State of Hawaii, Department of Health, Clean Air Branch 2023 Maui Wildfires Ambient Community Air Monitoring and Sampling Weekly Report Lahaina, Maui

July 25 through July 31, 2024 [Report Updated: September 5, 2024]

Tetra Tech, Inc. (Tetra Tech) prepared a Community Air Monitoring and Sampling Plan (CAMSP) to address community air monitoring during debris removal operations in response to the 2023 Maui Wildfires. Air monitoring and sampling occurred from July 25 through July 31, 2024, at the four community locations across Lahaina listed below and shown on **Figure 1**:

- Leialii Hawaiian Homelands (AM-01)
- WW Pump Station #4 (AM-02)
- Lahaina Intermediate School (AM-03)
- Lahaina Boys & Girls Club (AM-04)

The CAMSP addresses ambient community air monitoring and sampling to assess conditions and determine whether debris removal activities, managed by the U.S. Army Corps of Engineers (USACE), and private contractors, significantly impact air quality in Lahaina. Data collected is made available to the State of Hawaii Department of Health, Clean Air Branch (HDOH) through an online shared site and the information presented in these weekly reports. Air monitoring and sampling as prescribed in the CAMSP will continue until debris removal activities are complete or until HDOH advises otherwise.

Air quality monitoring for particulate matter was collected at all four community locations over a 24-hour period each day in accordance with the CAMSP. Ambient air monitoring was performed to assess the presence of airborne particulates with a particle size diameter of 10 micrometers (μ m), which is the size that is recognized as being small enough to be inhaled into a person's lungs. This particle size diameter is recognized for health evaluations and is identified as "PM₁₀". Monitoring for PM₁₀ was conducted 24 hours a day, 7 days a week from July 25 through July 31 at each of the locations. Monitoring results were compared to the National Ambient Air Quality Standard (NAAQS) for PM₁₀, 24-hour time-weighted average of 150 micrograms per cubic meter (μ g/m³) screening level.

The weekly reports do not include air quality monitoring for fine particulate matter (particle size diameter of 2.5 μ m or less [PM_{2.5}]). The Department of Health or U.S. Environmental Protection Agency (EPA) monitors for this at six locations in Lahaina; results are accessible at <u>https://fire.airnow.gov/</u>.

Daily air sampling at all four community locations accorded with the CAMSP. Air samples were analyzed for asbestos and 16 metals, including antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, molybdenum, nickel, selenium, thallium, vanadium, and zinc. Analytical results were compared to Site Screening Action Levels (SSALs) for asbestos and metals, as presented in the CAMSP.

Air Monitoring Results

Real time PM_{10} concentrations were detected at each monitoring location throughout this reporting period. None of the results exceeded the 150 μ g/m³ screening level, as shown in **Table 1**.

Air Sampling Results

A total of 28 samples for asbestos fibers were collected throughout this reporting period. All analytical results were below the SSAL of 0.003 fibers per cubic centimeter (fibers/cc) and below the laboratory's

analytical sensitivity (see **Table 2**). Notably, the laboratory commented "Numerous gypsum fibers present" regarding samples collected at the following monitoring station:

• WW Pump Station #4 on July 30

Gypsum is a common material used in drywall, plaster, and cement, so its presence in the sample filters likely resulted from debris removal operations or other disturbances of built-environment fire debris. The presence of gypsum fibers in the samples was not sufficient to obscure asbestos analysis; nor did this pose a health and safety concern. Occupational health exposure thresholds for gypsum are 5 milligrams per cubic meter (mg/m³) for respirable dust, and 10 mg/m³ and 15 mg/m³, respectively, for total dust as time-weighted averages (National Institute for Occupational Safety and Health [NIOSH] and Occupational Safety and Health Administration [OSHA]). While total dust sampling has not occurred, results of size-discriminated particulate sampling (PM₁₀) at these locations do not approach these thresholds and are orders of magnitude less than occupational gypsum exposure criteria.

All ambient air samples from all four community sampling locations yielded low levels of metals, all below SSALs. (see **Table 2**).

Laboratory data sheets conveying asbestos and metals results are in Appendix 1.

Meteorological Summary

Overall wind conditions during this weekly event averaged 1.1 miles per hour originating from a generally south-southeast direction. **Table 3** summarizes meteorological data.

Quality Control Summary

This section presents quality control measures implemented throughout the air monitoring and sampling reporting period. All references and standard operating procedures (SOPs) are included in the CAMSP.

Air monitoring proceeded by use of Met One Instruments, Inc., environmental beta attenuation mass monitors (E-BAM) to allow comparison to NAAQS for particulates. E-BAMs are factory-calibrated annually and do not require daily calibration, except for a leak check and a flow audit, which were performed before monitoring according to the manufacturer's procedures.

Collection of samples to be analyzed for asbestos occurred by use of a Casella Vortex 3 or similar air sampling pump. Sampling flow rates are determined and documented by pre- and post- calibration of each sampling pump according to a primary calibration standard. Calibration and sampling accorded with Tetra Tech SOPs 064-2, "Calibration of Air Sampling Pump," and 073-3, "Air Quality Monitoring"; and EPA Environmental Response Team (ERT) SOPs 2008, "General Air Monitoring and Sampling Guidelines," and 2015 "Asbestos Air Sampling," included in the CAMSP.

Collection of samples to be analyzed for metals occurred by use of Tisch Environmental High Volume Air Samplers, or equivalent, in accordance with the following methods:

- EPA Compendium Method IO-2.1, Sampling of Ambient Air for Total Suspended Particulate Matter (SPM) and for PM₁₀ by Use of a High Volume (HV) Sampler
- EPA Compendium Method IO-3.5: Compendium of Methods for Determination of Inorganic Compounds in Ambient Air: Determination of Metals in Ambient Particulate Matter Via Inductively Coupled Plasma/Mass Spectrometry (ICP/MS). EPA/625/R-96/010a
- EPA 40 *Code of Federal Regulations* (CFR) Part 50, Method for Determination of Lead in Total Suspended Particulate Matter
- EPA 40 CFR Part 58, Appendix E: Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring

• SOPs for Lead Monitoring by Use of a Total Suspended Particulate (TSP) High Volume Sampler.

Field technicians conducted photographic and written documentation in accordance with Tetra Tech SOP No. 024- 4, "Recording of Notes in Field Logbook."

Following receipt of air sampling results from off-site analytical laboratories, analytical data are maintained in an electronic database and compared to SSALs. Level 1 data verification of all analytical data occurs, and an industrial hygienist reviews results.

Attachments

Table 1 State of Hawaii, Department of Health, Clean Air Branch Particulate Monitoring Results for PM₁₀ Maui Wildfires, Lahaina July 25 through July 31, 2024 [Report Updated: September 5, 2024]

	Screening Level	TWA Results 150 (μg/m ³)
	Leialii Hawaiian Homelands (AM-01)	11
7/25/2024	WW Pump Station #4 (AM-02)	9.5
7/25/2024	Lahaina Intermediate School (AM-03)	15
	Lahaina Boys & Girls Club (AM-04)	14
	Leialii Hawaiian Homelands (AM-01)	15
7/26/2024	WW Pump Station #4 (AM-02)	7.9
//20/2024	Lahaina Intermediate School (AM-03)	11
	Lahaina Boys & Girls Club (AM-04)	11
	Leialii Hawaiian Homelands (AM-01)	6.5
7/27/2024	WW Pump Station #4 (AM-02)	5.9
7/27/2024	Lahaina Intermediate School (AM-03)	13
	Lahaina Boys & Girls Club (AM-04)	9.0
	Leialii Hawaiian Homelands (AM-01)	7.4
1/20/2024	WW Pump Station #4 (AM-02)	6.0
//28/2024	Lahaina Intermediate School (AM-03)	12
	Lahaina Boys & Girls Club (AM-04)	8.5
	Leialii Hawaiian Homelands (AM-01)	7.8
7/20/2024	WW Pump Station #4 (AM-02)	6.0
//29/2024	Lahaina Intermediate School (AM-03)	10
	Lahaina Boys & Girls Club (AM-04)	9.9
	Leialii Hawaiian Homelands (AM-01)	10
7/20/2024	WW Pump Station #4 (AM-02)	5.7
//30/2024	Lahaina Intermediate School (AM-03)	8.2
	Lahaina Boys & Girls Club (AM-04)	7.3
	Leialii Hawaiian Homelands (AM-01)	6.6
7/21/2024	WW Pump Station #4 (AM-02)	7.9
//31/2024	Lahaina Intermediate School (AM-03)	11
	Lahaina Boys & Girls Club (AM-04)	17

Notes:

 $\mu g/m^3 = micrograms$ per cubic meter

TWA = 24 Hour Time-Weighted Average

TWA calculation results are shown in two significant figures

Table 2 State of Hawaii, Department of Health, Clean Air Branch Asbestos and Metals Sampling Results Maui Wildfires, Lahaina July 25 through July 31, 2024 [Report Updated: September 5, 2024]

Analyte		Asbestos	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Molybdenum	Nickel	Selenium	Thallium	Vanadium	Zinc
Units*		s/cc	µg/m ³	μg/m ³	μg/m ³	$\mu g/m^3$	μg/m ³	μg/m ³	μg/m ³	µg/m ³	μg/m ³	µg/m ³						
	Site Screening Action Level	0.003 1	0.7	0.05	1.2	0.05	0.02	12	0.01	240	1.5	0.12	4.8	0.02	48	24	0.24	1200
	Leialii Hawaiian Homelands (AM-01)	< 0.0024	0.0000813	0.000547	0.00581	0.0000197	ND	0.00422	0.000750	0.190	0.000527	0.0203	0.0119	0.00235	0.000344	0.00000245	0.00257	ND
7/25/2024	WW Pump Station #4 (AM-02)	< 0.0024	0.000172	0.000357	0.00456	0.0000158	ND	0.00253	0.000476	0.0345	0.00112	0.0149	0.00194	0.00136	0.000340	0.00000253	0.00174	ND
//25/2024	Lahaina Intermediate School (AM-03)	< 0.0024	0.0000724	0.000435	0.00395	0.0000266	ND	0.00352	0.000672	0.0631	0.000630	0.0165	0.00373	0.00230	0.000351	0.00000268	0.00156	ND
	Lahaina Boys & Girls Club (AM-04)	< 0.0024	0.0000873	0.000341	0.00372	0.0000157	ND	0.00319	0.000459	0.0481	0.000764	0.0155	0.00340	0.00147	0.000343	0.00000225	0.00157	ND
7/26/2024	Leialii Hawaiian Homelands (AM-01)	< 0.0024	0.0000656	0.00140	0.00844	0.0000388	ND	0.00720	0.00169	0.157	0.000503	0.0415	0.00845	0.00347	0.000292	0.00000204	0.00482	ND
	WW Pump Station #4 (AM-02)	< 0.0024	0.0000948	0.000347	0.00485	0.0000155	ND	0.00334	0.000512	0.0365	0.000883	0.0150	0.00214	0.00150	0.000198	0.00000117	0.00163	ND
//20/2024	Lahaina Intermediate School (AM-03)	< 0.0024	0.0000490	0.000252	0.00342	0.0000391	ND	0.00351	0.000600	0.0354	0.000527	0.0154	0.00283	0.00159	0.000190	0.00000119	0.00145	ND
	Lahaina Boys & Girls Club (AM-04)	< 0.0024	0.000108	0.000538	0.00551	0.0000231	ND	0.00404	0.000786	0.0528	0.00118	0.0251	0.00400	0.00194	0.000226	0.00000145	0.00211	ND
	Leialii Hawaiian Homelands (AM-01)	< 0.0024	0.0000674	0.00202	0.0136	0.0000735	ND	0.0121	0.00307	0.119	0.000667	0.0726	0.00491	0.00563	0.000395	0.00000283	0.00843	ND
7/27/2024	WW Pump Station #4 (AM-02)	< 0.0024	0.0000915	0.000726	0.00892	0.0000278	ND	0.00458	0.00150	0.0356	0.00158	0.0672	0.00183	0.00246	0.000243	0.00000377	0.00313	ND
7/27/2024	Lahaina Intermediate School (AM-03)	< 0.0024	0.0000470	0.000266	0.00315	0.0000341	ND	0.00343	0.000557	0.0358	0.000400	0.0138	0.00258	0.00149	0.000138	0.00000906	0.00141	ND
	Lahaina Boys & Girls Club (AM-04)	< 0.0024	0.0000704	0.000591	0.00355	0.0000171	ND	0.00314	0.000578	0.0307	0.000978	0.0164	0.00176	0.00141	0.000149	0.000000924	0.00138	ND
	Leialii Hawaiian Homelands (AM-01)	< 0.0024	0.0000586	0.000380	0.00323	0.00000996	ND	0.00247	0.000336	0.194	0.000266	0.0100	0.00901	0.00112	0.000142	0.00000667	0.00125	ND
7/28/2024	WW Pump Station #4 (AM-02)	< 0.0024	0.0000771	0.000250	0.00308	0.00000902	ND	0.00192	0.000264	0.0317	0.000578	0.00838	0.00179	0.000869	0.000143	0.000000541	0.000999	ND
//28/2024	Lahaina Intermediate School (AM-03)	< 0.0024	0.0000428	0.000175	0.00252	0.0000169	ND	0.00303	0.000336	0.0533	0.000402	0.00936	0.00397	0.00148	0.000148	0.000000714	0.00108	ND
	Lahaina Boys & Girls Club (AM-04)	< 0.0024	0.0000695	0.000266	0.00339	0.00000921	ND	0.00288	0.000336	0.0482	0.000672	0.0102	0.00267	0.00143	0.000163	0.00000633	0.00110	ND
	Leialii Hawaiian Homelands (AM-01)	< 0.0024	0.0000453	0.000588	0.00429	0.0000139	ND	0.00362	0.000640	0.169	0.000316	0.0159	0.00785	0.00159	0.000160	0.00000876	0.00196	ND
7/20/2024	WW Pump Station #4 (AM-02)	< 0.0024	0.000110	0.000306	0.00442	0.00000944	ND	0.00212	0.000316	0.0264	0.000684	0.00947	0.00143	0.000978	0.000151	0.00000691	0.00104	ND
//29/2024	Lahaina Intermediate School (AM-03)	< 0.0024	0.0000418	0.000221	0.00200	0.0000151	ND	0.00238	0.000276	0.0335	0.000438	0.00693	0.00267	0.000925	0.000123	0.000000549	0.000789	ND
	Lahaina Boys & Girls Club (AM-04)	< 0.0024	0.0000796	0.000432	0.00336	0.0000103	ND	0.00244	0.000350	0.0377	0.000946	0.0112	0.00211	0.00106	0.000143	0.000000710	0.00101	ND
	Leialii Hawaiian Homelands (AM-01)	< 0.0024	0.0000744	0.00115	0.00757	0.0000317	ND	0.00611	0.00132	0.177	0.000795	0.0338	0.00871	0.00311	0.000214	0.00000160	0.00388	ND
7/20/2024	WW Pump Station #4 (AM-02)	< 0.0024	0.0000777	0.000293	0.00404	0.0000141	ND	0.00297	0.000517	0.0416	0.000657	0.0153	0.00225	0.00145	0.000152	0.000000917	0.00154	ND
//30/2024	Lahaina Intermediate School (AM-03)	< 0.0024	0.0000664	0.000297	0.00306	0.0000232	ND	0.00473	0.000518	0.0373	0.000480	0.0124	0.00275	0.00216	0.000128	0.00000717	0.00128	ND
	Lahaina Boys & Girls Club (AM-04)	< 0.0024	0.0000694	0.000448	0.00369	0.0000168	ND	0.00305	0.000482	0.0388	0.000759	0.0160	0.00188	0.00126	0.000146	0.00000814	0.00126	ND
	Leialii Hawaiian Homelands (AM-01)	< 0.0024	0.000169	0.00216	0.00743	0.0000264	0.0000704	0.00654	0.00132	0.159	0.000536	0.0310	0.00751	0.00328	0.000218	0.00000143	0.00369	ND
7/21/2024	WW Pump Station #4 (AM-02)	< 0.0024	0.000149	0.000301	0.00602	0.0000152	ND	0.00296	0.000588	0.0373	0.000844	0.0166	0.00180	0.00157	0.000179	0.00000101	0.00173	ND
//51/2024	Lahaina Intermediate School (AM-03)	< 0.0024	0.0000726	0.000270	0.00403	0.0000228	ND	0.00318	0.000577	0.0624	0.000525	0.0133	0.00418	0.00264	0.000213	0.00000976	0.00123	ND
	Lahaina Boys & Girls Club (AM-04)	< 0.0024	0.000109	0.000570	0.00517	0.0000209	ND	0.00372	0.000705	0.0416	0.00118	0.0233	0.00191	0.00189	0.000209	0.00000118	0.00181	ND
-											-							
	95% Upper Confidence Limit ²	NA	0.0000900	0.000710	0.00565	0.0000260	NA	0.00443	0.000900	0.0919	0.000830	0.0251	0.00501	0.00224	0.000240	0.00000170	0.00244	NA

Notes:

¹ Asbestos result determined by transmission electron microscopy (TEM) in accordance with ISO Method 10312. PCMe results are presented.

² 95% UCL determined through 'best fit' lognormal or normal parametric statistics via W test

s/cc = structures per cubic centimeter

 $\mu g/m^3 =$ micrograms per cubic meter NA = Not Applicable

ND = Not detected at or above the laboratory reporting limit

* Laboratory data provided in nanograms per cubic meter, however data presented has been converted to micrograms per cubic meter so data was comparable to the Site Screening Action Levels presented in the CAMSP

Table 3 State of Hawaii, Department of Health, Clean Air Branch Meteorological Data Maui Wildfires, Lahaina July 25 through July 31, 2024

[Report Updated: September 5, 2024]

			Wind	Wind		Rel	Baro
			Speed	Direction	Temperature	Humidity	Pressure
Date	Station ID	Weather Station Name	(mph)	(angle)	(°F)	(%)	(mBar)
7/25/2024	AM-01	Leialii Hawaiian Homelands	1.0	SE	86	61	762.4
7/25/2024	AM-02	WW Pump Station #4	0.9	SSE	84	67	764.6
7/25/2024	AM-03	Lahaina Intermediate School	1.1	ESE	80	64	755.1
7/25/2024	AM-04	Lahaina Boys & Girls Club	0.9	S	80	66	764.1
7/26/2024	AM-01	Leialii Hawaiian Homelands	1.9	ESE	85	54	760.9
7/26/2024	AM-02	WW Pump Station #4	1.3	SSE	83	59	763.0
7/26/2024	AM-03	Lahaina Intermediate School	1.4	ESE	80	57	753.5
7/26/2024	AM-04	Lahaina Boys & Girls Club	1.2	SSW	79	59	762.6
7/27/2024	AM-01	Leialii Hawaiian Homelands	1.0	SE	85	57	759.9
7/27/2024	AM-02	WW Pump Station #4	0.9	SSE	83	63	762.0
7/27/2024	AM-03	Lahaina Intermediate School	1.1	SE	79	62	752.5
7/27/2024	AM-04	Lahaina Boys & Girls Club	1.3	SSW	79	64	761.6
7/28/2024	AM-01	Leialii Hawaiian Homelands	1.1	SE	86	60	761.3
7/28/2024	AM-02	WW Pump Station #4	1.1	SSE	83	67	763.4
7/28/2024	AM-03	Lahaina Intermediate School	1.1	ESE	80	64	753.9
7/28/2024	AM-04	Lahaina Boys & Girls Club	1.1	S	78	67	763.0
7/29/2024	AM-01	Leialii Hawaiian Homelands	1.1	SE	85	56	762.1
7/29/2024	AM-02	WW Pump Station #4	1.1	SSE	83	62	764.3
7/29/2024	AM-03	Lahaina Intermediate School	1.2	ESE	79	59	754.7
7/29/2024	AM-04	Lahaina Boys & Girls Club	1.2	S	78	63	763.8
7/30/2024	AM-01	Leialii Hawaiian Homelands	1.0	SE	83	65	761.6
7/30/2024	AM-02	WW Pump Station #4	0.9	S	82	68	763.8
7/30/2024	AM-03	Lahaina Intermediate School	1.0	ESE	79	66	754.3
7/30/2024	AM-04	Lahaina Boys & Girls Club	1.0	S	78	68	763.3
7/31/2024	AM-01	Leialii Hawaiian Homelands	1.0	ESE	85	56	760.8
7/31/2024	AM-02	WW Pump Station #4	1.1	SSE	82	62	763.0
7/31/2024	AM-03	Lahaina Intermediate School	1.2	ESE	79	59	753.4
7/31/2024	AM-04	Lahaina Boys & Girls Club	1.2	SSW	77	64	762.5

Notes:

°F - Fahrenheit mBar - millibar mph - miles per hour

Appendix 1

Please note, comments pertaining to gypsum may be mentioned in the lab reports below. Gypsum is a common material used in drywall, plaster and cement so its presence in the sample filters is likely due to debris removal operations or other disturbances of built-environment fire debris. A more in-depth discussion can be found in the attached weekly report.

**Please note sample data that does not fall within this reporting period have been removed or redacted

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM01-072524	4-AB	Sample Description: DL247143	
EMSL Sample Number:	042415945-0001		Sample Matrix:	Air
Magnification used for fiber counting:	20,000		Volume (L) :	7203.4
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385
Minimum Length (µm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5
Minimum Level of analysis (chrysotile):	CD		Analyst:	P. Harrison
Minimum Level of analysis (amphibole):	ADX			

Estimated Particulate Loading on Filter %: 5 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024

TOTAL STRUCTURES (All Sizes)											
	Minimum	Structures D	etected	Density	Concentration	95 % Confidence Interval (S/cc)					
	ID Level	Primary	Total	(S/mm ²)	(S/cc)	Lower Upper					
Total Chrysotile	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total Amphibole	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total Asbestos Structures	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total All Structures	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					

	PCM EQUIVALENT (PCMe) Fibers											
(>5 microns in length with >3:1 Aspect Ratio)												
Minimum Fibers Detected Density Concentration 95 % Confidence Interv												
	ID Level	Primary	Primary Total ((F/cc)	Lower Upper						
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						

Roby Ruy Approved Signatory

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

EMSL Order: Customer ID: Customer PO: Project ID:

042415945 TTDC42 1207085 N/A

 Phone:
 (703) 489-2674

 Fax:
 N/A

 Received Date:
 07/31/2024 09:40 AM

 Analysis Date:
 08/05/2024

 Report Date:
 08/06/2024

	EMSL S	ample ID:	042415	5945-	0001				Customer	Sample:	MFL-AM01-072524-AB
Grid	Grid	Structure Type	Struct	ure ber	Dimensi	ons (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID			Number	
B2	B2	None Detected									
B2	D4	None Detected									
B2	G8	None Detected									
B3	H2	None Detected									
B3	B4	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM02-0725	24-AB	Sample Description: DL247145				
EMSL Sample Number:	042415945-0002	2	Sample Matrix:	Air			
Magnification used for fiber counting:	20,000		Volume (L) :	7143.9			
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385			
Minimum Length (μm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129			
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5			
Minimum Level of analysis (chrysotile):	CD		Analyst:	P. Harrison			
Minimum Level of analysis (amphibole):	ADX						

Estimated Particulate Loading on Filter %: 5 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Tremolite Total Asbestos Structures CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

	PCM EQUIVALENT (PCMe) Fibers											
(>5 microns in length with >3:1 Aspect Ratio)												
	95 % Confidence Interval (F/cc)											
	ID Level	Primary	Total	(F/mm ²)	(F/cc)	Lower Upper						
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						

Approved S

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042415945 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 07/31/2024 09:40 AM **Received Date:** 08/05/2024 Analysis Date: 08/06/2024 **Report Date:**

	EMSL S	ample ID:	042415945-0002						Customer	Sample:	MFL-AM02-072524-AB
Grid	Grid	Structure Type	Struct	ture ber	Dimensi	ons (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID			Number	
B5	A5	None Detected									
B5	E8	None Detected									
B5	16	None Detected									
B6	18	None Detected									
B6	C4	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM03-0725	24-AB	Sample Description: DL247179				
EMSL Sample Number:	042415945-0003		Sample Matrix:	Air			
Magnification used for fiber counting:	20,000		Volume (L) :	7219.4			
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385			
Minimum Length (μm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129			
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5			
Minimum Level of analysis (chrysotile):	CD		Analyst:	P. Harrison			
Minimum Level of analysis (amphibole):	ADX						

Estimated Particulate Loading on Filter %: 3 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Tremolite Total Asbestos Structures CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

	PCM EQUIVALENT (PCMe) Fibers												
(>5 microns in length with >3:1 Aspect Ratio)													
Minimum Fibers Detected Density Concentration 95 % Confidence													
	ID Level	Primary	Primary Total ((F/cc)	Lower Upper							
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							

Approved S

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042415945 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 07/31/2024 09:40 AM **Received Date:** 08/05/2024 Analysis Date: 08/06/2024 **Report Date:**

	EMSL S	ample ID:	042415	5945-	0003				Customer	Sample:	MFL-AM03-072524-AB
Grid	Grid	Structure Type	Struct Num	ure ber	Dimensions (µm)		Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID	~		Number	
C2	J1	None Detected									
C2	G5	None Detected									
C2	D6	None Detected									
C3	H4	None Detected									
C3	C1	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM04-0725	24-AB	Sample Description: DL247153				
EMSL Sample Number:	042415945-0004	1	Sample Matrix:	Air			
Magnification used for fiber counting:	20,000		Volume (L) :	7126.9			
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385			
Minimum Length (µm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129			
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5			
Minimum Level of analysis (chrysotile):	CD		Analyst:	P. Harrison			
Minimum Level of analysis (amphibole):	ADX						

Estimated Particulate Loading on Filter %: 5 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Tremolite Total Asbestos Structures CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

	PCM EQUIVALENT (PCMe) Fibers											
(>5 microns in length with >3:1 Aspect Ratio)												
	Minimum	Fibers Det	ected	Density	Concentration	95 % Confidence Interval (F/cc)						
	ID Level	Primary	Total	(F/mm ²)	(F/cc)	Lower Upper						
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						

Approved S

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042415945 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 07/31/2024 09:40 AM **Received Date:** 08/05/2024 Analysis Date: 08/06/2024 **Report Date:**

	EMSL S	ample ID:	042415	5945-	0004				Customer	Sample:	MFL-AM04-072524-AB
Grid	Grid	Structure Type	Struct	ure ber	Dimensi	ons (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID			Number	
C5	A5	None Detected									
C5	D2	None Detected									
C 5	16	None Detected									
C6	H4	None Detected									
C 6	A5	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-FB01-07252	4-AB	Sample Description: DL247159				
EMSL Sample Number:	042415945-0005		Sample Matrix:	Air			
Magnification used for fiber counting:	20,000		Volume (L) :	0.0			
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385			
Minimum Length (μm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129			
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	10			
Minimum Level of analysis (chrysotile):	CD		Analyst:	P. Harrison			
Minimum Level of analysis (amphibole):	ADX						

Estimated Particulate Loading on Filter %: 1 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): N/A

Limit of Detection (Structures/cc): N/A

		TOTALSTRU	JCIURES	6 (All Sizes)			
	Minimum	Structures D	etected	Density	Concentration	95 % Confidence Interval (S/cc)	
	ID Level	Primary	Primary Total		(S/cc)	Lower U	pper
Total Chrysotile	CD	0	0	< 23.18			
Total Amphibole	ADX	0	0	< 23.18			
Actinolite	ADX	0	0	< 23.18			
Amosite	ADX	0	0	< 23.18			
Anthophyllite	ADX	0	0	< 23.18			
Crocidolite	ADX	0	0	< 23.18			
Tremolite	ADX	0	0	< 23.18			
Total Asbestos Structures	CD/ADX	0	0	< 23.18			
Other Minerals	-	0	0	< 23.18			
Total All Structures	-	0	0	< 23.18			

		PCM EQUIVA	LENT (P	CMe) Fibers	5								
(>5 microns in length with >3:1 Aspect Ratio)													
	Minimum	Minimum Fibers Detected Density Concentration											
	ID Level	Primary	Total	(F/mm ²)	(F/cc)	Lower Upper							
Total Chrysotile (PCMe)	CD	0	0	< 23.18									
Total Amphibole (PCMe)	ADX	0	0	< 23.18									
Actinolite	ADX	0	0	< 23.18									
Amosite	ADX	0	0	< 23.18									
Anthophyllite	ADX	0	0	< 23.18									
Crocidolite	ADX	0	0	< 23.18									
Tremolite	ADX	0	0	< 23.18									
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 23.18									
Other Minerals	-	0	0	< 23.18									
Total All Structures (PCMe)	-	0	0	< 23.18									

Comment

Approved S. tory

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042415945 TTDC42 1207085 N/A

Phone: (703) 489-2674 N/A Fax: 07/31/2024 09:40 AM Received Date: Analysis Date: 08/05/2024 Report Date: 08/06/2024

	EMSL S	ample ID:	042415945-	0005			Customer	Sample:	MFL-FB01-072524-AB	
Grid	Grid	Structure Type	Structure Number	Dimensions (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments	
ID	Opening		Primary Total	Length Width	ID			Number		
D2	J2	None Detected								
D2	H4	None Detected								
D2	F8	None Detected								
D2	D4	None Detected								
D2	B2	None Detected								
D3	A10	None Detected								
D3	C7	None Detected								
D3	E9	None Detected								
D3	G10	None Detected								
D3	18	None Detected								

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM01-0726	24-AB	Sample Description: DL247148				
EMSL Sample Number:	042415945-0006	i	Sample Matrix:	Air			
Magnification used for fiber counting:	20,000		Volume (L) :	7226.5			
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385			
Minimum Length (µm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129			
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5			
Minimum Level of analysis (chrysotile):	CD		Analyst:	P. Harrison			
Minimum Level of analysis (amphibole):	ADX						

Estimated Particulate Loading on Filter %: 5 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Tremolite Total Asbestos Structures CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

	PCM EQUIVALENT (PCMe) Fibers											
(>5 microns in length with >3:1 Aspect Ratio)												
	Minimum	Fibers Det	ected	Density	Concentration	95 % Confidence Interval (F/cc)						
	ID Level	Primary	Total	(F/mm ²)	(F/cc)	Lower Upper						
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						

Approved S

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042415945 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 07/31/2024 09:40 AM **Received Date:** 08/05/2024 Analysis Date: 08/06/2024 **Report Date:**

	EMSL S	ample ID:	042415	5945-	0006				Customer	Sample:	MFL-AM01-072624-AB
Grid	Grid	Structure Type	Struct	ture ber	Dimensi	ons (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID	~		Number	
D5	J7	None Detected									
D5	G4	None Detected									
D5	B3	None Detected									
D6	B9	None Detected									
D6	J6	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM02-0726	24-AB	Sample Description: DL247140	
EMSL Sample Number:	042415945-0007	7	Sample Matrix:	Air
Magnification used for fiber counting:	20,000		Volume (L) :	7296.9
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385
Minimum Length (µm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5
Minimum Level of analysis (chrysotile):	CD		Analyst:	P. Harrison
Minimum Level of analysis (amphibole):	ADX			

Estimated Particulate Loading on Filter %: 3 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Tremolite Total Asbestos Structures CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

	PCM EQUIVALENT (PCMe) Fibers										
(>5 microns in length with >3:1 Aspect Ratio)											
Minimum Fibers Detected Density Concentration 95 % Confidence Interval (F/cc)											
	ID Level	Primary	Primary Total		(F/cc)	Lower Upper					
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					

Approved S

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042415945 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 07/31/2024 09:40 AM **Received Date:** 08/05/2024 Analysis Date: 08/06/2024 **Report Date:**

	EMSL S	ample ID:	042415945-0007						Customer	Sample:	MFL-AM02-072624-AB
Grid	Grid	Structure Type	Struc	ture ber	Dimensi	ons (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID			Number	
E3	14	None Detected									
E3	G6	None Detected									
E3	D4	None Detected									
E4	13	None Detected									
E4	C6	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM03-07262	4-AB	Sample Description: DL247163				
EMSL Sample Number:	042415945-0008		Sample Matrix:	Air			
Magnification used for fiber counting:	20,000		Volume (L) :	7154.2			
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385			
Minimum Length (µm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129			
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5			
Minimum Level of analysis (chrysotile):	CD		Analyst:	P. Harrison			
Minimum Level of analysis (amphibole):	ADX						

Estimated Particulate Loading on Filter %: 3 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Tremolite Total Asbestos Structures CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

	PCM EQUIVALENT (PCMe) Fibers										
(>5 microns in length with >3:1 Aspect Ratio)											
Minimum Fibers Detected Density Concentration 95 % Confidence Interval (F/											
	ID Level	Primary	Primary Total		(F/cc)	Lower Upper					
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					

Approved S

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042415945 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 07/31/2024 09:40 AM **Received Date:** 08/05/2024 Analysis Date: 08/06/2024 **Report Date:**

	EMSL S	ample ID:	042415945-0008						Customer	Sample:	MFL-AM03-072624-AB
Grid	Grid	Structure Type	Struct Num	ture ber	Dimensi	ons (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID			Number	
E6	A8	None Detected									
E6	D10	None Detected									
E6	H9	None Detected									
E7	H3	None Detected									
E7	C4	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM04-0726	24-AB	Sample Description: DL247167				
EMSL Sample Number:	042415945-0009		Sample Matrix:	Air			
Magnification used for fiber counting:	20,000		Volume (L) :	7249.8			
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385			
Minimum Length (µm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129			
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5			
Minimum Level of analysis (chrysotile):	CD		Analyst:	P. Harrison			
Minimum Level of analysis (amphibole):	ADX						

Estimated Particulate Loading on Filter %: 5 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Tremolite Total Asbestos Structures CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

PCM EQUIVALENT (PCMe) Fibers											
(>5 microns in length with >3:1 Aspect Ratio)											
Minimum Fibers Detected Density Concentration 95 % Confidence Interval (F/cc)											
	ID Level	Primary	Total	(F/mm ²)	(F/cc)	Lower Upper					
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					

Approved S

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042415945 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 07/31/2024 09:40 AM **Received Date:** 08/05/2024 Analysis Date: 08/06/2024 **Report Date:**

	EMSL S	ample ID:	04241	5945-	0009				Customer	Sample:	MFL-AM04-072624-AB
Grid	Grid	Structure Type	Struc	ture ber	Dimensi	ons (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID			Number	
F2	A8	None Detected									
F2	D4	None Detected									
F2	G7	None Detected									
F3	H5	None Detected									
F3	E9	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-FB01-07262	24-AB	Sample Description: DL247158				
EMSL Sample Number:	042415945-0010)	Sample Matrix:	Air			
Magnification used for fiber counting:	20,000		Volume (L) :	0.0			
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385			
Minimum Length (μm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129			
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	10			
Minimum Level of analysis (chrysotile):	CD		Analyst:	P. Harrison			
Minimum Level of analysis (amphibole):	ADX						

Estimated Particulate Loading on Filter %: 1 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): N/A

Limit of Detection (Structures/cc): N/A

	IOTAL STRUCTURES (All Sizes)										
	Minimum	Structures D	etected	Density	Concentration	95 % Confidence Interval (S/cc)					
	ID Level	Primary	Total	(S/mm ²)	(S/cc)	Lower Upper					
Total Chrysotile	CD	0	0	< 23.18							
Total Amphibole	ADX	0	0	< 23.18							
Actinolite	ADX	0	0	< 23.18							
Amosite	ADX	0	0	< 23.18							
Anthophyllite	ADX	0	0	< 23.18							
Crocidolite	ADX	0	0	< 23.18							
Tremolite	ADX	0	0	< 23.18							
Total Asbestos Structures	CD/ADX	0	0	< 23.18							
Other Minerals	-	0	0	< 23.18							
Total All Structures	-	0	0	< 23.18							

		PCM EQUIVA	LENT (P	CMe) Fibers	5						
(>5 microns in length with >3:1 Aspect Ratio)											
Minimum Fibers Detected Density Concentration 95 % Confidence Interval (F/											
	ID Level	Primary	Total	(F/mm ²)	(F/cc)	Lower Upper					
Total Chrysotile (PCMe)	CD	0	0	< 23.18							
Total Amphibole (PCMe)	ADX	0	0	< 23.18							
Actinolite	ADX	0	0	< 23.18							
Amosite	ADX	0	0	< 23.18							
Anthophyllite	ADX	0	0	< 23.18							
Crocidolite	ADX	0	0	< 23.18							
Tremolite	ADX	0	0	< 23.18							
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 23.18							
Other Minerals	-	0	0	< 23.18							
Total All Structures (PCMe)	-	0	0	< 23.18							

Comment

Approved S. tory

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042415945 TTDC42 1207085 N/A

 Phone:
 (703) 489-2674

 Fax:
 N/A

 Received Date:
 07/31/2024 09:40 AM

 Analysis Date:
 08/05/2024

 Report Date:
 08/06/2024

	EMSL S	ample ID:	042415945-	0010			Customer	Sample:	MFL-FB01-072624-AB
Grid	Grid	Structure Type	Structure Number	Dimensions (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary Total	Length Width	ID			Number	
F5	J7	None Detected							
F5	H3	None Detected							
F5	F1	None Detected							
F5	D6	None Detected							
F5	B 8	None Detected							
F6	J7	None Detected							
F6	H8	None Detected							
F6	F7	None Detected							
F6	D6	None Detected							
F6	B4	None Detected							

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM01-07272	24-AB	Sample Description: DL247160			
EMSL Sample Number:	042415945-0011		Sample Matrix:	Air		
Magnification used for fiber counting:	20,000		Volume (L) :	7159.5		
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385		
Minimum Length (µm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129		
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5		
Minimum Level of analysis (chrysotile):	CD		Analyst:	P. Harrison		
Minimum Level of analysis (amphibole):	ADX					

Estimated Particulate Loading on Filter %: 5 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Tremolite Total Asbestos Structures CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

[PCM EQUIVALENT (PCMe) Fibers									
(>5 microns in length with >3:1 Aspect Ratio)										
	Minimum	Fibers Detected		Density	Concentration	95 % Confidence Interval (F/cc)				
	ID Level	Primary	Total	(F/mm ²)	(F/cc)	Lower Upper				
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				

Approved S

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042415945 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 07/31/2024 09:40 AM **Received Date:** 08/05/2024 Analysis Date: 08/06/2024 **Report Date:**

	EMSL Sample ID: 042415945-0011								Customer Sample: MFL-AM01-0727		
Grid	Grid	Structure Type	Struct	ture ber	Dimensi	ons (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID	~		Number	
G2	J6	None Detected									
G2	G2	None Detected									
G2	D4	None Detected									
G3	H5	None Detected									
G3	D3	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM02-0727	24-AB	Sample Description: DL247149			
EMSL Sample Number:	042415945-0012		Sample Matrix:	Air		
Magnification used for fiber counting:	20,000		Volume (L) :	7147.7		
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385		
Minimum Length (μm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129		
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5		
Minimum Level of analysis (chrysotile):	CD		Analyst:	P. Harrison		
Minimum Level of analysis (amphibole):	ADX					

Estimated Particulate Loading on Filter %: 3 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Tremolite Total Asbestos Structures CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

PCM EQUIVALENT (PCMe) Fibers										
(>5 microns in length with >3:1 Aspect Ratio)										
	Minimum	Fibers Det	tected	Density	Concentration	95 % Confidence Interval (F/cc)				
	ID Level	Primary	Total	(F/mm ²)	(F/cc)	Lower Upper				
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				

Approved S

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042415945 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 07/31/2024 09:40 AM **Received Date:** 08/05/2024 Analysis Date: 08/06/2024 **Report Date:**

	EMSL Sample ID: 042415945-0012								Customer	MFL-AM02-072724-AB	
Grid	Grid	Structure Type	Struc	ture ber	Dimensi	ons (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID			Number	
G5	A8	None Detected									
G5	E7	None Detected									
G5	17	None Detected									
G6	G2	None Detected									
G6	B2	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM03-0727	24-AB	Sample Description: DL247168			
EMSL Sample Number:	042415945-0013		Sample Matrix:	Air		
Magnification used for fiber counting:	20,000		Volume (L) :	7147.1		
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385		
Minimum Length (µm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129		
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5		
Minimum Level of analysis (chrysotile):	CD		Analyst:	P. Harrison		
Minimum Level of analysis (amphibole):	ADX					

Estimated Particulate Loading on Filter %: 2 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Tremolite Total Asbestos Structures CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

PCM EQUIVALENT (PCMe) Fibers										
(>5 microns in length with >3:1 Aspect Ratio)										
	Minimum	Fibers Det	ected	Density	Concentration	95 % Confidence Interval (F/cc)				
	ID Level	Primary	Total	(F/mm ²)	(F/cc)	Lower Upper				
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				

Approved S

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042415945 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 07/31/2024 09:40 AM **Received Date:** 08/05/2024 Analysis Date: 08/06/2024 **Report Date:**

	EMSL Sample ID: 042415945-0013							Customer Sample: MFL-AM03-0727			
Grid	Grid	Structure Type	Struct	ure ber	Dimensi	ons (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID	~		Number	
H2	B4	None Detected									
H2	E8	None Detected									
H2	G4	None Detected									
H3	C4	None Detected									
H3	H2	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM04-07272	4-AB	Sample Description: DL247147			
EMSL Sample Number:	042415945-0014		Sample Matrix:	Air		
Magnification used for fiber counting:	20,000		Volume (L) :	7294.0		
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385		
Minimum Length (µm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129		
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5		
Minimum Level of analysis (chrysotile):	CD		Analyst:	P. Harrison		
Minimum Level of analysis (amphibole):	ADX					

Estimated Particulate Loading on Filter %: 5 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Tremolite Total Asbestos Structures CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

PCM EQUIVALENT (PCMe) Fibers										
(>5 microns in length with >3:1 Aspect Ratio)										
	Minimum	Fibers Det	ected	Density	Concentration	95 % Confidence Interval (F/cc)				
	ID Level	Primary	Total	(F/mm ²)	(F/cc)	Lower Upper				
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				

Approved S

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042415945 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 07/31/2024 09:40 AM **Received Date:** 08/05/2024 Analysis Date: 08/06/2024 Report Date:

	EMSL S	ample ID:	04241	5945-	0014				Customer	Sample:	MFL-AM04-072724-AB
Grid	Grid	Structure Type	Struc Num	ture ber	Dimensi	ons (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID			Number	
H5	A4	None Detected									
H5	D7	None Detected									
H5	14	None Detected									
H6	B4	None Detected									
H6	G5	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-FB01-07272	4-AB	Sample Description: DL247150	
EMSL Sample Number:	042415945-0015		Sample Matrix:	Air
Magnification used for fiber counting:	20,000		Volume (L) :	0.0
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385
Minimum Length (μm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	10
Minimum Level of analysis (chrysotile):	CD		Analyst:	P. Harrison
Minimum Level of analysis (amphibole):	ADX			

Estimated Particulate Loading on Filter %: 1 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): N/A

Limit of Detection (Structures/cc): N/A

IUTAL STRUCTURES (All Sizes)											
	Minimum	Structures D	etected	Density	Concentration	95 % Confidence Interval (S/cc)					
	ID Level	Primary	Total	(S/mm ²)	(S/cc)	Lower U	pper				
Total Chrysotile	CD	0	0	< 23.18							
Total Amphibole	ADX	0	0	< 23.18							
Actinolite	ADX	0	0	< 23.18							
Amosite	ADX	0	0	< 23.18							
Anthophyllite	ADX	0	0	< 23.18							
Crocidolite	ADX	0	0	< 23.18							
Tremolite	ADX	0	0	< 23.18							
Total Asbestos Structures	CD/ADX	0	0	< 23.18							
Other Minerals	-	0	0	< 23.18							
Total All Structures	-	0	0	< 23.18							

		PCM EQUIVA	LENT (P	CMe) Fibers	;							
(>5 microns in length with >3:1 Aspect Ratio)												
	Minimum	Fibers Det	tected	Density	Concentration	95 % Confidence In	iterval (F/cc)					
	ID Level	Primary	Primary Total ((F/cc)	Lower	Upper					
Total Chrysotile (PCMe)	CD	0	0	< 23.18								
Total Amphibole (PCMe)	ADX	0	0	< 23.18								
Actinolite	ADX	0	0	< 23.18								
Amosite	ADX	0	0	< 23.18								
Anthophyllite	ADX	0	0	< 23.18								
Crocidolite	ADX	0	0	< 23.18								
Tremolite	ADX	0	0	< 23.18								
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 23.18								
Other Minerals	-	0	0	< 23.18								
Total All Structures (PCMe)	-	0	0	< 23.18								

Comment

Approved S. tory

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

Page 1 of 1 - This is the last page of the report

EMSL Order: Customer ID: Customer PO: Project ID:

042415945 TTDC42 1207085 N/A

Phone: (703) 489-2674 N/A Fax: 07/31/2024 09:40 AM Received Date: Analysis Date: 08/05/2024 Report Date: 08/06/2024

EMSL Sample ID:			042415945-	0015			Customer	Sample:	MFL-FB01-072724-AB
Grid	Grid	Structure Type	Structure Number	Dimensions (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary Total	Length Width	ID			Number	
12	J2	None Detected							
12	H3	None Detected							
12	F7	None Detected							
12	D8	None Detected							
12	B4	None Detected							
13	A7	None Detected							
13	C6	None Detected							
13	E8	None Detected							
13	G 9	None Detected							
13	13	None Detected							

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM01-07282	4-AB	Sample Description: DL247171	
EMSL Sample Number:	042415945-0016		Sample Matrix:	Air
Magnification used for fiber counting:	20,000		Volume (L) :	7224.8
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385
Minimum Length (µm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5
Minimum Level of analysis (chrysotile):	CD		Analyst:	P. Harrison
Minimum Level of analysis (amphibole):	ADX			

Estimated Particulate Loading on Filter %: 3 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Tremolite Total Asbestos Structures CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

	PCM EQUIVALENT (PCMe) Fibers											
(>5 microns in length with >3:1 Aspect Ratio)												
	Minimum Fibers Detected Density Concentration 95 % Confidence											
	ID Level	Primary Total		(F/mm ²)	(F/cc)	Lower Upper						
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						

Approved S

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042415945 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 07/31/2024 09:40 AM **Received Date:** 08/05/2024 Analysis Date: 08/06/2024 **Report Date:**

	EMSL S	ample ID:	042415	5945-	0016				Customer	Sample:	MFL-AM01-072824-AB
Grid	Grid	Structure Type	Struct	Structure Number Dime		ons (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID			Number	
15	A4	None Detected									
15	D8	None Detected									
15	G10	None Detected									
16	B6	None Detected									
16	J5	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM02-0728	24-AB	Sample Description: DL247165	
EMSL Sample Number:	042415945-0017	7	Sample Matrix:	Air
Magnification used for fiber counting:	20,000		Volume (L) :	7181.4
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385
Minimum Length (µm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5
Minimum Level of analysis (chrysotile):	CD		Analyst:	P. Harrison
Minimum Level of analysis (amphibole):	ADX			

Estimated Particulate Loading on Filter %: 3 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Tremolite Total Asbestos Structures CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

	PCM EQUIVALENT (PCMe) Fibers											
(>5 microns in length with >3:1 Aspect Ratio)												
Minimum Fibers Detected Density Concentration 95 % Confidence Inte												
	ID Level	Primary	Total	(F/mm ²)	(F/cc)	Lower Upper						
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						

Approved S

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042415945 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 07/31/2024 09:40 AM **Received Date:** 08/05/2024 Analysis Date: 08/06/2024 **Report Date:**

	EMSL S	ample ID:	042415	5945-	0017				Customer	Sample:	MFL-AM02-072824-AB
Grid	Grid	Structure Type	Struct	ture ber	Dimensi	Dimensions (µm)		Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID			Number	
J2	H6	None Detected									
J2	E3	None Detected									
J2	A3	None Detected									
J3	C8	None Detected									
J3	H6	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM03-0728	24-AB	Sample Description: DL247169	
EMSL Sample Number:	042415945-0018		Sample Matrix:	Air
Magnification used for fiber counting:	20,000		Volume (L) :	7153.1
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385
Minimum Length (μm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5
Minimum Level of analysis (chrysotile):	CD		Analyst:	P. Harrison
Minimum Level of analysis (amphibole):	ADX			

Estimated Particulate Loading on Filter %: 3 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Tremolite Total Asbestos Structures CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

		PCM EQUIVA	LENT (P	CMe) Fibers	6								
	(>5 microns in length with >3:1 Aspect Ratio)												
	Minimum	Fibers Det	tected	Density	Concentration	95 % Confidence Interval (F/cc)							
	ID Level	Primary	Total	(F/mm ²)	(F/cc)	Lower Upper							
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							

Approved S

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042415945 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 07/31/2024 09:40 AM **Received Date:** 08/05/2024 Analysis Date: 08/06/2024 **Report Date:**

	EMSL S	ample ID:	042415945-0018						Customer Sample: MFL-AM03-072824-4			
Grid	Grid	Structure Type	Struct	ure ber	Dimensi	ons (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments	
ID	Opening		Primary	Total	Length	Width	ID	~		Number		
J5	15	None Detected										
J5	E8	None Detected										
J5	A7	None Detected										
J6	B4	None Detected										
J6	16	None Detected										

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM04-0728	24-AB	Sample Description: DL247154	
EMSL Sample Number:	042415945-0019		Sample Matrix:	Air
Magnification used for fiber counting:	20,000		Volume (L) :	7178.5
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385
Minimum Length (μm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5
Minimum Level of analysis (chrysotile):	CD		Analyst:	P. Harrison
Minimum Level of analysis (amphibole):	ADX			

Estimated Particulate Loading on Filter %: 3 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Tremolite Total Asbestos Structures CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

		PCM EQUIVA	LENT (P	CMe) Fibers	6								
	(>5 microns in length with >3:1 Aspect Ratio)												
	Minimum	Fibers Det	tected	Density	Concentration	95 % Confidence Interval (F/cc)							
	ID Level	Primary	Total	(F/mm ²)	(F/cc)	Lower Upper							
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024							

Approved S

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042415945 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 07/31/2024 09:40 AM **Received Date:** 08/05/2024 Analysis Date: 08/06/2024 **Report Date:**

	EMSL S	ample ID:	042415945-0019						Customer Sample: MFL-AM04-072824		
Grid	Grid Opening	Structure Type	Struct Num Primary	ture ber Total	Dimensi Lenath	ons (µm) Width	Level of	Mineral Type	Additional Mineral ID	Image Number	Structure Comments
K2	I5	None Detected									
K2	G4	None Detected									
K2	C4	None Detected									
K 3	D8	None Detected									
K 3	J5	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-FB01-07282	4-AB	Sample Description: DL246247			
EMSL Sample Number:	042415945-0020		Sample Matrix:	Air		
Magnification used for fiber counting:	20,000		Volume (L) :	0.0		
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385		
Minimum Length (μm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129		
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	10		
Minimum Level of analysis (chrysotile):	CD		Analyst:	P. Harrison		
Minimum Level of analysis (amphibole):	ADX					

Estimated Particulate Loading on Filter %: 1 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): N/A

Limit of Detection (Structures/cc): N/A

	TOTAL STRUCTURES (All Sizes)											
	Minimum	Structures D	etected	Density	Concentration	95 % Confidence Interval (S/cc)						
	ID Level	Primary Total		(S/mm ²)	(S/cc)	Lower Upper						
Total Chrysotile	CD	0	0	< 23.18								
Total Amphibole	ADX	0	0	< 23.18								
Actinolite	ADX	0	0	< 23.18								
Amosite	ADX	0	0	< 23.18								
Anthophyllite	ADX	0	0	< 23.18								
Crocidolite	ADX	0	0	< 23.18								
Tremolite	ADX	0	0	< 23.18								
Total Asbestos Structures	CD/ADX	0	0	< 23.18								
Other Minerals	-	0	0	< 23.18								
Total All Structures	-	0	0	< 23.18								

		PCM EQUIVA	LENT (P	CMe) Fibers	5						
(>5 microns in length with >3:1 Aspect Ratio)											
	Minimum	Fibers Det	tected	Density	Concentration (F/cc)	95 % Confidence Interval (F/cc)					
	ID Level	Primary	Total	(F/mm ²)		Lower Upper					
Total Chrysotile (PCMe)	CD	0	0	< 23.18							
Total Amphibole (PCMe)	ADX	0	0	< 23.18							
Actinolite	ADX	0	0	< 23.18							
Amosite	ADX	0	0	< 23.18							
Anthophyllite	ADX	0	0	< 23.18							
Crocidolite	ADX	0	0	< 23.18							
Tremolite	ADX	0	0	< 23.18							
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 23.18							
Other Minerals	-	0	0	< 23.18							
Total All Structures (PCMe)	-	0	0	< 23.18							

Comment

Approved S. tory

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042415945 TTDC42 1207085 N/A

 Phone:
 (703) 489-2674

 Fax:
 N/A

 Received Date:
 07/31/2024 09:40 AM

 Analysis Date:
 08/05/2024

 Report Date:
 08/06/2024

	EMSL S	ample ID:	042415945-	0020			Customer	Sample:	MFL-FB01-072824-AB
Grid ID	Grid Opening	Structure Type	Structure Number Primary Total	Dimensions (µm) Length Width	Level of ID	Mineral Type	Additional Mineral ID	Image Number	Structure Comments
K 5	A6	None Detected							
K 5	C8	None Detected							
K5	E4	None Detected							
K5	G2	None Detected							
K5	I 4	None Detected							
K 6	J8	None Detected							
K 6	H7	None Detected							
K 6	F4	None Detected							
K 6	D2	None Detected							
K 6	B 6	None Detected							

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	Lab Blank		Sample Description: Lab Blank	
EMSL Sample Number:	042415945-0021		Sample Matrix:	Air
Magnification used for fiber counting:	20,000		Volume (L) :	0.0
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385
Minimum Length (μm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	10
Minimum Level of analysis (chrysotile):	CD		Analyst:	P. Harrison
Minimum Level of analysis (amphibole):	ADX			

Estimated Particulate Loading on Filter %: 1 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): N/A

Limit of Detection (Structures/cc): N/A

		TOTAL STRU	JCTURES	S (All Sizes)		
	Minimum	Structures D)etected	Density	Concentration	95 % Confidence Interval (S/cc)
	ID Level	Primary	Total	(S/mm ²)	(S/cc)	Lower Upper
Total Chrysotile	CD	0	0	< 23.18		
Total Amphibole	ADX	0	0	< 23.18		
Actinolite	ADX	0	0	< 23.18		
Amosite	ADX	0	0	< 23.18		
Anthophyllite	ADX	0	0	< 23.18		
Crocidolite	ADX	0	0	< 23.18		
Tremolite	ADX	0	0	< 23.18		
Total Asbestos Structures	CD/ADX	0	0	< 23.18		
Other Minerals	-	0	0	< 23.18		
Total All Structures	-	0	0	< 23.18		

		PCM EQUIVA	LENT (P	CMe) Fibers	5						
(>5 microns in length with >3:1 Aspect Ratio)											
	Minimum	Fibers Det	tected	Density	Concentration	95 % Confidence Interval (F/cc)					
	ID Level	Primary	Total	- (F/mm²)	(F/cc)	Lower	Upper				
Total Chrysotile (PCMe)	CD	0	0	< 23.18							
Total Amphibole (PCMe)	ADX	0	0	< 23.18							
Actinolite	ADX	0	0	< 23.18							
Amosite	ADX	0	0	< 23.18							
Anthophyllite	ADX	0	0	< 23.18							
Crocidolite	ADX	0	0	< 23.18							
Tremolite	ADX	0	0	< 23.18							
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 23.18							
Other Minerals	-	0	0	< 23.18							
Total All Structures (PCMe)	-	0	0	< 23.18							

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042415945

TTDC42

EMSL Order:

Customer ID:

 Phone:
 (703) 489-2674

 Fax:
 N/A

 Received Date:
 07/31/2024 09:40 AM

 Analysis Date:
 08/05/2024

 Report Date:
 08/06/2024

Page 1 of 1 - This is the last page of the report

tory

Approved S.

	EMSL S	ample ID:	042415945-	0021			Customer	Sample:	Lab Blank
Grid	Grid	Structure Type	Structure Number	Dimensions (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary I otal	Length Width	ID			Number	
A1	A5	None Detected							
A1	C2	None Detected							
A1	E1	None Detected							
A1	G4	None Detected							
A1	13	None Detected							
A2	J7	None Detected							
A2	H5	None Detected							
A2	F4	None Detected							
A2	D8	None Detected							
A2	B5	None Detected							

OrderID:	042415945
----------	-----------

Asbestos Chain of Custody (Air, Bulk, Soil)

EMSL Order Number / Lab Use Only

EMSL Analytical, Inc. 200 Route 130 North Cinnaminson, NJ 08077

#042415945

PHONE: (800) 220-3675

MSL ANALYTICAL, INC. STING LABS · PRODUCTS · TRAINING	"V7-T		EMA	Alter the billion on outline of	welton a star of a star
Customer ID:		Billing ID:	A BUL AAABAA MARU TRUC		
Company Name: Tetra Tech	s	Company Name:			
Contact Name: Chelsea Saber	matio	Billing Contact:			
Street Address: 1560 Broadway	STE, 1400	Street Address:		la.	
City. State, Zip: Denver, CO 802	OQ Country: USA	City, State, Zip:		Coun	try:
5 (703) 489-2674	Lal atach a	Email(s) for Invoice:			the second s
Chelsea, saber e	Project Info	rmation			
roject Mgui Fires Lahain	٩		Purchase Order:	107085	
MSL LIMS Project ID: rapplicable, EMSL will	US	State where HT State	ate of Connecticut (CT) m	ust select project locat	on:
rovide) Sampled By Name:	Sampled By Signature:		Commercial (Taxa	No. of Sample	s o o
Shaiha Epster	Turn-Around-	Time (TAT)		in Shipment	20
3 Hour 44.5 Hour 6 Hour	24 Hour 32 Hour	48 Hour 72 H	our 96 Hour	1 Week	2 Week
TEM Air 3-6	Hour, please call ahead to schedule. 32 Hour TAT availabl Test Sele	for select tests only; samples must be s	ubmitted by 11:30 am.		
PCM Air	TEM - A	ir	TEM - Settled	Dust	
NIOSH 7400	AHERA 40 CFR, Part 7	33	Microvac - AST	M D5755	
PLM - Bulk (reporting limit)	EPA Level II		Qualitative via	Ittration Prep	
PLM EPA 600/R-93/116 (<1%)	ISO 10312*		Qualitative via	Prop Mount Prep	
		<u>ılk</u>	Soil - Rock -		na limit)*
400 (<0.25%) 1,000 (<0.1%)) NYS NOB 198.4 (Non-F	riable-NY)	PLM EPA 600/	33/116 with milling	prep (<0.25%)
POINT COUNT W/ GRAVIMETRIC	TEM EPA 600/R-93/116	w Milling Prep (0.1%)	PLM EPA 600/	-93/116 with milling	ored (<0.1%)
			TEM EPA 600/	-93/116 with milling	prep (<0.1%)
	Other Test (al				
400 (<0.25%) 1,000 (<0.1%) NIOSH 9002 (<1%) NYS 198.1 (Friable - NY)	Other Test (ple	ase specify)	TEM Qualitative	via Filtration Prep	p
400 (<0.25%) 1,000 (<0.1%) NIOSH 9002 (<1%) NYS 198.1 (Friable - NY) NYS 198.6 NOB (Non-Friable - NY)	Other Test (ple	ase specify)	TEM Qualitative	Via Filtration Prep via Drop Mount Pre	p
400 (<0.25%) 1,000 (<0.1%) NIOSH 9002 (<1%) NYS 198.1 (Friable - NY) NYS 198.6 NOB (Non-Friable - NY) NYS 198.8 (Vermiculite SM-V)	Other Test (pla *Places cell with your	ase specify)	TEM Qualitative	Via Filtration Prep via Drop Mount Pre	p
400 (<0.25%) 1,000 (<0.1%) NIOSH 9002 (<1%) NYS 198.1 (Friable - NY) NYS 198.6 NOB (Non-Friable - NY) NYS 198.8 (Vermiculite SM-V) Positive Stop - Clearly Identified Homog	<u>Other Test (pk</u> *Please call with your geneous Areas (HA)	ase specify) project-specific requirements. Filter Pore Size (Air Samples	TEM Qualitative	Via Filtration Prep	p
400 (<0.25%) 1,000 (<0.1%) NIOSH 9002 (<1%) NYS 198.1 (Friable - NY) NYS 198.6 NOB (Non-Friable - NY) NYS 198.8 (Vermiculite SM-V) Positive Stop - Clearly Identified Homog Sample Number	<u>Other Test (plane)</u> *Please call with your geneous Areas (HA)	ase specify) project-specific requirements. Filter Pore Size (Air Samples Volume, Area or	TEM Qualitative	Us Filtration Prep wia Drop Mount Pre 0.45um Date / Time (Air Monito	p Sampled ring Only)
400 (<0.25%) ☐ 1,000 (<0.1%) NIOSH 9002 (<1%) NYS 198.1 (Friable - NY) NYS 198.6 NOB (Non-Friable - NY) NYS 198.8 (Vermiculite SM-V) Positive Stop - Clearly Identified Homog Sample Number MFL-AM01-072524 - AB	Other Test (plant) *Please coll with your geneous Areas (HA) Sample Location / Description DL247143	ase specify) project-specific requirements. Filter Pore Size (Air Samples Volume, Area or 7, 203	TEM Qualitative	Nda Filtration Prep via Drop Mount Pre (X) 0.45um Date / Time (Air Monito) 07/25/24	P Sampled ring Only) 1059
☐400 (<0.25%) ☐ 1,000 (<0.1%) ☐NIOSH 9002 (<1%) ☐NYS 198.1 (Friable - NY) ☐NYS 198.6 NOB (Non-Friable - NY) ☐NYS 198.8 (Vermiculite SM-V) ☐Positive Stop - Clearly Identified Homog Sample Number MFL-AM01-072524 - AB MFL-AM02-072524 - AB	<u>Other Test (pk</u> *Please coll with your geneous Areas (HA) Sample Location / Description DL247143 DL247145	ase specify) project-specific requirements. Filter Pore Size (Air Samples Volume, Area or 7, 203 7, 143.	TEM Qualitative TEM Qualitative TEM Qualitative 0 0.8um Homogeneous Area 0.404 861	Date / Time (Air Monito 07/25/24	p Sampled ring Only) 1059 1117
☐400 (<0.25%) ☐ 1,000 (<0.1%) ☐NIOSH 9002 (<1%) ☐NYS 198.1 (Friable - NY) ☐NYS 198.6 NOB (Non-Friable - NY) ☐NYS 198.8 (Vermiculite SM-V) ☐Positive Stop - Clearly Identified Homog Sample Number MFL-AM01-072524-AB MFL-AM02-072524-AB YFL-AM03-072524-AB	Other Test (ok *Please coll with your geneous Areas (HA) Sample Location / Description DL 247143 DL 247145 DL 247179	ase specify) project-specific requirements. Filter Pore Size (Air Samples Volume, Area or 7, 203 7, 143. 7, 219,	TEM Qualitative TEM Qualitative TEM Qualitative 0 0.8um Homogeneous Area 0.404 861 428	Date / Time (Air Monito 07/25/24 07/25/24 07/25/24 07/25/24	p Sampled ring Only) 1059 1117 1258
□ 400 (<0.25%) □ 1,000 (<0.1%) □ NIOSH 9002 (<1%) □ NYS 198.1 (Friable - NY) □ NYS 198.6 NOB (Non-Friable - NY) □ NYS 198.8 (Vermiculite SM-V) □ Positive Stop - Clearly Identified Homog Sample Number MFL-AM01-()72524 - AB MFL-AM02-072524 - AB MFL-AM03-072524 - AB MFL-AM04-072524 - AB	Other Test (ok *Please coll with your geneous Areas (HA) Sample Location / Description DL 247 143 DL 247 145 DL 247 179 SE DL 247 156 DL2	ase specify) project-specific requirements. Filter Pore Size (Air Samples Volume, Area or 7, 203 7, 143. 7, 219, 477153 7, 126.	TEM Qualitative TEM Qualitative TEM Qualitative 0 0.8um Homogeneous Area 0.404 861 428 882	Date / Time $Date / Time (Air Monito 0.7/25/24 0.7/25/24 0.7/25/24 0.7/25/24 0.7/25/24 $	P Sampled ring Only) 1059 1117 1258 1320
	Other Test (ok *Please coll with your geneous Areas (HA) Sample Location / Description DL 247 143 DL 247 145 DL 247 179 Se DL 247 156 DL2 DL 247 156 DL2 DL 247 156 DL2	ase specify) project-specific requirements. Filter Pore Size (Air Samples Volume, Area or 7, 203 7, 143. 7, 219, 477153 7, 126. C	TEM Qualitative TEM Qualitative TEM Qualitative 0 0.8um Homogeneous Area 0.404 861 428 862	Date / Time $Did Filtration Prep Via Drop Mount Pre Date / Time (Air Monito 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 $	P Sampled ring Only) 1059 1117 1258 1320 1300
□ 400 (<0.25%) □ 1,000 (<0.1%) □ NIOSH 9002 (<1%) □ NYS 198.1 (Friable - NY) □ NYS 198.6 NOB (Non-Friable - NY) □ NYS 198.8 (Vermiculite SM-V) □ Positive Stop - Clearly Identified Homog Sample Number MFL-AM01-072524 - AB MFL-AM02-072524 - AB MFL-AM03-072524 - AB MFL-AM04-072524 - AB MFL-FB01-072524 - AB MFL-FB01-072524 - AB	<u>•Prease call with your</u> geneous Areas (HA) Sample Location / Description DL 247 143 DL 247 145 DL 247 179 <u>SEDL 247 179</u> DL 247 155 DL2 DL 247 159 DL 247 148	Volume, Area or 7,203 7,143. 7,219. 477153 7,126. 7,226.	TEM Qualitative TEM Qualitative TEM Qualitative 0 0.8 0 0.8 0 Homogeneous Area 0.404 861 428 862 682 0 5.529	Number Number Display Display <thdisplay< th=""></thdisplay<>	P Sampled ring Only) 1059 1117 1258 1320 1300 1059
□ 400 (<0.25%) □ 1,000 (<0.1%) □ NIOSH 9002 (<1%) □ NYS 198.1 (Friable - NY) □ NYS 198.6 NOB (Non-Friable - NY) □ NYS 198.8 (Verniculite SM-V) □ Positive Stop - Clearly Identified Homog Sample Number MFL-AM01-072524 - AB MFL-AM02-072524 - AB MFL-AM03-072524 - AB MFL-AM04-072524 - AB MFL-FB01-072524 - AB MFL-FB01-072524 - AB MFL-AM01-072524 - AB MFL-AM01-072524 - AB MFL-AM01-072624 - AB MFL-AM01-072624 - AB	<u>•Prease call with your</u> geneous Areas (HA) Sample Location / Description DL 247 143 DL 247 143 DL 247 179 <u>See DL 247 179</u> DL 247 155 DL2 DL 247 159 DL 247 148 DL 247 148	Asses specify) project-specific requirements. Filter Pore Size (Air Samples Volume, Area or 7, 203 7, 143. 7, 219, 477153 7, 126, 7, 234, 7, 24, 7, 24, 7, 24, 7, 24, 7, 24, 7, 24, 7, 24, 7, 24, 7, 24, 7, 24, 7, 24, 7, 24, 7, 24, 7, 24, 7, 24,	TEM Qualitative TEM Qualitative TEM Qualitative $0 ext{ 0.8 um}$ Homogeneous Area $0 ext{ 0.8 um}$ Homogeneous Area $0 ext{ 0.8 um}$ $3 ext{ 0.8 um}$	Date / Time $Dide$ Filtration Prep Via Drop Mount Pre $Dide / Time (Air Monito) 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 $	P Sampled ring Only) 1059 1117 1258 1320 1300 1300 1059 1117
□ 400 (<0.25%) □ 1,000 (<0.1%) □ NIOSH 9002 (<1%) □ NYS 198.1 (Friable - NY) □ NYS 198.6 NOB (Non-Friable - NY) □ NYS 198.8 (Vermiculite SM-V) □ Positive Stop - Clearly Identified Homog Sample Number MFL-AM01-072524 - AB MFL-AM02-072524 - AB MFL-AM03-072524 - AB MFL-AM04-072524 - AB MFL-FB01-072524 - AB MFL-FB01-072524 - AB MFL-AM01-072524 - AB MFL-AM01-072524 - AB MFL-AM01-072524 - AB MFL-AM01-072524 - AB MFL-AM03-072524 - AB	<u>Prease coll with your</u> geneous Areas (HA) Sample Location / Description DL 247 143 DL 247 145 DL 247 179 <u>See DL 247 179</u> DL 247 155 DL2 DL 247 155 DL 247 148 DL 247 148 DL 247 140 DL 247 163	ase specify) Filter Pore Size (Air Samples Volume, Area or 7, 203 7, 143. 7, 219, 477153 7, 126. 7, 216. 7, 296 7, 154	TEM Qualitative TEM Qualitative TEM Qualitative $0 ext{ 0.8 um}$ Homogeneous Area $0 ext{ 0.8 um}$ Homogeneous Area $0 ext{ 0.8 um}$ $3 ext{ 0.8 um}$	Non- Display="block"/> Display="block"/> Display="block"/> Date / Time (Air Monito $0.45um$ Date / Time (Air Monito $0.7/25/24$ $0.7/25/24$ $0.7/25/24$ $0.7/25/24$ $0.7/25/24$ $0.7/25/24$ $0.7/25/24$ $0.7/25/24$ $0.7/25/24$ $0.7/25/24$ $0.7/25/24$ $0.7/25/24$ $0.7/25/24$ $0.7/25/24$ $0.7/25/24$	P Sampled ring Only) 1059 1117 1258 1320 1300 1059 1117 1300
 400 (<0.25%) ☐ 1,000 (<0.1%) NIOSH 9002 (<1%) NYS 198.1 (Friable - NY) NYS 198.8 (Vormiculite SM-V) ✓ Positive Stop - Clearly Identified Homog Sample Number MFL-AM01-072524-AB MFL-AM03-072524-AB MFL-AM03-072524-AB MFL-AM04-072524-AB MFL-AM04-072524-AB MFL-FB01-072524-AB MFL-FB01-072524-AB MFL-AM01-072524-AB MFL-AM04-072524-AB MFL-AM01-072624-AB MFL-AM03-072624-AB MFL-AM03-072624-AB MFL-AM03-072624-AB MFL-AM03-072624-AB MFL-AM03-072624-AB MFL-AM03-072624-AB 	Other Test (ele "Please coll with your geneous Areas (HA) Sample Location / Description DL 247143 DL 247143 DL 247143 DL 247145 DL 247156 DL 247156 DL 247169 DL 247163 DL 247163 DL 247163 DL 247163 tons and/or Regulatory Requirements (Sample S Samples received a	Volume, Area or 7,203 7,143. 7,219. 477153 7,126. 7,296. 7,319. 7,126. 7,143. 7,219. 7,153 7,126. 7,319. 7,126. 7,126. 7,126. 7,153 7,154. 7,154. 7,154. 7,154.	TEM Qualitative TEM Qualitative TEM Qualitative 0 0.8 um Homogeneous Area 0.404 861 428 882 0.529 5.529 5.529 5.529 5.529 5.529 5.942	Non- Difference Via Drop Mount Preprint Date / Time (Air Monito) $07/25/24$	P Sampled ring Only) 1059 1117 1258 1320 1300 1059 1117 1300
 ↓400 (<0.25%) ↓ 1,000 (<0.1%) ↓NIOSH 9002 (<1%) ↓NYS 198.1 (Friable - NY) ↓NYS 198.6 NOB (Non-Friable - NY) ↓NYS 198.8 (Verniculite SM-V) ▲ Positive Stop - Clearly Identified Homoge Sample Number MFL-AM01-072524 - AB MFL-AM02-072524 - AB MFL-AM03-072524 - AB MFL-AM03-072524 - AB MFL-AM04-072524 - AB MFL-AM04-072524 - AB MFL-FB01-072524 - AB MFL-FB01-072524 - AB MFL-FB01-072524 - AB MFL-AM04-072524 - AB MFL-AM03-072524 - AB MFL-AM03-072524 - AB MFL-AM04-072524 - AB MFL-AM04-072524 - AB MFL-AM04-072524 - AB MFL-AM03-072524 - AB MFL-AM03-072624 - AB Wethod of Shipment: Fedex	Other Test (ele "Please coll with your geneous Areas (HA) Sample Location / Description DL 247143 DL 247143 DL 247143 DL 247145 DL 247156 DL 247156 DL 247169 DL 247163 DL 247163 tons and/or Regulatory Requirements (Sample S Additional optimization of the second optimization opti and opti and optimization optimization optimization o	ase specify) project-specific requirements. Filter Pore Size (Air Samples Volume, Area or 7, 2,03 7, 143. 7, 2,19, 477153 7, 12,6. 7, 2,19, 7, 2,9,6 7, 2,9,6 7, 1,5,4 Percifications, Processing Methods, acceptable for Sample Condition Upon Receipt:	TEM Qualitative TEM Qualitative TEM Qualitative TEM Qualitative 0 0.8um Homogeneous Area 0.404 861 428 862 0.529 5.529 5.529 5.529 5.529 5.529 5.942	Na Filtration Preping Drop Mount Preping Drop Mount Preping Order (Air Monito) $Date / Time (Air Monito) 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 $	P Sampled ring Only) 1059 1117 1258 1320 1300 1059 1117 1300
□ 400 (<0.25%) □ 1,000 (<0.1%) □ NIOSH 9002 (<1%) □ NYS 198.1 (Friable - NY) □ NYS 198.6 NOB (Non-Friable - NY) □ NYS 198.8 (Vermiculite SM-V) □ Positive Stop - Clearly Identified Homog Sample Number MFL-AM01 - 072524 - AB MFL-AM02 - 072524 - AB MFL-AM03 - 072524 - AB MFL-AM03 - 072524 - AB MFL-FB01 - 072524 - AB MFL-FB01 - 072524 - AB MFL-AM01 - 072524 - AB MFL-AM01 - 072524 - AB MFL-AM01 - 072524 - AB MFL-AM02 - 072524 - AB MFL-AM03 - 072524 - AB MFL-AM03 - 072524 - AB MFL-AM03 - 072524 - AB MFL-AM01 - 072524 - AB MFL-AM02 - 072524 - AB MFL-AM02 - 072524 - AB MFL-AM03 - 072524 - AB MFL - AM03 - 072524 - AB MFL - AM04 - 072524 - AB MFL - AM04 - 072524 - AB MFL - AM04 - 072	$\begin{array}{r} \ \ \ \ \ \ \ \ \ \ \ \ \ $	AREA SPECIFY) project-specific requirements. Filter Pore Size (Air Samples Volume, Area or 7, 203 7, 143. 7, 219. 477153 7, 126. 7, 296 7, 296 7, 154 Pecifications, Processing Methods, Acceptable for Sample Condition Upon Receipt: Received by:	TEM Qualitative TEM Qualitative TEM Qualitative TEM Qualitative $TEM Qualitative0 U 0.8umHomogeneous Area0.4048614.288820.5295.529$	Date / Time $Main Billington Prep Main Drop Mount Prep Main Billington Billington Date / Time Ain Monito 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 07/25/24 07/26/24 07/26/24 $	P Sampled ring Only) 1059 1117 1258 1320 1 200 1 200 1 200 1 300 1117 1300 3/2

EMSL ANALYTICAL, INC. ILSII

Asbestos Chain of Custody (Air, Bulk, Soil)

EMSL Order Number / Lab Use Only

#042415945

EMSL Analytical, Inc. 200 Route 130 North Cinnaminson, NJ 08077

> PHONE: (800) 220-3675 EMAIL CinnAsblab@EMSL.com

Additional Pages of the Chain of Custody are only necessary if needed for additional sample information Special instructions and/or Regulatory Requirements (Sample Specifications, Processing Methods, Limits of Detection, etc.)

Completion in the last				1		Date / Tim	e Sampled
Sample Number		Sample Location / Descripti	ion		Volume, Area or Homogeneous Are	ea (Air Monit	oring Only)
MFL-AM04-07	2624-AB	0124711	570624	17167	7,249.752	07/26/29	1320
MFL-FB01-0721	624 -AB	DL2471	58		0	07/26/24	1200
MFL-AMOI -07	2724-AB	DL24711	00		7, 159.532	07/27/29	1057
MFL-AMO2-07	2724-AB	DL2471	99		7, 147, 661	07/27/24	1113
MFL-AM03 -07	2724-AB	DL2471	68		7,197.088	07/27/24	1256
MFL-AMO9-0	72724-AB	pL2471	47		7,293.967	07/27/24	1321
MFL-FBOI-OT	72729-AS	3 DL2471	50		0	07/27/24	1200
MFL-AMOI-07	2824-A	B DL247	171		7,224.840	0728/24	1100
MFL-AMO2 -07	2829-AS	3 DL 2471	65		7,181.368	07/28/29	1118
MFL-AM03-01	72824-A	B DL247	169		7,153.056	07/28/24	1300
MFL-AM04-0	72824-1	B DL2471	54		7, 178.461	07/28/24	1323
MFL-FBOI-07	2824 -A	B DL2462	.47		0	07/28/24	1200
						-	
						CIN CIN	
						NAPE	
						MSL MSL MSL MSL	
						A N. ED	
						NJ.	
						4	
Method of Shipment: Fede	-X	1-		Sample Con	dition Upon Receipt:		
Relinquished by:	-	Date/Time: 07/29/	24 1100	Received by	Yem	Date/Time	31/29
Controlled Document - COC-05 Asbestos	R16 10/26/2021	AGREE TO ELECTRONIC SIGNA	TURE (By checkir	ng. I consent i	to signing this Chain of Custody document	by electronic signature.)	

EMSL Analytical, Inc.'s Laboratory Terms and Conditions are incorporated into this Chain of Custody by reference in their entirety. Submission of samples to EMSL Analytical, Inc. constitutes acceptance and acknowledgment of all terms and conditions by Customer.

Stage 1 Data Verification Checklist – Asbestos

HDOH CAB – Ambient Community Air Sampling – Lahaina

Task Order No. 23141

Reviewed by:

Kierra Johnson 08/07/2024 and Shanna Vasser 08/08/2024 Laboratory: EMSL Analytical, Inc. – North Cinnaminson, NJ Collection date(s): 07/25/2024 – 07/28/2024 Report No: 42415945

<u>v</u>	1.	Chain of custody (CoC) documentation is present.
<u>V</u>	2.	Sample receipt condition information is present and acceptable.
<u>v</u>	3.	Laboratory conducting the analysis is identified.
<u>v</u>	4.	All samples submitted to the laboratory are accounted for.
<u>v</u>	5.	Requested analytical methods were performed.
<u>v</u>	6.	Analysis dates are provided.
<u>v</u>	7.	Analyte results are provided.
<u>NA</u>	8.	Result qualifiers and definitions are provided.
<u>v</u>	9.	Result units are reported.
<u>v</u>	10.	Requested reporting limits are present.
<u>NA</u>	11.	Method detection limits are present.
<u>v</u>	12.	Sample collection date and time are present.
<u>v</u>	13.	No detections in field QC blanks (lot/media blanks, field blanks, etc).
Discrep	ancies:	None

Notes: None

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM01-0729	24-AB	Sample Description: DL246230			
EMSL Sample Number:	042416247-0002		Sample Matrix:	Air		
Magnification used for fiber counting:	20,000		Volume (L) :	7227.4		
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385		
Minimum Length (µm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129		
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5		
Minimum Level of analysis (chrysotile):	CD		Analyst:	G.Barry		
Minimum Level of analysis (amphibole):	ADX					

Estimated Particulate Loading on Filter %: 6 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Tremolite Total Asbestos Structures CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

		PCM EQUIVA	LENT (P	CMe) Fibers	S	
	(>5 r	nicrons in len	, gth with >	- 3:1 Aspect I	Ratio)	
	Minimum	Minimum Fibers Detected Density Concent				95 % Confidence Interval (F/cc)
	ID Level	Primary	Total	(F/mm ²)	(F/cc)	Lower Upper
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024

Approved S

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042416247 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 08/05/2024 09:00 AM **Received Date:** 08/08/2024 Analysis Date: 08/12/2024 Report Date:

	EMSL S	ample ID:	042416247-0001						Customer	Sample:	MFL-AM01-072924-AB
Grid	Grid	Structure Type	Struct	ure ber	Dimensi	ons (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID			Number	
A5	A3	None Detected									
A 5	E8	None Detected									
A5	J5	None Detected									
A7	C4	None Detected									
A7	H3	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM02-07292	24-AB	Sample Description: DL246201			
EMSL Sample Number:	042416247-0002		Sample Matrix:	Air		
Magnification used for fiber counting:	20,000		Volume (L) :	7143.0		
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385		
Minimum Length (μm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129		
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5		
Minimum Level of analysis (chrysotile):	CD		Analyst:	G.Barry		
Minimum Level of analysis (amphibole):	ADX					

Estimated Particulate Loading on Filter %: 5 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Tremolite Total Asbestos Structures CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

	PCM EQUIVALENT (PCMe) Fibers										
	(>5 r	nicrons in len	gth with >	3:1 Aspect F	Ratio)						
	Minimum	Fibers Det	95 % Confidence Interval (F/cc)								
	ID Level	Primary	Total	(F/mm ²)	(F/cc)	Lower Upper					
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					

Approved S

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042416247 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 08/05/2024 09:00 AM **Received Date:** 08/08/2024 Analysis Date: 08/12/2024 Report Date:

	EMSL S	ample ID:	042416247-0002						Customer	Sample:	MFL-AM02-072924-AB
Grid	Grid	Structure Type	Struct	ture ber	Dimensi	ons (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID			Number	
B2	A5	None Detected									
B2	E4	None Detected									
B2	17	None Detected									
B3	H7	None Detected									
B3	C5	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM03-07292	24-AB	Sample Description: DL246552			
EMSL Sample Number:	042416247-0003		Sample Matrix:	Air		
Magnification used for fiber counting:	20,000		Volume (L) :	7206.0		
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385		
Minimum Length (µm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129		
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5		
Minimum Level of analysis (chrysotile):	CD		Analyst:	G.Barry		
Minimum Level of analysis (amphibole):	ADX					

Estimated Particulate Loading on Filter %: 6 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Tremolite **Total Asbestos Structures** CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

	PCM EQUIVALENT (PCMe) Fibers										
(>5 microns in length with >3:1 Aspect Ratio)											
	Minimum	Fibers Det	tected	Density	Concentration	95 % Confidence Interval (F/cc)					
	ID Level	Primary	Primary Total		(F/cc)	Lower Upper					
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					

Approved S

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042416247 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 08/05/2024 09:00 AM **Received Date:** 08/08/2024 Analysis Date: 08/12/2024 Report Date:

	EMSL S	ample ID:	042416247-0003						Customer	MFL-AM03-072924-AB	
Grid	Grid	Structure Type	Struct Num	ure ber	Dimensi	ons (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID	~		Number	
B5	J4	None Detected									
B5	H7	None Detected									
B5	B5	None Detected									
B7	G6	None Detected									
B7	A7	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM04-07292	24-AB	Sample Description: DL246964				
EMSL Sample Number:	042416247-0004		Sample Matrix:	Air			
Magnification used for fiber counting:	20,000		Volume (L) :	7181.8			
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385			
Minimum Length (µm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129			
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5			
Minimum Level of analysis (chrysotile):	CD		Analyst:	G.Barry			
Minimum Level of analysis (amphibole):	ADX						

Estimated Particulate Loading on Filter %: 5 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Tremolite Total Asbestos Structures CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

PCM EQUIVALENT (PCMe) Fibers											
(>5 microns in length with >3:1 Aspect Ratio)											
Minimum Fibers Detected Density Concentration 95 % Confidence Interval (
	ID Level	Primary	Primary Total		(F/cc)	Lower Upper					
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					

Approved S

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042416247 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 08/05/2024 09:00 AM **Received Date:** 08/08/2024 Analysis Date: 08/12/2024 Report Date:

	EMSL S	ample ID:	042416247-0004						Customer	MFL-AM04-072924-AB	
Grid	Grid	Structure Type	Struct	ure Der	Dimensi	ons (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID			Number	
C1	19	None Detected									
C1	F3	None Detected									
C1	B4	None Detected									
C2	J3	None Detected									
C2	D3	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-FB01-072924	1-AB	Sample Description: DL246214				
EMSL Sample Number:	042416247-0005		Sample Matrix:	Air			
Magnification used for fiber counting:	20,000		Volume (L) :	0.0			
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385			
Minimum Length (μm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129			
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	10			
Minimum Level of analysis (chrysotile):	CD		Analyst:	G.Barry			
Minimum Level of analysis (amphibole):	ADX						

Estimated Particulate Loading on Filter %: 1 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): N/A

Limit of Detection (Structures/cc): N/A

	TOTAL STRUCTURES (All Sizes)										
	Minimum	Structures D	etected	Density	Concentration	95 % Confidence Interval (S/cc)					
	ID Level	Primary	Total	(S/mm ²)	(S/cc)	Lower Upper					
Total Chrysotile	CD	0	0	< 23.18							
Total Amphibole	ADX	0	0	< 23.18							
Actinolite	ADX	0	0	< 23.18							
Amosite	ADX	0	0	< 23.18							
Anthophyllite	ADX	0	0	< 23.18							
Crocidolite	ADX	0	0	< 23.18							
Tremolite	ADX	0	0	< 23.18							
Total Asbestos Structures	CD/ADX	0	0	< 23.18							
Other Minerals	-	0	0	< 23.18							
Total All Structures	-	0	0	< 23.18							

		PCM EQUIVA	LENT (P	CMe) Fibers	5						
(>5 microns in length with >3:1 Aspect Ratio)											
	Minimum	Fibers Det	tected	Density	Concentration	95 % Confidence Interval (F/cc)					
	ID Level	Primary	Total	(F/mm ²)	(F/cc)	Lower Upper					
Total Chrysotile (PCMe)	CD	0	0	< 23.18							
Total Amphibole (PCMe)	ADX	0	0	< 23.18							
Actinolite	ADX	0	0	< 23.18							
Amosite	ADX	0	0	< 23.18							
Anthophyllite	ADX	0	0	< 23.18							
Crocidolite	ADX	0	0	< 23.18							
Tremolite	ADX	0	0	< 23.18							
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 23.18							
Other Minerals	-	0	0	< 23.18							
Total All Structures (PCMe)	-	0	0	< 23.18							

Comment

Approved S. tory

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042416247 TTDC42 1207085 N/A

 Phone:
 (703) 489-2674

 Fax:
 N/A

 Received Date:
 08/05/2024 09:00 AM

 Analysis Date:
 08/08/2024

 Report Date:
 08/12/2024

	EMSL S	ample ID:	042416247-	0005			Customer	Sample:	MFL-FB01-072924-AB
Grid ID	Grid Opening	Structure Type	Structure Number Primary Total	Dimensions (µm)	Level of ID	Mineral Type	Additional Mineral ID	Image Number	Structure Comments
C5	A3	None Detected	,						
C 5	C7	None Detected							
C5	G4	None Detected							
C5	17	None Detected							
C6	B 9	None Detected							
C 6	B 5	None Detected							
C6	F4	None Detected							
C 6	H8	None Detected							
C7	A9	None Detected							
C7	C5	None Detected							

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM01-07302	24-AB	Sample Description: DL246607				
EMSL Sample Number:	042416247-0006		Sample Matrix:	Air			
Magnification used for fiber counting:	20,000		Volume (L) :	7131.2			
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385			
Minimum Length (μm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129			
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5			
Minimum Level of analysis (chrysotile):	CD		Analyst:	G.Barry			
Minimum Level of analysis (amphibole):	ADX						

Estimated Particulate Loading on Filter %: 6 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Tremolite Total Asbestos Structures CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

		PCM EQUIVA	LENT (P	CMe) Fibers	S						
(>5 microns in length with >3:1 Aspect Ratio)											
	Minimum	Fibers Det	tected	Density	Concentration	95 % Confidence Interval (F/cc)					
	ID Level	Primary Total		- (F/mm²)	(F/cc)	Lower Upper					
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					

Approved S

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042416247 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 08/05/2024 09:00 AM **Received Date:** 08/08/2024 Analysis Date: 08/12/2024 Report Date:

	EMSL S	ample ID:	042416247-0006						Customer	Sample:	MFL-AM01-073024-AB
Grid	Grid	Structure Type	Struct Num	ure ber	Dimensi	ons (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID			Number	
D1	H4	None Detected									
D1	F7	None Detected									
D1	A 8	None Detected									
D2	A3	None Detected									
D2	D7	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM02-07302	24-AB	Sample Description: DL246207				
EMSL Sample Number:	042416247-0007		Sample Matrix:	Air			
Magnification used for fiber counting:	20,000		Volume (L) :	7228.8			
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385			
Minimum Length (μm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129			
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5			
Minimum Level of analysis (chrysotile):	CD		Analyst:	G.Barry			
Minimum Level of analysis (amphibole):	ADX						

Estimated Particulate Loading on Filter %: 7 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 Tremolite 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Total Asbestos Structures CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

PCM EQUIVALENT (PCMe) Fibers												
(>5 microns in length with >3:1 Aspect Ratio)												
Minimum Fibers Detected Density Concentration 95 % Confidence I												
	ID Level	Primary	Total	(F/mm ²)	(F/cc)	Lower Upper						
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						

Comment

lumerous gypsum fibers present.

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

EMSL Order: Customer ID: Customer PO: Project ID:

042416247 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 08/05/2024 09:00 AM **Received Date:** 08/08/2024 Analysis Date: 08/12/2024 Report Date:

Approved S

	EMSL S	ample ID:	042416247-0007						Customer Sample: MFL-AM02-07302		
Grid	Grid	Structure Type	Struct Num	ure ber	Dimensi	ons (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID			Number	
D6	B8	None Detected									
D6	E3	None Detected									
D6	J5	None Detected									
D7	C3	None Detected									
D7	G7	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

Comment

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM03-0730	24-AB	Sample Description: DL246434				
EMSL Sample Number:	042416247-0008		Sample Matrix:	Air			
Magnification used for fiber counting:	20,000		Volume (L) :	7278.6			
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385			
Minimum Length (μm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129			
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5			
Minimum Level of analysis (chrysotile):	CD		Analyst:	G.Barry			
Minimum Level of analysis (amphibole):	ADX						

Estimated Particulate Loading on Filter %: 6 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Tremolite Total Asbestos Structures CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

PCM EQUIVALENT (PCMe) Fibers												
Minimum Fibers Detected Density Concentration 95 % Confidence Interval (F/cc)												
	ID Level	Primary	Total	(F/mm ²)	(F/cc)	Lower Upper						
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						

Approved S

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

EMSL Order: Customer ID: Customer PO: Project ID:

042416247 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 08/05/2024 09:00 AM **Received Date:** 08/09/2024 Analysis Date: Report Date: 08/12/2024

	EMSL S	ample ID:	042416247-0008						Customer Sample: MFL-AM03-0730		
Grid	Grid	Structure Type	Struc Num	ture ber	Dimensi	ons (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID			Number	
E1	J5	None Detected									
E1	F7	None Detected									
E1	B4	None Detected									
E2	13	None Detected									
E2	D6	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM04-07302	4-AB	Sample Description: DL246217				
EMSL Sample Number:	042416247-0009		Sample Matrix:	Air			
Magnification used for fiber counting:	20,000		Volume (L) :	7269.4			
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385			
Minimum Length (μm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129			
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5			
Minimum Level of analysis (chrysotile):	CD		Analyst:	G.Barry			
Minimum Level of analysis (amphibole):	ADX						

Estimated Particulate Loading on Filter %: 7 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Tremolite **Total Asbestos Structures** CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

PCM EQUIVALENT (PCMe) Fibers											
(>5 microns in length with >3:1 Aspect Ratio)											
Minimum Fibers Detected Density Concentration 95 % Confidence Inter											
	ID Level	Primary	Total	(F/mm ²)	(F/cc)	Lower Upper					
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024					

Approved S

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042416247 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 08/05/2024 09:00 AM **Received Date:** 08/09/2024 Analysis Date: Report Date: 08/12/2024

	EMSL S	ample ID:	042416247-0009						Customer	MFL-AM04-073024-AB	
Grid	Grid	Structure Type	Struc Num	ture ber	Dimensi	ons (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary	TOLAI	Length	Width	ID			Number	
E5	H8	None Detected									
E5	H4	None Detected									
E5	C6	None Detected									
E6	G5	None Detected									
E6	B5	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-FB01-073024	1-AB	Sample Description: DL246488			
EMSL Sample Number:	042416247-0010		Sample Matrix:	Air		
Magnification used for fiber counting:	20,000		Volume (L) :	0.0		
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385		
Minimum Length (μm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129		
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	10		
Minimum Level of analysis (chrysotile):	CD		Analyst:	G.Barry		
Minimum Level of analysis (amphibole):	ADX					

Estimated Particulate Loading on Filter %: 1 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): N/A

Limit of Detection (Structures/cc): N/A

TOTAL STRUCTURES (All Sizes)									
	Minimum	Structures D	etected	Density	Concentration	95 % Confidence Interval (S/cc)			
	ID Level	ID Level Primary		(S/mm ²)	(S/cc)	Lower Upper			
Total Charactile	CD	٥	0	< 02.10					
Total Amphibole	ADX	0	0	< 23.18					
Actinolite	ADX	0	0	< 23.18					
Amosite	ADX	0	0	< 23.18					
Anthophyllite	ADX	0	0	< 23.18					
Crocidolite	ADX	0	0	< 23.18					
Tremolite	ADX	0	0	< 23.18					
Total Asbestos Structures	CD/ADX	0	0	< 23.18					
Other Minerals	-	0	0	< 23.18					
Total All Structures	-	0	0	< 23.18					

		PCM EQUIVA	ALENT (P	CMe) Fibers	6					
(>5 microns in length with >3:1 Aspect Ratio)										
	Minimum	Minimum Fibers Detected		Density	Concentration	95 % Confidence Interv	rval (F/cc)			
	ID Level	Primary	Primary Total (F		(F/cc)	Lower U	pper			
Total Chrysotile (PCMe)	CD	0	0	< 23.18						
Total Amphibole (PCMe)	ADX	0	0	< 23.18						
Actinolite	ADX	0	0	< 23.18						
Amosite	ADX	0	0	< 23.18						
Anthophyllite	ADX	0	0	< 23.18						
Crocidolite	ADX	0	0	< 23.18						
Tremolite	ADX	0	0	< 23.18						
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 23.18						
Other Minerals	-	0	0	< 23.18						
Total All Structures (PCMe)	-	0	0	< 23.18						

Comment

Approved S. tory

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042416247 TTDC42 1207085 N/A

 Phone:
 (703) 489-2674

 Fax:
 N/A

 Received Date:
 08/05/2024 09:00 AM

 Analysis Date:
 08/09/2024

 Report Date:
 08/12/2024

	EMSL S	ample ID:	042416247-	0010			Customer	Sample:	MFL-FB01-073024-AB
Grid ID	Grid Opening	Structure Type	Structure Number Primary Total	Dimensions (µm) Length Width	Level of ID	Mineral Type	Additional Mineral ID	Image Number	Structure Comments
F1	C7	None Detected							
F1	E4	None Detected							
F1	J7	None Detected							
F2	J9	None Detected							
F2	I 4	None Detected							
F2	F2	None Detected							
F2	A 6	None Detected							
F3	B 8	None Detected							
F3	D6	None Detected							
F3	H7	None Detected							

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM01-0731	24-AB	Sample Description: DL246239			
EMSL Sample Number:	042416247-0011		Sample Matrix:	Air		
Magnification used for fiber counting:	20,000		Volume (L) :	7212.1		
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385		
Minimum Length (µm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129		
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5		
Minimum Level of analysis (chrysotile):	CD		Analyst:	G.Barry		
Minimum Level of analysis (amphibole):	ADX					

Estimated Particulate Loading on Filter %: 7 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Tremolite **Total Asbestos Structures** CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

		PCM EQUIVA	ALENT (P	CMe) Fibers	6					
(>5 microns in length with >3:1 Aspect Ratio)										
	Minimum	Fibers Det	Fibers Detected		Concentration	95 % Confidence Interval (F/cc)				
	ID Level	Primary	Total	(F/mm ²)	(F/cc)	Lower Upper				
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				

Approved S

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042416247 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 08/05/2024 09:00 AM **Received Date:** 08/09/2024 Analysis Date: Report Date: 08/12/2024

Page 1 of 1 - This is the last page of the report

	EMSL S	ample ID:	042416247-0011						Customer	Sample:	MFL-AM01-073124-AB
Grid	Grid	Structure Type	Struc Num	ture ber	Dimensi	ons (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
D	Opening		Primary	TUtal	Length	width	ID			Number	
F5	G4	None Detected									
F5	C7	None Detected									
F6	J4	None Detected									
F6	E8	None Detected									
F6	A4	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM02-0731	24-AB	Sample Description: DL246545			
EMSL Sample Number:	042416247-0012	2	Sample Matrix:	Air		
Magnification used for fiber counting:	20,000		Volume (L) :	7093.0		
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385		
Minimum Length (μm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129		
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5		
Minimum Level of analysis (chrysotile):	CD		Analyst:	G.Barry		
Minimum Level of analysis (amphibole):	ADX					

Estimated Particulate Loading on Filter %: 7 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Tremolite **Total Asbestos Structures** CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

PCM EQUIVALENT (PCMe) Fibers										
	Minimum	Fibers Det	tected	Density	Concentration	95 % Confidence Interval (F/cc)				
	ID Level	Primary	Primary Total		(F/cc)	Lower Upper				
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				

Approved S

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042416247 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 08/05/2024 09:00 AM **Received Date:** 08/09/2024 Analysis Date: Report Date: 08/12/2024

Page 1 of 1 - This is the last page of the report

	EMSL S	ample ID:	042416247-0012						Customer	Sample:	MFL-AM02-073124-AB
Grid	Grid	Structure Type	Struct	ture ber	Dimensi	ons (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID			Number	
G1	B3	None Detected									
G1	D7	None Detected									
G1	19	None Detected									
G2	J6	None Detected									
G2	D6	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM03-07312	4-AB	Sample Description: DL246216			
EMSL Sample Number:	042416247-0013		Sample Matrix:	Air		
Magnification used for fiber counting:	20,000		Volume (L) :	7085.8		
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385		
Minimum Length (μm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129		
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5		
Minimum Level of analysis (chrysotile):	CD		Analyst:	G.Barry		
Minimum Level of analysis (amphibole):	ADX					

Estimated Particulate Loading on Filter %: 8 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Tremolite Total Asbestos Structures CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

		PCM EQUIVA	LENT (P	CMe) Fibers	6					
(>5 microns in length with >3:1 Aspect Ratio)										
	Minimum	Fibers Detected		Density	Concentration	95 % Confidence Interval (F/cc)				
	ID Level	Primary	Total	(F/mm ²)	(F/cc)	Lower Upper				
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024				

Approved S

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042416247 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 08/05/2024 09:00 AM **Received Date:** 08/09/2024 Analysis Date: Report Date: 08/12/2024

Page 1 of 1 - This is the last page of the report

	EMSL S	ample ID:	042416247-0013						Customer	Sample:	MFL-AM03-073124-AB
Grid	Grid	Structure Type	Struct Num	ure ber	Dimensi	ons (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID			Number	
G5	19	None Detected									
G5	E4	None Detected									
G5	A7	None Detected									
G6	H7	None Detected									
G6	C5	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-AM04-07312	24-AB	Sample Description: DL246189			
EMSL Sample Number:	042416247-0014		Sample Matrix:	Air		
Magnification used for fiber counting:	20,000		Volume (L) :	7181.0		
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385		
Minimum Length (μm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129		
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	5		
Minimum Level of analysis (chrysotile):	CD		Analyst:	G.Barry		
Minimum Level of analysis (amphibole):	ADX					

Estimated Particulate Loading on Filter %: 8 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024 TOTAL STRUCTURES (All Sizes) Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum Density Primary Total ID Level (S/mm²) (S/cc) Lower Upper Total Chrysotile CD < 46.36 < 0.0024 Not Applicable - 0.0024 0 0 Total Amphibole ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Actinolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Amosite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 ADX < 46.36 Anthophyllite 0 0 < 0.0024 Crocidolite ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Tremolite Total Asbestos Structures CD/ADX 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024 Not Applicable - 0.0024 Other Minerals 0 0 < 46.36 < 0.0024 _ Total All Structures 0 0 < 46.36 < 0.0024 Not Applicable - 0.0024

	PCM EQUIVALENT (PCMe) Fibers											
(>5 microns in length with >3:1 Aspect Ratio)												
	Minimum	Fibers Det	tected	Density	Concentration	95 % Confidence Interval (F/cc)						
	ID Level	Primary Total		(F/mm ²)	(F/cc)	Lower Upper						
Total Chrysotile (PCMe)	CD	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total Amphibole (PCMe)	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Actinolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Amosite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Anthophyllite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Crocidolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Tremolite	ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Other Minerals	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						
Total All Structures (PCMe)	-	0	0	< 46.36	< 0.0024	Not Applicable - 0.0024						

Approved S

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

042416247 TTDC42 1207085 N/A

(703) 489-2674 Phone: N/A Fax: 08/05/2024 09:00 AM **Received Date:** 08/09/2024 Analysis Date: Report Date: 08/12/2024

Page 1 of 1 - This is the last page of the report

	EMSL S	ample ID:	042416247-0014						Customer	Sample:	MFL-AM04-073124-AB
Grid	Grid	Structure Type	Struc Num	ture ber	Dimensi	ons (µm)	Level of	Mineral Type	Additional Mineral ID	Image	Structure Comments
ID	Opening		Primary	Total	Length	Width	ID			Number	
H1	16	None Detected									
H1	E9	None Detected									
H1	C5	None Detected									
H2	J5	None Detected									
H2	D4	None Detected									

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	MFL-FB01-07312	4-AB	Sample Description: DL246203			
EMSL Sample Number:	042416247-0015		Sample Matrix:	Air		
Magnification used for fiber counting:	20,000		Volume (L) :	0.0		
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385		
Minimum Length (μm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129		
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	10		
Minimum Level of analysis (chrysotile):	CD		Analyst:	G.Barry		
Minimum Level of analysis (amphibole):	ADX					

Estimated Particulate Loading on Filter %: 1 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): N/A

Limit of Detection (Structures/cc): N/A

		TOTAL STRU	JCTURES	5 (All Sizes)		
	Minimum	Structures D	etected	Density	Concentration	95 % Confidence Interval (S/cc)
	ID Level	Primary	Total	(S/mm ²)	(S/cc)	Lower Upper
Total Charactile	CD	٥	0	< 02.10		
Total Amphibole	ADX	0	0	< 23.18		
Actinolite	ADX	0	0	< 23.18		
Amosite	ADX	0	0	< 23.18		
Anthophyllite	ADX	0	0	< 23.18		
Crocidolite	ADX	0	0	< 23.18		
Tremolite	ADX	0	0	< 23.18		
Total Asbestos Structures	CD/ADX	0	0	< 23.18		
Other Minerals	-	0	0	< 23.18		
Total All Structures	-	0	0	< 23.18		

		PCM EQUIVA	LENT (P	CMe) Fibers	5							
(>5 microns in length with >3:1 Aspect Ratio)												
Minimum Fibers Detected Density Concentration 95 % Confidence Interval (F/cc)												
	ID Level	Primary	Total	(F/mm ²)	(F/cc)	Lower Upper						
Total Chrysotile (PCMe)	CD	0	0	< 23.18								
Total Amphibole (PCMe)	ADX	0	0	< 23.18								
Actinolite	ADX	0	0	< 23.18								
Amosite	ADX	0	0	< 23.18								
Anthophyllite	ADX	0	0	< 23.18								
Crocidolite	ADX	0	0	< 23.18								
Tremolite	ADX	0	0	< 23.18								
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 23.18								
Other Minerals	-	0	0	< 23.18								
Total All Structures (PCMe)	-	0	0	< 23.18								

Comment

Approved S. tory

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

(703) 489-2674

08/09/2024

08/12/2024

08/05/2024 09:00 AM

042416247

TTDC42

1207085

N/A

N/A

EMSL Order:

Customer ID:

Customer PO:

Project ID:

Phone:

Received Date:

Analysis Date:

Report Date:

Fax:

	EMSL S	ample ID:	042416247-	0015			Customer	Sample:	MFL-FB01-073124-AB
Grid ID	Grid Opening	Structure Type	Structure Number Primary Total	Dimensions (µm) Length Width	Level of ID	Mineral Type	Additional Mineral ID	Image Number	Structure Comments
H5	J7	None Detected							
H5	G9	None Detected							
H5	D6	None Detected							
H5	A4	None Detected							
H6	13	None Detected							
H6	G6	None Detected							
H6	D3	None Detected							
H7	B 9	None Detected							
H7	B4	None Detected							
H7	D3	None Detected							

200 Route 130 North Cinnaminson, NJ 08077 Tel/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Attn: Chelsea Saber Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Fires Lahaina

ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

Customer Sample Number:	Lab Blank		Sample Description: Lab Blank			
EMSL Sample Number:	042416247-001	6	Sample Matrix:	Air		
Magnification used for fiber counting:	20,000		Volume (L) :	0.0		
Aspect ratio for fiber definition:	3:1		Area of original collection filter (mm ²):	385		
Minimum Length (μm):	≥ 0.5		Grid Opening Area (mm ²):	0.0129		
Chi ² Test for Random Distribution on Filter:	N/A	(N/A)	Grid Openings Analyzed:	10		
Minimum Level of analysis (chrysotile):	CD		Analyst:	G.Barry		
Minimum Level of analysis (amphibole):	ADX					

Estimated Particulate Loading on Filter %: 1 Target Analytical Sensitivity (Structures/cc): 0.001

Analytical Sensitivity (Structures/cc): N/A

Limit of Detection (Structures/cc): N/A

		TOTAL STRU	JCTURES	6 (All Sizes)		
	Minimum	Structures D	etected	Density	Concentration	95 % Confidence Interval (S/cc)
	ID Level	Primary	Total	(S/mm ²)	(S/cc)	Lower Upper
Total Chrysotile	CD	0	0	< 23.18		
Total Amphibole	ADX	0	0	< 23.18		
Actinolite	ADX	0	0	< 23.18		
Amosite	ADX	0	0	< 23.18		
Anthophyllite	ADX	0	0	< 23.18		
Crocidolite	ADX	0	0	< 23.18		
Tremolite	ADX	0	0	< 23.18		
Total Asbestos Structures	CD/ADX	0	0	< 23.18		
Other Minerals	-	0	0	< 23.18		
Total All Structures	-	0	0	< 23.18		

	PCM EQUIVALENT (PCMe) Fibers											
(>5 microns in length with >3:1 Aspect Ratio)												
	Minimum	Fibers Det	tected	Density	Concentration	95 % Confidence Ir	iterval (F/cc)					
	ID Level	Primary	Total	- (F/mm²)	(F/cc)	Lower	Upper					
Total Chrysotile (PCMe)	CD	0	0	< 23.18								
Total Amphibole (PCMe)	ADX	0	0	< 23.18								
Actinolite	ADX	0	0	< 23.18								
Amosite	ADX	0	0	< 23.18								
Anthophyllite	ADX	0	0	< 23.18								
Crocidolite	ADX	0	0	< 23.18								
Tremolite	ADX	0	0	< 23.18								
Total Asbestos Structures (PCMe)	CD/ADX	0	0	< 23.18								
Other Minerals	-	0	0	< 23.18								
Total All Structures (PCMe)	-	0	0	< 23.18								

Comment

Approved S. tory

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.

Phone: N/A Fax: Received Date: Analysis Date: Report Date: 08/12/2024

EMSL Order:

Customer ID:

Customer PO:

Project ID:

(703) 489-2674 08/05/2024 09:00 AM 08/08/2024

042416247

TTDC42

1207085

N/A

	EMSL S	ample ID:	042416247-	0016			Customer	Sample:	Lab Blank
Grid ID	Grid Opening	Structure Type	Structure Number Primary Total	Dimensions (µm) Length Width	Level of	Mineral Type	Additional Mineral ID	Image Number	Structure Comments
A1	J4	None Detected		-					-
A1	G7	None Detected							
A1	D5	None Detected							
A1	A2	None Detected							
A2	15	None Detected							
A2	F9	None Detected							
A2	E3	None Detected							
A3	B7	None Detected							
A3	D5	None Detected							
A3	H3	None Detected							

EMSL		Asbestos Chair	n of Custody (/ Order Number / Lab Use	EMS 200 F Cinna	EMSL Analytical, Inc. 200 Route 130 North Cinnaminson, NJ 08077	
EMSL ANALYTICAL, IN TESTING LABS - PRODUCTS - TRAIN	C.	#04	24162	247	Рно Ема	NE: (800) 220-3675
Customer ID:	Carlos and a state		Billing ID:		AND CONTRACTOR OF A DECK	C C C
Company Name: TET	2A TECH	+	5 Company	Name:		UT I
E Contact Name:	risea Sa	ber	Billing Cor	nlact:		
Street Address:	0 Brandus	AN STE 1400	Street Add	dress:		alle arge
City, State, Zip:	C. CO 80	202 Country:	SA City, State	a, Zip:		Country:
(103)	- 489-2	674	E Phone			ω
Email(s) for Report:	Isea. Saber	e totratect	.Com Email(s) fo	or Invoice:		
Project IA A			Project Information	IF	urchase	
Name/No: Maui	Fires Lo	ibaina		Ċ	order: 12	07085
(If applicable, EMSL will provide)			Samples collect	ted: HT	nnecticut (CT) mi	ble) Residential (Non-Ta
Sampled By Name:	m Diaz	Sampled By Signature:	yn.		interestar (Turka	No. of Samples
	P. DML	6	Turn-Around-Time (TAT)			
3 Hour 4-4.5 He	ONLY TEM Air 3-6 Hour	ur, please call ahead to schedule. 32	32 Hour 48 Hour TAT available for select tes	Hour 72 Hour	96 Hour	1 Week
PC	MAir		Test Selection TEM - Air	,	FM - Settled	hust
NIOSH 7400		AHERA 4	0 CFR, Part 763		licrovac - AST	M D5755
NIOSH 7400 w/ 8hr	. TWA	NIOSH 74	402		Vipe - ASTM D	6480
	Sulk (reporting limit)	EPA Leve	11 k		Qualitative via F	iltration Prep
PLM EPA NOB (<1	%)	K 150 1031	TEM - Bulk		zuantative via D	rop Mount Prep
POINT COUNT		TEM EPA	NOB		Soil - Rock - V	/ermiculite (reporting limit)*
400 (<0.25%	a) 1,000 (<0.1%)	NYS NOE	3 198.4 (Non-Friable-NY)	D F	LM EPA 600/R	R-93/116 with milling prep (<0.25
POINT COUNT w/	GRAVIMETRIC		600/R-93/116 w Milling F	Pren (0.1%)	PLM EPA 600/R	2-93/116 with milling prep (<0.19
) 1,000 (<0.1%)	,	Other Test (slass see)		EM EPA 600/F	R-93/116 with milling prep (<0.19
NYS 198.1 (Friable	- NY)	2	iner rest (please speci		EM Qualitative	via Filtration Prep
NYS 198.6 NOB (N	ion-Friable - NY)				Liff Guandere	via brop mount rep
NYS 198.8 (Vermic	ulite SM-V)					
		*Pleas	e call with your project-spec	cific requirements.		1
Positive Stop - Cle	sarly Identified Homogen	ieous Areas (HA)	Filter Por	e Size (Air Samples)	0.8um	Date / Time Sampled
Sample Number	Sa	ample Location / Description	90	Volume Area or Homos	ANAAIIA AKAA	(Air Monitoring Only)
Sample Number	SI	ample Location / Descripti		Volume, Area or Homog	eneous Area	
Sample Number	-07292	1-AB DL	246230	Volume, Area or Homog	eneous Area	07/29/24 110
Sample Number MFL-AMOI MFL-AMOZ	-072924 -072924	1-AB DL 1-AB DL	246230 246201	Volume, Area or Homog 7,227.30 7,142.95	eneous Area	07/29/24 110 07/29/24 11
Sample Number MFL-AMOI MFL-AMOZ MFL-AMO3-	-072924 -072924	I-AB DL I-AB DL -AB DL	™ 246230 246201 246552	Volume, Area or Homog 7,227.39 7,142.95 7,205.9(eneous Area 12 1 02	07/29/24 110 07/29/24 11 07/29/24 130
Sample Number MFL-AMOI MFL-AMOZ MFL-AMO3- MFL-AMO3- MFL-AMO4	-072924 -072924 -072924 -072924	I-AB DL I-AB DL -AB DL I-AB DL I-AB DL	™ 246230 246201 246552 246964	Volume, Area or Homog 7,227.39 7,142.95 7,205.90 7,181.803	12 12 02 3	07/29/24 110 07/29/24 11 07/29/24 130 07/29/24 130 07/29/24 13
Sample Number MFL-AMOI MFL-AMOZ MFL-AMO3- MFL-AMO3- MFL-AMO4 MFL-FBOJ	5 -072924 -072924 -072924 -072924 -072924	I-AB DL I-AB DL -AB DL I-AB DL I-AB DL I-AB DL	™ 246230 246201 246552 246964 246214	Volume, Area or Homog 7,227.39 7,142.95 7,205.90 7,181.803 0	12 12 02 3	07/29/24 110 07/29/24 11 07/29/24 130 07/29/24 130 07/29/24 13 07/29/24 1
Sample Number MFL-AMOI MFL-AMOZ MFL-AMO3- MFL-AMO4 MFL-FBOI MFL-AMOI	5 -072924 -072924 -072924 -072924 -072924 -072924	I-AB DL I-AB DL -AB DL I-AB DL I-AB DL I-AB DL -AB PL -AB PL2	™ 246230 246201 246552 246964 246964 246214 -46607	Volume, Area or Homog 7,1227.39 7,142.95 7,205.90 7,181.803 0 7,131.16	eneous Area 2 02 3 3 3	07/29/24 110 07/29/24 11 07/29/24 130 07/29/24 130 07/29/24 13 07/29/24 13
Sample Number MFL-AMOI MFL-AMOZ MFL-AMO3- MFL-AMO4 MFL-FBO1 MFL-AMO1 MFL-AMO1 MFL-AMO2	5 -072924 -072924 -072924 -072924 -072924 -073024 -073024	I-AB DL I-AB DL - AB DL I-AB DL I-AB DL I-AB DL -AB PL -AB PL -AB PL	™ 246230 246201 246552 246964 246214 -46607	Volume, Area or Homog 7,227.39 7,142.95 7,205.90 7,181.803 0 7,181.803 0 7,131.16 7,228,88	2 1 0 2 3 3 3	07/29/24 110 07/29/24 11 07/29/24 130 07/29/24 130 07/29/24 13 07/29/24 13 07/30/24 11
Sample Number MFL-AMOI MFL-AMOZ MFL-AMOJ MFL-AMOJ MFL-AMOJ MFL-AMOJ MFL-AMOJ	51 -072924 -072924 -072924 -072924 -072924 -072924 -073024 Special Instruction	I-AB DL - AB DL	 246230 246201 246201 246964 246964 246214 -4667 -46434 ents (sample specifications 	Volume, Area or Homog 7,227.39 7,142.95 7,205.90 7,181.803 0 7,131.16 7,228.86 7,278.65	Peneous Area	07/29/24 110 07/29/24 110 07/29/24 130 07/29/24 130 07/29/24 13 07/29/24 13 07/30/24 11 07/30/24 11 07/30/24 13
Sample Number MFL-AMOI MFL-AMOZ MFL-AMOJ MFL-AMOJ MFL-AMOJ MFL-AMOJ MFL-AMOJ MFL-AMOJ	54 -072924 -072924 -072924 -072924 -072924 -073024 -073024 Special Instruction All sam	I-AB DL -AB DL	246230 246201 246201 246964 246964 246214 46607 46607 46434 ents(Sample Specifications d acceptable	Volume, Area or Homog 7,227.39 7,142.95 7,205.90 7,205.90 7,181.803 0 7,131.16 7,228.86 7,278.66 processing Methods, Limits of a for analysis	Peneous Area	07/29/24 110 07/29/24 11 07/29/24 130 07/29/24 130 07/29/24 13 07/29/24 13 07/30/24 11 07/30/24 11 07/30/24 13
Sample Number MFL-AMOI MFL-AMOZ MFL-AMOZ MFL-AMOY MFL-FBOI MFL-AMOI MFL-AMOI MFL-AMOZ MFL-AMOZ	54 -072924 -072924 -072924 -072924 -072924 -073024 -073024 Special Instruction All sam	I-AB DL -AB DL -	an 246230 246201 246201 246964 246964 246214 46607 46607 46434 ents (Sample Specifications 1 acceptable	Volume, Area or Homog 7,227.39 7,142.95 7,205.90 7,205.90 7,181.803 0 7,131.16 7,228.63 7,278.63 Processing Methods, Limits of a for analysis	eneous Area 12 1 02 3 9 0 24 Defection, etc.)	07/29/24 110 07/29/24 11 07/29/24 130 07/29/24 130 07/29/24 13 07/29/24 13 07/30/24 13 07/30/24 13 07/30/24 13
Sample Number MFL-AMOI MFL-AMOZ MFL-AMO3- MFL-AMO4 MFL-FBO3 MFL-AMO1 MFL-AMO1 MFL-AMO2 MFL-AMO3 MFL-AMO3 MFL-AMO3 MFL-AMO3	54 -072924 -072924 -072924 -072924 -072924 -073024 -073024 Special Instruction All sam	- AB DL - A	246230 246201 246201 246552 246964 246214 46607 46607 46607 46434 ents (Sample Specifications d acceptable	Volume, Area or Homog 7,227.39 7,142.95 7,205.90 7,205.90 7,181.803 0 7,131.16 7,228.62 Processing Methods, Limits of a for analysis ondition Upon Receipt:	Pereous Area	07/29/24 110 07/29/24 110 07/29/24 130 07/29/24 130 07/29/24 130 07/29/24 13 07/29/24 13 07/30/24 11 07/30/24 11 07/30/24 13 07/30/24 13
Sample Number MFL-AMOI MFL-AMOZ MFL-AMO3- MFL-AMO4 MFL-FBO1 MFL-AMO1 MFL-AMO1 MFL-AMO2 MFL-AMO2 MFL-AMO2 MFL-AMO2 Relinquished by:	54 -072924 -072924 -072924 -072924 -072924 -073024 -073024 Special Instruction All sam	- AB DL - AB DL - AB D	246230 246201 246201 246552 246964 246964 246214 46607	Volume, Area or Homog 7,227.39 7,142.95 7,205.90 7,181.803 0 7,181.803 0 7,131.16 7,228.63 7,278.63 Proceeding Methods, Limits of a for analysis ondition Upon Receipt: by:	eneous Area 2 3 3 5 6 7 7 7 7 7 7 7 7 7	07/29/24 110 07/29/24 110 07/29/24 110 07/29/24 130 07/29/24 130 07/29/24 13 07/29/24 13 07/30/24 11 07/30/24 11 07/30/24 13 07/30/24 13 07/30/24 13

Page	1	Of	2

 EMSL ANALYTICAL, INC.
 Implicit of the Chain of Custody are only necessary if needed for additional sample information.

 Additional Pages of the Chain of Custody are only necessary if needed for additional sample information.
 Special Instructions and/or Regulatory Requirements (Sample Specifications, Processing Methods, Limits of Detection, etc.)

Asbestos Chain of Custody (Air, Bulk, Soil)

EMSL Order Number / Lab Use Only

#042416247

EMSL Analytical, Inc. 200 Route 130 North Cinnaminson, NJ 08077

> PHONE: (800) 220-3675 FMAIL CinnAsblab@EMSL.com

Date / Time Sampled Sample Number Sample Location / Description Volume, Area or Homogeneous Area (Air Monitoring Only) MFL-AMO4-073024-AB DL246217 7,269.408 1326 07 20 MFL-FBOI-073024-AB DL246488 0 130/24 1200 07 MPL-AMO1-073124-AB DL246239 7,212-134 07/31/24 1/04 MEL-AM02-073124-AB PL246545 7,093.038 1122 MFL-AM03-073/24-AB DL 246216 7,085.794 24 1250 MPL-Amoy-073/24-AB DL246 189 7,181.003 24 MPL-FB01-073124-AB DL246203 07/31/24 1200 AUG 5 12 9 Method of Shipment: Sample Condition Upon Receipt: F Relinguished by: 9AM Received by, Date/Time 08/01/24 1100 HEDEX ۵ N Relinguished by Received by Date/Time ontrolled Document - COC-05 Ashesios R16 10/26/2021

AGREE TO ELECTRONIC SIGNATURE (By checking, I consent to signing this Chain of Custody document by electronic signature.)

EMSL Analytical, Inc.'s Laboratory Lemis and Conditions are incorporated into this chain of Custody by reference in their entirety, submission of samples to EMSL Analytical, Inc. constitutes acceptance and acknowledgment of all terms and conditions by Customer.

Stage 1 Data Verification Checklist – Asbestos

HDOH CAB – Ambient Community Air Sampling – Lahaina

Task Order No. 23141

Reviewed by:

Kierra Johnson 08/12/2024 and Shanna Vasser 8/13/2024 Laboratory: EMSL Analytical, Inc. – North Cinnaminson, NJ Collection date(s): 07/29/2024 – 07/31/2024 Report No: 42416247

<u>v</u>	1.	Chain of custody (CoC) documentation is present.
<u>V</u>	2.	Sample receipt condition information is present and acceptable.
<u>v</u>	3.	Laboratory conducting the analysis is identified.
V	4.	All samples submitted to the laboratory are accounted for.
<u>v</u>	5.	Requested analytical methods were performed.
<u>v</u>	6.	Analysis dates are provided.
<u>v</u>	7.	Analyte results are provided.
<u>NA</u>	8.	Result qualifiers and definitions are provided.
<u>v</u>	9.	Result units are reported.
V	10.	Requested reporting limits are present.
<u>NA</u>	11.	Method detection limits are present.
V	12.	Sample collection date and time are present.
V	13.	No detections in field QC blanks (lot/media blanks, field blanks, etc).
Discrep	ancies:	None.

Notes: None.

Eastern Research Group 601 Keystone Park Drive Suite 700 Morrisville, NC 27560

August 13, 2024

Ms. Chelsea Saber Tetra Tech, Inc. 1777 Sentry Pkwy, Bldg 12 Blue Bell, PA 19422 Project Name: Lahaina fires

Dear Ms. Chelsea Saber,

This report contains the analytical results for the sample(s) received under chain(s) of custody by Eastern Research Group on 03/11/24 11:48 through 08/05/24 10:30.

Values below the MDL for QC results in this report are recorded as ND, however the actual values are reported in the accompanying Excel report with a "U" flag (Under the detection limit). The actual values are reported in AQS.

This test is accredited under the 2016 TNI Standard for Environmental Laboratories (FL DOH Certification # E87673). All analyses were performed as described in the US EPA-approved QAPP, under the contract for National Hazardous Air Pollutant Support (US EPA Contract No. 68HERH22D0002). This cover page is an integral part of this report, and any exceptions or comments are noted on the last page.

Release of the data contained in this data package and in the data submitted in the electronic data deliverable, has been authorized by the Program Manager, or the Program Manager's designee as verified by the following signature.

The issuance of the final Certificate of Analysis takes precedence over any previous Report. If you have any questions, please contact me at 919-468-7924.

Sincerely,

Julie Swift Program Manager julie.swift@erg.com

The information contained in this report and its attachment(s) are intended only for the use of the individual to whom it is addressed and may contain information that is privileged, confidential, or exempt from disclosure. If the reader of this message is not the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this report is strictly prohibited. If you have received this report in error, please notify <u>julie.swift@erg.com</u> and delete the report without retaining any copies.

Page 1 of 53

Tetra Tech, Inc. 1777 Sentry Pkwy, Bldg 12 Blue Bell, PA 19422 ATTN: Ms. Chelsea Saber PHONE: (703) 885-5495 FAX:

 FILE #: 4205.00.003.001

 REPORTED: 08/13/24 09:56

 SUBMITTED: 03/11/24 to 08/05/24

 AQS SITE CODE:

 SITE CODE:

 Lahaina fires

ANALYTICAL REPORT FOR SAMPLES

<u>SampleName</u>	<u>LabNumber</u>	<u>Matrix</u>	Sampled	<u>Received</u>
MFL-AM01-072524-HM	4080550-01	Air	07/25/24 23:59	08/05/24 10:30
MFL-AM02-072524-HM	4080550-02	Air	07/25/24 23:59	08/05/24 10:30
MFL-AM03-072524-HM	4080550-03	Air	07/25/24 23:59	08/05/24 10:30
MFL-AM04-072524-HM	4080550-04	Air	07/25/24 23:59	08/05/24 10:30
MFL-AM01-072624-HM	4080550-05	Air	07/26/24 23:59	08/05/24 10:30
MFL-AM02-072624-HM	4080550-06	Air	07/26/24 23:59	08/05/24 10:30
MFL-AM03-072624-HM	4080550-07	Air	07/26/24 23:59	08/05/24 10:30
MFL-AM04-072624-HM	4080550-08	Air	07/26/24 23:59	08/05/24 10:30
MFL-FB01-072624-HM	4080550-09	Air	07/26/24 00:05	08/05/24 10:30
MFL-AM01-072724-HM	4080550-10	Air	07/27/24 23:59	08/05/24 10:30
MFL-AM02-072724-HM	4080550-11	Air	07/27/24 23:59	08/05/24 10:30
MFL-AM03-072724-HM	4080550-12	Air	07/27/24 23:59	08/05/24 10:30
MFL-AM04-072724-HM	4080550-13	Air	07/27/24 23:59	08/05/24 10:30
MFL-AM01-072824-HM	4080550-14	Air	07/28/24 23:59	08/05/24 10:30
MFL-AM02-072824-HM	4080550-15	Air	07/28/24 23:59	08/05/24 10:30
MFL-AM03-072824-HM	4080550-16	Air	07/28/24 23:59	08/05/24 10:30
MFL-AM04-072824-HM	4080550-17	Air	07/28/24 23:59	08/05/24 10:30
MFL-FB01-072824-HM	4080550-18	Air	07/28/24 00:05	08/05/24 10:30
MFL-AM01-072924-HM	4080550-19	Air	07/29/24 23:59	08/05/24 10:30
MFL-AM02-072924-HM	4080550-20	Air	07/29/24 23:59	08/05/24 10:30

Eastern Research Group

Tetra Tech, Inc.			FILE #: 4205.00.0	003.001
1777 Sentry Pkwy, Bldg 12			REPORTED: 08/1	3/24 09:56
Blue Bell, PA 19422			SUBMITTED: 03	/11/24 to 08/05/24
ATTN: Ms. Chelsea Saber			AQS SITE CODE:	
PHONE: (703) 885-5495	FAX:		SITE CODE:	Lahaina fires
MFL-AM03-072924-HM	4080550-21	Air	07/29/24 23:59	08/05/24 10:30
MFL-AM04-072924-HM	4080550-22	Air	07/29/24 23:59	08/05/24 10:30
MFL-AM01-073024-HM	4080550-23	Air	07/30/24 23:59	08/05/24 10:30
MFL-AM02-073024-HM	4080550-24	Air	07/30/24 23:59	08/05/24 10:30
MFL-AM03-073024-HM	4080550-25	Air	07/30/24 23:59	08/05/24 10:30
MFL-AM04-073024-HM	4080550-26	Air	07/30/24 23:59	08/05/24 10:30
MFL-FB01-073024-HM	4080550-27	Air	07/30/24 00:05	08/05/24 10:30
MFL-LB01-073024-HM	4080550-28	Air	07/30/24 00:05	08/05/24 10:30
MFL-AM01-073124-HM	4080550-29	Air	07/31/24 23:59	08/05/24 10:30
MFL-AM02-073124-HM	4080550-30	Air	07/31/24 23:59	08/05/24 10:30
MFL-AM03-073124-HM	4080550-31	Air	07/31/24 23:59	08/05/24 10:30
MFL-AM04-073124-HM	4080550-32	Air	07/31/24 23:59	08/05/24 10:30

Tetra Tech, Inc.				FILE #: 42	205.00.003.001		
1777 Sentry Pk	wy, Bldg 12			REPORTE	D: 08/13/24 09:5	6	
Blue Bell, PA 19	9422			SUBMITTED: 03/11/24 to 08/05/24			
ATTN: Ms. Che	elsea Saber			AQS SITE	CODE:		
PHONE: (703)	885-5495 FAX:			SITE COD	E: Lahaina	fires	
Description:	MFL-AM01-072524-	HM Lab 1	D: 4080550-01			Sampled: 07/25/24 23:59	
Matrix:	Air	Sam	ple Volume: 18	93.534 m³		Received: 08/05/24 10:30	
		Filter	r ID:		Anal	ysis Date: 08/07/24 01:21	
Comments:	Q9539050 - Receiv	ed in good conditior	ı				
		Inorganics	by Compendi	um Methoo	l IO-3.5		
		5	<u>Results</u>		MDL		
<u>Analyte</u>		CAS Number	<u>ng/m³ Air</u>	Flag	<u>ng/m³ Air</u>		
Antimony		7440-36-0	0.0813	SL	0.0332		
Arsenic		7440-38-2	0.547		0.00805		
Barium		7440-39-3	5.81		0.919		
Beryllium		7440-41-7	0.0197		0.00275		
Cadmium		7440-43-9	0.0310	U	0.0637		
Chromium		7440-47-3	4.22		1.90		
Cobalt		7440-48-4	0.750		0.0375		
Copper		7440-50-8	190		2.26		
Lead		7439-92-1	0.527		0.184		
Manganese		7439-96-5	20.3		1.62		
Molybdenum		7439-98-7	11.9		0.308		
Nickel		7440-02-0	2.35		0.560		
Selenium		7782-49-2	0.344		0.00770		
Thallium		7440-28-0	0.00245		5.06E-4		
Vanadium		7440-62-2	2.57		0.0455		
Zinc		7440-66-6	13.2	U	66.0		

Tetra Tech, Inc.				FILE #:	4205.00.003.001		
1777 Sentry Pk	wy, Bldg 12			REPORTI	ED: 08/13/24 09	:56	
Blue Bell, PA 19	422			SUBMITT	ED: 03/11/24	to 08/05/24	
ATTN: Ms. Che	lsea Saber			AQS SITE	E CODE:		
PHONE (703)	885-5495 FAX ·			SITE COL)F· Lahain	a fires	
		IM Lab				Semulad: 07/25/24/22	
Description:	MFL-AMUZ-072524-F		LD: 4080550	J-02		Sampled: 07/25/24 23	:59
Matrix:	Air	Sam	ple Volume:	2126.896 m ³		Received: 08/05/24 10	:30
		Filte	r ID:		An	alysis Date: 08/06/24 18	:43
Comments:	Q9539047 - Receive	d in good condition	n MS/MSD				
		Inorganics	by Compen	ndium Metho	d IO-3.5		
		-	<u>Results</u>		MDL		
<u>Analyte</u>		CAS Number	<u>ng/m³ Air</u>	<u>Flag</u>	<u>ng/m³ Air</u>		
Antimony		7440-36-0	0.172	SL	0.0295		
Arsenic		7440-38-2	0.357		0.00717		
Barium		7440-39-3	4.56		0.819		
Beryllium		7440-41-7	0.0158		0.00245		
Cadmium		7440-43-9	0.0181	U	0.0567		
Chromium		7440-47-3	2.53		1.69		
Cobalt		7440-48-4	0.476		0.0334		
Copper		7440-50-8	34.5		2.01		
Lead		7439-92-1	1.12		0.164		
Manganese		7439-96-5	14.9		1.45		
Molybdenum		7439-98-7	1.94		0.275		
Nickel		7440-02-0	1.36		0.499		
Selenium		7782-49-2	0.340		0.00685		
Thallium		7440-28-0	0.00253		4.51E-4		
Vanadium		7440-62-2	1.74		0.0405		

14.3

7440-66-6

U

58.7

Zinc

Tetra Tech, Inc.	ra Tech, Inc.				FILE #: 4205.00.003.001			
1777 Sentry Pk	wy, Bldg 12			REPORTE	D: 08/13/24 09:5	6		
Blue Bell, PA 19	9422			SUBMITTED: 03/11/24 to 08/05/24				
ATTN: Ms. Che	elsea Saber			AQS SITE	CODE:			
DUONE: (703)	885-5405 E				E. Labaina	fires		
FIIONE. (703)	000-0490 F	AA.		SITE CODE		11165		
Description:	MFL-AM03-0	072524-HM Lab	ID: 4080550-03	3		Sampled: 07/25/24 23:59		
Matrix:	Air	Sam	ple Volume: 18	73.796 m³		Received: 08/05/24 10:30		
		Filte	er ID:		Anal	ysis Date: 08/07/24 01:39		
Comments:	Q9539046 -	Received in good conditio	n					
		Inorganic	s by Compendi	um Method	110-3 5			
		Inorganie	Results		MDL			
<u>Analyte</u>		CAS Number	<u>ng/m³ Air</u>	<u>Flag</u>	<u>ng/m³ Air</u>			
Antimony		7440-36-0	0.0724	SL	0.0335			
Arsenic		7440-38-2	0.435		0.00814			
Barium		7440-39-3	3.95		0.929			
Beryllium		7440-41-7	0.0266		0.00278			
Cadmium		7440-43-9	0.0210	U	0.0643			
Chromium		7440-47-3	3.52		1.92			
Cobalt		7440-48-4	0.672		0.0379			
Copper		7440-50-8	63.1		2.28			
Lead		7439-92-1	0.630		0.186			
Manganese		7439-96-5	16.5		1.64			
Molybdenum		7439-98-7	3.73		0.312			
Nickel		7440-02-0	2.30		0.566			
Selenium		7782-49-2	0.351		0.00778			
Thallium		7440-28-0	0.00268		5.11E-4			
Vanadium		7440-62-2	1.56		0.0459			
Zinc		7440-66-6	22.6	U	66.7			

Tetra Tech, Inc.	a Tech, Inc.				FILE #: 4205.00.003.001			
1777 Sentry Pk	wy, Bldg 12			REPORTED: 08/13/24 09:56				
Blue Bell, PA 19	9422			SUBMITTED: 03/11/24 to 08/05/24				
ATTN: Ms. Che	elsea Saber			AOS SITE CODE:				
	885-5/05 EAV.				==== =• Labaina	fires		
FHONE. (703)	003-3493 FAA.			SITE CODE	Lanaina			
Description:	MFL-AM04-072524	-HM Lab I	D: 4080550-04	1		Sampled: 07/25/24 23:59		
Matrix:	Air	Samp	ole Volume: 18	80.139 m³		Received: 08/05/24 10:30		
		Filter	· ID:		Ana	lysis Date: 08/07/24 01:54		
Comments:	Q9539044 - Receiv	ved in good condition	1					
		Inorganics	by Compendi	um Method	10-3.5			
		21101 games	Results		<u>MDL</u>			
<u>Analyte</u>		CAS Number	<u>ng/m³ Air</u>	Flag	<u>ng/m³ Air</u>			
Antimony		7440-36-0	0.0873	SL	0.0334			
Arsenic		7440-38-2	0.341		0.00811			
Barium		7440-39-3	3.72		0.926			
Beryllium		7440-41-7	0.0157		0.00277			
Cadmium		7440-43-9	0.0149	U	0.0641			
Chromium		7440-47-3	3.19		1.91			
Cobalt		7440-48-4	0.459		0.0377			
Copper		7440-50-8	48.1		2.28			
Lead		7439-92-1	0.764		0.185			
Manganese		7439-96-5	15.5		1.64			
Molybdenum		7439-98-7	3.40		0.311			
Nickel		7440-02-0	1.47		0.564			
Selenium		7782-49-2	0.343		0.00775			
Thallium		7440-28-0	0.00225		5.10E-4			
Vanadium		7440-62-2	1.57		0.0458			
Zinc		7440-66-6	14.8	U	66.5			

Tetra Tech, Inc.	ra Tech, Inc.				FILE #: 4205.00.003.001			
1777 Sentry Pk	wy, Bldg 12			REPOR	FED: 08/13/24 09	56		
Blue Bell, PA 19	9422			SUBMITTED: 03/11/24 to 08/05/24				
ATTN · Ms Che	elsea Saber							
				Add on				
PHONE: (703)	885-5495	FAX:		SITE CO	DE: Lahain	a fires		
Description:	MFL-AM01	-072624-HM L	ab ID: 408055	0-05		Sampled: 07/26/24 23:59)	
Matrix:	Air	S	ample Volume:	1932.215 m ³		Received: 08/05/24 10:30)	
		F	ilter ID:		Ana	alysis Date: 08/07/24 02:09	Ð	
Comments:	Q9539043	- Received in good conc	lition					
	-	Inorgai	nics by Compe	ndium Meth	od IO-3.5			
		21101 941	<u>Results</u>		MDL			
<u>Analyte</u>		CAS Number	<u>ng/m³ Air</u>	Flag	<u>ng/m³ Air</u>			
Antimony		7440-36-0	0.0656	SL	0.0325			
Arsenic		7440-38-2	1.40		0.00789			
Barium		7440-39-3	8.44		0.901			
Beryllium		7440-41-7	0.0388		0.00269			
Cadmium		7440-43-9	0.0222	U	0.0624			
Chromium		7440-47-3	7.20		1.86			
Cobalt		7440-48-4	1.69		0.0367			
Copper		7440-50-8	157		2.21			
Lead		7439-92-1	0.503		0.180			
Manganese		7439-96-5	41.5		1.59			
Molybdenum		7439-98-7	8.45		0.302			
Nickel		7440-02-0	3.47		0.549			
Selenium		7782-49-2	0.292		0.00754			
Thallium		7440-28-0	0.00204		4.96E-4			
Vanadium		7440-62-2	4.82		0.0445			
Zinc		7440-66-6	12.7	U	64.7			

Tetra Tech, Inc.	tra Tech, Inc.			FILE #: 42	205.00.003.001		
1777 Sentry Pk	wy, Bldg 12			REPORTED: 08/13/24 09:56			
Blue Bell, PA 19	9422			SUBMITTE	D: 03/11/24 to	08/05/24	
ATTN: Ms. Che	elsea Saber			AQS SITE	CODE:		
						<i>c</i> .	
PHONE: (703)	885-5495	FAX:		SITE CODE	Lahaina	a fires	
Description:	MFL-AM02-	072624-HM La	b ID: 4080550-0	06		Sampled: 07/26/24 23:59	
Matrix:	Air	Sa	mple Volume: 2	141.539 m³		Received: 08/05/24 10:30	
		Fil	ter ID:		Ana	lysis Date: 08/07/24 02:26	
Comments:	Q9539042	- Received in good condi	tion				
		Inorgan	ics by Compend	lium Method	10-3.5		
		Litergan	Results		MDL		
<u>Analyte</u>		CAS Number	<u>ng/m³ Air</u>	Flag	<u>ng/m³ Air</u>		
Antimony		7440-36-0	0.0948	SL	0.0293		
Arsenic		7440-38-2	0.347		0.00712		
Barium		7440-39-3	4.85		0.813		
Beryllium		7440-41-7	0.0155		0.00243		
Cadmium		7440-43-9	0.0172	U	0.0563		
Chromium		7440-47-3	3.34		1.68		
Cobalt		7440-48-4	0.512		0.0331		
Copper		7440-50-8	36.5		2.00		
Lead		7439-92-1	0.883		0.163		
Manganese		7439-96-5	15.0		1.44		
Molybdenum		7439-98-7	2.14		0.273		
Nickel		7440-02-0	1.50		0.495		
Selenium		7782-49-2	0.198		0.00681		
Thallium		7440-28-0	0.00117		4.47E-4		
Vanadium		7440-62-2	1.63		0.0402		
Zinc		7440-66-6	11.0	U	58.3		

Tetra Tech, Inc.	ra Tech, Inc.				FILE #: 4205.00.003.001			
1777 Sentry Pk	wy, Bldg 12			REPORTED: 08/13/24 09:56				
Blue Bell, PA 19	9422			SUBMITTED: 03/11/24 to 08/05/24				
ATTN: Ms. Che	elsea Saber			AQS SITE	CODE:			
DUONE: (703)	885-5405					fires		
FHONE. (703)	885-5495	ΓΑΛ.		SITE CODE				
Description:	MFL-AM03-	-072624-HM La	b ID: 4080550-0	7		Sampled: 07/26/24 23:59		
Matrix:	Air	Sa	mple Volume: 18	36.226 m ³		Received: 08/05/24 10:30		
		Fil	ter ID:		Anal	ysis Date: 08/07/24 02:41		
Comments:	Q9539041	- Received in good condit	tion					
	-	Inorgan	ics by Compendi	um Method	10-3.5			
		2.101 guil	Results		MDL			
<u>Analyte</u>		CAS Number	<u>ng/m³ Air</u>	<u>Flag</u>	<u>ng/m³ Air</u>			
Antimony		7440-36-0	0.0490	SL	0.0342			
Arsenic		7440-38-2	0.252		0.00830			
Barium		7440-39-3	3.42		0.948			
Beryllium		7440-41-7	0.0391		0.00284			
Cadmium		7440-43-9	0.0110	U	0.0657			
Chromium		7440-47-3	3.51		1.96			
Cobalt		7440-48-4	0.600		0.0386			
Copper		7440-50-8	35.4		2.33			
Lead		7439-92-1	0.527		0.190			
Manganese		7439-96-5	15.4		1.67			
Molybdenum		7439-98-7	2.83		0.318			
Nickel		7440-02-0	1.59		0.578			
Selenium		7782-49-2	0.190		0.00794			
Thallium		7440-28-0	0.00119		5.22E-4			
Vanadium		7440-62-2	1.45		0.0469			
Zinc		7440-66-6	10.3	U	68.0			

Tetra Tech, Inc.				FILE #: 4205.00.003.001					
1777 Sentry Pk	777 Sentry Pkwy, Bldg 12 Blue Bell, PA 19422				REPORTED: 08/13/24 09:56				
Blue Bell, PA 19					ED: 03/11/24 to	08/05/24			
TTN: Ms. Chelsea Saber				AQS SITE	CODE:				
DUONE: (703)	885-5/05 EAV.								
FIIONE. (703)	000-0490 FAX.			SITE COD	E. Lanama	11163			
Description:	MFL-AM04-07262	24-HM Lab 2	ID: 4080550-08			Sampled: 07/26/24 23:59			
Matrix:	Air	Sam	ple Volume: 182	25.34 m³		Received: 08/05/24 10:30			
		Filte	r ID:	Analysis Date: 08/07/24 02:55					
Comments:	Q9539040 - Rece	eived in good condition	n						
		Inorganics	s by Compendi	um Metho	d IO-3.5				
		2.101 games	Results		<u>MDL</u>				
<u>Analyte</u>		CAS Number	<u>ng/m³ Air</u>	Flag	<u>ng/m³ Air</u>				
Antimony		7440-36-0	0.108	SL	0.0344				
Arsenic		7440-38-2	0.538		0.00835				
Barium		7440-39-3	5.51		0.954				
Beryllium		7440-41-7	0.0231		0.00285				
Cadmium		7440-43-9	0.0222	U	0.0660				
Chromium		7440-47-3	4.04		1.97				
Cobalt		7440-48-4	0.786		0.0389				
Copper		7440-50-8	52.8		2.34				
Lead		7439-92-1	1.18		0.191				
Manganese		7439-96-5	25.1		1.68				
Molybdenum		7439-98-7	4.00		0.320				
Nickel		7440-02-0	1.94		0.581				
Selenium		7782-49-2	0.226		0.00799				
Thallium		7440-28-0	0.00145		5.25E-4				
Vanadium		7440-62-2	2.11		0.0472				
Zinc		7440-66-6	18.8	U	68.5				

Tetra Tech, Inc.				FILE #: 4205.00.003.001					
1777 Sentry Pk	1777 Sentry Pkwy, Bldg 12				REPORTED: 08/13/24 09:56				
Blue Bell, PA 19	9422			SUBMITTED	: 03/11/24 to	08/05/24			
ATTN: Ms. Che	TTN: Ms. Chelsea Saber				AQS SITE CODE:				
PHONE: (703)	885-5495 FAX:		SITE CODE:	Lahaina fires					
Description:	MFL-FB01-072624	4-HM Lab	ID: 4080550-	09		Sampled: 07/26/24 00:05			
Matrix:	Air	Sam	ple Volume: 1	1932.215 m³		Received: 08/05/24 10:30			
		Filte	er ID:		Analy	/sis Date: 08/07/24 03:09			
Comments:	Q9539037 - Rece	ived in good conditio	n		-				
		Inorganic	s by Compend	dium Method 1	0-3.5				
		5	<u>Results</u>		MDL				
<u>Analyte</u>		CAS Number	<u>ng/m³ Air</u>	Flag	<u>ng/m³ Air</u>				
Antimony		7440-36-0	0.0255	U, SL	0.0325				
Arsenic		7440-38-2	0.00593	U	0.00789				
Barium		7440-39-3	0.528	U	0.901				
Beryllium		7440-41-7	7.22E-4	U	0.00269				
Cadmium		7440-43-9	0.00161	U	0.0624				
Chromium		7440-47-3	1.24	U	1.86				
Cobalt		7440-48-4	0.0237	U	0.0367				
Copper		7440-50-8	1.21	U	2.21				
Lead		7439-92-1	0.0625	U	0.180				
Manganese		7439-96-5	0.204	U	1.59				
Molybdenum		7439-98-7	0.218	U	0.302				
Nickel		7440-02-0	0.358	U	0.549				
Selenium		7782-49-2	9.93E-4	U	0.00754				
Thallium		7440-28-0	6.92E-5	U	4.96E-4				
Vanadium		7440-62-2	0.00870	U	0.0445				

5.38

7440-66-6

U

64.7

Zinc

Tetra Tech, Inc.				FILE #: 4205.00.003.001				
777 Sentry Pkwy, Bldg 12				REPORTED: 08/13/24 09:56				
Blue Bell, PA 19422				SUBMITTED: 03/11/24 to 08/05/24				
				AOS SITE	CODE			
PHONE: (703)	885-5495 FAX:			SITE CODE	Lahaina	fires		
Description:	MFL-AM01-07272	4-HM Lab	(D: 4080550-10)		Sampled: 07/27/24 23:59		
Matrix:	Air	Sam	ple Volume: 19	47.501 m³		Received: 08/05/24 10:30		
		Filte	r ID:	Analysis Date: 08/07/24 03:23				
Comments:	Q9539039 - Rece	ived in good condition	า					
	-	Inorganics	by Compendi	um Method	10-3.5			
		21101 guinee	Results		MDL			
<u>Analyte</u>		CAS Number	<u>ng/m³ Air</u>	Flag	<u>ng/m³ Air</u>			
Antimony		7440-36-0	0.0674	SL	0.0322			
Arsenic		7440-38-2	2.02		0.00783			
Barium		7440-39-3	13.6		0.894			
Beryllium		7440-41-7	0.0735		0.00267			
Cadmium		7440-43-9	0.0587	U	0.0619			
Chromium		7440-47-3	12.1		1.85			
Cobalt		7440-48-4	3.07		0.0364			
Copper		7440-50-8	119		2.20			
Lead		7439-92-1	0.667		0.179			
Manganese		7439-96-5	72.6		1.58			
Molybdenum		7439-98-7	4.91		0.300			
Nickel		7440-02-0	5.63		0.545			
Selenium		7782-49-2	0.395		0.00749			
Thallium		7440-28-0	0.00283		4.92E-4			
Vanadium		7440-62-2	8.43		0.0442			
Zinc		7440-66-6	12.9	U	64.2			

Tetra Tech, Inc.				FILE #: 4205.00.003.001				
1777 Sentry Pkwy, Bldg 12				REPORTED: 08/13/24 09:56				
Blue Bell, PA 19422				SUBMITTED: 03/11/24 to 08/05/24				
				AQS SITE	CODE:			
	885-5405 EAV.				fires			
FHONE. (703)	000-0490 FAA.			SITE CODE		liles		
Description:	MFL-AM02-07272	4-HM Lab 1	D: 4080550-11	L		Sampled: 07/27/24 23:59		
Matrix:	Air	Sam	ple Volume: 21	64.269 m³		Received: 08/05/24 10:30		
		Filter	r ID:		Ana	lysis Date: 08/07/24 04:34		
Comments:	Q9539038 - Rece	ived in good conditior	ı					
		Inorganics	by Compendi	um Method	10-3.5			
		21101 guille	Results		MDL			
<u>Analyte</u>		CAS Number	<u>ng/m³ Air</u>	Flag	<u>ng/m³ Air</u>			
Antimony		7440-36-0	0.0915	SL	0.0290			
Arsenic		7440-38-2	0.726		0.00704			
Barium		7440-39-3	8.92		0.804			
Beryllium		7440-41-7	0.0278		0.00241			
Cadmium		7440-43-9	0.0270	U	0.0557			
Chromium		7440-47-3	4.58		1.66			
Cobalt		7440-48-4	1.50		0.0328			
Copper		7440-50-8	35.6		1.98			
Lead		7439-92-1	1.58		0.161			
Manganese		7439-96-5	67.2		1.42			
Molybdenum		7439-98-7	1.83		0.270			
Nickel		7440-02-0	2.46		0.490			
Selenium		7782-49-2	0.243		0.00674			
Thallium		7440-28-0	0.00377		4.43E-4			
Vanadium		7440-62-2	3.13		0.0398			
Zinc		7440-66-6	16.1	U	57.7			

Tetra Tech, Inc.				FILE #: 4205.00.003.001					
1777 Sentry Pk	777 Sentry Pkwy, Bldg 12				REPORTED: 08/13/24 09:56				
Blue Bell, PA 19	Blue Bell, PA 19422				D: 03/11/24 to	08/05/24			
ATTN: Ms. Che					CODE:				
DHONE: (703)	885-5495 E	٨٧.		 Ishaina	firee				
FHONE. (703)	000-0490 F	нл.		SITE CODE					
Description:	MFL-AM03-0	72724-HM Lab 1	D: 4080550-12	2		Sampled: 07/27/24 23:59			
Matrix:	Air	Sam	ple Volume: 18	55.037 m³		Received: 08/05/24 10:30			
		Filter	r ID:	Analysis Date: 08/07/24 04:51					
Comments:	Q9539036 -	Received in good conditior	ı						
		Inorganics	by Compendi	um Method	10-3.5				
		21101 guille	Results		MDL				
<u>Analyte</u>		CAS Number	<u>ng/m³ Air</u>	Flag	<u>ng/m³ Air</u>				
Antimony		7440-36-0	0.0470	SL	0.0339				
Arsenic		7440-38-2	0.266		0.00822				
Barium		7440-39-3	3.15		0.938				
Beryllium		7440-41-7	0.0341		0.00281				
Cadmium		7440-43-9	0.00829	U	0.0650				
Chromium		7440-47-3	3.43		1.94				
Cobalt		7440-48-4	0.557		0.0382				
Copper		7440-50-8	35.8		2.31				
Lead		7439-92-1	0.400		0.188				
Manganese		7439-96-5	13.8		1.66				
Molybdenum		7439-98-7	2.58		0.315				
Nickel		7440-02-0	1.49		0.572				
Selenium		7782-49-2	0.138		0.00786				
Thallium		7440-28-0	9.06E-4		5.17E-4				
Vanadium		7440-62-2	1.41		0.0464				
Zinc		7440-66-6	10.8	U	67.4				

Tetra Tech, Inc.				FILE #: 4205.00.003.001			
1777 Sentry Pk	wy, Bldg 12			REPORTED: 08/13/24 09:56			
Blue Bell, PA 19	Blue Bell, PA 19422 ATTN: Ms. Chelsea Saber PHONE: (703) 885-5495 EAX:				D: 03/11/24 to	08/05/24	
ATTN: Ms. Che					CODE:		
DHONE: (703)							
FIIONE: (703)	000-0+00 TAX	•		SHE CODI		11165	
Description:	MFL-AM04-0727	724-HM Lab 1	ID: 4080550-13	6		Sampled: 07/27/24 23:59	
Matrix:	Air	Sam	ple Volume: 193	12.412 m³		Received: 08/05/24 10:30	
		Filte	r ID:	Analysis Date: 08/07/24 05:05			
Comments:	Q9539034 - Red	ceived in good condition	า				
		Inorganics	s by Compendi	um Method	10-3.5		
			Results		MDL		
<u>Analyte</u>		CAS Number	<u>ng/m³ Air</u>	<u>Flag</u>	<u>ng/m³ Air</u>		
Antimony		7440-36-0	0.0704	SL	0.0328		
Arsenic		7440-38-2	0.591		0.00797		
Barium		7440-39-3	3.55		0.910		
Beryllium		7440-41-7	0.0171		0.00272		
Cadmium		7440-43-9	0.0135	U	0.0630		
Chromium		7440-47-3	3.14		1.88		
Cobalt		7440-48-4	0.578		0.0371		
Copper		7440-50-8	30.7		2.24		
Lead		7439-92-1	0.978		0.182		
Manganese		7439-96-5	16.4		1.61		
Molybdenum		7439-98-7	1.76		0.305		
Nickel		7440-02-0	1.41		0.555		
Selenium		7782-49-2	0.149		0.00762		
Thallium		7440-28-0	9.24E-4		5.01E-4		
Vanadium		7440-62-2	1.38		0.0450		
Zinc		7440-66-6	11.5	U	65.3		

etra Tech, Inc.				FILE #:	FILE #: 4205.00.003.001				
1777 Sentry Pk	777 Sentry Pkwy, Bldg 12				REPORTED: 08/13/24 09:56				
Blue Bell, PA 19422				SUBMIT	SUBMITTED: 03/11/24 to 08/05/24				
				AQS SIT	E CODE:				
DHONE: (703)	885-5/05	EAY.		SITE CO	DE: Labain	fires			
FIIONE: (700)	000-0-0-00			5112 00					
Description:	MFL-AM01-	-072824-HM	.ab ID: 408055	0-14		Sampled: 07/28/24 23:59			
Matrix:	Air	9	Sample Volume:	1933.83 m ³		Received: 08/05/24 10:30			
		F	ilter ID:		Ana	lysis Date: 08/07/24 05:20			
Comments:	Q9539032	- Received in good con	dition						
		Inorga	nics by Compe	ndium Meth	od IO-3.5				
			Results		MDL				
<u>Analyte</u>		CAS Numbe	<u>r ng/m³ Ai</u> i	<u>r</u> <u>Flag</u>	<u>ng/m³ Air</u>				
Antimony		7440-36-0	0.0586	SL	0.0325				
Arsenic		7440-38-2	0.380		0.00788				
Barium		7440-39-3	3.23		0.900				
Beryllium		7440-41-7	0.00996		0.00269				
Cadmium		7440-43-9	0.0163	U	0.0623				
Chromium		7440-47-3	2.47		1.86				
Cobalt		7440-48-4	0.336		0.0367				
Copper		7440-50-8	194		2.21				
Lead		7439-92-1	0.266		0.180				
Manganese		7439-96-5	10.0		1.59				
Molybdenum		7439-98-7	9.01		0.302				
Nickel		7440-02-0	1.12		0.549				
Selenium		7782-49-2	0.142		0.00754				
Thallium		7440-28-0	6.67E-4		4.96E-4				
Vanadium		7440-62-2	1.25		0.0445				
Zinc		7440-66-6	7.31	U	64.6				

Tetra Tech, Inc.				FILE #: 4205.00.003.001						
1777 Sentry Pk	1777 Sentry Pkwy, Bldg 12				REPORTED: 08/13/24 09:56					
Blue Bell, PA 19422				SUBMITTED: 03/11/24 to 08/05/24						
ATTN: Ms. Che	ATTN: Ms. Chelsea Saber				CODE:					
DHONE: (703)					E. Labaina	fires				
FIIONE: (703)	000-0400	AA.				11165				
Description:	MFL-AM02-0)72824-HM Lab	ID: 4080550-15	5		Sampled: 07/28/24 23:59				
Matrix:	Air	Sam	ple Volume: 21	48.721 m³		Received: 08/05/24 10:30				
		Filte	er ID:	Analysis Date: 08/07/24 05:47						
Comments:	Q9539031 -	Received in good conditio	n							
		Inorganic	s by Compendi	um Metho	d IO-3.5					
			Results		MDL					
<u>Analyte</u>		CAS Number	<u>ng/m³ Air</u>	<u>Flag</u>	<u>ng/m³ Air</u>					
Antimony		7440-36-0	0.0771	SL	0.0292					
Arsenic		7440-38-2	0.250		0.00709					
Barium		7440-39-3	3.08		0.810					
Beryllium		7440-41-7	0.00902		0.00242					
Cadmium		7440-43-9	0.00782	U	0.0561					
Chromium		7440-47-3	1.92		1.67					
Cobalt		7440-48-4	0.264		0.0330					
Copper		7440-50-8	31.7		1.99					
Lead		7439-92-1	0.578		0.162					
Manganese		7439-96-5	8.38		1.43					
Molybdenum		7439-98-7	1.79		0.272					
Nickel		7440-02-0	0.869		0.494					
Selenium		7782-49-2	0.143		0.00678					
Thallium		7440-28-0	5.41E-4		4.46E-4					
Vanadium		7440-62-2	0.999		0.0401					
Zinc		7440-66-6	8.02	U	58.2					
Tetra Tech, Inc.			FILE #: 4205.00.003.001							
---------------------	--------------	----------------------------	-------------------------	-----------	-------------------------	----------------------------	--	--	--	--
1777 Sentry Pk	wy, Bldg 12			REPORTE	D: 08/13/24 09:5	56				
Blue Bell, PA 19	9422			SUBMITTE	D: 03/11/24 to	08/05/24				
ATTN: Ms. Che	elsea Saber			AQS SITE	CODE:					
PHONE: (703)	885-5495 FA	X:		SITE CODE	E: Lahaina	fires				
Description:	MFL-AM03-07	2824-HM Lab 1	ID: 4080550-16	5		Sampled: 07/28/24 23:59				
Matrix:	Air	Sam	ple Volume: 18	79.294 m³		Received: 08/05/24 10:30				
		Filte	r ID:		Ana	lysis Date: 08/07/24 06:02				
Comments:	Q9539029 - F	Received in good condition	า							
	-	Inorganics	s by Compendi	um Method	110-3.5					
		Inorganica	Results		MDL					
<u>Analyte</u>		CAS Number	<u>ng/m³ Air</u>	Flag	<u>ng/m³ Air</u>					
Antimony		7440-36-0	0.0428	SL	0.0334					
Arsenic		7440-38-2	0.175		0.00811					
Barium		7440-39-3	2.52		0.926					
Beryllium		7440-41-7	0.0169		0.00277					
Cadmium		7440-43-9	0.0120	U	0.0642					
Chromium		7440-47-3	3.03		1.91					
Cobalt		7440-48-4	0.336		0.0377					
Copper		7440-50-8	53.3		2.28					
Lead		7439-92-1	0.402		0.185					
Manganese		7439-96-5	9.36		1.64					
Molybdenum		7439-98-7	3.97		0.311					
Nickel		7440-02-0	1.48		0.564					
Selenium		7782-49-2	0.148		0.00776					
Thallium		7440-28-0	7.14E-4		5.10E-4					
Vanadium		7440-62-2	1.08		0.0458					
Zinc		7440-66-6	12.0	U	66.5					

Tetra Tech, Inc.	tra Tech, Inc.						FILE #: 4205.00.003.001				
1777 Sentry Pk	wy, Bldg 12				REPORT	FED: 08/13/	/24 09:56				
Blue Bell, PA 19	9422				SUBMIT	TED: 03/1	1/24 to 08	3/05/24			
ATTN: Ms. Che	elsea Saber				AQS SIT	E CODE:					
PHONE: (703)	885-5495	FAX.			SITE CO		l ahaina fir	e s			
	000 0400							<u> </u>			
Description:	MFL-AM04-	-072824-HM	Lab ID:	4080550	-17		Sa	ampled: 07	//28/24 23:59	9	
Matrix:	Air		Sample \	/olume:	1826.87 m ³		Re	eceived: 08	3/05/24 10:3	0	
			Filter ID:	1			Analys	is Date: 08	3/07/24 06:1	5	
Comments:	Q9539028	- Received in good co	ndition								
		Inora	anics by	Compen	dium Meth	od IO-3.5					
				Results		<u>M</u>	DL				
<u>Analyte</u>		CAS Numb	<u>er n</u>	g/m³ Air	<u>Flag</u>	<u>ng/m</u>	³ Air				
Antimony		7440-36-0		0.0695	SL	0.0	344				
Arsenic		7440-38-2		0.266		0.00)834				
Barium		7440-39-3		3.39		0.9)53				
Beryllium		7440-41-7		0.00921		0.00)285				
Cadmium		7440-43-9		0.0110	U	0.0	660				
Chromium		7440-47-3		2.88		1.	97				
Cobalt		7440-48-4		0.336		0.0	388				
Copper		7440-50-8		48.2		2.	34				
Lead		7439-92-1		0.672		0.1	1 91				
Manganese		7439-96-5		10.2		1.	68				
Molybdenum		7439-98-7		2.67		0.3	320				
Nickel		7440-02-0		1.43		0.5	581				
Selenium		7782-49-2		0.163		0.00)798				
Thallium		7440-28-0		6.33E-4		5.25	5E-4				
Vanadium		7440-62-2		1.10		0.0	471				
Zinc		7440-66-6		10.4	U	68	3.4				

Tetra Tech, Inc.					F	FILE #: 4205.00.003.001					
1777 Sentry Pk	wy, Bldg 12				R	EPORTE	ED: 08/13/24 09:56				
Blue Bell, PA 19	9422				S	UBMITT	ED: 03/11/24 to 08/05/24				
ATTN: Ms. Che	elsea Saber				Α	QS SITE	E CODE:				
PHONE: (703)	885-5495	FAX:	SITE CODE:			ITE COD	DE: Lahaina fires				
Description:	MFL-FB01	-072824-HM	Lab ID:	408055	0-18		Sampled: 07/28/24 00:05				
Matrix	Δir		Sample V	/olume:	1933 8	3 m ³	Received: 08/05/24 10:30				
Platita	7.0		Filter ID:	:	1555.0	,	Analysis Date: 08/07/24 06:30				
Comments:	Q9539022	- Received in good c	ondition								
		Inor	ganics by	Compe	ndium	Metho	d IO-3.5				
			<u> </u>	<u>Results</u>			MDL				
<u>Analyte</u>		CAS Num	<u>ber n</u>	g/m³ Air	r	Flag	<u>ng/m³ Air</u>				
Antimony		7440-36-0)	0.0104	-	SL, U	0.0325				
Arsenic		7440-38-2	2	0.00575		U	0.00788				
Barium		7440-39-3	3	0.524		U	0.900				
Beryllium		7440-41-7	7	7.27E-4		U	0.00269				
Cadmium		7440-43-9	Ð	0.00157		U	0.0623				
Chromium		7440-47-3	3	1.20		U	1.86				
Cobalt		7440-48-4	1	0.0240		U	0.0367				
Copper		7440-50-8	3	0.778		U	2.21				
Lead		7439-92-1	1	0.0414		U	0.180				
Manganese		7439-96-5	5	0.162		U	1.59				
Molybdenum		7439-98-	7	0.315		FB-01	0.302				
Nickel		7440-02-0	ט	0.289		U	0.549				
Selenium		7782-49-2	2	0.00383		U	0.00754				
Thallium		7440-28-0)	5.01E-5		U	4.96E-4				
Vanadium		7440-62-2	2	0.0119		U	0.0445				

2.81

7440-66-6

U

64.6

Zinc

Tetra Tech, Inc.				FILE #: 4205.00.003.001				
1777 Sentry Pk	wy, Bldg 12			REPORTE	D: 08/13/24 09:5	6		
Blue Bell, PA 19	9422			SUBMITTI	ED: 03/11/24 to	08/05/24		
ATTN: Ms. Che	elsea Saber			AQS SITE	CODE:			
	885-5405 EAV.				E. Labaina	fires		
FHONE. (703)	003-3493 FAA.			SITE COD				
Description:	MFL-AM01-07292	4-HM Lab 1	(D : 4080550-19	Э		Sampled: 07/29/24 23:59		
Matrix:	Air	Sam	ple Volume: 19	47.501 m³		Received: 08/05/24 10:30		
		Filter	r ID:		Anal	ysis Date: 08/07/24 06:44		
Comments:	Q9539027 - Rece	ived in good conditior	ı					
		Inorganics	by Compendi	um Metho	d IO-3.5			
		21101 guille	Results		MDL			
<u>Analyte</u>		CAS Number	<u>ng/m³ Air</u>	Flag	<u>ng/m³ Air</u>			
Antimony		7440-36-0	0.0453	SL	0.0322			
Arsenic		7440-38-2	0.588		0.00783			
Barium		7440-39-3	4.29		0.894			
Beryllium		7440-41-7	0.0139		0.00267			
Cadmium		7440-43-9	0.0116	U	0.0619			
Chromium		7440-47-3	3.62		1.85			
Cobalt		7440-48-4	0.640		0.0364			
Copper		7440-50-8	169		2.20			
Lead		7439-92-1	0.316		0.179			
Manganese		7439-96-5	15.9		1.58			
Molybdenum		7439-98-7	7.85		0.300			
Nickel		7440-02-0	1.59		0.545			
Selenium		7782-49-2	0.160		0.00749			
Thallium		7440-28-0	8.76E-4		4.92E-4			
Vanadium		7440-62-2	1.96		0.0442			
Zinc		7440-66-6	7.58	U	64.2			

Tetra Tech, Inc.				FILE #: 4205.00.003.001					
1777 Sentry Pk	wy, Bldg 12			REPORTEI	D: 08/13/24 09:5	6			
Blue Bell, PA 19	9422			SUBMITTE	D: 03/11/24 to	08/05/24			
ATTN: Ms. Che	elsea Saber			AQS SITE CODE:					
PHONE • (703)	885-5495 FAX.			SITE CODE	- Lahaina	fires			
		24 1114 1 - 1 - 1							
Description:	MFL-AM02-0729	Lab Lab	LD: 4080550-20)		Sampled: 07/29/24 23:59			
Matrix:	Air	Sam	ple Volume: 212	26.896 m³		Received: 08/05/24 10:30			
		Filte	r ID:		Anal	ysis Date: 08/07/24 07:53			
Comments:	Q9539025 - Rec	eived in good condition	า						
		Inorganics	by Compendi	um Method	IO-3.5				
		5	<u>Results</u>		MDL				
<u>Analyte</u>		CAS Number	<u>ng/m³ Air</u>	<u>Flag</u>	<u>ng/m³ Air</u>				
Antimony		7440-36-0	0.110	SL	0.0295				
Arsenic		7440-38-2	0.306		0.00717				
Barium		7440-39-3	4.42		0.819				
Beryllium		7440-41-7	0.00944		0.00245				
Cadmium		7440-43-9	0.00733	U	0.0567				
Chromium		7440-47-3	2.12		1.69				
Cobalt		7440-48-4	0.316		0.0334				
Copper		7440-50-8	26.4		2.01				
Lead		7439-92-1	0.684		0.164				
Manganese		7439-96-5	9.47		1.45				
Molybdenum		7439-98-7	1.43		0.275				
Nickel		7440-02-0	0.978		0.499				
Selenium		7782-49-2	0.151		0.00685				
Thallium		7440-28-0	6.91E-4		4.51E-4				
Vanadium		7440-62-2	1.04		0.0405				
Zinc		7440-66-6	11.8	U	58.7				

Tetra Tech, Inc.				FILE #: 4205.00.003.001					
1777 Sentry Pk	wy, Bldg 12			REPORTED	D: 08/13/24 09:5	56			
Blue Bell, PA 19	9422			SUBMITTE	D: 03/11/24 to	08/05/24			
ATTN: Ms. Che	elsea Saber			AQS SITE	CODE:				
DHONE: (703)	885-5495 EAY.			SITE CODE: Labaina fires					
FIIONE: (703)	000-0400 TAX.								
Description:	MFL-AM03-07292	4-HM Lab	ID: 4080550-2	1		Sampled: 07/29/24 23:59			
Matrix:	Air	Sam	ple Volume: 18	836.993 m ³ Received: 08/05/24 10:30					
		Filte	r ID:		Ana	lysis Date: 08/07/24 08:07			
Comments:	Q9539024 - Rece	ived in good condition	า						
		Inorganics	s by Compendi	um Method	10-3.5				
			Results		MDL				
<u>Analyte</u>		CAS Number	<u>ng/m³ Air</u>	Flag	<u>ng/m³ Air</u>				
Antimony		7440-36-0	0.0418	SL	0.0342				
Arsenic		7440-38-2	0.221		0.00830				
Barium		7440-39-3	2.00		0.948				
Beryllium		7440-41-7	0.0151		0.00283				
Cadmium		7440-43-9	0.00624	U	0.0656				
Chromium		7440-47-3	2.38		1.96				
Cobalt		7440-48-4	0.276		0.0386				
Copper		7440-50-8	33.5		2.33				
Lead		7439-92-1	0.438		0.190				
Manganese		7439-96-5	6.93		1.67				
Molybdenum		7439-98-7	2.67		0.318				
Nickel		7440-02-0	0.925		0.577				
Selenium		7782-49-2	0.123		0.00794				
Thallium		7440-28-0	5.49E-4		5.22E-4				
Vanadium		7440-62-2	0.789		0.0469				
Zinc		7440-66-6	8.31	U	68.0				

Tetra Tech, Inc.				FILE #: 4205.00.003.001				
1777 Sentry Pkw	wy, Bldg 12			REPORTED	: 08/13/24 09	:56		
Blue Bell, PA 19	422			SUBMITTE	D: 03/11/24	to 08/05/24		
ATTN: Ms. Che	lsea Saber			AQS SITE O	CODE:			
PHONE: (703)	885-5495 FAX				• Lahain	a fires		
					Lanan			
Description:	MFL-AM04-072924	-HM Lab	ID: 4080550-2	22		Sampled: 07/29/24 23:5	9	
Matrix:	Air	Sam	ple Volume: 19	907.633 m³		Received: 08/05/24 10:3	0	
		Filte	r ID:		An	alysis Date: 08/06/24 22:2	.8	
Comments:	Q9539021 - Receiv	ed in good conditio	n MS/MSD					
		Inorganic	s by Compend	ium Method	IO-3.5			
		•			MDL			
<u>Analyte</u>		CAS Number	<u>ng/m³ Air</u>	<u>Flag</u>	<u>ng/m³ Air</u>			
Antimony		7440-36-0	0.0796	SL	0.0329			
Arsenic		7440-38-2	0.432		0.00799			
Barium		7440-39-3	3.36		0.913			
Beryllium		7440-41-7	0.0103		0.00273			
Cadmium		7440-43-9	0.0114	U	0.0632			
Chromium		7440-47-3	2.44		1.88			
Cobalt		7440-48-4	0.350		0.0372			
Copper		7440-50-8	37.7		2.24			
Lead		7439-92-1	0.946		0.183			
Manganese		7439-96-5	11.2		1.61			
Molybdenum		7439-98-7	2.11		0.306			
Nickel		7440-02-0	1.06		0.556			
Selenium		7782-49-2	0.143		0.00764			
Thallium		7440-28-0	7.10E-4		5.02E-4			
Vanadium		7440-62-2	1.01		0.0451			

10.5

7440-66-6

U

65.5

Zinc

Tetra Tech, Inc.				FILE #: 4205.00.003.001					
1777 Sentry Pk	wy, Bldg 12			REPORTE	D: 08/13/24 09:5	6			
Blue Bell, PA 19	9422			SUBMITTE	ED: 03/11/24 to	08/05/24			
ATTN: Ms. Che	elsea Saber			AQS SITE	CODE:				
PHONE: (703)	885-5495 FAX:			SITE COD	E: Lahaina	fires			
Description:	MFL-AM01-073024	-HM Lab I	D: 4080550-2	3		Sampled: 07/30/24 23:59			
Matrix:	Air	Samp	le Volume: 19	936.254 m³		Received: 08/05/24 10:30			
		Filter	ID:		Ana	ysis Date: 08/07/24 08:21			
Comments:	Q9539020 - Receiv	ed in good condition				- , ,			
		Inorganics	by Compendi	ium Metho	d TO-3.5				
		2.101 guilles	Results		<u>MDL</u>				
<u>Analyte</u>		CAS Number	<u>ng/m³ Air</u>	Flag	<u>ng/m³ Air</u>				
Antimony		7440-36-0	0.0744	SL	0.0324				
Arsenic		7440-38-2	1.15		0.00787				
Barium		7440-39-3	7.57		0.899				
Beryllium		7440-41-7	0.0317		0.00269				
Cadmium		7440-43-9	0.0191	U	0.0623				
Chromium		7440-47-3	6.11		1.86				
Cobalt		7440-48-4	1.32		0.0366				
Copper		7440-50-8	177		2.21				
Lead		7439-92-1	0.795		0.180				
Manganese		7439-96-5	33.8		1.59				
Molybdenum		7439-98-7	8.71		0.302				
Nickel		7440-02-0	3.11		0.548				
Selenium		7782-49-2	0.214		0.00753				
Thallium		7440-28-0	0.00160		4.95E-4				
Vanadium		7440-62-2	3.88		0.0445				
Zinc		7440-66-6	15.3	U	64.5				

Tetra Tech, Inc.				FILE #: 4205.00.003.001					
1777 Sentry Pk	wy, Bldg 12			REPORTE	D: 08/13/24 09:5	56			
Blue Bell, PA 19	9422			SUBMITTE	ED: 03/11/24 to	08/05/24			
ATTN · Ms Che	elsea Saber			AOS SITE	CODE				
PHONE: (703)	885-5495 F	AX:		SITE COD	E: Lahaina	fires			
Description:	MFL-AM02-0)73024-HM Lab	ID: 4080550-24	ł		Sampled: 07/30/24 23:59			
Matrix:	Air	Sam	ple Volume: 21	63.08 m³		Received: 08/05/24 10:30			
		Filte	er ID:		Ana	lysis Date: 08/07/24 08:40			
Comments:	Q9539019 -	Received in good conditio	n						
	-	Inorganic	s by Compendi	um Methoo	110-3.5				
			Results		<u>MDL</u>				
<u>Analyte</u>		CAS Number	<u>ng/m³ Air</u>	Flag	<u>ng/m³ Air</u>				
Antimony		7440-36-0	0.0777	SL	0.0290				
Arsenic		7440-38-2	0.293		0.00705				
Barium		7440-39-3	4.04		0.805				
Beryllium		7440-41-7	0.0141		0.00241				
Cadmium		7440-43-9	0.0355	U	0.0557				
Chromium		7440-47-3	2.97		1.66				
Cobalt		7440-48-4	0.517		0.0328				
Copper		7440-50-8	41.6		1.98				
Lead		7439-92-1	0.657		0.161				
Manganese		7439-96-5	15.3		1.42				
Molybdenum		7439-98-7	2.25		0.270				
Nickel		7440-02-0	1.45		0.490				
Selenium		7782-49-2	0.152		0.00674				
Thallium		7440-28-0	9.17E-4		4.43E-4				
Vanadium		7440-62-2	1.54		0.0398				
Zinc		7440-66-6	9.45	U	57.8				

Tetra Tech, Inc.	tra Tech, Inc.					FILE #: 4205.00.003.001				
1777 Sentry Pk	wy, Bldg 12				REPOF	RTED:	08/13/24 09:	56		
Blue Bell, PA 19	9422				SUBMI	TTED	: 03/11/24 t	o 08/05/24		
ATTN: Ms. Che	elsea Saber				AQS S	TE C	ODE:			
	005 5405	EAV.					Loboin	o firoo		
PHONE: (703)	000-0490	FAX:			SILE C	ODE:	Lanain	allies		
Description:	MFL-AM03	-073024-HM	Lab ID:	408055	0-25			Sampled: 07/30/24 23:59		
Matrix:	Air		Sample V	/olume:	1774.284 m	3		Received: 08/05/24 10:30		
			Filter ID:	1			Ana	alysis Date: 08/07/24 08:54		
Comments:	Q9539018	- Received in good co	ondition							
		Inord	anics by	Compe	ndium Met	hod]	[0-3.5			
		- •	<u> </u>	Results			MDL			
<u>Analyte</u>		CAS Numb	<u>per n</u>	g/m³ Air	r Flag		<u>ng/m³ Air</u>			
Antimony		7440-36-0)	0.0664	SL		0.0354			
Arsenic		7440-38-2	2	0.297			0.00859			
Barium		7440-39-3	3	3.06			0.981			
Beryllium		7440-41-7	,	0.0232			0.00293			
Cadmium		7440-43-9		0.00809	U		0.0679			
Chromium		7440-47-3	3	4.73			2.03			
Cobalt		7440-48-4	Ļ	0.518			0.0400			
Copper		7440-50-8	3	37.3			2.41			
Lead		7439-92-1	L	0.480			0.196			
Manganese		7439-96-5	5	12.4			1.73			
Molybdenum		7439-98-7	,	2.75			0.329			
Nickel		7440-02-0)	2.16			0.598			
Selenium		7782-49-2	2	0.128			0.00822			
Thallium		7440-28-0)	7.17E-4			5.40E-4			
Vanadium		7440-62-2	2	1.28			0.0485			
Zinc		7440-66-6		13.9	U		70.4			

Tetra Tech, Inc.				FILE #: 4205.00.003.001				
1777 Sentry Pk	wy, Bldg 12			REPORTE	D: 08/13/24 09:5	56		
Blue Bell, PA 19	9422			SUBMITTE	D: 03/11/24 to	08/05/24		
ATTN: Ms. Che	elsea Saber			AQS SITE	CODE:			
						<i>a</i>		
PHONE: (703)	885-5495 FAX:			SITE CODE	Lahaina	tires		
Description:	MFL-AM04-073024	1-HM Lab	(D: 4080550-26	5		Sampled: 07/30/24 23:59		
Matrix:	Air	Sam	ple Volume: 19	91.321 m³		Received: 08/05/24 10:30		
		Filte	r ID:		Ana	lysis Date: 08/07/24 09:07		
Comments:	Q9539017 - Recei	ved in good condition	า					
		Inorganics	by Compendi	um Method	10-3.5			
		21101 guille	Results		MDL			
<u>Analyte</u>		CAS Number	<u>ng/m³ Air</u>	Flag	<u>ng/m³ Air</u>			
Antimony		7440-36-0	0.0694	SL	0.0315			
Arsenic		7440-38-2	0.448		0.00766			
Barium		7440-39-3	3.69		0.874			
Beryllium		7440-41-7	0.0168		0.00261			
Cadmium		7440-43-9	0.0112	U	0.0605			
Chromium		7440-47-3	3.05		1.81			
Cobalt		7440-48-4	0.482		0.0356			
Copper		7440-50-8	38.8		2.15			
Lead		7439-92-1	0.759		0.175			
Manganese		7439-96-5	16.0		1.54			
Molybdenum		7439-98-7	1.88		0.293			
Nickel		7440-02-0	1.26		0.533			
Selenium		7782-49-2	0.146		0.00732			
Thallium		7440-28-0	8.14E-4		4.81E-4			
Vanadium		7440-62-2	1.26		0.0432			
Zinc		7440-66-6	11.1	U	62.7			

Tetra Tech, Inc.	ra Tech, Inc.					FILE #:	4205.00.00	03.001				
1777 Sentry Pk	wv. Blda 12					REPORT	FED: 08/13	/24 09:56				
Blue Bell, PA 19	9422						TED: 03/ ⁻	1/24 to	08/05/24			
ATTN: Ms Che	lsoa Sahor											
					1							
PHONE: (703)	885-5495	FAX:			ļ	SITE CO	DE:	Lahaina f	ires			
Description:	MFL-FB01	-073024-HM	Lab ID:	408055	0-27			9	Sampled	: 07/30/2	24 00:05	
Matrix:	Air		Sample \	Volume:	1936	.254 m³		F	Received	: 08/05/2	24 10:30	
			Filter ID	:				Analy	sis Date	: 08/07/2	24 09:35	
Comments:	Q9547523	3 - Received in good	condition					-				
		Ino	rganics by	Compe	ndiun	n Meth	od IO-3.5	5				
			<u> </u>	Results			M	DL				
Analyte		CAS Nur	nber <u>n</u>	g/m³ Aiı	r	Flag	<u>ng/m</u>	³ Air				
Antimony		7440-36	j-0	0.0122		SL, U	0.0	324				
Arsenic		7440-38	8-2	0.00785		U	0.0)787				
Barium		7440-39	9-3	0.421		U	0.8	399				
Beryllium		7440-41	7	6.81E-4		U	0.0)269				
Cadmium		7440-43	-9	0.00286		U	0.0	623				
Chromium		7440-47	'- 3	1.14		U	1.	86				
Cobalt		7440-48	3-4	0.0257		U	0.0	366				
Copper		7440-50)-8	1.11		U	2.	21				
Lead		7439-92	2-1	0.0452		U	0.3	L80				
Manganese		7439-96	5-5	0.232		U	1.	59				
Molybdenum		7439-98	8-7	0.207		U	0.3	302				
Nickel		7440-02	2-0	0.256		U	0.5	548				
Selenium		7782-49)-2	0.00131		U	0.0)753				
Thallium		7440-28	8-0	5.96E-5		U	4.9	5E-4				
Vanadium		7440-62	2-2	0.0119		U	0.0	445				

2.66

7440-66-6

U

64.5

Zinc

Tetra Tech. Inc.				FILE #: 420	5.00.003.001	
1777 Sentry Pk	wy Blda 12			BEPORTED	08/13/24 09:56	
Blue Bell, PA 19	9422			SUBMITTED	: 03/11/24 to	08/05/24
ATTN: Ms. Che	elsea Saber			AQS SITE C	ODE:	
PHONE: (703)	885-5495 F	AX:		SITE CODE:	Lahaina	fires
Description:	MFL-LB01-07	73024-HM La	b ID: 4080550-2	8		Sampled: 07/30/24 00:05
Matrix:	Air	Sa	mple Volume: 19	936.254 m ³		Received: 08/05/24 10:30
		Filt	ter ID:		Analy	/sis Date: 08/07/24 09:49
Comments:	Q9547529 -	Received in good condit	ion			
		Inorgani	cs by Compend	ium Method	[0-3.5	
		_	Results		MDL	
<u>Analyte</u>		CAS Number	<u>ng/m³ Air</u>	Flag	<u>ng/m³ Air</u>	
Antimony		7440-36-0	0.0121	SL, U	0.0324	
Arsenic		7440-38-2	0.00556	U	0.00787	
Barium		7440-39-3	0.405	U	0.899	
Beryllium		7440-41-7	4.36E-4	U	0.00269	
Cadmium		7440-43-9	0.00257	U	0.0623	
Chromium		7440-47-3	1.18	U	1.86	
Cobalt		7440-48-4	0.0237	U	0.0366	
Copper		7440-50-8	0.500	U	2.21	
Lead		7439-92-1	0.0324	U	0.180	
Manganese		7439-96-5	0.172	U	1.59	
Molybdenum		7439-98-7	0.189	U	0.302	
Nickel		7440-02-0	0.290	U	0.548	
Selenium		7782-49-2	0.00169	U	0.00753	
Thallium		7440-28-0	6.00E-5	U	4.95E-4	
Vanadium		7440-62-2	0.00694	U	0.0445	

2.03

7440-66-6

U

64.5

Zinc

Tetra Tech, Inc.				FILE #:	4205.00.003.001		
1777 Sentry Pk	wy, Bldg 12			REPORT	ED: 08/13/24 09:	56	
Blue Bell, PA 19	9422			SUBMIT	TED: 03/11/24 t	o 08/05/24	
ATTN: Ms. Che	elsea Saber			AQS SIT	E CODE:		
						a firee	
PHONE: (703)	000-0490 FAX:			SILE CO		allies	
Description:	MFL-AM01-07312	4-HM Lab	(D: 4080550-29)		Sampled: 07/31/24 23:59	
Matrix:	Air	Sam	ple Volume: 192	28.176 m³		Received: 08/05/24 10:30	
		Filte	r ID:		Ana	alysis Date: 08/07/24 10:03	
Comments:	Q9539016 - Rece	ived in good condition	า				
		Inorganics	by Compendi	um Meth	od IO-3.5		
		21101 guinee	Results		MDL		
<u>Analyte</u>		CAS Number	<u>ng/m³ Air</u>	Flag	<u>ng/m³ Air</u>		
Antimony		7440-36-0	0.169	SL	0.0326		
Arsenic		7440-38-2	2.16		0.00791		
Barium		7440-39-3	7.43		0.903		
Beryllium		7440-41-7	0.0264		0.00270		
Cadmium		7440-43-9	0.0704		0.0625		
Chromium		7440-47-3	6.54		1.86		
Cobalt		7440-48-4	1.32		0.0368		
Copper		7440-50-8	159		2.22		
Lead		7439-92-1	0.536		0.181		
Manganese		7439-96-5	31.0		1.59		
Molybdenum		7439-98-7	7.51		0.303		
Nickel		7440-02-0	3.28		0.550		
Selenium		7782-49-2	0.218		0.00756		
Thallium		7440-28-0	0.00143		4.97E-4		
Vanadium		7440-62-2	3.69		0.0446		
Zinc		7440-66-6	11.8	U	64.8		

Tetra Tech, Inc.				FILE #:	4205.00.003.00	l	
1777 Sentry Pk	wy, Bldg 12			REPOF	TED: 08/13/24 09):56	
Blue Bell, PA 19	9422			SUBMI	TTED: 03/11/24	to 08/05/24	
ATTN: Ms. Che	elsea Saber			AQS SI	TE CODE:		
PHONE: (703)	885-5495	FAX:		SITE C	ODE: Lahai	na fires	
Description:	MFL-AM02	-073124-HM L	ab ID: 40	80550-30		Sampled: 07/31/24 23:59	
Matrix:	Air	S	Sample Volu	me: 2157.027 m	3	Received: 08/05/24 10:30	
	,	F	ilter ID:		Ar	alvsis Date: 08/07/24 11:12	
Comments:	09547528	- Received in good cond	dition				
	<u> </u>	Inorga	nics by Cor	nnondium Mot	hod IO-3 5		
		Inorga	Resu	<u>ilts</u>	MDL		
<u>Analyte</u>		CAS Number	r <u>ng/m</u>	³ Air Flag	<u>ng/m³ Air</u>		
Antimony		7440-36-0	0.14	19 SL	0.0291		
Arsenic		7440-38-2	0.30)1	0.00707		
Barium		7440-39-3	6.0	2	0.807		
Beryllium		7440-41-7	0.01	52	0.00241		
Cadmium		7440-43-9	0.01	48 U	0.0559		
Chromium		7440-47-3	2.9	6	1.67		
Cobalt		7440-48-4	0.58	38	0.0329		
Copper		7440-50-8	37.	3	1.98		
Lead		7439-92-1	0.84	14	0.161		
Manganese		7439-96-5	16.	6	1.43		
Molybdenum		7439-98-7	1.8	0	0.271		
Nickel		7440-02-0	1.5	7	0.492		
Selenium		7782-49-2	0.17	79	0.00676		
Thallium		7440-28-0	0.001	101	4.44E-4		
Vanadium		7440-62-2	1.7	3	0.0399		
Zinc		7440-66-6	13.	3 U	57.9		

Tetra Tech, Inc.				FILE #: 42	05.00.003.001		
1777 Sentry Pk	wy, Bldg 12			REPORTED): 08/13/24 09:5	6	
Blue Bell, PA 19	9422			SUBMITTE	D: 03/11/24 to	08/05/24	
ATTN: Ms. Che	elsea Saber			AQS SITE (CODE:		
PHONE: (703)	885-5495 FAX.			SITE CODE	lahaina	fires	
Description:	MFL-AM03-073124	1-HM Lab	(D: 4080550-31	L		Sampled: 07/31/24 23:59	
Matrix:	Air	Sam	ple Volume: 189	94.09 m³		Received: 08/05/24 10:30	
		Filte	r ID:		Anal	ysis Date: 08/07/24 11:28	
Comments:	Q9547526 - Recei	ved in good condition	า				
		Inorganics	by Compendi	um Method	IO-3.5		
			Results		MDL		
<u>Analyte</u>		CAS Number	<u>ng/m³ Air</u>	<u>Flag</u>	<u>ng/m³ Air</u>		
Antimony		7440-36-0	0.0726	SL	0.0332		
Arsenic		7440-38-2	0.270		0.00805		
Barium		7440-39-3	4.03		0.919		
Beryllium		7440-41-7	0.0228		0.00275		
Cadmium		7440-43-9	0.0127	U	0.0637		
Chromium		7440-47-3	3.18		1.90		
Cobalt		7440-48-4	0.577		0.0375		
Copper		7440-50-8	62.4		2.26		
Lead		7439-92-1	0.525		0.184		
Manganese		7439-96-5	13.3		1.62		
Molybdenum		7439-98-7	4.18		0.308		
Nickel		7440-02-0	2.64		0.560		
Selenium		7782-49-2	0.213		0.00770		
Thallium		7440-28-0	9.76E-4		5.06E-4		
Vanadium		7440-62-2	1.23		0.0454		
Zinc		7440-66-6	19.9	U	66.0		

Tetra Tech, Inc.				FILE #: 42	205.00.003.001		
1777 Sentry Pk	wy, Bldg 12			REPORTE	D: 08/13/24 09:56	3	
Blue Bell, PA 19	9422			SUBMITTE	D: 03/11/24 to	08/05/24	
ATTN: Ms. Che	elsea Saber			AQS SITE	CODE:		
DHONE: (703)	885-5/95 FAX					fires	
FIIONE. (703)	000-0490 FAA.			SITE CODE			
Description:	MFL-AM04-073124	-HM Lab I	(D: 4080550-32	2		Sampled: 07/31/24 23:59	
Matrix:	Air	Sam	ple Volume: 18	38.749 m³	I	Received: 08/05/24 10:30	
		Filter	r ID:		Analy	/sis Date: 08/07/24 11:42	
Comments:	Q9547524 - Receiv	ved in good conditior	า				
		Inorganics	by Compendi	um Method	10-3.5		
			Results		MDL		
<u>Analyte</u>		CAS Number	<u>ng/m³ Air</u>	Flag	<u>ng/m³ Air</u>		
Antimony		7440-36-0	0.109	SL	0.0342		
Arsenic		7440-38-2	0.570		0.00829		
Barium		7440-39-3	5.17		0.947		
Beryllium		7440-41-7	0.0209		0.00283		
Cadmium		7440-43-9	0.0256	U	0.0656		
Chromium		7440-47-3	3.72		1.96		
Cobalt		7440-48-4	0.705		0.0386		
Copper		7440-50-8	41.6		2.33		
Lead		7439-92-1	1.18		0.189		
Manganese		7439-96-5	23.3		1.67		
Molybdenum		7439-98-7	1.91		0.318		
Nickel		7440-02-0	1.89		0.577		
Selenium		7782-49-2	0.209		0.00793		
Thallium		7440-28-0	0.00118		5.21E-4		
Vanadium		7440-62-2	1.81		0.0468		
Zinc		7440-66-6	14.5	U	68.0		

Tetra Tech, Inc.

Т

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 08/13/24 09:56

SUBMITTED: 03/11/24 to 08/05/24

AQS SITE CODE:

SITE CODE: Lahaina fires

Analyte	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Inorganics by Compendi	um Method IO-3.	5 - Qua	lity Contro	bl						
Batch 2408018 - B4H0605				-			00/02/2			
Calibration Blank (24080)	18-CCB1)			Prep	bared & A	nalyzed:	U8/06/24			
Antimony	0.771		ng/l							
Arsenic	4.25		ng/l							
Barium	0.994		ng/l							
Beryllium	-0.738		ng/l						l	J
Cadmium	0.136		ng/l							
Chromium	1.46		ng/l							
Cobalt	-0.0108		ng/l						l	J
Copper	163		ng/l							
Lead	2.17		ng/l							
Manganese	2.24		ng/l							
Molybdenum	13.8		ng/l							
Nickel	1.00		ng/l							
Selenium	4.86		ng/l							
Thallium	0.774		ng/l							
Vanadium	-82.3		ng/l						ı	J
Zinc	-173		ng/l						l	J
Calibration Blank (24080)	18-CCB2)			Prep	ared & A	nalyzed:	08/06/24			
Antimony	0.678		ng/l							
Arsenic	2.32		ng/l							
Barium	3.43		ng/l							
Beryllium	-0.479		ng/l						I	J
Cadmium	0.339		ng/l							
Chromium	3.01		ng/l							
Cobalt	0.656		ng/l							
Copper	104		ng/l							
Lead	3.06		ng/l							
Manganese	6.45		ng/l							
Molybdenum	-5.73		ng/l						l	J
, Nickel	3.70		ng/l							
Selenium	15.2		ng/l							
Thallium	0.788		na/l							
Vanadium	-81.5		na/l						I	J
Zinc	-206		na/l						l	J
Calibration Blank (24080)	18-CCB3)			Prec	ared: 08/	06/24 A	nalyzed:	08/07/24	4	-
Antimony	, , ,		na/l				,			
Arsenic	4 1 <i>4</i>		ng/l							
Barium	4 79		ng/l							
Bervllium	ד.70 1770 ח -		na/l							I
berymum	-0.779		ng/i						,	

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 08/13/24 09:56

SUBMITTED: 03/11/24 to 08/05/24

AQS SITE CODE:

SITE CODE: Lahaina fires

Analyte	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Inorganics by Compendium Metl	hod IO-3	.5 - Qual	lity Contro	bl						
Batch 2408018 - B4H0605										
Calibration Blank (2408018-CCB3)) Contin			Prep	bared: 08/	/06/24 /	Analyzed:	08/07/24		
Cadmium	0.0255		ng/l		,	,	, -			
Chromium	3.86		ng/l							
Cobalt	0.429		ng/l							
Copper	86.3		ng/l							
Lead	3.12		ng/l							
Manganese	6.08		ng/l							
Molybdenum	-6.84		ng/l							U
Nickel	2.48		ng/l							
Selenium	6.77		ng/l							
Thallium	0.954		ng/l							
Vanadium	-87.9		ng/l							U
Zinc	-268		ng/l							U
Calibration Blank (2408018-CCB4))			Prep	bared: 08/	/06/24 /	Analyzed:	08/07/24		
Antimony	0.404		ng/l							
Arsenic	8.40		ng/l							
Barium	3.33		ng/l							
Beryllium	-1.25		ng/l							U
Cadmium	0.127		ng/l							
Chromium	2.95		ng/l							
Cobalt	0.468		ng/l							
Copper	57.4		ng/l							
Lead	2.31		ng/l							
Manganese	3.77		ng/l							
Molybdenum	-6.35		ng/l							U
Nickel	4.60		ng/l							
Selenium	19.2		ng/l							
Thallium	0.835		ng/l							
Vanadium	-88.6		ng/l							U
Zinc	-265		ng/l							U
Calibration Blank (2408018-CCB5))			Prep	bared: 08/	/06/24 /	Analyzed:	08/07/24		
Antimony	0.264		ng/l							
Arsenic	6.22		ng/l							
Barium	2.28		ng/l							
Beryllium	-1.23		ng/l							U
Cadmium	0.388		ng/l							
Chromium	4.18		ng/l							
Cobalt	0.381		ng/l							
Copper	73.1		ng/l							

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 08/13/24 09:56

SUBMITTED: 03/11/24 to 08/05/24

AQS SITE CODE:

SITE CODE: Lahaina fires

Analyte	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Inorganics by Compendi	um Method IO-3	.5 - Qua	lity Contro							
Batch 2408018 - B4H0605										
Calibration Blank (24080)	L8-CCB5) Contin			Prep	bared: 08/	/06/24 A	Analyzed:	08/07/24		
Lead	2.52		ng/l	•			,			
Manganese	6.60		ng/l							
Molybdenum	-5.73		ng/l							U
Nickel	6.85		ng/l							
Selenium	4.45		ng/l							
Thallium	1.03		ng/l							
Vanadium	-90.0		ng/l							U
Zinc	-267		ng/l							U
Calibration Blank (240801	L8-CCB6)			Prep	bared: 08/	/06/24 A	Analyzed:	08/07/24		
Antimony	0.325		ng/l							
Arsenic	8.16		ng/l							
Barium	1.83		ng/l							
Beryllium	-1.44		ng/l							U
Cadmium	0.230		ng/l							
Chromium	4.47		ng/l							
Cobalt	0.528		ng/l							
Copper	57.0		ng/l							
Lead	1.91		ng/l							
Manganese	5.87		ng/l							
Molybdenum	-7.25		ng/l							U
Nickel	5.81		ng/l							
Selenium	-5.45		ng/l							U
Thallium	0.980		ng/l							
Vanadium	-90.1		ng/l							U
Zinc	-273		ng/l							U
Calibration Blank (240801	L8-CCB7)			Prep	pared: 08/	/06/24 A	Analyzed:	08/07/24		
Antimony	0.515		ng/l							
Arsenic	10.6		ng/l							
Barium	2.89		ng/l							
Beryllium	-1.50		ng/l							U
Cadmium	0.270		ng/l							
Chromium	4.26		ng/l							
Cobalt	0.499		ng/l							
Copper	74.2		ng/l							
Lead	1.61		ng/l							
Manganese	4.14		ng/l							
Molybdenum	-5.28		ng/l							U
Nickel	5.48		ng/l							

Eastern Research Group

Tetra Tech, Inc.

Т

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 08/13/24 09:56

SUBMITTED: 03/11/24 to 08/05/24

AQS SITE CODE:

SITE CODE: Lahaina fires

Analyte	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Inorganics by Com	pendium Method IO-3	.5 - Qual	lity Cont	r ol						
Batch 2408018 - B4h	10605									
Calibration Blank (2	408018-CCB7) Contin			Prep	ared: 08/	'06/24 A	nalyzed:	08/07/2 [,]	4	
Selenium	-0.786		ng/l							U
Thallium	1.03		ng/l							
Vanadium	-98.8		ng/l							U
Zinc	-276		ng/l							U
Calibration Check (2	2408018-CCV1)			Prep	ared & A	nalyzed:	08/06/24			
Antimony	19900		ng/l	20000		99.6	90-110			
Arsenic	20000		ng/l	20000		99.8	90-110			
Barium	200000		ng/l	200000		100	90-110			
Beryllium	5060		ng/l	5000.0		101	90-110			
Cadmium	20100		ng/l	20000		100	90-110			
Chromium	240000		ng/l	240000		100	90-110			
Cobalt	50900		ng/l	50000		102	90-110			
Copper	2.04E6		ng/l	2.0000E6		102	90-110			
Lead	199000		ng/l	200000		99.5	90-110			
Manganese	498000		ng/l	500000		99.7	90-110			
Molybdenum	50000		ng/l	50000		99.9	90-110			
Nickel	122000		ng/l	120000		102	90-110			
Selenium	20100		ng/l	20000		100	90-110			
Thallium	499		ng/l	500.00		99.9	90-110			
Vanadium	19700		ng/l	20000		98.7	90-110			
Zinc	508000		ng/l	500000		102	90-110			
Calibration Check (2	2408018-CCV2)			Prep	ared & A	nalyzed:	08/06/24			
Antimony	20100		ng/l	20000		100	90-110			
Arsenic	20000		ng/l	20000		100	90-110			
Barium	201000		ng/l	200000		100	90-110			
Beryllium	5040		ng/l	5000.0		101	90-110			
Cadmium	20300		ng/l	20000		102	90-110			
Chromium	241000		ng/l	240000		100	90-110			
Cobalt	50600		ng/l	50000		101	90-110			
Copper	2.04E6		ng/l	2.0000E6		102	90-110			
Lead	199000		ng/l	200000		99.4	90-110			
Manganese	502000		ng/l	500000		100	90-110			
Molybdenum	50000		ng/l	50000		100	90-110			
Nickel	122000		ng/l	120000		102	90-110			
Selenium	20000		ng/l	20000		99.8	90-110			
Thallium	494		ng/l	500.00		98.8	90-110			
Vanadium	19800		ng/l	20000		99.2	90-110			
Zinc	510000		ng/l	500000		102	90-110			

Eastern Research Group

Tetra Tech, Inc.

Т

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 08/13/24 09:56

SUBMITTED: 03/11/24 to 08/05/24

AQS SITE CODE:

SITE CODE: Lahaina fires

Analyte	Result	PQL Units	Spike	Source Result %REC	%REC	RPD	RPD Limit	Notes
Inorganics by Comp	pendium Method IO-3.5	- Quality Cor	ıtrol					
Batch 2408018 - B4h	10605		-		Am-1 1	20/07/07		
Calibration Check (2	2408018-CCV3)		Prep	area: 08/06/24	Analyzed:	uv/U//24		
Antimony	20300	ng/	1 20000	101	90-110			
Arsenic	20300	ng/	20000	101	90-110			
Barium	204000	ng/	200000	102	90-110			
Beryllium	5090	ng/	5000.0	102	90-110			
Cadmium	20400	ng/	1 20000	102	90-110			
Chromium	244000	ng/	l 240000	101	90-110			
Cobalt	51000	ng/	1 50000	102	90-110			
Copper	2.08E6	ng/	2.0000E6	104	90-110			
Lead	201000	ng/	200000	100	90-110			
Manganese	507000	ng/	500000	101	90-110			
Molybdenum	51200	ng/	I 50000	102	90-110			
Nickel	123000	ng/	l 120000	103	90-110			
Selenium	20200	ng/	I 20000	101	90-110			
Thallium	492	ng/	I 500.00	98.3	90-110			
Vanadium	20200	ng/	I 20000	101	90-110			
Zinc	514000	ng/	I 500000	103	90-110			
Calibration Check (2	2408018-CCV4)	5,	Prep	ared: 08/06/24	Analyzed:	08/07/24		
Antimony	20500	ng/	I 20000	103	90-110			
Arsenic	20800	ng/	I 20000	104	90-110			
Barium	209000	ng/	I 200000	104	90-110			
Beryllium	5250	na/	I 5000.0	105	90-110			
Cadmium	20800	na/	I 20000	104	90-110			
Chromium	249000	na/	l 240000	104	90-110			
Cobalt	52400	na/	I 50000	105	90-110			
Copper	2.13E6	na/	1 2.0000E6	106	90-110			
Lead	204000	na/	1 200000	102	90-110			
Manganese	520000	na/	1 500000	104	90-110			
Molybdenum	52500	na/	50000	105	90-110			
Nickel	127000	na/	1 120000	105	90-110			
Selenium	20100	na/	20000	101	90-110			
Thallium	502		500.00	100	90-110			
Vanadium	20700	na/	20000	103	90-110			
Zinc	520000	ng/	500000	104	90-110			
Calibration Check (2	2408018-CCV5)	19/	Pren	ared: 08/06/24	Analvzed: (08/07/24		
Antimony	19900	na/	20000	99.6	90-110	-, - · , = ·		
Arsenic	20200	ng/	20000	101	90-110			
Barium	20200	ng/	20000	101	QQ_110			
Bervllium	520000	ng/	- <u>2</u> 00000 5000 0	104	Q0-110			
Derymum	5200	ng/	. 5000.0	104	50-110			

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 08/13/24 09:56

SUBMITTED: 03/11/24 to 08/05/24

AQS SITE CODE:

SITE CODE: Lahaina fires

Analyte	Result	PQL	Units	Spike Level	Source Result %RE	%REC Limits	RPD	RPD Limit	Notes
Inorganics by Compendiur	n Method IO-3.	5 - Oualit	v Cont	rol					
Batch 2408018 - B4H0605									
Calibration Check (2408018	B-CCV5) Contin			Prep	ared: 08/06/24	Analyzed:	08/07/24		
Cadmium	20100		ng/l	20000	100	90-110			
Chromium	242000		ng/l	240000	101	90-110			
Cobalt	50800		ng/l	50000	102	90-110			
Copper	2.07E6		ng/l	2.0000E6	104	90-110			
Lead	198000		ng/l	200000	99.2	90-110			
Manganese	507000		ng/l	500000	101	90-110			
Molybdenum	51100		ng/l	50000	102	90-110			
Nickel	122000		ng/l	120000	102	90-110			
Selenium	19900		ng/l	20000	99.4	90-110			
Thallium	476		ng/l	500.00	95.1	90-110			
Vanadium	20100		ng/l	20000	100	90-110			
Zinc	508000		ng/l	500000	102	90-110			
Calibration Check (2408018	B-CCV6)			Prep	ared: 08/06/24	Analyzed:	08/07/24		
Antimony	20700		ng/l	20000	103	90-110			
Arsenic	20900		ng/l	20000	104	90-110			
Barium	209000		ng/l	200000	104	90-110			
Beryllium	5270		ng/l	5000.0	105	90-110			
Cadmium	20900		ng/l	20000	105	90-110			
Chromium	250000		ng/l	240000	104	90-110			
Cobalt	52500		ng/l	50000	105	90-110			
Copper	2.13E6		ng/l	2.0000E6	106	90-110			
Lead	205000		ng/l	200000	103	90-110			
Manganese	526000		ng/l	500000	105	90-110			
Molybdenum	53200		ng/l	50000	106	90-110			
Nickel	127000		ng/l	120000	106	90-110			
Selenium	20200		ng/l	20000	101	90-110			
Thallium	489		ng/l	500.00	97.9	90-110			
Vanadium	20700		ng/l	20000	104	90-110			
Zinc	523000		ng/l	500000	105	90-110			
Calibration Check (2408018	B-CCV7)			Prep	ared: 08/06/24	Analyzed:	08/07/24		
Antimony	20700		ng/l	20000	103	90-110			
Arsenic	20800		ng/l	20000	104	90-110			
Barium	214000		ng/l	200000	107	90-110			
Beryllium	5220		ng/l	5000.0	104	90-110			
Cadmium	21000		ng/l	20000	105	90-110			
Chromium	251000		ng/l	240000	105	90-110			
Cobalt	52700		ng/l	50000	105	90-110			
Copper	2.15E6		ng/l	2.0000E6	108	90-110			

Eastern Research Group

Tetra Tech, Inc.

Т

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 08/13/24 09:56

SUBMITTED: 03/11/24 to 08/05/24

AQS SITE CODE:

SITE CODE: Lahaina fires

nalyte	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
norganics by Compendiu	n Method IO-3	.5 - Qual	lity Conti	ol						
<i>Batch 2408018 - B4H0605</i> Colibration Check (240901)	P-CCV7) Contin			Dron	ared: 08/	06/24 /	halvzod.	08/07/2	4	
Calibration Check (2408010			ng/l	200000		102	00 110	00/07/2-	T	
Ledu	200000		ng/i	200000		105	90-110			
Manganese	525000		ng/l	500000		105	90-110			
Nickol	127000		ng/l	120000		100	90-110			
Solonium	20400		ng/l	20000		100	90-110 00-110			
Thallium	20 1 00 402		ng/l	20000		98.6	90-110			
Vapadium	20800		ng/l	200.00		104	90-110 00-110			
	20000		ng/l	20000		104	90-110			
	524000		riy/i	500000		105	90-110			
High Cal Check (2408018-F	ICV1)			Prep	ared & Ar	naiyzed:	08/06/24			
Antimony	39900		ng/l	40000		99.8	95-105			
Arsenic	40100		ng/l	40000		100	95-105			
Barium	401000		ng/l	400000		100	95-105			
Beryllium	9960		ng/l	10000		99.6	95-105			
Cadmium	40000		ng/l	40000		99.9	95-105			
Chromium	483000		ng/l	480000		101	95-105			
Cobalt	101000		ng/l	100000		101	95-105			
Copper	4.00E6		ng/l	4.0000E6		100	95-105			
Lead	400000		ng/l	400000		100	95-105			
Manganese	1.01E6		ng/l	1.0000E6		101	95-105			
Molybdenum	100000		ng/l	100000		100	95-105			
Nickel	240000		ng/l	240000		100	95-105			
Selenium	40000		ng/l	40000		99.9	95-105			
Thallium	1000		ng/l	1000.0		100	95-105			
Vanadium	40300		ng/l	40000		101	95-105			
Zinc	998000		ng/l	1.0000E6		99.8	95-105			
Initial Cal Blank (2408018-	ICB1)			Prep	ared & Ar	nalyzed:	08/06/24			
Antimony	4.43		ng/l							
Arsenic	-0.793		ng/l							U
Barium	6.15		ng/l							
Beryllium	-0.0591		ng/l						r	U
Cadmium	0.420		ng/l							
Chromium	8.62		ng/l							
Cobalt	1.43		ng/l							
Copper	282		ng/l							
Lead	23.7		ng/l							
Manganese	19.8		ng/l							
Molybdenum	26.7		ng/l							
Niekol			- ·							

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 08/13/24 09:56

SUBMITTED: 03/11/24 to 08/05/24

AQS SITE CODE:

SITE CODE: Lahaina fires

Analyte	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Inorganics by Comp	endium Method IO-3	.5 - Qualit	y Conti	rol						
Batch 2408018 - B4H0	0605									
Initial Cal Blank (240	08018-ICB1) Continu			Prep	ared & A	nalyzed:	08/06/24			
Selenium	5.90		ng/l							
Thallium	0.775		ng/l							
Vanadium	-88.7		ng/l							U
Zinc	-201		ng/l							U
Initial Cal Check (24	08018-ICV1)			Prep	ared & A	nalyzed:	08/06/24			
Antimony	19500		ng/l	20000		97.6	90-110			
Arsenic	19500		ng/l	20000		97.6	90-110			
Barium	194000		ng/l	200000		96.9	90-110			
Beryllium	4860		ng/l	5000.0		97.2	90-110			
Cadmium	20200		ng/l	20000		101	90-110			
Chromium	240000		ng/l	240000		100	90-110			
Cobalt	48600		ng/l	50000		97.2	90-110			
Copper	2.05E6		ng/l	2.0000E6		102	90-110			
Lead	199000		ng/l	200000		99.6	90-110			
Manganese	497000		ng/l	500000		99.4	90-110			
Molybdenum	49600		ng/l	50000		99.2	90-110			
Nickel	124000		ng/l	120000		103	90-110			
Selenium	20200		ng/l	20000		101	90-110			
Thallium	503		na/l	500.00		101	90-110			
Vanadium	19600		na/l	20000		98.1	90-110			
Zinc	506000		ng/l	500000		101	90-110			
Interference Check	A (2408018-IFA1)		5,	Prep	ared & A	nalyzed:	08/06/24			
Antimony	0.00		na/l	•		,	80-120			U
Arsenic	0.00		na/l				80-120			U
Barium	0.00		na/l				80-120			U
Bervllium	0.00		na/l				80-120			U
Cadmium	0.00		na/l				80-120			U
Chromium	0.00		na/l				80-120			U
Cobalt	0.00		na/l				80-120			U
Copper	0.00		na/l				80-120			U
Lead	0.00		na/l				80-120			U
Manganese	0.00		na/l				80-120			U
Molybdenum	318000		na/l	300000		106	80-120			
Nickel	0.00		na/l				80-120			U
Selenium	0.00		na/l				80-120			- U
Thallium	0.00		na/l				80-120			Ŭ
Vanadium	0.00		na/l				80-120			Ŭ
Zinc	0.00		na/l				80-120			Ŭ
	0.00		1/9/1				50 120			~

Eastern Research Group

Tetra Tech, Inc.

Т

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 08/13/24 09:56

SUBMITTED: 03/11/24 to 08/05/24

AQS SITE CODE:

SITE CODE: Lahaina fires

Analyte	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Inorganics by Compendium Metl	hod IO-3	8.5 - Qua	lity Contro	ol						
Batch 2408018 - B4H0605										
Interference Check B (2408018-IF	FB1)			Prep	ared & A	nalyzed:	08/06/24			
Antimony	20200		ng/l	20000		101	80-120			
Arsenic	20500		ng/l	20000		103	80-120			
Barium	202000		ng/l	200000		101	80-120			
Beryllium	4920		ng/l	5000.0		98.4	80-120			
Cadmium	19800		ng/l	20000		98.8	80-120			
Chromium	232000		ng/l	240000		96.8	80-120			
Cobalt	50000		ng/l	50000		100	80-120			
Copper	1.93E6		ng/l	2.0000E6		96.5	80-120			
Lead	206000		ng/l	200000		103	80-120			
Manganese	499000		ng/l	500000		99.8	80-120			
Molybdenum	370000		ng/l	350000		106	80-120			
Nickel	117000		ng/l	120000		97.6	80-120			
Selenium	19000		ng/l	20000		95.1	80-120			
Thallium	520		ng/l	500.00		104	80-120			
Vanadium	18700		ng/l	20000		93.4	80-120			
Zinc	470000		ng/l	500000		93.9	80-120			
Batch B4H0605 - ICP-MS Extraction										
Blank (B4H0605-BLK1)				Prep	ared & A	nalyzed:	08/06/24			
Antimony	ND	0.0386	ng/m³ Air							SL, U
Arsenic	ND	0.00937	ng/m³ Air							U
Barium	ND	1.07	ng/m³ Air							U
Beryllium	ND	0.00320	ng/m³ Air							U
Cadmium	ND	0.0741	ng/m³ Air							U
Chromium	ND	2.21	ng/m³ Air							U
Cobalt	ND	0.0436	ng/m³ Air							U
Copper	ND	2.63	ng/m³ Air							U
Lead	ND	0.214	ng/m³ Air							U
Manganese	ND	1.89	ng/m³ Air							U
Molybdenum	ND	0.359	ng/m³ Air							U
Nickel	ND	0.652	ng/m³ Air							U
Selenium	ND	0.00896	ng/m³ Air							U
Thallium	ND	5.89E-4	ng/m³ Air							U
Vanadium	ND	0.0529	ng/m³ Air							U
Zinc	ND	76.8	ng/m³ Air							U
Blank (B4H0605-BLK2)				Prep	ared & A	nalyzed:	08/06/24			
Antimony	ND	0.0386	ng/m³ Air							SL, U
Arsenic	ND	0.00937	ng/m³ Air							U
Barium	ND	1.07	ng/m³ Air							U

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 08/13/24 09:56

SUBMITTED: 03/11/24 to 08/05/24

AQS SITE CODE:

SITE CODE: Lahaina fires

Analyte	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Inorganics by Compendium Meth	od IO-3	8.5 - Qual	ity Contro)						
Batch B4H0605 - ICP-MS Extraction										
Blank (B4H0605-BLK2) Continued				Prep	bared & A	nalyzed:	08/06/24			
Beryllium	ND	0.00320	ng/m³ Air							U
Cadmium	ND	0.0741	ng/m³ Air							U
Chromium	ND	2.21	ng/m³ Air							U
Cobalt	ND	0.0436	ng/m³ Air							U
Copper	ND	2.63	ng/m³ Air							U
Lead	ND	0.214	ng/m³ Air							U
Manganese	ND	1.89	ng/m³ Air							U
Molybdenum	ND	0.359	ng/m³ Air							U
Nickel	ND	0.652	ng/m³ Air							U
Selenium	ND	0.00896	ng/m³ Air							U
Thallium	ND	5.89E-4	ng/m³ Air							U
Vanadium	ND	0.0529	ng/m³ Air							U
Zinc	ND	76.8	ng/m³ Air							U
LCS (B4H0605-BS1)				Prep	bared & A	nalyzed:	08/06/24			
Antimony	0.530	0.0386	ng/m³ Air	1.3829		38.4	80-120			SL
Arsenic	2.72	0.00937	ng/m ³ Air	2.7658		98.4	80-120			
Barium	28.3	1.07	ng/m ³ Air	27.658		102	80-120			
Beryllium	1.34	0.00320	ng/m ³ Air	1.3829		96.7	80-120			
Cadmium	1.38	0.0741	ng/m ³ Air	1.3829		99.6	80-120			
Chromium	15.7	2.21	ng/m ³ Air	13.829		114	80-120			
Cobalt	1.35	0.0436	ng/m ³ Air	1.3829		97.7	80-120			
Copper	29.0	2.63	ng/m ³ Air	27.658		105	80-120			
Lead	13.9	0.214	ng/m³ Air	13.829		100	80-120			
Manganese	8.37	1.89	ng/m ³ Air	8.2975		101	80-120			
Molybdenum	1.63	0.359	ng/m ³ Air	1.3829		118	80-120			
Nickel	3.11	0.652	ng/m ³ Air	2.7658		112	80-120			
Selenium	2.70	0.00896	ng/m ³ Air	2.7658		97.6	80-120			
Thallium	0.135	5.89E-4	ng/m ³ Air	0.13829		97.7	80-120			
Vanadium	2.74	0.0529	ng/m ³ Air	2.7658		99.2	80-120			
Zinc	87.5	76.8	ng/m ³ Air	82.975		105	80-120			
LCS (B4H0605-BS2)				Prep	bared & A	nalyzed:	08/06/24			
Antimony	0.526	0.0386	ng/m³ Air	1.3829		38.1	80-120			SL
Arsenic	2.76	0.00937	ng/m ³ Air	2.7658		99.9	80-120			
Barium	29.2	1.07	ng/m ³ Air	27.658		105	80-120			
Beryllium	1.33	0.00320	ng/m ³ Air	1.3829		96.2	80-120			
Cadmium	1.41	0.0741	ng/m ³ Air	1.3829		102	80-120			
Chromium	16.2	2.21	ng/m ³ Air	13.829		117	80-120			
Cobalt	1.39	0.0436	ng/m ³ Air	1.3829		101	80-120			

Eastern Research Group

Tetra Tech, Inc.

Т

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 08/13/24 09:56

SUBMITTED: 03/11/24 to 08/05/24

AQS SITE CODE:

SITE CODE: Lahaina fires

Analyte	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Inorganics by Compendium Met	hod IO-3	3.5 - Qua	lity Contro	bl						
Batch B4H0605 - ICP-MS Extraction	,									
LCS (B4H0605-BS2) Continued				Prep	ared & A	nalyzed:	08/06/24			
Copper	29.8	2.63	ng/m³ Air	27.658		108	80-120			
Lead	14.1	0.214	ng/m³ Air	13.829		102	80-120			
Manganese	8.64	1.89	ng/m³ Air	8.2975		104	80-120			
Molybdenum	1.66	0.359	ng/m³ Air	1.3829		120	80-120			
Nickel	3.23	0.652	ng/m³ Air	2.7658		117	80-120			
Selenium	2.72	0.00896	ng/m³ Air	2.7658		98.4	80-120			
Thallium	0.137	5.89E-4	ng/m³ Air	0.13829		99.2	80-120			
Vanadium	2.83	0.0529	ng/m³ Air	2.7658		102	80-120			
Zinc	89.7	76.8	ng/m³ Air	82.975		108	80-120			
Duplicate (B4H0605-DUP1)	S	ource: 40	80550-02	Prep	ared & A	nalyzed:	08/06/24			
Antimony	0.169	0.0295	ng/m³ Air		0.172			1.43	10	SL
Arsenic	0.370	0.00717	ng/m³ Air		0.357			3.55	10	
Barium	4.61	0.819	ng/m³ Air		4.56			1.05	10	
Beryllium	0.0166	0.00245	ng/m³ Air		0.0158			4.58	10	
Cadmium	ND	0.0567	ng/m³ Air		ND				10	U
Chromium	2.68	1.69	ng/m³ Air		2.53			5.56	10	
Cobalt	0.485	0.0334	ng/m³ Air		0.476			1.93	10	
Copper	35.3	2.01	ng/m³ Air		34.5			2.29	10	
Lead	1.20	0.164	ng/m³ Air		1.12			6.47	10	
Manganese	15.1	1.45	ng/m³ Air		14.9			1.61	10	
Molybdenum	1.89	0.275	ng/m³ Air		1.94			2.49	10	
Nickel	1.43	0.499	ng/m³ Air		1.36			4.89	10	
Selenium	0.350	0.00685	ng/m³ Air		0.340			2.96	10	
Thallium	0.00240	4.51E-4	ng/m³ Air		0.00253			5.36	10	
Vanadium	1.75	0.0405	ng/m³ Air		1.74			0.407	10	
Zinc	ND	58.7	ng/m³ Air		ND				10	U
Duplicate (B4H0605-DUP2)	S	ource: 40	80550-22	Prep	ared & A	nalyzed:	08/06/24			
Antimony	0.0923	0.0329	ng/m³ Air		0.0796			14.8	10	SL
Arsenic	0.443	0.00799	ng/m³ Air		0.432			2.59	10	
Barium	3.27	0.913	ng/m³ Air		3.36			2.77	10	
Beryllium	0.00973	0.00273	ng/m³ Air		0.0103			6.12	10	
Cadmium	ND	0.0632	ng/m³ Air		ND				10	U
Chromium	2.51	1.88	ng/m³ Air		2.44			3.19	10	
Cobalt	0.357	0.0372	ng/m³ Air		0.350			2.02	10	
Copper	39.6	2.24	ng/m³ Air		37.7			4.88	10	
Lead	0.859	0.183	ng/m³ Air		0.946			9.65	10	
Manganese	11.5	1.61	ng/m³ Air		11.2			2.56	10	
Molybdenum	2.22	0.306	ng/m³ Air		2.11			5.41	10	

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 08/13/24 09:56

SUBMITTED: 03/11/24 to 08/05/24

AQS SITE CODE:

SITE CODE: Lahaina fires

Analyte	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Inorganics by Compendium M	ethod IO-3	8.5 - Qual	lity Contro							
Batch B4H0605 - ICP-MS Extracti	ion	_		_			00/06/5			
Duplicate (B4H0605-DUP2) Cor	ntinued S	ource: 40	80550-22	Prep	bared & A	nalyzed	: 08/06/24	ł		
Nickel	1.03	0.556	ng/m³ Air		1.06			2.76	10	
Selenium	0.147	0.00764	ng/m³ Air		0.143			2.70	10	
Thallium	6.66E-4	5.02E-4	ng/m³ Air		7.10E-4			6.37	10	
Vanadium	1.01	0.0451	ng/m³ Air		1.01			0.868	10	
Zinc	ND	65.5	ng/m³ Air		ND				10	U
Duplicate (B4H0605-DUP3)	S	ource: 40	80550-14	Prep	bared: 08/	06/24	Analyzed:	08/07/24		
Antimony	0.0577	0.0325	ng/m³ Air		0.0586			1.61	10	SL
Arsenic	0.388	0.00788	ng/m³ Air		0.380			2.09	10	
Barium	3.25	0.900	ng/m³ Air		3.23			0.567	10	
Beryllium	0.0104	0.00269	ng/m³ Air		0.00996			4.40	10	
Cadmium	ND	0.0623	ng/m³ Air		ND				10	U
Chromium	2.47	1.86	ng/m³ Air		2.47			0.194	10	
Cobalt	0.336	0.0367	ng/m ³ Air		0.336			0.0921	10	
Copper	194	2.21	ng/m ³ Air		194			0.155	10	
Lead	0.264	0.180	ng/m ³ Air		0.266			0.704	10	
Manganese	10.0	1.59	ng/m ³ Air		10.0			0.385	10	
Molybdenum	8.97	0.302	ng/m ³ Air		9.01			0.510	10	
Nickel	1.12	0.549	ng/m³ Air		1.12			0.248	10	
Selenium	0.141	0.00754	ng/m³ Air		0.142			0.412	10	
Thallium	6.57E-4	4.96E-4	ng/m³ Air		6.67E-4			1.65	10	
Vanadium	1.25	0.0445	ng/m ³ Air		1.25			0.00673	10	
Zinc	ND	64.6	ng/m ³ Air		ND				10	U
Duplicate (B4H0605-DUP4)	s	ource: 40	80550-26	Prep	bared: 08/	06/24	Analyzed:	08/07/24		
Antimony	0.0698	0.0315	ng/m³ Air		0.0694			0.601	10	SL
Arsenic	0.454	0.00766	ng/m ³ Air		0.448			1.25	10	
Barium	3.77	0.874	ng/m ³ Air		3.69			2.07	10	
Beryllium	0.0171	0.00261	ng/m ³ Air		0.0168			1.94	10	
Cadmium	ND	0.0605	ng/m³ Air		ND				10	U
Chromium	3.08	1.81	ng/m ³ Air		3.05			0.838	10	
Cobalt	0.482	0.0356	ng/m³ Air		0.482			0.0429	10	
Copper	39.0	2.15	ng/m³ Air		38.8			0.599	10	
Lead	0.765	0.175	ng/m ³ Air		0.759			0.755	10	
Manganese	16.0	1.54	ng/m³ Air		16.0			0.123	10	
Molybdenum	1.89	0.293	ng/m ³ Air		1.88			0.445	10	
Nickel	1.27	0.533	ng/m³ Air		1.26			0.588	10	
Selenium	0.151	0.00732	ng/m³ Air		0.146			3.13	10	
Thallium	8.27E-4	4.81E-4	ng/m³ Air		8.14E-4			1.59	10	
Vanadium	1.26	0.0432	ng/m³ Air		1.26			0.186	10	
	1.20							5.200		

Eastern Research Group

Tetra Tech, Inc.

Т

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 08/13/24 09:56

SUBMITTED: 03/11/24 to 08/05/24

AQS SITE CODE:

SITE CODE: Lahaina fires

Analyte	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Inorganics by Compendium Me	thod IO-3	3.5 - Qua	lity Contro	bl						
Balcii B4H0005 - ICP-MS Extraction				Duor	and 00	106/24	Nool god.	00/07/2	4	
	inuea S	ource: 40	180550-26	Prep		00/24 /	Analyzeu:	08/07/24	+	
ZINC	ND	62.7	ng/m³ Air	_	ND				10	U
Matrix Spike (B4H0605-MS1)	S	Source: 40	080550-02	Prep	ared & A	nalyzed:	08/06/24			
Antimony	0.698	0.0295	ng/m³ Air	1.0579	0.172	49.8	80-120			SL
Arsenic	2.40	0.00717	ng/m³ Air	2.1158	0.357	96.5	80-120			
Barium	25.8	0.819	ng/m³ Air	21.158	4.56	100	80-120			
Beryllium	1.05	0.00245	ng/m³ Air	1.0579	0.0158	98.0	80-120			
Cadmium	1.04	0.0567	ng/m³ Air	1.0579	ND	98.1	80-120			
Chromium	12.8	1.69	ng/m³ Air	10.579	2.53	97.2	80-120			
Cobalt	1.47	0.0334	ng/m³ Air	1.0579	0.476	94.4	80-120			
Copper	56.7	2.01	ng/m³ Air	21.158	34.5	105	80-120			
Lead	11.8	0.164	ng/m³ Air	10.579	1.12	101	80-120			
Manganese	21.1	1.45	ng/m³ Air	6.3473	14.9	98.1	80-120			
Molybdenum	2.97	0.275	ng/m³ Air	1.0579	1.94	97.4	80-120			
Nickel	3.42	0.499	ng/m ³ Air	2.1158	1.36	97.1	80-120			
Selenium	2.34	0.00685	ng/m³ Air	2.1158	0.340	94.7	80-120			
Thallium	0.104	4.51E-4	ng/m ³ Air	0.10579	0.00253	96.1	80-120			
Vanadium	3.73	0.0405	ng/m ³ Air	2.1158	1.74	94.2	80-120			
Zinc	76.6	58.7	ng/m ³ Air	63.473	ND	121	80-120			
Matrix Spike (B4H0605-MS2)	S	Source: 40	80550-22	Prep	ared & A	nalyzed:	08/06/24			
Antimony	0.760	0.0329	ng/m³ Air	1.1795	0.0796	, 57.7	80-120			SL
Arsenic	2.72	0.00799	na/m³ Air	2.3589	0.432	97.1	80-120			
Barium	26.8	0.913	ng/m³ Air	23.589	3.36	99.6	80-120			
Beryllium	1.16	0.00273	ng/m ³ Air	1.1795	0.0103	97.4	80-120			
Cadmium	1.18	0.0632	na/m³ Air	1.1795	ND	100	80-120			
Chromium	14.4	1.88	ng/m³ Air	11.795	2.44	101	80-120			
Cobalt	1.47	0.0372	ng/m³ Air	1.1795	0.350	94.9	80-120			
Copper	61.9	2.24	na/m³ Air	23.589	37.7	103	80-120			
Lead	12.9	0.183	ng/m³ Air	11.795	0.946	101	80-120			
Manganese	18.1	1.61	ng/m³ Air	7.0768	11.2	97.1	80-120			
Molybdenum	3.25	0.306	na/m³ Air	1,1795	2.11	97.3	80-120			
Nickel	3.37	0.556	ng/m ³ Air	2.3589	1.06	98.0	80-120			
Selenium	2.42	0.00764	na/m³ Air	2.3589	0.143	96.3	80-120			
Thallium	0.116	5.02E-4	ng/m³ Air	0.11795	7.10E-4	98.0	80-120			
Vanadium	3.31	0.0451	ng/m³ Air	2,3589	1.01	97.6	80-120			
Zinc	83.6	65.5	ng/m³ Air	70.768	ND	118	80-120			
Matrix Spike Dup (B4H0605-MSC)1) 5	Source: 40	80550-02	Prer	ared & A	nalvzed:	08/06/24			
	0 707	0 0295	na/m ³ Δir	1 0570	0 172	50 1	80-120	0 512	20	SI
Arconic	0.70Z	0.0295	ng/mª All	2 1150	0.172	96.3	80-120 80-120	0.012	20	JL
AISCHIL	2.40	0.00/1/	Hg/IIIs Alf	2.1130	0.357	50.5	00-120	0.194	20	

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 08/13/24 09:56

SUBMITTED: 03/11/24 to 08/05/24

AQS SITE CODE:

SITE CODE: Lahaina fires

Analyte	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Inorganics by Compendium Meth Batch B4H0605 - ICP-MS Extraction	od IO-3	3.5 - Qua	lity Contro	bl		_	_	_	_	
Matrix Spike Dup (B4H0605-MSD1) ContiS	ource: 40	80550-02	Prep	ared & A	nalyzed:	08/06/24	ł		
Barium	25.5	0.819	ng/m³ Air	21.158	4.56	99.0	80-120	0.992	20	
Beryllium	1.06	0.00245	ng/m³ Air	1.0579	0.0158	98.4	80-120	0.349	20	
Cadmium	1.04	0.0567	ng/m³ Air	1.0579	ND	98.2	80-120	0.0365	20	
Chromium	12.9	1.69	ng/m³ Air	10.579	2.53	97.9	80-120	0.545	20	
Cobalt	1.47	0.0334	ng/m³ Air	1.0579	0.476	93.6	80-120	0.603	20	
Copper	56.2	2.01	ng/m³ Air	21.158	34.5	103	80-120	0.900	20	
Lead	11.8	0.164	ng/m³ Air	10.579	1.12	100	80-120	0.215	20	
Manganese	20.2	1.45	ng/m³ Air	6.3473	14.9	83.2	80-120	4.57	20	
Molybdenum	2.91	0.275	ng/m³ Air	1.0579	1.94	91.5	80-120	2.11	20	
Nickel	3.42	0.499	ng/m³ Air	2.1158	1.36	97.3	80-120	0.0939	20	
Selenium	2.34	0.00685	ng/m³ Air	2.1158	0.340	94.6	80-120	0.157	20	
Thallium	0.105	4.51E-4	ng/m³ Air	0.10579	0.00253	96.7	80-120	0.610	20	
Vanadium	3.68	0.0405	ng/m³ Air	2.1158	1.74	91.7	80-120	1.42	20	
Zinc	75.9	58.7	ng/m³ Air	63.473	ND	120	80-120	0.952	20	
Matrix Spike Dup (B4H0605-MSD2) S	ource: 40	80550-22	Prep	ared & A	nalyzed:	08/06/24	1		
Antimony	0.681	0.0329	ng/m³ Air	1.1795	0.0796	51.0	80-120	11.0	20	SL
Arsenic	2.71	0.00799	ng/m³ Air	2.3589	0.432	96.6	80-120	0.506	20	
Barium	26.7	0.913	ng/m³ Air	23.589	3.36	98.8	80-120	0.711	20	
Beryllium	1.15	0.00273	ng/m³ Air	1.1795	0.0103	97.0	80-120	0.398	20	
Cadmium	1.17	0.0632	ng/m³ Air	1.1795	ND	99.1	80-120	0.866	20	
Chromium	14.3	1.88	ng/m³ Air	11.795	2.44	101	80-120	0.281	20	
Cobalt	1.50	0.0372	ng/m³ Air	1.1795	0.350	97.4	80-120	2.00	20	
Copper	62.9	2.24	ng/m³ Air	23.589	37.7	107	80-120	1.57	20	
Lead	13.0	0.183	ng/m³ Air	11.795	0.946	102	80-120	0.965	20	
Manganese	18.5	1.61	ng/m³ Air	7.0768	11.2	102	80-120	2.09	20	
Molybdenum	3.23	0.306	ng/m³ Air	1.1795	2.11	95.5	80-120	0.678	20	
Nickel	3.47	0.556	ng/m³ Air	2.3589	1.06	102	80-120	2.78	20	
Selenium	2.39	0.00764	ng/m³ Air	2.3589	0.143	95.2	80-120	1.14	20	
Thallium	0.115	5.02E-4	ng/m³ Air	0.11795	7.10E-4	96.7	80-120	1.29	20	
Vanadium	3.31	0.0451	ng/m³ Air	2.3589	1.01	97.9	80-120	0.179	20	
Zinc	82.1	65.5	ng/m³ Air	70.768	ND	116	80-120	1.82	20	
Post Spike (B4H0605-PS1)	S	ource: 40	80550-02	Prep	ared & A	nalyzed:	08/06/24	1		
Antimony	0.386	0.0295	ng/m³ Air	0.21158	0.172	101	75-125			SL
Arsenic	1.39	0.00717	ng/m³ Air	1.0579	0.357	97.2	75-125			
Barium	6.74	0.819	ng/m³ Air	2.1158	4.56	103	75-125			
Beryllium	0.224	0.00245	ng/m³ Air	0.21158	0.0158	98.6	75-125			
Cadmium	0.123	0.0567	ng/m³ Air	0.10579	ND	117	75-125			
Chromium	3.64	1.69	ng/m³ Air	1.0579	2.53	105	75-125			

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 08/13/24 09:56

SUBMITTED: 03/11/24 to 08/05/24

AQS SITE CODE:

SITE CODE: Lahaina fires

Analyte	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Inorganics by Compendium Met Batch B4H0605 - ICP-MS Extraction	thod IO-3	3.5 - Qua	lity Contro) 						
Post Spike (B4H0605-PS1) Contin	nued S	ource: 40	80550-02	Prep	ared & Ar	nalyzed:	08/06/24			
Cobalt	0.700	0.0334	ng/m³ Air	0.21158	0.476	106	75-125			
Copper	46.8	2.01	ng/m³ Air	10.579	34.5	117	75-125			
Lead	22.9	0.164	ng/m³ Air	21.158	1.12	103	75-125			
Manganese	17.4	1.45	ng/m³ Air	2.1158	14.9	117	75-125			
Molybdenum	3.03	0.275	ng/m³ Air	1.0579	1.94	103	75-125			
Nickel	3.56	0.499	ng/m³ Air	2.1158	1.36	104	75-125			
Selenium	1.38	0.00685	ng/m³ Air	1.0579	0.340	98.6	75-125			
Thallium	0.0550	4.51E-4	ng/m³ Air	5.2894E-2	0.00253	99.2	75-125			
Vanadium	2.79	0.0405	ng/m³ Air	1.0579	1.74	99.1	75-125			
Zinc	ND	58.7	ng/m³ Air	21.158	ND		75-125			U
Post Spike (B4H0605-PS2)	S	ource: 40	80550-22	Prep	ared & Ai	nalyzed:	08/06/24			
Antimony	0.307	0.0329	ng/m³ Air	0.23589	0.0796	96.4	75-125			SL
Arsenic	1.55	0.00799	ng/m³ Air	1.1795	0.432	94.4	75-125			
Barium	5.66	0.913	ng/m³ Air	2.3589	3.36	97.5	75-125			
Beryllium	0.240	0.00273	ng/m ³ Air	0.23589	0.0103	97.2	75-125			
Cadmium	0.128	0.0632	ng/m³ Air	0.11795	ND	109	75-125			
Chromium	3.58	1.88	ng/m³ Air	1.1795	2.44	97.2	75-125			
Cobalt	0.575	0.0372	ng/m³ Air	0.23589	0.350	95.2	75-125			
Copper	50.1	2.24	ng/m³ Air	11.795	37.7	105	75-125			
Lead	24.6	0.183	ng/m³ Air	23.589	0.946	100	75-125			
Manganese	13.5	1.61	ng/m³ Air	2.3589	11.2	95.2	75-125			
Molybdenum	3.25	0.306	ng/m³ Air	1.1795	2.11	97.4	75-125			
Nickel	3.42	0.556	ng/m³ Air	2.3589	1.06	100	75-125			
Selenium	1.29	0.00764	ng/m³ Air	1.1795	0.143	97.0	75-125			
Thallium	0.0583	5.02E-4	ng/m³ Air	5.8974E-2	7.10E-4	97.6	75-125			
Vanadium	2.14	0.0451	ng/m³ Air	1.1795	1.01	96.2	75-125			
Zinc	ND	65.5	ng/m³ Air	23.589	ND		75-125			U
Dilution Check (B4H0605-SRL1)	s	ource: 40	80550-02	Prep	ared & Ar	nalyzed:	08/06/24	_	_	
Antimony	0.170	0.148	ng/m³ Air		0.172			0.904	10	SL
Arsenic	0.366	0.0358	ng/m³ Air		0.357			2.28	10	
Barium	4.62	4.09	ng/m ³ Air		4.56			1.22	10	
Beryllium	0.0168	0.0122	ng/m ³ Air		0.0158			5.87	10	
Cadmium	ND	0.283	ng/m ³ Air		ND				10	U
Chromium	ND	8.45	ng/m³ Air		ND				10	U
Cobalt	0.486	0.167	ng/m ³ Air		0.476			2.04	10	
Copper	36.0	10.1	ng/m ³ Air		34.5			4.35	10	
Lead	1.10	0.819	ng/m³ Air		1.12			1.83	10	
Manganese	15.6	7.23	ng/m³ Air		14.9			4.40	10	

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 08/13/24 09:56

SUBMITTED: 03/11/24 to 08/05/24

AQS SITE CODE:

SITE CODE: Lahaina fires

Analyte	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Inorganics by Compendium Metl Batch B4H0605 - ICP-MS Extraction	hod IO-3	3.5 - Qual	ity Contro							
Dilution Check (B4H0605-SRL1) C	ontinueS	ource: 40	80550-02	Prep	ared & Ai	nalyzed:	08/06/24			
Molybdenum	1.97	1.37	ng/m ³ Air	· · ·	1.94		· · · ·	1.22	10	
Nickel	ND	2.49	ng/m³ Air		ND				10	U
Selenium	0.342	0.0343	ng/m³ Air		0.340			0.506	10	
Thallium	0.00391	0.00225	ng/m³ Air		0.00253			43.0	10	
Vanadium	1.71	0.202	ng/m³ Air		1.74			1.84	10	
Zinc	ND	294	ng/m³ Air		ND				10	U
Dilution Check (B4H0605-SRL2)	S	ource: 40	80550-22	Prep	ared & Ai	nalyzed:	08/06/24			
Antimony	ND	0.165	ng/m ³ Air		ND				10	SL, U
Arsenic	0.446	0.0400	ng/m³ Air		0.432			3.18	10	
Barium	ND	4.56	ng/m³ Air		ND				10	U
Beryllium	ND	0.0136	ng/m³ Air		ND				10	U
Cadmium	ND	0.316	ng/m³ Air		ND				10	U
Chromium	ND	9.42	ng/m³ Air		ND				10	U
Cobalt	0.357	0.186	ng/m³ Air		0.350			1.83	10	
Copper	38.1	11.2	ng/m³ Air		37.7			1.05	10	
Lead	0.943	0.913	ng/m³ Air		0.946			0.377	10	
Manganese	11.3	8.06	ng/m³ Air		11.2			0.804	10	
Molybdenum	2.11	1.53	ng/m³ Air		2.11			0.273	10	
Nickel	ND	2.78	ng/m³ Air		ND				10	U
Selenium	0.141	0.0382	ng/m³ Air		0.143			1.45	10	
Thallium	ND	0.00251	ng/m³ Air		ND				10	U
Vanadium	0.982	0.226	ng/m³ Air		1.01			2.35	10	
Zinc	ND	328	ng/m³ Air		ND				10	U

Eastern Research Group

Tetra Tech, Inc. 1777 Sentry Pkwy, Bldg 12 Blue Bell, PA 19422 ATTN: Ms. Chelsea Saber PHONE: (703) 885-5495 FAX: FILE #: 4205.00.003.001 REPORTED: 08/13/24 09:56 SUBMITTED: 03/11/24 to 08/05/24 AQS SITE CODE: SITE CODE: Lahaina fires

Notes and Definitions

U Under Detection Limit

SL The spike recovery was outside acceptance limits. Reported value may be biased low.

FB-01 Analyte exceeds Field Blank criteria.

D This result obtained by dilution.

ND Analyte NOT DETECTED

NR Not Reported

MDL Method Detection Limit

RPD Relative Percent Difference

Note: This test is accredited under the 2016 TNI Standard.

Eastern Research Group

Stage 1 Data Verification Checklist – Metals

HDOH CAB - Ambient Community Air Sampling - Lahaina

Task Order No. 23141

Reviewed by:

Kierra Johnson 08/14/2024 and Shanna Vasser 08/15/2024 Laboratory: Eastern Research Group – Morrisville, NC Collection date(s): 03/04/2024 and 07/25/2024 – 07/31/2024 Report No: 4080550

	1.	Chain of custody (CoC) documentation is present.
	2.	Sample receipt condition information is present and acceptable.
	3.	Laboratory conducting the analysis is identified.
	4.	All samples submitted to the laboratory are accounted for.
	5.	Requested analytical methods were performed.
	6.	Analysis dates are provided.
	7.	Analyte results are provided.
	8.	Result qualifiers and definitions are provided.
	9.	Result units are reported.
NA	10.	Requested reporting limits are present.
	11.	Method detection limits are present.
	12.	Sample collection date and time are present.
<u>X</u>	13.	No detections in field QC blanks (lot/media blanks, field blanks, etc).

Discrepancies:

13. Field blank detections above the method detection limit were reported for molybdenum in MFL-FB01-072824-HM.

Notes:

7. Sample MFL-AM01-030424-HM (originally reported with SDG 4031151) was re-extracted and re-analyzed at a two-fold dilution for nickel and reported in this data package.