Environmental Monitoring Quarterly Report 5 West Maui Temporary Debris Storage Site April 2025

Pursuant to Ordinance 5596, Bill 120, CD1, FD2 (2023)

Monitoring Period: 1/16/2025 – 4/16/2025

Prepared by:

The County of Maui Department of Environmental Management
The U.S. Army Corps of Engineers

Contents

1.	Introdu	uctio	n and Overview	1
2.	Requir	emer	nts from Bill 120	2
3.	Public	Avail	ability	4
	3.1.	Web	osite	4
	3.2.	Pub	lic Meetings	4
4.	Work [Docui	ments	4
	4.1.	Prec	construction Assessment	4
	4.2.	Nuis	sance Noise Assessment	5
	4.3.	Com	npliance with the National Historic Preservation Act (NHPA) and National Environmental	
	Policy	Act (I	NEPA)	6
	4.4.	Desi	ign and Construction	7
	4.5.	Ope	rations	7
	4.5.	1.	Access and Traffic	7
	4.5.2	2.	Stormwater Pollution Prevention	7
	4.5.3	3.	Emergency Responses	8
	4.6.	Othe	er Considerations	8
	4.6.	1.	Archaeological Treatment	8
	4.6.2	2.	Biosecurity	8
5.	Monito	oring	and Data	9
	5.1.	Air		<u>c</u>
	5.2.	Pers	connel	12
	5.3.	Lead	chate	13
	5.3.	1.	Leachate Basin	13
	5.3.2	2.	Leachate Sampling	15
	5.4.	Soil.		18
	5.5.	Surf	ace Water	19
	5.6	Gro	undwater	10

Tables

Table 1 — Bill 120 Provisions	2
Table 2 — Air Monitoring Measurements	
Table 3 — Leachate Basin Level Monitoring Results	15
Table 4 — Leachate Sample Analytical Results	16
Table 5 — Preconstruction Soil Sample Analysis Results	18
Table 6 — Groundwater Monitoring Well Sample Results	21

Figures

Figure 1 — Noise Assessment Decibel Meter	5
Figure 2 — Approximate Locations of Air Monitors	
Figure 3 — Air Monitoring Data for Particulate Matter (PM) Compared to Action Level	11
Figure 4 — Locations of PurpleAir Sensors in Olowalu	12
Figure 5 — Leachate Basin Adjacent to Ash and Debris Storage Area	14
Figure 6 — Approximate Locations of Groundwater Monitoring Wells	20
Figure 7 — Groundwater Monitoring Well at TDS Site	20

Attachments

Attachment 1. Dust Monitoring Reports

Attachment 2. Leachate Analysis Laboratory Data Reports

Attachment 3. Groundwater Analysis Laboratory Data Reports

Abbreviations

Abbreviation	Definition
AMSP	air monitoring and surveillance plan
ATP	archaeological treatment plan
DLNR	Hawai'i Department of Land and Natural Resources
DOH	Hawai'i Department of Health
ECC	Environmental Chemical Corporation
ERP	emergency response plan
FEMA	Federal Emergency Management Agency
MCDEM	Maui County Department of Environmental Management
NEPA	National Environmental Policy Act
NHPA	National Historic Preservation Act
OSHA	Occupational Safety and Health Administration
SHPO	state historic preservation officer
SWPPP	storm water pollution prevention plan
USACE	United States Army Corps of Engineers
USEPA	United States Environmental Protection Agency

1. Introduction and Overview

On October 27, 2023, the Hawai'i Department of Land and Natural Resources (DLNR) approved an immediate management right-of-entry permit the County of Maui. This permit applied to land parcels in West Maui that were to be occupied by a temporary debris storage (TDS) site; subsequently, this site was subject to a license agreement between the County of Maui and Environmental Chemical Corporation (ECC), a contractor for the United States Army Corps of Engineers (USACE), on November 27, 2023. The agreement, with an initial 12-month term, was for the installation of the TDS site subject to terms and conditions for the design, construction, operation, and maintenance of the site. The agreement has since been extended for an additional year.

Regarding the TDS site, on January 21, 2024, the County of Maui approved Bill 120 of Ordinance 5596. The bill authorized the mayor of the county to enter into an agreement with DLNR. Among other recordkeeping, operational, and planning requirements, the ordinance required environmental monitoring of the TDS site. USACE and ECC, which constructed and operate the TDS site, are therefore collaborating with the Maui County Department of Environmental Management (MCDEM) Solid Waste Division, the Hawai'i Department of Health (DOH), and the United States Environmental Protection Agency (USEPA) to comply with the ordinance. A weekly coordination meeting is facilitated by Maui County Solid Waste Division personnel to ensure ongoing dialogue, communication and coordination on all matters relating to the TDS site. In addition, USACE is working with their contractor, ECC, to ensure that best practices are being employed at the TDS site to ensure that there are no impacts to human health and the environment from TDS site operations.

Section 2.3.a of Bill 120 requires quarterly environmental monitoring reports for the TDS site. This document is fifth such report; it applies to the monitoring period beginning on January 16, 2025, and ending on April 16, 2025. After specifying the requirements from Bill 120, this report assesses the TDS site's public availability, work plans, and monitoring data.

Similar quarterly reports will be generated every 90 days (quarterly) for the duration of TDS site operations until (1) ash and debris at the site is transferred to the Central Maui Landfill (CML), (2) the TDS site is removed, and (3) the TDS site is restored.

Overall, nearly 400,000 tons ash and debris has been cleared from commercial and residential parcels in Lahaina. Over 21,000 truckloads of ash and debris have safely arrived from Lahaina to the TDS site.

There have been minimal reports or complaints received by the County of Maui regarding odors, dust, or environmental issues related to the management of ash and debris.

2. Requirements from Bill 120

Bill 120 requires recordkeeping as well as operational, planning, and environmental monitoring of the TDS site in West Maui. It specifies monitoring of the following:

- Leachate (liquids from the waste) quantity, quality, and treatment processes, if required
- Surface water runoff, including any impacts on nearby waterways
- Surrounding air quality regarding toxins and contaminants

Table 1 details provisions in Bill 120 that pertain to this report:

Table 1 — Bill 120 Provisions

Section	Description	Notes				
2.3. a.	Recordkeeping and Reporting	Detailed records of leachate quantity, quality, and treatment processes be logged because these records are important for regulatory compliance and for making informed decisions about site management. All designs and construction documents, operating plans, stormwater pollution prevention plans, and sampling and analysis plans must be submitted to the county and made available to the public. The TDS site must be monitored for runoff, including nearby waterways and surrounding air quality for toxins and contaminants.				
2.3. b	Compliance with Regulations	Leachate treatment and disposal will adhere to county, state, and federal environmental regulations to include the reuse of leachate as dust mitigation within the TDS site.				

Section Description		Notes
		An emergency response plan will be in place to handle any unexpected leachate breaches or spills, including the following:
		 Alerting relevant authorities and response teams as soon as the spill is identified
		Implementing barriers, absorbents, or other containment methods to minimize environmental impact
		Conducting a rapid assessment to understand potential environmental and health impacts
		 Monitoring for changes in water quality, soil contamination, and impacts on local wildlife and vegetation
	Emorgonov	 Implementing cleanup procedures such as skimming, vacuuming, or neutralizing agents, as needed
2.3. c.	Response Plan	 Implementing immediate and long-term remediation to restore the affected area, such as soil remediation, water treatment, or habitat restoration, as needed
		Keeping all stakeholders, including the public, informed about response measures
		Documenting the incident and response actions in a report for the appropriate regulatory authorities, as required by law
		 Updating the emergency response plan following a review of the response based on new insights
		Ensuring that all relevant personnel are trained in emergency response
		 Collaborating with local emergency services, environmental experts, and other relevant agencies to ensure a coordinated and effective response
2.3. d.	Preparation for Storm	Develop a plan to prevent stormwater pollution and comply with Appendix B, "NPDES Multi-Sector General Permit for Stormwater Discharges Associated with Industrial Activity (MSGP)" of Chapter 55, Title 11 of the <i>Hawai'i Administrative Rules</i> . Before heavy rain or extreme weather events, enhanced safety measures will be implemented to prevent flooding, mitigate potential overflow, and control erosion, including the following:
	Events	Deploying stormwater BMPs, such as barriers, absorbents, or other containment measures
		Converting and stabilizing materials within the cell
		Implementing erosion control measures on loose soils and cinder around the containment area

3. Public Availability

Section 2.3.a. of Bill #120 requires detailed records, data, design and construction documents, operating plans and other pertinent documents be submitted to the County and made available to the public consistent with chapter 92F, *Hawai'i Revised Statutes*. In addition, Bill #120 requires that this information be presented in a public forum every 90 days for the duration of the right-of-entry agreement.

3.1. Website

A <u>website</u> currently communicates official information about the wildfire recovery. The website also includes a copy of this report on its <u>webpage for debris containment</u>. Additionally, the website contains periodic data summaries that provide the public with updated information regarding the TDS site.

3.2. Public Meetings

On April 16, 2025, a representative from MC DEM will participate in the Lahaina community's weekly disaster recovery meeting. The presentation, which will be available on the recovery website, summarizes the contents of this report.

The County of Maui will continue to provide quarterly updates at the weekly disaster recovery meetings to meet the requirements of Chapter 92F of the *Hawai'i Revised Statutes*.

4. Work Documents

The work documents for the TDS site address preconstruction, noise, compliance with the National Historic Preservation Act, site design and construction, and operation.

4.1. Preconstruction Assessment

Prior to construction of the TDS site, existing soil was sampled at the site according to a precharacterization soil sampling program dated December 20, 2023. For the evaluation, the TDS area was divided into five decision units, with soil samples taken from each unit and sent to Eurofins Scientific laboratory for analysis. Samples underwent analysis for 22 metals via Methods 6020B and 7471B, total

petroleum hydrocarbon (TPH) diesel range organics and residual range organics via Method 8015D, and TPH gasoline range organics via Method 8260. All sampling adhered to DOH's technical guidance manual. Section 5.4 summarizes the results of this analysis, and the full sampling report is available in Attachment 3 of Environmental Monitoring Quarterly Report 1 (April 19, 2024).

4.2. Nuisance Noise Assessment

In December 2023, a noise assessment was conducted in the vicinity of the TDS site. The assessment was a response to concerns about nighttime noise affecting surrounding residential areas during heavy equipment operations while the site was under construction. One particular concern was noise related to backup alarms on heavy equipment, such as bulldozers, excavators, and loaders. The assessment involved the installation of noise monitoring stations (Figure 1) at three locations: (1) at the TDS site entrance, above the recycling drop-off center (Station 1); (2) in the North Olowalu residential area (Station 2); and (3) near Olowalu general stores (Station 3).

Results from the assessment found noise readings ranging from 32.2 to 59.7 decibels. For reference, noises above 70 decibels are usually considered disturbing. Additionally, the Occupational Safety and Health Administration (OSHA) permissible exposure limit for noise is 90 A-weighted decibels for all workers for an 8-hour day.

Figure 1 — Noise Assessment Decibel Meter

The full sampling report is available in Attachment 4 of Environmental Monitoring Quarterly Report 1 (April 19, 2024).

4.3. Compliance with the National Historic Preservation Act (NHPA) and National Environmental Policy Act (NEPA)

The National Historic Preservation Act (NHPA) and the National Environmental Policy Act (NEPA) are separate laws which require federal agencies to take into consideration potential impacts to historic properties and the human environment prior to taking actions. Consultations were made in planning, design, and construction of the TDS in accordance with these laws as described in this section.

On March 20, 2024, the State of Hawai'i Historic Preservation Division received a letter from the Federal Emergency Management Agency (FEMA) requesting the state historic preservation officer's (SHPO) concurrence with a FEMA finding. The finding—pursuant to Stipulation II.C.4 of the 2016 programmatic agreement (as extended in 2023)—is that there are no historic properties affected by the TDS site. The agreement is between FEMA, the Hawai'i SHPO, the Office of Hawai'ian Affairs, and the State of Hawai'i Department of Defense as part of the National Historic Preservation Act. The SHPO submitted a letter of concurrence on March 25, 2024, which can be found in Attachment 5 of Environmental Monitoring Quarterly Report 1 (April 19, 2024).

Additionally, to comply with Bill 120, USACE installed temporary groundwater detection monitoring wells at the TDS site in June – July 2024. On March 25, 2024, the Hawai'i SHPO reviewed and provided concurrence with the 'U.S. Department of Homeland Security's Federal Emergency Management Agency's (FEMA) proposed Olowalu Temporary Debris Staging Site Water Monitoring Wells Project.'

Other consultations involved the State of Hawai'i Office of Planning and Sustainable Development related to compliance with the Coastal Zone Management Act (August 25, 2023), Hawai'i Department of Health related to permitting considerations for the TDS (September 9, 2023), US EPA related to the applicability of the household waste exemption (November 3, 2023) and FEMA related to Executive Order 12898 – Environmental Justice review.

Documentation related to NEPA and NHPA compliance is included in Attachment 5 of Environmental Monitoring Quarterly Report 1 (April 19, 2024).

4.4. Design and Construction

The West Maui TDS site is underlain by a thick (80-mil or 0.08-inch), plastic liner that protects the soil, groundwater, and ocean. ECC developed the site so that ash and debris do not impact the surrounding area or marine environment. The design also protects against leachate or rainwater runoff. The County of Maui, DOH, and USEPA also contributed to the design to incorporate standards that are protective of human health and the environment.

Full design plans for the TDS site are found in Attachment 6 of Environmental Monitoring Quarterly Report 1 (April 19, 2024).

4.5. Operations

To ensure safe, efficient, and environmentally protective operations at the TDS site, ECC and Tetra Tech, Inc. (Tetra Tech), a sub-contractor to ECC, developed a manual for operations in January 2024. A copy of the manual can be found in Attachment 7 of Environmental Monitoring Quarterly Report 1 (April 19, 2024).

4.5.1. Access and Traffic

ECC developed a traffic plan in coordination with the Hawai'i Department of Transportation and the Highways Division of the Maui County Department of Public Works. The plan's purpose is to mitigate disruption to local traffic and maximize safety precautions for highway users, particularly those on the Honoapi'ilani Highway. A copy of this plan, along with associated drawings and permits, can be found in Attachment 8 of Environmental Monitoring Quarterly Report 1 (April 19, 2024).

4.5.2. Stormwater Pollution Prevention

To protect the surrounding environment from stormwater runoff, Haley & Aldrich—on behalf of ECC—prepared a stormwater pollution prevention plan (SWPPP) for the TDS site in December 2023. A copy of this plan can be found in Attachment 9 of Environmental Monitoring Quarterly Report 1 (April 19, 2024). The SWPPP corresponds to the requirements contained in Chapter 11-55 of the *Hawai'i Administrative Rules*. Although the TDS site is exempt from permitting for a national pollutant discharge elimination system—following an emergency proclamation regarding the Lahaina Wildfires—the SWPPP follows the

format of such a permit and is intended to meet SWPPP requirements established in the *Hawai'i*Administrative Rules.

4.5.3. Emergency Responses

ECC developed an emergency response plan (ERP), which outlines procedures for unexpected leachate breaches or spills. It includes the practices listed in Table 1 regarding Section 2.3.c of Bill 120. The ERP can be found on the webpage for debris containment.

4.6. Other Considerations

The TDS site also required an archaeological treatment plan and protocol for biosecurity.

4.6.1. Archaeological Treatment

On October 2, 2023, FEMA developed an archaeological treatment plan (ATP) for the TDS site as part of environmental and historic preservation efforts. A copy of this plan can be found in Attachment 10 of Environmental Monitoring Quarterly Report 1 (April 19, 2024). The ATP outlines a process to avoid, minimize, or mitigate anticipated adverse effects involved with activities for the TDS site while limiting unexpected and potentially extensive operational delays that could otherwise result without an established protocol. It provides a programmatic approach toward treatment measures for a historic property that may be encountered.

4.6.2. Biosecurity

TDS site contractors are following protocols outlined in an environmental compliance memorandum dated February 25, 2019, which can be found in Attachment 11 of Environmental Monitoring Quarterly Report 1 (April 19, 2024). The memorandum pertains to biosecurity for Hawai'i and establishes protocols, either required by statute or deemed appropriate, to prevent the introduction of harmful, invasive species into local natural areas and native habitats.

5. Monitoring and Data

In compliance with Bill 120, the TDS site is subject to monitoring of the air, personnel, leachate, soil, surface water, and groundwater. Monitoring applies to the entire life cycle of the project.

5.1. Air

Particulate matter (PM) in the air can penetrate the respiratory system, either causing or exacerbating respiratory health problems. More information on the health effects of PM is provided by the <u>USEPA</u>. Considering the potential health effects, air monitoring for PM is required at the TDS site.

Air monitoring is conducted pursuant to an air monitoring and surveillance plan (AMSP) prepared by ECC for USACE. The AMSP, dated January 2024, can be found in Attachment 12 of Environmental Monitoring Quarterly Report 1 (April 19, 2024). Per the AMSP, air monitors, known as Dustrak monitors, are placed in the vicinity of the TDS site (Figure 2). Tetra Tech, as a USACE contractor, maintains and operates these monitors according to the AMSP that includes all debris removal work zones as well as the TDS site.

Figure 2 — Approximate Locations of Air Monitors

Table 2 summarizes the air monitoring readings collected to date at the TDS site:

Table 2 — Air Monitoring Measurements

Date	Average PM ₁₀ (μg/m³)	Average PM _{2.5} (μg/m³)	Monitor Identification Number
23-Jan-24 to 10-Jan-25		see previous reports	
22-Jan	6.68	5.83	11,16
29-Jan	6.09	5.49	11,16
05-Feb	5.20	4.21	11,16
12-Feb	8.84	8.17	11,16
19-Feb	5.53	4.71	10,16
14-Mar	7.01	6.0	4,10
17-Mar	4.44	5.31	4,10
19-Mar	6.60	5.55	4,10
24-Mar	6.23	5.72	4,10
26-Mar	5.91	5.40	4,10
31-Mar	9.56	8.65	4,10
1-Apr	12.33	11.45	4,10
9-Apr	5.68	4.96	4,10

Abbreviations:

- μg/m³: micrograms per cubic meter
- PM₁₀: particulate matter with diameters of 10 microns or less
- PM_{2.5}: particulate matter with diameters of 2.5 microns or less

USACE established an acceptable threshold, or "action limit," of 35 micrograms per cubic meter ($\mu g/m^3$) for particulate matter (PM 2.5) at the TDS site. If measurements show concentrations of particulate matter in the air above the action level, engineering, or operating controls—such as water sprays and truck speed limits—are implemented to reduce the concentrations. Both Table 2 and Figure 3 show that there have been no measured readings of PM above the action limit.

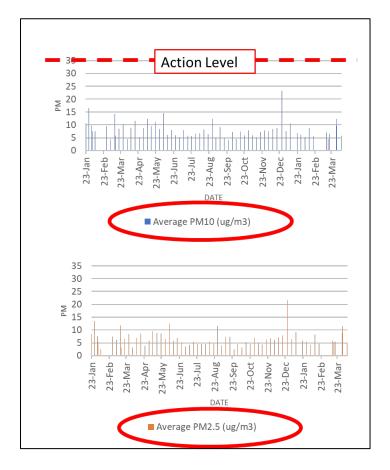


Figure 3 — Air Monitoring Data for Particulate Matter (PM 10, PM 2.5) Compared to Action Level

Abbreviations:

- μg/m³: micrograms per cubic meter
- PM₁₀: particulate matter with diameters of 10 microns or less
- PM_{2.5}: particulate matter with diameters of 2.5 microns or less

USACE has also implemented wind restrictions on operations at the TDS site: 25 miles per hour as sustained for 15 minutes. If wind speeds are faster than this limit, large truck dumping is restricted. This restriction is done for safety reasons, as the trucks are subject to tipping over. Additionally—with respect to particulate matter—high, sustained winds may blow dust or debris; ECC prepares dust monitoring reports, included as Attachment 1, to document such circumstances.

Lastly, DOH operates and maintains several other air monitoring stations at the locations shown in Figure 4. Specifically, DOH uses PurpleAir sensors. Data from these sensors are visualized on dashboards found on AirNow and the PurpleAir website.

Figure 4 — Locations of PurpleAir Sensors in Olowalu

Both the PurpleAir and Dustrak monitoring systems provide data for particulate matter with diameters of (1) 10 microns or less, and (2) 2.5 microns or less. The measurement units are expressed as $\mu g/m^3$, which characterizes the weight of the matter (in microns) in a defined area of space (one cubic meter).

For additional information, USACE and DOH prepared a fact sheet to present and explain air monitoring around the TDS site. The fact sheet can be found in Attachment 14 of Environmental Monitoring Quarterly Report 1 (April 19, 2024). Additionally, DOH prepared and posted a different fact that explains air monitoring readings. This fact sheet can be found in Attachment 15 of Environmental Monitoring Quarterly Report 1 (April 19, 2024).

5.2. Personnel

Personnel monitoring adheres to the AMSP, which outlines air sampling procedures to assess the health and safety of ECC and contractor staff during activities that may disturb surface soil at the TDS site. The air sampling procedures apply to activities conducted by ECC and its subcontractors; they evaluate whether emission control measures are adequate to mitigate personal exposure risks. The monitoring results also provide insight regarding whether (1) site workers are using the appropriate personal protective equipment, (2) the dust emission controls are adequate to eliminate hazardous concentrations of airborne particulate matter in the worker's breathing zone, and (3) the off-site migration of dust is mitigated.

The AMSP identifies sample collection and analytical methods and associated quality assurance and quality control procedures for personnel air monitoring. Sample analytical results are evaluated against OSHA's permissible exposure limits or threshold limit values established by the American Conference of Governmental Industrial Hygienists.

ECC provided USACE with a daily air monitoring report for personnel at the TDS site until June 23, 2024. Since all air sampling results collected near excavator operators and laborers through June 23, 2024, had not detected any violations of health-based criteria established in the AMSP, this practice is only periodically conducted to maintain compliance with worker protection standards.

5.3. Leachate

Leachate is a liquid, usually rainwater, that percolates through ash and debris within a lined area of working boundaries. It differs from rainwater or surface water runoff, which is diverted around the TDS working area from the surrounding hills. Stormwater is intentionally diverted around the TDS debris to minimize leachate generation.

For the TDS site, although most leachate is either absorbed into the waste mass or evaporates into the air, some may pass through ash and debris. There, the water may collect contaminants in the ash and debris—including heavy metals (such as arsenic, lead, and cobalt)—as detected by DOH ash samples collected in Lahaina.

5.3.1. Leachate Basin

All leachate collected within the TDS area is drained by gravity to a low spot in the ash and debris storage area, called a sump, where it is drained via a drainpipe to a leachate basin (Figure 5). This basin is directly below the TDS working area; it is constructed with a thick, plastic liner underneath it to prevent any infiltration into underlying soil. It differs from the percolation basin, which is below the TDS site. This percolation basin is designed to receive rainwater runoff, which is then diverted around the TDS working area. The water in this second basin does not contact ash or debris. The purpose of the percolation basin is to allow rainwater runoff to percolate into the natural soils while avoiding the roadway and drainage channels.

Figure 5 — Leachate Basin Adjacent to Ash and Debris Storage Area

The leachate basin has a design capacity of 1.375 million gallons, which is more than is expected to be collected, even when accounting for a significant rain event in West Maui. As an example, during a rainstorm on January 9, 2024—during which over 3 inches of rain fell in less than 24 hours—the leachate basin successfully collected all the rainwater that fell directly into the empty TDS working area as well as the surrounding area (because construction was incomplete on the stormwater diversion canals). The leachate basin filled with approximately 500,000 gallons of rainwater, approximately one-third of its total holding capacity. A subsequent storm in early April — during which approximately 2 inches of rain fell in less than 24 hours — generated approximately 100,000 gallons of leachate.

For dust suppression, and to maintain capacity in the basin, leachate generated at the TDS site is being applied to debris via wet spray. During this process, most of the liquid evaporates. Personnel apply the spray throughout the workday, especially on drier days. The leachate basin continues to be mostly empty —as shown in Table 3—so fresh water is being used for dust control.

Table 3 — Leachate Basin Level Monitoring Results

Date	Water Level	Estimated Gallons	
11-Jan-24 to 15-Jan-25	see previous reports	see previous reports	
1/15/2025	dry	0	
2/19/2025	10′	100,000	
3/5/2025	dry	0	
3/19/2025	< 5'	50,000	
3/27/2025	< 2'	20,000	
4/15/2025	<1'	4,000	

5.3.2. Leachate Sampling

Because of dry conditions in West Maui, ECC collected baseline samples of runoff water directly from the leachate basin 2 days after the significant storm event on January 9, 2024 (see Section 5.3.1). At the time of the storm, no ash or debris had been placed in the TDS working area, so the runoff represented typical precipitation runoff that is unaffected by waste; therefore, it was exemplary of what normally runs off the natural soils in the area.

Since the preliminary, baseline sampling event, USACE has sampled the leachate basin periodically. USACE continues sampling leachate monthly directly from the leachate basin only if sufficient leachate is available in the basin to conduct the analysis. No samples analyzed during the current reporting period. To date, USACE's samples underwent analyses for the parameters shown in Table 4. Analyses were conducted wither by FQ Labs in Oahu or Eurofins Scientific. The laboratories did not always analyze samples for all the parameters shown in the table, as additional parameters were added at the request of DOH and Maui County after the baseline sampling event. In addition, certain parameters were eliminated for analysis in subsequent sampling events if they were not detected in previous sampling events.

Table 4 — Leachate Sample Analytical Results

Parameter	Method	11-Jan-24 (Baseline)	15-Apr-24 Sample	20-May-24 Sample	3-Feb-25 Sample	Unit
Ammonia	4500	NS	ND	0.11	0.066	mg/L
Antimony	6010D	< 0.010	ND	ND	NS	mg/L
Arsenic	6010D	< 0.010	ND	ND	ND	mg/L
Barium	6010D	0.251	0.037	0.025	0.030	mg/L
Beryllium	6010D	< 0.010	ND	ND	NS	mg/L
Cadmium	6010D	< 0.010	ND	ND	ND	mg/L
Carbonate	6010D	NS	6	5.6	NS	mg/L
Chlorine	330.4	NS	ND	ND	NS	mg/L
Chromium	6010D	0.136	0.024	0.0055	ND	mg/L
Cobalt	6010D	0.026	0.0028	0.0020	NS	mg/L
COD	410.4	NS	38	59	35	mg/L
Copper	6010D	0.042	ND	ND	NS	mg/L
Dioxins and Furans (2,3,7,8-TCDD)	8290A	NS	ND	2.1	NS	pg/L
Dissolved Oxygen	360.1	NS	6.5	5.0	8.5	mg/L
Herbicides	8151A	NS	0.78	ND	NS	μg/L
Lead	6010D	< 0.010	ND	ND	ND	mg/L
Mercury	7470A	< 0.0002	0.14	ND	ND	mg/L
Molybdenum	6010D	< 0.010	0.0074	0.0061	NS	mg/L
Nickel	6010D	0.078	0.0085	ND	NS	mg/L
Nitrates	353.2	NS	21	15	17	mg/L
Nitrites	353.2	NS	0.32	1.5	0.27	mg/L
Oil & Grease	1664A	< 5.0	1.5	1.4	2.6	mg/L
Pesticides	8081B	NS	ND	ND	NS	μg/L
рН	9040C	NS	7.4	8.5	NS	

Parameter	Method	11-Jan-24 (Baseline)	15-Apr-24 Sample	20-May-24 Sample	3-Feb-25 Sample	Unit
Selenium	6010D	< 0.010	ND	ND	ND	mg/L
Silver	6010D	< 0.010	ND	ND	ND	mg/L
Sulfate	300	NS	230	240	NS	mg/L
Sulfide	9034	NS	ND	ND	ND	mg/L
SVOCs	8270D/E	NS	ND	ND	NS	μg/L
TDS	2540C	NS	670	730	NS	mg/L
Thallium	6010D	< 0.010	ND	ND	NS	mg/L
тос	5310C	NS	7.0	11.0	NS	mg/L
Total Alkalinity	2320B	NS	44	42	NS	mg/L
Total Nitrogen	351.2	NS	22	21	1.4	mg/L
Total PCBs	8082A	NS	ND	ND	NS	mg/L
TPH	1664A	< 5.0	4.1	4.0	NS	mg/L
TSS	SM 2450D	316	39	23	5.9	mg/L
Turbidity	180.1	650	80	11	14	NTU
Vanadium	6010D	0.13	0.017	0.011	NS	mg/L
VOCs	8260D	NS	ND	ND	ND	μg/L
Zinc	6010D	< 0.100	0.0048	ND	NS	mg/L

Note: Laboratory methods may vary.

Abbreviations and Symbols:

- <: less than
- μg/L: micrograms per liter
- COD: chemical oxygen demand
- mg/L: milligrams per liter
- ND: nondetect
- NS: not sampled
- NTU: nephelometric turbidity unit
- PCB: polychlorinated biphenyl
- SVOC: semivolatile organic compound
- TCDD: Tetrachlorodibenzo-P-dioxin
- TOC: total organic carbon
- TDS: total dissolved solids
- TPH: total petroleum hydrocarbons oil
- TSS: total suspended solids
- VOC: volatile organic compound

5.4. Soil

A pre-construction assessment (see Section 4.1) divided the TDS site into five decision units—or set areas—to analyze preexisting soil conditions for contaminants. Analytical results from this assessment, summarized in Table 5, will be used once debris has been removed from the site, as the soil will be sampled at similar locations for the analysis of constituents. The pre-assessment measurements will serve as a data comparison. Both the pre-construction and post-construction data will be evaluated by the County of Maui and DOH to conclude whether any action is necessary prior to grading the TDS area.

Table 5 — Pre-construction Soil Sample Analysis Results

Constituent (mg/kg)	DU -1 (mg/kg)	DU- 2 (mg/kg)	DU- 3 (mg/kg)	DU- 4 (mg/kg)	DU- 5 (mg/kg)
Antimony	0.18	0.19	0.19	0.19	0.19
Arsenic	1.4	1.5	0.73	0.584	0.94
Barium	15	15	32	40	39
Beryllium	0.56	0.66	0.6	0.75	0.66
Cadmium	0.093	0.13	0.094	0.099	0.1
Chromium	0.81	1	0.84	0.53	7
Cobalt	1.1	1.4	1.2	1.2	3
Copper	1.6	4.9	1.6	0.86	4.9
Diesel Range Organics	32	33	28	30	16
Gasoline Range Organics	2.9	1.1	1.6	1.7	1.5
Lead	2.1	1	1.1	0.97	2.2
Mercury	0.010	0.011	0.0096	0.010	0.011
Molybdenum	0.51	0.54	0.5	0.67	0.9
Nickel	0.79	1	0.92	0.53	9
Oil Range Organics	18	26	30	29	30
Selenium	4.9	5.4	3.6	3.2	3.7
Silver	0.046	0.021	0.047	0.048	0.047
Thallium	0.14	0.15	0.14	0.14	0.14

Constituent (mg/kg)	DU -1 (mg/kg)	DU- 2 (mg/kg)	DU- 3 (mg/kg)	DU- 4 (mg/kg)	DU- 5 (mg/kg)
Vanadium	1.2	1.4	1.2	1.0	8.5
Zinc	48	51	44	49	52

Abbreviations:

- DU: decision unit
- mg/kg: milligrams per kilogram

A summary of the sampling approach is included in Attachment 3 of Environmental Monitoring Quarterly Report 1 (April 19, 2024).

5.5. Surface Water

Because there have been no observed releases of leachate from the TDS site, there has been no need to sample surface water in creeks or drainage ditches adjacent to the TDS.

DOH initiated a water quality monitoring program that covers nearshore monitoring and includes eight locations from Olowalu to Kaanapali. Results are available on the DOH website as well as the webpage for debris containment. Review or 3rd party reports and data collected by DOH affirms that near-shore data show that there are no ash- or fire-related chemicals present in the surface water at concentrations that threaten human health.

5.6. Groundwater

To comply with Bill 120, FEMA directed USACE to install temporary groundwater detection monitoring wells around the TDS site. In response, contractors to USACE installed one upgradient (MW-01) and one downgradient (MW-02), as shown in Figure 6. Groundwater monitoring wells are used to specifically to measure or monitor the level, quality, quantity, or movement of subsurface water. More information on the installation methods can be found at https://www.epa.gov/quality/design-and-installation-monitoring-wells.

Upgradient
MW-01
330.99' BGS

Upgradient
MW-01
MW-02
160.64' BGS

Figure 6 — Locations of Groundwater Monitoring Wells

Abbreviations: GW: groundwater, BGS: below ground surface

The upgradient groundwater monitoring well (MW-01) was installed to a depth of approximately 330′ below ground surface (BGS) and the downgradient groundwater monitoring well (MW-02) was installed to a depth of approximately 160′ BGS. The difference in drilling depths reflects the approximate difference in ground surface elevation. The finished well (MW-02) is shown in Figure 7.

Figure 7 — Groundwater Monitoring Well at TDS Site

The groundwater monitoring wells were installed using a hollow stem auger, which uses a series of hollow, interconnected augers to bore into the ground and create a hole, which is encased in impermeable grout and sealed to eliminate the infiltration of liquids into the casing above the target groundwater source being monitored. The bottom of the casing consists of a permeable screen which allows the groundwater to enter the well casing so it can be sampled at the desired depth.

The first samples were collected by USACE on July 7, 2024, with a second round collected on October 8, 2024. Due to an issue associated with the way the samples were collected in the second round, which impacted results for turbidity and Iron, the County of Maui requested that the wells be re-sampled. The re-sampling was completed on December 3 & 8, 2024 (MW-01), and December 4, 2024 (MW-02). Results found in Attachment 2 and shown in Table 6. Samples will continue to be collected and analyzed quarterly (every 3 months), which is a typical frequency for waste storage and disposal facilities.

The first samples taken on July 7, 2024, are considered 'baseline' samples, and since MW-01 and MW-02 are newly installed, and there are no previous sampling data from them to compare. The analysis performed includes the analytes and parameters found in Table 6, which includes contaminants or indicators of contaminants present in the TDS leachate (see Section 1, Table 2).

Table 6 — Groundwater Monitoring Well Sample Results

Cations & anions	Method	7-Jul-24 MW-01 (baseline)	8-Oct-24 MW-01	3-Dec-2024 8-Dec-2024 MW-01 (re-sample)	8-Feb-2025 MW-01	7-Jul-24 MW-02 (baseline)	8-Oct-24 MW-02	4-Dec-2024 MW-02 (re-sample)	8-Feb-2025 MW-02	Units
Magnesium	6020B	12000	12000	10000	12000	17000	17000	17000	16000	ug/L
Sodium	6020B	78000	76000	64000	71000	130000	130000	100000	120000	ug/L
Calcium	6020B	15000	14000	12000	14000	21000	22000	19000	21000	ug/L
Potassium	6020B	5400	5200	4900	5100	7600	7700	6700	7400	ug/L
Chloride	300	100	110	110	110	190	200	220	200	mg/L
Carbonate	2320B	ND	ND	6.0	ND	ND	ND	6.0	6.0	mg/L
Sulfate	300	19	20	16	16	25	25	27	26	mg/L
Leachate indicators										
Total Dissolved Solids	2540C	210	340	590	280	350	500	500	480	mg/L

Total Organic Carbon	5310C	4.6	9.7	1.5	1.9	0.58	0.95	0.57	1.4	mg/L
Total Alkalinity	2320B	69	69	64	60	67	69	66	61	mg/L
Nitrogen- Ammonia	350.1	ND	0.069	0.090	0.09	0.05	0.091	0.090	0.09	mg/L
Iron	6020B	140	630*	26*	65	380	2500*	790*	660	ug/L
Field Parameters										
рН	9040C	7.2	7.5	7.0	7.3	7.5	7.9	7.9	7.6	
Turbidity	180.1	2.5	8.1*	0.70*	2.3	18	80*	24*	16	NTU
Metals										
Arsenic	6020B	ND	ND	1.7	1.7	ND	1.1	1.7	1.7	ug/L
Lead	6020B	ND	0.30	0.47	0.17	ND	0.76	0.25	3.2	ug/L
Antimony	6020B	ND	0.21	0.5	0.5	ND	ND	0.50	0.5	ug/L
Cobalt	6020B	0.84	1.9	0.84	0.54	0.19	0.41	0.17	0.4	ug/L
Copper	6020B	2.5	3.0	2.5	0.67	0.72	1.0	0.90	1.2	ug/L

*Note: Elevated readings for Iron and Turbidity in October were due to an issue with sample collection. A re-sample event was conducted in early December to confirm that the issue was corrected. Further explanation is provided in the report in Attachment 2.

Abbreviations & Symbols:

mg/L: milligrams per liter TDS: total dissolved solids MW: monitoring well TOC: total organic carbon ND: nondetect or below detection limit μ g/L: micrograms per liter

NTU: nephelometric turbidity unit

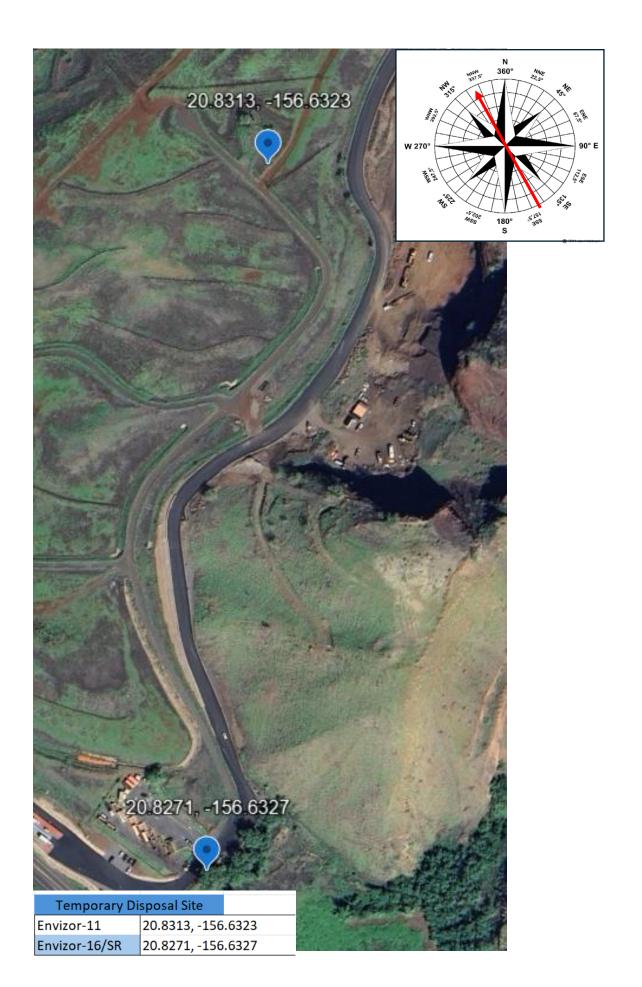
Results are posted in the Environmental Monitoring Summary posted on the <u>webpage for debris</u> <u>containment</u>.

Attachment 1. Dust Monitoring Reports

The ECC field staff and field crews continued to follow the prescribed methods of dust suppression and notification procedures.

The crews continue to use water for dust suppression all day.

No exceedances occurred.


Weather Summary

No weather data was transmitted today

Station Location Summary:

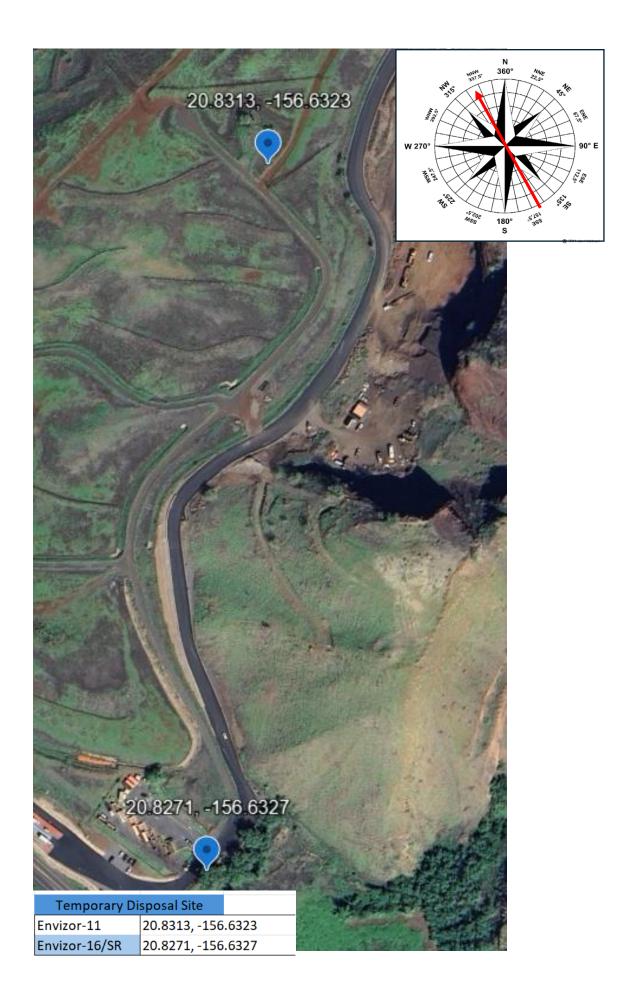
Station 11 and Station 16 + Sensitive Receptor were set up around the **Temporary Disposal Site** for continued debris removal air monitoring.

		Envizor-11	Envizor-16	Exceedance Limit	Action Limit
PM 2.5	Avg, ug/M3	6.06	5.59	70	35
PM 10	Avg, ug/M3	6.77	6.59	300	150

The ECC field staff and field crews continued to follow the prescribed methods of dust suppression and notification procedures.

The crews continue to use water for dust suppression all day.

No exceedances occurred.


Weather Summary

No weather data was transmitted today

Station Location Summary:

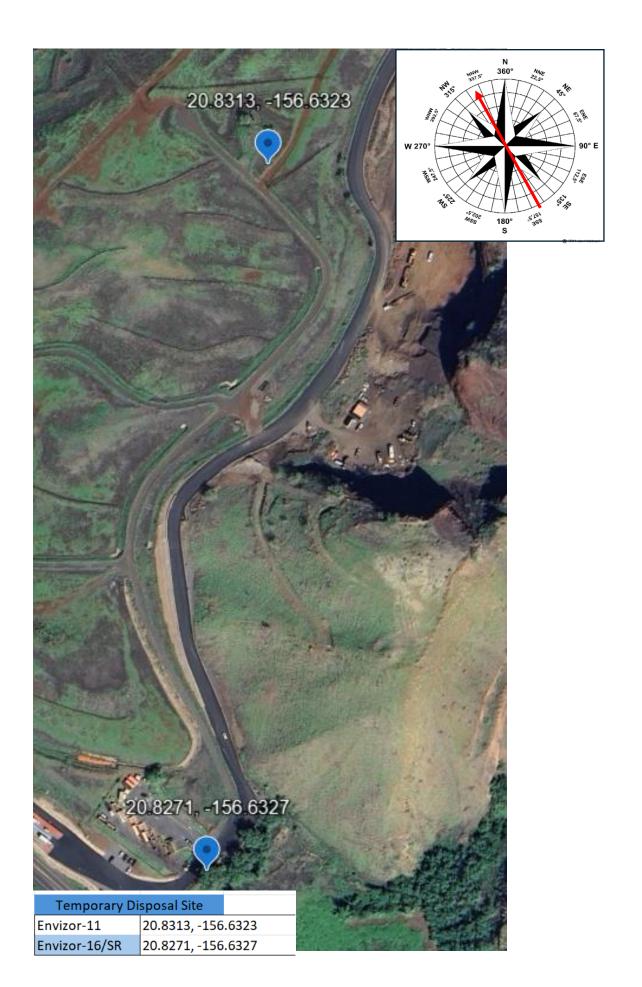
Station 11 and Station 16 + Sensitive Receptor were set up around the **Temporary Disposal Site** for continued debris removal air monitoring.

		Envizor-11	Envizor-16	Exceedance Limit	Action Limit
PM 2.5	Avg, ug/M3	2.99	7.98	70	35
PM 10	Avg, ug/M3	3.52	8.66	300	150

The ECC field staff and field crews continued to follow the prescribed methods of dust suppression and notification procedures.

The crews continue to use water for dust suppression all day.

No exceedances occurred.


Weather Summary

No weather data was transmitted today

Station Location Summary:

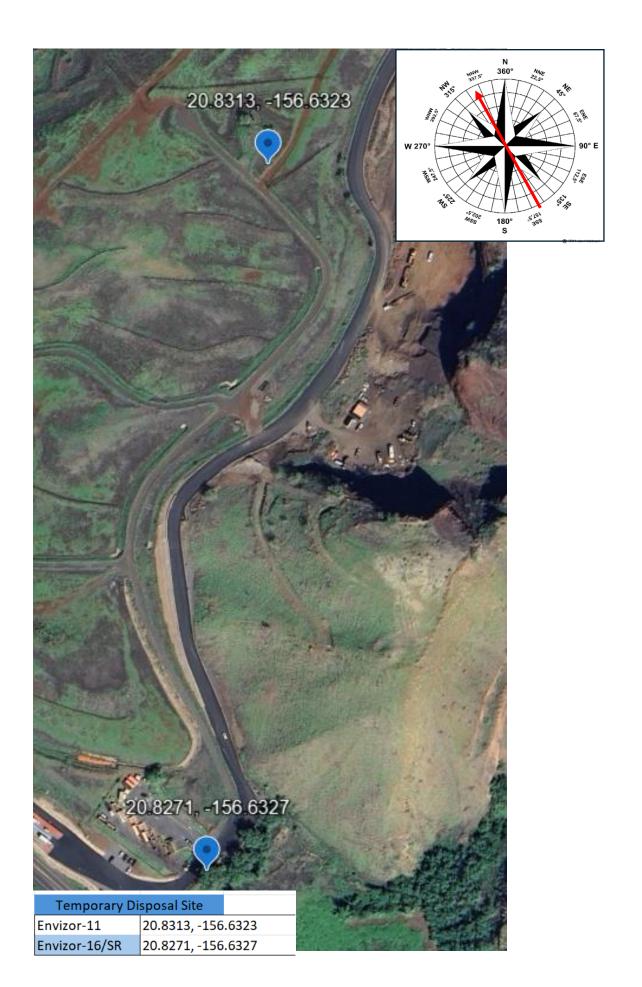
Station 11 and Station 16 + Sensitive Receptor were set up around the **Temporary Disposal Site** for continued debris removal air monitoring.

		Envizor-11	Envizor-16	Exceedance Limit	Action Limit
PM 2.5	Avg, ug/M3	3.81	4.61	70	35
PM 10	Avg, ug/M3	4.62	5.77	300	150

The ECC field staff and field crews continued to follow the prescribed methods of dust suppression and notification procedures.

The crews continue to use water for dust suppression all day.

No exceedances occurred.


Weather Summary

No weather data was transmitted today

Station Location Summary:

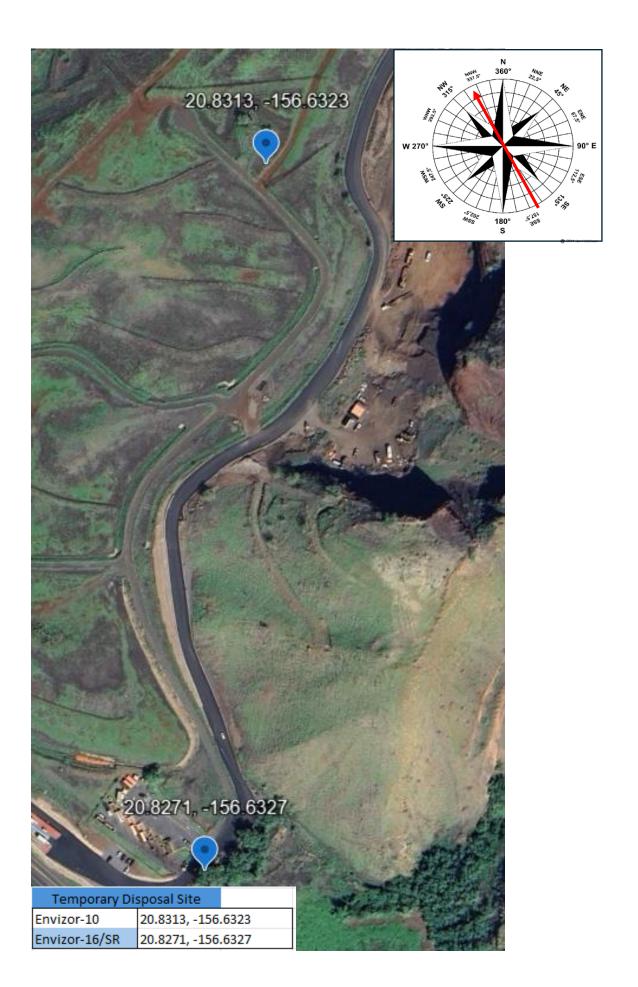
Station 11 and Station 16 + Sensitive Receptor were set up around the **Temporary Disposal Site** for continued debris removal air monitoring.

		Envizor-11	Envizor-16	Exceedance Limit	Action Limit
PM 2.5	Avg, ug/M3	9.10	7.23	70	35
PM 10	Avg, ug/M3	9.20	8.48	300	150

The ECC field staff and field crews continued to follow the prescribed methods of dust suppression and notification procedures.

The crews continue to use water for dust suppression all day.

No exceedances occurred.


Weather Summary

No weather data was transmitted today

Station Location Summary:

Station 10 and Station 16 + Sensitive Receptor were set up around the **Temporary Disposal Site** for continued debris removal air monitoring.

		Envizor-10	Envizor-16	Exceedance Limit	Action Limit
PM 2.5	Avg, ug/M3	3.24	6.17	70	35
PM 10	Avg, ug/M3	4.27	6.79	300	150

The ECC field staff and field crews continued to follow the prescribed methods of dust suppression and notification procedures.

The crews continue to use water for dust suppression all day.

No exceedances occurred.

Weather Summary

No weather data was transmitted today

Station Location Summary:

Station 10 and Station 4 + Sensitive Receptor were set up around the **Temporary Disposal Site** for continued debris removal air monitoring.

		Envizor-04	Envizor-10	Exceedance Limit	Action Limit
PM 2.5	Avg, ug/M3	8.07	3.93	70	35
PM 10	Avg, ug/M3	8.74	5.28	300	150

The ECC field staff and field crews continued to follow the prescribed methods of dust suppression and notification procedures.

The crews continue to use water for dust suppression all day.

No exceedances occurred.

Weather Summary

No weather data was transmitted today

Station Location Summary:

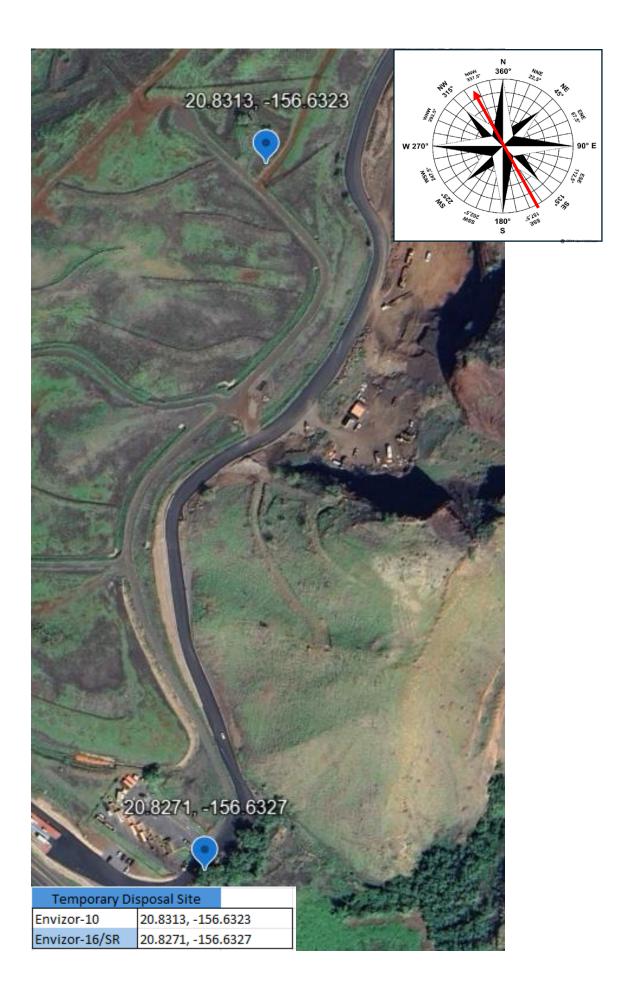
Station 10 and Station 4 + Sensitive Receptor were set up around the **Temporary Disposal Site** for continued debris removal air monitoring.

		Envizor-04	Envizor-10	Exceedance Limit	Action Limit
PM 2.5	Avg, ug/M3	5.93	2.94	70	35
PM 10	Avg, ug/M3	7.08	3.53	300	150

The ECC field staff and field crews continued to follow the prescribed methods of dust suppression and notification procedures.

The crews continue to use water for dust suppression all day.

No exceedances occurred.


Weather Summary

No weather data was transmitted today

Station Location Summary:

Station 10 and Station 16 + Sensitive Receptor were set up around the **Temporary Disposal Site** for continued debris removal air monitoring.

		Envizor-10	Envizor-16	Exceedance Limit	Action Limit
PM 2.5	Avg, ug/M3	3.24	6.17	70	35
PM 10	Avg, ug/M3	4.27	6.79	300	150

The ECC field staff and field crews continued to follow the prescribed methods of dust suppression and notification procedures.

The crews continue to use water for dust suppression all day.

No exceedances occurred.

Weather Summary

No weather data was transmitted today

Station Location Summary:

Station 10 and Station 4 + Sensitive Receptor were set up around the **Temporary Disposal Site** for continued debris removal air monitoring.

		Envizor-04	Envizor-10	Exceedance Limit	Action Limit
PM 2.5	Avg, ug/M3	9.99	1.45	70	35
PM 10	Avg, ug/M3	10.47	1.98	300	150

The ECC field staff and field crews continued to follow the prescribed methods of dust suppression and notification procedures.

The crews continue to use water for dust suppression all day.

No exceedances occurred.

Weather Summary

No weather data was transmitted today

Station Location Summary:

Station 10 and Station 4 + Sensitive Receptor were set up around the **Temporary Disposal Site** for continued debris removal air monitoring.

		Envizor-04	Envizor-10	Exceedance Limit	Action Limit
PM 2.5	Avg, ug/M3	8.81	1.99	70	35
PM 10	Avg, ug/M3	9.19	2.62	300	150

The ECC field staff and field crews continued to follow the prescribed methods of dust suppression and notification procedures.

The crews continue to use water for dust suppression all day.

No exceedances occurred.

Weather Summary

No weather data was transmitted today

Station Location Summary:

Station 10 and Station 4 + Sensitive Receptor were set up around the **Temporary Disposal Site** for continued debris removal air monitoring.

		Envizor-04	Envizor-10	Exceedance Limit	Action Limit
PM 2.5	Avg, ug/M3	12.70	4.60	70	35
PM 10	Avg, ug/M3	13.54	5.58	300	150

The ECC field staff and field crews continued to follow the prescribed methods of dust suppression and notification procedures.

The crews continue to use water for dust suppression all day.

No exceedances occurred.

Weather Summary

No weather data was transmitted today

Station Location Summary:

Station 10 and Station 4 + Sensitive Receptor were set up around the **Temporary Disposal Site** for continued debris removal air monitoring.

		Envizor-04	Envizor-10	Exceedance Limit	Action Limit
PM 2.5	Avg, ug/M3	13.71	9.19	70	35
PM 10	Avg, ug/M3	14.56	10.10	300	150

The ECC field staff and field crews continued to follow the prescribed methods of dust suppression and notification procedures.

The crews continue to use water for dust suppression all day.

No exceedances occurred.

Weather Summary

No weather data was transmitted today

Station Location Summary:

Station 10 and Station 4 + Sensitive Receptor were set up around the **Temporary Disposal Site** for continued debris removal air monitoring.

		Envizor-04	Envizor-10	Exceedance Limit	Action Limit
PM 2.5	Avg, ug/M3	8.36	1.56	70	35
PM 10	Avg, ug/M3	9.57	1.78	300	150

Attachment 2. Leachate Analysis Laboratory Data Reports

(Reagent Traceability, Data Sheets and Shipping/Receiving available upon request)

ANALYTICAL REPORT

PREPARED FOR

Attn: Kane McNeill Environmental Chemical Corp. 1240 Bayshore Hwy Burlingame, California 94010

Generated 2/12/2025 5:12:41 PM

JOB DESCRIPTION

West Maui TDS Detention Basin 410-206515

JOB NUMBER

410-206515-1

Eurofins Lancaster Laboratories Environment Testing, LLC 2425 New Holland Pike Lancaster PA 17601

Eurofins Lancaster Laboratories Environment Testing, LLC

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 2/12/2025 5:12:41 PM

Authorized for release by Michelle Lalli, Analyst I Michelle.Lalli@et.eurofinsus.com Designee for Elizabeth Martin, Project Manager Elizabeth.Martin@et.eurofinsus.com (717)205-3949 1

2

4

_

7

8

9

11

12

13

15

Compliance Statement

Analytical test results meet all requirements of the associated regulatory program (e.g., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis. Data qualifiers are applied to note exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- QC results that exceed the upper limits and are associated with non-detect samples are qualified but further narration is not required since the bias is high and does not change a non-detect result. Further narration is also not required with QC blank detection when the associated sample concentration is non-detect or more than ten times the level in the blank.
- · Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD is performed, unless otherwise specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Measurement uncertainty values, as applicable, are available upon request.

Test results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" and tested in the laboratory are not performed within 15 minutes of collection.

This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. The foregoing express warranty is exclusive and is given in lieu of all other warranties, expressed or implied, except as otherwise agreed. We disclaim any other warranties, expressed or implied, including a warranty of fitness for particular purpose and warranty of merchantability. In no event shall Eurofins Lancaster Laboratories Environmental, LLC be liable for indirect, special, consequential, or incidental damages including, but not limited to, damages for loss of profit or goodwill regardless of (A) the negligence (either sole or concurrent) of Eurofins Lancaster Laboratories Environmental and (B) whether Eurofins Lancaster Laboratories Environmental has been informed of the possibility of such damages. We accept no legal responsibility for the purposes for which the client uses the test results. Except as otherwise agreed, no purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

3

4

5

6

8

9

10

14

Table of Contents

Cover Page	1
Table of Contents	4
Definitions/Glossary	5
Case Narrative	7
Detection Summary	8
Client Sample Results	9
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	20
Lab Chronicle	24
Certification Summary	25
Method Summary	26
Sample Summary	27
Chain of Custody	28
Receipt Checklists	30

4

6

0

9

10

12

14

Definitions/Glossary

Client: Environmental Chemical Corp. Job ID: 410-206515-1 Project/Site: West Maui TDS Detention Basin SDG: 410-206515

Qualifiers

00	184	0	10	
GC	-/ IV	S 1	٧U	Α

Qualifier **Qualifier Description**

Undetected at the Limit of Detection.

HPLC/IC Ouglifier

Qualifier	Qualifier Description
*	See Case Narrative

D The reported value is from a dilution.

Qualifier Description

Н Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.

Undetected at the Limit of Detection.

Metals

Qualifier **Qualifier Description**

Undetected at the Limit of Detection.

General Chemistry

Qualifier	Qualifier Description
*	See Case Narrative
D	The reported value is from a dilution.
Н	Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.
HF	Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time.
J	Estimated: The analyte was positively identified; the quantitation is an estimation
U	Undetected at the Limit of Detection.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.							
≎	Listed under the "D" column to designate that the result is reported on a dry weight basis							
%R	Percent Recovery							
CFL	Contains Free Liquid							
CFU	Colony Forming Unit							
CNF	Contains No Free Liquid							

DER Duplicate Error Ratio (normalized absolute difference) Dil Fac

Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Eurofins Lancaster Laboratories Environment Testing, LLC

Page 5 of 30 2/12/2025

Definitions/Glossary

Client: Environmental Chemical Corp.

Project/Site: West Maui TDS Detention Basin

Job ID: 410-206515-1

SDG: 410-206515

Glossary (Continued)

TEF Toxicity Equivalent Factor (Dioxin)	Abbreviation	nese commonly used abbreviations may or may not be present in this report.							
	TEF	Toxicity Equivalent Factor (Dioxin)							
TEQ Toxicity Equivalent Quotient (Dioxin)	TEQ	Toxicity Equivalent Quotient (Dioxin)							
TNTC Too Numerous To Count	TNTC	Too Numerous To Count							

3

5

40

11

13

Case Narrative

Client: Environmental Chemical Corp. Project: West Maui TDS Detention Basin

Job ID: 410-206515-1

Eurofins Lancaster Laboratories Environment

Job ID: 410-206515-1

Job Narrative 410-206515-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Receipt

The samples were received on 2/5/2025 10:05 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.6°C.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_D6: The following sample was received with less than one shift (8 hours) remaining on a test with a holding time of 48 hours or less. As such, the laboratory had insufficient time remaining to perform the analysis within holding time: TDS-RP-03Feb25 (410-206515-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method 180.1: The following sample(s) was received with less than 1 day remaining on the holding time or less than one shift (8 hours) remaining on a test with a holding time of 48 hours. As such, the laboratory had insufficient time remaining to perform the analysis within holding time: TDS-RP-03Feb25 (410-206515-1).

Method 365.3_Ortho_D6: The following sample was received with less than 1 day remaining on the holding time or less than one shift (8 hours) remaining on a test with a holding time of 48 hours. As such, the laboratory had insufficient time remaining to perform the analysis within holding time: TDS-RP-03Feb25 (410-206515-1).

Method SM5210B_Calc: The following sample(s) was received with less than 1 day remaining on the holding time or less than one shift (8 hours) remaining on a test with a holding time of 48 hours or less. As such, the laboratory had insufficient time remaining to perform the analysis within holding time: TDS-RP-03Feb25 (410-206515-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Lancaster Laboratories Environment Testing, LLC

Page 7 of 30 2/12/2025

5

6

8

4.0

11

Detection Summary

Client: Environmental Chemical Corp. Project/Site: West Maui TDS Detention Basin Job ID: 410-206515-1 SDG: 410-206515

Client Sample ID: TDS-RP-03Feb25

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	Dil Fac	D	Method	Prep Type
Nitrate as N	17	DH*	1.1	1.0	0.50	mg/L	10	_	300.0	Total/NA
Nitrite as N	0.27	Н	0.11	0.10	0.050	mg/L	1		300.0	Total/NA
Nitrate Nitrite as N	17	D H *	11	1.0	0.50	mg/L	10		300.0	Total/NA
Barium	0.030		0.020	0.016	0.0075	mg/L	1		6020B	TCLP
Flashpoint	>200		50	50	50	Degrees F	1		1010B	Total/NA
HEM (Oil & Grease)	2.6	J	6.0	4.8	1.7	mg/L	1		1664B	Total/NA
Turbidity	14	H *	1.0	0.70	1.0	NTU	1		180.1	Total/NA
Total Hardness	290	D	100	80	30	mg/L	10		2340C-2011	Total/NA
Total Suspended Solids	5.9		3.0	2.5	1.0	mg/L	1		2540D-2015	Total/NA
Ammonia as N	0.066	J	0.10	0.090	0.050	mg/L	1		350.1	Total/NA
Oxygen, Dissolved	8.5	HF	0.40	0.40	0.40	mg/L	1		360.1	Total/NA
Orthophosphate as P	0.047	H *	0.020	0.012	0.0060	mg/L	1		365.3	Total/NA
Chemical Oxygen Demand	35	J	75	60	25	mg/L	1		410.4	Total/NA

Client Sample ID: Trip Blank

Lab Sample ID: 410-206515-2

No Detections.

14

Client Sample Results

Client: Environmental Chemical Corp.

Project/Site: West Maui TDS Detention Basin

Job ID: 410-206515-1

SDG: 410-206515

Client Sample ID: TDS-RP-03Feb25 Lab Sample ID: 410-206515-1

Date Collected: 02/03/25 07:15 Matrix: Water
Date Received: 02/05/25 10:05

	le Organic Co		(() () () ()						
Analyte		Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fa
Bromomethane	0.60	U	1.0	0.60	0.30	ug/L		02/07/25 15:20	
2-Chloroethyl vinyl ether	0.60	U	10	0.60	0.30	ug/L		02/07/25 15:20	
Chloromethane	1.1	U	2.0	1.1	0.55	ug/L		02/07/25 15:20	
,3-Dichlorobenzene	1.4	U	5.0	1.4	0.68	ug/L		02/07/25 15:20	
Surrogate	%Recovery Q	ualifier	Limits			Prepare	d	Analyzed	Dil Fa
1-Bromofluorobenzene (Surr)	93		85 - 114					02/07/25 15:20	
Dibromofluoromethane (Surr)	107		80 - 119					02/07/25 15:20	
1,2-Dichloroethane-d4 (Surr)	104		81 - 118					02/07/25 15:20	
Toluene-d8 (Surr)	96		89 - 112					02/07/25 15:20	
Method: EPA 300.0 - Anions, Id	on Chromato	graphy							
Analyte		Qualifier	LOQ	LOD		Unit	D		Dil Fa
Nitrate as N	17	D H *	1.1	1.0	0.50	mg/L	_	02/06/25 20:19	1
Nitrite as N	0.27	H	0.11	0.10	0.050	mg/L		02/06/25 02:42	
Nitrate Nitrite as N	17	D H *	11	1.0	0.50	mg/L		02/06/25 20:19	,
Method: SW846 6020B - Metals	s (ICP/MS) - T	CLP							
nalyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil F
rsenic	0.017	U	0.020	0.017	0.0068	mg/L		02/12/25 13:45	
Barium	0.030		0.020	0.016	0.0075	mg/L		02/12/25 13:45	
admium	0.0040	U	0.0050	0.0040	0.0015	mg/L		02/12/25 13:45	
hromium	0.011	U	0.020	0.011	0.0055	mg/L		02/12/25 13:45	
ead	0.0024	U	0.0050	0.0024	0.0012	mg/L		02/12/25 13:45	
Selenium	0.0060	U	0.010	0.0060	0.0028	mg/L		02/12/25 13:45	
Silver	0.0030	U	0.0050	0.0030	0.0010	mg/L		02/12/25 13:45	
Method: SW846 7470A - Mercu	ury (CVAA) - 7	CLP							
Analyte	• •	Qualifier	LOQ	LOD	DI	Unit	D	Analyzed	DHE
		-,	LOQ	LOD					DII F
Mercury	0.16		0.20	0.16	0.079	ug/L		02/10/25 16:42	DII F
-	0.16					ug/L			DILE
General Chemistry					0.079	ug/L Unit	 D	02/10/25 16:42	
General Chemistry		U Qualifier	0.20	0.16	0.079		_ <u>D</u>	02/10/25 16:42	
General Chemistry analyte lashpoint (SW846 1010B)	Result	Qualifier	0.20 LOQ	0.16 LOD	0.079 DL 50	Unit	_ <u>D</u>	02/10/25 16:42 Analyzed	
General Chemistry unalyte lashpoint (SW846 1010B) IEM (Oil & Grease) (1664B)	Result >200	Qualifier	0.20 LOQ 50	0.16 LOD 50	0.079 DL 50 1.7	Unit Degrees F	_ <u>D</u>	02/10/25 16:42 Analyzed 02/10/25 08:05	
General Chemistry nalyte lashpoint (SW846 1010B) IEM (Oil & Grease) (1664B) urbidity (EPA 180.1)	Result >200	Qualifier J H*	0.20 LOQ 50 6.0	0.16 LOD 50 4.8	0.079 DL 50 1.7 1.0	Unit Degrees F mg/L	_ <u>D</u>	02/10/25 16:42 Analyzed 02/10/25 08:05 02/07/25 18:36	Dil F
General Chemistry nalyte lashpoint (SW846 1010B) IEM (Oil & Grease) (1664B) urbidity (EPA 180.1) otal Hardness (SM 2340C-2011) otal Suspended Solids (SM	Result >200 2.6	Qualifier J H*	0.20 LOQ 50 6.0 1.0	0.16 LOD 50 4.8 0.70	0.079 DL 50 1.7 1.0 30	Unit Degrees F mg/L NTU	_ <u>D</u>	02/10/25 16:42 Analyzed 02/10/25 08:05 02/07/25 18:36 02/05/25 14:50	Dil F
General Chemistry Inalyte Ilashpoint (SW846 1010B) IEM (Oil & Grease) (1664B) Iurbidity (EPA 180.1) Iotal Hardness (SM 2340C-2011) Iotal Suspended Solids (SM 5440D-2015)	Result >200 2.6 14 290 5.9	Qualifier J H*	0.20 LOQ 50 6.0 1.0 100 3.0	0.16 LOD 50 4.8 0.70 80 2.5	0.079 DL 50 1.7 1.0 30 1.0	Unit Degrees F mg/L NTU mg/L mg/L	_ <u>D</u>	Analyzed 02/10/25 16:42 Analyzed 02/10/25 08:05 02/07/25 18:36 02/05/25 14:50 02/11/25 12:19 02/05/25 18:18	Dil F
General Chemistry Inalyte Ilashpoint (SW846 1010B) IEM (Oil & Grease) (1664B) Iurbidity (EPA 180.1) Iotal Hardness (SM 2340C-2011) Iotal Suspended Solids (SM 540D-2015) Immonia as N (EPA 350.1)	Result >200 2.6 14 290 5.9	Qualifier J H* D	0.20 LOQ 50 6.0 1.0 100 3.0 0.10	0.16 LOD 50 4.8 0.70 80 2.5	0.079 DL 50 1.7 1.0 30 1.0 0.050	Unit Degrees F mg/L NTU mg/L mg/L	_ <u>D</u>	Analyzed 02/10/25 16:42 Analyzed 02/10/25 08:05 02/07/25 18:36 02/05/25 14:50 02/11/25 12:19 02/05/25 18:18 02/12/25 11:34	Dil F
General Chemistry Inalyte Ilashpoint (SW846 1010B) IEM (Oil & Grease) (1664B) Iurbidity (EPA 180.1) Iotal Hardness (SM 2340C-2011) Iotal Suspended Solids (SM 540D-2015) Immonia as N (EPA 350.1) Ilitrogen, Kjeldahl (EPA 351.2)	Result >200 2.6 14 290 5.9 0.066	Qualifier J H* D	0.20 LOQ 50 6.0 1.0 100 3.0 0.10 1.5	0.16 LOD 50 4.8 0.70 80 2.5 0.090 1.4	0.079 DL 50 1.7 1.0 30 1.0 0.050 0.70	Unit Degrees F mg/L NTU mg/L mg/L mg/L mg/L	_ D	Analyzed 02/10/25 16:42 Analyzed 02/10/25 08:05 02/07/25 18:36 02/05/25 14:50 02/11/25 12:19 02/05/25 18:18 02/12/25 11:34 02/10/25 12:14	Dil F
General Chemistry Inalyte Ilashpoint (SW846 1010B) IEM (Oil & Grease) (1664B) Iurbidity (EPA 180.1) Iotal Hardness (SM 2340C-2011) Iotal Suspended Solids (SM 540D-2015) Immonia as N (EPA 350.1) Iitrogen, Kjeldahl (EPA 351.2) Dxygen, Dissolved (EPA 360.1)	Result >200 2.6 14 290 5.9 0.066 1.4 8.5	Qualifier J H* D	0.20 LOQ 50 6.0 1.0 100 3.0 0.10 1.5 0.40	0.16 LOD 50 4.8 0.70 80 2.5 0.090 1.4 0.40	0.079 DL 50 1.7 1.0 30 1.0 0.050 0.70 0.40	Unit Degrees F mg/L NTU mg/L mg/L mg/L mg/L mg/L mg/L	_ D	Analyzed 02/10/25 16:42 Analyzed 02/10/25 08:05 02/07/25 18:36 02/05/25 14:50 02/11/25 12:19 02/05/25 18:18 02/12/25 11:34 02/10/25 12:14 02/06/25 12:48	Dil F
General Chemistry Inalyte Clashpoint (SW846 1010B) IEM (Oil & Grease) (1664B) Curbidity (EPA 180.1) Cotal Hardness (SM 2340C-2011) Cotal Suspended Solids (SM 1540D-2015) Immonia as N (EPA 350.1) Clitrogen, Kjeldahl (EPA 351.2) Daygen, Dissolved (EPA 360.1) Cotal Phosphorus as P (EPA 365.1)	Result >200 2.6 14 290 5.9 0.066 1.4 8.5 0.10	Qualifier J H* D U HF	0.20 LOQ 50 6.0 1.0 100 3.0 0.10 1.5 0.40 0.15	0.16 LOD 50 4.8 0.70 80 2.5 0.090 1.4 0.40 0.10	0.079 DL 50 1.7 1.0 30 1.0 0.050 0.70 0.40 0.050	Unit Degrees F mg/L NTU mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_ <u>D</u>	Analyzed 02/10/25 16:42 Analyzed 02/10/25 08:05 02/07/25 18:36 02/05/25 14:50 02/11/25 12:19 02/05/25 18:18 02/12/25 11:34 02/10/25 12:14 02/06/25 12:48 02/11/25 15:00	Dil F
General Chemistry Analyte Flashpoint (SW846 1010B) HEM (Oil & Grease) (1664B) Furbidity (EPA 180.1) Fotal Hardness (SM 2340C-2011) Fotal Suspended Solids (SM 2540D-2015) Ammonia as N (EPA 350.1) Flitrogen, Kjeldahl (EPA 351.2) Floygen, Dissolved (EPA 360.1) Fotal Phosphorus as P (EPA 365.1) Fotal Phosphorus as PO4 (EPA 365.1)	Result >200 2.6 14 290 5.9 0.066 1.4 8.5 0.10 0.31	Qualifier J H* D U HF U	0.20 LOQ 50 6.0 1.0 100 3.0 0.10 1.5 0.40 0.15 0.46	0.16 LOD 50 4.8 0.70 80 2.5 0.090 1.4 0.40 0.10 0.31	0.079 DL 50 1.7 1.0 30 1.0 0.050 0.70 0.40 0.050 0.25	Unit Degrees F mg/L NTU mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_ <u>D</u>	Analyzed 02/10/25 16:42 Analyzed 02/10/25 08:05 02/07/25 18:36 02/05/25 14:50 02/11/25 12:19 02/05/25 18:18 02/12/25 11:34 02/10/25 12:14 02/06/25 12:48 02/11/25 15:00 02/11/25 15:00	Dil F
General Chemistry Analyte Flashpoint (SW846 1010B) HEM (Oil & Grease) (1664B) Furbidity (EPA 180.1) Fotal Hardness (SM 2340C-2011) Fotal Suspended Solids (SM 2540D-2015) Ammonia as N (EPA 350.1) Nitrogen, Kjeldahl (EPA 351.2) Dxygen, Dissolved (EPA 360.1) Fotal Phosphorus as P (EPA 365.1) Fotal Phosphorus as PO4 (EPA 365.1) Fotal Phosphorus as PO4 (EPA 365.3) Chemical Oxygen Demand (EPA 180.4)	Result >200 2.6 14 290 5.9 0.066 1.4 8.5 0.10 0.31 0.047	Qualifier J H* D U HF U	0.20 LOQ 50 6.0 1.0 100 3.0 0.10 1.5 0.40 0.15	0.16 LOD 50 4.8 0.70 80 2.5 0.090 1.4 0.40 0.10	0.079 DL 50 1.7 1.0 30 1.0 0.050 0.70 0.40 0.050 0.25 0.0060	Unit Degrees F mg/L NTU mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_ <u>D</u>	Analyzed 02/10/25 16:42 Analyzed 02/10/25 08:05 02/07/25 18:36 02/05/25 14:50 02/11/25 12:19 02/05/25 18:18 02/12/25 11:34 02/10/25 12:14 02/06/25 12:48 02/11/25 15:00	Dil Fa
General Chemistry Analyte Flashpoint (SW846 1010B) HEM (Oil & Grease) (1664B) Furbidity (EPA 180.1) Fotal Hardness (SM 2340C-2011) Fotal Suspended Solids (SM 2540D-2015) Ammonia as N (EPA 350.1) Nitrogen, Kjeldahl (EPA 351.2) Dxygen, Dissolved (EPA 365.1) Fotal Phosphorus as P (EPA 365.1) Fotal Phosphorus as PO4 (EPA 365.1) Fotal Phosphorus as P (EPA 365.3) Chemical Oxygen Demand (EPA 10.4) Biochemical Oxygen Demand (SM 5210	Result >200 2.6 14 290 5.9 0.066 1.4 8.5 0.10 0.31 0.047 35	Qualifier J H* D U HF U U H*	0.20 LOQ 50 6.0 1.0 100 3.0 0.10 1.5 0.40 0.15 0.46 0.020	0.16 LOD 50 4.8 0.70 80 2.5 0.090 1.4 0.40 0.10 0.31 0.012	0.079 DL 50 1.7 1.0 30 1.0 0.050 0.70 0.40 0.050 0.25 0.0060 25	Unit Degrees F mg/L NTU mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_ <u>D</u>	Analyzed 02/10/25 16:42 Analyzed 02/10/25 08:05 02/07/25 18:36 02/05/25 14:50 02/11/25 12:19 02/05/25 18:18 02/12/25 11:34 02/10/25 12:14 02/06/25 12:48 02/11/25 15:00 02/11/25 15:00 02/06/25 14:05	Dil Fa
General Chemistry Analyte Flashpoint (SW846 1010B) HEM (Oil & Grease) (1664B) Furbidity (EPA 180.1) Fotal Hardness (SM 2340C-2011) Fotal Suspended Solids (SM 2540D-2015) Ammonia as N (EPA 350.1) Nitrogen, Kjeldahl (EPA 351.2) Dxygen, Dissolved (EPA 360.1) Fotal Phosphorus as P (EPA 365.1) Fotal Phosphorus as PO4 (EPA 365.1) Orthophosphate as P (EPA 365.3)	Result >200 2.6 14 290 5.9 0.066 1.4 8.5 0.10 0.31 0.047 35	Qualifier J H* D U HF U U H* J	0.20 LOQ 50 6.0 1.0 100 3.0 0.10 1.5 0.40 0.15 0.46 0.020 75	0.16 LOD 50 4.8 0.70 80 2.5 0.090 1.4 0.40 0.10 0.31 0.012 60	0.079 DL 50 1.7 1.0 30 1.0 0.050 0.70 0.40 0.050 0.25 0.0060 25	Unit Degrees F mg/L NTU mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_ D	Analyzed 02/10/25 16:42 Analyzed 02/10/25 08:05 02/07/25 18:36 02/05/25 14:50 02/11/25 12:19 02/05/25 18:18 02/12/25 11:34 02/10/25 12:14 02/06/25 12:48 02/11/25 15:00 02/11/25 15:00 02/06/25 14:05 02/07/25 06:30	Dil F

Eurofins Lancaster Laboratories Environment Testing, LLC

Page 9 of 30 2/12/2025

_

4

6

8

10

12

4

Client Sample Results

Client: Environmental Chemical Corp. Project/Site: West Maui TDS Detention Basin

SDG: 410-206515

Lab Sample ID: 410-206515-1

Matrix: Water

Job ID: 410-206515-1

Client Sample ID: TDS-RP-03Feb25

Date Collected: 02/03/25 07:15 Date Received: 02/05/25 10:05

General Chemistry (Continued)									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitrogen, Organic (EPA Nitrogen,Org)	0.90	U	1.0	0.90	0.50	mg/L		02/10/25 16:01	1

Client Sample ID: Trip Blank

Date Collected: 02/03/25 00:00

Lab Sample ID: 410-206515-2

Matrix: Water

Date Received: 02/05/25 10:05

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit I	D Analyzed	Dil Fac
Bromomethane	0.60	U	1.0	0.60	0.30	ug/L	02/07/25 12:21	1
2-Chloroethyl vinyl ether	0.60	U	10	0.60	0.30	ug/L	02/07/25 12:21	1
Chloromethane	1.1	U	2.0	1.1	0.55	ug/L	02/07/25 12:21	1
1,3-Dichlorobenzene	1.4	· U	5.0	1.4	0.68	ug/L	02/07/25 12:21	1
Surrogate	%Recovery Q	ualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		85 - 114				02/07/25 12:21	1
Dibromofluoromethane (Surr)	109		80 - 119				02/07/25 12:21	1
1,2-Dichloroethane-d4 (Surr)	104		81 - 118				02/07/25 12:21	1

3

-

6

8

10

11

Surrogate Summary

Client: Environmental Chemical Corp. Job ID: 410-206515-1 Project/Site: West Maui TDS Detention Basin SDG: 410-206515

Method: 8260D - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recov					
		BFB	DBFM	DCA	TOL		
Lab Sample ID	Client Sample ID	(85-114)	(80-119)	(81-118)	(89-112)		
410-206515-1	TDS-RP-03Feb25	93	107	104	96		
410-206515-2	Trip Blank	93	109	104	96		
LCS 410-603479/5	Lab Control Sample	98	103	101	98		
LCSD 410-603479/6	Lab Control Sample Dup	99	101	104	99		
MB 410-603479/10	Method Blank	94	104	107	95		

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Page 11 of 30

QC Sample Results

Client: Environmental Chemical Corp. Job ID: 410-206515-1 Project/Site: West Maui TDS Detention Basin SDG: 410-206515

1.4 U

Method: 8260D - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 410-603479/10

Matrix: Water

Bromomethane

Chloromethane

2-Chloroethyl vinyl ether

1,3-Dichlorobenzene

Analyte

Analysis Batch: 603479

Client Sample ID: Method Blank Prep Type: Total/NA

02/07/25 11:36

MB MB Result Qualifier LOQ LOD DL Unit Analyzed Dil Fac 02/07/25 11:36 0.60 U 1.0 0.60 0.30 ug/L 0.60 U 10 0.60 0.30 ug/L 02/07/25 11:36 02/07/25 11:36 1.1 U 2.0 1.1 0.55 ug/L

1.4

0.68 ug/L

MB MB %Recovery Qualifier Surrogate Limits Prepared Dil Fac Analyzed 85 - 114 4-Bromofluorobenzene (Surr) 94 02/07/25 11:36 104 80 - 119 Dibromofluoromethane (Surr) 02/07/25 11:36 1,2-Dichloroethane-d4 (Surr) 107 81 - 118 02/07/25 11:36 Toluene-d8 (Surr) 95 89 - 112 02/07/25 11:36

5.0

Lab Sample ID: LCS 410-603479/5

Matrix: Water

Analysis Batch: 603479

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

ı		Зріке	LUS	LUS				%Rec	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Bromomethane	20.0	18.4		ug/L		92	53 - 141	
	2-Chloroethyl vinyl ether	20.0	20.6		ug/L		103	51 - 139	
	Chloromethane	20.0	18.7		ug/L		94	50 - 139	
	1,3-Dichlorobenzene	20.0	19.0		ug/L		95	80 - 119	
н									

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 98 85 - 114 Dibromofluoromethane (Surr) 103 80 - 119 1,2-Dichloroethane-d4 (Surr) 101 81 - 118 89 - 112 Toluene-d8 (Surr) 98

Lab Sample ID: LCSD 410-603479/6

Matrix: Water

Analysis Batch: 603479

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bromomethane	20.0	19.1	-	ug/L		96	53 - 141	4	30
2-Chloroethyl vinyl ether	20.0	20.0		ug/L		100	51 - 139	3	30
Chloromethane	20.0	18.6		ug/L		93	50 - 139	1	30
1,3-Dichlorobenzene	20.0	19.5		ug/L		97	80 - 119	2	30

	LCSD LCSD					
Surrogate	%Recovery	Qualifier	Limits			
4-Bromofluorobenzene (Surr)	99		85 - 114			
Dibromofluoromethane (Surr)	101		80 - 119			
1,2-Dichloroethane-d4 (Surr)	104		81 - 118			
Toluene-d8 (Surr)	99		89 - 112			

Eurofins Lancaster Laboratories Environment Testing, LLC

2/12/2025

Job ID: 410-206515-1 SDG: 410-206515

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 410-602979/40

Client: Environmental Chemical Corp.

Project/Site: West Maui TDS Detention Basin

Matrix: Water

Analyte

Nitrate as N

Nitrite as N

Nitrate Nitrite as N

Analysis Batch: 602979

Client Sample ID: Method Blank Prep Type: Total/NA

02/06/25 06:56

02/06/25 06:56

 MB
 MB

 Result 0.10
 Qualifier U U 0.11
 LOQ LOD 0.10
 DL Unit D U 0.050
 D Managed May 20/06/25 06:56
 Dil Fac 0.10

0.050 mg/L

0.050 mg/L

0.10

0.10

Lab Sample ID: LCS 410-602979/38

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

0.11

1.1

0.10 U

0.10 U

Analysis Batch: 602979

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Nitrate as N 0.750 0.739 mg/L 99 88 - 111 Nitrite as N 0.750 0.763 mg/L 102 87 - 111

Lab Sample ID: LCSD 410-602979/39

Matrix: Water

Client Sample ID: Lab Control Sample Dup
Prep Type: Total/NA

Analysis Batch: 602979

Spike LCSD LCSD %Rec **RPD** Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit mg/L Nitrate as N 0.750 0.741 99 88 - 111 10 0 Nitrite as N 0.750 0.764 mg/L 102 87 - 111

Lab Sample ID: MB 410-603213/5

Matrix: Water

Client Sample ID: Method Blank
Prep Type: Total/NA

Matrix. Water

Analysis Batch: 603213

	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Nitrate as N	0.10	U	0.11	0.10	0.050	mg/L		02/06/25 14:33	1
Nitrite as N	0.10	U	0.11	0.10	0.050	mg/L		02/06/25 14:33	1
Nitrate Nitrite as N	0.10	U	1.1	0.10	0.050	mg/L		02/06/25 14:33	1

Lab Sample ID: LCS 410-603213/3

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Analysis Batch: 603213

	Spike	LCS	LCS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Nitrate as N	 0.750	0.735		mg/L		98	88 - 111		_
Nitrite as N	0.750	0.783		ma/l		104	87 - 111		

Lab Sample ID: LCSD 410-603213/4

Client Sample ID: Lab Control Sample Dup
Matrix: Water

Prep Type: Total/NA

Analysis Batch: 603213

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Nitrate as N	0.750	0.736		mg/L	_	98	88 - 111	0	10	
Nitrite as N	0.750	0.782		ma/l		104	87 - 111	0	10	

Eurofins Lancaster Laboratories Environment Testing, LLC

2/12/2025

Client: Environmental Chemical Corp. Project/Site: West Maui TDS Detention Basin Job ID: 410-206515-1 SDG: 410-206515

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 410-603848/1-A

Matrix: Water

Analysis Batch: 605337

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 603848

	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Arsenic	0.017	U	0.020	0.017	0.0068	mg/L		02/12/25 13:04	1
Barium	0.016	U	0.020	0.016	0.0075	mg/L		02/12/25 13:04	1
Cadmium	0.0040	U	0.0050	0.0040	0.0015	mg/L		02/12/25 13:04	1
Chromium	0.011	U	0.020	0.011	0.0055	mg/L		02/12/25 13:04	1
Lead	0.0024	U	0.0050	0.0024	0.0012	mg/L		02/12/25 13:04	1
Selenium	0.0060	U	0.010	0.0060	0.0028	mg/L		02/12/25 13:04	1
Silver	0.0030	U	0.0050	0.0030	0.0010	mg/L		02/12/25 13:04	1
Silver	0.0030	U	0.0050	0.0030	0.0010	mg/L		02/12/25 13:04	1

Lab Sample ID: LCS 410-603848/2-A

Matrix: Water

Analysis Batch: 605337

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 603848

Allalysis Datcii. 000007							Fieb Datcii. 003040
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	5.00	5.13		mg/L		103	84 - 116
Barium	5.00	4.96		mg/L		99	86 - 114
Cadmium	0.500	0.506		mg/L		101	87 - 115
Chromium	5.00	5.04		mg/L		101	85 - 116
Lead	0.500	0.497		mg/L		99	88 - 115
Selenium	1.00	0.987		mg/L		99	80 - 120
Silver	0.500	0.487		mg/L		97	85 - 116

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 410-603851/1-A

Matrix: Water

Analysis Batch: 604460

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 603851

MB MB Analyte Result Qualifier LOQ LOD DL Unit Analyzed Dil Fac 0.20 02/10/25 16:02 0 16 U 0 16 0.079 ug/L Mercury

LCS LCS

1.16

Result Qualifier

Unit

ug/L

Lab Sample ID: LCS 410-603851/2-A

Matrix: Water

Analyte

Mercury

Analysis Batch: 604460

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 603851

%Rec %Rec

Limits 82 - 119

Method: 1010B - Ignitability, Pensky-Martens Closed-Cup Method

Lab Sample ID: LCS 410-604069/1

Matrix: Water

Analysis Batch: 604069

Client Sample ID: Lab Control Sample

116

Prep Type: Total/NA

LCS LCS Spike %Rec Added Analyte Result Qualifier Unit D %Rec Limits 127 90.0 - 110. Flashpoint 133 Degrees F 105

Spike

Added

1.00

00

Eurofins Lancaster Laboratories Environment Testing, LLC

Job ID: 410-206515-1

Client: Environmental Chemical Corp. Project/Site: West Maui TDS Detention Basin

SDG: 410-206515

Method: 1664B - HEM and SGT-HEM

Lab Sample ID: MB 410-603830/1 Client Sample ID: Method Blank

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 603830

MB MB Result Qualifier LOQ LOD DL Unit Analyzed Dil Fac Analyte HEM (Oil & Grease) 5.0 02/07/25 18:36 4.0 U 4.0 1.4 mg/L

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 410-603830/2 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 603830

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits HEM (Oil & Grease) 40.0 32.7 mg/L 82 78 - 114

Method: 180.1 - Turbidity, Nephelometric

Lab Sample ID: MB 410-602829/3 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 602829

MB MB Analyte Result Qualifier LOQ LOD DL Unit Dil Fac Analyzed 1.0 NTU 02/05/25 14:50 Turbidity 0.70 U 1.0 0.70

Lab Sample ID: LCS 410-602829/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 602829

LCS LCS Spike %Rec Added Analyte Result Qualifier Unit D %Rec Limits Turbidity 1.00 1.0 NTU 102 85 - 115

Method: 2340C-2011 - Hardness, Total

Lab Sample ID: MB 410-605143/4 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 605143

MB MB Result Qualifier Analyte LOQ LOD DL Unit Analyzed Dil Fac **Total Hardness** 8.0 U 10 8.0 3.0 mg/L 02/11/25 12:01

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 410-605143/5 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 605143

Spike LCS LCS %Rec Added Result Qualifier %Rec Limits Unit Total Hardness 40.0 42.7 mg/L 85 - 115

Lab Sample ID: MRL 410-605143/6 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 605143

MRL MRL Spike %Rec Added Result Qualifier Limits Unit %Rec Total Hardness 10.0 10.0 100 mg/L

2/12/2025

RPD

10

Dil Fac

Client: Environmental Chemical Corp. Project/Site: West Maui TDS Detention Basin Job ID: 410-206515-1 SDG: 410-206515

Method: 2340C-2011 - Hardness, Total (Continued)

Lab Sample ID: 410-206515-1 DU

Analysis Batch: 605143

Matrix: Water

Sample Sample Result Qualifier

290 D

DU DU Result Qualifier 338 D

Unit D mg/L

RPD Limit 16

Prep Type: Total/NA

Client Sample ID: TDS-RP-03Feb25

Client Sample ID: Method Blank

Analyzed

Method: 2540D-2015 - Total Suspended Solids (Dried at 103-105°C)

Lab Sample ID: MB 410-602869/1

Matrix: Water

Analyte

Total Hardness

Analysis Batch: 602869

MB MB Total Suspended Solids

Result Qualifier 2.5 U

LOQ 3.0 LOD DL Unit 2.5

02/05/25 18:18 1.0 mg/L

D

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Lab Sample ID: LCS 410-602869/2 **Matrix: Water**

Total Suspended Solids

Analysis Batch: 602869

Analyte

Spike Added 151

LCS LCS Result Qualifier 144

Unit mg/L

n %Rec 96

%Rec Limits 89 - 105

Client Sample ID: Method Blank

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 410-605302/17

Matrix: Water

Analyte

Analysis Batch: 605302

MB MB

Ammonia as N 0.090 U

Result Qualifier

LOQ LOD 0.10 0.090

DL Unit 0.050 mg/L

Analyzed Dil Fac 02/12/25 11:24

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 410-605302/15

Lab Sample ID: LCSD 410-605302/16

Matrix: Water

Analysis Batch: 605302

Analyte

Spike Added 2.00

2.05

LCS LCS Result Qualifier

Unit mg/L

%Rec 102 %Rec Limits 90 - 110

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Ammonia as N

Nitrogen, Kjeldahl

Ammonia as N

Analysis Batch: 605302

Analyte

Spike LCSD LCSD Added 2.00 2.04

LOQ

1.5

Result Qualifier

Unit D %Rec mg/L

Limits

%Rec

RPD Limit

RPD

Method: 351.2 - Nitrogen, Total Kjeldahl

Lab Sample ID: MB 410-603738/2-A **Matrix: Water**

Analysis Batch: 604348

MB MB

Result Qualifier 1.4 U

LOD 1.4

DL Unit 0.70 mg/L Analyzed

Client Sample ID: Method Blank

Dil Fac 02/10/25 11:59

Prep Type: Total/NA

Prep Batch: 603738

Eurofins Lancaster Laboratories Environment Testing, LLC

Client: Environmental Chemical Corp. Project/Site: West Maui TDS Detention Basin Job ID: 410-206515-1 SDG: 410-206515

Method: 351.2 - Nitrogen, Total Kjeldahl (Continued)

Lab Sample ID: LCS 410-603738/1-A

Matrix: Water

Analysis Batch: 604348

Prep Type: Total/NA Prep Batch: 603738 Spike LCS LCS %Rec

Added Result Qualifier Limits Analyte Unit %Rec Nitrogen, Kjeldahl 3.98 4.10 mg/L 103 90 - 110

Method: 365.1 - Phosphorus, Total

Lab Sample ID: MB 410-604773/2-A

Matrix: Water

Analysis Batch: 604982

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Batch: 604773

	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Total Phosphorus as P	0.10	U	0.15	0.10	0.050	mg/L		02/11/25 14:57	1
Total Phosphorus as PO4	0.31	U	0.46	0.31	0.25	mg/L		02/11/25 14:57	1

Lab Sample ID: LCS 410-604773/1-A

Matrix: Water

Analysis Batch: 604982

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 604773

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Total Phosphorus as P 1.67 1.69 mg/L 102 90 - 110 Total Phosphorus as PO4 5.10 5.19 mg/L 90 - 110 102

Method: 365.3 - Phosphorus, Orthophosphate

Lab Sample ID: MB 410-603204/3

Matrix: Water

Analysis Batch: 603204

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

MB MB Result Qualifier LOQ LOD DL Unit Analyte Analyzed Dil Fac Orthophosphate as P 0.020 02/06/25 14:05 0.012 U 0.012 0.0060 mg/L

Lab Sample ID: LCS 410-603204/4

Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA **Analysis Batch: 603204**

0.391

Spike LCS LCS %Rec Analyte Added Limits Result Qualifier Unit %Rec Orthophosphate as P 0.400 0.390 98 90 - 110

Spike

Added

60 U

0.400

Lab Sample ID: LCSD 410-603204/5

Matrix: Water

Orthophosphate as P

Analyte

Analysis Batch: 603204

Client Sample ID: Lab Control Sample Dup

LCSD LCSD %Rec **RPD** Result Qualifier Unit %Rec Limits RPD Limit

98

Method: 410.4 - COD

Lab Sample ID: MB 410-603497/4

Matrix: Water

Analysis Batch: 603497

Chemical Oxygen Demand

Client Sample ID: Method Blank Prep Type: Total/NA

02/07/25 06:30

90 - 110

MB MB Result Qualifier LOQ LOD DL Unit Analyzed

25 mg/L

mg/L

Eurofins Lancaster Laboratories Environment Testing, LLC

Page 17 of 30

75

60

2/12/2025

Client: Environmental Chemical Corp. Project/Site: West Maui TDS Detention Basin Job ID: 410-206515-1 SDG: 410-206515

Method: 410.4 - COD

Lab Sample ID: LCS 410-603497/5

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 603497

Spike LCS LCS %Rec Result Qualifier Added Limits Analyte Unit D %Rec **Chemical Oxygen Demand** 500 504 mg/L

101

Lab Sample ID: LCSD 410-603497/6

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

101

Matrix: Water

Analyte

Matrix: Water

Analysis Batch: 603497

RPD Spike LCSD LCSD %Rec Added Result Qualifier Unit D %Rec Limits RPD Limit

mg/L

n

Method: 5210 B-2016 - BOD, 5-Day

Lab Sample ID: SCB 410-604607/4 Client Sample ID: Method Blank

504

500

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 604607

Chemical Oxygen Demand

SCB SCB

Result Qualifier LOQ LOD DL Unit Dil Fac Analyte Analyzed 0.0000010 0.0000010 mg/L 02/05/25 11:45 **Biochemical Oxygen Demand** 1.16 0.0000010

Lab Sample ID: USB 410-604607/2 Client Sample ID: Method Blank

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 604607

USB USB

Analyte Result Qualifier LOQ LOD DL Unit Analyzed Dil Fac **Biochemical Oxygen Demand** 0.157 0.0000010 0.0000010 0.0000010 mg/L 02/05/25 11:45

Lab Sample ID: LCS 410-604607/49 **Client Sample ID: Lab Control Sample Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 604607

LCS LCS Spike %Rec Added Result Qualifier Unit %Rec Limits Biochemical Oxygen Demand 198 175 mg/L 88 84.5 - 115. 96 154

Lab Sample ID: 410-206515-1 DU Client Sample ID: TDS-RP-03Feb25

Analysis Batch: 604607

Matrix: Water Prep Type: Total/NA

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier RPD Analyte Unit D I imit Biochemical Oxygen Demand 2.0 UH* 2.0 U mg/L 30

Method: 9012 - Cyanide, Reactive

Lab Sample ID: MB 410-603475/1-A Client Sample ID: Method Blank

Matrix: Water

Prep Type: Total/NA Prep Batch: 603475 **Analysis Batch: 603759**

MB MB

Result Qualifier LOQ LOD DL Unit Analyzed Analyte Dil Fac 90 80 02/07/25 15:36 Cyanide, Reactive 80 U 20 mg/Kg

QC Sample Results

Client: Environmental Chemical Corp.

Project/Site: West Maui TDS Detention Basin

Job ID: 410-206515-1

SDG: 410-206515

Method: 9012 - Cyanide, Reactive (Continued)

Lab Sample ID: LCS 410-603475/2-A

Matrix: Water

Analysis Batch: 603759

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 603475

AnalyteAdded Cyanide, ReactiveResult 1000Result 1000Qualifier Mg/KgUnit Mg/KgD MRec Limits Mg/Kg

Method: 9034 - Sulfide, Reactive

Lab Sample ID: MB 410-603475/1-A **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA** Analysis Batch: 603674 Prep Batch: 603475 MB MB LOQ LOD Result Qualifier DL Unit Analyzed 160 140 54 mg/Kg 02/07/25 13:28 Sulfide, Reactive 140 U

Lab Sample ID: LCS 410-603475/24-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Prep Batch: 603475** Analysis Batch: 603674 Spike LCS LCS %Rec Analyte Added Result Qualifier Unit Limits D %Rec 62 - 104 Sulfide, Reactive 538 477 mg/Kg 89

2

3

4

6

8

10

12

13

14

15

2/12/2025

Client: Environmental Chemical Corp. Project/Site: West Maui TDS Detention Basin Job ID: 410-206515-1 SDG: 410-206515

GC/MS VOA

Analysis Batch: 603479

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
410-206515-1	TDS-RP-03Feb25	Total/NA	Water	8260D	
410-206515-2	Trip Blank	Total/NA	Water	8260D	
MB 410-603479/10	Method Blank	Total/NA	Water	8260D	
LCS 410-603479/5	Lab Control Sample	Total/NA	Water	8260D	
LCSD 410-603479/6	Lab Control Sample Dup	Total/NA	Water	8260D	

HPLC/IC

Analysis Batch: 602979

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-206515-1	TDS-RP-03Feb25	Total/NA	Water	300.0	
MB 410-602979/40	Method Blank	Total/NA	Water	300.0	
LCS 410-602979/38	Lab Control Sample	Total/NA	Water	300.0	
LCSD 410-602979/39	Lab Control Sample Dup	Total/NA	Water	300.0	

Analysis Batch: 603213

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-206515-1	TDS-RP-03Feb25	Total/NA	Water	300.0	
MB 410-603213/5	Method Blank	Total/NA	Water	300.0	
LCS 410-603213/3	Lab Control Sample	Total/NA	Water	300.0	
LCSD 410-603213/4	Lab Control Sample Dup	Total/NA	Water	300.0	

Metals

Leach Batch: 603521

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-206515-1	TDS-RP-03Feb25	TCLP	Water	1311	

Prep Batch: 603848

Lab Sample ID 410-206515-1	Client Sample ID TDS-RP-03Feb25	Prep Type TCLP	Matrix Water	Method 3005A	Prep Batch 603521
MB 410-603848/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 410-603848/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 603851

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-206515-1	TDS-RP-03Feb25	TCLP	Water	7470A	603521
MB 410-603851/1-A	Method Blank	Total/NA	Water	7470A	
LCS 410-603851/2-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 604460

Lab Sample ID 410-206515-1	Client Sample ID TDS-RP-03Feb25	Prep Type TCLP	Watrix Water	Method 7470A	Prep Batch 603851
MB 410-603851/1-A	Method Blank	Total/NA	Water	7470A	603851
LCS 410-603851/2-A	Lab Control Sample	Total/NA	Water	7470A	603851

Analysis Batch: 605337

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-206515-1	TDS-RP-03Feb25	TCLP	Water	6020B	603848
MB 410-603848/1-A	Method Blank	Total Recoverable	Water	6020B	603848
LCS 410-603848/2-A	Lab Control Sample	Total Recoverable	Water	6020B	603848

Eurofins Lancaster Laboratories Environment Testing, LLC

2/12/2025

3

4

6

9

4 4

14

14

Client: Environmental Chemical Corp. Job ID: 410-206515-1 Project/Site: West Maui TDS Detention Basin SDG: 410-206515

General Chemistry

Analysis	Batch:	602829

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-206515-1	TDS-RP-03Feb25	Total/NA	Water	180.1	
MB 410-602829/3	Method Blank	Total/NA	Water	180.1	
LCS 410-602829/4	Lab Control Sample	Total/NA	Water	180.1	

Analysis Batch: 602869

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-206515-1	TDS-RP-03Feb25	Total/NA	Water	2540D-2015	
MB 410-602869/1	Method Blank	Total/NA	Water	2540D-2015	
LCS 410-602869/2	Lab Control Sample	Total/NA	Water	2540D-2015	

Analysis Batch: 603177

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-206515-1	TDS-RP-03Feb25	Total/NA	Water	360.1	

Analysis Batch: 603204

Lab Sample ID 410-206515-1	Client Sample ID TDS-RP-03Feb25	Prep Type Total/NA	Matrix Water	Method 365.3	Prep Batch
MB 410-603204/3	Method Blank	Total/NA	Water	365.3	
LCS 410-603204/4	Lab Control Sample	Total/NA	Water	365.3	
LCSD 410-603204/5	Lab Control Sample Dup	Total/NA	Water	365.3	

Prep Batch: 603475

Lab Sample ID 410-206515-1	Client Sample ID TDS-RP-03Feb25	Prep Type Total/NA	Matrix Water	Method 7.3.4	Prep Batch
MB 410-603475/1-A	Method Blank	Total/NA	Water	7.3.4	
LCS 410-603475/24-A	Lab Control Sample	Total/NA	Water	7.3.4	
LCS 410-603475/2-A	Lab Control Sample	Total/NA	Water	7.3.4	

Analysis Batch: 603497

Lab Sample ID 410-206515-1	Client Sample ID TDS-RP-03Feb25	Prep Type Total/NA	Water	Method 410.4	Prep Batch
MB 410-603497/4	Method Blank	Total/NA	Water	410.4	
LCS 410-603497/5	Lab Control Sample	Total/NA	Water	410.4	
LCSD 410-603497/6	Lab Control Sample Dup	Total/NA	Water	410.4	

Analysis Batch: 603674

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-206515-1	TDS-RP-03Feb25	Total/NA	Water	9034	603475
MB 410-603475/1-A	Method Blank	Total/NA	Water	9034	603475
LCS 410-603475/24-A	Lab Control Sample	Total/NA	Water	9034	603475

Prep Batch: 603738

Lab Sample ID 410-206515-1	Client Sample ID TDS-RP-03Feb25	Prep Type Total/NA	Matrix Water	Method 351.2	Prep Batch
MB 410-603738/2-	A Method Blank	Total/NA	Water	351.2	
LCS 410-603738/1	-A Lab Control Sample	Total/NA	Water	351.2	

Analysis Batch: 603759

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-206515-1	TDS-RP-03Feb25	Total/NA	Water	9012	603475
MB 410-603475/1-A	Method Blank	Total/NA	Water	9012	603475

Eurofins Lancaster Laboratories Environment Testing, LLC

Client: Environmental Chemical Corp.

Project/Site: West Maui TDS Detention Basin

Job ID: 410-206515-1

SDG: 410-206515

General Chemistry (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 410-603475/2-A	Lab Control Sample	Total/NA	Water	9012	603475

Analysis Batch: 603830

Lab Sample ID 410-206515-1	Client Sample ID TDS-RP-03Feb25	Prep Type Total/NA	Matrix Water	Method 1664B	Prep Batch
MB 410-603830/1	Method Blank	Total/NA	Water	1664B	
LCS 410-603830/2	Lab Control Sample	Total/NA	Water	1664B	

Analysis Batch: 604069

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-206515-1	TDS-RP-03Feb25	Total/NA	Water	1010B	
LCS 410-604069/1	Lab Control Sample	Total/NA	Water	1010B	

Analysis Batch: 604348

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-206515-1	TDS-RP-03Feb25	Total/NA	Water	351.2	603738
MB 410-603738/2-A	Method Blank	Total/NA	Water	351.2	603738
LCS 410-603738/1-A	Lab Control Sample	Total/NA	Water	351.2	603738

Analysis Batch: 604400

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-206515-1	TDS-RP-03Feb25	Total/NA	Water	Nitrogen,Org	

Analysis Batch: 604607

Lab Sample ID 410-206515-1	Client Sample ID TDS-RP-03Feb25	Prep Type Total/NA	Matrix Water	Method 5210 B-2016	Prep Batch
SCB 410-604607/4	Method Blank	Total/NA	vvater Water	5210 B-2016 5210 B-2016	
USB 410-604607/2	Method Blank	Total/NA	Water	5210 B-2016 5210 B-2016	
LCS 410-604607/49	Lab Control Sample	Total/NA	Water	5210 B-2016	
410-206515-1 DU	TDS-RP-03Feb25	Total/NA	Water	5210 B-2016	

Prep Batch: 604773

Lab Sample ID 410-206515-1	Client Sample ID TDS-RP-03Feb25	Prep Type Total/NA	Matrix Water	Method 365.1	Prep Batch
MB 410-604773/2-A	Method Blank	Total/NA	Water	365.1	
LCS 410-604773/1-A	Lab Control Sample	Total/NA	Water	365.1	

Analysis Batch: 604982

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-206515-1	TDS-RP-03Feb25	Total/NA	Water	365.1	604773
MB 410-604773/2-A	Method Blank	Total/NA	Water	365.1	604773
LCS 410-604773/1-A	Lab Control Sample	Total/NA	Water	365.1	604773

Analysis Batch: 605143

Lab Sample ID 410-206515-1	Client Sample ID TDS-RP-03Feb25	Prep Type Total/NA	Matrix Water	Method 2340C-2011	Prep Batch
MB 410-605143/4	Method Blank	Total/NA	Water	2340C-2011	
LCS 410-605143/5	Lab Control Sample	Total/NA	Water	2340C-2011	
MRL 410-605143/6	Lab Control Sample	Total/NA	Water	2340C-2011	
410-206515-1 DU	TDS-RP-03Feb25	Total/NA	Water	2340C-2011	

Eurofins Lancaster Laboratories Environment Testing, LLC

Page 22 of 30 2/12/2025

Client: Environmental Chemical Corp.

Project/Site: West Maui TDS Detention Basin

Job ID: 410-206515-1

SDG: 410-206515

General Chemistry

Analysis Batch: 605302

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-206515-1	TDS-RP-03Feb25	Total/NA	Water	350.1	
MB 410-605302/17	Method Blank	Total/NA	Water	350.1	
LCS 410-605302/15	Lab Control Sample	Total/NA	Water	350.1	
LCSD 410-605302/16	Lab Control Sample Dup	Total/NA	Water	350.1	

2

6

8

9

11

13

14

Job ID: 410-206515-1

SDG: 410-206515

Client Sample ID: TDS-RP-03Feb25

Project/Site: West Maui TDS Detention Basin

Date Collected: 02/03/25 07:15 Date Received: 02/05/25 10:05

Client: Environmental Chemical Corp.

Lab Sample ID: 410-206515-1

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	603479	N7YK	ELLE	02/07/25 15:20
Total/NA	Analysis	300.0		1	602979	UJE2	ELLE	02/06/25 02:42
Total/NA	Analysis	300.0		10	603213	L4QM	ELLE	02/06/25 20:19
TCLP	Leach	1311			603521	HA8T	ELLE	02/07/25 09:18 - 02/07/25 09:2
TCLP	Prep	3005A			603848	UAMX	ELLE	02/07/25 21:00
TCLP	Analysis	6020B		1	605337	SAM2	ELLE	02/12/25 13:45
TCLP	Leach	1311			603521	HA8T	ELLE	02/07/25 09:18 - 02/07/25 09:2
TCLP	Prep	7470A			603851	UAMX	ELLE	02/09/25 22:40
TCLP	Analysis	7470A		1	604460	IJ3I	ELLE	02/10/25 16:42
Total/NA	Analysis	1010B		1	604069	USAE	ELLE	02/10/25 08:05 - 02/10/25 08:0
Total/NA	Analysis	1664B		1	603830	QT6L	ELLE	02/07/25 18:36
Total/NA	Analysis	180.1		1	602829	DI9Q	ELLE	02/05/25 14:50
Total/NA	Analysis	2340C-2011		10	605143	USAE	ELLE	02/11/25 12:19
Total/NA	Analysis	2540D-2015		1	602869	UOCA	ELLE	02/05/25 18:18 - 02/06/25 09:
Total/NA	Analysis	350.1		1	605302	JCG7	ELLE	02/12/25 11:34
Total/NA	Prep	351.2			603738	YZU9	ELLE	02/07/25 15:30 - 02/07/25 18:3
Total/NA	Analysis	351.2		1	604348	JCG7	ELLE	02/10/25 12:14
Total/NA	Analysis	360.1		1	603177	B6LN	ELLE	02/06/25 12:48
Total/NA	Prep	365.1			604773	NLE3	ELLE	02/11/25 11:36 - 02/11/25 14:0
Total/NA	Analysis	365.1		1	604982	P684	ELLE	02/11/25 15:00
Total/NA	Analysis	365.3		1	603204	DI9Q	ELLE	02/06/25 14:05
Total/NA	Analysis	410.4		1	603497	USAE	ELLE	02/07/25 06:30
Total/NA	Analysis	5210 B-2016		1	604607	B6LN	ELLE	02/05/25 18:05
Total/NA	Prep	7.3.4			603475	USE1	ELLE	02/07/25 07:22
Total/NA	Analysis	9012		1	603759	JCG7	ELLE	02/07/25 15:49
Total/NA	Prep	7.3.4			603475	USE1	ELLE	02/07/25 07:22
Total/NA	Analysis	9034		1	603674	USE1	ELLE	02/07/25 13:28
Total/NA	Analysis	Nitrogen,Org		1	604400	UKJF	ELLE	02/10/25 16:01

Client Sample ID: Trip Blank Date Collected: 02/03/25 00:00

Date Received: 02/05/25 10:05

Lab Sample ID: 410-206515-2 **Matrix: Water**

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	603479	N7YK	ELLE	02/07/25 12:21

This procedure uses a method stipulated length of time for the process. Both start and end times are displayed.

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Accreditation/Certification Summary

Client: Environmental Chemical Corp. Project/Site: West Maui TDS Detention Basin Job ID: 410-206515-1

SDG: 410-206515

Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date		
A2LA	Dept. o	of Defense ELAP	0001.01	11-30-26		
,	s are included in this repor	rt, but the laboratory is r	not certified by the governing authori	ity. This list may include analyte		
for which the exerci-	daga not offer contification					
0 ,	does not offer certification. Prep Method	Matrix	Analvte			
for which the agency Analysis Method 180.1			Analyte Turbidity			
Analysis Method		Matrix				

Method Summary

Client: Environmental Chemical Corp. Project/Site: West Maui TDS Detention Basin

Method **Method Description** Protocol Laboratory 8260D Volatile Organic Compounds (GC/MS) SW846 **ELLE** 300.0 Anions, Ion Chromatography EPA **ELLE** 6020B Metals (ICP/MS) SW846 **ELLE** 7470A Mercury (CVAA) SW846 ELLE 1010B Ignitability, Pensky-Martens Closed-Cup Method SW846 **ELLE** 1664B **ELLE** 1664B HEM and SGT-HEM 180.1 Turbidity, Nephelometric EPA ELLE Hardness, Total SM **ELLE** 2340C-2011 2540D-2015 Total Suspended Solids (Dried at 103-105°C) SM **ELLE** Nitrogen, Ammonia EPA ELLE 350.1 351.2 Nitrogen, Total Kjeldahl **EPA ELLE** Oxygen, Dissolved 360.1 EPA **ELLE** ELLE 365.1 Phosphorus, Total EPA 365.3 Phosphorus, Orthophosphate EPA **ELLE** COD **EPA ELLE** 410.4 5210 B-2016 ELLE BOD. 5-Day SM 9012 Cyanide, Reactive SW846 **ELLE** 9034 Sulfide, Reactive SW846 **ELLE** Nitrogen, Org Nitrogen, Organic EPA ELLE 1311 **TCLP Extraction** SW846 **ELLE** 3005A Preparation, Total Recoverable or Dissolved Metals SW846 **ELLE** 351.2 Nitrogen, Total Kjeldahl EPA ELLE **ELLE** 365.1 Sample Digestion for Total Phosphorus **MCAWW** 5030C Purge and Trap SW846 **ELLE** 7.3.3 Cyanide, Reactive SW846 ELLE 7.3.4 Sulfide, Reactive SW846 **ELLE**

Protocol References:

7470A

1664B = EPA-821-98-002

EPA = US Environmental Protection Agency

Preparation, Mercury

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Eurofins Lancaster Laboratories Environment Testing, LLC

Job ID: 410-206515-1

SDG: 410-206515

SW846

ELLE

Sample Summary

Client: Environmental Chemical Corp. Project/Site: West Maui TDS Detention Basin Job ID: 410-206515-1

SDG: 410-206515

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
410-206515-1	TDS-RP-03Feb25	Water	02/03/25 07:15	02/05/25 10:05
410-206515-2	Trip Blank	Water	02/03/25 00:00	02/05/25 10:05

⁄ironme

Chain of Custody Record

eurofins

Environment Testing

410-206515 Chain of Custody	Sampler:	2		Lab F					_			Ca	arner	Trackir	g No(s):	_		COC No	
	Charac	na D		15.04-		lizabe	eth			_		St	ate of	Origin					410-134934-3859 Page	1.1
Ar. Jackson Kiker	720	- 935	-480	Eliza		.Mart	in@et	eurof	insu	s.com			awai						Page 1 of 2	
Company: Environmental Chemical Corp.			PWSID:						Ar	nalys	is R	equ	este	ed					Job #	
Address: 43 Broad St. Suite A301	Due Date Request	ed:				100				Ť	T	Ť	T		Т	Т	Т		Preservation Code N - None	18:
City:	TAT Requested (d.	ays):			Ш														S - H2SO4 D - HNO3	
Hudson State, Zip:	_																		A - HCL	
MA, 01749	Compliance Project	ct: A Yes	Δ No		11						9						İ		1	
Phone:	PO#: 4347.017					100		Phos			spha				1			0	1	
mail	WO#.				2		Anions (NO2,NO3)	DOD5 - Total			oldo	TCLP				lst)		20	1	
JKiker@ecc.net Project Name	Project#				Yes or	욷	NO2,	D5 -	COD		등	5.1				l mo		5		
West Maui TDS GW & Leachate	41020464				(خ	2	Suc.	8	7.4.C		orus,				Ved	Cust	50	containers		
Detention Basin	SSOW#				Ѕашр	ASD (7	5 - Ank	a, 365.1	KN, 410		hosph	470A	98	M Only	Disso	VOCs (ry . TS	00 00		
		Sample	Sample Type (C=comp,	Matrix (w-water, 8-solid,	d Filtered	Perform MayMSt	300_ORGFM_DS	350.1- Ammonia,	351.2_DOD5 -TKN, 410.4-	180.1 - Turbidity	365.3_Ortho - Phosphorus, Orthophosphate	6020B_DOD5, 7470A_DOD5 -	C- Hardin	1664B_NP - HEM Only	360.1 - Oxygen, Dissolved	8260D_DOD5 - VOCs (Custom List)	2540D_SingleDry - TSS	al Number		
Sample Identification	Sample Date	Time	G=grab)	BT=Tissue, A=Air		Perfor			351	180	_		3	186 A	360	826	254	Total	Special Ins	structions/Note:
	><	><		ation Code:	X	×Ν	N	S	S	NN	IN	I D	A	N	N	A	N	X		
TDS-BP-03Feb25 Trip Blank	02/03/25	0715	G	W	Ш	<u> </u>	$\langle X \rangle$	X	\times	X)	$\times \rangle$	$\langle \rangle$	(1)	K X	. X	X	X		5	
Trip Blank				W	П				ľ							X		1		
					\prod											-				
					††		\top						+		+	+				
					++		+				+	+	+	+	+	+	+			
			-		₩	+	+				+	+	+	+	+	+	+	100		
			-		++	+	+	_		\vdash	+	_	+	+	+	+	+	+		
	4				Ш									\perp					4	
																			1	
					П													1		
					\Box	\top					\dashv	\top	\top	\top						
					$\dagger\dagger$		1				+	+	+	+	+		+			
Possible Hazard Identification				1	7	Samp	le Dis	posa	I (A	fee m	ay b	e ass	ess	ed if	samp	les a	re re	etain	ned longer than 1 i	month)
Non-Hazard Flammable Skin Irritant	oison B Unkn	own L	Radiologica				Retur							al By I	.ab			Arch	hive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)						Specia	al Inst	ructio	ns/Q	C Rec	uirer	nents	S:							
Empty Kit Relinquished by:		Date:			Tim	ne:							N	lethod	of Ship	ment			-	
Relinquished by	Date/Time: 02/03/25	170	0	Company TETPAT	Er		ceived	by:							Da	te/Tim	0			Company
Relinquished by:	Date/Time:			Company		Re	eceived	by:							Da	te/Tim	θ			Company
Relinquished by:	Date/Time			Company		Re	eceived	by:			\supset				Da	te/T/m	Ė	25	1005	Company
Custody Seals Intact: Custody Seal No.:				<u> </u>	_	Co	oder	mpera	ture(s) °C and	TOING	r Rema	arks:		0	- 1	1	~	10	

Eurofins Lancaster Laboratories Environme

2425 New Holland Pike Lancaster, PA 17601

Chain of Custody Record

eur	ofins	

Environment Testing

-Hone (717) 636-2300																		
Client Information	Sampler	a Di	22		lin, Eli	zabel	th				Carrier Tracking No(s):					134934-385	591.2	
Client Contact: Vir. Jackson Kiker	Phone: 720-	-935-	4801	E-Ma Eliza		Marti	n@et	eurofin	sus.com	1	State	of Origin: aii			Page	e 2 of 2		
Company: Environmental Chemical Corp			PWSID:	-					Analys	sis Ro	Ulles	tod			Job#			
Address	Due Date Request	ted:					T			10 110	1					ervation Co	des:	
43 Broad St. Suite A301 City:	TAT Requested (d	lays):			Ш	1									N - N	ine		
Hudson State, Zip:	_																	
MA, 01749	Compliance Proje	ct: A Yes	Δ No		111													
Phone	PO#: 4347.017		_						-									
Email	WO#:				or No	<u>}</u>	Cyanide							1	7			
JKiker@ecc.net	Project #:					Š Š	ve Cy	Suffide										
West Maui TDS GW & Leachate	41020464				90	5.0	eactiv	tive							Other			
Detention Basin	SSOW#:	SSUV#				- BOD, 5-Day Only	N.	- Reactive							Cother	:		
			Sample	Matrix	Pred	SM5210B_Calc	9012_ReactiveCN -								Number of			
			Type	(W=water, 8=solid,	Filte	8	Read	9034_Reactive										
Sample Identification	Sample Date	Sample Time	(C=comp, G=grab)	D=waste/oil, BT=Tissue, A=Air)	Field Filt	SM52	9012	9034							Total	Special I	nstructions	/Note:
		><	Preservat	ion Code:	K //K	N	_	N										
TDS-RP-03Feb25	02/03/25	0715	G	W		X	X	X							3			
		-			П													
					H	+	+-		+	\top		\neg						
					H	+	+			+	+		+					
	-				₩	+	-		+	-	+	-	-	+-				
					Н	-	\vdash				\perp							
		1			Ш													
														1				
															100			
					\vdash	\top			\top						98			
					H	+-			\dashv		+	+	++	+-	584			
					╫	+	-	\vdash	+	+	+		+++	-			-	
Possible Hazard Identification					4	·	o Die		A for ::	2011		and if -	1 1		Inact to	ann than	l mandel	
Non-Hazard Gentification Non-Hazard Flammable Skin Irritant P	nison B IInkn	own 🗀	Radiological		15	ampi	e DIS	posai (1 To Cli	A Tee fi		Dieno	sea if s sal By L	ampies a	An	inea lo: chivo E	nger than 1	month) Months	
Deliverable Requested: I, II, III, IV, Other (specify)	S.SSII B OTKI	/	.sarological						/QC Re			ai by L	30	All	CINVE F		INDITITIS	
Empty Kit Relinquished by:		Date:			Time	9.	-					Method o	Shipment					
Relinquished by / //	Date/Time:		10	Company	1, ,,,,,,		eived t	by:					Date/Tim	ne:			Company	
21	02/03/	25 1	700	TETRAT	Ect	1												
Relinquished by:	Date/Time:			Company	-	Received by:					Date/Time					Company		
Relinquished by:	Date/Time:			Company		Received by					Date/Time / 15 /05 Company							
Custody Seals Intact: Custody Seal No.:						C~	le Ta	anerah in	A LE SA	rd Other I	Remarks		(-15/75 105 Cus				/	
Cycs A No						100	72		e(s) E an	7 7	(C)		():) [/	7		

Client: Environmental Chemical Corp.

Job Number: 410-206515-1 SDG Number: 410-206515

Login Number: 206515 List Source: Eurofins Lancaster Laboratories Environment Testing, LLC

List Number: 1

WV)?

Creator: Arroyo, Haley

Question	Answer	Comment
The cooler's custody seal is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature acceptable, where thermal pres is required(=6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
WV:Container Temp acceptable, where thermal pres is required (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
VV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
s the Field Sampler's name present on COC?	True	
Sample custody seals are intact.	True	
/OA sample vials do not have headspace >6mm in diameter (none, if from	True	

Ę

7

8

10

10

13

14

Attachment 3. Groundwater Analysis Laboratory Data Reports

(Reagent Traceability, Data Sheets and Shipping/Receiving available upon request)

Monitoring Well - Sampling Summary Report Event: 1Q-2025

TEMPORARY DISPOSAL SITE OPERATIONS & MAINTENANCE

Prepared for:

United States Army Corps of Engineers

Honolulu District Fort Shafter, Hawaii 96858

Contract No. W9128A24C0017

Report Date: 24-Feb-2025 PC-013.00

Prepared by:

ECC Constructors LLC 700 Airport Blvd, Suite 250 Burlingame, CA 94010 24-Feb-2025

1. Introduction

This report summarizes the following sampling event at the Olowalu TDSS in Maui County performed under contract W9128A24C0017.

• Event ID: 1Q-2025

• Sample Date(s): 08-Feb-2025

• **SDG(s):** 410-207441

• Wells: MW-01 (Deep Well / Up-gradient) & MW-02 (Shallow Well / Down-gradient)

Both monitoring wells, MW-01 and MW-02, at the Olowalu TDSS were sampled early on 08-Feb 2025 at the request of Maui County. The original sampling event was originally scheduled for the week of 23-Feb-2025.

2. Field Summary

The previous samples from the Dec-2024 Event (4Q-2024-02) were collected via low flow with a bladder pump, the same method as the first round in 3Q-2024. It was determined the low flow method was not productive, as it took multiple attempts over three days to get the required sample volume collected. The process was re-evaluated, and it was determined that passive sample was a more viable option for these wells.

The Hydra sleeve (HS) was the selected method to utilize the passive sampling methodology. The HS sizes were selected to meet the required volumes. The HS and complete set up, including tether and weights, were ordered, shipped to the job site in Maui from the mainland, and installed on 28-Jan-2025 (10-Days prior to sampling).

The sampling MW-01 was completed with out issues. The HS was full and was able to fill all of the required sample containers. The initial collection of MW-02 produced about 1-liter of water. The main containers were filled, including the metals and turbidity. A second HS was deployed to get the missing volume for the remaining 2 containers: 2320B [(Total alkalinity / Carb / Bicarb) & 9040C (pH)] & 2540C (Total Dissolved Solids). Upon completion the of each well, the next round (2Q-2025) of HS bags were deployed, so the sample team can collect the samples upon arrival at the well.

The sampling for both wells were completed on the same day, 08-Feb-2025 and were shipped out for analysis on Monday, 10-Dec-2025.

3. Chemistry Data Review

Data Validation was performed on the completed sample analyses. No results were rejected and are suitable for use as qualified. Refer to the attached Data Validation reports for details.

4. Summary

The sample collection issue at MW-02 was determined to be an issue when activating the HS, as there was enough volume in the well to get the water necessary to fill the required containers. The sample crew will make the necessary adjustments in the next event to get the required volume in the initial HS activation.

5. Attachments

Tables

• Olowalu GW Summary Sample Table – All Events

Data Validation Reports:

- 410-207441 Metals Validated
- 410-1208441 Gen Chem Validated

Laboratory Data Packages:

• J207441 UDS Level 2 Report - Final Report

					A2320B	}	A2540C	A5310C	E180.1	3	00	E350.1					60	20B					SW9040C]	
Event	SDG	Sample Date	Sample ID	Bicarbonate Alkalinity as CaCO3	Carbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3 to pH 4.5	Total Dissolved Solids	Total Organic Carbon	Turbidity	Sulfate (mg/L)	Chloride (mg/L)	Ammonia as N	Antimony	Arsenic	Calcium	Cobalt	Copper	Iron	Lead	Magnesium	Potassium	Sodium	рН	Notes	Collection Method
					mg/L		mg/L	mg/L	NTUs	mg/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	pH units		
3Q-2024	J179201	7-Jul-2024	TDSS-MW01-3Q24	69.00	6.0 U	69.00	210.00	4.60	2.50	19.00	100.00	0.09 U	0.50 U	1.7 U	15,000.00	0.84	2.50	140.00	0.24 U	12,000.00	5,400.00	78,000.00	7.20		Low Flow / Compressor
4Q-2024	J191287	8-Oct-2024	TDSS-MW01-4Q24	69	6.0 U	69	340	9.7	8.1	20	110	0.069 J	0.21 J	1.7 U	14000	1.9	3	630	0.30 J	12000	5200	76000	7.5		Bailer
4Q-2024, Resample-1	J199687	4-Dec-2024	TDSS-MW01-4Q24-02	NS	NS	NS	590	NS	0.7 U	NS	NS	NS	0.50 U	1.7 U	12000	0.84	2.5	26 J	0.47 J	10000	4900	64000	NS	TDS: Half volume provided	Low Flow w/ Nitrogen
4Q-2024, Resample-2	J200051	8-Dec-2024	TDSS-MW01-4Q24-02B	64	6.0 U	64	NS	1.5 j	ns	16	110	0.090 U	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	7		Low Flow w/ Nitrogen
1Q-2025	J207441	8-Feb-2025	TDSS-MW01-1Q25	60 J	6.0 U	60	280 J	1.9 J	2.3 J	16	110	0.090 U	0.50 U	1.7 U	14000	0.54	0.67 J	65	0.17 J	12000	5100	71000	7.3 J		Hydrasleeve
2Q-2025	-	Est: Week of May 5, 202	25						_									_	-						
3Q-2025		Est: Week of Aug 4, 202	25																						
4Q-2025		Est: Week of Dec 4, 202	25																						

Notes

NS Not Sampled

_					A2320B		A2540C	A5310C	E180.1	30	00	E350.1						6020B					SW9040C	
Event	SDG	Sample Date	Sample ID	Bicarbonate Alkalinity as CaCO3	Carbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3 to pH 4.5	Total Dissolved Solids	Total Organic Carbon	Turbidity	Sulfate (mg/L)		Ammonia as N	Antimony	Arsenic	Calcium	Cobalt	Copper	Iron	Lead	Magnesium	Potassium	Sodium	рН	Collection Method
					mg/L		mg/L	mg/L	NTUs	mg/L	mg/L	mg/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	pH units	
3Q-2024	J179201	7-Jul-2024	TDSS-MW-02-3Q24	67	6.0 U	67	350	0.58 J	18	25	190	0.05 J	0.5 U	1.7 U	21,000	0.19 J	0.72 J	380	0.24 U	17,000	7,600	130,000	7.5	Low Flow / Compressor
4Q-2024	J191287	8-Oct-2024	TDSS-MW02-4Q24	69	6.0 U	69	500	0.95 J	80	25	200	0.091	0.5 U	1.1 J	22,000	0.41 J	1	2500	0.76	17,000	7,700	130,000	7.9	Bailer
4Q-2024, Resample	J199687	4-Dec-2024	TDSS-MW02-4Q24-02	66	6.0 U	66	500	1.0 U	24	27	220	0.090 U	0.5 U	1.7 U	19000 J	0.17 J	0.9 U	790	0.25 J	17,000	6,700	100,000 J	7.9	Low Flow w/ Nitrogen
1Q-2025	J207441	8-Feb-2025	TDSS-MW02-1Q25	61 J	6.0 U	61	480 J	1.4 J	16 J	26	200	0.090 U	0.5 U	1.7 U	21000	0.40 U	1.2	660	3.2	16000	7400	120000	7.6 J	Hydrasleeve
2Q-2025		Est: Week of May 5, 2025																						
3Q-2025		Est: Week of Aug 4, 2025																						
4Q-2025		Est: Week of Dec 4, 2025																						

Data Validation Level	Matrix	Preservation	Temperature Sample Receipt	Laboratory	SDG Number
Stage 2B	Groundwater	Nitric Acid	<6 °C	Eurofins Lancaster, PA	410-207441

FIELD IDENTIFICATION OF SAMPLES EVALUATED:

Field Identification (ID)	Laboratory (lab) Sample Number
TDSS-MW01-1Q25	410-207441-1
TDSS-MW02-1Q25	410-207441-2

Note: Samples are described below in the data worksheets by reference to the last one to three digits of the Lab Sample Number. 10 metals reported.

REVIEW ITEMS	ACCEPTANCE CRITERIA	SAMPLES AFFECTED Narrative	Inven- tory	QUAL	BIAS
COC	Unbroken custody (accept or if broken R) Temp≤6° (Soil-J detects, R –non-detects Preserved per method (amber bottles, temperature. J, UJ, or R (function of HT and compound)	Cooler temperature < 6 °C. Sample custody transferred from Field Team Leader to lab sample custodian. Unbroken Chain of Custody. No samples qualified.	X	-	
Holding Time	180 days (6010), Hg 28 Days to analysis J –detects, UJ or R –non-detects (function of time)	All samples analyzed within holding times. No samples qualified.	X	-	
Field Dup RPD	RPD ≤ 30% water for (50% solids) Results > X PQL (FD pair only) J-detects (both > X PQL) If one >X PQL, other ND, J-detections, UJ non-detect	Not Applicable (NA)	-	-	
% Solids Check (SOLIDS)	30% <solids: 10%.="" <10%="" adjustment="" entire="" if="" made="" no="" r="" sample="" weight=""> and <30%; J-detects, NDs –R</solids:>	NA	-	-	
Preparation and Sequence Logs	Review to ensure conformity to batch QC order and frequency. Discrepancies noted in DVR. ICAL, ICV, LLOQ/LLCCV, CCV, ICB, ISC/SIC, CCBS	Reviewed.	X	-	
Results > Cal Range or <cal range<="" td=""><td>>Upper Cal Range J-detects - ensure instrument blank performed <loq but="">DL - J -detects (estimated)</loq></td><td>Results that were < LOQ but > DL were qualified J.</td><td>X</td><td>Cu and Pb in sample #1 qualified J</td><td></td></cal>	>Upper Cal Range J-detects - ensure instrument blank performed <loq but="">DL - J -detects (estimated)</loq>	Results that were < LOQ but > DL were qualified J.	X	Cu and Pb in sample #1 qualified J	
Lab Blanks (method blank or preparation	Method blank- Blank Detection Sample Qualifier >DL <loq< td=""> U at LOQ</loq<>	All method blank (ICP E08) associated with #1 and #2 were within MPC.	X	-	

REVIEW ITEMS	ACC	CEPTANCE CR	RITERIA	SAMPLES AFFECTED Narrative	Inven- tory	QUAL	BIAS
blank)	>DL >DL	>LOQ& <5X blank >LOQ&>5X Blank	J None of				
	Negative Blank	Sample Detection	Val				
	Detection DL< blank < LOQ DL< blank <	<dl>Dl but <loq< td=""><td>Qualifier UJ J</td><td></td><td></td><td></td><td></td></loq<></dl>	Qualifier UJ J				
	LOQ DL< blank < LOQ	>LOQ but <5X blank	J				
	DL< blank < LOQ blank >LOQ blank >LOQ		None J or R J or R				
LCS Recovery	blank >LOQ >UCL% J det <lcl% dete<="" j="" td=""><td></td><td>s.</td><td>All LCS %R's were within MPC for all metals.</td><td>X</td><td>-</td><td></td></lcl%>		s.	All LCS %R's were within MPC for all metals.	X	-	
LCS/LCSD RPD	RPD<20%			Not analyzed/collected with this SDG.	-	-	
MS Recovery	>UCL% J de <lcl% det<br="" j="">4X rule</lcl%>	tects ects, and UJ ND	s.	Not analyzed/collected for this SDG	-	-	
MS/MSD RPD	MS/MSD RPI	D<20%		Not analyzed/collected for this SDG	-	-	
Laboratory Replicate RPD	RPD < 20%			Not analyzed/collected for this SDG.	-	-	
Internal Standard	70-130% or la	ab limits		All internal standard results in limits.	X	-	
Sensitivity	limit (DL) Sample Resul be reported as	ts that are < LO	d to the detection Q, but >DL, will impacts to	Dilution factor = 1x for metals, No qualification.	X	-	
Equip Blank	Blank Detection >DL >DL >DL	Sample Detection <loq>LOQ& <5X blank >LOQ&>5X Blank</loq>	Val Qualifier U at LOQ J None of	NA	-	-	
Initial Cal Multipoint	r > 0.995 or r multipoint. At LOQ. Single Standa	2 0.99 or RSE < t least 3 point wi ard Calibration of ank and one hig	th one at or below	All calibrations within MPC limits.	X	-	

CRQL or LOQ (std/blank used)	QUAL -	BIAS
CRQL or LLOQ Std/blank used)	-	
Color Be, Mg, Co, In, Pb 0.1 AMU and <5% RSD	-	
Calibration Blank Sample Val Detection Detection Qualifier DL CLOQ U at LOQ DL DL DLOQ& SX J blank DL SLOQ& SX None of Blank Detection Detection Detection Detection Qualifier DL DLOQ DLO	-	
Blank Sample Qualifier		
SDL SLOQ&SSX None of		
Blank Sample Detection Val Qualifier DL< blank		
Blank Sample Val Detection Detection Qualifier DL< blank <		
Detection Detection Qualifier DL < blank < < DL UJ LOQ DL < blank < > Dl but < LOQ J LOQ DL < blank < > LOQ but J	l	
DL< blank <		
$\begin{array}{ c c c }\hline LOQ & & & \\\hline DL < blank < & >LOQ \ but & J \\\hline \end{array}$		
DL< blank < >LOQ and None		
LOQ >5X blank blank >LOQ dDL J or R		
Continuing CCB bracketing samples. All CCBs were ND X Calibration	-	
Blanks (CCB) Blank Sample Val		
Detection Qualifier		
DL		
blank 		
Negative Blank		
Blank Sample Val Detection Detection Qualifier		
DL< blank < <dl loq<="" td="" uj=""><td></td><td></td></dl>		
DL< blank < >Dl but <loq j="" td="" ="" <=""><td></td><td></td></loq>		
LOQ SX blank DL< blank < >LOQ and None		
LOQ >5X blank		
Serial once per digestion batch Not collected/analyzed with this SDG. - Dilution %D<10%	-	
%D not evaluated if element results is <50X IDL (<lod)< td=""><td>ļ</td><td></td></lod)<>	ļ	
J detects, UJ non-detects.		ļ

		and Laboratory	Limits		
REVIEW ITEMS	ACCEPTANCE CRITERIA	SAMPLES AFFECTED Narrative	Inven- tory	QUAL	BIAS
Inter-element checks ICS-A, ICS-AB Instrument performance check	ICS-A: Absolute value of concentration for all non-spiked analytes < LOD (unless they are a verified trace impurity from one of the spiked analytes). 6010D ISC-A only. ICSAB: Within + 20% of expected value. %R>UCL J detect only >50% and <lcl- <50%="" and="" detection:="" detects="" j="" nds="" not="" r="" spiked="" uj="">1/2 LOQ J detects if <5X Negative unspiked element: 1/2 LOQ </lcl->	Both ICS-A and ICS-AB %R's for within MPC.	X	-	
2 nd Source ICV	Once after each initial calibration, prior to sample analysis 90-110% Recovery	ICV results within limits all metals.	X	-	
CCV and/or CCVL	every 10 samples and end of run 90- 110% Recovery CCVL 80-120%	CCV results were within limits all metals.	X	-	
Post Digestion Spike	Analyze if MS >MPC 75-125%R	Not collected/analyzed with this SDG.	-	-	
Overall Evaluation of Data	Appropriate method Evaluate any analytical problems Evaluate sampling errors – field contamination, sample hold times	Analytical Error Evaluation: The laboratory accuracy is acceptable. Method Blanks was ND LCS % Rs were within limits. ICB was ND. CCB was ND ICAL: per method. ICV: in limits CCV: in limits. Sample Error Evaluation: Not evaluaed.	X	-	

Completeness Check: Inventory Check Sheet___X_Sample Inventory Check

Lab Correspondence: None.

	I	######################################							
Project Role	Name	Signature	Date						
Data Validator	Jackson Kiker	Jachson H. Alber	19 Feb 2025						

GenChem: TOC, Chloride, Ammonia Sulfate, Alk, Turbidity, pH, TDS Review Criteria: Laboratory Limits

Validation Level	Matrix	Preservation	Temperature Sample Receipt	Laboratory	SDG Number
Stage 2B	Groundwater	None/H ₂ SO ₄ / H ₃ PO ₄	<6 °C	Eurofins Lancaster, PA	410-207441

FIELD IDENTIFICATION OF SAMPLES EVALUATED:

Field Identification (ID)	Laboratory (lab) Sample Number
TDSS-MW01-1Q25	410-207441-1
TDSS-MW02-1Q25	410-207441-2

Note: Samples are described below in the data worksheets by reference to the last digit of the Lab Sample Number.

REVIEW ITEMS	ACCEPTANCE CRITERIA	SAMPLES AFFECTED / RATIONALE	INVENT- ORY	QUALIFICA- TION	BIAS
Chain of Custody (COC)	Unbroken custody (accept or if broken reject [R]) Temp. < 6 degrees Celsuis (OC) Preservation per method No chemical preservation required; Chloride, sulfate, Alkalinity (Alk), Nitrate/nitrite (as N), and total dissolved solids (TDS) Total Organic Compounds (TOC) and chemical oxygen demand (COD) preserved with sulfuric acid (H2SO4 or H3PO4). Ammonia chemical preservative (H2SO4).	Cooler temperature < 6 °C. Sample custody transferred from Field Team Leader to lab sample custodian. Unbroken COC. No samples qualified.	X	-	
Holding Time (HT)	48 hours (nitrate/nitrite) 7 days (TDS) 48 hours (Turbidity) 28 days (Ammonia) 14 days (Alk) 28 days (TOX) 28 days (chloride, sulfate, TOC, COD) Immediate / 24 hours (pH) See QAPP Worksheet #19 J –detects, UJ or R –non-detects (ND)	Within measurement performance criteria (MPC) limits except for turbidity and pH. pH and turbidity are typically time sensitive parameters for environmental water matrices.	X	J qualify pH and turbidity all samples.	
Sensitivity	Denote samples analyzed at dilution	Sample dilutions were made to bring analytes within calibration ranges. Cl at 50X.	X	-	

1 of 3 Revision Date: 2/23/2025

ECC: Data Review Worksheet Project: TDS (Maui, HI)

GenChem: TOC, Chloride, Ammonia Sulfate, Alk, Turbidity, pH, TDS Review Criteria: Laboratory Limits

				Review Criteria: Lab	Review Criteria: Laboratory Limits						
REVIEW ITEMS	ACCEPTANCE CRITERIA			SAMPLES AFFECTED / RATIONALE	INVENT- ORY	QUALIFICA- TION	BIAS				
Field Duplicate (FD) Relative Percent Difference (RPD)	FD RPD ≤ 30 percent (%) aq FD RPD < 50% soil 1 per 10 samples		1	Not applicable (NA)	-	-					
Results > Cal Range or <cal range<="" td=""><td><limit of="" qu<br="">detection lim (estimated)</limit></td><td>nantitation (LOC uits (DL) — J —de</td><td>2) but > method etects</td><td>Detects <loq as="" j.<="" qualified="" td=""><td>X</td><td>All TOC data qualified J</td><td></td></loq></td></cal>	<limit of="" qu<br="">detection lim (estimated)</limit>	nantitation (LOC uits (DL) — J —de	2) but > method etects	Detects <loq as="" j.<="" qualified="" td=""><td>X</td><td>All TOC data qualified J</td><td></td></loq>	X	All TOC data qualified J					
Lab Blanks (method blank or preparation blank)	Blank Sample Val Detection Detection Qualifier			Method blanks were ND for all compounds.	X	-					
Laboratory Control Sample (LCS) Recovery	See QAPP Appendix I and Worksheet #12 >UCL% J detects <lcl% and="" detects,="" j="" nds.<="" td="" uj=""><td>All LCS percent recovery (%R) within the laboratory control limits, except for TDS in the LCSD</td><td>X</td><td>J all TDS</td><td></td></lcl%>			All LCS percent recovery (%R) within the laboratory control limits, except for TDS in the LCSD	X	J all TDS					
LCS/LCSD RPD	RPD <20%			In limits, except for total TDS.	X	J all TDS					
Matrix Spike/Matrix Spike Duplicate (MS/MSD)	See QAPP Appendix I and Worksheet #12 >UCL% J detects <lcl% and="" detects,="" j="" nds.<="" td="" uj=""><td>Sample #1 Only reported for ammonia. MS R in limits.</td><td>X</td><td>=</td><td></td></lcl%>			Sample #1 Only reported for ammonia. MS R in limits.	X	=					
Recovery MS/MSD RPD	RPD < 20%			NA	-	-					
Laboratory Replicate RPD (if MSD not analyzed)	RPD <15% Others per method/Lab limits			Sample #1 (ammonia) Sample #2 (Turbidity) In limits	X	-					
Equipment Blank (EB)	Blank Detection Sample Detection Val Qualifier >DL LOQ LOQ& <5X J blank >DL >LOQ& >5X None of Blank			NA	-	=					
Initial Calibration (ICal) Multipoint	Per method SOP			Instrument calibrations or checks In limits.	X	-					
Initial Calibration Blanks (ICB) and Continuing Calibration Blank (CCB)	Blank Detection Sample Detection Val Qualifier >DL <loq< td=""> U at LOQ >DL >LOQ& <sx blank<="" j="" td=""> J >DL >LOQ& >5X None of Blank None of None of Blank</sx></loq<>		Qualifier U at LOQ J	ICB and CCB were ND for all methods.	X	-					
2 nd Source ICV	Percent deviation (%D) < 10%			In limits for all methods	X	-					

ECC: Data Review Worksheet Project: TDS (Maui, HI)

GenChem: TOC, Chloride, Ammonia Sulfate, Alk, Turbidity, pH, TDS Review Criteria: Laboratory Limits

		Review Criteria. Lab	oratory Lin	atory Diffits			
REVIEW ITEMS	ACCEPTANCE CRITERIA	SAMPLES AFFECTED / RATIONALE	INVENT- ORY	QUALIFICA- TION	BIAS		
CCV	%D < 10%	In limits, except for carbonate and bicarbonate alkalinity	X	J Alk-B (#1/#2) and UJ NDs for Alk-C (#1/#2)			
Overall Evaluation of Data	Appropriate method Evaluate any analytical problems Evaluate sampling errors – field contamination, sample hold times	Analytical Error Evaluation: The sample results are usable for making project decisions. ICAL: Acceptable. ICV: %D in limits CCV: %Ds within MPC limits, except for Alk-C and Alk-B MS %R in limits. Method blank was non-detect. LCS %R within limits, except for TDS. ICB/CCB within limits Field Error Evaluation: Not evaluated- no field QC. Overall Evaluation:	X	-			
		Project data is usable as qualified.					

Completeness Check: Inventory Check Sheet____X__.

Lab Correspondence: none

Project Role	Name	Signature	Date
Data Validator	Jackson Kiker	Jachson H. Mike	19 Feb 2025

3 of 3

n

ANALYTICAL REPORT

PREPARED FOR

Attn: Kane McNeill Environmental Chemical Corp. 1240 Bayshore Hwy Burlingame, California 94010

Generated 2/14/2025 7:24:14 PM

JOB DESCRIPTION

West Maui TDS GW 1Q 2025 410-207441

JOB NUMBER

410-207441-1

Eurofins Lancaster Laboratories Environment Testing, LLC 2425 New Holland Pike Lancaster PA 17601

Eurofins Lancaster Laboratories Environment Testing, LLC

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Elyptoth P. Mouton Generated 2/14/2025 7:24:14 PM

Authorized for release by Elizabeth Martin, Project Manager Elizabeth.Martin@et.eurofinsus.com (717)205-3949

А

4

5

7

8

40

1 1

12

13

Eurofins Lancaster Laboratories Environment Testing, LLC

Compliance Statement

Analytical test results meet all requirements of the associated regulatory program (e.g., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis. Data qualifiers are applied to note exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- · QC results that exceed the upper limits and are associated with non-detect samples are qualified but further narration is not required since the bias is high and does not change a non-detect result. Further narration is also not required with QC blank detection when the associated sample concentration is non-detect or more than ten times the level in the blank.
- · Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD is performed, unless otherwise specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Measurement uncertainty values, as applicable, are available upon request.

Test results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" and tested in the laboratory are not performed within 15 minutes of collection.

This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. The foregoing express warranty is exclusive and is given in lieu of all other warranties, expressed or implied, except as otherwise agreed. We disclaim any other warranties, expressed or implied, including a warranty of fitness for particular purpose and warranty of merchantability. In no event shall Eurofins Lancaster Laboratories Environmental, LLC be liable for indirect, special, consequential, or incidental damages including, but not limited to, damages for loss of profit or goodwill regardless of (A) the negligence (either sole or concurrent) of Eurofins Lancaster Laboratories Environmental and (B) whether Eurofins Lancaster Laboratories Environmental has been informed of the possibility of such damages. We accept no legal responsibility for the purposes for which the client uses the test results. Except as otherwise agreed, no purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Elizabeth P. Marton

Page 3 of 22 2/14/2025

7 - - - 1

Table of Contents

1
1
5
3
7
9
11
15
17
18
19
20
21
22
1 1 1 2 2

6

<u>Q</u>

9

11

12

Definitions/Glossary

Client: Environmental Chemical Corp. Job ID: 410-207441-1 Project/Site: West Maui TDS GW 1Q 2025 SDG: 410-207441

Qualifiers

		\sim	/	\sim
-	_	100	,,	

Qualifier	Qualifier Description
D	The reported value is from a dilution.
U	Undetected at the Limit of Detection.

Metals

Qualifier	Qualifier Description
J	Estimated: The analyte was positively identified; the quantitation is an estimation
U	Undetected at the Limit of Detection.

General Chemistry

Qualifier	Qualifier Description
Н	Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.
H3	Sample was received and analyzed past holding time. This does not meet regulatory requirements.
HF	Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time.
J	Estimated: The analyte was positively identified; the quantitation is an estimation
J1	Estimated: The quantitation is an estimation due to discrepancies in meeting certain analyte-specific quality control criteria.
Q	One or more quality control criteria failed.
U	Undetected at the Limit of Detection.

Glossary

Dil Fac

Abbreviation	These commonly used abbreviations may or may not be present in this report.					
₩	Listed under the "D" column to designate that the result is reported on a dry weight basis					
%R	Percent Recovery					
CFL	Contains Free Liquid					
CFU	Colony Forming Unit					
CNF	Contains No Free Liquid					
DER	Duplicate Error Ratio (normalized absolute difference)					

DL Detection Limit (DoD/DOE)

Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL MLMinimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) RER

Reporting Limit or Requested Limit (Radiochemistry) RL

Relative Percent Difference, a measure of the relative difference between two points **RPD**

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Eurofins Lancaster Laboratories Environment Testing, LLC

Page 5 of 22 2/14/2025

Case Narrative

Client: Environmental Chemical Corp. Project: West Maui TDS GW 1Q 2025

Job ID: 410-207441-1

Eurofins Lancaster Laboratories Environment

Job ID: 410-207441-1

Job Narrative 410-207441-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Receipt

The samples were received on 2/12/2025 8:30 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.4°C.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Page 6 of 22 2/14/2025

2

3

4

5

7

8

12

13

Client: Environmental Chemical Corp.

Project/Site: West Maui TDS GW 1Q 2025

SDG: 410-207441-1

SDG: 410-207441-1

Client Sample ID: TDSS-MW01-1Q25

Lab Sample ID: 410-207441-1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	Dil Fac	D	Method	Prep Type
Sulfate	16		1.5	1.0	0.50	mg/L	1	_	300.0	Total/NA
Chloride	110	D	75	60	30	mg/L	50		300.0	Total/NA
Calcium	14000		120	100	50	ug/L	1		6020B	Total
										Recoverable
Cobalt	0.54		0.50	0.40	0.16	ug/L	1		6020B	Total
										Recoverable
Copper	0.67	J	1.0	0.90	0.36	ug/L	1		6020B	Total
Iran	65		50	40	20	/	1		6020B	Recoverable
Iron	00		50	40	20	ug/L	ı		0020B	Total Recoverable
Lead	0.17		0.50	0.24	0.12	ug/L	1		6020B	Total
Loud	0.17	0	0.00	0.24	0.12	ug/L			0020B	Recoverable
Magnesium	12000		50	32	16	ug/L	1		6020B	Total
J						· ·				Recoverable
Potassium	5100		200	180	65	ug/L	1		6020B	Total
										Recoverable
Sodium	71000		200	180	90	ug/L	1		6020B	Total
T., 126.	0.0		4.0	0.70	4.0	NITTI	4		400.4	Recoverable
Turbidity		H H3	1.0	0.70		NTU	1		180.1	Total/NA
Total Alkalinity as CaCO3 to pH 4.5	60		8.0	6.0	2.6	mg/L	1		2320B-2011	Total/NA
Bicarbonate Alkalinity as CaCO3	60		8.0	6.0	2.6	mg/L	1		2320B-2011	Total/NA
Total Dissolved Solids	280	Q	30	25	12	mg/L	1		2540C - 2015	Total/NA
pH	7.3		0.01	0.01		S.U.	1		9040C	Total/NA
Total Organic Carbon	1.9		2.0	1.0		mg/L	1		SM5310C	Total/NA
TOC Result 1	1.5		2.0	1.0		mg/L	1		SM5310C	Total/NA
TOC Result 2	2.6	-	2.0	1.0		mg/L	1		SM5310C	Total/NA
TOC Result 3	1.5		2.0	1.0		mg/L	· · · · · · · · · · · · · · · · · · ·		SM5310C	Total/NA

Client Sample ID: TDSS-MW02-1Q25

Lab Sample ID: 410-207441-2

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	Dil Fac	D	Method	Prep Type
Sulfate	26		1.5	1.0	0.50	mg/L	1	_	300.0	Total/NA
Chloride	200	D	75	60	30	mg/L	50		300.0	Total/NA
Calcium	21000		120	100	50	ug/L	1		6020B	Total Recoverable
Copper	1.2		1.0	0.90	0.36	ug/L	1		6020B	Total Recoverable
Iron	660		50	40	20	ug/L	1		6020B	Total Recoverable
Lead	3.2		0.50	0.24	0.12	ug/L	1		6020B	Total Recoverable
Magnesium	16000		50	32	16	ug/L	1		6020B	Total Recoverable
Potassium	7400		200	180	65	ug/L	1		6020B	Total Recoverable
Sodium	120000		200	180	90	ug/L	1		6020B	Total Recoverable
Turbidity	16	H H3	1.0	0.70	1.0	NTU	1		180.1	Total/NA
Total Alkalinity as CaCO3 to pH 4.5	61		8.0	6.0	2.6	mg/L	1		2320B-2011	Total/NA
Bicarbonate Alkalinity as CaCO3	61		8.0	6.0	2.6	mg/L	1		2320B-2011	Total/NA
Total Dissolved Solids	480	Q	60	50	24	mg/L	1		2540C - 2015	Total/NA
pH	7.6	HF	0.01	0.01	0.01	S.U.	1		9040C	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Lancaster Laboratories Environment Testing, LLC

Page 7 of 22 2/14/2025

2

3

7

8

1 0

1 1

13

Detection Summary

Client: Environmental Chemical Corp.

Project/Site: West Maui TDS GW 1Q 2025

Job ID: 410-207441-1

SDG: 410-207441

Client Sample ID: TDSS-MW02-1Q25 (Continued)

Lab Sample ID: 410-207441-2

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	Dil Fac	D	Method	Prep Type
Total Organic Carbon	1.4	J	2.0	1.0	0.50	mg/L	1	_	SM5310C	Total/NA
TOC Result 1	1.5	J	2.0	1.0	0.50	mg/L	1		SM5310C	Total/NA
TOC Result 2	1.2	J	2.0	1.0	0.50	mg/L	1		SM5310C	Total/NA
TOC Result 3	1.3	J	20	1.0	0.50	ma/l	1		SM5310C	Total/NA

Л

5

6

Ω

9

10

12

13

Client: Environmental Chemical Corp. Job ID: 410-207441-1 Project/Site: West Maui TDS GW 1Q 2025 SDG: 410-207441

Client Sample ID: TDSS-MW01-1Q25

Lab Sample ID: 410-207441-1 Date Collected: 02/08/25 10:00 **Matrix: Water**

Date Received: 02/12/25 08:30

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Sulfate	16		1.5	1.0	0.50	mg/L		02/12/25 20:38	1
Chloride	110	D	75	60	30	mg/L		02/12/25 21:26	50
Method: SW846 6020B - Metals (I	CP/MS) - To	otal Recove	rable						
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Antimony	0.50	U	1.0	0.50	0.20	ug/L		02/13/25 12:44	1
Arsenic	1.7	U	2.0	1.7	0.68	ug/L		02/13/25 12:44	1
Calcium	14000		120	100	50	ug/L		02/13/25 12:44	1
Cobalt	0.54		0.50	0.40	0.16	ug/L		02/13/25 12:44	1
Copper	0.67	J	1.0	0.90	0.36	ug/L		02/13/25 12:44	1
Iron	65		50	40	20	ug/L		02/13/25 12:44	1
Lead	0.17	J	0.50	0.24	0.12	ug/L		02/13/25 12:44	1
Magnesium	12000		50	32	16	ug/L		02/13/25 12:44	1
Potassium	5100		200	180	65	ug/L		02/13/25 12:44	1
Sodium	71000		200	180	90	ug/L		02/13/25 12:44	1
General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Turbidity (EPA 180.1)	2.3	H H3	1.0	0.70	1.0	NTU		02/13/25 07:08	1
Total Alkalinity as CaCO3 to pH 4.5 (SM 2320B-2011)	60		8.0	6.0	2.6	mg/L		02/14/25 14:40	1
Carbonate Alkalinity as CaCO3 (SM	6.0	U	8.0	6.0	2.6	mg/L		02/14/25 14:40	1

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Turbidity (EPA 180.1)	2.3	H H3	1.0	0.70	1.0	NTU		02/13/25 07:08	1
Total Alkalinity as CaCO3 to pH 4.5 (SM 2320B-2011)	60		8.0	6.0	2.6	mg/L		02/14/25 14:40	1
Carbonate Alkalinity as CaCO3 (SM 2320B-2011)	6.0	U	8.0	6.0	2.6	mg/L		02/14/25 14:40	1
Bicarbonate Alkalinity as CaCO3 (SM 2320B-2011)	60		8.0	6.0	2.6	mg/L		02/14/25 14:40	1
Total Dissolved Solids (SM 2540C - 2015)	280	Q	30	25	12	mg/L		02/12/25 22:55	1
pH (SW846 9040C)	7.3	HF	0.01	0.01	0.01	S.U.		02/13/25 23:09	1
Ammonia as N (EPA 350.1)	0.090	U J1	0.10	0.090	0.050	mg/L		02/13/25 14:07	1
Total Organic Carbon (SM5310C)	1.9	J	2.0	1.0	0.50	mg/L		02/12/25 22:19	1
TOC Result 1 (SM5310C)	1.5	J	2.0	1.0	0.50	mg/L		02/12/25 22:19	1
TOC Result 2 (SM5310C)	2.6		2.0	1.0	0.50	mg/L		02/12/25 22:19	1
TOC Result 3 (SM5310C)	1.5	J	2.0	1.0	0.50	mg/L		02/12/25 22:19	1

Client Sample ID: TDSS-MW02-1Q25 Lab Sample ID: 410-207441-2

Date Collected: 02/08/25 08:35 **Matrix: Water** Date Received: 02/12/25 08:30

Method: EPA 300.0 - Anions, Ior	n Chromatogra	aphy							
Analyte	Result Q	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Sulfate	26		1.5	1.0	0.50	mg/L		02/12/25 21:49	1
Chloride	200 D)	75	60	30	ma/L		02/12/25 22:13	50

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Antimony	0.50	U	1.0	0.50	0.20	ug/L		02/13/25 12:42	1
Arsenic	1.7	U	2.0	1.7	0.68	ug/L		02/13/25 12:42	1
Calcium	21000		120	100	50	ug/L		02/13/25 12:42	1
Cobalt	0.40	U	0.50	0.40	0.16	ug/L		02/13/25 12:42	1
Copper	1.2		1.0	0.90	0.36	ug/L		02/13/25 12:42	1
Iron	660		50	40	20	ug/L		02/13/25 12:42	1
Lead	3.2		0.50	0.24	0.12	ug/L		02/13/25 12:42	1

Eurofins Lancaster Laboratories Environment Testing, LLC

Page 9 of 22 2/14/2025

Client Sample Results

Client: Environmental Chemical Corp. Job ID: 410-207441-1 Project/Site: West Maui TDS GW 1Q 2025 SDG: 410-207441

Client Sample ID: TDSS-MW02-1Q25

Lab Sample ID: 410-207441-2 Date Collected: 02/08/25 08:35 **Matrix: Water**

Date Received: 02/12/25 08:30

Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Magnesium	16000		50	32	16	ug/L		02/13/25 12:42	1
Potassium	7400		200	180	65	ug/L		02/13/25 12:42	1
Sodium	120000		200	180	90	ug/L		02/13/25 12:42	1
General Chemistry									
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Turbidity (EPA 180.1)	16	H H3	1.0	0.70	1.0	NTU		02/13/25 07:08	1
Total Alkalinity as CaCO3 to pH 4.5 (SM 2320B-2011)	61		8.0	6.0	2.6	mg/L		02/14/25 14:46	1
Carbonate Alkalinity as CaCO3 (SM 2320B-2011)	6.0	U	8.0	6.0	2.6	mg/L		02/14/25 14:46	1
Bicarbonate Alkalinity as CaCO3 (SM 2320B-2011)	61		8.0	6.0	2.6	mg/L		02/14/25 14:46	1
Total Dissolved Solids (SM 2540C - 2015)	480	Q	60	50	24	mg/L		02/12/25 22:55	1
pH (SW846 9040C)	7.6	HF	0.01	0.01	0.01	S.U.		02/13/25 23:15	1
Ammonia as N (EPA 350.1)	0.090	U	0.10	0.090	0.050	mg/L		02/13/25 14:14	1
Total Organic Carbon (SM5310C)	1.4	J	2.0	1.0	0.50	mg/L		02/12/25 22:40	1
TOC Result 1 (SM5310C)	1.5	J	2.0	1.0	0.50	mg/L		02/12/25 22:40	1
TOC Result 2 (SM5310C)	1.2	J	2.0	1.0	0.50	mg/L		02/12/25 22:40	1
TOC Result 3 (SM5310C)	1.3	J	2.0	1.0	0.50	mg/L		02/12/25 22:40	1

Job ID: 410-207441-1

Client: Environmental Chemical Corp. Project/Site: West Maui TDS GW 1Q 2025

SDG: 410-207441

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 410-605381/5

Matrix: Water

Analysis Batch: 605381

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Sulfate	1.0	U	1.5	1.0	0.50	mg/L		02/12/25 14:38	1
Chloride	1.2	U	1.5	1.2	0.60	mg/L		02/12/25 14:38	1

Lab Sample ID: LCS 410-605381/3

Matrix: Water

Analysis Batch: 605381

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfate	7.50	6.97		mg/L		93	87 - 112	
Chloride	3.00	2.81		mg/L		94	87 - 111	

Lab Sample ID: LCSD 410-605381/4

Matrix: Water

Analysis Batch: 605381

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Sulfate	7.50	7.13		mg/L		95	87 - 112	2	10
Chloride	3.00	2.87		mg/L		96	87 ₋ 111	2	10

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 410-605465/1-A

Matrix: Water

Analysis Batch: 605803

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 605465

	MB	MB							
Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
Antimony	0.50	U	1.0	0.50	0.20	ug/L		02/13/25 12:09	1
Arsenic	1.7	U	2.0	1.7	0.68	ug/L		02/13/25 12:09	1
Calcium	100	U	120	100	50	ug/L		02/13/25 12:09	1
Cobalt	0.40	U	0.50	0.40	0.16	ug/L		02/13/25 12:09	1
Copper	0.90	U	1.0	0.90	0.36	ug/L		02/13/25 12:09	1
Iron	40	U	50	40	20	ug/L		02/13/25 12:09	1
Lead	0.24	U	0.50	0.24	0.12	ug/L		02/13/25 12:09	1
Magnesium	32	U	50	32	16	ug/L		02/13/25 12:09	1
Potassium	180	U	200	180	65	ug/L		02/13/25 12:09	1
Sodium	180	U	200	180	90	ug/L		02/13/25 12:09	1

Lab Sample ID: LCS 410-605465/2-A

Matrix: Water

Analysis Batch: 605803

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 605465

7 , 0.0	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	100	100		ug/L		100	85 - 117	_
Arsenic	500	500		ug/L		100	84 - 116	
Calcium	5000	5150		ug/L		103	87 - 118	
Cobalt	500	498		ug/L		100	86 - 115	
Copper	500	499		ug/L		100	85 - 118	
Iron	5000	4990		ug/L		100	87 - 118	
Lead	50.0	50.6		ug/L		101	88 - 115	
Magnesium	5000	5240		ug/L		105	83 - 118	

Eurofins Lancaster Laboratories Environment Testing, LLC

Page 11 of 22

2/14/2025

Job ID: 410-207441-1

Prep Batch: 605465

Dil Fac

RPD

Limit

Dil Fac

SDG: 410-207441

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 410-605465/2-A

Client: Environmental Chemical Corp.

Project/Site: West Maui TDS GW 1Q 2025

Matrix: Water

Analyte

Sodium

Analyte

Turbidity

Analyte

Potassium

Analysis Batch: 605803

Spike Added 5000 5000

LCS LCS Result Qualifier 5260

5240

Unit ug/L ug/L

%Rec 105 105

87 - 115 85 - 117

%Rec

Limits

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Client Sample ID: Method Blank

Method: 180.1 - Turbidity, Nephelometric

Lab Sample ID: MB 410-605544/3

Matrix: Water

Analysis Batch: 605544

MB MB Result Qualifier

0.70 U

LOQ 1.0

Spike

Added

1.00

LOD 0.70

LCS LCS

1.1

Result Qualifier

DL Unit 1.0 NTU

Analyzed 02/13/25 07:08

Client Sample ID: Lab Control Sample

%Rec

Limits

85 - 115

Client Sample ID: Method Blank

Analyzed

02/14/25 14:21

Client Sample ID: Lab Control Sample

%Rec

Client Sample ID: TDSS-MW02-1Q25

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Lab Sample ID: LCS 410-605544/4

Matrix: Water

Analysis Batch: 605544

Turbidity

Lab Sample ID: 410-207441-2 DU

Matrix: Water

Analysis Batch: 605544

Analyte Turbidity

Sample Sample Result Qualifier 16 H H3

Method: 2320B-2011 - Alkalinity, Total

MR MR Result Qualifier

6.0 U

DU DU Result Qualifier 15

LOD

6.0

Unit NTU

Unit

NTU

%Rec

106

Prep Type: Total/NA

Prep Type: Total/NA

RPD

5

Matrix: Water

Analysis Batch: 606330

Lab Sample ID: MB 410-606330/5

Total Alkalinity as CaCO3 to pH 4.5

Lab Sample ID: LCS 410-606330/6

Matrix: Water Analysis Batch: 606330

Analyte Total Alkalinity as CaCO3 to pH 4.5

Lab Sample ID: LCSD 410-606330/7 **Matrix: Water Analysis Batch: 606330**

Analyte Total Alkalinity as CaCO3 to pH

LCS LCS Spike Added Result Qualifier 189

LOQ

8.0

178

LCSD LCSD

Unit mg/L

2.6 mg/L

%Rec %Rec Limits 80 - 110

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Result Qualifier Unit %Rec Limits RPD Limit 178 mg/L 94 80 - 110

Spike

Added

189

RPD

Client: Environmental Chemical Corp. Project/Site: West Maui TDS GW 1Q 2025

Lab Sample ID: LCS 410-605089/2

Job ID: 410-207441-1 SDG: 410-207441

Method: 2540C - 2015 - Total Dissolved Solids (Dried at 180 °C)

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 605089

7 manyolo Batolii ooooo									
	Spike	LCS	LCS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Total Dissolved Solids	 200	182		mg/L		91	90 - 110		

Lab Sample ID: LCSD 410-605089/3 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 605089

Spike LCSD LCSD %Rec **RPD** Added Analyte Result Qualifier Unit D %Rec Limits RPD Limit Total Dissolved Solids 200 146 Q mg/L 73 90 - 110 22 10

Method: 9040C - pH

Lab Sample ID: LCS 410-606221/44 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 606221**

LCS LCS %Rec Spike Analyte Added Result Qualifier Limits Unit D %Rec рН 7.00 7.1 S.U. 101 95 - 105

Lab Sample ID: LCSD 410-606221/45 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 606221

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
рН	7.00	7.1		S.U.		101	95 - 105	0	3	

Method: EPA 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 410-605894/56 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 605894

MR MR

Analyte	Result Q	Qualifier	LOQ	LOD		Unit [O Analyzed	Dil Fac
Ammonia as N	0.090 U	J	0.10	0.090	0.050	mg/L	02/13/25 14:05	1

Lab Sample ID: LCS 410-605894/54 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 605894

Spike LCS LCS %Rec Added Result Qualifier Unit D %Rec Limits Ammonia as N 2.00 1.92 mg/L 90 - 110

Lab Sample ID: LCSD 410-605894/55 **Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA**

Analysis Batch: 605894

LCSD LCSD **RPD** Spike %Rec Added Result Qualifier Limits Analyte Unit %Rec Limit 2 00 1.89 94 Ammonia as N mg/L 90 - 110

QC Sample Results

Client: Environmental Chemical Corp.

Project/Site: West Maui TDS GW 1Q 2025

SDG: 410-207441-1

SDG: 410-207441

Method: EPA 350.1 - Nitrogen, Ammonia (Continued)

Lab Sample ID: 410-207441-1 MS

Matrix: Water

Analysis Batch: 605894

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ammonia as N	0.090	U J1	2.51	2.46		mg/L		98	90 - 110	

Lab Sample ID: 410-207441-1 DU

Matrix: Water

Analysis Ratch: 605894

Analysis Balch: 605694									
	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	R	PD	Limit
Ammonia as N	0.090	U J1	0.090	U	mg/L			NC	20

Method: SM5310C - TOC

Lab Sample ID: MB 410-605792/7

Matrix: Water

Analysis Batch: 605792

		MB	MB							
	Analyte	Result	Qualifier	LOQ	LOD	DL	Unit	D	Analyzed	Dil Fac
	Total Organic Carbon	1.0	U	2.0	1.0	0.50	mg/L		02/12/25 20:18	1
	TOC Result 1	1.0	U	2.0	1.0	0.50	mg/L		02/12/25 20:18	1
	TOC Result 2	1.0	U	2.0	1.0	0.50	mg/L		02/12/25 20:18	1
Į	TOC Result 3	1.0	U	2.0	1.0	0.50	mg/L		02/12/25 20:18	1

Lab Sample ID: LCS 410-605792/6

Matrix: Water

Analysis Batch: 605792

7 manyone Datem Court								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Organic Carbon	50.0	47.9		mg/L		96	90 - 110	
TOC Result 1	50.0	47.1		mg/L		94	90 - 110	
TOC Result 2	50.0	47.6		mg/L		95	90 - 110	
TOC Result 3	50.0	48 9		ma/l		98	90 - 110	

Lab Sample ID: MRL 410-605792/3

Matrix: Water

Analysis Batch: 605792

	Spike	MRL	MRL				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Organic Carbon	1.00	1.23	J	mg/L		123	50 - 150	
TOC Result 1	1.00	1.21	J	mg/L		121		
TOC Result 2	1.00	1.25	J	mg/L		125		
TOC Result 3	1.00	1.24	J	mg/L		124		

SDG: 410-207441

Prep Type: Total/NA

Client Sample ID: TDSS-MW01-1Q25

Client Sample ID: TDSS-MW01-1Q25

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

3

4

5

7

0

10

12

13

14

Eurofins Lancaster Laboratories Environment Testing, LLC

QC Association Summary

Client: Environmental Chemical Corp. Job ID: 410-207441-1 Project/Site: West Maui TDS GW 1Q 2025 SDG: 410-207441

HPLC/IC

Analysis Batch: 605381

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-207441-1	TDSS-MW01-1Q25	Total/NA	Water	300.0	
410-207441-1	TDSS-MW01-1Q25	Total/NA	Water	300.0	
410-207441-2	TDSS-MW02-1Q25	Total/NA	Water	300.0	
410-207441-2	TDSS-MW02-1Q25	Total/NA	Water	300.0	
MB 410-605381/5	Method Blank	Total/NA	Water	300.0	
LCS 410-605381/3	Lab Control Sample	Total/NA	Water	300.0	
LCSD 410-605381/4	Lab Control Sample Dup	Total/NA	Water	300.0	

Metals

Prep Batch: 605465

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-207441-1	TDSS-MW01-1Q25	Total Recoverable	Water	3005A	
410-207441-2	TDSS-MW02-1Q25	Total Recoverable	Water	3005A	
MB 410-605465/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 410-605465/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 605803

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-207441-1	TDSS-MW01-1Q25	Total Recoverable	Water	6020B	605465
410-207441-2	TDSS-MW02-1Q25	Total Recoverable	Water	6020B	605465
MB 410-605465/1-A	Method Blank	Total Recoverable	Water	6020B	605465
LCS 410-605465/2-A	Lab Control Sample	Total Recoverable	Water	6020B	605465

General Chemistry

Analysis Batch: 605089

Lab Sample ID 410-207441-1	Client Sample ID TDSS-MW01-1Q25	Prep Type Total/NA	Matrix Water	Method 2540C - 2015	Prep Batch
410-207441-2	TDSS-MW02-1Q25	Total/NA	Water	2540C - 2015	
LCS 410-605089/2	Lab Control Sample	Total/NA	Water	2540C - 2015	
LCSD 410-605089/3	Lab Control Sample Dup	Total/NA	Water	2540C - 2015	

Analysis Batch: 605544

Lab Sample ID 410-207441-1	Client Sample ID TDSS-MW01-1Q25	Prep Type Total/NA	Matrix Water	Method 180.1	Prep Batch
410-207441-2	TDSS-MW02-1Q25	Total/NA	Water	180.1	
MB 410-605544/3	Method Blank	Total/NA	Water	180.1	
LCS 410-605544/4	Lab Control Sample	Total/NA	Water	180.1	
410-207441-2 DU	TDSS-MW02-1Q25	Total/NA	Water	180.1	

Analysis Batch: 605792

Lab Sample ID 410-207441-1	Client Sample ID TDSS-MW01-1Q25	Prep Type Total/NA	Matrix Water	Method SM5310C	Prep Batch
410-207441-2	TDSS-MW02-1Q25	Total/NA	Water	SM5310C	
MB 410-605792/7	Method Blank	Total/NA	Water	SM5310C	
LCS 410-605792/6	Lab Control Sample	Total/NA	Water	SM5310C	
MRL 410-605792/3	Lab Control Sample	Total/NA	Water	SM5310C	

Analysis Batch: 605894

_ •					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-207441-1	TDSS-MW01-1Q25	Total/NA	Water	EPA 350.1	

QC Association Summary

Client: Environmental Chemical Corp.

Project/Site: West Maui TDS GW 1Q 2025

SDG: 410-207441-1

SDG: 410-207441-1

General Chemistry (Continued)

Analysis Batch: 605894 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-207441-2	TDSS-MW02-1Q25	Total/NA	Water	EPA 350.1	
MB 410-605894/56	Method Blank	Total/NA	Water	EPA 350.1	
LCS 410-605894/54	Lab Control Sample	Total/NA	Water	EPA 350.1	
LCSD 410-605894/55	Lab Control Sample Dup	Total/NA	Water	EPA 350.1	
410-207441-1 MS	TDSS-MW01-1Q25	Total/NA	Water	EPA 350.1	
410-207441-1 DU	TDSS-MW01-1Q25	Total/NA	Water	EPA 350.1	

Analysis Batch: 606221

	ample ID 07441-1	Client Sample ID TDSS-MW01-1Q25	Prep Type Total/NA	Matrix Water	Method 9040C	Prep Batch
410-20	7441-2	TDSS-MW02-1Q25	Total/NA	Water	9040C	
LCS 4	10-606221/44	Lab Control Sample	Total/NA	Water	9040C	
LCSD	410-606221/45	Lab Control Sample Dup	Total/NA	Water	9040C	

Analysis Batch: 606330

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-207441-1	TDSS-MW01-1Q25	Total/NA	Water	2320B-2011	
410-207441-2	TDSS-MW02-1Q25	Total/NA	Water	2320B-2011	
MB 410-606330/5	Method Blank	Total/NA	Water	2320B-2011	
LCS 410-606330/6	Lab Control Sample	Total/NA	Water	2320B-2011	
LCSD 410-606330/7	Lab Control Sample Dup	Total/NA	Water	2320B-2011	

6

7

8

9

11

12

13

1 4

Lab Chronicle

Client: Environmental Chemical Corp. Job ID: 410-207441-1 Project/Site: West Maui TDS GW 1Q 2025 SDG: 410-207441

Client Sample ID: TDSS-MW01-1Q25

Lab Sample ID: 410-207441-1 Date Collected: 02/08/25 10:00 **Matrix: Water** Date Received: 02/12/25 08:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	300.0			605381	UJE2	ELLE	02/12/25 20:38
Total/NA	Analysis	300.0		50	605381	UJE2	ELLE	02/12/25 21:26
Total Recoverable	Prep	3005A			605465	UAMX	ELLE	02/12/25 21:30
Total Recoverable	Analysis	6020B		1	605803	SAM2	ELLE	02/13/25 12:44
Total/NA	Analysis	180.1		1	605544	USAE	ELLE	02/13/25 07:08
Total/NA	Analysis	2320B-2011		1	606330	DI9Q	ELLE	02/14/25 14:40
Total/NA	Analysis	2540C - 2015		1	605089	M98K	ELLE	02/12/25 22:55 - 02/14/25 13:49 1
Total/NA	Analysis	9040C		1	606221	DI9Q	ELLE	02/13/25 23:09
Total/NA	Analysis	EPA 350.1		1	605894	JCG7	ELLE	02/13/25 14:07
Total/NA	Analysis	SM5310C		1	605792	P684	ELLE	02/12/25 22:19

Client Sample ID: TDSS-MW02-1Q25

Date Received: 02/12/25 08:30

Lab Sample ID: 410-207441-2 Date Collected: 02/08/25 08:35 **Matrix: Water**

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	300.0		1	605381	UJE2	ELLE	02/12/25 21:49
Total/NA	Analysis	300.0		50	605381	UJE2	ELLE	02/12/25 22:13
Total Recoverable	Prep	3005A			605465	UAMX	ELLE	02/12/25 21:30
Total Recoverable	Analysis	6020B		1	605803	SAM2	ELLE	02/13/25 12:42
Total/NA	Analysis	180.1		1	605544	USAE	ELLE	02/13/25 07:08
Total/NA	Analysis	2320B-2011		1	606330	DI9Q	ELLE	02/14/25 14:46
Total/NA	Analysis	2540C - 2015		1	605089	M98K	ELLE	02/12/25 22:55 - 02/14/25 13:49
Total/NA	Analysis	9040C		1	606221	DI9Q	ELLE	02/13/25 23:15
Total/NA	Analysis	EPA 350.1		1	605894	JCG7	ELLE	02/13/25 14:14
Total/NA	Analysis	SM5310C		1	605792	P684	ELLE	02/12/25 22:40

¹ This procedure uses a method stipulated length of time for the process. Both start and end times are displayed.

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Page 17 of 22

Accreditation/Certification Summary

Client: Environmental Chemical Corp. Project/Site: West Maui TDS GW 1Q 2025 Job ID: 410-207441-1 SDG: 410-207441

Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Progra	am	Identification Number	Expiration Date		
2LA	Dept. o	of Defense ELAP	0001.01	11-30-26		
The following analyte	a ara inaludad in thia rana	rt but the leberatory is a	4	tu. This list may in alu		
0 ,	•	,	not certified by the governing authori	ty. This list may inclu		
0 ,	does not offer certification	,	, , ,	ity. This list may inclu		
0 ,	•	,	Analyte	ty. This list may inclu		
for which the agency	does not offer certification		, , ,	iy. This list may inclu		

Method Summary

Client: Environmental Chemical Corp. Project/Site: West Maui TDS GW 1Q 2025 Job ID: 410-207441-1 SDG: 410-207441

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	EPA	ELLE
6020B	Metals (ICP/MS)	SW846	ELLE
80.1	Turbidity, Nephelometric	EPA	ELLE
2320B-2011	Alkalinity, Total	SM	ELLE
2540C - 2015	Total Dissolved Solids (Dried at 180 °C)	SM	ELLE
040C	pH	SW846	ELLE
PA 350.1	Nitrogen, Ammonia	EPA	ELLE
SM5310C	TOC	SM	ELLE
8005A	Preparation, Total Recoverable or Dissolved Metals	SW846	ELLE

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Sample Summary

Client: Environmental Chemical Corp. Project/Site: West Maui TDS GW 1Q 2025

Job ID: 410-207441-1

SDG: 410-207441

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
410-207441-1	TDSS-MW01-1Q25	Water	02/08/25 10:00	02/12/25 08:30
410-207441-2	TDSS-MW02-1Q25	Water	02/08/25 08:35	02/12/25 08:30

Eurofins Lancaster Laboratories Environme

Lancaster, PA 17601	2425	New H	Holla	nd	Pike
Lancaster, PA 17601	Lanca	aster,	PA	17	601

Chain

				-			
1	61	11	'n	ŤΙ	n	5	
	~ "	-0.0	\circ	, ,		_	

Environment Testing

Phone (717) 656-2300	Sampler:		410-20744	11 Chain	of Cus	stoay				_	Ca	rrier Trac	cking N	0(5)			COC No.	
Client Information	Phone:			E-Mai	l:		-				Sta	ate of Ori	gin:				410-147895-40706.1 Page:	
Kane McNeill	316-61	40-630	b5		beth N	1artin	@et.eu	ırofin	sus co	n		awaii					Page 1 of 1	
Company:			PWSID						Δnalv	cic i	Senu	ested					Job#	
Environmental Chemical Corp. Address:	Due Date Requesti	rd:			Marine.			<u> </u>	Tildiy	313 1						100	Preservation Codes:	
1240 Bayshore Hwy											ate)						N - Nane S - H2SO4	
Dity:	TAT Requested (da	178): TS,	. 48 hr		1.002	fate	_				(triplicate)						D = HNO3	- 1
Burlingame State, Zlp:	54	macro	- 48 111			Sul	hate Indicators - Ammonia Total, Carb. Bicarb / 9040C Field			ဟ	5						AA - PhosphorAc	
CA, 94010	Compliance Project	t: A Yes	A No		S 255	å,	1 S		=	무	- TOC					龞		
Phone	PO #:				1 8	욽	904	Ι,	- Metals (GW & Leachate list)	ors	50							
	4347.017				9	8.	- An	1	Į.	licat	lica							1
Email: KMcNeill@ecc.net	WO#				Sample (Yes or No ISD (Yes or No)	i i	- E E	1	2	i i	Leachate Indicators							
Project Name	Project #				S Z	Į Ž	ag Ga		- 4	hat	Įį.					containers		
West Maui TDS GW & Leachate 1 Q 2025	41020464				8 6	N N	E 0		8	2	8					isi		
Site:	SSOW#				밀	9	Tota	Ξ.	the state of the s	10	Major L						Other:	- 1
					Sa		2		Re	Z.	ž					rof		
			Sample	Matrix	MS/	300_ORFM_28D_D6 - Major Anions - Chloride, Sulfate	350.1 - Major Leachate Indicators 23208 - Alkalinity Total, Carb. Bio	Measurements - PH	900	2640C_Calcd - Major Leachate Indicators - TDS	900					Total Number of		
			Туре	(W=water, S=solid,	E	FF	Ma	E E	6020B DOD6	5	5310C_DOD6					Z		
		Sample		D-waste/pll,	Field	3	0.1 20B	1225	208	400	5					İ		
Sample Identification	Sample Date	Time	G=grab) BT-	Tissue, A=Air)	E E				-			100	2000	ESP/ 650		5	Special Instructions/Not	3:
		\sim	Preservatio	n Code:	\bowtie	N	SN	I N	D	N	AA	100	155	(F) S	593	X		
TDSS-MW01-1025	42/48/25	1400	6	W	NN	١	1	(1	1	2							
TDS5-MW42-1825	42/48/25		6	ω	NN	11		1 1	1		2						232484254BC caldd u	SACH
103) - MMAY 168)	V/108/23	4000			1	+	 	+	+	+ +	0	1		_	+-		The same of the sa	5/5/5-
	1				+	+		+	+		\leftarrow							\neg
			1					\perp						Δ				
	12		 		++	+	-		4	\vdash		_		-				\neg
	4				Ш			4							1			
							1/											
					++-	+		+	+		-				+ \			$\overline{}$
					Ш	K									<u> </u>	7		
					W													Λ
					*	+		_				_			+	9.8		
				_/	Щ													
Possible Hazard Identification					Sa					may	be as:	sessed	if sai	nples	are rea	taine	ed longer than 1 month)	- [[]
Non-Hazard Flammable Skin Irritant	Poison B Unki	nown	Radiological	_		_	Return				Dis	posal E	3y Lat)	/	Arch	ive For Months	V
Deliverable Requested: I, II, III, IV, Other (specify)					Sp	pecial	Instru	ctions	/QC R	equir	ements	3					7719.63	;n _
Empty Kit Relinquished by		Date			Time				-			Meth	nod of S	hipment			d DX	
	Date/Time	500	Ic	mpany	1		eived by						- 1	Date/Tim	0	1 <	Company	
Relinquished by	Ø2/08/2	5			2	1,000	u								-		Company	
Relinquistant by	Date/Time:		Co	mpany		Rec	eived by	-				7	-	Date/Tim	e:		Company	
16/4 V		2	625	pa												,		
Relinquished by:	Däte/Time:		e	mpany '		Rec	eived by	1	-		\supset		1	Date/Tip	1/ 19	25	5 0930 Car	
						-			112				ل	41	40		0000	
Custody Seals Intact: Custody Seal No.:						Coo	er Temp	geratur	e(s) °C	and Oth	er Rem	arks;	0	= 1	14			
Δ Yes Δ No			Pac	e 21 o	f 22		14	4		1			ب	-		-		1/20

_

Login Sample Receipt Checklist

Client: Environmental Chemical Corp.

Job Number: 410-207441-1

SDG Number: 410-207441

Login Number: 207441 List Source: Eurofins Lancaster Laboratories Environment Testing, LLC

List Number: 1

Creator: Arroyo, Haley

Question	Answer	Comment
The cooler's custody seal is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature acceptable, where thermal pres is required (=6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
WV:Container Temp acceptable, where thermal pres is required (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
WV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Is the Field Sampler's name present on COC?	True	
Sample custody seals are intact.	N/A	
VOA sample vials do not have headspace >6mm in diameter (none, if from WV)?	N/A	

2

4

7

9

4 4

12

IP

14