# Lab Processing and Analysis of Multi Increment® Samples

Webinar begins November 15, 10AM HST















#### APPL, Inc.

- Agriculture and Priority Pollutants Laboratories Inc.
- In business for 35 years
- ISO IEC 17025:2005 accredited
- Department of Defense accredited
- NELAC accredited
- Certified in 10 states
- On the SW846 Methods contract from 1993-2010
- Served as a reference laboratory for various methods
- Started using MIS in 2006
- On ITRC committee for Incremental Sampling
- Chuck Ramsey "Accredited"





#### Where MIS has been used by APPL

- Hawaii
- 24 additional states
- EPA Region 3
- Afghanistan
- Denmark
- Japan
- Pacific Islands including Guam and Saipan
- Puerto Rico





## Laboratory's Role in MIS

- MULTI INCREMENT® a comprehensive sampling methodology used to represent a specific population (decision unit) and provide a foundation for defensible decision making.
- The process used is the result of proper planning based on Data Quality Objectives
- MIS does not stop in the field!!!





#### Sampling Theory

- Applies to both field and laboratory
- Based on the fundamentals of Gy's sampling theory
- Staff trained prior to performance
  - Basic Concepts
  - Sources of Measurement Error
  - Fundamentals of Gy's theory





## Why Use MIS?

- Reduces error
- Controls sample variability (error) due to heterogeneity
- Estimates of mean less uncertain and closer to true mean
- More defensible because it is based on science
- Cost-effective
- Discrete sampling methods are unreliable
  - In general underestimate contamination





## Discrete Subsampling Issues

- Sometimes stirred first
  - Causes finer particles to settle to the bottom
  - Subsample taken from top of the container
- Insufficient increments to compensate for heterogeneity
- Insufficient mass to compensate for fundamental error
  - EPA Methods for metals require **only** 1 gram
  - Other EPA Methods also have insufficient mass
  - Likely to underestimate contaminant concentrations





## Typical Discrete Sample



# MIS is Representative of the Entire Sample





## I am looking for.....

Data that represents my entire sample!













APPL, INC.



## Laboratory Processing and Subsampling References for *MIS*

- Pitard, Francis F. Pierre Gy's sampling theory and sampling practice: heterogeneity, sampling correctness, and statistical process control / author, Francis F. Pitard. 2nd ed. 1993 by CRC Press, Inc.
- EPA Method 8330B, Appendix A USEPA SW846 2006
- Hawaii State Department of Health (HDOH), Hazard Evaluation and Emergency Response Office (HEER Office), Technical Guidance Manual see Section 4. (On-line document, first posted in 2008 and updated last in 2017). www.hawaiidoh.org
- Interstate Technology & Regulatory Council. Incremental Sampling Methodology. ISM-1. http://itrcweb.org/ism-1/Executive Summary.html. February 2012



## Implementing MIS in the Lab

- Start with Data Quality Objectives
  (DQOs)
  - What is the question we need to answer?
  - You need to convey your DQOs to the lab





## Decision Unit (DU)

- Must be completely defined
- For the field
  - Arial extent
  - Depth
  - Particle size
  - Organic/inorganic material
- The decision unit is the same in the field and in the laboratory



## Analyte Integrity

- Must be maintained from collection through analysis (reporting)
  - Compounds of interest
  - Concentration of concern (action level)
  - Detection Limits
  - Sample handling
  - Preservation Techniques





#### Resources

- Coordinate with your regulator!
  - Understand what they want...This is critical
  - You only have one attempt
    - If you make a mistake.....you resample!!!
- Coordinate with your lab
  - Lab MUST process and subsample properly or your field sample design effort is wasted





#### Choosing a Laboratory

- What Questions Should I be Asking?
  - What kinds of sample processing do you do?
  - Can you provide SOPs for procedures?
  - What kind of QC do you perform?
  - What kind of equipment do you use?
  - What kind of references do you have?
- Schedule an on-site visit!
- Trust but verify!





## How Can the Lab Help Me?

- Answer questions, ask questions
- Explain what will the processing do to my compounds of interest
- Explain the equipment used and how it may affect the samples
- Preservation techniques
- Proper container selection
- Provide pictures for documentation





#### What Particle Size Do I Need?

- Soil
  - Generally defined as particles <2mm</li>
- Bioaccessiblility
  - For Lead and Arsenic prior to 2016 <250um</p>
  - Updated by the EPA in 2016 to <150um for ingestion</li>
- Particle size separation with different size sieves
- Mechanical grind with puck mill for particle size reduction
  - Results in particle size of <75um</li>





#### Particle size

- May analyze more than one particle size fraction
  - The DU may contain more than one particle size (various receptors)
- May need to answer multiple questions
  - Bioaccessibility
  - Totals





#### Particle Size Separation

| Particle Size |         | U.S. Std. Sieve |                   |
|---------------|---------|-----------------|-------------------|
| Inches        | Microns | Std. Sieve      | Opening in inches |
| 0.1570        | 4000    | 5               | 0.1575            |
| 0.0132        | 3350    | 6               | 0.1319            |
| 0.1110        | 2820    | 7               | 0.1102            |
| 0.0937        | 2380    | 8               | 0.0929            |
| 0.0787        | 2000    | 10              | 0.0787            |
| 0.0661        | 1680    | 12              | 0.0669            |
| 0.0555        | 1410    | 14              | 0.0551            |
| 0.0469        | 1190    | 16              | 0.0465            |
| 0.0394        | 1000    | 18              | 0.0394            |
| 0.0331        | 841     | 20              | 0.0335            |
| 0.0278        | 707     | 25              | 0.028             |
| 0.0234        | 595     | 30              | 0.0236            |
| 0.0197        | 500     | 35              | 0.0197            |
| 0.0165        | 420     | 40              | 0.0167            |
| 0.0139        | 354     | 45              | 0.014             |
| 0.0117        | 297     | 50              | 0.0118            |
| 0.0098        | 250     | 60              | 0.0098            |
| 0.0083        | 210     | 70              | 0.0083            |
| 0.0083        | 177     | 80              | 0.0071            |
| 0.0059        | 149     | 100             | 0.0059            |
| 0.0049        | 125     | 120             | 0.0049            |
| 0.0041        | 105     | 140             | 0.0042            |
| 0.0035        | 88      | 170             | 0.00351           |
| 0.0029        | 75      | 200             | 0.003             |
| 0.0052        | 63      | 230             | 0.0025            |
| 0.0021        | 53      | 270             | 0.0021            |
| 0.0017        | 44      | 352             | 0.0018            |
| 0.0015        | 38      | 400             | 0.0015            |
| 0.0010        | 25      | 500             | 0.001             |
| 0.0008        | 20      | 635             | 0.0008            |





### To Process Soil at 2mm









## MIS Options in the Lab

- Literally hundreds of ways to process samples (and that's a good thing)
  - Dry or not dry
  - Sieve or not sieve
  - Grind or not grind
- Multiple stages of sieving, grinding subsampling
- Multiple ways to subsample





## Approximately 1 to 2 Kilos



#### APPL, INC.

## Drying the Bulk MI Sample







## Wet MI Subsampling

- Spread entire sample evenly
- Break up clumps with gloved hand
- 2-dimensional slab cake min 30 increments
- Avoid selection of particles (gravel/sticks) that are obviously over 2mm
- Collect additional MI sample to determine moisture content of sample (up to 50 grams)





## Sieving Without Drying

- Pass through a #10 sieve slowly
- Brake up dirt clods with gloved hand
  - Gently push sample through sieve
- Lay out sample as flat and evenly as possible and subsample immediately
- Subsample using 2-dimensional Japanese slab cake
- Collect additional MI sample to determine moisture content of sample (up to 50 grams)





## Dry and Sieve (no Grinding)

- Dry completely (typically air-dried)
- Sieve through #10 sieve (2mm)
- Or other sieve can be used
  - Depends on particle size needed
- Break up aggregates during sieving
- Mortar and pestle soil
- Only gravel and sticks left on sieve





## Dry Weight vs. Wet Weight

- In HI data for direct exposure risk based on dry weight
- Air dried samples meet requirement
- Wet and wet sieved samples will need moisture determination























## Make sure the Lab Processes the Entire Sample

- This takes time and time is money!
  - And people can be lazy!
  - This is the biggest mistake labs make!
- We take pictures of every sample!
- How do you make sure the entire sample is processed? ASK!













## Sieving followed by Grinding

- Mortar and Pestle is not mechanical grinding
  - Not all Grinders are created equal
- Need proper equipment
  - APPL, Inc. uses a Puck Mill





















### Grinds to 75 microns







## Blank Sand







## Sample Mass

- Sample mass is important!
- Determine mass based on fundamental error
- At least 5 grams for Hg in HI
- At least 10 grams for metals in HI
- Grinding reduces fundamental error





## Grinding Study

- Twenty-four soil samples were analyzed for metals pre- and post-grinding
  - Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Ni, K, Ag, Na, Tl, V, Zn
- Only one metal showed statistically significant post-grinding concentration increases
  - Chromium (15.3 ppm)
- Results are consistent with other studies





## QC to Demonstrate Reproducibility

- One triplicate recommended per batch
  - Maximum 10 in a batch
- Randomly chosen
- Compare results
- If %RSD greater than 20% contact client
  - May need to analyze a larger mass
  - May need to reanalyze or grind finer





## Sectorial Splitter







#### MIS for Volatiles

- Wide or narrow top containers available
- Max. 30 mL MeOH per container
- Max. 1L per ice chest
- 1:1 ratio of soil (g) to MeOH (mL)









#### Common MIS Mistakes

- Incomplete communication
  - From the client
  - From the lab
- Cutting corners during processing in the lab
  - Not processing entire sample
  - Not doing complete desegregation
  - Inconsistent\_subsampling
- Not grinding the sample at the appropriate stage
  - Need to MIS all unground aliquots before grinding
  - MIS before or after drying…or both?





#### Common MIS Mistakes

- Insufficient mass used to decrease sampling error
- Grinding times need to be specified and followed
- Wrong sieve size used/Sieve size not specified
- Wrong type of grinder used
- Poor communication between laboratory sections





## Lab Communication







## Pros and Cons for Grinding

- Pro: Decreases fundamental error
- Pro: Need fewer increments
- Pro: Need less mass
- Pro: Improves precision
- Con: Loss of some analytes e.g. volatiles
- Con: Bio availability prior to grinding





## Reporting Requirements

- Communicate reporting requirements
- Information in final report
- Size of sample submitted
- Sample preparation information
  - Include lab replicate data and analysis
  - Enough Information in final report
    - To understand entire lab process and data
    - For all analytes
    - To reference specific SOPs





## Take Away Information

- Many processing possibilities with MIS
- The entire sample must be processed
  - But you must define the sample
- The lab must understand what is needed
- All samples are sub sampled incrementally
- 10% of samples should be run in triplicate





#### Additional Information

- Diane Anderson, Technical Director APPL, Inc
  - danderson@applinc.com
- John Peard, HDOH, HEER Office
  - randall.peard@doh.Hawaii.gov
- Roger C. Brewer, Sr. Environmental Scientist
  - Roger.Brewer@doh.Hawaii.gov
- Chuck Ramsey, EnviroStat, Inc.
  - chuck@envirostat.org
- Josh Barber, RPM at EPA Region 3
  - barber.joshua@epa.gov





# Sampling for Defensible Environmental Decisions

- Presented by EnviroStat, Inc.
  - Feb. 26-March 1, 2018
  - http://www.envirostat.org/training.htm









## Questions?

