		
		but should detect dissolved-phase	original plan was to install temporary wells with 5-foot		
		contamination. Also note that existing well	screens and because of the uncertainties related to poor soil		
		TW-012 sampled the same aquifer as the	recovery between 15 and 25 feet bgs, the field team made		
		newly installed wells, rather than the deeper	the decision to install the screen of the well where saturated		
		aquifer associated with the DLNR	soil was observed in the core. Because of presence of clay at		
		production wells (this would make a	depths where the water table was expected (e.g., 10-15 feet		
		difference in the required screening criteria).	bgs), it is also possible that the shallow aquifer is semi-		
			confined and groundwater in most wells installed at the site is		
			subject to slight upward gradients. Because of the large		
			presence of clay, the field team later decided to install 10-		
			foot screen at other wells.		
			A note will be added that water sampled from TW-012 was		
			from the same shallow aquifer as the other temporary wells.		
			No visual evidence of LNAPL was observed in soil borings and		
			TPH concentrations in soil generally below saturation limits		
			also suggest that LNAPL is limited. However, because LNAPL		
			was measured within the 5-inch, steel-cased well, the general		
			reference to gross contamination in soil was made to		
			recognize that LNAPL on groundwater may likely be present		
			in soil in the vicinity.		

Section	Location	HDOH Comment	Response to Comment	HDOH Follow-Up Comment	Response to Comment
3.10	Bullets	Should "duplicates" be "triplicates"?	The bullet will be revised to read: Field replicate (duplicate and triplicate) precision	There is some confusion about results. Section 5.2.1.1 states that, "LNAPL (0.2 foot) was identified as present within a thin walled 5-inch steel-cased well located in DU3 (Figure 3-3), and in a temporary well (0.02 foot in well TW-001) located within DU3, approximately 12 feet downgradient (south) of the steel well." The TW-001 LNAPL was also discussed in other places in the document. Section 4.7 states that TW-001 had 148 ug/L TPH-g; Table 4-5 states that TW-001 was non-detect for TPH-g and the detection was in well TW-002. Figure 4-5 also seems to show the detection in TW-002, not TW-001. There is no mention of this detection in Table 5-2. Table	The text throughout the document will be modified to clarify that a limited amount of LNAPL was found in the thin-walled, steel-cased well located about 12 feet upgradient of TW-001. Also at TW-001, after collecting a LNAPL sample for analysis, no LNAPL was observed during subsequent measurements in this well. Although very limited (0.02 foot) LNAPL was measured in TW-001 during groundwater sampling before sample collection, no LNAPL or sheen was observed in the groundwater sample, no odor or staining was observed on the interface probe, and no LNAPL was detected at this well during gauging conducted the day after installation. This suggests a false detection during groundwater sampling. Data included in Table 4-5 and Figure 4-5 are correct. The text will be revised to be consistent with tables and figures, reporting no detection for TPH-g in TW-001 and 148 ug/L in TW-002. TPH groundwater exceedances are not included in Table 5-2 because this table includes only exceedances of applicable Tier 1 EALs (EALs for sites where drinking water is not threatened and concentrations are below these action levels). However, introductory text of Section 5.2 is not completely clear on this regard and will be modified as follows: "This section evaluates potential hazards associated with COPC concentrations in soil and groundwater at Site. All results exceeding the applicable HDOH Tier 1 EALs were carried over to Tier 2 for the EHE of different exposure scenarios/hazards. This EHE is subdivided in two subsections to evaluate soil and groundwater against the appropriate hazard-specific EALs. After Tier 1 evaluation conducted in Section 4, where analytical results were compared against the unrestricted Tier 1 (lowest) EALs to select the COPCs, those compounds exceeding the Tier 1 EALs for sites within 150 meters of surface water bodies and where drinking water is not threatened (HDOH, Fall 2011) were carried over to Tier 2 evaluation. During the Tier 2 evaluation, results were compared against hazard-specific EALs to evaluate
4.1	Bullets	The soil stockpiles that were present on site during the June sampling event were not covered or marked. How will this soil be differentiated from soil graded from the various DUs?	The soil stockpiles were being temporarily stored on site for use on a different area of the project nearby. These soil stockpiles have since been removed and used offsite for H1/H2 grading work associated with the cantilever column.	None	NA
4.1		During the trenching, portions of drums and abandoned pipelines were discovered. Were these reported as a release (See HDOH comments to work plan)? If so, please provide release ID. If not, please explain why not. Also, the "potentially abandoned concrete pipe" was found in DU3, where only limited or no excavation is planned. It is in HARTs best interest to determine the pipe	as releases because a release or threat of release of a hazardous substance was not identified. During the site walk, a street sweeper was observed along with several other types of		Comment noted. Thank you for checking.

Section	Location	HDOH Comment	Response to Comment	HDOH Follow-Up Comment	Response to Comment
		contents prior to construction.	around the drum did not appear to indicate that a release of a		
			hazardous substance had occurred. Given that the pipe		
			appeared to be made of concrete, it may be an abandoned		
			drain or water line. The pipe was trending in the direction of		
			the depression within DU6. However, the pipe was not		
			identified within trenches excavated within DU6 so it is		
			possible that the pipe terminates prior to the depression within		
			DU6. The pipe was located deeper than 8 feet in an area		
			where little future excavation would be completed. Therefore,		
			it did not appear practical to try to track out the location of the		
			pipe. If necessary, this can be done in conjunction with other		
			grading work planned for the area.		
4.6		Stream bed results discussions should also	Additional discussion will be added to include detections for	Also add this text.	The sentence will be added at the end of Section 4.6.
		include detections listed on the table and not	which NOAA sediment criteria do not exist, e.g., TPH-o.		
		screened (example, TPH-o). Additionally,			
		please add the following text to this section,			
		"Although the chromium and lead levels do			
		exceed the NOAA sediment PEC and TEC, the			
		concentrations found in the stream are below	<u>'</u>		
		natural background levels for soil in Hawaii."			
		Natural background lead in fines could easily			
		approach 100 mg/kg in volcanic soil and			
		sediment derived from the soil. Based on the			
		data there is no reason to further evaluate			
		lead in the sediment in portions of the			
		stream that will be channelized.Based on the			
		data there is no reason to further evaluate			
		lead in the sediment in portions of the stream	1		
		that will be channelized. Soil in the upland			
		area that exceeds the HDOH Tier 1 EAL of 200			
		mg/kg for lead should be managed in a			
		manner that prevents erosion and runoff into the stream bed.			
		uie strediii bet.			1

Section	Location	HDOH Comment	Response to Comment	HDOH Follow-Up Comment	Response to Comment
4.6		Discuss how the laboratory findings for the sediment sample from DU-10, that state, "Dilution required due to matrix interference	during collection. Sample dilution was most likely done because of the heavy	None	NA
		(dark and viscous extract; high concentration of non-target hydrocarbons)." Is this related to anything that was observed in the field, such as NAPL or asphalt?	hydrocarbon detection of residual range TPH at 400 ppm. However, PAH compounds were relatively low and would not be expected in high concentration associated with residual range TPH. Thick and dark, viscous extract could be due to the presence of motor oil or some other heavy weight oil, but no evidence of LNAPL was observed on site during		
			sample collection. The 400 ppm is enough to impact analysis but potentially low enough not to be noted in the field as presence of LNAPL.		
4.7		Either this section, or section 3.8 should discuss whether samples were filtered.	Text will be added to indicate that 0.45 micron filters were used prior to collection of samples for dissolved metals analysis.	None	NA
6	throughout	Besides what is stated in Section 6, additional regulatory oversight is required. Include information about requirements for cesspool closures, oversight of work in the streams, and well closures. Additional regulatory agencies may have interest in these issues and it is the responsibility of HART to properly notify and manage these requirements. Also applies to EHMP and recommendations discussions in Section 7.	2 cesspools within DU6 were found to contain no residual sludge and filled by Kiewit. These cesspools will be excavated again during construction of the Pearl Highlands Garage and Station. Additional cesspools were observed in DU1. Additional investigation will be conducted to identify the location of cesspools and wells associated with existing residential structures. Large capacity cesspools will be coordinated with HDOH Waste Water Branch. Small capacity cesspools will be pumped/excavated to remove any sludge and then filled but are not anticipated to require separate coordination with HDOH unless there is evidence of contamination. Work conducted within and around the stream is being coordinated with the Army Corps of Engineers and HDOH CWB. Well closures for production wells will be coordinated with DLNR CWRM. The intent of this Site Characteristic Report and EHMP is to identify the requirements for handling potentially contaminated media. While mention will be made to the additional regulatory requirements for cesspool closures, work within the stream, and well closures, cannot be covered adequately in this document to identify all other regulatory requirements, particularly those for which separate coordination is required.	None	NA NA

Section	Location	HDOH Comment	Response to Comment	HDOH Follow-Up Comment	Response to Comment
6	throughout	Management of debris is discussed in this section. There are additional requirements not discussed here (for example, the size of debris that can remain in place). To avoid rework or other penalties, coordinate with SHWB to ensure all regulations are closely followed. Also applies to EHMP and recommendations discussions in Section 7.	Debris displaced or removed during construction will be recycled or disposed. In areas where little excavation is planned, debris is not planned to be removed. Much of the debris appears to have been deposited/buried prior to 1993. According to the SHWB, fill deposited prior to 1993 by others predates Solid Waste Management regulations and there may not be a regulatory requirement for removal/disposal. HART will coordinate with the HDOH SHWB to discuss the requirements.	None	NA .
6	throughout	This section must specify how the contaminated soil and groundwater will be managed on site. This includes discussions on how the media will be contained/stored, tracked, and marked to avoid mishandling. Consider referring to the appropriate sections of the programmatic EHMP. The post-construction EHMP will include information on the final disposition and maps of contaminated media remaining on the Pearl Highlands Station property. Also applies to EHMP and recommendations discussions in Section 7.	Text will be revised to include reference to the Programmatic EHE-EHMP. However, since the site has been characterized, some of the requirements included in the Programmatic EHE-EHMP may not be necessary. For example, since all soil within DU5 has been characterized as having reuse restrictions, limiting stockpiles to 100 cubic yards, lining the bottom and covering with plastic sheeting may not be necessary as long as BMPs are in place to prevent migration/dispersion of contaminants. Post-construction EHE-EHMP will document the remaining contamination and restrictions.	None	NA NA
6.2	Last paragraph	This sentence reads, "Soil that is removed from the Site (any DU) and is planned for reuse in residential offsite areas will require additional sampling to meet the requirements of pre- characterization of soil intended for offsite reuse (i.e. one sample per 200 cubic yards of soil)." In order to clarify that any soil taken for reuse from this area must be sampled, change to, "planned for reuse anywhere other than within the Pearl Highlands Station footprint" Also applies to EHMP and recommendations discussions in Section 7.	The sentence will be revised as suggested.	Ensure this is changed globally	The report will be checked to make this change throughout the text.

Section	Location	HDOH Comment	Response to Comment	HDOH Follow-Up Comment	Response to Comment
6.2.1, 6.2.2, 6.2.3	throughout	Good that LUCs will be applied to restrict land use to C/I where soil is left in place, but remove all text stating "in residential areas." Clarify all text so workers know that 1) "Onsite"= within Pearl Highlands Station footprint, 2) Any soil reused outside of Pearl Highlands Station footprint must be sampled and found "clean" (refer to Feb 2014 Programmatic EHMP and Corr 12-500-lmb). Also applies to EHMP and recommendations discussions in Section 7.	Text will be revised to replace "onsite" with "within the Pearl Highlands Work Area" per previous comments.	None	NA
7		Note that before it will be determined no restrictions apply to specific areas, confirmation sampling may be required.	A note will be added to indicate that confirmation sampling may be required prior to removal of land use restrictions.	None	NA
7.3	Bullets	estimating the square footage of the DU that	The estimated square footage of the areas that could not be sampled will be added to the bullets. However, the lack of coverage in these areas is not anticipated to be a significant data gap.		NA
7.3	Bullets	After the second bullet, add a new bullet describing the dimension of the large void in DU6 left by the removed building. Explain the data gap from the shallower SUs. This is somewhat discussed in section 4.1 but should be detailed here, as well.	A new bullet will be added to identify the dimension of the depression in DU6 and the data gap from the shallower SUs.	None	NA
	Figure 4-3. Soil Data	The TPH, PAHs and lead in surface soil samples are typical of urban background, especially along roadsides. The deeper TPH and PAHs could be related to asphalt or oil in the original fill material. The concentrations of lead reported are typical of roadside impacts from pre-1970s era auto exhaust, not that high but not suitable for residential exposure. The TPH is mainly a gross contamination issue. It doesn't pose a significant leaching concern even though it slightly exceeds the leaching based action level and is initially flagged in the EHE for leaching (inferred for DUs 2, 5 and 6; TPH too heavy and groundwater not significantly impacted).	context and potential sources for the TPH, PAH, and lead exceedences per the comment.	None	NA

Section	Location	HDOH Comment	Response to Comment	HDOH Follow-Up Comment	Response to Comment
Section	Figure 4-4. Sediment Data	The cadmium data for DU9 and DU10 in	The figure will be revised to reflect the correct analytical results.	None None	NA NA
	Figure 4-5. Groundwater Data	If groundwater samples were not filtered prior to testing, the heptachlor is probably related to chlordane detected in shallow soils in most of the DUs (low ppm levels but below EALs). The presence of organochlorine pesticides suggests that there was sediment in the samples. Runoff into the stream should be controlled during future development to minimize the movement of chlordane into aquatic habitats.	Groundwater samples were filtered for metals analysis but not for other analyses. BMPs to control runoff are currently in place above the ordinary high water mark and are anticipated to be maintained throughout construction. Future construction plans include geotextile and vegetated berms along the stream bank.	None	NA
	Appendix G, Section 3.8	Briefly describes the RSDs based on triplicate results, but again, very little information about the locations of the triplicates or what the results mean for the DU where the samples were collected.	Additional discussion will be included to discuss the RSDs on triplicate results and the relative location of normal, duplicate, and triplicate samples.	None	NA

STATE OF HAWAII DEPARTMENT OF HEALTH

P. O. BOX 3378 HONOLULU, HI 96801-3378 In reply, please refer to: File: 2015-020-lmb

January 13, 2015

Mr. Michael Tauchen Honolulu Authority for Rapid Transportation Ali'i Place 1099 Alakea Street, Suite 2300 Honolulu, HI 96813

Facility/Site: Honolulu High-Capacity Transit Corridor

Subject: Concurrence with Site Characterization for Banana Patch Properties,

Pearl City, Oahu, Hawaii

Dear Mr. Tauchen:

The Hawaii Department of Health (HDOH) Hazard Evaluation and Emergency Response Office and Solid and Hazardous Waste Branch have reviewed the responses to comments dated January 12, 2014 and have no comments at this time. Please ensure all comments are fully incorporated and submit the finalized document to HDOH at your earliest convenience.

Should new information concerning on-site contamination become available, please notify the HEER Office as soon as possible. Should there be any questions, please do not hesitate to contact me at 586-4353. Thank you very much for your time and consideration in this matter.

Sincerely,

Lynn M. Bailey

Lynn M Dailey

Brownfields Voluntary Cleanup Program Specialist Hazard Evaluation and Emergency Response Office State of Hawaii Department of Health