Ambient Community Air Monitoring Weekly Report For the Hawaii Department of Health – Clean Air Branch

Lahaina, Maui

1/18/2024 - 1/24/2024 [Report Updated: 7/2/2024]

Due to ongoing debris removal operations in response to the Maui Wildfires, a Community Air Monitoring and Sampling Plan (CAMSP) has been drafted and sampling is being performed at four community locations across Lahaina listed below and shown on **Figure 1**:

- Leialii Hawaiian Homelands (AM-01)
- WW Pump Station #4 (AM-02)
- Lahaina Intermediate School (AM-03)
- Lahaina Boys & Girls Club (AM-04)

This approach includes ambient community air monitoring and sampling to monitor conditions and determine whether debris removal activities, managed by the U.S. Army Corps of Engineers (USACE), significantly impact air quality in Lahaina. Data collected is made available to HDOH via online shared site and this weekly report. This approach to air monitoring and sampling will continue until debris removal activities are complete or until HDOH CAB advises otherwise.

Air quality monitoring for particulate matter was collected at all four community locations over a 24-hour period each day in accordance with the draft CAMSP. Additionally, daily air samples were collected at all community locations. Summary analytical data is presented in **Tables 1 and 2**. **Figure 1** depicts the community air monitoring and sampling locations. **Appendix 1** provides detailed analytical results for all community locations where air sampling was performed. Analytical results were compared to site-specific screening levels for particulate matter, asbestos, and heavy metals as described in the draft CAMSP. A summary of meteorological data is presented in **Table 3**. Overall wind conditions show generally 1.3 mph in a SE direction.

Results for Community Locations:

Ambient air monitoring was performed to assess the presence of airborne particulates with a particle size diameter of 10 micrometers (μ m), as this is the size that is recognized as being small enough to be inhaled into a person's lungs. This particle size diameter is recognized for health evaluations and is identified as "PM₁₀". Monitoring for PM₁₀ was conducted 24 hours a day, 7 days a week at each of the following locations: Leialii Hawaiian Homelands (January 18-24), WW Pump Station #4 (January 18-24), Lahaina Intermediate School (January 18-24), Lahaina Boys & Girls Club (January 18-24).

The results of PM10 monitoring found that screening levels were not exceeded during this reporting period as shown in **Table 2**.

Please note that ambient air monitoring for fine particulate matter, with a particle size diameter of 2.5 micrometers or less (PM2.5) is not included in this report. This monitoring is being performed by the Department of Health/EPA at six locations in Lahaina and can be viewed at: https://fire.airnow.gov/.

There were 28 samples collected for asbestos fibers at community monitoring locations throughout this reporting period. All asbestos results were below the public health screening level of 0.003 fibers/cc and less than the lab's analytical sensitivity (see Table 1).

Heavy metal samples were not collected on 1/20, 1/21, 1/22, and 1/23 at WW Pump Station #4, Lahaina Intermediate School, Lahaina Boys & Girls Club, and not collected on 1/23 at Leialii Hawaiian Homelands. The samples were not collected because of weather-related shipping delays which

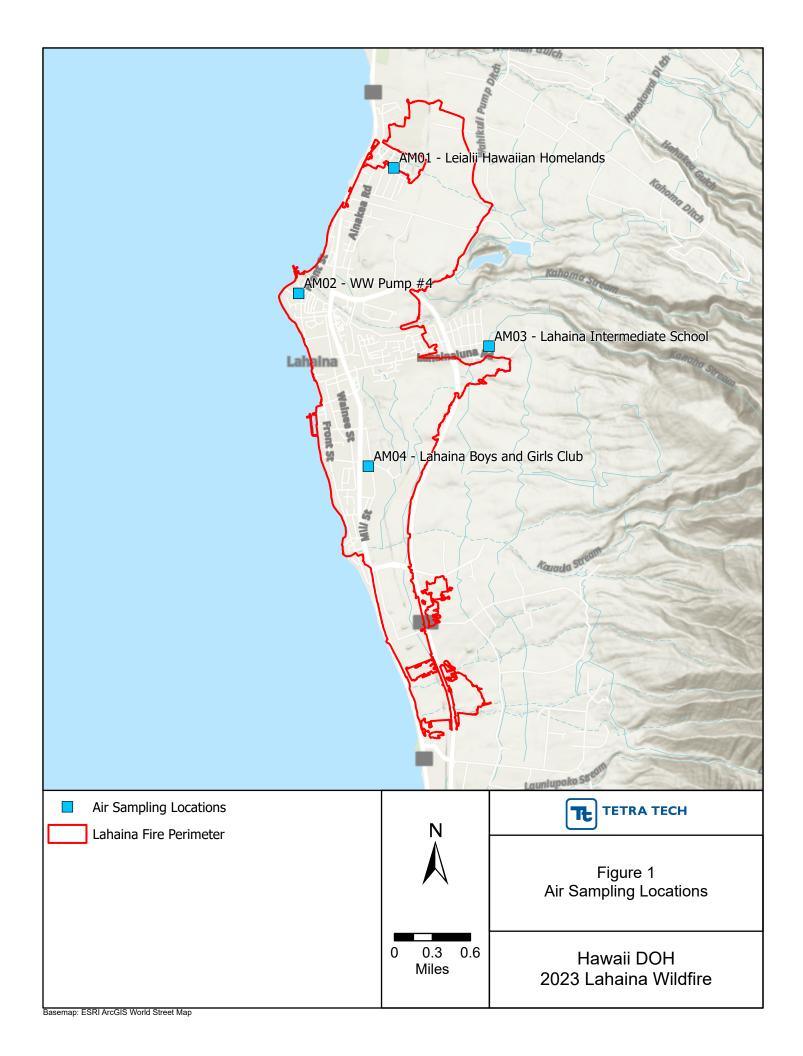
subsequently caused a delay in receiving the necessary sampling supplies. Sample collection during this time as based on the location closest to active operations. Low levels of heavy metals were detected in ambient air samples at all community sampling locations (see Table 1). Although heavy metals were detected, all of the heavy metals concentrations were below the SSALs (see Table 1). The laboratory data sheets for the metals and asbestos samples collected from the community locations are found in **Appendix 1.**

Quality Control:

This section briefly discusses the quality control efforts made by Tetra Tech throughout the air monitoring and sampling process. All references and SOPs can be found provided with the CAMSP.

Tetra Tech is utilizing Met One Instruments, Inc., environmental beta attenuation mass monitors (E-BAM) to allow for comparison to the National Ambient Air Quality Standards (NAAQS) for particulates. E-BAMs are factory-calibrated annually and do not require daily calibration, except for a leak check and a flow audit, which were performed prior to sampling according to the manufacturer's procedures.

For asbestos sampling, Tetra Tech uses a Casella Vortex 3 or similar air sampling pump. Sampling flow rates will be determined and documented by pre- and post- calibration of each sampling pump using a primary calibration standard. Calibration and sampling are conducted in accordance with Tetra Tech SOPs 064-2, "Calibration of Air Sampling Pump" and 073-3, "Air Quality Monitoring" (Appendix A) and U.S. EPA ERT SOPs No. 2008, "General Air Monitoring and Sampling Guidelines" and 2015 "Asbestos Air Sampling," included in the CAMSP.


Tetra Tech is using Tisch Environmental High Volume Air Samplers, or equivalent, collocated with the real-time particulate monitors and asbestos samplers described above. Air samples for elemental metals at community locations are collected and analyzed in accordance with the following methods:

- U.S. EPA Compendium Method IO-2.1, Sampling of Ambient Air for Total Suspended Particulate Matter (SPM) and PM10 Using High Volume (HV) Sampler
- U.S. EPA Compendium Method IO-3.5: Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air: Determination of Metals in Ambient Particulate Matter Using Inductively Coupled Plasma/Mass Spectrometry (ICP/MS). EPA/625/R-96/010a
- U.S. EPA 40 Code of Federal Regulations (CFR) Part 50, Method for the Determination of Lead in Total Suspended Particulate Matter.
- U.S. EPA 40 CFR Part 58, Appendix E: Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring
- Standard Operating Procedures for Lead Monitoring Using a TSP High Volume Sampler

Field technicians conducted photographic and written documentation in accordance with Tetra Tech SOP No. 024-4, "Recording of Notes in Field Logbook."

Following receipt of air sampling results from the off-site analytical laboratories, analytical data is maintained in an electronic database and compared to the SSALs. Level 1 data verification is completed on all analytical data and results are reviewed by an industrial hygienist.

Table 1 HDOH CAB Ambient Community Monitoring and Sampling Analytical Sampling Results by Date Maui Wildfire, Lahaina 1/18/2024-1/24/2024 [Report Updated: 7/2/2024]

	Analyte	Asbestos	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Molybdenum	Nickel	Selenium	Thallium	Vanadium	Zinc
	Units	f/cc	μg/m ³	μg/m³	μg/m³	μg/m ³	μg/m³	μg/m³	μg/m³	μg/m³	$\mu g/m^3$	μg/m ³	μg/m³	μg/m ³	μg/m³	μg/m³	μg/m ³	μg/m ³
	Screening Level*	0.003 1	0.7	0.05	1.2	0.05	0.02	12	0.01	240	1.5	0.12	4.8	0.02	48	24	0.24	1200
	Leialii Hawaiian Homelands (AM-01)	< 0.00069	0.00025	0.00136	0.00819	0.00000536	ND	ND	0.000364	0.0366	0.00193	0.00767	0.00164	0.000844	0.000238	0.00000286	0.000483	0.0838
1/18/2024	WW Pump Station #4 (AM-02)	< 0.00083	0.000284	0.00226	0.00599	0.00000644	ND	0.00239	0.000185	0.0364	0.00240	0.00643	0.0014	0.000753	0.00027	0.00000135	0.000595	0.0628
1/10/2024	Lahaina Intermediate School (AM-03)	< 0.00132	0.000102	0.0000957	0.0022	0.00000647	ND	ND	0.000114	0.0232	0.000263	0.00251	0.00135	0.000608	0.000216	0.00000113	0.000275	ND
	Lahaina Boys & Girls Club (AM-04)	< 0.00074	0.0000792	0.000156	0.00207	0.00000299	ND	ND	0.0000723	0.0351	0.000437	0.00224	0.00102	ND	0.000198	0.000000911	0.000216	ND
	Leialii Hawaiian Homelands (AM-01)	< 0.0004	0.0000714	0.000399	0.00236	0.0000035	ND	ND	0.000143	0.0287	0.000588	0.00391	0.00134	0.000548	0.00014	0.000000644	0.000467	ND
1/19/2024	WW Pump Station #4 (AM-02)	< 0.0005	0.000202	0.000974	0.00433	0.00000519	ND	ND	0.000165	0.0238	0.00168	0.00529	0.0012	0.000654	0.000157	0.000000742	0.000582	ND
1/19/2024	Lahaina Intermediate School (AM-03)	< 0.00066	0.0000852	0.000065	0.00201	0.00000558	ND	ND	0.000106	0.0233	0.000318	0.00248	0.00135	0.000879	0.000139	0.000000653	0.000341	ND
	Lahaina Boys & Girls Club (AM-04)	< 0.00042	0.00012	0.00016	0.0019	0.0000027	ND	ND	0.0000708	0.0304	0.000256	0.00218	0.00102	ND	0.000146	ND	0.000276	ND
	Leialii Hawaiian Homelands (AM-01)	< 0.00081	0.000059	0.000378	0.00188	ND	ND	ND	0.0000876	0.0275	0.00027	0.00237	0.00143	ND	0.000193	0.000000485	0.000283	ND
1/20/2024	WW Pump Station #4 (AM-02)	< 0.00069																
1/20/2024	Lahaina Intermediate School (AM-03)	< 0.00126																
	Lahaina Boys & Girls Club (AM-04)	< 0.00106																
	Leialii Hawaiian Homelands (AM-01)	< 0.00044	0.000098	0.000501	0.00165	ND	ND	ND	0.0000638	0.0304	0.000347	0.0017	0.0017	ND	0.000349	0.000000712	0.000314	ND
1/21/2024	WW Pump Station #4 (AM-02)	< 0.00045																
1/21/2024	Lahaina Intermediate School (AM-03)	< 0.0012																
	Lahaina Boys & Girls Club (AM-04)	< 0.00061																
	Leialii Hawaiian Homelands (AM-01)	< 0.00053	0.0000894	0.000572	0.00332	0.00000558	ND	ND	0.000274	0.0494	0.00126	0.00641	0.00186	0.00105	0.000323	0.00000102	0.000786	ND
1/22/2024	WW Pump Station #4 (AM-02)	< 0.00189																
1/22/2024	Lahaina Intermediate School (AM-03)	< 0.00104																
	Lahaina Boys & Girls Club (AM-04)	< 0.00039																
	Leialii Hawaiian Homelands (AM-01)	< 0.0004																
1/22/2024	WW Pump Station #4 (AM-02)	< 0.0017																
1/23/2024	Lahaina Intermediate School (AM-03)	< 0.00099																
	Lahaina Boys & Girls Club (AM-04)	< 0.00111																
	Leialii Hawaiian Homelands (AM-01)	< 0.00041	0.000112	0.00241	0.014	0.0000238	ND	0.00524	0.00138	0.0474	0.0118	0.026	0.00163	0.00647	0.000408	0.00000147	0.00229	0.077
1/24/2024	WW Pump Station #4 (AM-02)	< 0.00053	0.0000349	0.00071	0.00124	0.00000264	ND	0.00189	0.000104	0.0232	0.00125	0.0018	0.000445	ND	0.000382	0.000000578	0.000225	ND
1/24/2024	Lahaina Intermediate School (AM-03)	< 0.00039	0.0000507	0.000165	0.00252	0.0000104	ND	0.00307	0.000438	0.00874	0.000284	0.00768	0.000626	0.0012	0.000368	0.000000657	0.000677	ND
	Lahaina Boys & Girls Club (AM-04)	< 0.00042	0.0000627	0.000874	0.00126	ND	ND	0.00211	0.00011	0.0273	0.00086	0.00198	0.000979	ND	0.00033	ND	0.000265	ND
											•							
9	5% Upper Confidence Limit ³	NA	0.00016	0.00194	0.00541	0.00001	NA	0.00344	0.00039	0.0378	0.00326	0.00829	0.00157	0.00267	0.00032	0.0000013	0.00074	0.103

Notes:

Data unavailable, Limited sampling filters due to weather related circumstances, shipments delayed.

f/cc = fibers per cubic centimeter

Heavy Metal sampling was not conducted at (AM-01) on 1/23 and at (AM-02), (AM-03), & (AM-04) on 1/20, 1/21, 1/22, and 1/23 due to shipping delays on sampling filters Laboratory data provided in nanograms per cubic meter, however data shown in Table 1 has been converted to micrograms per cubic meter so data was comparable to SSALs mg/m3 = milligrams per cubic meter

NA = Not Available

ND = Not detected at or above the laboratory reporting limit

This report has been updated with new SSALs in accordance with CAMSP Rev 2, May 2024

¹ Fiber count sample result via Phase Contrast Microscopy

² Confirmed asbestos sample result via Transmission Electron Microscopy

³ 95% UCL determined through 'best fit' lognormal or normal parametric statistics via W test

Table 2

HDOH CAB Ambient Community Monitoring and Sampling Particulate Monitoring Results for PM_{10}

Maui Wildfire, Lahaina 1/18/2024 - 1/24/2024 [Report Updated: 7/2/2024]

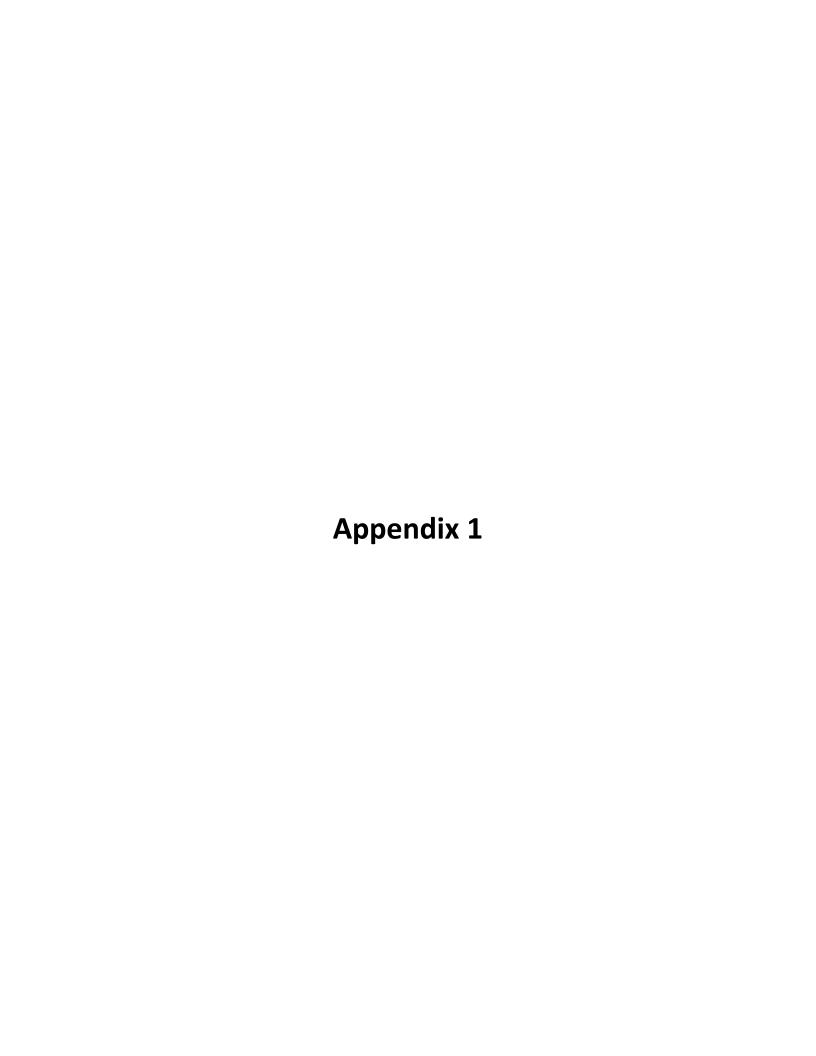
Screening Le	vel	150 μg/m ³
	Leialii Hawaiian Homelands (AM-01)	6.6
1/18/2024	WW Pump Station #4 (AM-02)	10.5
1/18/2024	Lahaina Intermediate School (AM-03)	6.2
	Lahaina Boys & Girls Club (AM-04)	6.5
	Leialii Hawaiian Homelands (AM-01)	5.2
1/19/2024	WW Pump Station #4 (AM-02)	8.5
1/19/2024	Lahaina Intermediate School (AM-03)	8.3
	Lahaina Boys & Girls Club (AM-04)	5.5
	Leialii Hawaiian Homelands (AM-01)	6.8
1/20/2024	WW Pump Station #4 (AM-02)	6.6
1/20/2024	Lahaina Intermediate School (AM-03)	7.4
	Lahaina Boys & Girls Club (AM-04)	4.3
	Leialii Hawaiian Homelands (AM-01)	5.9
1/21/2024	WW Pump Station #4 (AM-02)	6.2
	Lahaina Intermediate School (AM-03)	6.7
	Lahaina Boys & Girls Club (AM-04)	5.2
	Leialii Hawaiian Homelands (AM-01)	7.8
1/22/2024	WW Pump Station #4 (AM-02)	12
1/22/2024	Lahaina Intermediate School (AM-03)	8.5
	Lahaina Boys & Girls Club (AM-04)	9.0
	Leialii Hawaiian Homelands (AM-01)	7.1
1/23/2024	WW Pump Station #4 (AM-02)	9.3
1/23/2024	Lahaina Intermediate School (AM-03)	8.2
	Lahaina Boys & Girls Club (AM-04)	7.1
	Leialii Hawaiian Homelands (AM-01)	14
1/24/2024	WW Pump Station #4 (AM-02)	14
1/24/2024	Lahaina Intermediate School (AM-03)	16
	Lahaina Boys & Girls Club (AM-04)	11

Notes:

Results are based on 24 hour TWA calculation 24 hour TWA calculation is presented in two significant figures $\mu g/m3 = \text{micrograms}$ per cubic meter Results from Lahaina Intermediate School on 1/19, 1/23 have been revised from previously submitted report. Results from Leialii Hawaiian Homelands on 1/23 have been revised from previously submitted report.

Table 3 Maui Wildfire - Lahaina Meteorological Data 1/18/2024-1/24/2024

[Report Updated: 7/2/2024]


			Wind	Wind		Rel	Baro
			Speed	Direction	Temperature	Humidity	Pressure
Date	Station ID	Weather Station Name	(mph)	(angle)	(°F)	(%)	(mBar)
1/18/2024	AM-01	Leialii Hawaiian Homelands	1.0	ESE	74	69	757.3
1/18/2024	AM-02	WW Pump Station #4	0.8	ESE	75	72	759.7
1/18/2024	AM-03	Lahaina Intermediate School	1.1	ESE	79	70	750.1
1/18/2024	AM-04	Lahaina Boys & Girls Club	0.8	S	74	72	759.2
1/19/2024	AM-01	Leialii Hawaiian Homelands	1.2	SE	75	66	758.4
1/19/2024	AM-02	WW Pump Station #4	1.1	SE	75	72	760.8
1/19/2024	AM-03	Lahaina Intermediate School	1.2	ESE	79	73	751.2
1/19/2024	AM-04	Lahaina Boys & Girls Club	1.0	SSE	74	69	760.3
1/20/2024	AM-01	Leialii Hawaiian Homelands	0.9	SE	75	77	758.3
1/20/2024	AM-02	WW Pump Station #4	1.0	ESE	76	80	760.7
1/20/2024	AM-03	Lahaina Intermediate School	1.0	ESE	79	84	751.1
1/20/2024	AM-04	Lahaina Boys & Girls Club	0.9	SSE	75	79	760.2
1/21/2024	AM-01	Leialii Hawaiian Homelands	0.8	SE	76	77	758.7
1/21/2024	AM-02	WW Pump Station #4	1.0	SE	76	81	761.1
1/21/2024	AM-03	Lahaina Intermediate School	0.9	SE	79	85	751.5
1/21/2024	AM-04	Lahaina Boys & Girls Club	0.9	SSE	74	81	760.6
1/22/2024	AM-01	Leialii Hawaiian Homelands	1.8	SE	77	64	758.8
1/22/2024	AM-02	WW Pump Station #4	1.3	SE	78	69	761.3
1/22/2024	AM-03	Lahaina Intermediate School	1.7	SE	81	70	751.7
1/22/2024	AM-04	Lahaina Boys & Girls Club	1.2	SE	76	68	760.7
1/23/2024	AM-01	Leialii Hawaiian Homelands	1.5	SSE	77	67	758.7
1/23/2024	AM-02	WW Pump Station #4	1.6	SSE	78	71	761.2
1/23/2024	AM-03	Lahaina Intermediate School	1.8	SE	80	74	751.6
1/23/2024	AM-04	Lahaina Boys & Girls Club	1.4	SSE	76	71	760.7
1/24/2024	AM-01	Leialii Hawaiian Homelands	2.7	SSE	78	68	757.8
1/24/2024	AM-02	WW Pump Station #4	2.2	SSE	78	73	760.4
1/24/2024	AM-03	Lahaina Intermediate School	3.6	SSE	81	75	750.7
1/24/2024	AM-04	Lahaina Boys & Girls Club	1.5	SE	78	70	759.9

Notes:

°F - Fahrenheit

mBar - millibar

mph - miles per hour

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> <u>ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers</u>

Direct Transfer Transmission Electron Microscopy Method

Chelsea Saber EJ3 Order #: 3517293

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 25-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 30-Jan-2024

Report Date: 30-Jan-2024

HDOH Lahaina Community Air

Sample Number MFL-AM01-011824-AB

Air Volume, L:	4255.089	
Effective Filter Area, mm ² :	385.0	
Level of Analysis (Chrysotile):	CDQ	
Level of Analysis (Amphibole):	ADQ	
Magnification Used for Fiber Counting:	20,000	
Aspect Ratio for Fiber Definition:	5:1	
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132	
Number of GO's Examined:	10	
Analytical Sensitivity: f/Liter:	0.68545	
Analytical Sensitivity: f/cm3:	0.00069	
Number of primary asbestos structures:	0	
Number of asbestos structures counted:	0	
Number of asbestos structures > 5 μm:	0	
Number of asbestos fibers and bundles $> 5 \mu m$:	0	
Number of PCM equivalent asbestos structures:	0	
Number of PCM equivalent asbestos fibers:	0	
Concentration of Asbestos (Chrysotile), f/cm ³ :	< 0.00069	
Concentration of Asbestos (Amphibole), f/cm ³ :	< 0.00069	
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	< 0.00069	
Concentration of Asbestos (Chrysotile), Str/L:	< 0.68545	
Concentration of Asbestos (Amphibole), Str/L:	< 0.68545	
Lower 95% Confidence Limit (Chrysotile), Str/L:	0	
Upper 95% Confidence Limit (Chrysotile), Str/L:	2.5	
Lower 95% Confidence Limit (Amphibole), Str/L:	0	
Upper 95% Confidence Limit (Amphibole), Str/L:	2.5	

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM) ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers

Direct Transfer Transmission Electron Microscopy Method

Chelsea Saber EJ3 Order #: 3517293 **Tetra Tech Project #:** 103S864023206

1999 Harrison St. Ste. 500 Receipt Date: 25-Jan-2024 Oakland, CA 94612 **Analysis Date:** 30-Jan-2024 30-Jan-2024

Report Date:

HDOH Lahaina Community Air

Sample Number MFL-AM02-011824-AB

Air Volume, L:	3507.459	
Effective Filter Area, mm ² :	385.0	
Level of Analysis (Chrysotile):	CDQ	
Level of Analysis (Amphibole):	ADQ	
Magnification Used for Fiber Counting:	20,000	
Aspect Ratio for Fiber Definition:	5:1	
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132	
Number of GO's Examined:	10	
Analytical Sensitivity: f/Liter:	0.83156	
Analytical Sensitivity: f/cm3:	0.00083	
Number of primary asbestos structures:	0	
Number of asbestos structures counted:	0	
Number of asbestos structures > 5 μm:	0	
Number of asbestos fibers and bundles $> 5 \mu m$:	0	
Number of PCM equivalent asbestos structures:	0	
Number of PCM equivalent asbestos fibers:	0	
Concentration of Asbestos (Chrysotile), f/cm ³ :	< 0.00083	
Concentration of Asbestos (Amphibole), f/cm ³ :	< 0.00083	
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	< 0.00083	
Concentration of Asbestos (Chrysotile), Str/L:	< 0.83156	
Concentration of Asbestos (Amphibole), Str/L:	< 0.83156	
Lower 95% Confidence Limit (Chrysotile), Str/L:	0	
Upper 95% Confidence Limit (Chrysotile), Str/L:	3.1	
Lower 95% Confidence Limit (Amphibole), Str/L:	0	
Upper 95% Confidence Limit (Amphibole), Str/L:	3.1	

Analyst: Taylor Smylie

Scott M. Ward, Ph.D.

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be sed to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> <u>ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers</u>

Direct Transfer Transmission Electron Microscopy Method

Chelsea Saber EJ3 Order #: 3517293

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 25-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 30-Jan-2024

 Report Date:
 30-Jan-2024

HDOH Lahaina Community Air

Sample Number MFL-AM03-011824-AB

Air Volume, L:	2207.25	
Effective Filter Area, mm ² :	385.0	
Level of Analysis (Chrysotile):	CDQ	
Level of Analysis (Amphibole):	ADQ	
Magnification Used for Fiber Counting:	20,000	
Aspect Ratio for Fiber Definition:	5:1	
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132	
Number of GO's Examined:	10	
Analytical Sensitivity: f/Liter:	1.32140	
Analytical Sensitivity: f/cm3:	0.00132	
Number of primary asbestos structures:	0	
Number of asbestos structures counted:	0	
Number of asbestos structures $> 5 \mu m$:	0	
Number of asbestos fibers and bundles $> 5 \mu m$:	0	
Number of PCM equivalent asbestos structures:	0	
Number of PCM equivalent asbestos fibers:	0	
Concentration of Asbestos (Chrysotile), f/cm ³ :	< 0.00132	
Concentration of Asbestos (Amphibole), f/cm ³ :	< 0.00132	
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	< 0.00132	
Concentration of Asbestos (Chrysotile), Str/L:	<1.3214	
Concentration of Asbestos (Amphibole), Str/L:	<1.3214	
Lower 95% Confidence Limit (Chrysotile), Str/L:	0	
Upper 95% Confidence Limit (Chrysotile), Str/L:	4.9	
Lower 95% Confidence Limit (Amphibole), Str/L:	0	
Upper 95% Confidence Limit (Amphibole), Str/L:	4.9	

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers

Direct Transfer Transmission Electron Microscopy Method

Chelsea Saber EJ3 Order #: 3517293

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 25-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 30-Jan-2024

Report Date: 30-Jan-2024

HDOH Lahaina Community Air

Sample Number MFL-AM04-011824-AB

Air Volume, L:	3957.543
Effective Filter Area, mm ² :	385.0
Level of Analysis (Chrysotile):	CDQ
Level of Analysis (Amphibole):	ADQ
Magnification Used for Fiber Counting:	20,000
Aspect Ratio for Fiber Definition:	5:1
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132
Number of GO's Examined:	10
Analytical Sensitivity: f/Liter:	0.73699
Analytical Sensitivity: f/cm3:	0.00074
Number of primary asbestos structures:	0
Number of asbestos structures counted:	0
Number of asbestos structures > 5 μm:	0
Number of asbestos fibers and bundles $> 5 \mu m$:	0
Number of PCM equivalent asbestos structures:	0
Number of PCM equivalent asbestos fibers:	0
Concentration of Asbestos (Chrysotile), f/cm ³ :	< 0.00074
Concentration of Asbestos (Amphibole), f/cm ³ :	< 0.00074
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	< 0.00074
Concentration of Asbestos (Chrysotile), Str/L:	< 0.73699
Concentration of Asbestos (Amphibole), Str/L:	< 0.73699
Lower 95% Confidence Limit (Chrysotile), Str/L:	0
Upper 95% Confidence Limit (Chrysotile), Str/L:	2.7
Lower 95% Confidence Limit (Amphibole), Str/L:	0
Upper 95% Confidence Limit (Amphibole), Str/L:	2.7

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers

Direct Transfer Transmission Electron Microscopy Method

Chelsea Saber EJ3 Order #: 3517293

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 25-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 30-Jan-2024

 Report Date:
 30-Jan-2024

HDOH Lahaina Community Air

Sample Number MFL-FB01-011824-AB

Air Volume, L:	0	
Effective Filter Area, mm ² :	385.0	
Level of Analysis (Chrysotile):	CDQ	
Level of Analysis (Amphibole):	ADQ	
Magnification Used for Fiber Counting:	20,000	
Aspect Ratio for Fiber Definition:	5:1	
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132	
Number of GO's Examined:	10	
Analytical Sensitivity: f/Liter:	N/A	
Analytical Sensitivity: f/cm3:	N/A	
Number of primary asbestos structures:	0	
Number of asbestos structures counted:	0	
Number of asbestos structures > 5 μm:	0	
Number of asbestos fibers and bundles $> 5 \mu m$:	0	
Number of PCM equivalent asbestos structures:	0	
Number of PCM equivalent asbestos fibers:	0	
Concentration of Asbestos (Chrysotile), f/cm ³ :	N/A	
Concentration of Asbestos (Amphibole), f/cm ³ :	N/A	
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	N/A	
Concentration of Asbestos (Chrysotile), Str/L:	N/A	
Concentration of Asbestos (Amphibole), Str/L:	N/A	
Lower 95% Confidence Limit (Chrysotile), Str/L:	N/A	
Upper 95% Confidence Limit (Chrysotile), Str/L:	N/A	
Lower 95% Confidence Limit (Amphibole), Str/L:	N/A	
Upper 95% Confidence Limit (Amphibole), Str/L:	N/A	

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> <u>ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers</u>

Direct Transfer Transmission Electron Microscopy Method

Chelsea Saber EJ3 Order #: 3517293

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 25-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 30-Jan-2024

 Report Date:
 30-Jan-2024

HDOH Lahaina Community Air

Sample Number MFL-AM01-011924-AB

Air Volume, L:	7356.859	
Effective Filter Area, mm ² :	385.0	
Level of Analysis (Chrysotile):	CDQ	
Level of Analysis (Amphibole):	ADQ	
Magnification Used for Fiber Counting:	20,000	
Aspect Ratio for Fiber Definition:	5:1	
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132	
Number of GO's Examined:	10	
Analytical Sensitivity: f/Liter:	0.39646	
Analytical Sensitivity: f/cm3:	0.00040	
Number of primary asbestos structures:	0	
Number of asbestos structures counted:	0	
Number of asbestos structures $> 5 \mu m$:	0	
Number of asbestos fibers and bundles $> 5 \mu m$:	0	
Number of PCM equivalent asbestos structures:	0	
Number of PCM equivalent asbestos fibers:	0	
Concentration of Asbestos (Chrysotile), f/cm ³ :	< 0.0004	
Concentration of Asbestos (Amphibole), f/cm ³ :	< 0.0004	
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	< 0.0004	
Concentration of Asbestos (Chrysotile), Str/L:	< 0.39646	
Concentration of Asbestos (Amphibole), Str/L:	< 0.39646	
Lower 95% Confidence Limit (Chrysotile), Str/L:	0	
Upper 95% Confidence Limit (Chrysotile), Str/L:	1.5	
Lower 95% Confidence Limit (Amphibole), Str/L:	0	
Upper 95% Confidence Limit (Amphibole), Str/L:	1.5	

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> <u>ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers</u>

Direct Transfer Transmission Electron Microscopy Method

Chelsea Saber EJ3 Order #: 3517293

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 25-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 30-Jan-2024

Report Date: 30-Jan-2024

HDOH Lahaina Community Air

Sample Number MFL-AM02-011924-AB

5788.583	
385.0	
CDQ	
ADQ	
20,000	
5:1	
0.0132	
10	
0.50387	
0.00050	
0	
0	
0	
0	
0	
0	
< 0.0005	
< 0.0005	
< 0.0005	
< 0.50387	
< 0.50387	
0	
1.9	
0	
1.9	
	385.0 CDQ ADQ 20,000 5:1 0.0132 10 0.50387 0.00050 0 0 0 <-0.0005 <-0.0005 <-0.0005 <-0.50387 <-0.50387 0 1.9 0

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> <u>ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers</u>

Direct Transfer Transmission Electron Microscopy Method

Chelsea Saber EJ3 Order #: 3517293

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 25-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 30-Jan-2024

Report Date: 30-Jan-2024

HDOH Lahaina Community Air

Sample Number MFL-AM03-011924-AB

Air Volume, L:	4439.458	
Effective Filter Area, mm ² :	385.0	
Level of Analysis (Chrysotile):	CDQ	
Level of Analysis (Amphibole):	ADQ	
Magnification Used for Fiber Counting:	20,000	
Aspect Ratio for Fiber Definition:	5:1	
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132	
Number of GO's Examined:	10	
Analytical Sensitivity: f/Liter:	0.65699	
Analytical Sensitivity: f/cm3:	0.00066	
Number of primary asbestos structures:	0	
Number of asbestos structures counted:	0	
Number of asbestos structures $> 5 \mu m$:	0	
Number of asbestos fibers and bundles $> 5 \mu m$:	0	
Number of PCM equivalent asbestos structures:	0	
Number of PCM equivalent asbestos fibers:	0	
Concentration of Asbestos (Chrysotile), f/cm ³ :	< 0.00066	
Concentration of Asbestos (Amphibole), f/cm ³ :	< 0.00066	
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	< 0.00066	
Concentration of Asbestos (Chrysotile), Str/L:	< 0.65699	
Concentration of Asbestos (Amphibole), Str/L:	< 0.65699	
Lower 95% Confidence Limit (Chrysotile), Str/L:	0	
Upper 95% Confidence Limit (Chrysotile), Str/L:	2.4	
Lower 95% Confidence Limit (Amphibole), Str/L:	0	
Upper 95% Confidence Limit (Amphibole), Str/L:	2.4	

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers

Direct Transfer Transmission Electron Microscopy Method

Chelsea Saber EJ3 Order #: 3517293

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 25-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 30-Jan-2024

Report Date: 30-Jan-2024

HDOH Lahaina Community Air

Sample Number MFL-AM04-011924-AB

6909.042	
385.0	
CDQ	
ADQ	
20,000	
5:1	
0.0132	
10	
0.42215	
0.00042	
0	
0	
0	
0	
0	
0	
< 0.00042	
< 0.00042	
< 0.00042	
< 0.42215	
< 0.42215	
0	
1.6	
0	
1.6	
	385.0 CDQ ADQ 20,000 5:1 0.0132 10 0.42215 0.00042 0 0 0 <0.00042 <0.00042 <0.00042 <0.00042 <0.42215 0 1.6 0

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> <u>ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers</u>

Direct Transfer Transmission Electron Microscopy Method

Chelsea Saber EJ3 Order #: 3517293

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 25-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 30-Jan-2024

 Report Date:
 30-Jan-2024

HDOH Lahaina Community Air

Sample Number MFL-FB01-011924-AB

Air Volume, L:	0	
Effective Filter Area, mm ² :	385.0	
Level of Analysis (Chrysotile):	CDQ	
Level of Analysis (Amphibole):	ADQ	
Magnification Used for Fiber Counting:	20,000	
Aspect Ratio for Fiber Definition:	5:1	
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132	
Number of GO's Examined:	10	
Analytical Sensitivity: f/Liter:	N/A	
Analytical Sensitivity: f/cm3:	N/A	
Number of primary asbestos structures:	0	
Number of asbestos structures counted:	0	
Number of asbestos structures > 5 μm:	0	
Number of asbestos fibers and bundles $> 5 \mu m$:	0	
Number of PCM equivalent asbestos structures:	0	
Number of PCM equivalent asbestos fibers:	0	
Concentration of Asbestos (Chrysotile), f/cm ³ :	N/A	
Concentration of Asbestos (Amphibole), f/cm ³ :	N/A	
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	N/A	
Concentration of Asbestos (Chrysotile), Str/L:	N/A	
Concentration of Asbestos (Amphibole), Str/L:	N/A	
Lower 95% Confidence Limit (Chrysotile), Str/L:	N/A	
Upper 95% Confidence Limit (Chrysotile), Str/L:	N/A	
Lower 95% Confidence Limit (Amphibole), Str/L:	N/A	
Upper 95% Confidence Limit (Amphibole), Str/L:	N/A	

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers

Direct Transfer Transmission Electron Microscopy Method

Chelsea Saber EJ3 Order #: 3517293

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 25-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 30-Jan-2024

 Report Date:
 30-Jan-2024

HDOH Lahaina Community Air

Sample Number MFL-AM01-012024-AB

Air Volume, L:	3594.766	
Effective Filter Area, mm ² :	385.0	
Level of Analysis (Chrysotile):	CDQ	
Level of Analysis (Amphibole):	ADQ	
Magnification Used for Fiber Counting:	20,000	
Aspect Ratio for Fiber Definition:	5:1	
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132	
Number of GO's Examined:	10	
Analytical Sensitivity: f/Liter:	0.81136	
Analytical Sensitivity: f/cm3:	0.00081	
Number of primary asbestos structures:	0	
Number of asbestos structures counted:	0	
Number of asbestos structures $> 5 \mu m$:	0	
Number of asbestos fibers and bundles $> 5 \mu m$:	0	
Number of PCM equivalent asbestos structures:	0	
Number of PCM equivalent asbestos fibers:	0	
Concentration of Asbestos (Chrysotile), f/cm ³ :	< 0.00081	
Concentration of Asbestos (Amphibole), f/cm ³ :	< 0.00081	
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	< 0.00081	
Concentration of Asbestos (Chrysotile), Str/L:	< 0.81136	
Concentration of Asbestos (Amphibole), Str/L:	< 0.81136	
Lower 95% Confidence Limit (Chrysotile), Str/L:	0	
Upper 95% Confidence Limit (Chrysotile), Str/L:	3	
Lower 95% Confidence Limit (Amphibole), Str/L:	0	
Upper 95% Confidence Limit (Amphibole), Str/L:	3	

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers

Direct Transfer Transmission Electron Microscopy Method

Chelsea Saber EJ3 Order #: 3517293

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 25-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 30-Jan-2024

Report Date: 30-Jan-2024

HDOH Lahaina Community Air

Sample Number MFL-AM02-012024-AB

Air Volume, L:	4219.167	
Effective Filter Area, mm ² :	385.0	
Level of Analysis (Chrysotile):	CDQ	
Level of Analysis (Amphibole):	ADQ	
Magnification Used for Fiber Counting:	20,000	
Aspect Ratio for Fiber Definition:	5:1	
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132	
Number of GO's Examined:	10	
Analytical Sensitivity: f/Liter:	0.69129	
Analytical Sensitivity: f/cm3:	0.00069	
Number of primary asbestos structures:	0	
Number of asbestos structures counted:	0	
Number of asbestos structures $> 5 \mu m$:	0	
Number of asbestos fibers and bundles $> 5 \mu m$:	0	
Number of PCM equivalent asbestos structures:	0	
Number of PCM equivalent asbestos fibers:	0	
Concentration of Asbestos (Chrysotile), f/cm ³ :	< 0.00069	
Concentration of Asbestos (Amphibole), f/cm ³ :	< 0.00069	
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	< 0.00069	
Concentration of Asbestos (Chrysotile), Str/L:	< 0.69129	
Concentration of Asbestos (Amphibole), Str/L:	< 0.69129	
Lower 95% Confidence Limit (Chrysotile), Str/L:	0	
Upper 95% Confidence Limit (Chrysotile), Str/L:	2.6	
Lower 95% Confidence Limit (Amphibole), Str/L:	0	
Upper 95% Confidence Limit (Amphibole), Str/L:	2.6	

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> <u>ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers</u>

Direct Transfer Transmission Electron Microscopy Method

Chelsea Saber EJ3 Order #: 3517293

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 25-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 30-Jan-2024

 Report Date:
 30-Jan-2024

HDOH Lahaina Community Air

Sample Number MFL-AM03-012024-AB

Air Volume, L:	2306.578	
Effective Filter Area, mm ² :	385.0	
Level of Analysis (Chrysotile):	CDQ	
Level of Analysis (Amphibole):	ADQ	
Magnification Used for Fiber Counting:	20,000	
Aspect Ratio for Fiber Definition:	5:1	
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132	
Number of GO's Examined:	10	
Analytical Sensitivity: f/Liter:	1.26450	
Analytical Sensitivity: f/cm3:	0.00126	
Number of primary asbestos structures:	0	
Number of asbestos structures counted:	0	
Number of asbestos structures $> 5 \mu m$:	0	
Number of asbestos fibers and bundles $> 5 \mu m$:	0	
Number of PCM equivalent asbestos structures:	0	
Number of PCM equivalent asbestos fibers:	0	
Concentration of Asbestos (Chrysotile), f/cm ³ :	< 0.00126	
Concentration of Asbestos (Amphibole), f/cm ³ :	< 0.00126	
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	< 0.00126	
Concentration of Asbestos (Chrysotile), Str/L:	<1.2645	
Concentration of Asbestos (Amphibole), Str/L:	<1.2645	
Lower 95% Confidence Limit (Chrysotile), Str/L:	0	
Upper 95% Confidence Limit (Chrysotile), Str/L:	4.7	
Lower 95% Confidence Limit (Amphibole), Str/L:	0	
Upper 95% Confidence Limit (Amphibole), Str/L:	4.7	

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> <u>ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers</u>

Direct Transfer Transmission Electron Microscopy Method

Chelsea Saber EJ3 Order #: 3517293

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 25-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 30-Jan-2024

 Report Date:
 30-Jan-2024

HDOH Lahaina Community Air

Sample Number MFL-AM04-012024-AB

Air Volume, L:	2763.934	
Effective Filter Area, mm ² :	385.0	
Level of Analysis (Chrysotile):	CDQ	
Level of Analysis (Amphibole):	ADQ	
Magnification Used for Fiber Counting:	20,000	
Aspect Ratio for Fiber Definition:	5:1	
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132	
Number of GO's Examined:	10	
Analytical Sensitivity: f/Liter:	1.05526	
Analytical Sensitivity: f/cm3:	0.00106	
Number of primary asbestos structures:	0	
Number of asbestos structures counted:	0	
Number of asbestos structures $> 5 \mu m$:	0	
Number of asbestos fibers and bundles $> 5 \mu m$:	0	
Number of PCM equivalent asbestos structures:	0	
Number of PCM equivalent asbestos fibers:	0	
Concentration of Asbestos (Chrysotile), f/cm ³ :	< 0.00106	
Concentration of Asbestos (Amphibole), f/cm ³ :	< 0.00106	
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	< 0.00106	
Concentration of Asbestos (Chrysotile), Str/L:	<1.05526	
Concentration of Asbestos (Amphibole), Str/L:	<1.05526	
Lower 95% Confidence Limit (Chrysotile), Str/L:	0	
Upper 95% Confidence Limit (Chrysotile), Str/L:	3.9	
Lower 95% Confidence Limit (Amphibole), Str/L:	0	
Upper 95% Confidence Limit (Amphibole), Str/L:	3.9	

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> <u>ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers</u>

Direct Transfer Transmission Electron Microscopy Method

Chelsea Saber EJ3 Order #: 3517293

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 25-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 30-Jan-2024

 Report Date:
 30-Jan-2024

HDOH Lahaina Community Air

Sample Number MFL-FB01-012024-AB

Air Volume, L:	0	
Effective Filter Area, mm ² :	385.0	
Level of Analysis (Chrysotile):	CDQ	
	ADQ	
Level of Analysis (Amphibole):	20,000	
Magnification Used for Fiber Counting:		
Aspect Ratio for Fiber Definition:	5:1	
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132	
Number of GO's Examined:	10	
Analytical Sensitivity: f/Liter:	N/A	
Analytical Sensitivity: f/cm3:	N/A	
Number of primary asbestos structures:	0	
Number of asbestos structures counted:	0	
Number of asbestos structures $> 5 \mu m$:	0	
Number of asbestos fibers and bundles $> 5 \mu m$:	0	
Number of PCM equivalent asbestos structures:	0	
Number of PCM equivalent asbestos fibers:	0	
Concentration of Asbestos (Chrysotile), f/cm ³ :	N/A	
Concentration of Asbestos (Amphibole), f/cm ³ :	N/A	
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	N/A	
Concentration of Asbestos (Chrysotile), Str/L:	N/A	
Concentration of Asbestos (Amphibole), Str/L:	N/A	
Lower 95% Confidence Limit (Chrysotile), Str/L:	N/A	
Upper 95% Confidence Limit (Chrysotile), Str/L:	N/A	
Lower 95% Confidence Limit (Amphibole), Str/L:	N/A	
Upper 95% Confidence Limit (Amphibole), Str/L:	N/A	

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> <u>ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers</u>

Direct Transfer Transmission Electron Microscopy Method

Chelsea Saber EJ3 Order #: 3517293

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 25-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 30-Jan-2024

 Report Date:
 30-Jan-2024

HDOH Lahaina Community Air

Sample Number MFL-AM01-012124-AB

Air Volume, L:	6693.371	
Effective Filter Area, mm ² :	385.0	
Level of Analysis (Chrysotile):	CDQ	
Level of Analysis (Amphibole):	ADQ	
Magnification Used for Fiber Counting:	20,000	
Aspect Ratio for Fiber Definition:	5:1	
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132	
Number of GO's Examined:	10	
Analytical Sensitivity: f/Liter:	0.43575	
Analytical Sensitivity: f/cm3:	0.00044	
Number of primary asbestos structures:	0	
Number of asbestos structures counted:	0	
Number of asbestos structures > 5 μm:	0	
Number of asbestos fibers and bundles $> 5 \mu m$:	0	
Number of PCM equivalent asbestos structures:	0	
Number of PCM equivalent asbestos fibers:	0	
Concentration of Asbestos (Chrysotile), f/cm ³ :	< 0.00044	
Concentration of Asbestos (Amphibole), f/cm ³ :	< 0.00044	
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	< 0.00044	
Concentration of Asbestos (Chrysotile), Str/L:	< 0.43575	
Concentration of Asbestos (Amphibole), Str/L:	< 0.43575	
Lower 95% Confidence Limit (Chrysotile), Str/L:	0	
Upper 95% Confidence Limit (Chrysotile), Str/L:	1.6	
Lower 95% Confidence Limit (Amphibole), Str/L:	0	
Upper 95% Confidence Limit (Amphibole), Str/L:	1.6	
Opper 93% Confidence Limit (Amphibole), Str/L:	1.0	

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> <u>ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers</u>

Direct Transfer Transmission Electron Microscopy Method

Chelsea Saber EJ3 Order #: 3517293

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 25-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 30-Jan-2024

 Report Date:
 30-Jan-2024

HDOH Lahaina Community Air

Sample Number MFL-AM02-012124-AB

Air Volume, L:	6476.383	
Effective Filter Area, mm ² :	385.0	
Level of Analysis (Chrysotile):	CDQ	
Level of Analysis (Amphibole):	ADQ	
Magnification Used for Fiber Counting:	20,000	
Aspect Ratio for Fiber Definition:	5:1	
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132	
Number of GO's Examined:	10	
Analytical Sensitivity: f/Liter:	0.45035	
Analytical Sensitivity: f/cm3:	0.00045	
Number of primary asbestos structures:	0	
Number of asbestos structures counted:	0	
Number of asbestos structures $> 5 \mu m$:	0	
Number of asbestos fibers and bundles $> 5 \mu m$:	0	
Number of PCM equivalent asbestos structures:	0	
Number of PCM equivalent asbestos fibers:	0	
Concentration of Asbestos (Chrysotile), f/cm ³ :	< 0.00045	
Concentration of Asbestos (Amphibole), f/cm ³ :	< 0.00045	
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	< 0.00045	
Concentration of Asbestos (Chrysotile), Str/L:	< 0.45035	
Concentration of Asbestos (Amphibole), Str/L:	< 0.45035	
Lower 95% Confidence Limit (Chrysotile), Str/L:	0	
Upper 95% Confidence Limit (Chrysotile), Str/L:	1.7	
Lower 95% Confidence Limit (Amphibole), Str/L:	0	
Upper 95% Confidence Limit (Amphibole), Str/L:	1.7	

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

Report Date:

30-Jan-2024

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> <u>ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers</u>

Direct Transfer Transmission Electron Microscopy Method

 Chelsea Saber
 EJ3 Order #:
 3517293

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 25-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 30-Jan-2024

HDOH Lahaina Community Air

Sample Number MFL-AM03-012124-AB

Air Volume, L:	2423.07	
Effective Filter Area, mm ² :	385.0	
Level of Analysis (Chrysotile):	CDQ	
Level of Analysis (Amphibole):	ADQ	
Magnification Used for Fiber Counting:	20,000	
Aspect Ratio for Fiber Definition:	5:1	
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132	
Number of GO's Examined:	10	
Analytical Sensitivity: f/Liter:	1.20371	
Analytical Sensitivity: f/cm3:	0.00120	
Number of primary asbestos structures:	0	
Number of asbestos structures counted:	0	
Number of asbestos structures $> 5 \mu m$:	0	
Number of asbestos fibers and bundles $> 5 \mu m$:	0	
Number of PCM equivalent asbestos structures:	0	
Number of PCM equivalent asbestos fibers:	0	
Concentration of Asbestos (Chrysotile), f/cm ³ :	< 0.0012	
Concentration of Asbestos (Amphibole), f/cm ³ :	< 0.0012	
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	< 0.0012	
Concentration of Asbestos (Chrysotile), Str/L:	<1.20371	
Concentration of Asbestos (Amphibole), Str/L:	<1.20371	
Lower 95% Confidence Limit (Chrysotile), Str/L:	0	
Upper 95% Confidence Limit (Chrysotile), Str/L:	4.4	
Lower 95% Confidence Limit (Amphibole), Str/L:	0	
Upper 95% Confidence Limit (Amphibole), Str/L:	4.4	
1 - FF > 5 3 3		

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers

Direct Transfer Transmission Electron Microscopy Method

Chelsea Saber EJ3 Order #: 3517293

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 25-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 30-Jan-2024

 Report Date:
 30-Jan-2024

HDOH Lahaina Community Air

Sample Number MFL-AM04-012124-AB

Air Volume, L:	4805.041	
Effective Filter Area, mm ² :	385.0	
Level of Analysis (Chrysotile):	CDQ	
Level of Analysis (Amphibole):	ADQ	
Magnification Used for Fiber Counting:	20,000	
Aspect Ratio for Fiber Definition:	5:1	
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132	
Number of GO's Examined:	10	
Analytical Sensitivity: f/Liter:	0.60700	
Analytical Sensitivity: f/cm3:	0.00061	
Number of primary asbestos structures:	0	
Number of asbestos structures counted:	0	
Number of asbestos structures $> 5 \mu m$:	0	
Number of asbestos fibers and bundles $> 5 \mu m$:	0	
Number of PCM equivalent asbestos structures:	0	
Number of PCM equivalent asbestos fibers:	0	
Concentration of Asbestos (Chrysotile), f/cm ³ :	< 0.00061	
Concentration of Asbestos (Amphibole), f/cm ³ :	< 0.00061	
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	< 0.00061	
Concentration of Asbestos (Chrysotile), Str/L:	< 0.607	
Concentration of Asbestos (Amphibole), Str/L:	< 0.607	
Lower 95% Confidence Limit (Chrysotile), Str/L:	0	
Upper 95% Confidence Limit (Chrysotile), Str/L:	2.2	
Lower 95% Confidence Limit (Amphibole), Str/L:	0	
Upper 95% Confidence Limit (Amphibole), Str/L:	2.2	

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> <u>ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers</u>

Direct Transfer Transmission Electron Microscopy Method

Chelsea Saber EJ3 Order #: 3517293

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 25-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 30-Jan-2024

 Report Date:
 30-Jan-2024

HDOH Lahaina Community Air

Sample Number MFL-FB01-012124-AB

0	
385.0	
CDQ	
ADQ	
20,000	
5:1	
0.0132	
10	
N/A	
N/A	
0	
0	
0	
0	
0	
0	
N/A	
	385.0 CDQ ADQ 20,000 5:1 0.0132 10 N/A N/A 0 0 0 0 0 0 0 0 0 0 N/A N/A N/A N/A N/A N/A N/A N/A

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Stage 1 Data Verification Checklist – Asbestos

HDOH CAB – Ambient Community Air Sampling – Lahaina

Task Order No. 23141

Reviewed by:

Talaidh Isaacs 02/01/2024 and Shanna Vasser 02/02/2024

Laboratory: Eurofins Built Environment Testing – Houston, TX

Collection date(s): 1/18/2024 - 1/21/2024

Report No: 3517293

<u>v</u>	1.	Chain of custod	y (CoC)	documentation is present.
----------	----	-----------------	---------	---------------------------

- $\underline{\mathbf{v}}$ 2. Sample receipt condition information is present and acceptable.
- $\underline{\mathbf{v}}$ 3. Laboratory conducting the analysis is identified.
- \underline{V} 4. All samples submitted to the laboratory are accounted for.
- \underline{V} 5. Requested analytical methods were performed.
- \underline{V} 6. Analysis dates are provided.
- $\underline{\mathbf{v}}$ 7. Analyte results are provided.
- NA 8. Result qualifiers and definitions are provided.
- $\underline{\mathbf{v}}$ 9. Result units are reported.
- \underline{V} 10. Requested reporting limits are present.
- NA 11. Method detection limits are present.
- \underline{V} 12. Sample collection date and time are present.
- \underline{V} 13. No detections in field QC blanks (lot/media blanks, field blanks, etc).

Discrepancies: None

Notes: None.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> <u>ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers</u>

Direct Transfer Transmission Electron Microscopy Method

 Chelsea Saber
 EJ3 Order #:
 3520539_V1

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 29-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 1-Feb-2024

 Report Date:
 1-Feb-2024

HDOH Lahaina Community Air

Sample Number MFL-AM01-012224-AB

Air Volume, L:	5480.074
Effective Filter Area, mm ² :	385.0
Level of Analysis (Chrysotile):	CDQ
Level of Analysis (Amphibole):	ADQ
Magnification Used for Fiber Counting:	20,000
Aspect Ratio for Fiber Definition:	5:1
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132
Number of GO's Examined:	10
Analytical Sensitivity: f/Liter:	0.53223
Analytical Sensitivity: f/cm3:	0.00053
Number of primary asbestos structures:	0
Number of asbestos structures counted:	0
Number of asbestos structures $> 5 \mu m$:	0
Number of asbestos fibers and bundles $> 5 \mu m$:	0
Number of PCM equivalent asbestos structures:	0
Number of PCM equivalent asbestos fibers:	0
Concentration of Asbestos (Chrysotile), f/cm ³ :	< 0.00053
Concentration of Asbestos (Amphibole), f/cm ³ :	< 0.00053
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	< 0.00053
Concentration of Asbestos (Chrysotile), Str/L:	< 0.53223
Concentration of Asbestos (Amphibole), Str/L:	< 0.53223
Lower 95% Confidence Limit (Chrysotile), Str/L:	0
Upper 95% Confidence Limit (Chrysotile), Str/L:	2
Lower 95% Confidence Limit (Amphibole), Str/L:	0
Upper 95% Confidence Limit (Amphibole), Str/L:	2

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM) ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers

Direct Transfer Transmission Electron Microscopy Method

Chelsea Saber EJ3 Order #: 3520539 V1 **Tetra Tech Project #:** 103S864023206 1999 Harrison St. Ste. 500 Receipt Date: 29-Jan-2024 Oakland, CA 94612 Analysis Date: 1-Feb-2024 Report Date: 1-Feb-2024

HDOH Lahaina Community Air

Sample Number MFL-AM02-012224-AB

Air Volume, L:	1543.345
Effective Filter Area, mm ² :	385.0
Level of Analysis (Chrysotile):	CDQ
Level of Analysis (Amphibole):	ADQ
Magnification Used for Fiber Counting:	20,000
Aspect Ratio for Fiber Definition:	5:1
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132
Number of GO's Examined:	10
Analytical Sensitivity: f/Liter:	1.88983
Analytical Sensitivity: f/cm3:	0.00189
Number of primary asbestos structures:	0
Number of asbestos structures counted:	0
Number of asbestos structures > 5 μm:	0
Number of asbestos fibers and bundles $> 5 \mu m$:	0
Number of PCM equivalent asbestos structures:	0
Number of PCM equivalent asbestos fibers:	0
Concentration of Asbestos (Chrysotile), f/cm ³ :	< 0.00189
Concentration of Asbestos (Amphibole), f/cm ³ :	< 0.00189
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	< 0.00189
Concentration of Asbestos (Chrysotile), Str/L:	<1.88983
Concentration of Asbestos (Amphibole), Str/L:	<1.88983
Lower 95% Confidence Limit (Chrysotile), Str/L:	0
Upper 95% Confidence Limit (Chrysotile), Str/L:	7
Lower 95% Confidence Limit (Amphibole), Str/L:	0
Upper 95% Confidence Limit (Amphibole), Str/L:	7

Analyst: Taylor Smylie

Scott M. Ward, Ph.D.

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be sed to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> <u>ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers</u>

Direct Transfer Transmission Electron Microscopy Method

 Chelsea Saber
 EJ3 Order #:
 3520539_V1

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 29-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 1-Feb-2024

 Report Date:
 1-Feb-2024

HDOH Lahaina Community Air

Sample Number MFL-AM03-012224-AB

Air Volume, L:	2813.289
Effective Filter Area, mm ² :	385.0
Level of Analysis (Chrysotile):	CDQ
Level of Analysis (Amphibole):	ADQ
Magnification Used for Fiber Counting:	20,000
Aspect Ratio for Fiber Definition:	5:1
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132
Number of GO's Examined:	10
Analytical Sensitivity: f/Liter:	1.03675
Analytical Sensitivity: f/cm3:	0.00104
Number of primary asbestos structures:	0
Number of asbestos structures counted:	0
Number of asbestos structures > 5 μm:	0
Number of asbestos fibers and bundles $> 5 \mu m$:	0
Number of PCM equivalent asbestos structures:	0
Number of PCM equivalent asbestos fibers:	0
Concentration of Asbestos (Chrysotile), f/cm ³ :	< 0.00104
Concentration of Asbestos (Amphibole), f/cm ³ :	< 0.00104
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	< 0.00104
Concentration of Asbestos (Chrysotile), Str/L:	<1.03675
Concentration of Asbestos (Amphibole), Str/L:	<1.03675
Lower 95% Confidence Limit (Chrysotile), Str/L:	0
Upper 95% Confidence Limit (Chrysotile), Str/L:	3.8
Lower 95% Confidence Limit (Amphibole), Str/L:	0
Upper 95% Confidence Limit (Amphibole), Str/L:	3.8

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Directo

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM) ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers

Direct Transfer Transmission Electron Microscopy Method

Chelsea Saber EJ3 Order #: 3520539 V1 **Tetra Tech Project #:** 103S864023206 1999 Harrison St. Ste. 500 Receipt Date: 29-Jan-2024 Oakland, CA 94612 Analysis Date: 1-Feb-2024 1-Feb-2024 **Report Date:**

HDOH Lahaina Community Air

Sample Number MFL-AM04-012224-AB

Air Volume, L:	7468.56
Effective Filter Area, mm ² :	385.0
Level of Analysis (Chrysotile):	CDQ
Level of Analysis (Amphibole):	ADQ
Magnification Used for Fiber Counting:	20,000
Aspect Ratio for Fiber Definition:	5:1
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132
Number of GO's Examined:	10
Analytical Sensitivity: f/Liter:	0.39053
Analytical Sensitivity: f/cm3:	0.00039
Number of primary asbestos structures:	0
Number of asbestos structures counted:	0
Number of asbestos structures $> 5 \mu m$:	0
Number of asbestos fibers and bundles $> 5 \mu m$:	0
Number of PCM equivalent asbestos structures:	0
Number of PCM equivalent asbestos fibers:	0
Concentration of Asbestos (Chrysotile), f/cm ³ :	< 0.00039
Concentration of Asbestos (Amphibole), f/cm ³ :	< 0.00039
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	< 0.00039
Concentration of Asbestos (Chrysotile), Str/L:	< 0.39053
Concentration of Asbestos (Amphibole), Str/L:	< 0.39053
Lower 95% Confidence Limit (Chrysotile), Str/L:	0
Upper 95% Confidence Limit (Chrysotile), Str/L:	1.4
Lower 95% Confidence Limit (Amphibole), Str/L:	0
Upper 95% Confidence Limit (Amphibole), Str/L:	1.4

Analyst: Taylor Smylie

Scott M. Ward, Ph.D.

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be sed to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> <u>ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers</u>

Direct Transfer Transmission Electron Microscopy Method

 Chelsea Saber
 EJ3 Order #:
 3520539_V1

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 29-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 1-Feb-2024

 Report Date:
 1-Feb-2024

HDOH Lahaina Community Air

Sample Number MFL-FB01-012224-AB

Air Volume, L:	0
Effective Filter Area, mm ² :	385.0
Level of Analysis (Chrysotile):	CDQ
Level of Analysis (Amphibole):	ADQ
Magnification Used for Fiber Counting:	20,000
Aspect Ratio for Fiber Definition:	5:1
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132
Number of GO's Examined:	10
Analytical Sensitivity: f/Liter:	N/A
Analytical Sensitivity: f/cm3:	N/A
Number of primary asbestos structures:	0
Number of asbestos structures counted:	0
Number of asbestos structures $> 5 \mu m$:	0
Number of asbestos fibers and bundles $> 5 \mu m$:	0
Number of PCM equivalent asbestos structures:	0
Number of PCM equivalent asbestos fibers:	0
Concentration of Asbestos (Chrysotile), f/cm ³ :	N/A
Concentration of Asbestos (Amphibole), f/cm ³ :	N/A
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	N/A
Concentration of Asbestos (Chrysotile), Str/L:	N/A
Concentration of Asbestos (Amphibole), Str/L:	N/A
Lower 95% Confidence Limit (Chrysotile), Str/L:	N/A
Upper 95% Confidence Limit (Chrysotile), Str/L:	N/A
Lower 95% Confidence Limit (Amphibole), Str/L:	N/A
Upper 95% Confidence Limit (Amphibole), Str/L:	N/A

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM) ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers

Direct Transfer Transmission Electron Microscopy Method

Chelsea Saber EJ3 Order #: 3520539 V1 **Tetra Tech Project #:** 103S864023206 1999 Harrison St. Ste. 500 Receipt Date: 29-Jan-2024 Oakland, CA 94612 Analysis Date: 1-Feb-2024 1-Feb-2024 **Report Date:**

HDOH Lahaina Community Air

Sample Number MFL-AM01-012324-AB

Air Volume, L:	7373.341
Effective Filter Area, mm ² :	385.0
Level of Analysis (Chrysotile):	CDQ
Level of Analysis (Amphibole):	ADQ
Magnification Used for Fiber Counting:	20,000
Aspect Ratio for Fiber Definition:	5:1
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132
Number of GO's Examined:	10
Analytical Sensitivity: f/Liter:	0.39557
Analytical Sensitivity: f/cm3:	0.00040
Number of primary asbestos structures:	0
Number of asbestos structures counted:	0
Number of asbestos structures $> 5 \mu m$:	0
Number of asbestos fibers and bundles $> 5 \mu m$:	0
Number of PCM equivalent asbestos structures:	0
Number of PCM equivalent asbestos fibers:	0
Concentration of Asbestos (Chrysotile), f/cm ³ :	< 0.0004
Concentration of Asbestos (Amphibole), f/cm ³ :	< 0.0004
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	< 0.0004
Concentration of Asbestos (Chrysotile), Str/L:	< 0.39557
Concentration of Asbestos (Amphibole), Str/L:	< 0.39557
Lower 95% Confidence Limit (Chrysotile), Str/L:	0
Upper 95% Confidence Limit (Chrysotile), Str/L:	1.5
Lower 95% Confidence Limit (Amphibole), Str/L:	0
Upper 95% Confidence Limit (Amphibole), Str/L:	1.5

Analyst: Taylor Smylie

Scott M. Ward, Ph.D.

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be sed to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM) ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers

Direct Transfer Transmission Electron Microscopy Method

 Chelsea Saber
 EJ3 Order #:
 3520539_V1

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 29-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 1-Feb-2024

 Report Date:
 1-Feb-2024

HDOH Lahaina Community Air

Sample Number MFL-AM02-012324-AB

Air Volume, L:	1720.419
Effective Filter Area, mm ² :	385.0
Level of Analysis (Chrysotile):	CDQ
Level of Analysis (Amphibole):	ADQ
Magnification Used for Fiber Counting:	20,000
Aspect Ratio for Fiber Definition:	5:1
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132
Number of GO's Examined:	10
Analytical Sensitivity: f/Liter:	1.69532
Analytical Sensitivity: f/cm3:	0.00170
Number of primary asbestos structures:	0
Number of asbestos structures counted:	0
Number of asbestos structures > 5 μm:	0
Number of asbestos fibers and bundles $> 5 \mu m$:	0
Number of PCM equivalent asbestos structures:	0
Number of PCM equivalent asbestos fibers:	0
Concentration of Asbestos (Chrysotile), f/cm ³ :	< 0.0017
Concentration of Asbestos (Amphibole), f/cm ³ :	< 0.0017
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	< 0.0017
Concentration of Asbestos (Chrysotile), Str/L:	<1.69532
Concentration of Asbestos (Amphibole), Str/L:	<1.69532
Lower 95% Confidence Limit (Chrysotile), Str/L:	0
Upper 95% Confidence Limit (Chrysotile), Str/L:	6.3
Lower 95% Confidence Limit (Amphibole), Str/L:	0
Upper 95% Confidence Limit (Amphibole), Str/L:	6.3

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> <u>ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers</u>

Direct Transfer Transmission Electron Microscopy Method

 Chelsea Saber
 EJ3 Order #:
 3520539_V1

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 29-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 1-Feb-2024

 Report Date:
 1-Feb-2024

HDOH Lahaina Community Air

Sample Number MFL-AM03-012324-AB

Air Volume, L:	2944.234
Effective Filter Area, mm ² :	385.0
Level of Analysis (Chrysotile):	CDQ
Level of Analysis (Amphibole):	ADQ
Magnification Used for Fiber Counting:	20,000
Aspect Ratio for Fiber Definition:	5:1
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132
Number of GO's Examined:	10
Analytical Sensitivity: f/Liter:	0.99064
Analytical Sensitivity: f/cm3:	0.00099
Number of primary asbestos structures:	0
Number of asbestos structures counted:	0
Number of asbestos structures $> 5 \mu m$:	0
Number of asbestos fibers and bundles $> 5 \mu m$:	0
Number of PCM equivalent asbestos structures:	0
Number of PCM equivalent asbestos fibers:	0
Concentration of Asbestos (Chrysotile), f/cm ³ :	< 0.00099
Concentration of Asbestos (Amphibole), f/cm ³ :	< 0.00099
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	< 0.00099
Concentration of Asbestos (Chrysotile), Str/L:	< 0.99064
Concentration of Asbestos (Amphibole), Str/L:	< 0.99064
Lower 95% Confidence Limit (Chrysotile), Str/L:	0
Upper 95% Confidence Limit (Chrysotile), Str/L:	3.7
Lower 95% Confidence Limit (Amphibole), Str/L:	0
Upper 95% Confidence Limit (Amphibole), Str/L:	3.7

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM) ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers

Direct Transfer Transmission Electron Microscopy Method

Chelsea Saber EJ3 Order #: 3520539 V1 **Tetra Tech Project #:** 103S864023206 1999 Harrison St. Ste. 500 Receipt Date: 29-Jan-2024 Oakland, CA 94612 Analysis Date: 1-Feb-2024 Report Date: 1-Feb-2024

HDOH Lahaina Community Air

Sample Number MFL-AM04-012324-AB

Air Volume, L:	2636.072
Effective Filter Area, mm ² :	385.0
Level of Analysis (Chrysotile):	CDQ
Level of Analysis (Amphibole):	ADQ
Magnification Used for Fiber Counting:	20,000
Aspect Ratio for Fiber Definition:	5:1
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132
Number of GO's Examined:	10
Analytical Sensitivity: f/Liter:	1.10644
Analytical Sensitivity: f/cm3:	0.00111
Number of primary asbestos structures:	0
Number of asbestos structures counted:	0
Number of asbestos structures $> 5 \mu m$:	0
Number of asbestos fibers and bundles $> 5 \mu m$:	0
Number of PCM equivalent asbestos structures:	0
Number of PCM equivalent asbestos fibers:	0
Concentration of Asbestos (Chrysotile), f/cm ³ :	< 0.00111
Concentration of Asbestos (Amphibole), f/cm ³ :	< 0.00111
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	< 0.00111
Concentration of Asbestos (Chrysotile), Str/L:	<1.10644
Concentration of Asbestos (Amphibole), Str/L:	<1.10644
Lower 95% Confidence Limit (Chrysotile), Str/L:	0
Upper 95% Confidence Limit (Chrysotile), Str/L:	4.1
Lower 95% Confidence Limit (Amphibole), Str/L:	0
Upper 95% Confidence Limit (Amphibole), Str/L:	4.1

Analyst: Taylor Smylie

Scott M. Ward, Ph.D.

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be sed to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM) ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers Discot Transmission Electron Microscopy (Methods)

Direct Transfer Transmission Electron Microscopy Method

 Chelsea Saber
 EJ3 Order #:
 3520539_V1

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 29-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 1-Feb-2024

 Report Date:
 1-Feb-2024

HDOH Lahaina Community Air

Sample Number MFL-FB01-012324-AB

Air Volume, L:	0
Effective Filter Area, mm ² :	385.0
Level of Analysis (Chrysotile):	CDQ
Level of Analysis (Amphibole):	ADQ
Magnification Used for Fiber Counting:	20,000
Aspect Ratio for Fiber Definition:	5:1
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132
Number of GO's Examined:	10
Analytical Sensitivity: f/Liter:	N/A
Analytical Sensitivity: f/cm3:	N/A
Number of primary asbestos structures:	0
Number of asbestos structures counted:	0
Number of asbestos structures > 5 μm:	0
Number of asbestos fibers and bundles > 5 μm:	0
Number of PCM equivalent asbestos structures:	0
Number of PCM equivalent asbestos fibers:	0
Concentration of Asbestos (Chrysotile), f/cm ³ :	N/A
Concentration of Asbestos (Amphibole), f/cm ³ :	N/A
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	N/A
Concentration of Asbestos (Chrysotile), Str/L:	N/A
Concentration of Asbestos (Amphibole), Str/L:	N/A
Lower 95% Confidence Limit (Chrysotile), Str/L:	N/A
Upper 95% Confidence Limit (Chrysotile), Str/L:	N/A
Lower 95% Confidence Limit (Amphibole), Str/L:	N/A
Upper 95% Confidence Limit (Amphibole), Str/L:	N/A

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> <u>ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers</u>

Direct Transfer Transmission Electron Microscopy Method

 Chelsea Saber
 EJ3 Order #:
 3520539_V1

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 29-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 1-Feb-2024

 Report Date:
 1-Feb-2024

HDOH Lahaina Community Air

Sample Number MFL-AM01-012424-AB

Air Volume, L:	7166.648
Effective Filter Area, mm ² :	385.0
Level of Analysis (Chrysotile):	CDQ
Level of Analysis (Amphibole):	ADQ
Magnification Used for Fiber Counting:	20,000
Aspect Ratio for Fiber Definition:	5:1
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132
Number of GO's Examined:	10
Analytical Sensitivity: f/Liter:	0.40698
Analytical Sensitivity: f/cm3:	0.00041
Number of primary asbestos structures:	0
Number of asbestos structures counted:	0
Number of asbestos structures $> 5 \mu m$:	0
Number of asbestos fibers and bundles $> 5 \mu m$:	0
Number of PCM equivalent asbestos structures:	0
Number of PCM equivalent asbestos fibers:	0
Concentration of Asbestos (Chrysotile), f/cm ³ :	< 0.00041
Concentration of Asbestos (Amphibole), f/cm ³ :	< 0.00041
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	< 0.00041
Concentration of Asbestos (Chrysotile), Str/L:	< 0.40698
Concentration of Asbestos (Amphibole), Str/L:	< 0.40698
Lower 95% Confidence Limit (Chrysotile), Str/L:	0
Upper 95% Confidence Limit (Chrysotile), Str/L:	1.5
Lower 95% Confidence Limit (Amphibole), Str/L:	0
Upper 95% Confidence Limit (Amphibole), Str/L:	1.5

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> <u>ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers</u>

Direct Transfer Transmission Electron Microscopy Method

 Chelsea Saber
 EJ3 Order #:
 3520539_V1

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 29-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 1-Feb-2024

 Report Date:
 1-Feb-2024

HDOH Lahaina Community Air

Sample Number MFL-AM02-012424-AB

Air Volume, L:	5456.201
Effective Filter Area, mm ² :	385.0
Level of Analysis (Chrysotile):	CDQ
Level of Analysis (Amphibole):	ADQ
Magnification Used for Fiber Counting:	20,000
Aspect Ratio for Fiber Definition:	5:1
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132
Number of GO's Examined:	10
Analytical Sensitivity: f/Liter:	0.53456
Analytical Sensitivity: f/cm3:	0.00053
Number of primary asbestos structures:	0
Number of asbestos structures counted:	0
Number of asbestos structures > 5 μm:	0
Number of asbestos fibers and bundles $> 5 \mu m$:	0
Number of PCM equivalent asbestos structures:	0
Number of PCM equivalent asbestos fibers:	0
Concentration of Asbestos (Chrysotile), f/cm ³ :	< 0.00053
Concentration of Asbestos (Amphibole), f/cm ³ :	< 0.00053
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	< 0.00053
Concentration of Asbestos (Chrysotile), Str/L:	< 0.53456
Concentration of Asbestos (Amphibole), Str/L:	< 0.53456
Lower 95% Confidence Limit (Chrysotile), Str/L:	0
Upper 95% Confidence Limit (Chrysotile), Str/L:	2
Lower 95% Confidence Limit (Amphibole), Str/L:	0
Upper 95% Confidence Limit (Amphibole), Str/L:	2

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> <u>ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers</u>

Direct Transfer Transmission Electron Microscopy Method

 Chelsea Saber
 EJ3 Order #:
 3520539_V1

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 29-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 1-Feb-2024

 Report Date:
 1-Feb-2024

HDOH Lahaina Community Air

Sample Number MFL-AM03-012424-AB

Air Volume, L:	7392.814
Effective Filter Area, mm ² :	385.0
Level of Analysis (Chrysotile):	CDQ
Level of Analysis (Amphibole):	ADQ
Magnification Used for Fiber Counting:	20,000
Aspect Ratio for Fiber Definition:	5:1
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132
Number of GO's Examined:	10
Analytical Sensitivity: f/Liter:	0.39453
Analytical Sensitivity: f/cm3:	0.00039
Number of primary asbestos structures:	0
Number of asbestos structures counted:	0
Number of asbestos structures $> 5 \mu m$:	0
Number of asbestos fibers and bundles $> 5 \mu m$:	0
Number of PCM equivalent asbestos structures:	0
Number of PCM equivalent asbestos fibers:	0
Concentration of Asbestos (Chrysotile), f/cm ³ :	< 0.00039
Concentration of Asbestos (Amphibole), f/cm ³ :	< 0.00039
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	< 0.00039
Concentration of Asbestos (Chrysotile), Str/L:	< 0.39453
Concentration of Asbestos (Amphibole), Str/L:	< 0.39453
Lower 95% Confidence Limit (Chrysotile), Str/L:	0
Upper 95% Confidence Limit (Chrysotile), Str/L:	1.5
Lower 95% Confidence Limit (Amphibole), Str/L:	0
Upper 95% Confidence Limit (Amphibole), Str/L:	1.5

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

<u>Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM)</u> <u>ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers</u>

Direct Transfer Transmission Electron Microscopy Method

 Chelsea Saber
 EJ3 Order #:
 3520539_V1

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 29-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 1-Feb-2024

 Report Date:
 1-Feb-2024

HDOH Lahaina Community Air

Sample Number MFL-AM04-012424-AB

Air Volume, L:	6924.664
Effective Filter Area, mm ² :	385.0
Level of Analysis (Chrysotile):	CDQ
Level of Analysis (Amphibole):	ADQ
Magnification Used for Fiber Counting:	20,000
Aspect Ratio for Fiber Definition:	5:1
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132
Number of GO's Examined:	10
Analytical Sensitivity: f/Liter:	0.42120
Analytical Sensitivity: f/cm3:	0.00042
Number of primary asbestos structures:	0
Number of asbestos structures counted:	0
Number of asbestos structures $> 5 \mu m$:	0
Number of asbestos fibers and bundles $> 5 \mu m$:	0
Number of PCM equivalent asbestos structures:	0
Number of PCM equivalent asbestos fibers:	0
Concentration of Asbestos (Chrysotile), f/cm ³ :	< 0.00042
Concentration of Asbestos (Amphibole), f/cm ³ :	< 0.00042
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	< 0.00042
Concentration of Asbestos (Chrysotile), Str/L:	<0.4212
Concentration of Asbestos (Amphibole), Str/L:	< 0.4212
Lower 95% Confidence Limit (Chrysotile), Str/L:	0
Upper 95% Confidence Limit (Chrysotile), Str/L:	1.6
Lower 95% Confidence Limit (Amphibole), Str/L:	0
Upper 95% Confidence Limit (Amphibole), Str/L:	1.6

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Directo

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

6110 W. 34th Street, Houston, Texas 77092

Phone: (713) 290-0221 Fax: (713) 290-0248 www.EurofinsBuiltEnv.com

Airborne Asbestos Fiber Analysis by Transmission Electron Microscopy (TEM) ISO 10312:2019 - Ambient Air - Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy Method

 Chelsea Saber
 EJ3 Order #:
 3520539_V1

 Tetra Tech
 Project #:
 103S864023206

 1999 Harrison St, Ste. 500
 Receipt Date:
 29-Jan-2024

 Oakland, CA 94612
 Analysis Date:
 1-Feb-2024

 Report Date:
 1-Feb-2024

HDOH Lahaina Community Air

Sample Number MFL-FB01-012424-AB

Air Volume, L:	0
Effective Filter Area, mm ² :	385.0
Level of Analysis (Chrysotile):	CDQ
Level of Analysis (Amphibole):	ADQ
Magnification Used for Fiber Counting:	20,000
Aspect Ratio for Fiber Definition:	5:1
Mean Dimension of Grid Openings (GOs), mm ² :	0.0132
Number of GO's Examined:	10
Analytical Sensitivity: f/Liter:	N/A
Analytical Sensitivity: f/cm3:	N/A
Number of primary asbestos structures:	0
Number of asbestos structures counted:	0
Number of asbestos structures > 5 μm:	0
Number of asbestos fibers and bundles > 5 μm:	0
Number of PCM equivalent asbestos structures:	0
Number of PCM equivalent asbestos fibers:	0
Concentration of Asbestos (Chrysotile), f/cm ³ :	N/A
Concentration of Asbestos (Amphibole), f/cm ³ :	N/A
Concentration of PCME Asbestos (Chrysotile), f/cm ³ :	N/A
Concentration of Asbestos (Chrysotile), Str/L:	N/A
Concentration of Asbestos (Amphibole), Str/L:	N/A
Lower 95% Confidence Limit (Chrysotile), Str/L:	N/A
Upper 95% Confidence Limit (Chrysotile), Str/L:	N/A
Lower 95% Confidence Limit (Amphibole), Str/L:	N/A
Upper 95% Confidence Limit (Amphibole), Str/L:	N/A

Analyst: Taylor Smylie

Scott M. Ward, Ph.D. Lab Director

These results apply to the sample(s) as received. Eurofins J3 Resources, Inc. (EJ3) is not responsible for results reported in fibers or asbestos structures per cubic centimeter, which is dependent on volumes provided by non-laboratory personnel. This report is for the exclusive use of the addressed client and shall not be reproduced except in full, without written approval by EJ3. All samples received in good condition unless otherwise noted. This report shall not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Eastern Research Group 601 Keystone Park Drive Suite 700 Morrisville, NC 27560

February 06, 2024

Ms. Chelsea Saber Tetra Tech, Inc. 1777 Sentry Pkwy, Bldg 12 Blue Bell, PA 19422 Project Name: Lahaina fires

Dear Ms. Chelsea Saber,

This report contains the analytical results for the sample(s) received under chain(s) of custody by Eastern Research Group on 01/29/24 13:08.

Values below the MDL for QC results in this report are recorded as ND, however the actual values are reported in the accompanying Excel report with a "U" flag (Under the detection limit). The actual values are reported in AQS.

This test is accredited under the 2016 TNI Standard for Environmental Laboratories (FL DOH Certification # E87673). All analyses were performed as described in the US EPA-approved QAPP, under the contract for National Hazardous Air Pollutant Support (US EPA Contract No. 68HERH22D0002). This cover page is an integral part of this report, and any exceptions or comments are noted on the last page.

Release of the data contained in this data package and in the data submitted in the electronic data deliverable, has been authorized by the Program Manager, or the Program Manager's designee as verified by the following signature.

The issuance of the final Certificate of Analysis takes precedence over any previous Report. If you have any questions, please contact me at 919-468-7924.

Sincerely,

Julie Swift Program Manager julie.swift@erg.com

The information contained in this report and its attachment(s) are intended only for the use of the individual to whom it is addressed and may contain information that is privileged, confidential, or exempt from disclosure. If the reader of this message is not the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this report is strictly prohibited. If you have received this report in error, please notify julie.swift@erg.com and delete the report without retaining any copies.

NERG

CERTIFICATE OF ANALYSIS

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 02/06/24 11:01 **SUBMITTED:** 01/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

ANALYTICAL REPORT FOR SAMPLES

<u>SampleName</u>	<u>LabNumber</u>	<u>Matrix</u>	<u>Sampled</u>	Received
TetraTech Q9524445	4012928-01	Air	01/18/24 23:59	01/29/24 13:08
TetraTech Q9524444	4012928-02	Air	01/18/24 23:59	01/29/24 13:08
TetraTech Q9524463	4012928-03	Air	01/18/24 23:59	01/29/24 13:08
TetraTech Q9524462	4012928-04	Air	01/18/24 23:59	01/29/24 13:08
TetraTech Q9524460	4012928-05	Air	01/19/24 23:59	01/29/24 13:08
TetraTech Q9524459	4012928-06	Air	01/19/24 23:59	01/29/24 13:08
TetraTech Q9524458	4012928-07	Air	01/19/24 23:59	01/29/24 13:08
TetraTech Q9524457	4012928-08	Air	01/19/24 23:59	01/29/24 13:08
TetraTech Q9524455	4012928-09	Air	01/21/24 23:59	01/29/24 13:08
TetraTech Q9524454	4012928-10	Air	01/22/24 23:59	01/29/24 13:08
TetraTech Q9537214	4012928-11	Air	01/24/24 23:59	01/29/24 13:08
TetraTech Q9534268	4012928-12	Air	01/24/24 23:59	01/29/24 13:08
TetraTech Q9534267	4012928-13	Air	01/24/24 23:59	01/29/24 13:08
TetraTech Q9534265	4012928-14	Air	01/24/24 23:59	01/29/24 13:08
TetraTech Q9534257 FB	4012928-15	Air	01/24/24 00:00	01/29/24 13:08
TetraTech Q9524456	4012928-16	Air	01/20/24 23:59	01/29/24 13:08

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

TetraTech Q9524445

Matrix:

Air

Comments: MFL-AM01-011824-HM

Description:

Lab ID:

4012928-01

Sample Volume: 2111.33 m³

Filter ID:

Lahaina fires

FILE #: 4205.00.003.001

SUBMITTED: 01/29/24

AQS SITE CODE:

SITE CODE:

REPORTED: 02/06/24 11:01

Sampled: 01/18/24 23:59 **Received:** 01/29/24 13:08

Analysis Date: 02/01/24 19:55

	5	<u>Results</u>		MDL
<u>Analyte</u>	CAS Number	ng/m³ Air	<u>Flag</u>	ng/m³ Air
Antimony	7440-36-0	0.250	SL	0.0297
Arsenic	7440-38-2	1.36		0.00722
Barium	7440-39-3	8.19		0.825
Beryllium	7440-41-7	0.00536		0.00247
Cadmium	7440-43-9	0.0203	U	0.0611
Chromium	7440-47-3	1.42	U	1.70
Cobalt	7440-48-4	0.364		0.0336
Copper	7440-50-8	36.6		2.03
Lead	7439-92-1	1.93		0.165
Manganese	7439-96-5	7.67		1.46
Molybdenum	7439-98-7	1.64		0.277
Nickel	7440-02-0	0.844	QB-01	0.502
Selenium	7782-49-2	0.238	ப, QX	0.00690
Thallium	7440-28-0	0.00286	QB-01, QB-04	4.54E-4
Vanadium	7440-62-2	0.483		0.0408
Zinc	7440-66-6	83.8		59.2

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

Description:

Comments:

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

TetraTech Q9524444

Matrix:

Air

MFL-AM02-011824-HM

FILE #: 4205.00.003.001

REPORTED: 02/06/24 11:01

SUBMITTED: 01/29/24

AQS SITE CODE:

SITE CODE:

Lahaina fires

Sampled: 01/18/24 23:59

Received: 01/29/24 13:08

Analysis Date: 02/01/24 20:15

Inorganics by Compendium Method IO-3.5

4012928-02

Sample Volume: 2164.06 m³

	J	<u>MDL</u>		
<u>Analyte</u>	CAS Number	ng/m³ Air	<u>Flag</u>	ng/m³ Air
Antimony	7440-36-0	0.284	SL	0.0290
Arsenic	7440-38-2	2.26		0.00704
Barium	7440-39-3	5.99		0.804
Beryllium	7440-41-7	0.00644		0.00241
Cadmium	7440-43-9	0.0516	U	0.0596
Chromium	7440-47-3	2.39		1.66
Cobalt	7440-48-4	0.185		0.0328
Copper	7440-50-8	36.4		1.98
Lead	7439-92-1	2.40		0.161
Manganese	7439-96-5	6.43		1.42
Molybdenum	7439-98-7	1.40		0.270
Nickel	7440-02-0	0.753	QB-01	0.490
Selenium	7782-49-2	0.270	⊔, QX	0.00674
Thallium	7440-28-0	0.00135	QB-01, QB-04	4.43E-4
Vanadium	7440-62-2	0.595		0.0398
Zinc	7440-66-6	62.8		57.7

Lab ID:

Filter ID:

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

Description:

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

TetraTech Q9524463

Matrix: Air

Comments: MFL-AM03-011824-HM **AQS SITE CODE:**

FILE #: 4205.00.003.001

SUBMITTED: 01/29/24

REPORTED: 02/06/24 11:01

SITE CODE:

4012928-03 Sample Volume: 2059.037 m³

Filter ID:

Lab ID:

Lahaina fires

Sampled: 01/18/24 23:59 **Received:** 01/29/24 13:08

Analysis Date: 02/01/24 20:35

		<u>MDL</u>		
<u>Analyte</u>	CAS Number	ng/m³ Air	<u>Flag</u>	ng/m³ Air
Antimony	7440-36-0	0.102	SL	0.0305
Arsenic	7440-38-2	0.0957		0.00740
Barium	7440-39-3	2.20		0.845
Beryllium	7440-41-7	0.00647		0.00253
Cadmium	7440-43-9	0.0157	U	0.0627
Chromium	7440-47-3	1.20	U	1.75
Cobalt	7440-48-4	0.114		0.0345
Copper	7440-50-8	23.2		2.08
Lead	7439-92-1	0.263		0.169
Manganese	7439-96-5	2.51		1.49
Molybdenum	7439-98-7	1.35		0.284
Nickel	7440-02-0	0.608	QB-01	0.515
Selenium	7782-49-2	0.216	⊔, QX	0.00708
Thallium	7440-28-0	0.00113	QB-01, QB-04	4.65E-4
Vanadium	7440-62-2	0.275		0.0418
Zinc	7440-66-6	25.6	U	60.7

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

Description:

TetraTech Q9524462

Matrix: Air

Comments: MFL-AM04-011824-HM FILE #: 4205.00.003.001

REPORTED: 02/06/24 11:01

SUBMITTED: 01/29/24

AQS SITE CODE:

SITE CODE:

Lahaina fires

Sampled: 01/18/24 23:59

Received: 01/29/24 13:08

Analysis Date: 02/01/24 21:05

Inorganics by Compendium Method IO-3.5

4012928-04

Sample Volume: 1951.155 m³

	<u>Results</u>		<u>MDL</u>
CAS Number	ng/m³ Air	<u>Flag</u>	ng/m³ Air
7440-36-0	0.0792	SL	0.0322
7440-38-2	0.156		0.00781
7440-39-3	2.07		0.892
7440-41-7	0.00299		0.00267
7440-43-9	0.00671	U	0.0661
7440-47-3	0.846	U	1.84
7440-48-4	0.0723		0.0364
7440-50-8	35.1		2.19
7439-92-1	0.437		0.178
7439-96-5	2.24		1.58
7439-98-7	1.02		0.299
7440-02-0	0.350	U, QB-01	0.544
7782-49-2	0.198	⊔, QX	0.00747
7440-28-0	9.11E-4	QB-01, QB-04	4.91E-4
7440-62-2	0.216		0.0441
7440-66-6	19.6	U	64.0
	7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-48-4 7440-50-8 7439-92-1 7439-96-5 7439-98-7 7440-02-0 7782-49-2 7440-28-0 7440-62-2	CAS Number ng/m³ Air 7440-36-0 0.0792 7440-38-2 0.156 7440-39-3 2.07 7440-41-7 0.00299 7440-43-9 0.00671 7440-47-3 0.846 7440-48-4 0.0723 7440-50-8 35.1 7439-92-1 0.437 7439-96-5 2.24 7440-02-0 0.350 7782-49-2 0.198 7440-28-0 9.11E-4 7440-62-2 0.216	CAS Number ng/m³ Air Flag 7440-36-0 0.0792 SL 7440-38-2 0.156

Lab ID:

Filter ID:

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

TetraTech Q9524460

Matrix: Air

Description:

Comments: MFL-AM01-011924-HM FILE #: 4205.00.003.001

REPORTED: 02/06/24 11:01

SUBMITTED: 01/29/24

AQS SITE CODE:

SITE CODE:

Lahaina fires

Sampled: 01/19/24 23:59

Received: 01/29/24 13:08

Analysis Date: 02/01/24 21:20

Inorganics by Compendium Method IO-3.5

4012928-05

Sample Volume: 2065.013 m³

	Results			
<u>Analyte</u>	CAS Number	ng/m³ Air	<u>Flag</u>	ng/m³ Air
Antimony	7440-36-0	0.0714	SL	0.0304
Arsenic	7440-38-2	0.399		0.00738
Barium	7440-39-3	2.36		0.843
Beryllium	7440-41-7	0.00350		0.00252
Cadmium	7440-43-9	0.00632	U	0.0625
Chromium	7440-47-3	1.20	U	1.74
Cobalt	7440-48-4	0.143		0.0344
Copper	7440-50-8	28.7		2.07
Lead	7439-92-1	0.588		0.169
Manganese	7439-96-5	3.91		1.49
Molybdenum	7439-98-7	1.34		0.283
Nickel	7440-02-0	0.548	QB-01	0.514
Selenium	7782-49-2	0.140	⊔, QX	0.00706
Thallium	7440-28-0	6.44E-4	QB-01, QB-04	4.64E-4
Vanadium	7440-62-2	0.467		0.0417
Zinc	7440-66-6	26.0	U	60.5

Lab ID:

Filter ID:

Tetra Tech, Inc.

Description:

Matrix:

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

Air

Saber AQS SITE CODE:

TetraTech Q9524459 **Lab ID:** 4012928-06

Sample Volume: 2141.176 m³

Filter ID:

SITE CODE: Lahaina fires

Sampled: 01/19/24 23:59

FILE #: 4205.00.003.001

SUBMITTED: 01/29/24

REPORTED: 02/06/24 11:01

Received: 01/29/24 13:08

Analysis Date: 02/01/24 21:36

Comments: MFL-AM02-011924-HM

		<u>Results</u>		<u>MDL</u>
<u>Analyte</u>	CAS Number	ng/m³ Air	<u>Flag</u>	ng/m³ Air
Antimony	7440-36-0	0.202	SL	0.0293
Arsenic	7440-38-2	0.974		0.00712
Barium	7440-39-3	4.33		0.813
Beryllium	7440-41-7	0.00519		0.00243
Cadmium	7440-43-9	0.0151	U	0.0603
Chromium	7440-47-3	1.37	U	1.68
Cobalt	7440-48-4	0.165		0.0331
Copper	7440-50-8	23.8		2.00
Lead	7439-92-1	1.68		0.163
Manganese	7439-96-5	5.29		1.44
Molybdenum	7439-98-7	1.20		0.273
Nickel	7440-02-0	0.654	QB-01	0.495
Selenium	7782-49-2	0.157	⊔, QX	0.00681
Thallium	7440-28-0	7.42E-4	QB-01, QB-04	4.48E-4
Vanadium	7440-62-2	0.582		0.0402
Zinc	7440-66-6	44.1	U	58.4

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

Description:

Comments:

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

TetraTech Q9524458

Matrix:

Air

MFL-AM03-011924-HM

FILE #: 4205.00.003.001

REPORTED: 02/06/24 11:01

SUBMITTED: 01/29/24

AQS SITE CODE:

SITE CODE:

Lahaina fires

Sampled: 01/19/24 23:59

Received: 01/29/24 13:08

Analysis Date: 02/01/24 21:53

Inorganics by Compendium Method IO-3.5

4012928-07

Sample Volume: 2104.136 m³

		<u>Results</u>		<u>MDL</u>
<u>Analyte</u>	CAS Number	ng/m³ Air	<u>Flag</u>	ng/m³ Air
Antimony	7440-36-0	0.0852	SL	0.0298
Arsenic	7440-38-2	0.0650		0.00725
Barium	7440-39-3	2.01		0.827
Beryllium	7440-41-7	0.00558		0.00247
Cadmium	7440-43-9	0.00461	U	0.0613
Chromium	7440-47-3	1.04	U	1.71
Cobalt	7440-48-4	0.106		0.0337
Copper	7440-50-8	23.3		2.03
Lead	7439-92-1	0.318		0.165
Manganese	7439-96-5	2.48		1.46
Molybdenum	7439-98-7	1.35		0.278
Nickel	7440-02-0	0.879	QB-01	0.504
Selenium	7782-49-2	0.139	⊔, QX	0.00693
Thallium	7440-28-0	6.53E-4	QB-01, QB-04	4.55E-4
Vanadium	7440-62-2	0.341		0.0409
Zinc	7440-66-6	19.3	U	59.4

Lab ID:

Filter ID:

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

Description:

Matrix:

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX**:

SUBMITTED: 01/29/24

AQS SITE CODE:

FILE #: 4205.00.003.001

REPORTED: 02/06/24 11:01

SITE CODE: Lahaina fires

TetraTech Q9524457 **Lab ID:** 4012928-08

Sample Volume: 1956.076 m³

Received: 01/29/24 13:08

Sampled: 01/19/24 23:59

Filter ID: Analysis Date: 02/01/24 22:08

Comments: MFL-AM04-011924-HM

Air

		<u>Results</u>		<u>MDL</u>
<u>Analyte</u>	CAS Number	ng/m³ Air	<u>Flag</u>	ng/m³ Air
Antimony	7440-36-0	0.120	SL	0.0321
Arsenic	7440-38-2	0.160		0.00779
Barium	7440-39-3	1.90		0.890
Beryllium	7440-41-7	0.00270		0.00266
Cadmium	7440-43-9	0.00409	U	0.0660
Chromium	7440-47-3	0.992	U	1.84
Cobalt	7440-48-4	0.0708		0.0363
Copper	7440-50-8	30.4		2.19
Lead	7439-92-1	0.256		0.178
Manganese	7439-96-5	2.18		1.57
Molybdenum	7439-98-7	1.02		0.299
Nickel	7440-02-0	0.371	QB-01, U	0.542
Selenium	7782-49-2	0.146	ப, QX	0.00745
Thallium	7440-28-0	4.54E-4	QB-01, QB-04, U	4.90E-4
Vanadium	7440-62-2	0.276		0.0440
Zinc	7440-66-6	19.3	U	63.9

Tetra Tech, Inc.

Description:

Matrix:

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 02/06/24 11:01

SUBMITTED: 01/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

TetraTech Q9524455 Lab ID: 4012928-09

Sample Volume: 2063.266 m³

Sampled: 01/21/24 23:59 **Received:** 01/29/24 13:08

Filter ID:

Analysis Date: 02/01/24 22:25

Comments: MFL-AM01-012124-HM

Air

		<u>Results</u>		<u>MDL</u>
<u>Analyte</u>	CAS Number	ng/m³ Air	<u>Flag</u>	ng/m³ Air
Antimony	7440-36-0	0.0980	SL	0.0304
Arsenic	7440-38-2	0.501		0.00739
Barium	7440-39-3	1.65		0.844
Beryllium	7440-41-7	0.00195	U	0.00252
Cadmium	7440-43-9	0.00491	U	0.0625
Chromium	7440-47-3	0.811	U	1.74
Cobalt	7440-48-4	0.0638		0.0344
Copper	7440-50-8	30.4		2.07
Lead	7439-92-1	0.347		0.169
Manganese	7439-96-5	1.70		1.49
Molybdenum	7439-98-7	1.70		0.283
Nickel	7440-02-0	0.448	QB-01, U	0.514
Selenium	7782-49-2	0.349	⊔, QX	0.00707
Thallium	7440-28-0	7.12E-4	QB-01, QB-04	4.64E-4
Vanadium	7440-62-2	0.314		0.0417
Zinc	7440-66-6	21.4	U	60.6

Tetra Tech, Inc.

Description:

Matrix:

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

Air

FILE #: 4205.00.003.001

REPORTED: 02/06/24 11:01

SUBMITTED: 01/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

TetraTech Q9524454 **Lab ID:** 4012928-10

Sample Volume: 2104.339 m³

Sampled: 01/22/24 23:59 **Received:** 01/29/24 13:08

Filter ID:

Analysis Date: 02/02/24 00:02

Comments: MFL-AM01-012224-HM

		<u>Results</u>		<u>MDL</u>
<u>Analyte</u>	CAS Number	<u>ng/m³ Air</u>	<u>Flag</u>	ng/m³ Air
Antimony	7440-36-0	0.0894	SL	0.0298
Arsenic	7440-38-2	0.572		0.00724
Barium	7440-39-3	3.32		0.827
Beryllium	7440-41-7	0.00558		0.00247
Cadmium	7440-43-9	0.0118	U	0.0613
Chromium	7440-47-3	1.58	U	1.71
Cobalt	7440-48-4	0.274	QB-04	0.0337
Copper	7440-50-8	49.4		2.03
Lead	7439-92-1	1.26		0.165
Manganese	7439-96-5	6.41		1.46
Molybdenum	7439-98-7	1.86		0.278
Nickel	7440-02-0	1.05	QB-01	0.504
Selenium	7782-49-2	0.323	⊔, QX	0.00693
Thallium	7440-28-0	0.00102	QB-01, QB-04	4.55E-4
Vanadium	7440-62-2	0.786		0.0409
Zinc	7440-66-6	31.8	U	59.4

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

Description:

Comments:

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

TetraTech Q9537214

Matrix:

Air

MFL-AM01-012424-HM

FILE #: 4205.00.003.001

REPORTED: 02/06/24 11:01

SUBMITTED: 01/29/24

AQS SITE CODE:

SITE CODE:

Lahaina fires

Sampled: 01/24/24 23:59

Received: 01/29/24 13:08

Analysis Date: 02/01/24 17:03

Inorganics by Compendium Method IO-3.5

4012928-11

Sample Volume: 2028.249 m³

	<u>Results</u>			<u>MDL</u>	
<u>Analyte</u>	CAS Number	ng/m³ Air	<u>Flag</u>	ng/m³ Air	
Antimony	7440-36-0	0.112	SL	0.0310	
Arsenic	7440-38-2	2.41		0.00752	
Barium	7440-39-3	14.0	A-01	0.858	
Beryllium	7440-41-7	0.0238		0.00257	
Cadmium	7440-43-9	0.0378	U	0.0636	
Chromium	7440-47-3	5.24		1.77	
Cobalt	7440-48-4	1.38		0.0350	
Copper	7440-50-8	47.4	QM-07	2.11	
Lead	7439-92-1	11.8		0.172	
Manganese	7439-96-5	26.0	QM-07	1.52	
Molybdenum	7439-98-7	1.63		0.288	
Nickel	7440-02-0	6.47	QB-01, QM-07	0.523	
Selenium	7782-49-2	0.408	⊔, QX	0.00719	
Thallium	7440-28-0	0.00147	QB-01	4.72E-4	
Vanadium	7440-62-2	2.29		0.0424	
Zinc	7440-66-6	77.0		61.6	

Lab ID:

Filter ID:

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

Description:

Matrix:

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

Air

FILE #: 4205.00.003.001

REPORTED: 02/06/24 11:01

SUBMITTED: 01/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

TetraTech Q9534268 **Lab ID:** 4012928-12

Sample Volume: 2106.215 m³

Sampled: 01/24/24 23:59 Received: 01/29/24 13:08

Filter ID: Analysis Date: 02/02/24 00:21

Comments: MFL-AM02-012424-HM

		<u>Results</u>		<u>MDL</u>
<u>Analyte</u>	CAS Number	ng/m³ Air	<u>Flag</u>	ng/m³ Air
Antimony	7440-36-0	0.0349	SL	0.0298
Arsenic	7440-38-2	0.710		0.00724
Barium	7440-39-3	1.24		0.827
Beryllium	7440-41-7	0.00264		0.00247
Cadmium	7440-43-9	0.0191	U	0.0613
Chromium	7440-47-3	1.89		1.71
Cobalt	7440-48-4	0.104	QB-04	0.0337
Copper	7440-50-8	23.2		2.03
Lead	7439-92-1	1.25		0.165
Manganese	7439-96-5	1.80		1.46
Molybdenum	7439-98-7	0.445		0.277
Nickel	7440-02-0	0.450	QB-01, U	0.504
Selenium	7782-49-2	0.382	ப, QX	0.00692
Thallium	7440-28-0	5.78E-4	QB-01, QB-04	4.55E-4
Vanadium	7440-62-2	0.225		0.0409
Zinc	7440-66-6	28.6	U	59.3

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

Description:

Comments:

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

TetraTech Q9534267

Matrix:

Air

MFL-AM03-012424-HM

FILE #: 4205.00.003.001

REPORTED: 02/06/24 11:01

SUBMITTED: 01/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

Sampled: 01/24/24 23:59

Sample Volume: 2043.645 m³ **Received:** 01/29/24 13:08

Analysis Date: 02/02/24 00:39

Inorganics by Compendium Method IO-3.5

4012928-13

		<u>Results</u>		MDL
<u>Analyte</u>	CAS Number	ng/m³ Air	<u>Flag</u>	ng/m³ Air
Antimony	7440-36-0	0.0507	SL	0.0307
Arsenic	7440-38-2	0.165		0.00746
Barium	7440-39-3	2.52		0.852
Beryllium	7440-41-7	0.0104		0.00255
Cadmium	7440-43-9	0.00633	U	0.0631
Chromium	7440-47-3	3.07		1.76
Cobalt	7440-48-4	0.438	QB-04	0.0347
Copper	7440-50-8	8.74		2.09
Lead	7439-92-1	0.284		0.170
Manganese	7439-96-5	7.68		1.50
Molybdenum	7439-98-7	0.626		0.286
Nickel	7440-02-0	1.20	QB-01	0.519
Selenium	7782-49-2	0.368	⊔, QX	0.00713
Thallium	7440-28-0	6.57E-4	QB-01, QB-04	4.69E-4
Vanadium	7440-62-2	0.677		0.0421
Zinc	7440-66-6	18.7	U	61.1

Lab ID:

Filter ID:

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

Description:

Comments:

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

Matrix: Air

TetraTech Q9534265

MFL-AM04-012424-HM

FILE #: 4205.00.003.001

REPORTED: 02/06/24 11:01

SUBMITTED: 01/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

Sampled: 01/24/24 23:59

Received: 01/29/24 13:08

Analysis Date: 02/02/24 00:56

Inorganics by Compendium Method IO-3.5

4012928-14

Sample Volume: 1915.566 m³

		Results			
<u>Analyte</u>	CAS Number	ng/m³ Air	<u>Flag</u>	ng/m³ Air	
Antimony	7440-36-0	0.0627	SL	0.0328	
Arsenic	7440-38-2	0.874		0.00796	
Barium	7440-39-3	1.26		0.909	
Beryllium	7440-41-7	0.00239	U	0.00272	
Cadmium	7440-43-9	0.0244	U	0.0674	
Chromium	7440-47-3	2.11		1.88	
Cobalt	7440-48-4	0.110	QB-04	0.0370	
Copper	7440-50-8	27.3		2.23	
Lead	7439-92-1	0.860		0.182	
Manganese	7439-96-5	1.98		1.61	
Molybdenum	7439-98-7	0.979		0.305	
Nickel	7440-02-0	0.487	QB-01, U	0.554	
Selenium	7782-49-2	0.330	⊔, QX	0.00761	
Thallium	7440-28-0	4.81E-4	QB-01, QB-04, U	5.00E-4	
Vanadium	7440-62-2	0.265		0.0449	
Zinc	7440-66-6	22.1	U	65.2	

Lab ID:

Filter ID:

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 02/06/24 11:01

SUBMITTED: 01/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

Description: TetraTech Q9534257 FB

Lab ID: 4012928-15

Sampled: 01/24/24 00:00

Matrix: Air

Sample Volume: 2028.249 m³

Received: 01/29/24 13:08

Filter ID:

Analysis Date: 02/02/24 01:16

Comments: MFL-FB01-012424-HM Field Blank

	<u>Results</u>		<u>MDL</u>
CAS Number	ng/m³ Air	<u>Flag</u>	ng/m³ Air
7440-36-0	0.0124	SL, U	0.0310
7440-38-2	0.00495	U	0.00752
7440-39-3	0.472	U	0.858
7440-41-7	9.86E-4	U	0.00257
7440-43-9	0.00389	U	0.0636
7440-47-3	1.36	U	1.77
7440-48-4	0.0254	QB-04, U	0.0350
7440-50-8	0.533	U	2.11
7439-92-1	0.0638	U	0.172
7439-96-5	0.149	U	1.52
7439-98-7	0.196	U	0.288
7440-02-0	0.263	QB-01, U	0.523
7782-49-2	0.00396	⊔, QX, U	0.00719
7440-28-0	1.63E-4	QB-01, QB-04, U	4.72E-4
7440-62-2	0.0314	U	0.0424
7440-66-6	10.5	U	61.6
	7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-50-8 7439-92-1 7439-96-5 7439-98-7 7440-02-0 7782-49-2 7440-28-0 7440-62-2	CAS Number ng/m³ Air 7440-36-0 0.0124 7440-38-2 0.00495 7440-39-3 0.472 7440-41-7 9.86E-4 7440-43-9 0.00389 7440-47-3 1.36 7440-48-4 0.0254 7440-50-8 0.533 7439-92-1 0.0638 7439-98-7 0.196 7440-02-0 0.263 7782-49-2 0.00396 7440-28-0 1.63E-4 7440-62-2 0.0314	CAS Number ng/m³ Air Flag 7440-36-0 0.0124 SL, U 7440-38-2 0.00495 U 7440-39-3 0.472 U 7440-41-7 9.86E-4 U 7440-43-9 0.00389 U 7440-47-3 1.36 U 7440-48-4 0.0254 QB-04, U 7440-50-8 0.533 U 7439-92-1 0.0638 U 7439-96-5 0.149 U 7440-02-0 0.263 QB-01, U 7782-49-2 0.00396 LJ, QX, U 7440-28-0 1.63E-4 QB-01, QB-04, U 7440-62-2 0.0314 U

Tetra Tech, Inc.

Description:

Matrix:

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

Air

FILE #: 4205.00.003.001

REPORTED: 02/06/24 11:01

SUBMITTED: 01/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

TetraTech Q9524456 **Lab ID:** 4012928-16

Sampled: 01/20/24 23:59

Sample Volume: 2099.095 m³

Received: 01/29/24 13:08

Filter ID:

Analysis Date: 02/02/24 01:32

Comments: MFL-AM01-012024-HM - Sample omitted from original shipment by error, received

		<u>Results</u>						
<u>Analyte</u>	CAS Number	ng/m³ Air	<u>Flag</u>	ng/m³ Air				
Antimony	7440-36-0	0.0590	SL	0.0299				
Arsenic	7440-38-2	0.378		0.00726				
Barium	7440-39-3	1.88		0.829				
Beryllium	7440-41-7	0.00225	U	0.00248				
Cadmium	7440-43-9	0.00557	U	0.0615				
Chromium	7440-47-3	0.904	U	1.71				
Cobalt	7440-48-4	0.0876	QB-04	0.0338				
Copper	7440-50-8	27.5		2.04				
Lead	7439-92-1	0.270		0.166				
Manganese	7439-96-5	2.37		1.46				
Molybdenum	7439-98-7	1.43		0.278				
Nickel	7440-02-0	0.365	QB-01, U	0.505				
Selenium	7782-49-2	0.193	⊔, QX	0.00694				
Thallium	7440-28-0	4.85E-4	QB-01, QB-04	4.57E-4				
Vanadium	7440-62-2	0.283		0.0410				
Zinc	7440-66-6	18.0	U	59.5				

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 02/06/24 11:01

SUBMITTED: 01/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

Analyte	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
norganics by Compendium Mo Batch 2402002 - B4B0101	ethod IO-3	.5 - Qual	lity Contro	ol						
Calibration Blank (2402002-CCI	31)			Prep	ared & A	nalyzed:	02/01/24			
Antimony	0.994		ng/l	•						
Arsenic	2.36		ng/l							
Barium	2.67		ng/l							
Beryllium	0.231		ng/l							
Cadmium	0.294		ng/l							
Chromium	2.83		ng/l							
Cobalt	0.637		ng/l							
Copper	94.6		ng/l							
Lead	4.20		ng/l							
Manganese	9.92		ng/l							
Molybdenum	13.1		ng/l							
Nickel	0.498		ng/l							
Selenium	-1.71		ng/l							IJ, QX, U
Thallium	0.745		ng/l							
Vanadium	50.3		ng/l							
Zinc	-30.5		ng/l							U
Calibration Blank (2402002-CCI	32)			Prep	oared & A	nalyzed:	02/01/24			
Antimony	0.471		ng/l							
Arsenic	5.98		ng/l							
Barium	2.05		ng/l							
Beryllium	0.0503		ng/l							
Cadmium	0.238		ng/l							
Chromium	0.531		ng/l							
Cobalt	0.250		ng/l							
Copper	64.0		ng/l							
Lead	3.16		ng/l							
Manganese	4.59		ng/l							
Molybdenum	3.75		ng/l							
Nickel	0.346		ng/l							
Selenium	10.3		ng/l							IJ, QX
Thallium	0.610		ng/l							
Vanadium	46.1		ng/l							
Zinc	-33.0		ng/l							U
Calibration Blank (2402002-CCI	33)			Prep	pared & A	nalyzed:	02/01/24			
Antimony	4.02		ng/l							
Arsenic	3.84		ng/l							
Barium	37.4		ng/l							
Beryllium	0.753		ng/l							

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX**:

FILE #: 4205.00.003.001

REPORTED: 02/06/24 11:01

SUBMITTED: 01/29/24

AQS SITE CODE:

Source

Spike

SITE CODE: Lahaina fires

%REC

RPD

nalyte	Result	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
norganics by Compe Batch 2402002 - B4B01	ndium Method IO-3.	5 - Quality	Contr	ol						
Calibration Blank (240				Prepa	ared & A	nalyzed:	02/01/24			
Cadmium	2.91		ng/l	•		•				
Chromium	37.8		ng/l							
Cobalt	8.52		ng/l							
Copper	456		ng/l							
Lead	45.4		ng/l							
Manganese	86.2		ng/l							
Molybdenum	22.7		ng/l							
, Nickel	20.5		ng/l							
Selenium	6.85		ng/l							⊔, QX
Thallium	3.19		ng/l							QB-04
Vanadium	59.4		ng/l							
Zinc	159		ng/l							
Calibration Blank (240	02002-CCB4)		J.	Prepa	ared: 02/	01/24 A	nalyzed:	02/02/24	1	
Antimony	8.77		ng/l	-			-			
Arsenic	12.0		ng/l							
Barium	94.2		ng/l							
Beryllium	2.81		ng/l							
, Cadmium	7.23		ng/l							
Chromium	98.5		ng/l							
Cobalt	26.4		ng/l							QB-04
Copper	1220		ng/l							-
Lead	144		ng/l							
Manganese	236		ng/l							
Molybdenum	65.5		ng/l							
, Nickel	64.5		ng/l							
Selenium	17.3		ng/l							⊔, QX
Thallium	2.43		ng/l							QB-04
Vanadium	60.7		ng/l							•
Zinc	538		ng/l							
Calibration Check (24	02002-CCV1)			Prepa	ared & A	nalyzed:	02/01/24			
Antimony	20400		ng/l	20000		102	90-110			
Arsenic	20100		ng/l	20000		101	90-110			
Barium	209000		ng/l	200000		104	90-110			
Beryllium	5270		ng/l	5000.0		105	90-110			
, Cadmium	20200		ng/l	20000		101	90-110			
Chromium	253000		ng/l	240000		106	90-110			
Cobalt	49400		ng/l	50000		98.9	90-110			
Copper	1.99E6		ng/l	2.0000E6		99.6	90-110			

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 02/06/24 11:01

SUBMITTED: 01/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

Analyte	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
norganics by Compendiu	m Method IO-3.	5 - Qual	lity Contr	ol						
Batch 2402002 - B4B0101										
Calibration Check (240200	2-CCV1) Contin			Prep	ared & A	nalyzed:	02/01/24			
Lead	200000		ng/l	200000		100	90-110			
Manganese	492000		ng/l	500000		98.4	90-110			
Molybdenum	49900		ng/l	50000		99.8	90-110			
Nickel	119000		ng/l	120000		99.1	90-110			
Selenium	20800		ng/l	20000		104	90-110			IJ, QX
Thallium	505		ng/l	500.00		101	90-110			
Vanadium	20600		ng/l	20000		103	90-110			
Zinc	524000		ng/l	500000		105	90-110			
Calibration Check (240200	2-CCV2)			Prep	ared & A		02/01/24			
Antimony	20300		ng/l	20000		102	90-110			
Arsenic	20000		ng/l	20000		100	90-110			
Barium	211000		ng/l	200000		106	90-110			
Beryllium	5000		ng/l	5000.0		100	90-110			
Cadmium	20100		ng/l	20000		101	90-110			
Chromium	246000		ng/l	240000		102	90-110			
Cobalt	48200		ng/l	50000		96.4	90-110			
Copper	1.96E6		ng/l	2.0000E6		98.1	90-110			
Lead	200000		ng/l	200000		99.9	90-110			
Manganese	485000		ng/l	500000		97.0	90-110			
Molybdenum	49800		ng/l	50000		99.7	90-110			
Nickel	116000		ng/l	120000		96.9	90-110			
Selenium	21000		ng/l	20000		105	90-110			IJ, QX
Thallium	493		ng/l	500.00		98.7	90-110			
Vanadium	20700		ng/l	20000		104	90-110			
Zinc	523000		ng/l	500000		105	90-110			
Calibration Check (240200	2-CCV3)			-	ared & A		02/01/24			
Antimony	20200	·	ng/l	20000		101	90-110	_		
Arsenic	19700		ng/l	20000		98.4	90-110			
Barium	208000		ng/l	200000		104	90-110			
Beryllium	4560		ng/l	5000.0		91.3	90-110			
Cadmium	19900		ng/l	20000		99.3	90-110			
Chromium	258000		ng/l	240000		107	90-110			
Cobalt	47500		ng/l	50000		94.9	90-110			
Copper	1.94E6		ng/l	2.0000E6		96.9	90-110			
Lead	198000		ng/l	200000		99.2	90-110			
Manganese	488000		ng/l	500000		97.5	90-110			
Molybdenum	49200		ng/l	50000		98.3	90-110			
Nickel	115000		ng/l	120000		95.6	90-110			

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 02/06/24 11:01

SUBMITTED: 01/29/24

AQS SITE CODE:

Source

Spike

SITE CODE: Lahaina fires

%REC

RPD

nalyte	Result	PQL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
norganics by Compe Batch 2402002 - B4B0	endium Method IO-3.	.5 - Qual	ity Contı	rol						
Calibration Check (24				Pren	ared & Ar	nalvzed	: 02/01/24			
Selenium	20500		ng/l	20000	4.04 6.71	103	90-110			⊔, QX
Thallium	492		ng/l	500.00		98.4	90-110			Δ, ζ.
Vanadium	20800		ng/l	20000		104	90-110			
Zinc	520000		ng/l	500000		104	90-110			
Calibration Check (24			119/1		ared: 02/		Analyzed:	02/02/24		
Antimony	19900		ng/l	20000	urcu. 02/	99.6	90-110	02/02/21		
Arsenic	19700		ng/l	20000		98.3	90-110			
Barium	204000		ng/l	20000		102	90-110			
Beryllium	5060		ng/l	5000.0		101	90-110			
Cadmium	19800		ng/l	20000		99.1	90-110			
Chromium	255000		ng/l	240000		106	90-110			
Cobalt	47100		ng/l	50000		94.3	90-110			
Copper	1.94E6		ng/l	2.0000E6		97.2	90-110			
Lead	197000		ng/l	200000		98.7	90-110			
Manganese	486000		ng/l	500000		97.2	90-110			
Molybdenum	48800		ng/l	50000		97.6	90-110			
Nickel	114000		ng/l	120000		95.1	90-110			
Selenium	20300		ng/l	20000		102	90-110			⊔, QX
Thallium	477		ng/l	500.00		95.3	90-110			□ ,
Vanadium	20600		ng/l	20000		103	90-110			
Zinc	518000		ng/l	500000		104	90-110			
High Cal Check (2402			119/1		arad & Ar		: 02/01/24			
Antimony	40700		ng/l	40000	aica & Ai	102	95-105			
Arsenic	40100		٥.	40000		100	95-105			
Barium	410000		ng/l	40000		102	95-105			
	10300		ng/l	10000		103	95-105 95-105			
Beryllium Cadmium	40100		ng/l	40000		100	95-105			
Chromium	479000		ng/l ng/l	480000		99.9	95-105			
Cobalt	98100		ng/l	100000		98.1	95-105			
Copper	3.91E6		ng/l	4.0000E6		97.7	95-105 95-105			
Lead	401000		ng/l	400000		100	95-105			
Manganese	995000		ng/l	1.0000E6		99.5	95-105 95-105			
Molybdenum	100000		ng/l	1000000		100	95-105			
Mickel	235000		ng/l	240000		97.8	95-105 95-105			
Nickei Selenium	41000		٥.	40000		103	95-105 95-105			11.00
Seienium Thallium	1000		ng/l	1000.0		100	95-105 95-105			ப, QX
rnailium Vanadium	41200		ng/l	40000		103	95-105 95-105			
			ng/l			103				
Zinc	1.02E6		ng/l	1.0000E6		102	95-105			

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 02/06/24 11:01

SUBMITTED: 01/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

Analyte	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Inorganics by Compendium Me	ethod IO-3	.5 - Qual	ity Contr	ol	_	_	-		_	
Batch 2402002 - B4B0101		_								
Initial Cal Blank (2402002-ICB1	L)			Prep	ared & A	nalyzed:	02/01/24			
Antimony	1.08		ng/l							
Arsenic	0.708		ng/l							
Barium	3.32		ng/l							
Beryllium	0.366		ng/l							
Cadmium	0.309		ng/l							
Chromium	3.13		ng/l							
Cobalt	0.510		ng/l							
Copper	143		ng/l							
Lead	5.16		ng/l							
Manganese	13.3		ng/l							
Molybdenum	15.6		ng/l							
Nickel	0.407		ng/l							
Selenium	-4.51		ng/l							IJ, QX, U
Thallium	1.15		ng/l							
Vanadium	59.5		ng/l							
Zinc	-10.6		ng/l							U
Initial Cal Check (2402002-ICV)	1)			Prep	ared & A	nalyzed:	02/01/24			
Antimony	20400		ng/l	20000		102	90-110			
Arsenic	20300		ng/l	20000		101	90-110			
Barium	205000		ng/l	200000		103	90-110			
Beryllium	4700		ng/l	5000.0		94.0	90-110			
Cadmium	21200		ng/l	20000		106	90-110			
Chromium	253000		ng/l	240000		105	90-110			
Cobalt	50600		ng/l	50000		101	90-110			
Copper	2.03E6		ng/l	2.0000E6		101	90-110			
Lead	201000		ng/l	200000		100	90-110			
Manganese	496000		ng/l	500000		99.2	90-110			
Molybdenum	51200		ng/l	50000		102	90-110			
Nickel	121000		ng/l	120000		101	90-110			
Selenium	21000		ng/l	20000		105	90-110			⊔, QX
Thallium	512		ng/l	500.00		102	90-110			
Vanadium	21100		ng/l	20000		106	90-110			
Zinc	543000		ng/l	500000		109	90-110			
Interference Check A (2402002	-IFA1)		-	Prep	ared & A	nalyzed:	02/01/24			
Antimony	0.00		ng/l	<u> </u>		•	80-120			U
Arsenic	0.00		ng/l				80-120			U
Barium	0.00		ng/l				80-120			U
Beryllium	0.00		ng/l				80-120			U

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX**:

FILE #: 4205.00.003.001

REPORTED: 02/06/24 11:01

SUBMITTED: 01/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

Analyte	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
norganics by Compend	ium Method IO-3	3.5 - Qua	lity Contro	 ol						
Batch 2402002 - B4B0101		_	-							
Interference Check A (24	402002-IFA1) Coi			Prep	ared & A	nalyzed:	02/01/24			
Cadmium	0.00		ng/l				80-120			U
Chromium	0.00		ng/l				80-120			U
Cobalt	0.00		ng/l				80-120			U
Copper	0.00		ng/l				80-120			U
Lead	0.00		ng/l				80-120			U
Manganese	0.00		ng/l				80-120			U
Molybdenum	302000		ng/l	300000		101	80-120			
Nickel	0.00		ng/l				80-120			U
Selenium	0.00		ng/l				80-120			니, QX, U
Thallium	0.00		ng/l				80-120			U
Vanadium	0.00		ng/l				80-120			U
Zinc	0.00		ng/l				80-120			U
Interference Check B (24	402002-IFB1)			Prep	ared & A	nalyzed:	02/01/24			
Antimony	20900		ng/l	20000		105	80-120			
Arsenic	20700		ng/l	20000		104	80-120			
Barium	211000		ng/l	200000		106	80-120			
Beryllium	4430		ng/l	5000.0		88.6	80-120			
Cadmium	19800		ng/l	20000		99.1	80-120			
Chromium	238000		ng/l	240000		99.1	80-120			
Cobalt	48600		ng/l	50000		97.1	80-120			
Copper	1.89E6		ng/l	2.0000E6		94.5	80-120			
Lead	207000		ng/l	200000		104	80-120			
Manganese	505000		ng/l	500000		101	80-120			
Molybdenum	355000		ng/l	350000		102	80-120			
Nickel	113000		ng/l	120000		94.3	80-120			
Selenium	20200		ng/l	20000		101	80-120			ப, QX
Thallium	516		ng/l	500.00		103	80-120			
Vanadium	19800		ng/l	20000		99.1	80-120			
Zinc	495000		ng/l	500000		99.1	80-120			
Batch B4B0101 - ICP-MS E	extraction									
Blank (B4B0101-BLK1)					ared & A	nalyzed:	02/01/24			
Antimony	ND	0.0386	ng/m³ Air							SL, U
Arsenic	ND	0.00937	ng/m³ Air							U
Barium	ND	1.07	ng/m³ Air							U
Beryllium	ND	0.00320	ng/m³ Air							U
Cadmium	ND	0.0793	ng/m³ Air							U
Chromium	ND	2.21	ng/m³ Air							U
Cobalt	ND	0.0436	ng/m³ Air							U

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 02/06/24 11:01

SUBMITTED: 01/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

Analyte	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes				
Inorganics by Compendium Metho	od IO-3	3.5 - Qua	lity Contro)I										
Batch B4B0101 - ICP-MS Extraction	Batch B4B0101 - ICP-MS Extraction													
Blank (B4B0101-BLK1) Continued				Prep	ared & A	nalyzed:	02/01/24							
Copper	ND	2.63	ng/m³ Air			,	, - ,			U				
Lead	ND	0.214	ng/m³ Air							U				
Manganese	ND	1.89	ng/m³ Air							U				
Molybdenum	ND	0.359	ng/m³ Air							Ü				
Nickel	ND	0.652	ng/m³ Air							QB-01, U				
Selenium	ND	0.00896	ng/m³ Air							IJ, QX, U				
Thallium	ND	5.89E-4	ng/m³ Air							QB-01, U				
Vanadium	ND	0.0529	ng/m³ Air							U				
Zinc	ND	76.8	ng/m³ Air							U				
LCS (B4B0101-BS1)		***	J, 7	Pron	ared & A	nalvzed.	02/01/24							
LCS (B4B0101-BS1) Prepared & Analyzed: 02/01/24 Antimony 0.713 0.0386 ng/m³ Air 1.3829 51.6 80-120 SL														
Arsenic	2.77	0.0380	ng/m³ Air			100	80-120			JL				
Barium	29.2	1.07	ng/m³ Air			105	80-120							
Beryllium	1.34	0.00320	٥.	1.3829		96.7	80-120							
Cadmium	1.34	0.00320	ng/m³ Air			101	80-120 80-120							
Chromium	17.0	2.21	٥.	13.829		123	80-120							
Cobalt	1.38	0.0436	5,			99.7	80-120							
Copper	29.8	2.63	ng/m³ Air			108	80-120							
Lead	29.8 14.0	0.214	ng/m³ Air			101	80-120							
Manganese	8.83	1.89	ng/m³ Air			106	80-120							
Molybdenum	1.65	0.359	ng/m³ Air			120	80-120							
Nickel	3.00	0.652	ng/m³ Air			109	80-120			QB-01				
Selenium	2.83	0.00896	ng/m³ Air			102	80-120			LJ, QX				
Thallium	0.136	5.89E-4	ng/m³ Air			98.2	80-120			QB-01				
Vanadium	2.89	0.0529	ng/m³ Air			104	80-120			4- VI				
Zinc	138	76.8	ng/m³ Air			166	80-120							
Duplicate (B4B0101-DUP1)			12928-11		ared & ^		02/01/24							
Antimony	0.136	0.0310	ng/m³ Air	riep	0.112	uryzcu:	02/01/24	19.7	10	SL				
Arsenic	2.60	0.0310	ng/m³ Air ng/m³ Air		2.41			19.7 7.48	10	JL				
Barium	2.60 14.2	0.00752	ng/m³ Air ng/m³ Air		2.41 14.0			7. 4 8 1.36	10					
Barium Beryllium	0.0241	0.858	ng/m³ Air ng/m³ Air		0.0238			1.36	10 10					
Cadmium	0.0241 ND	0.00257	ng/m³ Air ng/m³ Air		0.0238 ND			1.37	10	U				
Chromium	טא 5.31	1.77	ng/m³ Air ng/m³ Air		5.24			1.36	10	U				
Cobalt	1.43	0.0350	ng/m³ Air ng/m³ Air		5.2 4 1.38			3.52	10					
Copper	43.5	2.11	ng/m³ Air ng/m³ Air		1.38 47.4			3.52 8.61	10					
Copper Lead	43.5 12.5	2.11 0.172	5,		47.4 11.8			5.26	10 10					
	12.5 26.4	0.172 1.52	ng/m³ Air ng/m³ Air		11.8 26.0			5.26 1.64	10 10					
Manganese Molyhdenum	26. 4 1.72	0.288	5,		26.0 1.63			5.71	10 10					
Molybdenum	1./2	U.200	ng/m³ Air		1.03			J./1	10					

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 02/06/24 11:01

SUBMITTED: 01/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

Analyte	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
norganics by Compendium Mo		3.5 - Qua	lity Contro	ol						
Batch B4B0101 - ICP-MS Extraction				-			02/04/23			
Duplicate (B4B0101-DUP1) Con			12928-11	Prep	ared & A	nalyzed:	02/01/24			
Nickel	6.58	0.523	ng/m³ Air		6.47			1.73	10	QB-01
Selenium	0.429	0.00719	ng/m³ Air		0.408			4.90	10	IJ, QX
Thallium	0.00150	4.72E-4	ng/m³ Air		0.00147			2.49	10	QB-01
Vanadium	2.30	0.0424	ng/m³ Air		2.29			0.445	10	
Zinc	77.4	61.6	ng/m³ Air		77.0			0.489	10	
Duplicate (B4B0101-DUP2)	S		12928-03	Prep	ared & A	nalyzed:	02/01/24	<u> </u>		
Antimony	0.102	0.0305	ng/m³ Air		0.102			0.220	10	SL
Arsenic	0.0955	0.00740	ng/m³ Air		0.0957			0.195	10	
Barium	2.22	0.845	ng/m³ Air		2.20			0.598	10	
Beryllium	0.00753	0.00253	ng/m³ Air		0.00647			15.1	10	
Cadmium	ND	0.0627	ng/m³ Air		ND				10	U
Chromium	ND	1.75	ng/m³ Air		ND				10	U
Cobalt	0.112	0.0345	ng/m³ Air		0.114			1.67	10	
Copper	23.5	2.08	ng/m³ Air		23.2			1.40	10	
Lead	0.251	0.169	ng/m³ Air		0.263			4.89	10	
Manganese	2.50	1.49	ng/m³ Air		2.51			0.504	10	
Molybdenum	1.39	0.284	ng/m³ Air		1.35			2.45	10	
Nickel	0.608	0.515	ng/m³ Air		0.608			0.0271	10	QB-01
Selenium	0.219	0.00708	ng/m³ Air		0.216			1.40	10	IJ, QX
Thallium	0.00107	4.65E-4	ng/m³ Air		0.00113			5.84	10	QB-01, QB-0
Vanadium	0.284	0.0418	ng/m³ Air		0.275			3.12	10	
Zinc	ND	60.7	ng/m³ Air		ND				10	U
Matrix Spike (B4B0101-MS1)	S	ource: 40	12928-11	Prep	ared & A	nalyzed:	02/01/24	-		
Antimony	0.596	0.0310	ng/m³ Air	1.1093	0.112	43.7	80-120			SL
Arsenic	4.72	0.00752	ng/m³ Air	2.2187	2.41	104	80-120			
Barium	37.3	0.858	ng/m³ Air	22.187	14.0	105	80-120			
Beryllium	1.13	0.00257	ng/m³ Air	1.1093	0.0238	99.9	80-120			
Cadmium	1.13	0.0636	ng/m³ Air	1.1093	ND	102	80-120			
Chromium	16.9	1.77	ng/m³ Air	11.093	5.24	105	80-120			
Cobalt	2.46	0.0350	ng/m³ Air	1.1093	1.38	97.2	80-120			
Copper	62.7	2.11	ng/m³ Air	22.187	47.4	69.0	80-120			QM-07
Lead	23.6	0.172	ng/m³ Air	11.093	11.8	106	80-120			
Manganese	32.9	1.52	ng/m³ Air	6.6560	26.0	104	80-120			
Molybdenum	2.79	0.288	ng/m³ Air	1.1093	1.63	105	80-120			
Nickel	8.78	0.523	ng/m³ Air	2.2187	6.47	104	80-120			QB-01
Selenium	2.63	0.00719	ng/m³ Air	2.2187	0.408	100	80-120			⊔, QX
Thallium	0.108	4.72E-4	ng/m³ Air	0.11093	0.00147	95.9	80-120			QB-01
Vanadium	4.48	0.0424	ng/m³ Air		2.29	98.5	80-120			-

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 02/06/24 11:01

SUBMITTED: 01/29/24

AQS SITE CODE:

Source

Spike Level

SITE CODE: Lahaina fires

%REC

RPD

nalyte	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
norganics by Compendium Meth	od IO-3	3.5 - Qua	lity Contro	ol						
Batch B4B0101 - ICP-MS Extraction	:a C		12020 11	Dron	arad 0. A	nalvaodi	02/01/24			
Matrix Spike (B4B0101-MS1) Cont							02/01/24			
Zinc	138	61.6	ng/m³ Air	66.560	77.0	92.2	80-120			
Matrix Spike Dup (B4B0101-MSD1			12928-11		pared & A	nalyzed:	02/01/24			
Antimony	0.542	0.0310	ng/m³ Air	1.1093	0.112	38.8	80-120	9.65	20	SL
Arsenic	4.27	0.00752	ng/m³ Air	2.2187	2.41	83.6	80-120	9.91	20	
Barium	35.3	0.858	ng/m³ Air	22.187	14.0	96.0	80-120	5.43	20	
Beryllium	1.15	0.00257	ng/m³ Air	1.1093	0.0238	102	80-120	1.89	20	
Cadmium	1.07	0.0636	ng/m³ Air	1.1093	ND	96.5	80-120	5.20	20	
Chromium	15.9	1.77	ng/m³ Air		5.24	95.9	80-120	6.10	20	
Cobalt	2.34	0.0350	ng/m³ Air	1.1093	1.38	86.9	80-120	4.73	20	
Copper	58.1	2.11	ng/m³ Air	22.187	47.4	48.5	80-120	7.51	20	QM-07
Lead	22.2	0.172	ng/m³ Air	11.093	11.8	93.8	80-120	5.83	20	
Manganese	31.2	1.52	ng/m³ Air	6.6560	26.0	79.0	80-120	5.23	20	QM-07
Molybdenum	2.66	0.288	ng/m³ Air	1.1093	1.63	92.7	80-120	5.03	20	
Nickel	8.21	0.523	ng/m³ Air	2.2187	6.47	78.7	80-120	6.67	20	QB-01, QM
Selenium	2.59	0.00719	ng/m³ Air	2.2187	0.408	98.5	80-120	1.48	20	IJ, QX
Thallium	0.105	4.72E-4	ng/m³ Air	0.11093	0.00147	93.1	80-120	2.97	20	QB-01
Vanadium	4.22	0.0424	ng/m³ Air	2.2187	2.29	86.9	80-120	5.89	20	
Zinc	141	61.6	ng/m³ Air	66.560	77.0	95.9	80-120	1.74	20	
Post Spike (B4B0101-PS1)	S	ource: 40	12928-11	Prep	ared & A	nalyzed:	02/01/24			
Antimony	0.335	0.0310	ng/m³ Air	0.22187	0.112	101	75-125			SL
Arsenic	3.49	0.00752	ng/m³ Air		2.41	96.9	75-125			
Barium	16.9	0.858	ng/m³ Air		14.0	128	75-125			A-01
Beryllium	0.249	0.00257	ng/m³ Air	0.22187	0.0238	101	75-125			
Cadmium	0.147	0.0636	ng/m³ Air	0.11093	ND	132	75-125			
Chromium	6.42	1.77	ng/m³ Air	1.1093	5.24	106	75-125			
Cobalt	1.62	0.0350	ng/m³ Air		1.38	107	75-125			
Copper	56.3	2.11	ng/m³ Air		47.4	80.2	75-125			
Lead	33.7	0.172	ng/m³ Air		11.8	98.7	75-125			
Manganese	28.2	1.52	ng/m³ Air		26.0	100	75-125			
Molybdenum	2.74	0.288	ng/m³ Air		1.63	100	75-125			
Nickel	8.64	0.523	ng/m³ Air		6.47	97.7	75-125			QB-01
Selenium	1.52	0.00719	ng/m³ Air		0.408	100	75-125			IJ, QX
Thallium	0.0551	4.72E-4	ng/m³ Air			96.7	75-125			QB-01
Vanadium	3.39	0.0424	ng/m³ Air		2.29	98.8	75-125			~- v-
Zinc	101	61.6	ng/m³ Air		77.0	109	75-125			
Dilution Check (B4B0101-SRL1)			12928-11				02/01/24			
Antimony	ND	0.155	ng/m³ Air	1100	ND	naryzcu.	02/01/21		10	SL, U
Arsenic	2.50	0.0376	ng/m³ Air		2.41			3.70	10	JL, U
AISCIIC	2.30	0.03/0	ng/III° All		2. 1 1			3.70	10	

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 02/06/24 11:01

SUBMITTED: 01/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

Analyte	Result	PQL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Inorganics by Compendium Meth <i>Batch B4B0101 - ICP-MS Extraction</i>	lity Contro	d								
Dilution Check (B4B0101-SRL1) Co	ontinueSo	urce: 40	12928-11	Prep	ared & A	nalyzed:	02/01/24			

Dilution Check (B4B0101-SRL1)	ContinueS	ource: 40	12928-11	Prepared & Analyzed: 02/01/24			
Barium	14.9	4.29	ng/m³ Air	14.0	6.10	10	
Beryllium	0.0230	0.0128	ng/m³ Air	0.0238	3.16	10	
Cadmium	ND	0.318	ng/m³ Air	ND		10	U
Chromium	ND	8.86	ng/m³ Air	ND		10	U
Cobalt	1.46	0.175	ng/m³ Air	1.38	5.79	10	
Copper	49.7	10.5	ng/m³ Air	47.4	4.80	10	
Lead	12.3	0.858	ng/m³ Air	11.8	3.64	10	
Manganese	27.5	7.58	ng/m³ Air	26.0	5.74	10	
Molybdenum	1.77	1.44	ng/m³ Air	1.63	8.14	10	
Nickel	6.89	2.62	ng/m³ Air	6.47	6.38	10	QB-01
Selenium	0.441	0.0359	ng/m³ Air	0.408	7.67	10	⊔, QX
Thallium	0.00278	0.00236	ng/m³ Air	ND	61.9	10	QB-01
Vanadium	2.46	0.212	ng/m³ Air	2.29	7.06	10	
Zinc	ND	308	ng/m³ Air	ND		10	U

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

PHONE: (703) 885-5495 **FAX:**

FILE #: 4205.00.003.001

REPORTED: 02/06/24 11:01

SUBMITTED: 01/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

Notes and Definitions

U Under Detection Limit

SL The spike recovery was outside acceptance limits. Reported value may be biased low.

QX Compound does not meet QC criteria. Results should be considered an estimate.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD.

QB-04 Analyte exceeds continuing calibration blank criteria

QB-01 Analyte exceeds method blank criteria

L) Identification of analyte is acceptable; reported value is an estimate.

A-01 Parent sample >4x spike amount

ND Analyte NOT DETECTED

NR Not Reported

MDL Method Detection Limit

RPD Relative Percent Difference

Note: This test is accredited under the 2016 TNI Standard.

Stage 1 Data Verification Checklist – Metals

HDOH CAB – Ambient Community Air Sampling – Lahaina

Task Order No. 23141

Reviewed by:

Talaidh Isaacs 02/06/2024 and Shanna Vasser 2/9/2024

Laboratory: Eastern Research Group – Morrisville, NC

Collection date(s): 1/18/2024 - 1/24/2024

Report No: 4012928

٧	1.	Chain of custody	<i>i</i> (CoC') documentation is present.

- <u>X</u> 2. Sample receipt condition information is present and acceptable.
- $\underline{\mathbf{v}}$ 3. Laboratory conducting the analysis is identified.
- V 4. All samples submitted to the laboratory are accounted for.
- \underline{V} 5. Requested analytical methods were performed.
- \underline{V} 6. Analysis dates are provided.
- $\underline{\mathbf{v}}$ 7. Analyte results are provided.
- \underline{V} 8. Result qualifiers and definitions are provided.
- \underline{V} 9. Result units are reported.
- NA 10. Requested reporting limits are present.
- \underline{V} 11. Method detection limits are present.
- \underline{V} 12. Sample collection date and time are present.
- \underline{V} 13. No detections in field QC blanks (lot/media blanks, field blanks, etc).

Discrepancies: None.

Notes: The chain of custody states sample MFL-AM01-012424-HM was missing; however, it was included in a later shipment. No other sample receipt information was included.

Stage 1 Data Verification Checklist – Asbestos HDOH CAB – Ambient Community Air Sampling – Lahaina

Task Order No. 23141

Reviewed by:

Kierra Johnson 02/13/2024 and Shanna Vasser 2/13/2024

Laboratory: Eurofins Built Environment Testing – Houston, TX

Collection date(s): 1/22/2024 - 1/24/2024

Report No: 3520539

<u>√</u>	1.	Chain of custod	y (CoC)	documentation is present.
----------	----	-----------------	---------	---------------------------

- $\underline{\mathbf{v}}$ 2. Sample receipt condition information is present and acceptable.
- $\underline{\mathbf{v}}$ 3. Laboratory conducting the analysis is identified.
- \underline{V} 4. All samples submitted to the laboratory are accounted for.
- <u>√</u> 5. Requested analytical methods were performed.
- \underline{V} 6. Analysis dates are provided.
- \underline{V} 7. Analyte results are provided.
- NA 8. Result qualifiers and definitions are provided.
- \underline{V} 9. Result units are reported.
- \underline{V} 10. Requested reporting limits are present.
- NA 11. Method detection limits are present.
- \underline{V} 12. Sample collection date and time are present.
- \underline{V} 13. No detections in field QC blanks (lot/media blanks, field blanks, etc).

Discrepancies: None

Notes: None