### Ambient Community Air Monitoring Weekly Report For the Hawaii Department of Health – Clean Air Branch

#### Lahaina, Maui

#### 4/18/2024 - 4/24/2024

Due to ongoing debris removal operations in response to the Maui Wildfires, a Community Air Monitoring and Sampling Plan (CAMSP) has been drafted and sampling is being performed at four community locations across Lahaina listed below and shown on **Figure 1**:

- Leialii Hawaiian Homelands (AM-01)
- WW Pump Station #4 (AM-02)
- Lahaina Intermediate School (AM-03)
- Lahaina Boys & Girls Club (AM-04)

This approach includes ambient community air monitoring and sampling to monitor conditions and determine whether debris removal activities, managed by the U.S. Army Corps of Engineers (USACE), significantly impact air quality in Lahaina. Data collected is made available to HDOH via online shared site and this weekly report. This approach to air monitoring and sampling will continue until debris removal activities are complete or until HDOH CAB advises otherwise.

Air quality monitoring for particulate matter was collected at all four community locations over a 24-hour period each day in accordance with the draft CAMSP. Additionally, daily air samples were collected at all community locations, as depicted in **Figure 1**. Summary analytical data is presented in **Tables 1 and 2**. **Appendix 1** provides detailed analytical results for all community locations where air sampling was performed. Analytical results were compared to site-specific screening levels for particulate matter, asbestos, and heavy metals as described in the draft CAMSP. A summary of meteorological data is presented in **Table 3**. Overall wind conditions show approximately 1.1 mph in a generally average SSE direction.

#### **Results for Community Locations:**

Ambient air monitoring was performed to assess the presence of airborne particulates with a particle size diameter of 10 micrometers ( $\mu$ m), as this is the size that is recognized as being small enough to be inhaled into a person's lungs. This particle size diameter is recognized for health evaluations and is identified as "PM<sub>10</sub>". Monitoring for PM<sub>10</sub> was conducted 24 hours a day, 7 days a week at each of the following locations: Leialii Hawaiian Homelands (April 18-April 24), WW Pump Station #4 (April 18-April 24), Lahaina Intermediate School (April 18-April 24), Lahaina Boys & Girls Club (April 18-April 24).

The PM $_{10}$  monitoring results were not found to have exceeded the screening level during this reporting period, as shown in **Table 2**.

Please note that ambient air monitoring for fine particulate matter, with a particle size diameter of 2.5 micrometers or less (PM<sub>2.5</sub>) is not included in this report. This monitoring is being performed by the Department of Health/EPA at six locations in Lahaina and can be viewed at: <a href="https://fire.airnow.gov/">https://fire.airnow.gov/</a>.

There were 28 samples collected for asbestos fibers at community monitoring locations throughout this reporting period. Of the 28 samples collected, three samples collected at Leialii Hawaiian Homelands on April 19, 22 and 23, and one sample collected at Lahaina Boys & Girls Club on April 20, were voided due to a greater than 10 percent (%) discrepancy between the pre and post calibration flow rate values, as stated in the asbestos sampling standard operating procedure (SOP). All asbestos results were below the Site Screening Action Level (SSAL) of 0.003 fibers per cubic centimeter (fibers/cc) and less than the laboratory's analytical sensitivity (see Table 1).

Low levels of heavy metals were detected in ambient air samples at all community sampling locations. Although heavy metals were detected, all concentrations were below the SSALs (see Table 1). The laboratory data sheets for the metals and asbestos samples collected from the community locations are found in **Appendix 1**.

#### **Quality Control:**

This section briefly discusses the quality control efforts made by Tetra Tech throughout the air monitoring and sampling process. All references and SOPs can be found provided with the CAMSP.

Tetra Tech is utilizing Met One Instruments, Inc., environmental beta attenuation mass monitors (E-BAM) to allow for comparison to the National Ambient Air Quality Standards (NAAQS) for particulates. E-BAMs are factory-calibrated annually and do not require daily calibration, except for a leak check and a flow audit, which were performed prior to monitoring according to the manufacturer's procedures.

For asbestos sampling, Tetra Tech uses a Casella Vortex 3 or similar air sampling pump. Sampling flow rates are determined and documented by pre- and post- calibration of each sampling pump using a primary calibration standard. Calibration and sampling are conducted in accordance with Tetra Tech SOPs 064-2, "Calibration of Air Sampling Pump" and 073-3, "Air Quality Monitoring" and U.S. EPA ERT SOPs No. 2008, "General Air Monitoring and Sampling Guidelines" and 2015 "Asbestos Air Sampling," included in the CAMSP.

Tetra Tech is using Tisch Environmental High Volume Air Samplers, or equivalent, collocated with the real-time particulate monitors and asbestos samplers described above. Air samples for elemental metals at community locations are collected and analyzed in accordance with the following methods:

- U.S. EPA Compendium Method IO-2.1, Sampling of Ambient Air for Total Suspended Particulate Matter (SPM) and PM10 Using High Volume (HV) Sampler
- U.S. EPA Compendium Method IO-3.5: Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air: Determination of Metals in Ambient Particulate Matter Using Inductively Coupled Plasma/Mass Spectrometry (ICP/MS). EPA/625/R-96/010a
- U.S. EPA 40 Code of Federal Regulations (CFR) Part 50, Method for the Determination of Lead in Total Suspended Particulate Matter.
- U.S. EPA 40 CFR Part 58, Appendix E: Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring
- Standard Operating Procedures for Lead Monitoring Using a TSP High Volume Sampler

Field technicians conducted photographic and written documentation in accordance with Tetra Tech SOP No. 024-4, "Recording of Notes in Field Logbook".

Following receipt of air sampling results from the off-site analytical laboratories, analytical data is maintained in an electronic database and compared to the SSALs. Level 1 data verification is completed on all analytical data and results are reviewed by an industrial hygienist.





### Table 1 **HDOH CAB Ambient Community Monitoring and Sampling Analytical Sampling Results by Date** Maui Wildfire, Lahaina 4/18/2024-4/24/2024

|           | Analyte                                 | Asbestos | Antimony          | Arsenic     | Barium            | Beryllium   | Cadmium           | Chromium          | Cobalt            | Copper            | Lead        | Manganese         | Molybdenum        | Nickel            | Selenium          | Thallium          | Vanadium          | Zinc        |
|-----------|-----------------------------------------|----------|-------------------|-------------|-------------------|-------------|-------------------|-------------------|-------------------|-------------------|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------|
|           | Units                                   | s/cc     | μg/m <sup>3</sup> | $\mu g/m^3$ | μg/m <sup>3</sup> | $\mu g/m^3$ | μg/m <sup>3</sup> | μg/m <sup>3</sup> | μg/m <sup>3</sup> | μg/m <sup>3</sup> | $\mu g/m^3$ | μg/m <sup>3</sup> | $\mu g/m^3$ |
|           | Screening Level*                        | 0.003 1  | 0.7               | 0.05        | 1.2               | 0.05        | 0.02              | 12                | 0.01              | 240               | 1.5         | 0.12              | 4.8               | 0.02              | 48                | 24                | 0.24              | 1200        |
|           | Leialii Hawaiian Homelands (AM-01)      | < 0.0027 | 0.0000600         | 0.000211    | 0.00228           | 0.00000450  | ND                | ND                | 0.000184          | 0.0725            | 0.000323    | 0.00556           | 0.00394           | 0.000899          | 0.000118          | 0.000000782       | 0.000485          | ND          |
| 4/19/2024 | WW Pump Station #4 (AM-02)              | < 0.0024 | 0.000185          | 0.000284    | 0.00545           | 0.0000126   | ND                | 0.00216           | 0.000377          | 0.0353            | 0.00107     | 0.0121            | 0.00147           | 0.00145           | 0.000166          | 0.000000982       | 0.00116           | ND          |
| 4/18/2024 | Lahaina Intermediate School (AM-03)     | < 0.0024 | 0.0000886         | 0.000171    | 0.00430           | 0.0000141   | ND                | 0.00202           | 0.000288          | 0.0490            | 0.00101     | 0.00727           | 0.00241           | 0.00118           | 0.000146          | 0.00000110        | 0.000741          | ND          |
|           | Lahaina Boys & Girls Club (AM-04)       | < 0.0024 | 0.000101          | 0.000374    | 0.00388           | 0.0000131   | ND                | 0.00253           | 0.000419          | 0.0326            | 0.000840    | 0.0133            | 0.00134           | 0.00140           | 0.000166          | 0.000000913       | 0.00104           | ND          |
|           | Leialii Hawaiian Homelands (AM-01)      |          | 0.0000604         | 0.000356    | 0.00256           | 0.00000527  | ND                | 0.00186           | 0.000245          | 0.0971            | 0.000411    | 0.00645           | 0.00404           | 0.00114           | 0.000110          | 0.000000748       | 0.000647          | ND          |
| 4/10/2024 | WW Pump Station #4 (AM-02)              | < 0.0027 | 0.000150          | 0.000178    | 0.00385           | 0.00000692  | ND                | 0.00190           | 0.000226          | 0.0410            | 0.000552    | 0.00699           | 0.00180           | 0.00104           | 0.000142          | 0.000000747       | 0.000747          | ND          |
| 4/19/2024 | Lahaina Intermediate School (AM-03)     | < 0.0024 | 0.0000980         | 0.000157    | 0.00281           | 0.0000160   | ND                | 0.00202           | 0.000307          | 0.0427            | 0.0162      | 0.00823           | 0.00202           | 0.00111           | 0.000145          | 0.000000880       | 0.000823          | ND          |
|           | Lahaina Boys & Girls Club (AM-04)       | < 0.0024 | 0.0000919         | 0.000192    | 0.00329           | 0.00000786  | ND                | 0.00250           | 0.000263          | 0.0395            | 0.000520    | 0.00814           | 0.00159           | 0.00156           | 0.000157          | 0.000000680       | 0.000750          | ND          |
|           | Leialii Hawaiian Homelands (AM-01)      | < 0.0027 | 0.0000650         | 0.000359    | 0.00333           | 0.00000798  | ND                | 0.00236           | 0.000313          | 0.101             | 0.000665    | 0.00917           | 0.00368           | 0.00143           | 0.000134          | 0.00000123        | 0.000871          | ND          |
| 4/20/2024 | WW Pump Station #4 (AM-02)              | < 0.0024 | 0.000104          | 0.000315    | 0.00594           | 0.00000802  | ND                | 0.00199           | 0.000288          | 0.0532            | 0.000845    | 0.00822           | 0.00187           | 0.00127           | 0.000147          | 0.00000133        | 0.000887          | ND          |
| 4/20/2024 | Lahaina Intermediate School (AM-03)     | < 0.0024 | 0.0000645         | 0.000127    | 0.00230           | 0.00000891  | ND                | ND                | 0.000193          | 0.0520            | 0.000448    | 0.00507           | 0.00246           | 0.000996          | 0.000148          | 0.00000117        | 0.000557          | ND          |
|           | Lahaina Boys & Girls Club (AM-04)       |          | 0.000102          | 0.000270    | 0.00359           | 0.0000109   | ND                | 0.00204           | 0.000334          | 0.0301            | 0.000899    | 0.0103            | 0.00111           | 0.00121           | 0.000178          | 0.00000116        | 0.000924          | ND          |
|           | Leialii Hawaiian Homelands (AM-01)      | < 0.0030 | 0.000105          | 0.000478    | 0.00318           | 0.00000666  | ND                | 0.00197           | 0.000233          | 0.112             | 0.000779    | 0.00686           | 0.00400           | 0.000930          | 0.000156          | 0.00000202        | 0.000699          | 0.0861      |
| 4/21/2024 | WW Pump Station #4 (AM-02)              | < 0.0024 | 0.000165          | 0.000257    | 0.0491            | 0.00000576  | ND                | ND                | 0.000143          | 0.153             | 0.000853    | 0.00477           | 0.00201           | 0.000967          | 0.000169          | 0.00000171        | 0.000497          | ND          |
| 4/21/2024 | Lahaina Intermediate School (AM-03)     | < 0.0024 | 0.000104          | 0.000143    | 0.00234           | 0.00000640  | ND                | ND                | 0.000172          | 0.0580            | 0.000848    | 0.00461           | 0.00219           | 0.000884          | 0.000156          | 0.00000180        | 0.000456          | ND          |
|           | Lahaina Boys & Girls Club (AM-04)       | < 0.0024 | 0.000150          | 0.000245    | 0.00364           | 0.00000838  | ND                | ND                | 0.000295          | 0.0403            | 0.00107     | 0.00850           | 0.00140           | 0.00106           | 0.000176          | 0.00000164        | 0.000688          | ND          |
|           | Leialii Hawaiian Homelands (AM-01)      |          | 0.0000636         | 0.000662    | 0.00384           | 0.0000140   | ND                | 0.00265           | 0.000563          | 0.0703            | 0.000451    | 0.0146            | 0.00230           | 0.00200           | 0.000167          | 0.00000258        | 0.00143           | ND          |
| 4/22/2024 | WW Pump Station #4 (AM-02)              | < 0.0024 | 0.0000965         | 0.000293    | 0.00523           | 0.0000127   | ND                | 0.00287           | 0.000496          | 0.0517            | 0.000725    | 0.0130            | 0.00152           | 0.00184           | 0.000162          | 0.00000236        | 0.00145           | ND          |
| 4/22/2024 | Lahaina Intermediate School (AM-03)     | < 0.0024 | 0.0000535         | 0.000154    | 0.00271           | 0.0000120   | ND                | 0.00217           | 0.000267          | 0.0643            | 0.000355    | 0.00699           | 0.00214           | 0.00112           | 0.000150          | 0.00000218        | 0.000694          | ND          |
|           | Lahaina Boys & Girls Club (AM-04)       | < 0.0024 | 0.000148          | 0.000452    | 0.00421           | 0.0000119   | ND                | 0.00224           | 0.000375          | 0.0364            | 0.000882    | 0.0122            | 0.00129           | 0.00126           | 0.000193          | 0.00000223        | 0.000978          | ND          |
|           | Leialii Hawaiian Homelands (AM-01)      |          | 0.0000738         | 0.000594    | 0.00450           | 0.0000161   | ND                | 0.00296           | 0.000607          | 0.0885            | 0.000470    | 0.0178            | 0.00274           | 0.00166           | 0.000157          | 0.00000179        | 0.00168           | ND          |
| 4/23/2024 | WW Pump Station #4 (AM-02)              | < 0.0024 | 0.000112          | 0.000333    | 0.00469           | 0.0000107   | ND                | 0.00219           | 0.000367          | 0.0504            | 0.000910    | 0.0108            | 0.00146           | 0.00136           | 0.000132          | 0.00000135        | 0.00108           | ND          |
| 4/23/2024 | Lahaina Intermediate School (AM-03)     | < 0.0024 | 0.0000826         | 0.000251    | 0.00298           | 0.0000143   | ND                | 0.00227           | 0.000336          | 0.0824            | 0.000527    | 0.00850           | 0.00233           | 0.00122           | 0.000131          | 0.00000120        | 0.000804          | ND          |
|           | Lahaina Boys & Girls Club (AM-04)       | < 0.0024 | 0.0000900         | 0.000352    | 0.00361           | 0.0000104   | ND                | 0.00209           | 0.000317          | 0.0373            | 0.000748    | 0.0100            | 0.00145           | 0.00108           | 0.000135          | 0.00000120        | 0.000843          | ND          |
|           | Leialii Hawaiian Homelands (AM-01)      | < 0.0027 | 0.0000615         | 0.000420    | 0.00350           | 0.0000116   | ND                | 0.00302           | 0.000591          | 0.0951            | 0.000353    | 0.0146            | 0.00311           | 0.00221           | 0.000167          | 0.00000231        | 0.00147           | ND          |
| 4/24/2024 | WW Pump Station #4 (AM-02)              | < 0.0024 | 0.000109          | 0.000273    | 0.00355           | 0.00000875  | ND                | 0.00191           | 0.000319          | 0.0499            | 0.000644    | 0.00903           | 0.00155           | 0.00122           | 0.000151          | 0.00000216        | 0.000897          | ND          |
| 4/24/2024 | Lahaina Intermediate School (AM-03)     | < 0.0024 | 0.0000787         | 0.000239    | 0.00325           | 0.0000191   | ND                | 0.00283           | 0.000433          | 0.0657            | 0.000722    | 0.0108            | 0.00218           | 0.00145           | 0.000178          | 0.00000216        | 0.00108           | ND          |
|           | Lahaina Boys & Girls Club (AM-04)       | < 0.0024 | 0.000133          | 0.000503    | 0.00556           | 0.0000170   | ND                | 0.00320           | 0.000534          | 0.0499            | 0.00133     | 0.0170            | 0.00160           | 0.00166           | 0.000210          | 0.00000261        | 0.00141           | ND          |
|           |                                         |          |                   |             |                   |             |                   |                   |                   |                   |             |                   |                   |                   |                   |                   |                   |             |
|           | 95% Upper Confidence Limit <sup>2</sup> | NA       | 0.000110          | 0.000360    | 0.00570           | 0.0000120   | NA                | 0.00248           | 0.000390          | 0.0724            | 0.00128     | 0.0111            | 0.00248           | 0.00142           | 0.000160          | 0.00000180        | 0.00104           | NA          |

### **Notes:**

Asbestos result determined by transmission electron microscopy (TEM) in accordance with ISO Method 10312. Phase Contrast Microscopy equivalent (PCMe) results are presented here.

< = less than

s/cc = structures per cubic centimeter

 $\mu$ g/m<sup>3</sup> = micrograms per cubic meter NA = Not Applicable

ND = Not detected at or above the laboratory reporting limit

\* Laboratory data provided in nanograms per cubic meter, however data shown in Table 1 has been converted to micrograms per cubic meter so data was comparable to SSALs.

Asbestos samples voided due to a greater than 10% discrepancy between the pre and post calibration flow rate values, as stated in the asbestos sampling standard operating procedure (SOP).

<sup>&</sup>lt;sup>2</sup> 95% UCL determined through 'best fit' lognormal or normal parametric statistics via W test.

### Table 2 **HDOH CAB Ambient Community Monitoring and Sampling Particulate Monitoring Results for PM**<sub>10</sub> Maui Wildfire, Lahaina 4/18/2024 - 4/24/2024

| Screening I | Level                               | $150 \mu g/m3$ |
|-------------|-------------------------------------|----------------|
|             | Leialii Hawaiian Homelands (AM-01)  | 8.6            |
| 4/18/2024   | WW Pump Station #4 (AM-02)          | 7.6            |
| 4/18/2024   | Lahaina Intermediate School (AM-03) | 5.5            |
|             | Lahaina Boys & Girls Club (AM-04)   | 6.6            |
|             | Leialii Hawaiian Homelands (AM-01)  | 7.3            |
| 4/19/2024   | WW Pump Station #4 (AM-02)          | 8.2            |
| 4/19/2024   | Lahaina Intermediate School (AM-03) | 6.5            |
|             | Lahaina Boys & Girls Club (AM-04)   | 4.6            |
|             | Leialii Hawaiian Homelands (AM-01)  | 5.9            |
| 4/20/2024   | WW Pump Station #4 (AM-02)          | 6.4            |
| 4/20/2024   | Lahaina Intermediate School (AM-03) | 5.1            |
|             | Lahaina Boys & Girls Club (AM-04)   | 5.7            |
|             | Leialii Hawaiian Homelands (AM-01)  | 8.4            |
| 4/21/2024   | WW Pump Station #4 (AM-02)          | 7.2            |
| 4/21/2024   | Lahaina Intermediate School (AM-03) | 8.0            |
|             | Lahaina Boys & Girls Club (AM-04)   | 5.3            |
|             | Leialii Hawaiian Homelands (AM-01)  | 7.1            |
| 4/22/2024   | WW Pump Station #4 (AM-02)          | 7.1            |
| 4/22/2024   | Lahaina Intermediate School (AM-03) | 6.0            |
|             | Lahaina Boys & Girls Club (AM-04)   | 5.8            |
|             | Leialii Hawaiian Homelands (AM-01)  | 6.2            |
| 4/22/2024   | WW Pump Station #4 (AM-02)          | 6.7            |
| 4/23/2024   | Lahaina Intermediate School (AM-03) | 6.0            |
|             | Lahaina Boys & Girls Club (AM-04)   | 5.9            |
|             | Leialii Hawaiian Homelands (AM-01)  | 8.6            |
| 4/24/2024   | WW Pump Station #4 (AM-02)          | 5.9            |
| 4/24/2024   | Lahaina Intermediate School (AM-03) | 6.9            |
|             | Lahaina Boys & Girls Club (AM-04)   | 6.1            |

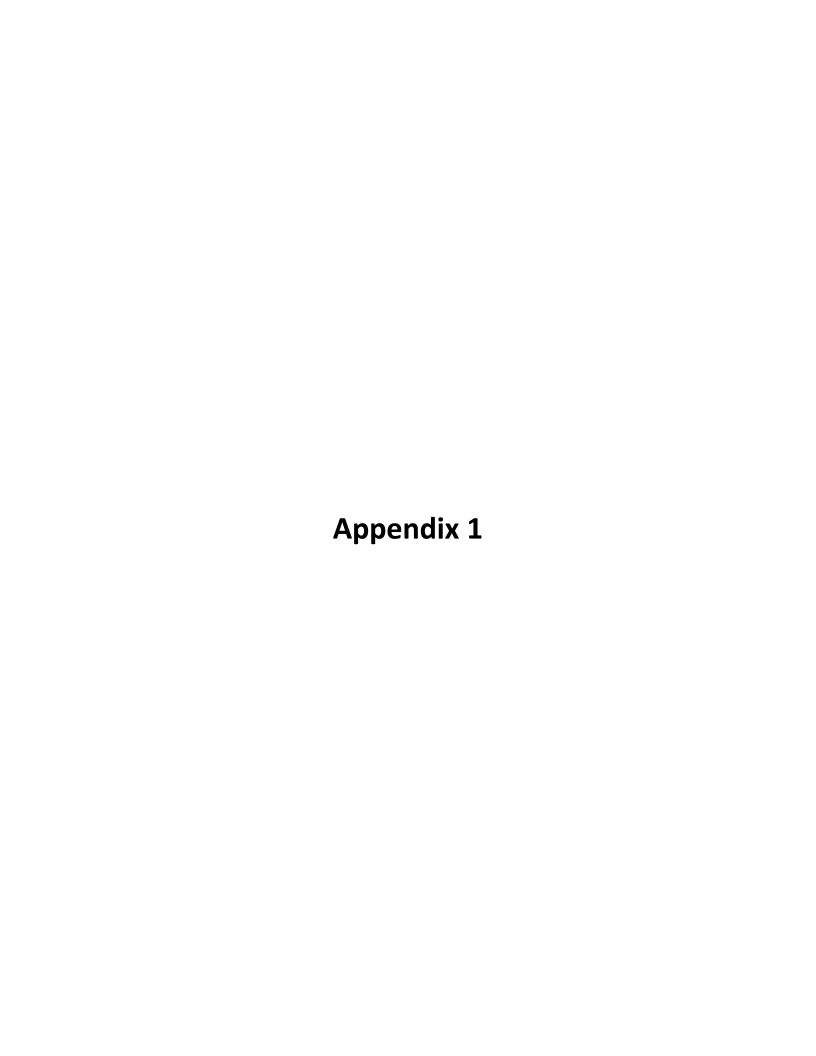
### **Notes:**

 $\mu$ g/m3 = micrograms per cubic meter

24 hour TWA calculation results are shown in two significant figures

Results are based on 24 hour TWA calculation except for the following:

Results for Lahaina Boys & Girls Club (AM-04) on 4/22 are based on a 23 hr TWA because of equipment error. Results for Lahaina Boys & Girls Club (AM-04) on 4/24 are based on a 19 hr TWA because of a equipment error.


Table 3
Maui Wildfire - Lahaina
Meteorological Data
4/18/2024-4/24/2024

|           |            |                             | Wind  | Wind      |             | Rel      | Baro     |
|-----------|------------|-----------------------------|-------|-----------|-------------|----------|----------|
|           |            |                             | Speed | Direction | Temperature | Humidity | Pressure |
| Date      | Station ID | Weather Station Name        | (mph) | (angle)   | (°F)        | (%)      | (mBar)   |
| 4/18/2024 | AM-01      | Leialii Hawaiian Homelands  | 1.0   | SE        | 79          | 58       | 761.6    |
| 4/18/2024 | AM-02      | WW Pump Station #4          | 1.1   | SE        | 77          | 63       | 763.9    |
| 4/18/2024 | AM-03      | Lahaina Intermediate School | 1.1   | ESE       | 75          | 64       | 754.6    |
| 4/18/2024 | AM-04      | Lahaina Boys & Girls Club   | 1.1   | S         | 75          | 66       | 763.4    |
| 4/19/2024 | AM-01      | Leialii Hawaiian Homelands  | 1.2   | SE        | 77          | 64       | 762.1    |
| 4/19/2024 | AM-02      | WW Pump Station #4          | 1.0   | SSE       | 77          | 68       | 764.3    |
| 4/19/2024 | AM-03      | Lahaina Intermediate School | 1.1   | SE        | 75          | 70       | 755.0    |
| 4/19/2024 | AM-04      | Lahaina Boys & Girls Club   | 1.1   | SSW       | 75          | 69       | 763.9    |
| 4/20/2024 | AM-01      | Leialii Hawaiian Homelands  | 0.9   | SSE       | 79          | 62       | 761.8    |
| 4/20/2024 | AM-02      | WW Pump Station #4          | 0.9   | S         | 77          | 67       | 764.1    |
| 4/20/2024 | AM-03      | Lahaina Intermediate School | 1.1   | SE        | 75          | 70       | 754.7    |
| 4/20/2024 | AM-04      | Lahaina Boys & Girls Club   | 1.1   | S         | 76          | 68       | 763.6    |
| 4/21/2024 | AM-01      | Leialii Hawaiian Homelands  | 1.4   | ESE       | 77          | 60       | 762.3    |
| 4/21/2024 | AM-02      | WW Pump Station #4          | 1.0   | SSE       | 77          | 64       | 764.6    |
| 4/21/2024 | AM-03      | Lahaina Intermediate School | 1.1   | SE        | 74          | 67       | 755.2    |
| 4/21/2024 | AM-04      | Lahaina Boys & Girls Club   | 1.1   | S         | 75          | 67       | 764.1    |
| 4/22/2024 | AM-01      | Leialii Hawaiian Homelands  | 1.5   | SSE       | 79          | 57       | 762.0    |
| 4/22/2024 | AM-02      | WW Pump Station #4          | 1.2   | SSE       | 78          | 61       | 764.2    |
| 4/22/2024 | AM-03      | Lahaina Intermediate School | 1.3   | SE        | 76          | 64       | 754.9    |
| 4/22/2024 | AM-04      | Lahaina Boys & Girls Club   | 1.4   | SSW       | 76          | 64       | 763.8    |
| 4/23/2024 | AM-01      | Leialii Hawaiian Homelands  | 0.9   | SE        | 80          | 55       | 761.8    |
| 4/23/2024 | AM-02      | WW Pump Station #4          | 1.0   | SSE       | 78          | 61       | 764.1    |
| 4/23/2024 | AM-03      | Lahaina Intermediate School | 1.1   | SE        | 76          | 63       | 754.7    |
| 4/23/2024 | AM-04      | Lahaina Boys & Girls Club   | 1.1   | S         | 77          | 63       | 763.8    |
| 4/24/2024 | AM-01      | Leialii Hawaiian Homelands  | 1.2   | SE        | 78          | 61       | 762.7    |
| 4/24/2024 | AM-02      | WW Pump Station #4          | 1.0   | SSE       | 77          | 65       | 764.9    |
| 4/24/2024 | AM-03      | Lahaina Intermediate School | 1.0   | SE        | 75          | 67       | 755.6    |
| 4/24/2024 | AM-04      | Lahaina Boys & Girls Club   | 1.0   | S         | 75          | 68       | 764.5    |

Notes:

°F - Fahrenheit mBar - millibar

mph - miles per hour





Phone: (703) 489-2674

Fax: N/A

Received Date: 04/24/2024 09:24 AM Analysis Date: 04/30/2024

Report Date: 05/01/2024

Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Attn: Chelsea Saber

Project: Maui Wildfires - Lahaina

# ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

MFL-AM01-041824-AB Sample Description: DK796807 **Customer Sample Number:** EMSL Sample Number: 042408316-0001 Sample Matrix: Air 7014.8 Magnification used for fiber counting: 20,000 Volume (L): Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm<sup>2</sup>): 385 Minimum Length (µm): Grid Opening Area (mm²): ≥ 0.5 0.0128 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: Minimum Level of analysis (chrysotile): CD P. Harrison

Estimated Particulate Loading on Filter %: 2
Target Analytical Sensitivity (Structures/cc): 0.001

ADX

0.0009

Minimum Level of analysis (amphibole):

Analytical Sensitivity (Structures/cc):

Limit of Detection (Structures/cc): 0.0027

|                           |          | TOTAL STRU   | JCTURES       | (All Sizes) |               |                                 |
|---------------------------|----------|--------------|---------------|-------------|---------------|---------------------------------|
|                           | Minimum  | Structures D | etected       | Density     | Concentration | 95 % Confidence Interval (S/cc) |
|                           | ID Level | Primary      | Primary Total |             | (S/cc)        | Lower Upper                     |
|                           |          |              |               |             |               |                                 |
| Total Chrysotile          | CD       | 0            | 0             | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |
| Total Amphibole           | ADX      | 0            | 0             | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |
| Actinolite                | ADX      | 0            | 0             | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |
| Amosite                   | ADX      | 0            | 0             | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |
| Anthophyllite             | ADX      | 0            | 0             | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |
| Crocidolite               | ADX      | 0            | 0             | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |
| Tremolite                 | ADX      | 0            | 0             | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |
| Total Asbestos Structures | CD/ADX   | 0            | 0             | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |
| Other Minerals            | =        | 0            | 0             | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |
| Total All Structures      | -        | 0            | 0             | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |

|                                               |          | PCM EQUIVA                                                | ALENT (P | CMe) Fibers | 3        |                         |  |  |  |  |  |  |
|-----------------------------------------------|----------|-----------------------------------------------------------|----------|-------------|----------|-------------------------|--|--|--|--|--|--|
| (>5 microns in length with >3:1 Aspect Ratio) |          |                                                           |          |             |          |                         |  |  |  |  |  |  |
|                                               | Minimum  | Minimum Fibers Detected Density Concentration 95 % Confid |          |             |          |                         |  |  |  |  |  |  |
|                                               | ID Level | Primary                                                   | Total    | (F/mm²)     | (F/cc)   | Lower Upper             |  |  |  |  |  |  |
| Total Chrysotile (PCMe)                       | CD       | 0                                                         | 0        | < 46.72     | < 0.0027 | Not Applicable - 0.0027 |  |  |  |  |  |  |
| Total Amphibole (PCMe)                        | ADX      | 0                                                         | 0        | < 46.72     | < 0.0027 | Not Applicable - 0.0027 |  |  |  |  |  |  |
| Actinolite                                    | ADX      | 0                                                         | 0        | < 46.72     | < 0.0027 | Not Applicable - 0.0027 |  |  |  |  |  |  |
| Amosite                                       | ADX      | 0                                                         | 0        | < 46.72     | < 0.0027 | Not Applicable - 0.0027 |  |  |  |  |  |  |
| Anthophyllite                                 | ADX      | 0                                                         | 0        | < 46.72     | < 0.0027 | Not Applicable - 0.0027 |  |  |  |  |  |  |
| Crocidolite                                   | ADX      | 0                                                         | 0        | < 46.72     | < 0.0027 | Not Applicable - 0.0027 |  |  |  |  |  |  |
| Tremolite                                     | ADX      | 0                                                         | 0        | < 46.72     | < 0.0027 | Not Applicable - 0.0027 |  |  |  |  |  |  |
| Total Asbestos Structures (PCMe)              | CD/ADX   | 0                                                         | 0        | < 46.72     | < 0.0027 | Not Applicable - 0.0027 |  |  |  |  |  |  |
| Other Minerals                                | -        | 0                                                         | 0        | < 46.72     | < 0.0027 | Not Applicable - 0.0027 |  |  |  |  |  |  |
| Total All Structures (PCMe)                   | -        | 0                                                         | 0        | < 46.72     | < 0.0027 | Not Applicable - 0.0027 |  |  |  |  |  |  |

Comment

Approved Signatory



Project ID: Maui Wildfires - Lahaina

### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL S          | ample ID:      | 042408316-                           | Customer                     | Sample:        | MFL-AM01-041824-AB |                       |                 |                    |
|------------|-----------------|----------------|--------------------------------------|------------------------------|----------------|--------------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening | Structure Type | Structure<br>Number<br>Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type       | Additional Mineral ID | Image<br>Number | Structure Comments |
| A6         | A6              | None Detected  |                                      |                              |                |                    |                       |                 |                    |
| <b>A6</b>  | D7              | None Detected  |                                      |                              |                |                    |                       |                 |                    |
| A6         | G10             | None Detected  |                                      |                              |                |                    |                       |                 |                    |
| A7         | J3              | None Detected  |                                      |                              |                |                    |                       |                 |                    |
| A7         | C4              | None Detected  |                                      |                              |                |                    |                       |                 |                    |



**Phone:** (703) 489-2674

Fax: N/A

Received Date: 04/24/2024 09:24 AM Analysis Date: 04/30/2024

**Report Date:** 05/01/2024

Attn: Chelsea Saber

Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Wildfires - Lahaina

## ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

MFL-AM02-041824-AB Sample Description: DK796919 **Customer Sample Number:** EMSL Sample Number: 042408316-0002 Sample Matrix: Air 7179.3 Magnification used for fiber counting: 20,000 Volume (L): Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm²): 385 Minimum Length (µm): Grid Opening Area (mm²): ≥ 0.5 0.0128 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: Minimum Level of analysis (chrysotile): CD Analyst: P. Harrison Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: 2
Target Analytical Sensitivity (Structures/cc): 0.001
Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024

|                           |          | TOTAL STRU   | JCTURES       | (All Sizes) |               |                                 |
|---------------------------|----------|--------------|---------------|-------------|---------------|---------------------------------|
|                           | Minimum  | Structures D | etected       | Density     | Concentration | 95 % Confidence Interval (S/cc) |
|                           | ID Level | Primary      | Primary Total |             | (S/cc)        | Lower Upper                     |
|                           |          |              |               |             |               |                                 |
| Total Chrysotile          | CD       | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Total Amphibole           | ADX      | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Actinolite                | ADX      | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Amosite                   | ADX      | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Anthophyllite             | ADX      | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Crocidolite               | ADX      | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Tremolite                 | ADX      | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Total Asbestos Structures | CD/ADX   | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Other Minerals            | -        | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Total All Structures      | -        | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |

|                                               |          | PCM EQUIVA | ALENT (P                        | CMe) Fibers | S        |                         |  |  |  |  |  |  |
|-----------------------------------------------|----------|------------|---------------------------------|-------------|----------|-------------------------|--|--|--|--|--|--|
| (>5 microns in length with >3:1 Aspect Ratio) |          |            |                                 |             |          |                         |  |  |  |  |  |  |
|                                               | Minimum  | Fibers De  | 95 % Confidence Interval (F/cc) |             |          |                         |  |  |  |  |  |  |
|                                               | ID Level | Primary    | Total                           | (F/mm²)     | (F/cc)   | Lower Upper             |  |  |  |  |  |  |
| Total Chrysotile (PCMe)                       | CD       | 0          | 0                               | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Total Amphibole (PCMe)                        | ADX      | 0          | 0                               | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Actinolite                                    | ADX      | 0          | 0                               | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Amosite                                       | ADX      | 0          | 0                               | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Anthophyllite                                 | ADX      | 0          | 0                               | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Crocidolite                                   | ADX      | 0          | 0                               | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Tremolite                                     | ADX      | 0          | 0                               | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Total Asbestos Structures (PCMe)              | CD/ADX   | 0          | 0                               | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Other Minerals                                | -        | 0          | 0                               | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Total All Structures (PCMe)                   | _        | 0          | 0                               | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |

Comment

Approved Signatory



Project ID: Maui Wildfires - Lahaina

### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL S          | ample ID:      | 042408316-                           | 0002                         |                |              | Customer              | Sample:         | MFL-AM02-041824-AB |
|------------|-----------------|----------------|--------------------------------------|------------------------------|----------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening | Structure Type | Structure<br>Number<br>Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| B2         | B9              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| B2         | E8              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| B2         | G5              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| В3         | H6              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| В3         | B8              | None Detected  |                                      |                              |                |              |                       |                 |                    |



Phone: (703) 489-2674

Fax: N/A

Received Date: 04/24/2024 09:24 AM Analysis Date: 04/30/2024

**Report Date:** 05/01/2024

Attn: Chelsea Saber Tetra Tech

1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Wildfires - Lahaina

## ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

MFL-AM03-041824-AB Sample Description: DK797286 **Customer Sample Number:** EMSL Sample Number: 042408316-0003 Sample Matrix: Air Magnification used for fiber counting: 20,000 Volume (L): 7279.5 Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm<sup>2</sup>): 385 Minimum Length (µm): Grid Opening Area (mm²): ≥ 0.5 0.0128 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: Minimum Level of analysis (chrysotile): CD P. Harrison Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: 2
Target Analytical Sensitivity (Structures/cc): 0.001
Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024

|                           |          | TOTAL STRU   | JCTURES         | (All Sizes) |               |                                 |
|---------------------------|----------|--------------|-----------------|-------------|---------------|---------------------------------|
|                           | Minimum  | Structures D | etected         | Density     | Concentration | 95 % Confidence Interval (S/cc) |
|                           | ID Level | Primary      | Primary Total ( |             | (S/cc)        | Lower Upper                     |
|                           |          |              |                 |             |               |                                 |
| Total Chrysotile          | CD       | 0            | 0               | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Total Amphibole           | ADX      | 0            | 0               | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Actinolite                | ADX      | 0            | 0               | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Amosite                   | ADX      | 0            | 0               | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Anthophyllite             | ADX      | 0            | 0               | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Crocidolite               | ADX      | 0            | 0               | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Tremolite                 | ADX      | 0            | 0               | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Total Asbestos Structures | CD/ADX   | 0            | 0               | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Other Minerals            | -        | 0            | 0               | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Total All Structures      | -        | 0            | 0               | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |

|                                               |          | PCM EQUIVA | ALENT (P                        | CMe) Fibers | 3        |                         |  |  |  |  |  |  |
|-----------------------------------------------|----------|------------|---------------------------------|-------------|----------|-------------------------|--|--|--|--|--|--|
| (>5 microns in length with >3:1 Aspect Ratio) |          |            |                                 |             |          |                         |  |  |  |  |  |  |
|                                               | Minimum  | Fibers Det | 95 % Confidence Interval (F/cc) |             |          |                         |  |  |  |  |  |  |
|                                               | ID Level | Primary    | Total                           | (F/mm²)     | (F/cc)   | Lower Upper             |  |  |  |  |  |  |
| Total Chrysotile (PCMe)                       | CD       | 0          | 0                               | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Total Amphibole (PCMe)                        | ADX      | 0          | 0                               | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Actinolite                                    | ADX      | 0          | 0                               | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Amosite                                       | ADX      | 0          | 0                               | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Anthophyllite                                 | ADX      | 0          | 0                               | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Crocidolite                                   | ADX      | 0          | 0                               | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Tremolite                                     | ADX      | 0          | 0                               | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Total Asbestos Structures (PCMe)              | CD/ADX   | 0          | 0                               | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Other Minerals                                | -        | 0          | 0                               | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Total All Structures (PCMe)                   | -        | 0          | 0                               | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |

Comment

Approved Signatory



Project ID: Maui Wildfires - Lahaina

### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL S          | ample ID:      | 042408316-                     | Customer                     | Sample:        | MFL-AM03-041824-AB |                       |                 |                    |
|------------|-----------------|----------------|--------------------------------|------------------------------|----------------|--------------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening | Structure Type | Structure Number Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type       | Additional Mineral ID | Image<br>Number | Structure Comments |
| B7         | C7              | None Detected  |                                |                              |                |                    |                       |                 |                    |
| B7         | E8              | None Detected  |                                |                              |                |                    |                       |                 |                    |
| B7         | H10             | None Detected  |                                |                              |                |                    |                       |                 |                    |
| B8         | D8              | None Detected  |                                |                              |                |                    |                       |                 |                    |
| B8         | G5              | None Detected  |                                |                              |                |                    |                       |                 |                    |



Phone: (703) 489-2674

Fax: N/A

Received Date: 04/24/2024 09:24 AM

**Analysis Date:** 04/30/2024 **Report Date:** 05/01/2024

Attn: Chelsea Saber

Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Wildfires - Lahaina

## ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

MFL-AM04-041824-AB Sample Description: DK796994 **Customer Sample Number:** EMSL Sample Number: 042408316-0004 Sample Matrix: Air Magnification used for fiber counting: 20,000 Volume (L): 7291.2 Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm<sup>2</sup>): 385 Minimum Length (µm): Grid Opening Area (mm²): 0.0128 ≥ 0.5 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: Minimum Level of analysis (chrysotile): CD P. Harrison Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: 3
Target Analytical Sensitivity (Structures/cc): 0.001
Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024

|                           | TOTAL STRUCTURES (All Sizes) |               |         |                      |               |                                 |  |  |  |  |  |
|---------------------------|------------------------------|---------------|---------|----------------------|---------------|---------------------------------|--|--|--|--|--|
|                           | Minimum                      | Structures D  | etected | Density              | Concentration | 95 % Confidence Interval (S/cc) |  |  |  |  |  |
|                           | ID Level                     | Primary Total |         | (S/mm <sup>2</sup> ) | (S/cc)        | Lower Upper                     |  |  |  |  |  |
|                           |                              |               |         |                      |               |                                 |  |  |  |  |  |
| Total Chrysotile          | CD                           | 0             | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Total Amphibole           | ADX                          | 0             | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Actinolite                | ADX                          | 0             | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Amosite                   | ADX                          | 0             | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Anthophyllite             | ADX                          | 0             | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Crocidolite               | ADX                          | 0             | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Tremolite                 | ADX                          | 0             | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Total Asbestos Structures | CD/ADX                       | 0             | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Other Minerals            | -                            | 0             | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Total All Structures      | -                            | 0             | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |

|                                  |          | PCM EQUIVA      | ALENT (P   | CMe) Fibers  | S             |                                 |
|----------------------------------|----------|-----------------|------------|--------------|---------------|---------------------------------|
|                                  | (>5      | microns in len  | gth with > | 3:1 Aspect F | Ratio)        |                                 |
|                                  | Minimum  | Fibers Detected |            | Density      | Concentration | 95 % Confidence Interval (F/cc) |
|                                  | ID Level | Primary         | Total      | (F/mm²)      | (F/cc)        | Lower Upper                     |
| Total Chrysotile (PCMe)          | CD       | 0               | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Total Amphibole (PCMe)           | ADX      | 0               | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Actinolite                       | ADX      | 0               | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Amosite                          | ADX      | 0               | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Anthophyllite                    | ADX      | 0               | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Crocidolite                      | ADX      | 0               | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Tremolite                        | ADX      | 0               | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Total Asbestos Structures (PCMe) | CD/ADX   | 0               | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Other Minerals                   | -        | 0               | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Total All Structures (PCMe)      | _        | 0               | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |

Comment

Approved Signatory



Project ID: Maui Wildfires - Lahaina

### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL Sample ID: 042408316-0004 |                |                                |                              |                |              | Customer              | Sample:         | MFL-AM04-041824-AB |
|------------|--------------------------------|----------------|--------------------------------|------------------------------|----------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening                | Structure Type | Structure Number Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| C1         | F2                             | None Detected  |                                |                              |                |              |                       |                 |                    |
| C1         | H5                             | None Detected  |                                |                              |                |              |                       |                 |                    |
| C1         | J3                             | None Detected  |                                |                              |                |              |                       |                 |                    |
| C2         | B5                             | None Detected  |                                |                              |                |              |                       |                 |                    |
| C2         | E3                             | None Detected  |                                |                              |                |              |                       |                 |                    |



Phone: (703) 489-2674

Fax: N/A

Received Date: 04/24/2024 09:24 AM Analysis Date: 04/30/2024

**Analysis Date:** 04/30/2024 **Report Date:** 05/01/2024

1560 Broadway, Suite 1400 Denver, CO, 80202

Attn: Chelsea Saber

Tetra Tech

Project: Maui Wildfires - Lahaina

# ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

MFL-FB01-041824-AB Sample Description: DK796904 **Customer Sample Number:** EMSL Sample Number: 042408316-0005 Sample Matrix: Air 0.0 Magnification used for fiber counting: 20,000 Volume (L): Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm<sup>2</sup>): 385 Minimum Length (µm): Grid Opening Area (mm²): ≥ 0.5 0.0128 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: 10 Minimum Level of analysis (chrysotile): CD Analyst: P. Harrison Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: 1
Target Analytical Sensitivity (Structures/cc): 0.001
Analytical Sensitivity (Structures/cc): N/A

Limit of Detection (Structures/cc): N/A

|                           |          | TOTAL STRU   | JCTURES       | (All Sizes) |               |                                 |
|---------------------------|----------|--------------|---------------|-------------|---------------|---------------------------------|
|                           | Minimum  | Structures D | etected       | Density     | Concentration | 95 % Confidence Interval (S/cc) |
|                           | ID Level | Primary      | Primary Total |             | (S/cc)        | Lower Upper                     |
|                           |          |              |               |             |               |                                 |
| Total Chrysotile          | CD       | 0            | 0             | < 23.36     |               |                                 |
| Total Amphibole           | ADX      | 0            | 0             | < 23.36     |               |                                 |
| Actinolite                | ADX      | 0            | 0             | < 23.36     |               |                                 |
| Amosite                   | ADX      | 0            | 0             | < 23.36     |               |                                 |
| Anthophyllite             | ADX      | 0            | 0             | < 23.36     |               |                                 |
| Crocidolite               | ADX      | 0            | 0             | < 23.36     |               |                                 |
| Tremolite                 | ADX      | 0            | 0             | < 23.36     |               |                                 |
| Total Asbestos Structures | CD/ADX   | 0            | 0             | < 23.36     |               |                                 |
| Other Minerals            | -        | 0            | 0             | < 23.36     |               |                                 |
| Total All Structures      | -        | 0            | 0             | < 23.36     |               |                                 |

|                                               |          | <b>PCM EQUIVA</b> | ALENT (P | CMe) Fibers | }             |                              |       |  |  |  |  |
|-----------------------------------------------|----------|-------------------|----------|-------------|---------------|------------------------------|-------|--|--|--|--|
| (>5 microns in length with >3:1 Aspect Ratio) |          |                   |          |             |               |                              |       |  |  |  |  |
|                                               | Minimum  | Fibers De         | tected   | Density     | Concentration | 95 % Confidence Interval (F/ |       |  |  |  |  |
|                                               | ID Level | Primary           | Total    | (F/mm²)     | (F/cc)        | Lower                        | Upper |  |  |  |  |
| Fotal Chrysotile (PCMe)                       | CD       | 0                 | 0        | < 23.36     |               |                              |       |  |  |  |  |
| Total Amphibole (PCMe)                        | ADX      | 0                 | 0        | < 23.36     |               |                              |       |  |  |  |  |
| Actinolite                                    | ADX      | 0                 | 0        | < 23.36     |               |                              |       |  |  |  |  |
| Amosite                                       | ADX      | 0                 | 0        | < 23.36     |               |                              |       |  |  |  |  |
| Anthophyllite                                 | ADX      | 0                 | 0        | < 23.36     |               |                              |       |  |  |  |  |
| Crocidolite                                   | ADX      | 0                 | 0        | < 23.36     |               |                              |       |  |  |  |  |
| Tremolite                                     | ADX      | 0                 | 0        | < 23.36     |               |                              |       |  |  |  |  |
| Total Asbestos Structures (PCMe)              | CD/ADX   | 0                 | 0        | < 23.36     |               |                              |       |  |  |  |  |
| Other Minerals                                | -        | 0                 | 0        | < 23.36     |               |                              |       |  |  |  |  |
| Total All Structures (PCMe)                   | -        | 0                 | 0        | < 23.36     |               |                              |       |  |  |  |  |

Comment

Approved Signatory



Project ID: Maui Wildfires - Lahaina

#### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL S          | ample ID:      | 042408316-                           | 0005                                     |              | Customer              | Sample:         | MFL-FB01-041824-AB |
|------------|-----------------|----------------|--------------------------------------|------------------------------------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening | Structure Type | Structure<br>Number<br>Primary Total | Dimensions (µm) Level of Length Width ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| C6         | J7              | None Detected  |                                      |                                          |              |                       |                 |                    |
| C6         | H5              | None Detected  |                                      |                                          |              |                       |                 |                    |
| C6         | F3              | None Detected  |                                      |                                          |              |                       |                 |                    |
| C6         | D4              | None Detected  |                                      |                                          |              |                       |                 |                    |
| C6         | B6              | None Detected  |                                      |                                          |              |                       |                 |                    |
| C7         | A7              | None Detected  |                                      |                                          |              |                       |                 |                    |
| C7         | C8              | None Detected  |                                      |                                          |              |                       |                 |                    |
| C7         | E4              | None Detected  |                                      |                                          |              |                       |                 |                    |
| C7         | G5              | None Detected  |                                      |                                          |              |                       |                 |                    |
| C7         | 17              | None Detected  |                                      |                                          |              |                       |                 |                    |



Phone: (703) 489-2674

Fax: N/A

Received Date: 04/24/2024 09:24 AM Analysis Date: 04/30/2024

**Report Date:** 05/01/2024

Tetra Tech 1560 Broadway, Suite

Attn: Chelsea Saber

1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Wildfires - Lahaina

## ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

MFL-AM02-041924-AB Sample Description: Dk796830 **Customer Sample Number:** 042408316-0006 EMSL Sample Number: Sample Matrix: Air Magnification used for fiber counting: 20,000 Volume (L): 6739.2 Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm<sup>2</sup>): 385 Minimum Length (µm): Grid Opening Area (mm²): 0.0128 ≥ 0.5 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: Minimum Level of analysis (chrysotile): CD P. Harrison Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: 3
Target Analytical Sensitivity (Structures/cc): 0.001
Analytical Sensitivity (Structures/cc): 0.0009

Limit of Detection (Structures/cc): 0.0027

|                           | TOTAL STRUCTURES (All Sizes) |               |         |                      |               |                                 |  |  |  |  |  |
|---------------------------|------------------------------|---------------|---------|----------------------|---------------|---------------------------------|--|--|--|--|--|
|                           | Minimum                      | Structures D  | etected | Density              | Concentration | 95 % Confidence Interval (S/cc) |  |  |  |  |  |
|                           | ID Level                     | Primary Total |         | (S/mm <sup>2</sup> ) | (S/cc)        | Lower Upper                     |  |  |  |  |  |
|                           |                              |               |         |                      |               |                                 |  |  |  |  |  |
| Total Chrysotile          | CD                           | 0             | 0       | < 46.72              | < 0.0027      | Not Applicable - 0.0027         |  |  |  |  |  |
| Total Amphibole           | ADX                          | 0             | 0       | < 46.72              | < 0.0027      | Not Applicable - 0.0027         |  |  |  |  |  |
| Actinolite                | ADX                          | 0             | 0       | < 46.72              | < 0.0027      | Not Applicable - 0.0027         |  |  |  |  |  |
| Amosite                   | ADX                          | 0             | 0       | < 46.72              | < 0.0027      | Not Applicable - 0.0027         |  |  |  |  |  |
| Anthophyllite             | ADX                          | 0             | 0       | < 46.72              | < 0.0027      | Not Applicable - 0.0027         |  |  |  |  |  |
| Crocidolite               | ADX                          | 0             | 0       | < 46.72              | < 0.0027      | Not Applicable - 0.0027         |  |  |  |  |  |
| Tremolite                 | ADX                          | 0             | 0       | < 46.72              | < 0.0027      | Not Applicable - 0.0027         |  |  |  |  |  |
| Total Asbestos Structures | CD/ADX                       | 0             | 0       | < 46.72              | < 0.0027      | Not Applicable - 0.0027         |  |  |  |  |  |
| Other Minerals            | -                            | 0             | 0       | < 46.72              | < 0.0027      | Not Applicable - 0.0027         |  |  |  |  |  |
| Total All Structures      | -                            | 0             | 0       | < 46.72              | < 0.0027      | Not Applicable - 0.0027         |  |  |  |  |  |

|                                  |          | <b>PCM EQUIVA</b> | ALENT (P   | CMe) Fibers  | 3             |                                 |
|----------------------------------|----------|-------------------|------------|--------------|---------------|---------------------------------|
|                                  | (>5 ı    | microns in len    | gth with > | 3:1 Aspect F | Ratio)        |                                 |
|                                  | Minimum  | Fibers Det        | tected     | Density      | Concentration | 95 % Confidence Interval (F/cc) |
|                                  | ID Level | Primary           | Total      | (F/mm²)      | (F/cc)        | Lower Upper                     |
| Total Chrysotile (PCMe)          | CD       | 0                 | 0          | < 46.72      | < 0.0027      | Not Applicable - 0.0027         |
| Total Amphibole (PCMe)           | ADX      | 0                 | 0          | < 46.72      | < 0.0027      | Not Applicable - 0.0027         |
| Actinolite                       | ADX      | 0                 | 0          | < 46.72      | < 0.0027      | Not Applicable - 0.0027         |
| Amosite                          | ADX      | 0                 | 0          | < 46.72      | < 0.0027      | Not Applicable - 0.0027         |
| Anthophyllite                    | ADX      | 0                 | 0          | < 46.72      | < 0.0027      | Not Applicable - 0.0027         |
| Crocidolite                      | ADX      | 0                 | 0          | < 46.72      | < 0.0027      | Not Applicable - 0.0027         |
| Tremolite                        | ADX      | 0                 | 0          | < 46.72      | < 0.0027      | Not Applicable - 0.0027         |
| Total Asbestos Structures (PCMe) | CD/ADX   | 0                 | 0          | < 46.72      | < 0.0027      | Not Applicable - 0.0027         |
| Other Minerals                   | -        | 0                 | 0          | < 46.72      | < 0.0027      | Not Applicable - 0.0027         |
| Total All Structures (PCMe)      | -        | 0                 | 0          | < 46.72      | < 0.0027      | Not Applicable - 0.0027         |

Comment

Approved Signatory



Project ID: Maui Wildfires - Lahaina

### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL Sample ID: 042408316-0006 |                |                                      |                              |                |              | Customer              | Sample:         | MFL-AM02-041924-AB |
|------------|--------------------------------|----------------|--------------------------------------|------------------------------|----------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening                | Structure Type | Structure<br>Number<br>Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| D2         | <b>I</b> 4                     | None Detected  |                                      |                              |                |              |                       |                 |                    |
| D2         | F2                             | None Detected  |                                      |                              |                |              |                       |                 |                    |
| D2         | C4                             | None Detected  |                                      |                              |                |              |                       |                 |                    |
| D3         | <b>I</b> 6                     | None Detected  |                                      |                              |                |              |                       |                 |                    |
| D3         | B4                             | None Detected  |                                      |                              |                |              |                       |                 |                    |



Phone: (703) 489-2674

Fax: N/A

Received Date: 04/24/2024 09:24 AM Analysis Date: 04/30/2024

Report Date: 05/01/2024

Attn: Chelsea Saber Tetra Tech

1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Wildfires - Lahaina

# ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

MFL-AM03-041924-AB Sample Description: Dk796827 **Customer Sample Number:** EMSL Sample Number: 042408316-0007 Sample Matrix: Air 7194.2 Magnification used for fiber counting: 20,000 Volume (L): Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm<sup>2</sup>): 385 Minimum Length (µm): Grid Opening Area (mm²): 0.0128 ≥ 0.5 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: Minimum Level of analysis (chrysotile): CD P. Harrison Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: 3
Target Analytical Sensitivity (Structures/cc): 0.001
Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024

|                           | TOTAL STRUCTURES (All Sizes) |               |         |                      |               |                                 |  |  |  |  |  |
|---------------------------|------------------------------|---------------|---------|----------------------|---------------|---------------------------------|--|--|--|--|--|
|                           | Minimum                      | Structures D  | etected | Density              | Concentration | 95 % Confidence Interval (S/cc) |  |  |  |  |  |
|                           | ID Level                     | Primary Total |         | (S/mm <sup>2</sup> ) | (S/cc)        | Lower Upper                     |  |  |  |  |  |
|                           |                              |               |         |                      |               |                                 |  |  |  |  |  |
| Total Chrysotile          | CD                           | 0             | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Total Amphibole           | ADX                          | 0             | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Actinolite                | ADX                          | 0             | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Amosite                   | ADX                          | 0             | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Anthophyllite             | ADX                          | 0             | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Crocidolite               | ADX                          | 0             | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Tremolite                 | ADX                          | 0             | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Total Asbestos Structures | CD/ADX                       | 0             | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Other Minerals            | -                            | 0             | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Total All Structures      | -                            | 0             | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |

|                                  |          | PCM EQUIVA     | ALENT (P        | CMe) Fibers  | 3             |                                 |
|----------------------------------|----------|----------------|-----------------|--------------|---------------|---------------------------------|
|                                  | (>5 ı    | microns in len | gth with >      | 3:1 Aspect I | Ratio)        |                                 |
|                                  | Minimum  | Fibers Det     | Fibers Detected |              | Concentration | 95 % Confidence Interval (F/cc) |
|                                  | ID Level | Primary        | Total           | (F/mm²)      | (F/cc)        | Lower Upper                     |
| Total Chrysotile (PCMe)          | CD       | 0              | 0               | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Total Amphibole (PCMe)           | ADX      | 0              | 0               | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Actinolite                       | ADX      | 0              | 0               | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Amosite                          | ADX      | 0              | 0               | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Anthophyllite                    | ADX      | 0              | 0               | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Crocidolite                      | ADX      | 0              | 0               | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Tremolite                        | ADX      | 0              | 0               | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Total Asbestos Structures (PCMe) | CD/ADX   | 0              | 0               | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Other Minerals                   | -        | 0              | 0               | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Total All Structures (PCMe)      | -        | 0              | 0               | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |

Comment

Approved Signatory



Project ID: Maui Wildfires - Lahaina

### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL Sample ID: 042408316-0007 |                |                                      |                              |                |              |                       | Sample:         | MFL-AM03-041924-AB |
|------------|--------------------------------|----------------|--------------------------------------|------------------------------|----------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening                | Structure Type | Structure<br>Number<br>Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| D5         | C10                            | None Detected  |                                      |                              |                |              |                       |                 |                    |
| D5         | E7                             | None Detected  |                                      |                              |                |              |                       |                 |                    |
| D5         | H6                             | None Detected  |                                      |                              |                |              |                       |                 |                    |
| D6         | 13                             | None Detected  |                                      |                              |                |              |                       |                 |                    |
| D6         | D5                             | None Detected  |                                      |                              |                |              |                       |                 |                    |



042408316 EMSL Order: TTDC42 **Customer ID: Customer PO:** 1207085 Project ID: N/A

Phone: (703) 489-2674

N/A Fax:

04/24/2024 09:24 AM Received Date:

Analysis Date: 04/30/2024

Report Date:

05/01/2024

Project: Maui Wildfires - Lahaina

Denver, CO, 80202

1560 Broadway, Suite 1400

Attn: Chelsea Saber

Tetra Tech

#### **ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy**

MFL-AM04-041924-AB Sample Description: Dk796823 **Customer Sample Number:** EMSL Sample Number: 042408316-0008 Sample Matrix: Air Magnification used for fiber counting: 20,000 Volume (L): 7443.2 Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm<sup>2</sup>): 385 Minimum Length (µm): Grid Opening Area (mm²): 0.0128 ≥ 0.5 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: Minimum Level of analysis (chrysotile): CD P. Harrison Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: Target Analytical Sensitivity (Structures/cc): 0.001 Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024

|                           | TOTAL STRUCTURES (All Sizes) |              |               |         |               |                                 |  |  |  |  |  |
|---------------------------|------------------------------|--------------|---------------|---------|---------------|---------------------------------|--|--|--|--|--|
|                           | Minimum                      | Structures D | etected       | Density | Concentration | 95 % Confidence Interval (S/cc) |  |  |  |  |  |
|                           | ID Level                     | Primary      | Primary Total |         | (S/cc)        | Lower Upper                     |  |  |  |  |  |
|                           |                              |              |               |         |               |                                 |  |  |  |  |  |
| Total Chrysotile          | CD                           | 0            | 0             | < 46.72 | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Total Amphibole           | ADX                          | 0            | 0             | < 46.72 | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Actinolite                | ADX                          | 0            | 0             | < 46.72 | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Amosite                   | ADX                          | 0            | 0             | < 46.72 | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Anthophyllite             | ADX                          | 0            | 0             | < 46.72 | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Crocidolite               | ADX                          | 0            | 0             | < 46.72 | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Tremolite                 | ADX                          | 0            | 0             | < 46.72 | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Total Asbestos Structures | CD/ADX                       | 0            | 0             | < 46.72 | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Other Minerals            | -                            | 0            | 0             | < 46.72 | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Total All Structures      | -                            | 0            | 0             | < 46.72 | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |

|                                               |          | PCM EQUIVA | ALENT (P | CMe) Fibers | S             |                                 |  |  |  |  |  |
|-----------------------------------------------|----------|------------|----------|-------------|---------------|---------------------------------|--|--|--|--|--|
| (>5 microns in length with >3:1 Aspect Ratio) |          |            |          |             |               |                                 |  |  |  |  |  |
|                                               | Minimum  | Fibers De  | tected   | Density     | Concentration | 95 % Confidence Interval (F/cc) |  |  |  |  |  |
|                                               | ID Level | Primary    | Total    | (F/mm²)     | (F/cc)        | Lower Upper                     |  |  |  |  |  |
| Total Chrysotile (PCMe)                       | CD       | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Total Amphibole (PCMe)                        | ADX      | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Actinolite                                    | ADX      | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Amosite                                       | ADX      | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Anthophyllite                                 | ADX      | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Crocidolite                                   | ADX      | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Tremolite                                     | ADX      | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Total Asbestos Structures (PCMe)              | CD/ADX   | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Other Minerals                                | -        | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Total All Structures (PCMe)                   | _        | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |

Comment



Project ID: Maui Wildfires - Lahaina

### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

| EMSL Sample ID: 042408316-0008 |                 |                |                                      |                              |                | Customer     | Sample:               | MFL-AM04-041924-AB |                    |
|--------------------------------|-----------------|----------------|--------------------------------------|------------------------------|----------------|--------------|-----------------------|--------------------|--------------------|
| Grid<br>ID                     | Grid<br>Opening | Structure Type | Structure<br>Number<br>Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type | Additional Mineral ID | Image<br>Number    | Structure Comments |
| E1                             | G7              | None Detected  |                                      |                              |                |              |                       |                    |                    |
| E1                             | J6              | None Detected  |                                      |                              |                |              |                       |                    |                    |
| E2                             | B4              | None Detected  |                                      |                              |                |              |                       |                    |                    |
| E2                             | D6              | None Detected  |                                      |                              |                |              |                       |                    |                    |
| E2                             | H5              | None Detected  |                                      |                              |                |              |                       |                    |                    |



042408316 EMSL Order: TTDC42 **Customer ID: Customer PO:** 1207085 Project ID: N/A

> Phone: (703) 489-2674

N/A Fax:

04/24/2024 09:24 AM Received Date:

Analysis Date: 04/30/2024 05/01/2024

Report Date:

Project: Maui Wildfires - Lahaina

Denver, CO, 80202

1560 Broadway, Suite 1400

Attn: Chelsea Saber

Tetra Tech

#### **ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy**

MFL-FB01-041924-AB Sample Description: Dk796887 **Customer Sample Number:** EMSL Sample Number: 042408316-0009 Sample Matrix: Air 0.0 Magnification used for fiber counting: 20,000 Volume (L): Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm<sup>2</sup>): 385 Minimum Length (µm): Grid Opening Area (mm²): ≥ 0.5 0.0128 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: 10 Minimum Level of analysis (chrysotile): CD Analyst: P. Harrison Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: Target Analytical Sensitivity (Structures/cc): 0.001 Analytical Sensitivity (Structures/cc):

Limit of Detection (Structures/cc):

|                           |          | TOTAL STRU   | JCTURES | (All Sizes)                     |               |                                 |
|---------------------------|----------|--------------|---------|---------------------------------|---------------|---------------------------------|
|                           | Minimum  | Structures D | etected | Density<br>(S/mm <sup>2</sup> ) | Concentration | 95 % Confidence Interval (S/cc) |
|                           | ID Level | Primary      | Total   |                                 | (S/cc)        | Lower Upper                     |
|                           |          |              |         |                                 |               |                                 |
| Total Chrysotile          | CD       | 0            | 0       | < 23.36                         |               |                                 |
| Total Amphibole           | ADX      | 0            | 0       | < 23.36                         |               |                                 |
| Actinolite                | ADX      | 0            | 0       | < 23.36                         |               |                                 |
| Amosite                   | ADX      | 0            | 0       | < 23.36                         |               |                                 |
| Anthophyllite             | ADX      | 0            | 0       | < 23.36                         |               |                                 |
| Crocidolite               | ADX      | 0            | 0       | < 23.36                         |               |                                 |
| Tremolite                 | ADX      | 0            | 0       | < 23.36                         |               |                                 |
| Total Asbestos Structures | CD/ADX   | 0            | 0       | < 23.36                         |               |                                 |
| Other Minerals            | -        | 0            | 0       | < 23.36                         |               |                                 |
| Total All Structures      | -        | 0            | 0       | < 23.36                         |               |                                 |

| PCM EQUIVALENT (PCMe) Fibers                  |          |            |        |         |               |                   |                |  |  |  |  |
|-----------------------------------------------|----------|------------|--------|---------|---------------|-------------------|----------------|--|--|--|--|
| (>5 microns in length with >3:1 Aspect Ratio) |          |            |        |         |               |                   |                |  |  |  |  |
|                                               | Minimum  | Fibers Det | tected | Density | Concentration | 95 % Confidence I | nterval (F/cc) |  |  |  |  |
|                                               | ID Level | Primary    | Total  | (F/mm²) | (F/cc)        | Lower             | Upper          |  |  |  |  |
| Fotal Chrysotile (PCMe)                       | CD       | 0          | 0      | < 23.36 |               |                   |                |  |  |  |  |
| Total Amphibole (PCMe)                        | ADX      | 0          | 0      | < 23.36 |               |                   |                |  |  |  |  |
| Actinolite                                    | ADX      | 0          | 0      | < 23.36 |               |                   |                |  |  |  |  |
| Amosite                                       | ADX      | 0          | 0      | < 23.36 |               |                   |                |  |  |  |  |
| Anthophyllite                                 | ADX      | 0          | 0      | < 23.36 |               |                   |                |  |  |  |  |
| Crocidolite                                   | ADX      | 0          | 0      | < 23.36 |               |                   |                |  |  |  |  |
| Tremolite                                     | ADX      | 0          | 0      | < 23.36 |               |                   |                |  |  |  |  |
| Total Asbestos Structures (PCMe)              | CD/ADX   | 0          | 0      | < 23.36 |               |                   |                |  |  |  |  |
| Other Minerals                                | -        | 0          | 0      | < 23.36 |               |                   |                |  |  |  |  |
| Total All Structures (PCMe)                   | =        | 0          | 0      | < 23.36 |               |                   |                |  |  |  |  |

Comment



Project ID: Maui Wildfires - Lahaina

#### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL S          | ample ID:      | 042408316-                     | 0009                                     |              | Customer Sample: MFL-FB01-04192 |                 |                    |
|------------|-----------------|----------------|--------------------------------|------------------------------------------|--------------|---------------------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening | Structure Type | Structure Number Primary Total | Dimensions (μm) Level of Length Width ID | Mineral Type | Additional Mineral ID           | Image<br>Number | Structure Comments |
| E5         | A4              | None Detected  |                                |                                          |              |                                 |                 |                    |
| E5         | C6              | None Detected  |                                |                                          |              |                                 |                 |                    |
| E5         | E7              | None Detected  |                                |                                          |              |                                 |                 |                    |
| E5         | G8              | None Detected  |                                |                                          |              |                                 |                 |                    |
| E5         | 17              | None Detected  |                                |                                          |              |                                 |                 |                    |
| E7         | J6              | None Detected  |                                |                                          |              |                                 |                 |                    |
| E7         | H4              | None Detected  |                                |                                          |              |                                 |                 |                    |
| E7         | G3              | None Detected  |                                |                                          |              |                                 |                 |                    |
| E7         | E4              | None Detected  |                                |                                          |              |                                 |                 |                    |
| E7         | C3              | None Detected  |                                |                                          |              |                                 |                 |                    |



Phone: (703) 489-2674

Fax: N/A

Received Date: 04/24/2024 09:24 AM Analysis Date: 04/30/2024

Report Date: 05/01/2024

Attn: Chelsea Saber

Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Wildfires - Lahaina

## ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

MFL-AM01-042024-AB Sample Description: Dk796828 **Customer Sample Number:** EMSL Sample Number: 042408316-0010 Sample Matrix: Air Magnification used for fiber counting: 20,000 Volume (L): 6703.9 Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm<sup>2</sup>): 385 Minimum Length (µm): Grid Opening Area (mm²): ≥ 0.5 0.0128 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: Minimum Level of analysis (chrysotile): CD P. Harrison Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: 2
Target Analytical Sensitivity (Structures/cc): 0.001
Analytical Sensitivity (Structures/cc): 0.0009

Limit of Detection (Structures/cc): 0.0027

|                           |          | TOTAL STRU   | JCTURES       | (All Sizes) |               |                                 |
|---------------------------|----------|--------------|---------------|-------------|---------------|---------------------------------|
|                           | Minimum  | Structures D | etected       | Density     | Concentration | 95 % Confidence Interval (S/cc) |
|                           | ID Level | Primary      | Primary Total |             | (S/cc)        | Lower Upper                     |
|                           |          |              |               |             |               |                                 |
| Total Chrysotile          | CD       | 0            | 0             | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |
| Total Amphibole           | ADX      | 0            | 0             | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |
| Actinolite                | ADX      | 0            | 0             | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |
| Amosite                   | ADX      | 0            | 0             | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |
| Anthophyllite             | ADX      | 0            | 0             | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |
| Crocidolite               | ADX      | 0            | 0             | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |
| Tremolite                 | ADX      | 0            | 0             | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |
| Total Asbestos Structures | CD/ADX   | 0            | 0             | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |
| Other Minerals            | -        | 0            | 0             | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |
| Total All Structures      | -        | 0            | 0             | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |

|                                               |          | <b>PCM EQUIVA</b> | ALENT (P | CMe) Fibers | 3             |                                 |  |  |  |  |  |
|-----------------------------------------------|----------|-------------------|----------|-------------|---------------|---------------------------------|--|--|--|--|--|
| (>5 microns in length with >3:1 Aspect Ratio) |          |                   |          |             |               |                                 |  |  |  |  |  |
|                                               | Minimum  | Fibers Det        | tected   | Density     | Concentration | 95 % Confidence Interval (F/cc) |  |  |  |  |  |
|                                               | ID Level | Primary           | Total    | (F/mm²)     | (F/cc)        | Lower Upper                     |  |  |  |  |  |
| Total Chrysotile (PCMe)                       | CD       | 0                 | 0        | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |  |  |  |  |  |
| Total Amphibole (PCMe)                        | ADX      | 0                 | 0        | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |  |  |  |  |  |
| Actinolite                                    | ADX      | 0                 | 0        | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |  |  |  |  |  |
| Amosite                                       | ADX      | 0                 | 0        | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |  |  |  |  |  |
| Anthophyllite                                 | ADX      | 0                 | 0        | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |  |  |  |  |  |
| Crocidolite                                   | ADX      | 0                 | 0        | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |  |  |  |  |  |
| Tremolite                                     | ADX      | 0                 | 0        | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |  |  |  |  |  |
| Total Asbestos Structures (PCMe)              | CD/ADX   | 0                 | 0        | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |  |  |  |  |  |
| Other Minerals                                | -        | 0                 | 0        | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |  |  |  |  |  |
| Total All Structures (PCMe)                   | -        | 0                 | 0        | < 46.72     | < 0.0027      | Not Applicable - 0.0027         |  |  |  |  |  |

Comment

Approved Signatory



Project ID: Maui Wildfires - Lahaina

#### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL Sample ID: 042408316-0010 |                |                                      |                              |                |              | Customer              | Sample:         | MFL-AM01-042024-AB |
|------------|--------------------------------|----------------|--------------------------------------|------------------------------|----------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening                | Structure Type | Structure<br>Number<br>Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| F1         | D2                             | None Detected  |                                      |                              |                |              |                       |                 |                    |
| F1         | F4                             | None Detected  |                                      |                              |                |              |                       |                 |                    |
| F1         | H6                             | None Detected  |                                      |                              |                |              |                       |                 |                    |
| F2         | C6                             | None Detected  |                                      |                              |                |              |                       |                 |                    |
| F2         | G8                             | None Detected  |                                      |                              |                |              |                       |                 |                    |



042408316 EMSL Order: TTDC42 **Customer ID: Customer PO:** 1207085 Project ID: N/A

> Phone: (703) 489-2674

N/A Fax:

04/24/2024 09:24 AM Received Date: 04/30/2024

Analysis Date: 05/01/2024

Report Date:

Denver, CO, 80202 Project: Maui Wildfires - Lahaina

1560 Broadway, Suite 1400

Attn: Chelsea Saber

Tetra Tech

#### **ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy**

MFL-AM02-042024-AB Sample Description: Dk796920 **Customer Sample Number:** EMSL Sample Number: 042408316-0011 Sample Matrix: Air 7197.1 Magnification used for fiber counting: 20,000 Volume (L): Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm<sup>2</sup>): 385 Minimum Length (µm): Grid Opening Area (mm²): 0.0128 ≥ 0.5 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: Minimum Level of analysis (chrysotile): CD Analyst: P. Harrison Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: Target Analytical Sensitivity (Structures/cc): 0.001 Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024

|                           | TOTAL STRUCTURES (All Sizes) |              |               |         |               |                                 |  |  |  |  |  |
|---------------------------|------------------------------|--------------|---------------|---------|---------------|---------------------------------|--|--|--|--|--|
|                           | Minimum                      | Structures D | etected       | Density | Concentration | 95 % Confidence Interval (S/cc) |  |  |  |  |  |
|                           | ID Level                     | Primary      | Primary Total |         | (S/cc)        | Lower Upper                     |  |  |  |  |  |
|                           |                              |              |               |         |               |                                 |  |  |  |  |  |
| Total Chrysotile          | CD                           | 0            | 0             | < 46.72 | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Total Amphibole           | ADX                          | 0            | 0             | < 46.72 | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Actinolite                | ADX                          | 0            | 0             | < 46.72 | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Amosite                   | ADX                          | 0            | 0             | < 46.72 | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Anthophyllite             | ADX                          | 0            | 0             | < 46.72 | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Crocidolite               | ADX                          | 0            | 0             | < 46.72 | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Tremolite                 | ADX                          | 0            | 0             | < 46.72 | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Total Asbestos Structures | CD/ADX                       | 0            | 0             | < 46.72 | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Other Minerals            | -                            | 0            | 0             | < 46.72 | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Total All Structures      | -                            | 0            | 0             | < 46.72 | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |

|                                               |          | PCM EQUIVA | ALENT (P | CMe) Fibers | 3             |                                 |  |  |  |  |  |
|-----------------------------------------------|----------|------------|----------|-------------|---------------|---------------------------------|--|--|--|--|--|
| (>5 microns in length with >3:1 Aspect Ratio) |          |            |          |             |               |                                 |  |  |  |  |  |
|                                               | Minimum  | Fibers Det | tected   | Density     | Concentration | 95 % Confidence Interval (F/cc) |  |  |  |  |  |
|                                               | ID Level | Primary    | Total    | (F/mm²)     | (F/cc)        | Lower Upper                     |  |  |  |  |  |
| Total Chrysotile (PCMe)                       | CD       | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Total Amphibole (PCMe)                        | ADX      | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Actinolite                                    | ADX      | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Amosite                                       | ADX      | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Anthophyllite                                 | ADX      | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Crocidolite                                   | ADX      | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Tremolite                                     | ADX      | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Total Asbestos Structures (PCMe)              | CD/ADX   | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Other Minerals                                | -        | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |
| Total All Structures (PCMe)                   | -        | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |

Comment



Project ID: Maui Wildfires - Lahaina

### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL Sample ID: 042408316-0011 |                |                                |                              |                |              | Customer              | Sample:         | MFL-AM02-042024-AB |
|------------|--------------------------------|----------------|--------------------------------|------------------------------|----------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening                | Structure Type | Structure Number Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| F5         | <b>I</b> 2                     | None Detected  |                                |                              |                |              |                       |                 |                    |
| F5         | F1                             | None Detected  |                                |                              |                |              |                       |                 |                    |
| F5         | D3                             | None Detected  |                                |                              |                |              |                       |                 |                    |
| F6         | G4                             | None Detected  |                                |                              |                |              |                       |                 |                    |
| F6         | D7                             | None Detected  |                                |                              |                |              |                       |                 |                    |



**Phone:** (703) 489-2674

Fax: N/A

Received Date: 04/24/2024 09:24 AM

**Analysis Date:** 04/30/2024 **Report Date:** 05/01/2024

Attn: Chelsea Saber Tetra Tech

1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Wildfires - Lahaina

# ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

MFL-AM03-042024-AB Sample Description: Dk796899 **Customer Sample Number:** EMSL Sample Number: 042408316-0012 Sample Matrix: Air 7223.1 Magnification used for fiber counting: 20,000 Volume (L): Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm<sup>2</sup>): 385 Minimum Length (µm): Grid Opening Area (mm²): ≥ 0.5 0.0128 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: Minimum Level of analysis (chrysotile): CD Analyst: P. Harrison Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: 2
Target Analytical Sensitivity (Structures/cc): 0.001
Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024

| TOTAL STRUCTURES (All Sizes) |          |                     |       |                      |               |                                 |  |  |  |  |
|------------------------------|----------|---------------------|-------|----------------------|---------------|---------------------------------|--|--|--|--|
|                              | Minimum  | Structures Detected |       | Density              | Concentration | 95 % Confidence Interval (S/cc) |  |  |  |  |
|                              | ID Level | Primary             | Total | (S/mm <sup>2</sup> ) | (S/cc)        | Lower Upper                     |  |  |  |  |
|                              |          |                     |       |                      |               |                                 |  |  |  |  |
| Total Chrysotile             | CD       | 0                   | 0     | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |
| Total Amphibole              | ADX      | 0                   | 0     | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |
| Actinolite                   | ADX      | 0                   | 0     | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |
| Amosite                      | ADX      | 0                   | 0     | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |
| Anthophyllite                | ADX      | 0                   | 0     | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |
| Crocidolite                  | ADX      | 0                   | 0     | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |
| Tremolite                    | ADX      | 0                   | 0     | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |
| Total Asbestos Structures    | CD/ADX   | 0                   | 0     | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |
| Other Minerals               | -        | 0                   | 0     | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |
| Total All Structures         | -        | 0                   | 0     | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |

| PCM EQUIVALENT (PCMe) Fibers (>5 microns in length with >3:1 Aspect Ratio) |          |         |       |         |          |                         |  |  |  |  |  |
|----------------------------------------------------------------------------|----------|---------|-------|---------|----------|-------------------------|--|--|--|--|--|
|                                                                            |          |         |       |         |          |                         |  |  |  |  |  |
|                                                                            | ID Level | Primary | Total | (F/mm²) | (F/cc)   | Lower Upper             |  |  |  |  |  |
| Total Chrysotile (PCMe)                                                    | CD       | 0       | 0     | < 46.72 | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |
| Total Amphibole (PCMe)                                                     | ADX      | 0       | 0     | < 46.72 | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |
| Actinolite                                                                 | ADX      | 0       | 0     | < 46.72 | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |
| Amosite                                                                    | ADX      | 0       | 0     | < 46.72 | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |
| Anthophyllite                                                              | ADX      | 0       | 0     | < 46.72 | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |
| Crocidolite                                                                | ADX      | 0       | 0     | < 46.72 | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |
| Tremolite                                                                  | ADX      | 0       | 0     | < 46.72 | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |
| Total Asbestos Structures (PCMe)                                           | CD/ADX   | 0       | 0     | < 46.72 | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |
| Other Minerals                                                             | -        | 0       | 0     | < 46.72 | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |
| Total All Structures (PCMe)                                                | _        | 0       | 0     | < 46.72 | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |

Comment

Approved Signatory



Project ID: Maui Wildfires - Lahaina

#### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL Sample ID: 042408316-0012 |                |                                      |                              |                |              | Customer              | Sample:         | MFL-AM03-042024-AB |
|------------|--------------------------------|----------------|--------------------------------------|------------------------------|----------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening                | Structure Type | Structure<br>Number<br>Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| G1         | A7                             | None Detected  |                                      |                              |                |              |                       |                 |                    |
| G1         | E10                            | None Detected  |                                      |                              |                |              |                       |                 |                    |
| G1         | 18                             | None Detected  |                                      |                              |                |              |                       |                 |                    |
| G2         | B6                             | None Detected  |                                      |                              |                |              |                       |                 |                    |
| G2         | H8                             | None Detected  |                                      |                              |                |              |                       |                 |                    |



Phone: (703) 489-2674

Fax: N/A

Received Date: 04/24/2024 09:24 AM Analysis Date: 04/30/2024

**Report Date:** 05/01/2024

Attn: Chelsea Saber Tetra Tech

1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Wildfires - Lahaina

## ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

MFL-FB01-042024-AB Sample Description: Dk797028 **Customer Sample Number:** 042408316-0013 EMSL Sample Number: Sample Matrix: Air Magnification used for fiber counting: 20,000 Volume (L): 0.0 Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm<sup>2</sup>): 385 Minimum Length (µm): Grid Opening Area (mm²): 0.0128 ≥ 0.5 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: 10 Minimum Level of analysis (chrysotile): CD Analyst: P. Harrison Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: 1
Target Analytical Sensitivity (Structures/cc): 0.001
Analytical Sensitivity (Structures/cc): N/A

Limit of Detection (Structures/cc): N/A

**TOTAL STRUCTURES (All Sizes)** Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum ID Level Primary Total (S/mm<sup>2</sup>) (S/cc) Lower Upper **Total Chrysotile** CD < 23.36 Total Amphibole ADX 0 0 < 23.36 Actinolite ADX 0 0 < 23.36 Amosite ADX 0 0 < 23.36 ADX < 23.36 Anthophyllite 0 0 Crocidolite ADX 0 0 < 23.36 ADX O 0 Tremolite < 23.36 Total Asbestos Structures CD/ADX 0 0 < 23.36 Other Minerals 0 0 < 23.36 **Total All Structures** < 23.36

| PCM EQUIVALENT (PCMe) Fibers                  |          |            |        |         |               |                               |       |  |  |  |  |
|-----------------------------------------------|----------|------------|--------|---------|---------------|-------------------------------|-------|--|--|--|--|
| (>5 microns in length with >3:1 Aspect Ratio) |          |            |        |         |               |                               |       |  |  |  |  |
|                                               | Minimum  | Fibers Det | tected | Density | Concentration | 95 % Confidence Interval (F/c |       |  |  |  |  |
|                                               | ID Level | Primary    | Total  | (F/mm²) | (F/cc)        | Lower                         | Upper |  |  |  |  |
| Fotal Chrysotile (PCMe)                       | CD       | 0          | 0      | < 23.36 |               |                               |       |  |  |  |  |
| Total Amphibole (PCMe)                        | ADX      | 0          | 0      | < 23.36 |               |                               |       |  |  |  |  |
| Actinolite                                    | ADX      | 0          | 0      | < 23.36 |               |                               |       |  |  |  |  |
| Amosite                                       | ADX      | 0          | 0      | < 23.36 |               |                               |       |  |  |  |  |
| Anthophyllite                                 | ADX      | 0          | 0      | < 23.36 |               |                               |       |  |  |  |  |
| Crocidolite                                   | ADX      | 0          | 0      | < 23.36 |               |                               |       |  |  |  |  |
| Tremolite                                     | ADX      | 0          | 0      | < 23.36 |               |                               |       |  |  |  |  |
| Total Asbestos Structures (PCMe)              | CD/ADX   | 0          | 0      | < 23.36 |               |                               |       |  |  |  |  |
| Other Minerals                                | -        | 0          | 0      | < 23.36 |               |                               |       |  |  |  |  |
| Total All Structures (PCMe)                   | =        | 0          | 0      | < 23.36 |               |                               |       |  |  |  |  |

Comment

Approved Signatory



Project ID: Maui Wildfires - Lahaina

#### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL S          | ample ID:      | 042408316-                           | 0013                         |                |              | Customer              | Sample:         | MFL-FB01-042024-AB |
|------------|-----------------|----------------|--------------------------------------|------------------------------|----------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening | Structure Type | Structure<br>Number<br>Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| G5         | J5              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| G5         | H4              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| G5         | F1              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| G5         | D2              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| G5         | B2              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| G6         | J4              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| G6         | H2              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| G6         | F1              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| G6         | E4              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| G6         | C3              | None Detected  |                                      |                              |                |              |                       |                 |                    |



**Phone:** (703) 489-2674

Fax: N/A

Received Date: 04/24/2024 09:24 AM Analysis Date: 04/30/2024

Report Date: 05/01/2024

Attn: Chelsea Saber Tetra Tech

1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Wildfires - Lahaina

## ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

MFL-AM01-042124-AB Sample Description: Dk797052 **Customer Sample Number:** EMSL Sample Number: 042408316-0014 Sample Matrix: Air 7543.2 Magnification used for fiber counting: 20,000 Volume (L): Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm<sup>2</sup>): 385 Minimum Length (µm): Grid Opening Area (mm²): ≥ 0.5 0.0128 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: Minimum Level of analysis (chrysotile): CD Analyst: P. Harrison Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: 2
Target Analytical Sensitivity (Structures/cc): 0.001
Analytical Sensitivity (Structures/cc): 0.0010

Limit of Detection (Structures/cc): 0.0030

| TOTAL STRUCTURES (All Sizes) |          |                                   |   |                      |               |                                 |  |  |  |  |
|------------------------------|----------|-----------------------------------|---|----------------------|---------------|---------------------------------|--|--|--|--|
|                              | Minimum  | Structures Detected Primary Total |   | Density              | Concentration | 95 % Confidence Interval (S/cc) |  |  |  |  |
|                              | ID Level |                                   |   | (S/mm <sup>2</sup> ) | (S/cc)        | Lower Upper                     |  |  |  |  |
|                              |          |                                   |   |                      |               |                                 |  |  |  |  |
| Total Chrysotile             | CD       | 0                                 | 0 | < 58.40              | < 0.0030      | Not Applicable - 0.0030         |  |  |  |  |
| Total Amphibole              | ADX      | 0                                 | 0 | < 58.40              | < 0.0030      | Not Applicable - 0.0030         |  |  |  |  |
| Actinolite                   | ADX      | 0                                 | 0 | < 58.40              | < 0.0030      | Not Applicable - 0.0030         |  |  |  |  |
| Amosite                      | ADX      | 0                                 | 0 | < 58.40              | < 0.0030      | Not Applicable - 0.0030         |  |  |  |  |
| Anthophyllite                | ADX      | 0                                 | 0 | < 58.40              | < 0.0030      | Not Applicable - 0.0030         |  |  |  |  |
| Crocidolite                  | ADX      | 0                                 | 0 | < 58.40              | < 0.0030      | Not Applicable - 0.0030         |  |  |  |  |
| Tremolite                    | ADX      | 0                                 | 0 | < 58.40              | < 0.0030      | Not Applicable - 0.0030         |  |  |  |  |
| Total Asbestos Structures    | CD/ADX   | 0                                 | 0 | < 58.40              | < 0.0030      | Not Applicable - 0.0030         |  |  |  |  |
| Other Minerals               | -        | 0                                 | 0 | < 58.40              | < 0.0030      | Not Applicable - 0.0030         |  |  |  |  |
| Total All Structures         |          | 0                                 | 0 | < 58.40              | < 0.0030      | Not Applicable - 0.0030         |  |  |  |  |

| PCM EQUIVALENT (PCMe) Fibers                  |          |            |        |         |               |                                 |  |  |  |  |  |
|-----------------------------------------------|----------|------------|--------|---------|---------------|---------------------------------|--|--|--|--|--|
| (>5 microns in length with >3:1 Aspect Ratio) |          |            |        |         |               |                                 |  |  |  |  |  |
|                                               | Minimum  | Fibers Det | tected | Density | Concentration | 95 % Confidence Interval (F/cc) |  |  |  |  |  |
|                                               | ID Level | Primary    | Total  | (F/mm²) | (F/cc)        | Lower Upper                     |  |  |  |  |  |
| Total Chrysotile (PCMe)                       | CD       | 0          | 0      | < 58.40 | < 0.0030      | Not Applicable - 0.0030         |  |  |  |  |  |
| Total Amphibole (PCMe)                        | ADX      | 0          | 0      | < 58.40 | < 0.0030      | Not Applicable - 0.0030         |  |  |  |  |  |
| Actinolite                                    | ADX      | 0          | 0      | < 58.40 | < 0.0030      | Not Applicable - 0.0030         |  |  |  |  |  |
| Amosite                                       | ADX      | 0          | 0      | < 58.40 | < 0.0030      | Not Applicable - 0.0030         |  |  |  |  |  |
| Anthophyllite                                 | ADX      | 0          | 0      | < 58.40 | < 0.0030      | Not Applicable - 0.0030         |  |  |  |  |  |
| Crocidolite                                   | ADX      | 0          | 0      | < 58.40 | < 0.0030      | Not Applicable - 0.0030         |  |  |  |  |  |
| Tremolite                                     | ADX      | 0          | 0      | < 58.40 | < 0.0030      | Not Applicable - 0.0030         |  |  |  |  |  |
| Total Asbestos Structures (PCMe)              | CD/ADX   | 0          | 0      | < 58.40 | < 0.0030      | Not Applicable - 0.0030         |  |  |  |  |  |
| Other Minerals                                | -        | 0          | 0      | < 58.40 | < 0.0030      | Not Applicable - 0.0030         |  |  |  |  |  |
| Total All Structures (PCMe)                   | -        | 0          | 0      | < 58.40 | < 0.0030      | Not Applicable - 0.0030         |  |  |  |  |  |

Comment

Approved Signatory



Project ID: Maui Wildfires - Lahaina

#### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

| EMSL Sample ID: 042408316-0014 |                 |                |                                |                              |                | Customer     | MFL-AM01-042124-AB    |                 |                    |
|--------------------------------|-----------------|----------------|--------------------------------|------------------------------|----------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID                     | Grid<br>Opening | Structure Type | Structure Number Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| H2                             | B6              | None Detected  |                                |                              |                |              |                       |                 |                    |
| H2                             | G9              | None Detected  |                                |                              |                |              |                       |                 |                    |
| Н3                             | H4              | None Detected  |                                |                              |                |              |                       |                 |                    |
| Н3                             | E4              | None Detected  |                                |                              |                |              |                       |                 |                    |



 EMSL Order:
 042408316

 Customer ID:
 TTDC42

 Customer PO:
 1207085

 Project ID:
 N/A

Phone: (703) 489-2674

Fax: N/A

Received Date: 04/24/2024 09:24 AM

**Analysis Date:** 04/30/2024 **Report Date:** 05/01/2024

Attn: Chelsea Saber

Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Wildfires - Lahaina

# ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

MFL-AM02-042124-AB Sample Description: Dk797060 **Customer Sample Number:** 042408316-0015 EMSL Sample Number: Sample Matrix: Air Magnification used for fiber counting: 20,000 Volume (L): 7231.8 Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm<sup>2</sup>): 385 Minimum Length (µm): Grid Opening Area (mm²): ≥ 0.5 0.0128 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: Minimum Level of analysis (chrysotile): CD P. Harrison

Estimated Particulate Loading on Filter %: 3
Target Analytical Sensitivity (Structures/cc): 0.001
Analytical Sensitivity (Structures/cc): 0.0008

ADX

Minimum Level of analysis (amphibole):

Limit of Detection (Structures/cc): 0.0024

|                           |          | TOTAL STRU   | JCTURES | (All Sizes)          |               |                                 |
|---------------------------|----------|--------------|---------|----------------------|---------------|---------------------------------|
|                           | Minimum  | Structures D | etected | Density              | Concentration | 95 % Confidence Interval (S/cc) |
|                           | ID Level | Primary      | Total   | (S/mm <sup>2</sup> ) | (S/cc)        | Lower Upper                     |
|                           |          |              |         |                      |               |                                 |
| Total Chrysotile          | CD       | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total Amphibole           | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Actinolite                | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Amosite                   | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Anthophyllite             | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Crocidolite               | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Tremolite                 | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total Asbestos Structures | CD/ADX   | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Other Minerals            | -        | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total All Structures      | -        | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |

|                                  |          | PCM EQUIVA     | ALENT (P   | CMe) Fibers          | 3             |                                 |
|----------------------------------|----------|----------------|------------|----------------------|---------------|---------------------------------|
|                                  | (>5 ı    | microns in len | gth with > | 3:1 Aspect I         | Ratio)        |                                 |
|                                  | Minimum  | Fibers Det     | tected     | Density              | Concentration | 95 % Confidence Interval (F/cc) |
|                                  | ID Level | Primary        | Total      | (F/mm <sup>2</sup> ) | (F/cc)        | Lower Upper                     |
| Total Chrysotile (PCMe)          | CD       | 0              | 0          | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total Amphibole (PCMe)           | ADX      | 0              | 0          | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Actinolite                       | ADX      | 0              | 0          | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Amosite                          | ADX      | 0              | 0          | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Anthophyllite                    | ADX      | 0              | 0          | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Crocidolite                      | ADX      | 0              | 0          | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Tremolite                        | ADX      | 0              | 0          | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total Asbestos Structures (PCMe) | CD/ADX   | 0              | 0          | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Other Minerals                   | -        | 0              | 0          | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total All Structures (PCMe)      | -        | 0              | 0          | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |

Comment

Approved Signatory



Project ID: Maui Wildfires - Lahaina

# ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL S          | ample ID:      | 042408316-                           | 0015                         |                |              | Customer              | Sample:         | MFL-AM02-042124-AB |
|------------|-----------------|----------------|--------------------------------------|------------------------------|----------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening | Structure Type | Structure<br>Number<br>Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| H5         | E3              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| H5         | C2              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| H5         | A5              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| H6         | A7              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| H6         | G5              | None Detected  |                                      |                              |                |              |                       |                 |                    |



 EMSL Order:
 042408316

 Customer ID:
 TTDC42

 Customer PO:
 1207085

 Project ID:
 N/A

Phone: (703) 489-2674

Fax: N/A

Received Date: 04/24/2024 09:24 AM Analysis Date: 04/30/2024

Report Date: 05/01/2024

Attn: Chelsea Saber Tetra Tech

1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Wildfires - Lahaina

# ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

MFL-AM03-042124-AB Sample Description: Dk797047 **Customer Sample Number:** 042408316-0016 EMSL Sample Number: Sample Matrix: Air 7506.4 Magnification used for fiber counting: 20,000 Volume (L): Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm<sup>2</sup>): 385 Minimum Length (µm): Grid Opening Area (mm²): ≥ 0.5 0.0128 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: Minimum Level of analysis (chrysotile): CD P. Harrison

Estimated Particulate Loading on Filter %: 2
Target Analytical Sensitivity (Structures/cc): 0.001
Analytical Sensitivity (Structures/cc): 0.0008

ADX

Minimum Level of analysis (amphibole):

Limit of Detection (Structures/cc): 0.0024

|                           |          | TOTAL STRU   | JCTURES | (All Sizes)          |               |                                 |
|---------------------------|----------|--------------|---------|----------------------|---------------|---------------------------------|
|                           | Minimum  | Structures D | etected | Density              | Concentration | 95 % Confidence Interval (S/cc) |
|                           | ID Level | Primary      | Total   | (S/mm <sup>2</sup> ) | (S/cc)        | Lower Upper                     |
|                           |          |              |         |                      |               |                                 |
| Total Chrysotile          | CD       | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total Amphibole           | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Actinolite                | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Amosite                   | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Anthophyllite             | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Crocidolite               | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Tremolite                 | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total Asbestos Structures | CD/ADX   | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Other Minerals            | -        | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total All Structures      | -        | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |

|                                  |          | PCM EQUIVA     | ALENT (P   | CMe) Fibers          | 3             |                                 |
|----------------------------------|----------|----------------|------------|----------------------|---------------|---------------------------------|
|                                  | (>5 ı    | microns in len | gth with > | 3:1 Aspect I         | Ratio)        |                                 |
|                                  | Minimum  | Fibers Det     | tected     | Density              | Concentration | 95 % Confidence Interval (F/cc) |
|                                  | ID Level | Primary        | Total      | (F/mm <sup>2</sup> ) | (F/cc)        | Lower Upper                     |
| Total Chrysotile (PCMe)          | CD       | 0              | 0          | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total Amphibole (PCMe)           | ADX      | 0              | 0          | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Actinolite                       | ADX      | 0              | 0          | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Amosite                          | ADX      | 0              | 0          | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Anthophyllite                    | ADX      | 0              | 0          | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Crocidolite                      | ADX      | 0              | 0          | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Tremolite                        | ADX      | 0              | 0          | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total Asbestos Structures (PCMe) | CD/ADX   | 0              | 0          | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Other Minerals                   | -        | 0              | 0          | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total All Structures (PCMe)      | -        | 0              | 0          | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |

Comment

Approved Signatory



Project ID: Maui Wildfires - Lahaina

# ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL S          | ample ID:      | 042408316-                     | 0016                         |                |              | Customer              | Sample:         | MFL-AM03-042124-AB |
|------------|-----------------|----------------|--------------------------------|------------------------------|----------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening | Structure Type | Structure Number Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| - 11       | B2              | None Detected  |                                |                              |                |              |                       |                 |                    |
| 11         | E7              | None Detected  |                                |                              |                |              |                       |                 |                    |
| 11         | J8              | None Detected  |                                |                              |                |              |                       |                 |                    |
| 12         | F2              | None Detected  |                                |                              |                |              |                       |                 |                    |
| 12         | A1              | None Detected  |                                |                              |                |              |                       |                 |                    |



 EMSL Order:
 042408316

 Customer ID:
 TTDC42

 Customer PO:
 1207085

 Project ID:
 N/A

Phone: (703) 489-2674

Fax: N/A

Received Date: 04/24/2024 09:24 AM Analysis Date: 04/30/2024

Report Date: 05/01/2024

Attn: Chelsea Saber Tetra Tech

1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Wildfires - Lahaina

# ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

MFL-AM04-042124-AB Sample Description: Dk797032 **Customer Sample Number:** EMSL Sample Number: 042408316-0017 Sample Matrix: Air 7149.5 Magnification used for fiber counting: 20,000 Volume (L): Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm<sup>2</sup>): 385 Minimum Length (µm): Grid Opening Area (mm²): ≥ 0.5 0.0128 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: Minimum Level of analysis (chrysotile): CD P. Harrison

Estimated Particulate Loading on Filter %: 3
Target Analytical Sensitivity (Structures/cc): 0.001

ADX

0.0008

Minimum Level of analysis (amphibole):

Analytical Sensitivity (Structures/cc):

Limit of Detection (Structures/cc): 0.0024

|                           |          | TOTAL STRU   | JCTURES | (All Sizes)          |               |                                 |
|---------------------------|----------|--------------|---------|----------------------|---------------|---------------------------------|
|                           | Minimum  | Structures D | etected | Density              | Concentration | 95 % Confidence Interval (S/cc) |
|                           | ID Level | Primary      | Total   | (S/mm <sup>2</sup> ) | (S/cc)        | Lower Upper                     |
|                           |          |              |         |                      |               |                                 |
| Total Chrysotile          | CD       | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total Amphibole           | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Actinolite                | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Amosite                   | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Anthophyllite             | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Crocidolite               | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Tremolite                 | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total Asbestos Structures | CD/ADX   | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Other Minerals            | -        | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total All Structures      | -        | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |

|                                  |          | PCM EQUIVA     | ALENT (P   | CMe) Fibers  | S             |                                 |  |
|----------------------------------|----------|----------------|------------|--------------|---------------|---------------------------------|--|
|                                  | (>5      | microns in len | gth with > | 3:1 Aspect F | Ratio)        |                                 |  |
|                                  | Minimum  | n Fibers Detec |            | Density      | Concentration | 95 % Confidence Interval (F/cc) |  |
|                                  | ID Level | Primary        | Total      | (F/mm²)      | (F/cc)        | Lower Upper                     |  |
| Total Chrysotile (PCMe)          | CD       | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Total Amphibole (PCMe)           | ADX      | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Actinolite                       | ADX      | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Amosite                          | ADX      | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Anthophyllite                    | ADX      | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Crocidolite                      | ADX      | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Tremolite                        | ADX      | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Total Asbestos Structures (PCMe) | CD/ADX   | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Other Minerals                   | -        | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Total All Structures (PCMe)      | _        | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |

Comment

Approved Signatory



Project ID: Maui Wildfires - Lahaina

# ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL S          | ample ID:      | 042408316-                           | 0017                         |                |              | Customer              | Sample:         | MFL-AM04-042124-AB |
|------------|-----------------|----------------|--------------------------------------|------------------------------|----------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening | Structure Type | Structure<br>Number<br>Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| <b>I</b> 5 | A9              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| 15         | D6              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| 15         | <b>I</b> 5      | None Detected  |                                      |                              |                |              |                       |                 |                    |
| <b>I</b> 6 | H5              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| <b>I</b> 6 | B2              | None Detected  |                                      |                              |                |              |                       |                 |                    |



042408316 EMSL Order: **Customer ID:** TTDC42 **Customer PO:** 1207085 Project ID: N/A

> Phone: (703) 489-2674

N/A Fax:

04/24/2024 09:24 AM Received Date:

04/30/2024 Analysis Date:

05/01/2024 Report Date:

Denver, CO, 80202 Project: Maui Wildfires - Lahaina

1560 Broadway, Suite 1400

Attn: Chelsea Saber

Tetra Tech

#### ISO 10312 Determination of Asbestos Fibers **Direct Transfer Transmission Electron Microscopy**

MFL-FB01-042124-AB Sample Description: Dk797039 **Customer Sample Number:** 042408316-0018 EMSL Sample Number: Sample Matrix: Air Magnification used for fiber counting: 20,000 Volume (L): 0.0 Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm<sup>2</sup>): 385 Minimum Length (µm): Grid Opening Area (mm²): 0.0128 ≥ 0.5 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: 10 Minimum Level of analysis (chrysotile): CD Analyst: P. Harrison Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: Target Analytical Sensitivity (Structures/cc): 0.001 Analytical Sensitivity (Structures/cc):

Limit of Detection (Structures/cc):

**TOTAL STRUCTURES (All Sizes)** Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum ID Level Primary Total Upper (S/mm<sup>2</sup>) (S/cc) Lower **Total Chrysotile** CD < 23.36 Total Amphibole ADX 0 0 < 23.36 Actinolite ADX 0 0 < 23.36 Amosite ADX 0 0 < 23.36 ADX < 23.36 Anthophyllite 0 0 Crocidolite ADX 0 0 < 23.36 ADX O 0 Tremolite < 23.36 Total Asbestos Structures CD/ADX 0 0 < 23.36 Other Minerals 0 0 < 23.36 **Total All Structures** < 23.36

|                                  |          | <b>PCM EQUIVA</b> | ALENT (P   | CMe) Fibers  | 1             |                               |       |  |
|----------------------------------|----------|-------------------|------------|--------------|---------------|-------------------------------|-------|--|
|                                  | (>5 ı    | microns in len    | gth with > | 3:1 Aspect R | atio)         |                               |       |  |
|                                  | Minimum  | Fibers Det        | tected     | Density      | Concentration | 95 % Confidence Interval (F/c |       |  |
|                                  | ID Level | Primary           | Total      | (F/mm²)      | (F/cc)        | Lower                         | Upper |  |
| Fotal Chrysotile (PCMe)          | CD       | 0                 | 0          | < 23.36      |               |                               |       |  |
| Total Amphibole (PCMe)           | ADX      | 0                 | 0          | < 23.36      |               |                               |       |  |
| Actinolite                       | ADX      | 0                 | 0          | < 23.36      |               |                               |       |  |
| Amosite                          | ADX      | 0                 | 0          | < 23.36      |               |                               |       |  |
| Anthophyllite                    | ADX      | 0                 | 0          | < 23.36      |               |                               |       |  |
| Crocidolite                      | ADX      | 0                 | 0          | < 23.36      |               |                               |       |  |
| Tremolite                        | ADX      | 0                 | 0          | < 23.36      |               |                               |       |  |
| Total Asbestos Structures (PCMe) | CD/ADX   | 0                 | 0          | < 23.36      |               |                               |       |  |
| Other Minerals                   | -        | 0                 | 0          | < 23.36      |               |                               |       |  |
| Total All Structures (PCMe)      | =        | 0                 | 0          | < 23.36      |               |                               |       |  |

Comment



Project ID: Maui Wildfires - Lahaina

#### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL S          | ample ID:      | 042408316-                           | 0018            |                |              | Customer              | Sample:         | MFL-FB01-042124-AB |
|------------|-----------------|----------------|--------------------------------------|-----------------|----------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening | Structure Type | Structure<br>Number<br>Primary Total | Dimensions (µm) | Level of<br>ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| J1         | A7              | None Detected  |                                      |                 |                |              |                       |                 |                    |
| J1         | C8              | None Detected  |                                      |                 |                |              |                       |                 |                    |
| J1         | E7              | None Detected  |                                      |                 |                |              |                       |                 |                    |
| J1         | G8              | None Detected  |                                      |                 |                |              |                       |                 |                    |
| J1         | <b>I</b> 8      | None Detected  |                                      |                 |                |              |                       |                 |                    |
| J2         | A7              | None Detected  |                                      |                 |                |              |                       |                 |                    |
| J2         | C10             | None Detected  |                                      |                 |                |              |                       |                 |                    |
| J2         | E7              | None Detected  |                                      |                 |                |              |                       |                 |                    |
| J2         | G5              | None Detected  |                                      |                 |                |              |                       |                 |                    |
| J2         | 17              | None Detected  |                                      |                 |                |              |                       |                 |                    |



042408316 EMSL Order: **Customer ID:** TTDC42 **Customer PO:** 1207085 Project ID: N/A

> Phone: (703) 489-2674

N/A Fax:

04/24/2024 09:24 AM Received Date:

04/30/2024 Analysis Date: 05/01/2024 Report Date:

Denver, CO, 80202 Project: Maui Wildfires - Lahaina

1560 Broadway, Suite 1400

Attn: Chelsea Saber

Tetra Tech

#### ISO 10312 Determination of Asbestos Fibers **Direct Transfer Transmission Electron Microscopy**

Sample Description: Lab Blank **Customer Sample Number:** Lab Blank 042408316-0019 EMSL Sample Number: Sample Matrix: Air Magnification used for fiber counting: 20,000 Volume (L): 0.0 Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm<sup>2</sup>): 385 Minimum Length (µm): Grid Opening Area (mm²): 0.0128 ≥ 0.5 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: 10 Minimum Level of analysis (chrysotile): CD Analyst: P. Harrison Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: Target Analytical Sensitivity (Structures/cc): 0.001

Limit of Detection (Structures/cc):

Analytical Sensitivity (Structures/cc): **TOTAL STRUCTURES (All Sizes)** Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum ID Level Primary Total (S/mm<sup>2</sup>) (S/cc) Lower Upper **Total Chrysotile** CD < 23.36 Total Amphibole ADX 0 0 < 23.36 Actinolite ADX 0 0 < 23.36 Amosite ADX 0 0 < 23.36 ADX < 23.36 Anthophyllite 0 0 Crocidolite ADX 0 0 < 23.36 ADX O 0 Tremolite < 23.36 Total Asbestos Structures CD/ADX 0 0 < 23.36 Other Minerals 0 0 < 23.36 **Total All Structures** 0 < 23.36

|                                  |          | <b>PCM EQUIVA</b> | ALENT (P   | CMe) Fibers  | •             |                              |       |  |
|----------------------------------|----------|-------------------|------------|--------------|---------------|------------------------------|-------|--|
|                                  | (>5 ı    | microns in len    | gth with > | 3:1 Aspect R | atio)         |                              |       |  |
|                                  | Minimum  | Fibers Det        | tected     | Density      | Concentration | 95 % Confidence Interval (F/ |       |  |
|                                  | ID Level | Primary           | Total      | (F/mm²)      | (F/cc)        | Lower                        | Upper |  |
| Fotal Chrysotile (PCMe)          | CD       | 0                 | 0          | < 23.36      |               |                              |       |  |
| Total Amphibole (PCMe)           | ADX      | 0                 | 0          | < 23.36      |               |                              |       |  |
| Actinolite                       | ADX      | 0                 | 0          | < 23.36      |               |                              |       |  |
| Amosite                          | ADX      | 0                 | 0          | < 23.36      |               |                              |       |  |
| Anthophyllite                    | ADX      | 0                 | 0          | < 23.36      |               |                              |       |  |
| Crocidolite                      | ADX      | 0                 | 0          | < 23.36      |               |                              |       |  |
| Tremolite                        | ADX      | 0                 | 0          | < 23.36      |               |                              |       |  |
| Total Asbestos Structures (PCMe) | CD/ADX   | 0                 | 0          | < 23.36      |               |                              |       |  |
| Other Minerals                   | -        | 0                 | 0          | < 23.36      |               |                              |       |  |
| Total All Structures (PCMe)      | -        | 0                 | 0          | < 23.36      |               |                              |       |  |

Comment



Project ID: Maui Wildfires - Lahaina

#### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL S          | ample ID:      | 042408316-                           | 0019                                     |              | Customer              | Sample:         | Lab Blank          |
|------------|-----------------|----------------|--------------------------------------|------------------------------------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening | Structure Type | Structure<br>Number<br>Primary Total | Dimensions (μm) Level of Length Width ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| A1         | J4              | None Detected  |                                      |                                          |              |                       |                 |                    |
| A1         | H3              | None Detected  |                                      |                                          |              |                       |                 |                    |
| A1         | F2              | None Detected  |                                      |                                          |              |                       |                 |                    |
| A1         | D4              | None Detected  |                                      |                                          |              |                       |                 |                    |
| A1         | B6              | None Detected  |                                      |                                          |              |                       |                 |                    |
| A4         | <b>A</b> 5      | None Detected  |                                      |                                          |              |                       |                 |                    |
| A4         | C9              | None Detected  |                                      |                                          |              |                       |                 |                    |
| A4         | E7              | None Detected  |                                      |                                          |              |                       |                 |                    |
| A4         | G5              | None Detected  |                                      |                                          |              |                       |                 |                    |
| A4         | 12              | None Detected  |                                      |                                          |              |                       |                 |                    |

# EMSL ANALYTICAL, INC.

#### Asbestos Chain of Custody (Air, Bulk, Soil)

EMSL Analytical, Inc. 200 Route 130 North
RECEIV Eignaminson, NJ 08077

EMSL Order Number / Lab Use Only

#042408316

CINNAMINS MAIN JENNASSIANGEMISLOOM

| Customer ID:                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | same as Report-To leave this section blank. T                                                                                                  | inter-board named todomen muce                                                                                                |                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| -                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Billing ID:                                                                      | 24 APR 24 AM                                                                                                                                   | 3 8 10                                                                                                                        |                                                      |
| Company Name: Tetra                                                                                                                                                 | rech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Company<br>Billing Cor                                                           |                                                                                                                                                |                                                                                                                               |                                                      |
| Contact Name: Chelse                                                                                                                                                | la Saber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e men                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Billing Cor<br>Street Add                                                        |                                                                                                                                                |                                                                                                                               |                                                      |
| City, State, Zip: Octo                                                                                                                                              | Broadway, ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Country: USA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | City, State                                                                      | V.3 V.S.                                                                                                                                       | Country:                                                                                                                      |                                                      |
| Decing                                                                                                                                                              | x, co 80202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 05/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | City, State                                                                      |                                                                                                                                                |                                                                                                                               |                                                      |
| Email(s) for Report:                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ratech.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Email(s) fo                                                                      | or Invoice:                                                                                                                                    |                                                                                                                               |                                                      |
| Desired AA                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nformation                                                                       | Purchase                                                                                                                                       |                                                                                                                               |                                                      |
| Project<br>Name/No: Mail Wi<br>EMSL LIMS Project ID:                                                                                                                | latives - Lah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | aina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | US State when                                                                    | Order:                                                                                                                                         | 207085<br>must select project location:                                                                                       |                                                      |
| (If applicable, EMSL will provide)                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | samples collec                                                                   |                                                                                                                                                | axable) Residential (                                                                                                         | (Non-Taxable)                                        |
| Sampled By Name:                                                                                                                                                    | n Busch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sampled By Signature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~/N 7                                                                            | 21                                                                                                                                             | No. of Samples<br>in Shipment                                                                                                 | 18                                                   |
| 3 Hour 4-4.5 Ho                                                                                                                                                     | ONLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24 Hour 32 Hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | Hour 72 Hour 96 H                                                                                                                              | our 1 Week                                                                                                                    | 2 Week                                               |
|                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Selection                                                                        | only, early to a mass of additional by 11.50 and                                                                                               |                                                                                                                               |                                                      |
| NIOSH 7400                                                                                                                                                          | M Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AHERA 40 CFR, Par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I - Air<br>ert 763                                                               | Microvac - A                                                                                                                                   | ed Dust<br>STM D5755                                                                                                          |                                                      |
| ☐ NIOSH 7400 w/ 8hr.                                                                                                                                                | .TWA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ■ NIOSH 7402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  | Wipe - ASTI                                                                                                                                    | M D6480                                                                                                                       |                                                      |
|                                                                                                                                                                     | Bulk (reporting limit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EPA Level II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  |                                                                                                                                                | ia Filtration Prep<br>ia Drop Mount Prep                                                                                      |                                                      |
| PLM EPA 600/R-93/                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ISO 10312*  TEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Bulk                                                                           | Quantative v                                                                                                                                   | la Drop Mount Prep                                                                                                            | MARCH TO                                             |
| POINT COUNT                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TEM EPA NOB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                  |                                                                                                                                                | k - Vermiculite (reporting                                                                                                    |                                                      |
| 400 (<0.25%)                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NYS NOB 198.4 (No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                  | =                                                                                                                                              | 00/R-93/116 with milling pre<br>00/R-93/116 with milling pre                                                                  |                                                      |
| 400 (<0.25%)                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ( ( S & ramin S )                                                                |                                                                                                                                                | 00/R-93/116 with milling pro                                                                                                  |                                                      |
| ☐ NIOSH 9002 (<1%)                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Other Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (please speci                                                                    |                                                                                                                                                | tive via Filtration Prep                                                                                                      |                                                      |
| NYS 198.1 (Friable -                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | TEM Qualita                                                                                                                                    | tive via Drop Mount Prep                                                                                                      |                                                      |
| NYS 198.8 (Vermicu                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                                                |                                                                                                                               |                                                      |
|                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *Please call with y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | our project-spec                                                                 | cific requirements.                                                                                                                            |                                                                                                                               |                                                      |
| Positive Stop - Cle                                                                                                                                                 | arly Identified Homogeneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Areas (HA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Filter Por                                                                       | re Size (Air Samples) 0.8um                                                                                                                    | 0.45um                                                                                                                        |                                                      |
| Sample Number                                                                                                                                                       | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Location / Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 m                                                                             | Volume, Area or Homogeneous Are                                                                                                                | Date / Time Sa<br>(Air Monitoring                                                                                             |                                                      |
|                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  |                                                                                                                                                |                                                                                                                               |                                                      |
| MFL-AMOI-                                                                                                                                                           | 141824-AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DK7968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .07                                                                              | 7014.816                                                                                                                                       | 04/18/24                                                                                                                      | 1105                                                 |
| MFL-AMOI-0<br>MFL-AMOZ-0                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DK7968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  | 704.816                                                                                                                                        | 1 04/18/24                                                                                                                    | 1105                                                 |
| MFL-AMOZ-                                                                                                                                                           | 41824-AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 919                                                                              |                                                                                                                                                |                                                                                                                               |                                                      |
| MFL-AMOZ-0<br>MFL-AMO3-0                                                                                                                                            | 141824-AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DK7960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 286                                                                              | 7179.24                                                                                                                                        | 1 04/18/24                                                                                                                    | 1123                                                 |
| MFL-AMOZ-0<br>MFL-AMO3-0<br>MFL-AMO4-0                                                                                                                              | 141824-AB<br>141824-AB<br>141824-AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DK7960<br>DK7972<br>DK7960<br>DK7960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 919<br>286<br>194                                                                | 7279.515                                                                                                                                       | 04/18/24                                                                                                                      | 1123                                                 |
| MFL-AMO2-0<br>MFL-AMO3-0<br>MFL-AMO4-0<br>MFL-FBO1-0                                                                                                                | 141824-AB<br>141824-AB<br>141824-AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DK7960<br>DK7972<br>DK7960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 919<br>286<br>194                                                                | 7179.26                                                                                                                                        | 04/18/24                                                                                                                      | 1308                                                 |
| MFL-AMO2-0<br>MFL-AMO3-0<br>MFL-AMO4-0<br>MFL-FBO1-0<br>MFL-AMO1-0                                                                                                  | 141824-AB<br>141824-AB<br>141824-AB<br>141824-AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DK7960<br>DK7972<br>DK7960<br>DK7960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 919<br>286<br>194<br>104                                                         | 7179.21<br>7279.515<br>7291.152<br>D                                                                                                           | 04/18/24 04/18/24 04/18/24 04/18/24                                                                                           | 1308                                                 |
| MFL-AMO2-0<br>MFL-AMO3-0<br>MFL-AMO4-0<br>MFL-FBO1-0<br>MFL-AMO1-0                                                                                                  | 141824-AB<br>241824-AB<br>241824-AB<br>341824-AB<br>341924-AB<br>041924-AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DK7960<br>DK7972<br>DK7960<br>DK7960<br>DK7968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 919<br>286<br>194<br>104<br>6924<br>530                                          | 7179.26<br>7279.515<br>7291.152<br>0<br>6167.478<br>6739.185<br>7194.233                                                                       | 04/18/24 04/18/24 04/18/24 04/18/24 04/19/24 04/19/24                                                                         | 1123<br>1308<br>1329<br>1200                         |
| MFL-AMO2-0<br>MFL-AMO4-0<br>MFL-FBOI-0<br>MFL-AMOI-1<br>MFL-AMO2-1<br>MFL-AMO3-1                                                                                    | 141824-AB<br>241824-AB<br>241824-AB<br>241824-AB<br>241824-AB<br>241924-AB<br>31924-AB<br>31924-AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DK7960  DK7960  DK7960  DK7960  DK7960  DK7960  DK7968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 919<br>286<br>194<br>109<br>0924<br>030<br>27<br>10 Specifications               | 7179.26<br>7279.515<br>7291.152<br>0<br>6167.478<br>6739.185                                                                                   | 04/18/24 04/18/24 04/18/24 04/18/24 04/19/24 04/19/24                                                                         | 1123<br>1308<br>1329<br>1200<br>1112<br>1134<br>1306 |
| MFL-AMO2-0<br>MFL-AMO4-0<br>MFL-AMO1-0<br>MFL-AMO2-0<br>MFL-AMO3-0<br>MFL-AMO1-0419<br>Greater than                                                                 | 141824-AB 241824-AB 241824-AB 31824-AB  | DK7960  DK7960  DK7960  DK7960  DK7960  DK7960  DK7968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 919<br>194<br>194<br>924<br>930<br>27<br>le specifications                       | 7179.24<br>7279.515<br>7291.152<br>0<br>6167.478<br>6139.185<br>1194.233                                                                       | 04/18/24 04/18/24 04/18/24 04/18/24 04/19/24 04/19/24                                                                         | 1123<br>1308<br>1329<br>1200<br>1112<br>1134<br>1306 |
| MFL-AMO2-0<br>MFL-AMO4-0<br>MFL-FBOI-0-<br>MFL-AMO1-0<br>MFL-AMO2-0<br>MFL-AMO3-                                                                                    | 141824-AB 241824-AB 241824-AB 31824-AB  | DK7960  DK7960  DK7960  DK7960  DK7960  DK7960  DK7968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 919<br>194<br>194<br>924<br>930<br>27<br>le specifications                       | 7179.24<br>7279.515<br>7291.152<br>0<br>6167.478<br>6739.185<br>194.233<br>Processing Methods, Limits of Detection, et<br>ed because post-cal  | 04/18/24 04/18/24 04/18/24 04/18/24 04/19/24 04/19/24                                                                         | 1123<br>1308<br>1329<br>1200<br>1112<br>1134<br>1306 |
| MFL-AMO2-0<br>MFL-AMO4-0<br>MFL-AMO4-0<br>MFL-AMO1-0<br>MFL-AMO2-0<br>MFL-AMO3-0<br>MFL-AMO3-0419<br>greater than                                                   | 141824-AB 241824-AB 241824-AB 31824-AB  | DK79160 DK79160 DK79160 DK79160 DK79160 DK79168 DK79168  DK79168  DK79168  DK79168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 286<br>194<br>109<br>2924<br>530<br>27<br>1de Specifications                     | 7179.24<br>7279.515<br>7291.152<br>0<br>6167.478<br>6739.185<br>7194.233<br>1. Processing Methods, Limits of Detection, etcal because post-cal | 04/18/24<br>04/18/24<br>04/18/24<br>04/18/24<br>04/19/24<br>04/19/24<br>04/19/24                                              | 1123<br>1308<br>1329<br>1200<br>1112<br>1134<br>1306 |
| MFL-AMO2-0<br>MFL-AMO4-0<br>MFL-AMO1-0<br>MFL-AMO2-0<br>MFL-AMO3-1<br>MFL-AMO3-1<br>MFL-AMO1-0419<br>Greater than Method of Shipment. Fed E<br>Relinquished by: Whi | 41824-AB  241824-AB  241824-AB  341824-AB  3 | DK79160 DK79160 DK79160 DK79160 DK79160 DK79160 DK79168 DK79168 DK79168 Jor Regulatory Requirements (Sample - Amorit - 042024 - Amorit - 0 | 286<br>194<br>109<br>109<br>109<br>109<br>109<br>109<br>109<br>109<br>109<br>109 | 7179.24<br>7279.515<br>7291.152<br>0<br>6167.478<br>6739.185<br>7194.233<br>1. Processing Methods, Limits of Detection, etcal because post-cal | 04/18/24 04/18/24 04/18/24 04/18/24 04/18/24 04/19/24 04/19/24 04/19/24 04/19/24 04/19/24 04/19/24 04/19/24 04/19/24 04/19/24 | 1123<br>1308<br>1329<br>1200<br>1112<br>1134<br>1306 |

All samples received

Page 1 of 2



#### Asbestos Chain of Custody (Air, Bulk, Soil)

EMSL Order Number / Lab Use Only

EMSL Analytical, Inc. 200 Route 130 North Cinnaminson, NJ 08077

#042408316

RECEIVED HONE: (800) 220-3675
EMSL EMAIL CinnAsblab@EMSL:com

nal Pages of the Chain of Custody are only necessary if needed for additional sample information

Special instructions and/or Regulatory Requirements (Sample Specifications, Processing Methods, Limits of Detection, etc.) 24 APR 24 AM11: 41 Date / Time Sampled Sample Number Sample Location / Description Volume, Area or Homogeneous Area (Air Monitoring Only) 7443.248 04/19/24 MFL-AMO4-041924-AB DK796823 1327 D MFL-FB01-641924-AB 04/ 24 DK796887 1200 10703, 915 04/20/24 1052 MFL-AMOI-042024-AB DK796828 7197.107 04/20/24 1119 MFL-AM02-042024-AB DK796920 1223.073 MFL-AM03+042024-AB DK796899 04/20/24 1259 7604.208 V0100K79707 MFL-AMO4-042074-AB 1331 (V) MFL- FBOI-042024-AB 1200 DK797028 7543.152 04/21/24 MFL- AMOI+ 142124-AB DK797052 1057 7231.826 MFL- AMD2-042124-AB DK797060 1119 MFL-AM03-042124-AB 7500.400 1303 DK797047 MFL-AM04-042124-AB 7149.536 DK797032 1326 MFL- FB01 +042124-AB DK797039 1200 Method of Shipment: Fed Ex Sample Condition Upon Receipt Date/Time 1100

AGREE TO ELECTRONIC SIGNATURE (By checking, I consent to signing this Chain of Custody document by electronic signature.)

EMSL Analytical, Inc.'s Laboratory Terms and Conditions are incorporated into this Chain of Custody by reference in their entirety. Submission of samples to EMSL Analytical, Inc. constitutes

Received by:

2

#### Stage 1 Data Verification Checklist – Asbestos

#### HDOH CAB - Ambient Community Air Sampling - Lahaina

#### Task Order No. 23141

#### Reviewed by:

Kierra Johnson 05/02/2024 and Shanna Vasser 05/03/2024

Laboratory: EMSL Analytical, Inc. - North Cinnaminson, NJ

Collection date(s): 04/18/2024 - 04/21/2024

Report No: 42408316

| ٧ | 1. | Chain of custody | (CoC) | ) documentation is p | resent. |
|---|----|------------------|-------|----------------------|---------|
|   |    |                  |       |                      |         |

- <u>√</u> 2. Sample receipt condition information is present and acceptable.
- $\underline{\mathbf{v}}$  3. Laboratory conducting the analysis is identified.
- $\underline{\mathbf{v}}$  4. All samples submitted to the laboratory are accounted for.
- $\underline{V}$  5. Requested analytical methods were performed.
- $\underline{V}$  6. Analysis dates are provided.
- $\underline{\mathbf{v}}$  7. Analyte results are provided.
- NA 8. Result qualifiers and definitions are provided.
- $\underline{V}$  9. Result units are reported.
- $\underline{V}$  10. Requested reporting limits are present.
- NA 11. Method detection limits are present.
- $\underline{V}$  12. Sample collection date and time are present.
- $\underline{V}$  13. No detections in field QC blanks (lot/media blanks, field blanks, etc).

#### Discrepancies:

4. MFL-AM01-041924-AB and MFL-AM04-042024-AB were listed on the CoC, crossed out, and voided due to post-cal value exceeding criteria. The samples were not shipped to the laboratory.

Notes: None.



 EMSL Order:
 042408734

 Customer ID:
 TTDC42

 Customer PO:
 1207085

 Project ID:
 N/A

**Phone:** (703) 489-2674

Fax: N/A

Received Date: 04/29/2024 09:30 AM Analysis Date: 05/02/2024

**Analysis Date:** 05/02/2024 **Report Date:** 05/03/2024

Denver, CO, 80202

Project: Maui Wildfire - Lahaina

1560 Broadway, Suite 1400

Attn: Chelsea Saber

Tetra Tech

# ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

MFL-AM02-042224-AB Sample Description: DK797057 **Customer Sample Number:** EMSL Sample Number: 042408734-0001 Sample Matrix: Air 20,000 7356.2 Magnification used for fiber counting: Volume (L): Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm²): 385 Minimum Length (µm): Grid Opening Area (mm²): 0.0128 ≥ 0.5 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: Minimum Level of analysis (chrysotile): CD Analyst: G.Barry Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: 10
Target Analytical Sensitivity (Structures/cc): 0.001
Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024

|                           |          | TOTAL STRU   | JCTURES       | (All Sizes) |               |                                 |
|---------------------------|----------|--------------|---------------|-------------|---------------|---------------------------------|
|                           | Minimum  | Structures D | etected       | Density     | Concentration | 95 % Confidence Interval (S/cc) |
|                           | ID Level | Primary      | Primary Total |             | (S/cc)        | Lower Upper                     |
|                           |          |              |               |             |               |                                 |
| Total Chrysotile          | CD       | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Total Amphibole           | ADX      | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Actinolite                | ADX      | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Amosite                   | ADX      | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Anthophyllite             | ADX      | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Crocidolite               | ADX      | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Tremolite                 | ADX      | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Total Asbestos Structures | CD/ADX   | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Other Minerals            | -        | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Total All Structures      | -        | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |

|                                               |                                                  | <b>PCM EQUIVA</b> | ALENT (P | CMe) Fibers | 3        |                         |  |  |  |  |  |  |
|-----------------------------------------------|--------------------------------------------------|-------------------|----------|-------------|----------|-------------------------|--|--|--|--|--|--|
| (>5 microns in length with >3:1 Aspect Ratio) |                                                  |                   |          |             |          |                         |  |  |  |  |  |  |
|                                               | Minimum Fibers Detected Density Concentration 95 |                   |          |             |          |                         |  |  |  |  |  |  |
|                                               | ID Level                                         | Primary           | Total    | (F/mm²)     | (F/cc)   | Lower Upper             |  |  |  |  |  |  |
| Total Chrysotile (PCMe)                       | CD                                               | 0                 | 0        | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Total Amphibole (PCMe)                        | ADX                                              | 0                 | 0        | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Actinolite                                    | ADX                                              | 0                 | 0        | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Amosite                                       | ADX                                              | 0                 | 0        | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Anthophyllite                                 | ADX                                              | 0                 | 0        | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Crocidolite                                   | ADX                                              | 0                 | 0        | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Tremolite                                     | ADX                                              | 0                 | 0        | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Total Asbestos Structures (PCMe)              | CD/ADX                                           | 0                 | 0        | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Other Minerals                                | -                                                | 0                 | 0        | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |
| Total All Structures (PCMe)                   | -                                                | 0                 | 0        | < 46.72     | < 0.0024 | Not Applicable - 0.0024 |  |  |  |  |  |  |

Comment

Approved Signatory



Project ID: Maui Wildfire - Lahaina

#### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL Sample ID: 042408734-0001 |                |                                      |                              |                |              |                       | Sample:         | MFL-AM02-042224-AB |
|------------|--------------------------------|----------------|--------------------------------------|------------------------------|----------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening                | Structure Type | Structure<br>Number<br>Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| H2         | H8                             | None Detected  |                                      |                              |                |              |                       |                 |                    |
| H2         | E4                             | None Detected  |                                      |                              |                |              |                       |                 |                    |
| H2         | A2                             | None Detected  |                                      |                              |                |              |                       |                 |                    |
| НЗ         | H5                             | None Detected  |                                      |                              |                |              |                       |                 |                    |
| НЗ         | C7                             | None Detected  |                                      |                              |                |              |                       |                 |                    |



 EMSL Order:
 042408734

 Customer ID:
 TTDC42

 Customer PO:
 1207085

 Project ID:
 N/A

Phone: (703) 489-2674

Fax: N/A

Received Date: 04/29/2024 09:30 AM

Analysis Date: 05/02/2024

Report Date: 05/03/2024

Denver, CO, 80202

Project: Maui Wildfire - Lahaina

1560 Broadway, Suite 1400

Attn: Chelsea Saber

Tetra Tech

# ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

MFL-AM03-042224-AB Sample Description: DK797050 **Customer Sample Number:** EMSL Sample Number: 042408734-0002 Sample Matrix: Air 20,000 Magnification used for fiber counting: Volume (L): 7282.5 Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm²): 385 Minimum Length (µm): Grid Opening Area (mm²): 0.0128 ≥ 0.5 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: Minimum Level of analysis (chrysotile): CD Analyst: G.Barry Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: 5
Target Analytical Sensitivity (Structures/cc): 0.001
Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024

|                           |          | TOTAL STRU   | JCTURES       | (All Sizes) |               |                                 |
|---------------------------|----------|--------------|---------------|-------------|---------------|---------------------------------|
|                           | Minimum  | Structures D | etected       | Density     | Concentration | 95 % Confidence Interval (S/cc) |
|                           | ID Level | Primary      | Primary Total |             | (S/cc)        | Lower Upper                     |
|                           |          |              |               |             |               |                                 |
| Total Chrysotile          | CD       | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Total Amphibole           | ADX      | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Actinolite                | ADX      | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Amosite                   | ADX      | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Anthophyllite             | ADX      | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Crocidolite               | ADX      | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Tremolite                 | ADX      | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Total Asbestos Structures | CD/ADX   | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Other Minerals            | -        | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Total All Structures      | -        | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |

|                                               |          | PCM EQUIVA | ALENT (P | CMe) Fibers          | 3             |                                 |  |  |  |  |  |  |
|-----------------------------------------------|----------|------------|----------|----------------------|---------------|---------------------------------|--|--|--|--|--|--|
| (>5 microns in length with >3:1 Aspect Ratio) |          |            |          |                      |               |                                 |  |  |  |  |  |  |
|                                               | Minimum  | Fibers Det | tected   | Density              | Concentration | 95 % Confidence Interval (F/cc) |  |  |  |  |  |  |
|                                               | ID Level | Primary    | Total    | (F/mm <sup>2</sup> ) | (F/cc)        | Lower Upper                     |  |  |  |  |  |  |
| Total Chrysotile (PCMe)                       | CD       | 0          | 0        | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |  |
| Total Amphibole (PCMe)                        | ADX      | 0          | 0        | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |  |
| Actinolite                                    | ADX      | 0          | 0        | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |  |
| Amosite                                       | ADX      | 0          | 0        | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |  |
| Anthophyllite                                 | ADX      | 0          | 0        | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |  |
| Crocidolite                                   | ADX      | 0          | 0        | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |  |
| Tremolite                                     | ADX      | 0          | 0        | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |  |
| Total Asbestos Structures (PCMe)              | CD/ADX   | 0          | 0        | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |  |
| Other Minerals                                | -        | 0          | 0        | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |  |
| Total All Structures (PCMe)                   | -        | 0          | 0        | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |  |

Comment

Approved Signatory



Project ID: Maui Wildfire - Lahaina

#### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL S          | ample ID:      | 042408734-                           | Customer                     | Sample:        | MFL-AM03-042224-AB |                       |                 |                    |
|------------|-----------------|----------------|--------------------------------------|------------------------------|----------------|--------------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening | Structure Type | Structure<br>Number<br>Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type       | Additional Mineral ID | Image<br>Number | Structure Comments |
| H5         | C3              | None Detected  |                                      |                              |                |                    |                       |                 |                    |
| H5         | F8              | None Detected  |                                      |                              |                |                    |                       |                 |                    |
| H5         | <b>I</b> 6      | None Detected  |                                      |                              |                |                    |                       |                 |                    |
| H6         | A4              | None Detected  |                                      |                              |                |                    |                       |                 |                    |
| H6         | D7              | None Detected  |                                      |                              |                |                    |                       |                 |                    |



 EMSL Order:
 042408734

 Customer ID:
 TTDC42

 Customer PO:
 1207085

 Project ID:
 N/A

Phone: (703) 489-2674

Fax: N/A

**Received Date:** 04/29/2024 09:30 AM **Analysis Date:** 05/01/2024

Report Date: 05/03/2024

Attn: Chelsea Saber Tetra Tech

1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Wildfire - Lahaina

# ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

MFL-AM04-042224-AB Sample Description: DK797024 **Customer Sample Number:** EMSL Sample Number: 042408734-0003 Sample Matrix: Air 20,000 7209.4 Magnification used for fiber counting: Volume (L): Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm²): 385 Minimum Length (µm): Grid Opening Area (mm²): 0.0128 ≥ 0.5 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: Minimum Level of analysis (chrysotile): CD Analyst: G.Barry Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: 6
Target Analytical Sensitivity (Structures/cc): 0.001
Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024

|                           |          | TOTAL STRU   | JCTURES       | (All Sizes) |               |                                 |
|---------------------------|----------|--------------|---------------|-------------|---------------|---------------------------------|
|                           | Minimum  | Structures D | etected       | Density     | Concentration | 95 % Confidence Interval (S/cc) |
|                           | ID Level | Primary      | Primary Total |             | (S/cc)        | Lower Upper                     |
|                           |          |              |               |             |               |                                 |
| Total Chrysotile          | CD       | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Total Amphibole           | ADX      | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Actinolite                | ADX      | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Amosite                   | ADX      | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Anthophyllite             | ADX      | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Crocidolite               | ADX      | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Tremolite                 | ADX      | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Total Asbestos Structures | CD/ADX   | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Other Minerals            | -        | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |
| Total All Structures      | -        | 0            | 0             | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |

|                                               |          | PCM EQUIVA | ALENT (P | CMe) Fibers | S             |                                 |  |  |  |  |  |  |
|-----------------------------------------------|----------|------------|----------|-------------|---------------|---------------------------------|--|--|--|--|--|--|
| (>5 microns in length with >3:1 Aspect Ratio) |          |            |          |             |               |                                 |  |  |  |  |  |  |
|                                               | Minimum  | Fibers De  | tected   | Density     | Concentration | 95 % Confidence Interval (F/cc) |  |  |  |  |  |  |
|                                               | ID Level | Primary    | Total    | (F/mm²)     | (F/cc)        | Lower Upper                     |  |  |  |  |  |  |
| Total Chrysotile (PCMe)                       | CD       | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |  |
| Total Amphibole (PCMe)                        | ADX      | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |  |
| Actinolite                                    | ADX      | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |  |
| Amosite                                       | ADX      | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |  |
| Anthophyllite                                 | ADX      | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |  |
| Crocidolite                                   | ADX      | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |  |
| Tremolite                                     | ADX      | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |  |
| Total Asbestos Structures (PCMe)              | CD/ADX   | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |  |
| Other Minerals                                | -        | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |  |
| Total All Structures (PCMe)                   | _        | 0          | 0        | < 46.72     | < 0.0024      | Not Applicable - 0.0024         |  |  |  |  |  |  |

Comment

Approved Signatory



Project ID: Maui Wildfire - Lahaina

#### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL S          | ample ID:      | 042408734-                           | Customer                     | Sample:        | MFL-AM04-042224-AB |                       |                 |                    |
|------------|-----------------|----------------|--------------------------------------|------------------------------|----------------|--------------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening | Structure Type | Structure<br>Number<br>Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type       | Additional Mineral ID | Image<br>Number | Structure Comments |
| B2         | A6              | None Detected  |                                      |                              |                |                    |                       |                 |                    |
| B2         | D8              | None Detected  |                                      |                              |                |                    |                       |                 |                    |
| B2         | <b>I</b> 5      | None Detected  |                                      |                              |                |                    |                       |                 |                    |
| В3         | G4              | None Detected  |                                      |                              |                |                    |                       |                 |                    |
| В3         | D5              | None Detected  |                                      |                              |                |                    |                       |                 |                    |



042408734 EMSL Order: **Customer ID:** TTDC42 **Customer PO:** 1207085 Project ID: N/A

> Phone: (703) 489-2674

N/A Fax:

04/29/2024 09:30 AM Received Date:

05/01/2024 Analysis Date:

Report Date:

05/03/2024

Denver, CO, 80202 Project: Maui Wildfire - Lahaina

1560 Broadway, Suite 1400

Attn: Chelsea Saber

Tetra Tech

#### ISO 10312 Determination of Asbestos Fibers **Direct Transfer Transmission Electron Microscopy**

MFL-FB01-042224-AB Sample Description: DK797027 **Customer Sample Number:** EMSL Sample Number: 042408734-0004 Sample Matrix: Air Magnification used for fiber counting: Volume (L): 0.0 20,000 Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm<sup>2</sup>): 385 Minimum Length (µm): Grid Opening Area (mm²): 0.0128 ≥ 0.5 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: 10 Minimum Level of analysis (chrysotile): CD Analyst: G.Barry Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: Target Analytical Sensitivity (Structures/cc): 0.001 Analytical Sensitivity (Structures/cc):

Limit of Detection (Structures/cc):

**TOTAL STRUCTURES (All Sizes)** Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum ID Level Primary Total (S/mm<sup>2</sup>) (S/cc) Lower Upper **Total Chrysotile** CD < 23.36 Total Amphibole ADX 0 0 < 23.36 Actinolite ADX 0 0 < 23.36 Amosite ADX 0 0 < 23.36 ADX < 23.36 Anthophyllite 0 0 Crocidolite ADX 0 0 < 23.36 ADX O 0 Tremolite < 23.36 Total Asbestos Structures CD/ADX 0 0 < 23.36 Other Minerals 0 0 < 23.36 **Total All Structures** 0 < 23.36

|                                  |          | <b>PCM EQUIVA</b> | ALENT (P   | CMe) Fibers  | •             |                               |       |  |
|----------------------------------|----------|-------------------|------------|--------------|---------------|-------------------------------|-------|--|
|                                  | (>5 ı    | microns in len    | gth with > | 3:1 Aspect R | atio)         |                               |       |  |
|                                  | Minimum  | Fibers Det        | tected     | Density      | Concentration | 95 % Confidence Interval (F/c |       |  |
|                                  | ID Level | Primary           | Total      | (F/mm²)      | (F/cc)        | Lower                         | Upper |  |
| Fotal Chrysotile (PCMe)          | CD       | 0                 | 0          | < 23.36      |               |                               |       |  |
| Total Amphibole (PCMe)           | ADX      | 0                 | 0          | < 23.36      |               |                               |       |  |
| Actinolite                       | ADX      | 0                 | 0          | < 23.36      |               |                               |       |  |
| Amosite                          | ADX      | 0                 | 0          | < 23.36      |               |                               |       |  |
| Anthophyllite                    | ADX      | 0                 | 0          | < 23.36      |               |                               |       |  |
| Crocidolite                      | ADX      | 0                 | 0          | < 23.36      |               |                               |       |  |
| Tremolite                        | ADX      | 0                 | 0          | < 23.36      |               |                               |       |  |
| Total Asbestos Structures (PCMe) | CD/ADX   | 0                 | 0          | < 23.36      |               |                               |       |  |
| Other Minerals                   | -        | 0                 | 0          | < 23.36      |               |                               |       |  |
| Total All Structures (PCMe)      | -        | 0                 | 0          | < 23.36      |               |                               |       |  |

Comment



Project ID: Maui Wildfire - Lahaina

#### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL S          | ample ID:      | 042408734-                           | 0004                         |                |              | Customer              | Sample:         | MFL-FB01-042224-AB |
|------------|-----------------|----------------|--------------------------------------|------------------------------|----------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening | Structure Type | Structure<br>Number<br>Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| B5         | J3              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| B5         | H7              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| B5         | E5              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| B5         | C8              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| B6         | D7              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| B6         | G7              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| B6         | J7              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| B7         | A5              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| B7         | F4              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| B7         | <b>I</b> 6      | None Detected  |                                      |                              |                |              |                       |                 |                    |



 EMSL Order:
 042408734

 Customer ID:
 TTDC42

 Customer PO:
 1207085

 Project ID:
 N/A

Phone: (703) 489-2674

Fax: N/A

Received Date: 04/29/2024 09:30 AM Analysis Date: 05/01/2024

**Analysis Date:** 05/01/2024 **Report Date:** 05/03/2024

Tetra Tech

Attn: Chelsea Saber

1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Wildfire - Lahaina

# ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

MFL-AM02-042324-AB Sample Description: DK797035 **Customer Sample Number:** EMSL Sample Number: 042408734-0005 Sample Matrix: Air 20,000 7261.2 Magnification used for fiber counting: Volume (L): Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm²): 385 Minimum Length (µm): Grid Opening Area (mm²): 0.0128 ≥ 0.5 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: Minimum Level of analysis (chrysotile): CD Analyst: G.Barry Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: 4
Target Analytical Sensitivity (Structures/cc): 0.001
Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024

|                           |          | TOTAL STRU   | JCTURES | (All Sizes)          |               |                                 |
|---------------------------|----------|--------------|---------|----------------------|---------------|---------------------------------|
|                           | Minimum  | Structures D | etected | Density              | Concentration | 95 % Confidence Interval (S/cc) |
|                           | ID Level | Primary      | Total   | (S/mm <sup>2</sup> ) | (S/cc)        | Lower Upper                     |
|                           |          |              |         |                      |               |                                 |
| Total Chrysotile          | CD       | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total Amphibole           | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Actinolite                | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Amosite                   | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Anthophyllite             | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Crocidolite               | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Tremolite                 | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total Asbestos Structures | CD/ADX   | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Other Minerals            | -        | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total All Structures      | -        | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |

|                                  |          | PCM EQUIVA     | ALENT (P   | CMe) Fibers  | 3             |                                 |
|----------------------------------|----------|----------------|------------|--------------|---------------|---------------------------------|
|                                  | (>5 ı    | microns in len | gth with > | 3:1 Aspect I | Ratio)        |                                 |
|                                  | Minimum  | Fibers Det     | tected     | Density      | Concentration | 95 % Confidence Interval (F/cc) |
|                                  | ID Level | Primary        | Total      | (F/mm²)      | (F/cc)        | Lower Upper                     |
| Total Chrysotile (PCMe)          | CD       | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Total Amphibole (PCMe)           | ADX      | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Actinolite                       | ADX      | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Amosite                          | ADX      | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Anthophyllite                    | ADX      | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Crocidolite                      | ADX      | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Tremolite                        | ADX      | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Total Asbestos Structures (PCMe) | CD/ADX   | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Other Minerals                   | -        | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Total All Structures (PCMe)      | -        | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |

Comment

Approved Signatory



Project ID: Maui Wildfire - Lahaina

#### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL S          | ample ID:      | 042408734-                     | 0005                         |                |              | Customer              | Sample:         | MFL-AM02-042324-AB |
|------------|-----------------|----------------|--------------------------------|------------------------------|----------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening | Structure Type | Structure Number Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| C1         | A6              | None Detected  |                                |                              |                |              |                       |                 |                    |
| C2         | C3              | None Detected  |                                |                              |                |              |                       |                 |                    |
| C2         | G7              | None Detected  |                                |                              |                |              |                       |                 |                    |
| C3         | D7              | None Detected  |                                |                              |                |              |                       |                 |                    |
| C3         | H6              | None Detected  |                                |                              |                |              |                       |                 |                    |



042408734 EMSL Order: TTDC42 **Customer ID: Customer PO:** 1207085 Project ID: N/A

> Phone: (703) 489-2674

N/A Fax:

04/29/2024 09:30 AM Received Date: Analysis Date: 05/01/2024

05/03/2024

Report Date:

Tetra Tech 1560 Broadway, Suite 1400

Attn: Chelsea Saber

Denver, CO, 80202

Project: Maui Wildfire - Lahaina

#### **ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy**

MFL-AM03-042324-AB Sample Description: DK797020 **Customer Sample Number:** EMSL Sample Number: 042408734-0006 Sample Matrix: Air 20,000 Magnification used for fiber counting: Volume (L): 7397.0 Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm²): 385 Minimum Length (µm): Grid Opening Area (mm²): 0.0128 ≥ 0.5 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: Minimum Level of analysis (chrysotile): CD Analyst: G.Barry Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: Target Analytical Sensitivity (Structures/cc): 0.001 Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024

|                           |          | TOTAL STRU   | JCTURES | (All Sizes)          |               |                                 |
|---------------------------|----------|--------------|---------|----------------------|---------------|---------------------------------|
|                           | Minimum  | Structures D | etected | Density              | Concentration | 95 % Confidence Interval (S/cc) |
|                           | ID Level | Primary      | Total   | (S/mm <sup>2</sup> ) | (S/cc)        | Lower Upper                     |
|                           |          |              |         |                      |               |                                 |
| Total Chrysotile          | CD       | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total Amphibole           | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Actinolite                | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Amosite                   | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Anthophyllite             | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Crocidolite               | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Tremolite                 | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total Asbestos Structures | CD/ADX   | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Other Minerals            | -        | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total All Structures      | -        | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |

|                                  |          | PCM EQUIVA     | ALENT (P   | CMe) Fibers  | 3             |                                 |
|----------------------------------|----------|----------------|------------|--------------|---------------|---------------------------------|
|                                  | (>5 ı    | microns in len | gth with > | 3:1 Aspect I | Ratio)        |                                 |
|                                  | Minimum  | Fibers Det     | tected     | Density      | Concentration | 95 % Confidence Interval (F/cc) |
|                                  | ID Level | Primary        | Total      | (F/mm²)      | (F/cc)        | Lower Upper                     |
| Total Chrysotile (PCMe)          | CD       | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Total Amphibole (PCMe)           | ADX      | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Actinolite                       | ADX      | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Amosite                          | ADX      | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Anthophyllite                    | ADX      | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Crocidolite                      | ADX      | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Tremolite                        | ADX      | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Total Asbestos Structures (PCMe) | CD/ADX   | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Other Minerals                   | -        | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Total All Structures (PCMe)      | -        | 0              | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |

Comment



Project ID: Maui Wildfire - Lahaina

#### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL S          | ample ID:      | 042408734-                           | 0006                         |                |              | Customer              | Sample:         | MFL-AM03-042324-AB |
|------------|-----------------|----------------|--------------------------------------|------------------------------|----------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening | Structure Type | Structure<br>Number<br>Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| C6         | B4              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| C6         | E7              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| C6         | G3              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| C7         | A2              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| C7         | F3              | None Detected  |                                      |                              |                |              |                       |                 |                    |



 EMSL Order:
 042408734

 Customer ID:
 TTDC42

 Customer PO:
 1207085

 Project ID:
 N/A

Phone: (703) 489-2674

Fax: N/A

Received Date: 04/29/2024 09:30 AM

**Analysis Date:** 05/01/2024 **Report Date:** 05/03/2024

Attn: Chelsea Saber Tetra Tech

1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Wildfire - Lahaina

# ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

MFL-AM04-042324-AB Sample Description: DK797042 **Customer Sample Number:** EMSL Sample Number: 042408734-0007 Sample Matrix: Air 20,000 Magnification used for fiber counting: Volume (L): 7221.3 Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm²): 385 Minimum Length (µm): Grid Opening Area (mm²): 0.0128 ≥ 0.5 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: Minimum Level of analysis (chrysotile): CD Analyst: G.Barry Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: 5
Target Analytical Sensitivity (Structures/cc): 0.001
Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024

|                           |          | TOTAL STRU   | JCTURES | (All Sizes)          |               |                                 |
|---------------------------|----------|--------------|---------|----------------------|---------------|---------------------------------|
|                           | Minimum  | Structures D | etected | Density              | Concentration | 95 % Confidence Interval (S/cc) |
|                           | ID Level | Primary      | Total   | (S/mm <sup>2</sup> ) | (S/cc)        | Lower Upper                     |
|                           |          |              |         |                      |               |                                 |
| Total Chrysotile          | CD       | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total Amphibole           | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Actinolite                | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Amosite                   | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Anthophyllite             | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Crocidolite               | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Tremolite                 | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total Asbestos Structures | CD/ADX   | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Other Minerals            | -        | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total All Structures      | -        | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |

|                                  |          | PCM EQUIVA      | ALENT (P   | CMe) Fibers  | S             |                                 |
|----------------------------------|----------|-----------------|------------|--------------|---------------|---------------------------------|
|                                  | (>5      | microns in len  | gth with > | 3:1 Aspect F | Ratio)        |                                 |
|                                  | Minimum  | Fibers Detected |            | Density      | Concentration | 95 % Confidence Interval (F/cc) |
|                                  | ID Level | Primary         | Total      | (F/mm²)      | (F/cc)        | Lower Upper                     |
| Total Chrysotile (PCMe)          | CD       | 0               | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Total Amphibole (PCMe)           | ADX      | 0               | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Actinolite                       | ADX      | 0               | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Amosite                          | ADX      | 0               | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Anthophyllite                    | ADX      | 0               | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Crocidolite                      | ADX      | 0               | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Tremolite                        | ADX      | 0               | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Total Asbestos Structures (PCMe) | CD/ADX   | 0               | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Other Minerals                   | -        | 0               | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |
| Total All Structures (PCMe)      | _        | 0               | 0          | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |

Comment

Approved Signatory



Project ID: Maui Wildfire - Lahaina

#### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL S          | ample ID:      | 042408734-                     | 0007                         |                |              | Customer              | Sample:         | MFL-AM04-042324-AB |
|------------|-----------------|----------------|--------------------------------|------------------------------|----------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening | Structure Type | Structure Number Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| D2         | C6              | None Detected  |                                |                              |                |              |                       |                 |                    |
| D2         | E3              | None Detected  |                                |                              |                |              |                       |                 |                    |
| D2         | H7              | None Detected  |                                |                              |                |              |                       |                 |                    |
| D3         | D4              | None Detected  |                                |                              |                |              |                       |                 |                    |
| D3         | F9              | None Detected  |                                |                              |                |              |                       |                 |                    |



 EMSL Order:
 042408734

 Customer ID:
 TTDC42

 Customer PO:
 1207085

 Project ID:
 N/A

Phone: (703) 489-2674

Fax: N/A

Received Date: 04/29/2024 09:30 AM Analysis Date: 05/01/2024

Report Date: 05/03/2024

Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Attn: Chelsea Saber

Project: Maui Wildfire - Lahaina

# ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

MFL-FB01-042324-AB Sample Description: DK797043 **Customer Sample Number:** EMSL Sample Number: 042408734-0008 Sample Matrix: Air Magnification used for fiber counting: Volume (L): 0.0 20,000 Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm<sup>2</sup>): 385 Minimum Length (µm): Grid Opening Area (mm²): 0.0128 ≥ 0.5 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: 10 Minimum Level of analysis (chrysotile): CD Analyst: G.Barry Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: 1
Target Analytical Sensitivity (Structures/cc): 0.001
Analytical Sensitivity (Structures/cc): N/A

Limit of Detection (Structures/cc): N/A

**TOTAL STRUCTURES (All Sizes)** Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum ID Level Primary Total Upper (S/mm<sup>2</sup>) (S/cc) Lower **Total Chrysotile** CD < 23.36 Total Amphibole ADX 0 0 < 23.36 Actinolite ADX 0 0 < 23.36 Amosite ADX 0 0 < 23.36 ADX < 23.36 Anthophyllite 0 0 Crocidolite ADX 0 0 < 23.36 ADX O 0 Tremolite < 23.36 Total Asbestos Structures CD/ADX 0 0 < 23.36 Other Minerals 0 0 < 23.36 **Total All Structures** 0 < 23.36

|                                  |          | <b>PCM EQUIVA</b> | ALENT (P   | CMe) Fibers     | }             |                               |       |  |
|----------------------------------|----------|-------------------|------------|-----------------|---------------|-------------------------------|-------|--|
|                                  | (>5      | microns in len    | gth with > | 3:1 Aspect F    | latio)        |                               |       |  |
|                                  | Minimum  | Fibers De         | tected     | Density (F/mm²) | Concentration | 95 % Confidence Interval (F/c |       |  |
|                                  | ID Level | Primary           | Total      |                 | (F/cc)        | Lower                         | Upper |  |
| Total Chrysotile (PCMe)          | CD       | 0                 | 0          | < 23.36         |               |                               |       |  |
| Total Amphibole (PCMe)           | ADX      | 0                 | 0          | < 23.36         |               |                               |       |  |
| Actinolite                       | ADX      | 0                 | 0          | < 23.36         |               |                               |       |  |
| Amosite                          | ADX      | 0                 | 0          | < 23.36         |               |                               |       |  |
| Anthophyllite                    | ADX      | 0                 | 0          | < 23.36         |               |                               |       |  |
| Crocidolite                      | ADX      | 0                 | 0          | < 23.36         |               |                               |       |  |
| Tremolite                        | ADX      | 0                 | 0          | < 23.36         |               |                               |       |  |
| Total Asbestos Structures (PCMe) | CD/ADX   | 0                 | 0          | < 23.36         |               |                               |       |  |
| Other Minerals                   | -        | 0                 | 0          | < 23.36         |               |                               |       |  |
| Total All Structures (PCMe)      | -        | 0                 | 0          | < 23.36         |               |                               |       |  |

Comment

Approved Signatory



Project ID: Maui Wildfire - Lahaina

#### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL S          | ample ID:      | 042408734-                           | 8000                         |                |              | Customer              | Sample:         | MFL-FB01-042324-AB |
|------------|-----------------|----------------|--------------------------------------|------------------------------|----------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening | Structure Type | Structure<br>Number<br>Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| D5         | J5              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| D5         | H8              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| D5         | F4              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| D5         | <b>A</b> 6      | None Detected  |                                      |                              |                |              |                       |                 |                    |
| D6         | B3              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| D6         | D7              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| D6         | G5              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| D7         | A3              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| D7         | E2              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| D7         | G8              | None Detected  |                                      |                              |                |              |                       |                 |                    |



042408734 EMSL Order: TTDC42 **Customer ID: Customer PO:** 1207085 Project ID: N/A

Attn: Chelsea Saber Phone: (703) 489-2674 Tetra Tech

N/A Fax:

04/29/2024 09:30 AM Received Date: Analysis Date: 05/01/2024

Report Date: 05/03/2024

Denver, CO, 80202 Project: Maui Wildfire - Lahaina

1560 Broadway, Suite 1400

#### **ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy**

MFL-AM01-042424-AB Sample Description: DK797030 **Customer Sample Number:** EMSL Sample Number: 042408734-0009 Sample Matrix: Air 20,000 Magnification used for fiber counting: Volume (L): 6937.5 Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm²): 385 Minimum Length (µm): Grid Opening Area (mm²): 0.0128 ≥ 0.5 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: Minimum Level of analysis (chrysotile): CD Analyst: G.Barry Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: Target Analytical Sensitivity (Structures/cc): 0.001 Analytical Sensitivity (Structures/cc): 0.0009

Limit of Detection (Structures/cc): 0.0027

|                           |          | TOTAL STRU   | JCTURES | (All Sizes)          |               |                                 |
|---------------------------|----------|--------------|---------|----------------------|---------------|---------------------------------|
|                           | Minimum  | Structures D | etected | Density              | Concentration | 95 % Confidence Interval (S/cc) |
|                           | ID Level | Primary      | Total   | (S/mm <sup>2</sup> ) | (S/cc)        | Lower Upper                     |
|                           |          |              |         |                      |               |                                 |
| Total Chrysotile          | CD       | 0            | 0       | < 46.72              | < 0.0027      | Not Applicable - 0.0027         |
| Total Amphibole           | ADX      | 0            | 0       | < 46.72              | < 0.0027      | Not Applicable - 0.0027         |
| Actinolite                | ADX      | 0            | 0       | < 46.72              | < 0.0027      | Not Applicable - 0.0027         |
| Amosite                   | ADX      | 0            | 0       | < 46.72              | < 0.0027      | Not Applicable - 0.0027         |
| Anthophyllite             | ADX      | 0            | 0       | < 46.72              | < 0.0027      | Not Applicable - 0.0027         |
| Crocidolite               | ADX      | 0            | 0       | < 46.72              | < 0.0027      | Not Applicable - 0.0027         |
| Tremolite                 | ADX      | 0            | 0       | < 46.72              | < 0.0027      | Not Applicable - 0.0027         |
| Total Asbestos Structures | CD/ADX   | 0            | 0       | < 46.72              | < 0.0027      | Not Applicable - 0.0027         |
| Other Minerals            | -        | 0            | 0       | < 46.72              | < 0.0027      | Not Applicable - 0.0027         |
| Total All Structures      | -        | 0            | 0       | < 46.72              | < 0.0027      | Not Applicable - 0.0027         |

|                                  |          | PCM EQUIVA     | ALENT (P      | CMe) Fibers  | 3             |                                 |  |
|----------------------------------|----------|----------------|---------------|--------------|---------------|---------------------------------|--|
|                                  | (>5      | microns in len | gth with >    | 3:1 Aspect F | Ratio)        |                                 |  |
|                                  | Minimum  | Fibers De      | tected        | Density      | Concentration | 95 % Confidence Interval (F/cc) |  |
|                                  | ID Level | Primary        | Primary Total |              | (F/cc)        | Lower Upper                     |  |
| Total Chrysotile (PCMe)          | CD       | 0              | 0             | < 46.72      | < 0.0027      | Not Applicable - 0.0027         |  |
| Total Amphibole (PCMe)           | ADX      | 0              | 0             | < 46.72      | < 0.0027      | Not Applicable - 0.0027         |  |
| Actinolite                       | ADX      | 0              | 0             | < 46.72      | < 0.0027      | Not Applicable - 0.0027         |  |
| Amosite                          | ADX      | 0              | 0             | < 46.72      | < 0.0027      | Not Applicable - 0.0027         |  |
| Anthophyllite                    | ADX      | 0              | 0             | < 46.72      | < 0.0027      | Not Applicable - 0.0027         |  |
| Crocidolite                      | ADX      | 0              | 0             | < 46.72      | < 0.0027      | Not Applicable - 0.0027         |  |
| Tremolite                        | ADX      | 0              | 0             | < 46.72      | < 0.0027      | Not Applicable - 0.0027         |  |
| Total Asbestos Structures (PCMe) | CD/ADX   | 0              | 0             | < 46.72      | < 0.0027      | Not Applicable - 0.0027         |  |
| Other Minerals                   | -        | 0              | 0             | < 46.72      | < 0.0027      | Not Applicable - 0.0027         |  |
| Total All Structures (PCMe)      | _        | 0              | 0             | < 46.72      | < 0.0027      | Not Applicable - 0.0027         |  |

Comment



Project ID: Maui Wildfire - Lahaina

#### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL S          | ample ID:      | 042408734-                     | 0009                         |                |              | Customer              | Sample:         | MFL-AM01-042424-AB |
|------------|-----------------|----------------|--------------------------------|------------------------------|----------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening | Structure Type | Structure Number Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| E2         | 17              | None Detected  |                                |                              |                |              |                       |                 |                    |
| E2         | E4              | None Detected  |                                |                              |                |              |                       |                 |                    |
| E2         | A5              | None Detected  |                                |                              |                |              |                       |                 |                    |
| E3         | НЗ              | None Detected  |                                |                              |                |              |                       |                 |                    |
| E3         | E5              | None Detected  |                                |                              |                |              |                       |                 |                    |



042408734 EMSL Order: TTDC42 **Customer ID: Customer PO:** 1207085 Project ID: N/A

Attn: Chelsea Saber Phone: (703) 489-2674 Tetra Tech

N/A Fax:

1560 Broadway, Suite 1400 04/29/2024 09:30 AM Received Date: Denver, CO, 80202 Analysis Date: 05/01/2024

Report Date: 05/03/2024

Project: Maui Wildfire - Lahaina

#### **ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy**

MFL-AM02-042424-AB Sample Description: DK797055 **Customer Sample Number:** EMSL Sample Number: 042408734-0010 Sample Matrix: Air 20,000 Magnification used for fiber counting: Volume (L): 7113.7 Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm²): 385 Minimum Length (µm): Grid Opening Area (mm²): 0.0128 ≥ 0.5 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: Minimum Level of analysis (chrysotile): CD Analyst: G.Barry Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: Target Analytical Sensitivity (Structures/cc): 0.001 Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024

|                           |          | TOTAL STRU   | JCTURES | (All Sizes)          |               |                                 |
|---------------------------|----------|--------------|---------|----------------------|---------------|---------------------------------|
|                           | Minimum  | Structures D | etected | Density              | Concentration | 95 % Confidence Interval (S/cc) |
|                           | ID Level | Primary      | Total   | (S/mm <sup>2</sup> ) | (S/cc)        | Lower Upper                     |
|                           |          |              |         |                      |               |                                 |
| Total Chrysotile          | CD       | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total Amphibole           | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Actinolite                | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Amosite                   | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Anthophyllite             | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Crocidolite               | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Tremolite                 | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total Asbestos Structures | CD/ADX   | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Other Minerals            | -        | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total All Structures      | -        | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |

|                                  |          | PCM EQUIVA     | ALENT (P      | CMe) Fibers  | 3             |                                 |  |
|----------------------------------|----------|----------------|---------------|--------------|---------------|---------------------------------|--|
|                                  | (>5 ı    | microns in len | gth with >    | 3:1 Aspect I | Ratio)        |                                 |  |
|                                  | Minimum  | Fibers Det     | tected        | Density      | Concentration | 95 % Confidence Interval (F/cc) |  |
|                                  | ID Level | Primary        | Total (F/mm²) |              | (F/cc)        | Lower Upper                     |  |
| Total Chrysotile (PCMe)          | CD       | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Total Amphibole (PCMe)           | ADX      | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Actinolite                       | ADX      | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Amosite                          | ADX      | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Anthophyllite                    | ADX      | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Crocidolite                      | ADX      | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Tremolite                        | ADX      | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Total Asbestos Structures (PCMe) | CD/ADX   | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Other Minerals                   | -        | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Total All Structures (PCMe)      | -        | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |

Comment



Project ID: Maui Wildfire - Lahaina

#### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL S          | ample ID:      | 042408734-                           | 0010                         |                |              | Customer              | Sample:         | MFL-AM02-042424-AB |
|------------|-----------------|----------------|--------------------------------------|------------------------------|----------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening | Structure Type | Structure<br>Number<br>Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| E5         | J6              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| E6         | E9              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| E6         | B7              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| E7         | D3              | None Detected  |                                      |                              |                |              |                       |                 |                    |
| E7         | G8              | None Detected  |                                      |                              |                |              |                       |                 |                    |



042408734 EMSL Order: TTDC42 **Customer ID: Customer PO:** 1207085 Project ID: N/A

> Phone: (703) 489-2674

N/A Fax:

04/29/2024 09:30 AM Received Date:

Analysis Date: 05/01/2024

Report Date: 05/03/2024

Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Wildfire - Lahaina

Attn: Chelsea Saber

#### **ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy**

MFL-AM03-042424-AB Sample Description: DK797039 **Customer Sample Number:** EMSL Sample Number: 042408734-0011 Sample Matrix: Air 20,000 Magnification used for fiber counting: Volume (L): 7358.7 Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm²): 385 Minimum Length (µm): Grid Opening Area (mm²): 0.0128 ≥ 0.5 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: Minimum Level of analysis (chrysotile): CD Analyst: G.Barry Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: Target Analytical Sensitivity (Structures/cc): 0.001 Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024

|                           |          | TOTAL STRU   | JCTURES | (All Sizes)          |               |                                 |
|---------------------------|----------|--------------|---------|----------------------|---------------|---------------------------------|
|                           | Minimum  | Structures D | etected | Density              | Concentration | 95 % Confidence Interval (S/cc) |
|                           | ID Level | Primary      | Total   | (S/mm <sup>2</sup> ) | (S/cc)        | Lower Upper                     |
|                           |          |              |         |                      |               |                                 |
| Total Chrysotile          | CD       | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total Amphibole           | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Actinolite                | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Amosite                   | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Anthophyllite             | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Crocidolite               | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Tremolite                 | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total Asbestos Structures | CD/ADX   | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Other Minerals            | -        | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total All Structures      | -        | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |

|                                  |          | PCM EQUIVA     | ALENT (P      | CMe) Fibers  | 3             |                                 |  |
|----------------------------------|----------|----------------|---------------|--------------|---------------|---------------------------------|--|
|                                  | (>5 ı    | microns in len | gth with >    | 3:1 Aspect I | Ratio)        |                                 |  |
|                                  | Minimum  | Fibers Det     | tected        | Density      | Concentration | 95 % Confidence Interval (F/cc) |  |
|                                  | ID Level | Primary        | Total (F/mm²) |              | (F/cc)        | Lower Upper                     |  |
| Total Chrysotile (PCMe)          | CD       | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Total Amphibole (PCMe)           | ADX      | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Actinolite                       | ADX      | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Amosite                          | ADX      | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Anthophyllite                    | ADX      | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Crocidolite                      | ADX      | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Tremolite                        | ADX      | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Total Asbestos Structures (PCMe) | CD/ADX   | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Other Minerals                   | -        | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Total All Structures (PCMe)      | -        | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |

Comment



Project ID: Maui Wildfire - Lahaina

#### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

|            | EMSL S          | ample ID:      | 042408734-                     | 0011                         |                |              | Customer              | Sample:         | MFL-AM03-042424-AB |
|------------|-----------------|----------------|--------------------------------|------------------------------|----------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening | Structure Type | Structure Number Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| F2         | C8              | None Detected  |                                |                              |                |              |                       |                 |                    |
| E2         | D3              | None Detected  |                                |                              |                |              |                       |                 |                    |
| E2         | H5              | None Detected  |                                |                              |                |              |                       |                 |                    |
| E3         | <b>I</b> 4      | None Detected  |                                |                              |                |              |                       |                 |                    |
| E3         | E7              | None Detected  |                                |                              |                |              |                       |                 |                    |



 EMSL Order:
 042408734

 Customer ID:
 TTDC42

 Customer PO:
 1207085

 Project ID:
 N/A

**Phone:** (703) 489-2674

Fax: N/A

Received Date: 04/29/2024 09:30 AM

**Analysis Date:** 05/01/2024 **Report Date:** 05/03/2024

Tetra Tech 1560 Broadway, Suite 1400

1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Wildfire - Lahaina

Attn: Chelsea Saber

# ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

MFL-AM04-042424-AB Sample Description: DK797036 **Customer Sample Number:** EMSL Sample Number: 042408734-0012 Sample Matrix: Air 20,000 Magnification used for fiber counting: Volume (L): 7159.7 Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm²): 385 Minimum Length (µm): Grid Opening Area (mm²): 0.0128 ≥ 0.5 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: Minimum Level of analysis (chrysotile): CD Analyst: G.Barry Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: 8
Target Analytical Sensitivity (Structures/cc): 0.001
Analytical Sensitivity (Structures/cc): 0.0008

Limit of Detection (Structures/cc): 0.0024

|                           |          | TOTAL STRU   | JCTURES | (All Sizes)          |               |                                 |
|---------------------------|----------|--------------|---------|----------------------|---------------|---------------------------------|
|                           | Minimum  | Structures D | etected | Density              | Concentration | 95 % Confidence Interval (S/cc) |
|                           | ID Level | Primary      | Total   | (S/mm <sup>2</sup> ) | (S/cc)        | Lower Upper                     |
|                           |          |              |         |                      |               |                                 |
| Total Chrysotile          | CD       | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total Amphibole           | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Actinolite                | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Amosite                   | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Anthophyllite             | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Crocidolite               | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Tremolite                 | ADX      | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total Asbestos Structures | CD/ADX   | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Other Minerals            | -        | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |
| Total All Structures      | -        | 0            | 0       | < 46.72              | < 0.0024      | Not Applicable - 0.0024         |

|                                  |          | PCM EQUIVA     | ALENT (P      | CMe) Fibers  | S             |                                 |  |
|----------------------------------|----------|----------------|---------------|--------------|---------------|---------------------------------|--|
|                                  | (>5      | microns in len | gth with >    | 3:1 Aspect F | Ratio)        |                                 |  |
|                                  | Minimum  | Fibers De      | tected        | Density      | Concentration | 95 % Confidence Interval (F/cc) |  |
|                                  | ID Level | Primary        | Primary Total |              | (F/cc)        | Lower Upper                     |  |
| Total Chrysotile (PCMe)          | CD       | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Total Amphibole (PCMe)           | ADX      | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Actinolite                       | ADX      | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Amosite                          | ADX      | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Anthophyllite                    | ADX      | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Crocidolite                      | ADX      | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Tremolite                        | ADX      | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Total Asbestos Structures (PCMe) | CD/ADX   | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Other Minerals                   | -        | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |
| Total All Structures (PCMe)      | _        | 0              | 0             | < 46.72      | < 0.0024      | Not Applicable - 0.0024         |  |

Comment

Approved Signatory



EMSL Order ID: 042408734

Client: Tetra Tech

Project ID: Maui Wildfire - Lahaina

#### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

### **Analytical Bench Sheet Data**

|            | EMSL Sample ID: 042408734-0012 |                |                                      |                              |                |              | Customer              | Sample:         | MFL-AM04-042424-AB |
|------------|--------------------------------|----------------|--------------------------------------|------------------------------|----------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening                | Structure Type | Structure<br>Number<br>Primary Total | Dimensions (µm) Length Width | Level of<br>ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| F5         | B9                             | None Detected  |                                      |                              |                |              |                       |                 |                    |
| F5         | E5                             | None Detected  |                                      |                              |                |              |                       |                 |                    |
| F5         | <b>I</b> 6                     | None Detected  |                                      |                              |                |              |                       |                 |                    |
| F6         | D4                             | None Detected  |                                      |                              |                |              |                       |                 |                    |
| F6         | F8                             | None Detected  |                                      |                              |                |              |                       |                 |                    |



042408734 EMSL Order: **Customer ID:** TTDC42 **Customer PO:** 1207085 Project ID: N/A

> Phone: (703) 489-2674

N/A Fax:

04/29/2024 09:30 AM Received Date: 05/01/2024 Analysis Date:

05/03/2024 Report Date:

Attn: Chelsea Saber

Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Wildfire - Lahaina

#### ISO 10312 Determination of Asbestos Fibers **Direct Transfer Transmission Electron Microscopy**

MFL-FB01-042424-AB Sample Description: DK797038 **Customer Sample Number:** EMSL Sample Number: 042408734-0013 Sample Matrix: Air Magnification used for fiber counting: Volume (L): 0.0 20,000 Aspect ratio for fiber definition: 3:1 Area of original collection filter (mm<sup>2</sup>): 385 Minimum Length (µm): Grid Opening Area (mm²): 0.0128 ≥ 0.5 Chi<sup>2</sup> Test for Random Distribution on Filter: N/A (N/A) Grid Openings Analyzed: 10 Minimum Level of analysis (chrysotile): CD Analyst: G.Barry Minimum Level of analysis (amphibole): ADX

Estimated Particulate Loading on Filter %: Target Analytical Sensitivity (Structures/cc): 0.001

Limit of Detection (Structures/cc):

Analytical Sensitivity (Structures/cc): **TOTAL STRUCTURES (All Sizes)** Structures Detected Concentration 95 % Confidence Interval (S/cc) Minimum ID Level Primary Total Upper (S/mm<sup>2</sup>) (S/cc) Lower **Total Chrysotile** CD < 23.36 Total Amphibole ADX 0 0 < 23.36 Actinolite ADX 0 0 < 23.36 Amosite ADX 0 0 < 23.36 ADX < 23.36 Anthophyllite 0 0 Crocidolite ADX 0 0 < 23.36 ADX O 0 Tremolite < 23.36 Total Asbestos Structures CD/ADX 0 0 < 23.36 Other Minerals 0 0 < 23.36 **Total All Structures** 0 < 23.36

| PCM EQUIVALENT (PCMe) Fibers (>5 microns in length with >3:1 Aspect Ratio) |          |         |       |         |        |       |       |  |
|----------------------------------------------------------------------------|----------|---------|-------|---------|--------|-------|-------|--|
|                                                                            |          |         |       |         |        |       |       |  |
|                                                                            | ID Level | Primary | Total | (F/mm²) | (F/cc) | Lower | Upper |  |
| Fotal Chrysotile (PCMe)                                                    | CD       | 0       | 0     | < 23.36 |        |       |       |  |
| Total Amphibole (PCMe)                                                     | ADX      | 0       | 0     | < 23.36 |        |       |       |  |
| Actinolite                                                                 | ADX      | 0       | 0     | < 23.36 |        |       |       |  |
| Amosite                                                                    | ADX      | 0       | 0     | < 23.36 |        |       |       |  |
| Anthophyllite                                                              | ADX      | 0       | 0     | < 23.36 |        |       |       |  |
| Crocidolite                                                                | ADX      | 0       | 0     | < 23.36 |        |       |       |  |
| Tremolite                                                                  | ADX      | 0       | 0     | < 23.36 |        |       |       |  |
| Total Asbestos Structures (PCMe)                                           | CD/ADX   | 0       | 0     | < 23.36 |        |       |       |  |
| Other Minerals                                                             | -        | 0       | 0     | < 23.36 |        |       |       |  |
| Total All Structures (PCMe)                                                | _        | 0       | 0     | < 23.36 |        |       |       |  |

Comment

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.



EMSL Order ID: 042408734

Client: Tetra Tech

Project ID: Maui Wildfire - Lahaina

#### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

### **Analytical Bench Sheet Data**

|            | EMSL S          | ample ID:      | 042408734-                           | 0013                                     |              | Customer              | Sample:         | MFL-FB01-042424-AB |
|------------|-----------------|----------------|--------------------------------------|------------------------------------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening | Structure Type | Structure<br>Number<br>Primary Total | Dimensions (µm) Level of Length Width ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| G2         | <b>I</b> 4      | None Detected  |                                      |                                          |              |                       |                 |                    |
| G2         | 18              | None Detected  |                                      |                                          |              |                       |                 |                    |
| G2         | E4              | None Detected  |                                      |                                          |              |                       |                 |                    |
| G2         | C6              | None Detected  |                                      |                                          |              |                       |                 |                    |
| G3         | J7              | None Detected  |                                      |                                          |              |                       |                 |                    |
| G3         | F3              | None Detected  |                                      |                                          |              |                       |                 |                    |
| G3         | D6              | None Detected  |                                      |                                          |              |                       |                 |                    |
| G4         | H5              | None Detected  |                                      |                                          |              |                       |                 |                    |
| G4         | E9              | None Detected  |                                      |                                          |              |                       |                 |                    |
| G4         | B7              | None Detected  |                                      |                                          |              |                       |                 |                    |



 EMSL Order:
 042408734

 Customer ID:
 TTDC42

 Customer PO:
 1207085

 Project ID:
 N/A

Phone: (703) 489-2674

Fax: N/A

**Received Date:** 04/29/2024 09:30 AM **Analysis Date:** 05/01/2024

Report Date: 05/03/2024

Attn: Chelsea Saber

Tetra Tech 1560 Broadway, Suite 1400 Denver, CO, 80202

Project: Maui Wildfire - Lahaina

# ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

| Customer Sample Number:                                  | Lab Blank      |       | Sample Description: Lab Blank                | Sample Description: Lab Blank |  |  |
|----------------------------------------------------------|----------------|-------|----------------------------------------------|-------------------------------|--|--|
| EMSL Sample Number:                                      | 042408734-0014 |       | Sample Matrix: Air                           |                               |  |  |
| Magnification used for fiber counting:                   | 20,000         |       | Volume (L): 0.0                              | )                             |  |  |
| Aspect ratio for fiber definition:                       | 3:1            |       | Area of original collection filter (mm²): 38 | 5                             |  |  |
| Minimum Length (μm):                                     | ≥ 0.5          |       | Grid Opening Area (mm²): 0.0                 | 0128                          |  |  |
| Chi <sup>2</sup> Test for Random Distribution on Filter: | N/A            | (N/A) | Grid Openings Analyzed: 9                    |                               |  |  |
| Minimum Level of analysis (chrysotile):                  | CD             |       | Analyst: G.                                  | Barry                         |  |  |
| Minimum Level of analysis (amphibole):                   | ADX            |       |                                              |                               |  |  |

Estimated Particulate Loading on Filter %: 1
Target Analytical Sensitivity (Structures/cc): 0.001
Analytical Sensitivity (Structures/cc): N/A

Limit of Detection (Structures/cc): N/A

| TOTAL STRUCTURES (All Sizes) |          |              |         |         |               |                                 |  |  |
|------------------------------|----------|--------------|---------|---------|---------------|---------------------------------|--|--|
|                              | Minimum  | Structures D | etected | Density | Concentration | 95 % Confidence Interval (S/cc) |  |  |
|                              | ID Level | Primary      | Total   | (S/mm²) | (S/cc)        | Lower Upper                     |  |  |
|                              |          |              |         |         |               |                                 |  |  |
| Total Chrysotile             | CD       | 0            | 0       | < 25.95 |               |                                 |  |  |
| Total Amphibole              | ADX      | 0            | 0       | < 25.95 |               |                                 |  |  |
| Actinolite                   | ADX      | 0            | 0       | < 25.95 |               |                                 |  |  |
| Amosite                      | ADX      | 0            | 0       | < 25.95 |               |                                 |  |  |
| Anthophyllite                | ADX      | 0            | 0       | < 25.95 |               |                                 |  |  |
| Crocidolite                  | ADX      | 0            | 0       | < 25.95 |               |                                 |  |  |
| Tremolite                    | ADX      | 0            | 0       | < 25.95 |               |                                 |  |  |
| Total Asbestos Structures    | CD/ADX   | 0            | 0       | < 25.95 |               |                                 |  |  |
| Other Minerals               | -        | 0            | 0       | < 25.95 |               |                                 |  |  |
| Total All Structures         | -        | 0            | 0       | < 25.95 |               |                                 |  |  |

| PCM EQUIVALENT (PCMe) Fibers                  |          |                 |       |         |               |                                 |       |  |
|-----------------------------------------------|----------|-----------------|-------|---------|---------------|---------------------------------|-------|--|
| (>5 microns in length with >3:1 Aspect Ratio) |          |                 |       |         |               |                                 |       |  |
|                                               | Minimum  | Fibers Detected |       | Density | Concentration | 95 % Confidence Interval (F/cc) |       |  |
|                                               | ID Level | Primary         | Total | (F/mm²) | (F/cc)        | Lower                           | Upper |  |
| Fotal Chrysotile (PCMe)                       | CD       | 0               | 0     | < 25.95 |               |                                 |       |  |
| Total Amphibole (PCMe)                        | ADX      | 0               | 0     | < 25.95 |               |                                 |       |  |
| Actinolite                                    | ADX      | 0               | 0     | < 25.95 |               |                                 |       |  |
| Amosite                                       | ADX      | 0               | 0     | < 25.95 |               |                                 |       |  |
| Anthophyllite                                 | ADX      | 0               | 0     | < 25.95 |               |                                 |       |  |
| Crocidolite                                   | ADX      | 0               | 0     | < 25.95 |               |                                 |       |  |
| Tremolite                                     | ADX      | 0               | 0     | < 25.95 |               |                                 |       |  |
| Total Asbestos Structures (PCMe)              | CD/ADX   | 0               | 0     | < 25.95 |               |                                 |       |  |
| Other Minerals                                | -        | 0               | 0     | < 25.95 |               |                                 |       |  |
| Total All Structures (PCMe)                   | -        | 0               | 0     | < 25.95 |               |                                 |       |  |

Comment

Approved Signatory

Concentrations and 95% Confidence Intervals are based on a Poissonian distribution. Structure counts above 31 may be better expressed with a Gaussian distribution. EMSL maintains liability limited to the cost of analysis. This report relates only to the samples reported above and may not be reproduced except in full without the written approval of EMSL. EMSL is not responsible for sample collection activities or analytical limitations. Interpretation and use of results are the responsibility of the client.



EMSL Order ID: 042408734

Client: Tetra Tech

Project ID: Maui Wildfire - Lahaina

#### ISO 10312 Determination of Asbestos Fibers Direct Transfer Transmission Electron Microscopy

### **Analytical Bench Sheet Data**

|            | EMSL S          | ample ID:      | 042408734-                           | 0014                         |             |              | Customer              | Sample:         | Lab Blank          |
|------------|-----------------|----------------|--------------------------------------|------------------------------|-------------|--------------|-----------------------|-----------------|--------------------|
| Grid<br>ID | Grid<br>Opening | Structure Type | Structure<br>Number<br>Primary Total | Dimensions (µm) Length Width | Level of ID | Mineral Type | Additional Mineral ID | Image<br>Number | Structure Comments |
| G5         | <b>I</b> 6      | None Detected  |                                      |                              |             |              |                       |                 |                    |
| G5         | H3              | None Detected  |                                      |                              |             |              |                       |                 |                    |
| G5         | D7              | None Detected  |                                      |                              |             |              |                       |                 |                    |
| G5         | A4              | None Detected  |                                      |                              |             |              |                       |                 |                    |
| G6         | J4              | None Detected  |                                      |                              |             |              |                       |                 |                    |
| G6         | F9              | None Detected  |                                      |                              |             |              |                       |                 |                    |
| G6         | C5              | None Detected  |                                      |                              |             |              |                       |                 |                    |
| G7         | B7              | None Detected  |                                      |                              |             |              |                       |                 |                    |
| G7         | E5              | None Detected  |                                      |                              |             |              |                       |                 |                    |

OrderID: 042408734



#### Asbestos Chain of Custody (Air, Bulk, Soil)

EMSL Order Number / Lab Use Only

#042408734

EMSL Analytical, Inc. 200 Route 130 North Cinnaminson, NJ 08077

PHONE: (800) 220-3675
EMAIL: CinnAsblab@EMSL.com

| Customer ID:                                                           |                                      |                                                              | If Bill-To is the a   | same as Report-To leave thi                  | s section blank. Third | -party billing requires writte        | n authorization. |  |  |
|------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------|-----------------------|----------------------------------------------|------------------------|---------------------------------------|------------------|--|--|
|                                                                        |                                      |                                                              | Company               | Name:                                        |                        |                                       |                  |  |  |
| Contact Name: Tetra Te                                                 | 1                                    |                                                              | Billing Contact:      |                                              |                        |                                       |                  |  |  |
| Company Name: Tetro Te Contact Name: Chalsed Street Address: 16(0,000) |                                      | TI WIND                                                      | E                     | Street Address:                              |                        |                                       |                  |  |  |
|                                                                        |                                      | TE 1400<br> Country: 116 A                                   | D City State          | City, State, Zip: Country.                   |                        |                                       |                  |  |  |
| De Phone:                                                              | 0 80202                              | Country: VSA                                                 | City, State           |                                              |                        |                                       |                  |  |  |
| 3 703-489-                                                             | 2019                                 | 2122                                                         | Email(s) fo           | r Invoice:                                   |                        |                                       |                  |  |  |
| Chelsia.                                                               | saber 62 tur                         | Atch. CM                                                     | nformation            |                                              |                        |                                       |                  |  |  |
| Project May Was A                                                      | 1 1 100                              |                                                              | morniation            |                                              | Purchase 12/           | 77096                                 |                  |  |  |
| Mame/No: VIOW WILDTIN                                                  | e- Larv                              | una                                                          | US State where        | State o                                      |                        | 07085<br>ust select project location: |                  |  |  |
| f applicable, EMSL will<br>rovide)                                     |                                      |                                                              | samples collect       | ed: HI                                       | Commercial (Taxa       | ble) Residential (                    | Non-Taxable)     |  |  |
| Sampled By Name: Elia large                                            | - Saldaña                            | Sampled By Signature:                                        | 28                    | 3=                                           |                        | No. of Samples<br>in Shipment         | 13               |  |  |
|                                                                        |                                      | Turn-Aroun                                                   | id-Time (TAT)         |                                              |                        |                                       |                  |  |  |
| 3 Hour 4-4.5 Hour<br>AHERA ONLY                                        | 6 Hour<br>TEM Air 3-6 Hour, plea     | 24 Hour 32 Hour se call shead to schedule. 32 Hour TAT avail | lable for select test | Hour 72 Hour is only; samples must be submit | 96 Hour                | 1 Week                                | 2 Week           |  |  |
| PCM Air                                                                |                                      |                                                              | - Air                 |                                              | TEM - Settled I        | Dust                                  |                  |  |  |
| NIOSH 7400                                                             |                                      | AHERA 40 CFR, Par                                            |                       |                                              | Microvac - AST         |                                       |                  |  |  |
| NIOSH 7400 w/ 8hr. TWA                                                 |                                      | ■ NIOSH 7402                                                 |                       |                                              | Wipe - ASTM D          | 6480                                  |                  |  |  |
| PLM - Bulk (repo                                                       |                                      | EPA Level II                                                 |                       |                                              | Qualitative via F      |                                       |                  |  |  |
| PLM EPA 600/R-93/116 (<19                                              | 6)                                   | ISO 10312*                                                   | D. II.                | L                                            | Qualitative via E      | Orop Mount Prep                       |                  |  |  |
| PLM EPA NOB (<1%)                                                      |                                      | TEM EPA NOB                                                  | - Bulk                |                                              | Soil - Pock - \        | Vermiculite (reporting                | Tiblis)*         |  |  |
|                                                                        | 1,000 (<0.1%)                        | NYS NOB 198.4 (No                                            | n-Friable-NY)         | Г                                            | _                      | R-93/116 with milling pre             |                  |  |  |
| POINT COUNT W/ GRAVIME                                                 | 0 0                                  | TEM EPA 600/R-93/                                            |                       | rep (0.1%)                                   |                        | R-93/116 with milling pre             |                  |  |  |
| 400 (<0.25%)                                                           | ,000 (<0.1%)                         |                                                              |                       |                                              | _                      | R-93/116 with milling pre             |                  |  |  |
| ■ NIOSH 9002 (<1%)                                                     |                                      | Other Test                                                   | (please specif        | χ) [                                         | TEM Qualitative        | via Filtration Prep                   |                  |  |  |
| NYS 198.1 (Friable - NY)                                               |                                      |                                                              |                       |                                              | TEM Qualitative        | via Drop Mount Prep                   |                  |  |  |
| NYS 198.6 NOB (Non-Friable                                             | ,                                    |                                                              |                       |                                              |                        | 25                                    | 140              |  |  |
| NYS 198.8 (Vermiculite SM-)                                            | <b>'</b> )                           | *Please call with y                                          | our project-spec      | ific requirements.                           |                        |                                       |                  |  |  |
| Positive Stop - Clearly Iden                                           | tified Homogeneous                   |                                                              | 1                     | e Size (Air Samples)                         | □ 0.8um                | 0.45um                                |                  |  |  |
| Sample Number                                                          |                                      | Location / Description                                       |                       | Volume, Area or Hor                          |                        | Date / Time Sa<br>(Air Monitoring     |                  |  |  |
|                                                                        |                                      |                                                              | 33 ~                  |                                              |                        | (Far monitoring                       | 9 1              |  |  |
| MFL-AMOI - 042224                                                      | AB                                   | 017970                                                       | 2W                    | 6570.                                        | 653                    | 04/22/29                              | 1102 le          |  |  |
|                                                                        |                                      | 27 .                                                         |                       | 72-1                                         | 24 N                   | 04/22-124                             |                  |  |  |
| nfl-Amoz-04222                                                         | 1-AB                                 | DK 7970                                                      | 57                    | 7356.                                        | 010                    | 09/22/29                              | 1121             |  |  |
| MFL-AM03-042224                                                        | 1-AB                                 | DK7970                                                       | 50                    | 7282.                                        | 163                    | 04/22/24                              | 1306             |  |  |
| MFL-19M04-0422                                                         | 4-nB                                 | DK7970                                                       |                       | 7209.4                                       | 38                     | 04/22/24                              | 1327             |  |  |
| MFL- FBOI - 042224                                                     | -AB                                  | 0479703                                                      | (1)                   | J                                            |                        | 04/22/24                              | 1200             |  |  |
| MFC AMOI-09232                                                         | 9-AB                                 | 016797                                                       | 046                   | 7574.69                                      | 8                      | 04/23/24                              | 1109 Ex          |  |  |
| MFL-XM02-042                                                           | 374-AB                               | DK797                                                        | 035                   | 7261.18                                      | 1                      | 14/23/24                              | 1122             |  |  |
| MFL-AMD3-04232                                                         | 1-AB                                 | DK 797                                                       | 020                   | 7396.9                                       |                        | 04/23/24                              | 1305             |  |  |
| Samples MFL-AMOI-                                                      | Special Instructions and OH 2224-Ar. | Stor Regulatory Requirements (Sample ) へんよ MFL -Amo          | I - 0423              | Processing Methods, Limi                     | because                | post-cal va                           | lue uns          |  |  |
| greater man 10                                                         | % devention                          | From pre-cul in                                              | loe                   |                                              |                        | 1                                     |                  |  |  |
|                                                                        |                                      | samples receive                                              |                       | table for a                                  | nalysis.               |                                       |                  |  |  |
| ethod of Shipment: FLAEX                                               |                                      |                                                              |                       | ondition Upon Receipt:                       |                        |                                       |                  |  |  |
| LUCX                                                                   |                                      |                                                              |                       | /                                            |                        | , /                                   | - 1              |  |  |
| elinquished by:                                                        | 1 -                                  | Date/Time:                                                   | Received              | by:                                          | -11                    | Date/Fine                             | 530              |  |  |
| Relinquished by:                                                       | 3=                                   | Date/Time: 04/25/24 1100                                     |                       | 1 la                                         | FX                     | Date/Time                             | 330              |  |  |

EMSL Analytical, Inc.'s Laboratory Terms and Conditions are incorporated into this Chain of Custody by reference in their entirety. Submission of samples to EMSL Analytical, Inc. constitutes acceptance and acknowledgment of all terms and conditions by Customer.

AGREE TO ELECTRONIC SIGNATURE (By checking, I consent to signing this Chain of Custody document by electronic signature.)



#### Asbestos Chain of Custody (Air, Bulk, Soil)

EMSL Order Number / Lab Use Only

EMSL Analytical, Inc. 200 Route 130 North Cinnaminson, NJ 08077

#042408734

PHONE: (800) 220-3675

EMAIL: CinnAsblab@EMSL.com

nal Pages of the Chain of Custody are only necessary if needed for additional sample information

Special Instructions and/or Regulatory Requirements (Sample Specifications, Processing Methods, Limits of Detection, etc.) Date / Time Sampled Sample Number Sample Location / Description Volume, Area or Homogeneous Area (Air Monitoring Only) DK797042 7,221.348 MFL-AM04-142324-AB 1326 MFL-FBOI-042324-AB DK 797043 0 1200 MF1-AMOLO42424-AB DIL 797030 6,937.549 04/24/24 405 MFL- AMO2-042424-AB 7,113.744 DIL 797055 04/24/24 1125 DK 797029 7,358.677 MF1-AM03-042424-AB 04/24/24 1307 7,159.680 17FL-AMOY-042424-AB DK 797036 04/24/24/329 MFL-FB01-042424-AB DK 797038 04/24/24 120 Method of Shipment: mple Condition Upon Receipt: Festex Relinquished by: 04125/24 Relinquished by

AGREE TO ELECTRONIC SIGNATURE (By checking, I consent to signing this Chain of Custody document by electronic signature.)

EMSL Analytical, Inc.'s Laboratory Terms and Conditions are incorporated into this Chain of Custody by reference in their entirety. Submission of samples to EMSL Analytical, Inc. constitutes acceptance and acknowledgment of all terms and conditions by Customer.

2

#### Stage 1 Data Verification Checklist – Asbestos

#### HDOH CAB - Ambient Community Air Sampling - Lahaina

#### Task Order No. 23141

#### Reviewed by:

Kierra Johnson 05/06/2024 and Shanna Vasser 05/08/2024

Laboratory: EMSL Analytical, Inc. - North Cinnaminson, NJ

Collection date(s): 04/22/2024 - 04/24/2024

Report No: 42408734

| ٧ | 1. | Chain of custody | (CoC) | ) documentation is p | resent. |
|---|----|------------------|-------|----------------------|---------|
|   |    |                  |       |                      |         |

- <u>√</u> 2. Sample receipt condition information is present and acceptable.
- $\underline{\mathbf{v}}$  3. Laboratory conducting the analysis is identified.
- X 4. All samples submitted to the laboratory are accounted for.
- <u>∨</u> 5. Requested analytical methods were performed.
- $\underline{V}$  6. Analysis dates are provided.
- $\underline{V}$  7. Analyte results are provided.
- NA 8. Result qualifiers and definitions are provided.
- $\underline{V}$  9. Result units are reported.
- $\underline{V}$  10. Requested reporting limits are present.
- NA 11. Method detection limits are present.
- V 12. Sample collection date and time are present.
- $\underline{V}$  13. No detections in field QC blanks (lot/media blanks, field blanks, etc).

#### Discrepancies:

4. MFL-AM01-042224-AB and MFL-AM01-042324-AB were listed on the CoC, crossed out, voided (due to post-cal value exceeding the criteria), and not shipped to the laboratory. No results were present in the laboratory report for either sample because they were not shipped.

Notes: None.

Eastern Research Group 601 Keystone Park Drive Suite 700 Morrisville, NC 27560

May 08, 2024

Ms. Chelsea Saber Tetra Tech, Inc. 1777 Sentry Pkwy, Bldg 12 Blue Bell, PA 19422 Project Name: Lahaina fires

Dear Ms. Chelsea Saber,

This report contains the analytical results for the sample(s) received under chain(s) of custody by Eastern Research Group on 04/29/24 14:32.

Values below the MDL for QC results in this report are recorded as ND, however the actual values are reported in the accompanying Excel report with a "U" flag (Under the detection limit). The actual values are reported in AQS.

This test is accredited under the 2016 TNI Standard for Environmental Laboratories (FL DOH Certification # E87673). All analyses were performed as described in the US EPA-approved QAPP, under the contract for National Hazardous Air Pollutant Support (US EPA Contract No. 68HERH22D0002). This cover page is an integral part of this report, and any exceptions or comments are noted on the last page.

Release of the data contained in this data package and in the data submitted in the electronic data deliverable, has been authorized by the Program Manager, or the Program Manager's designee as verified by the following signature.

The issuance of the final Certificate of Analysis takes precedence over any previous Report. If you have any questions, please contact me at 919-468-7924.

Sincerely,

Julie Swift Program Manager julie.swift@erg.com

The information contained in this report and its attachment(s) are intended only for the use of the individual to whom it is addressed and may contain information that is privileged, confidential, or exempt from disclosure. If the reader of this message is not the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this report is strictly prohibited. If you have received this report in error, please notify <a href="mailto:julie.swift@erg.com">julie.swift@erg.com</a> and delete the report without retaining any copies.

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

**FILE #:** 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

#### **ANALYTICAL REPORT FOR SAMPLES**

| <u>LabNumber</u> | <u>Matrix</u>                                                                                                                                                                                                                                            | <u>Sampled</u>                                                                                                                                                                                                                                                                                              | Received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4042941-01       | Air                                                                                                                                                                                                                                                      | 04/18/24 23:59                                                                                                                                                                                                                                                                                              | 04/29/24 14:32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4042941-02       | Air                                                                                                                                                                                                                                                      | 04/18/24 23:59                                                                                                                                                                                                                                                                                              | 04/29/24 14:32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4042941-03       | Air                                                                                                                                                                                                                                                      | 04/18/24 23:59                                                                                                                                                                                                                                                                                              | 04/29/24 14:32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4042941-04       | Air                                                                                                                                                                                                                                                      | 04/18/24 23:59                                                                                                                                                                                                                                                                                              | 04/29/24 14:32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4042941-05       | Air                                                                                                                                                                                                                                                      | 04/19/24 23:59                                                                                                                                                                                                                                                                                              | 04/29/24 14:32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4042941-06       | Air                                                                                                                                                                                                                                                      | 04/19/24 23:59                                                                                                                                                                                                                                                                                              | 04/29/24 14:32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4042941-07       | Air                                                                                                                                                                                                                                                      | 04/19/24 23:59                                                                                                                                                                                                                                                                                              | 04/29/24 14:32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4042941-08       | Air                                                                                                                                                                                                                                                      | 04/19/24 23:59                                                                                                                                                                                                                                                                                              | 04/29/24 14:32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4042941-09       | Air                                                                                                                                                                                                                                                      | 04/19/24 00:00                                                                                                                                                                                                                                                                                              | 04/29/24 14:32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4042941-10       | Air                                                                                                                                                                                                                                                      | 04/20/24 23:59                                                                                                                                                                                                                                                                                              | 04/29/24 14:32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4042941-11       | Air                                                                                                                                                                                                                                                      | 04/20/24 23:59                                                                                                                                                                                                                                                                                              | 04/29/24 14:32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4042941-12       | Air                                                                                                                                                                                                                                                      | 04/20/24 23:59                                                                                                                                                                                                                                                                                              | 04/29/24 14:32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4042941-13       | Air                                                                                                                                                                                                                                                      | 04/20/24 23:59                                                                                                                                                                                                                                                                                              | 04/29/24 14:32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4042941-14       | Air                                                                                                                                                                                                                                                      | 04/21/24 23:59                                                                                                                                                                                                                                                                                              | 04/29/24 14:32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4042941-15       | Air                                                                                                                                                                                                                                                      | 04/21/24 23:59                                                                                                                                                                                                                                                                                              | 04/29/24 14:32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4042941-16       | Air                                                                                                                                                                                                                                                      | 04/21/24 23:59                                                                                                                                                                                                                                                                                              | 04/29/24 14:32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4042941-17       | Air                                                                                                                                                                                                                                                      | 04/21/24 23:59                                                                                                                                                                                                                                                                                              | 04/29/24 14:32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4042941-18       | Air                                                                                                                                                                                                                                                      | 04/21/24 00:00                                                                                                                                                                                                                                                                                              | 04/29/24 14:32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4042941-19       | Air                                                                                                                                                                                                                                                      | 04/22/24 23:59                                                                                                                                                                                                                                                                                              | 04/29/24 14:32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4042941-20       | Air                                                                                                                                                                                                                                                      | 04/22/24 23:59                                                                                                                                                                                                                                                                                              | 04/29/24 14:32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4042941-21       | Air                                                                                                                                                                                                                                                      | 04/22/24 23:59                                                                                                                                                                                                                                                                                              | 04/29/24 14:32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | 4042941-01<br>4042941-02<br>4042941-03<br>4042941-05<br>4042941-06<br>4042941-07<br>4042941-08<br>4042941-10<br>4042941-10<br>4042941-11<br>4042941-12<br>4042941-13<br>4042941-15<br>4042941-16<br>4042941-17<br>4042941-18<br>4042941-19<br>4042941-20 | 4042941-01 Air 4042941-02 Air 4042941-03 Air 4042941-04 Air 4042941-05 Air 4042941-06 Air 4042941-08 Air 4042941-09 Air 4042941-10 Air 4042941-11 Air 4042941-12 Air 4042941-13 Air 4042941-14 Air 4042941-15 Air 4042941-16 Air 4042941-17 Air 4042941-18 Air 4042941-19 Air 4042941-19 Air 4042941-20 Air | 4042941-01       Air       04/18/24 23:59         4042941-02       Air       04/18/24 23:59         4042941-03       Air       04/18/24 23:59         4042941-04       Air       04/18/24 23:59         4042941-05       Air       04/19/24 23:59         4042941-06       Air       04/19/24 23:59         4042941-07       Air       04/19/24 23:59         4042941-08       Air       04/19/24 23:59         4042941-09       Air       04/19/24 00:00         4042941-10       Air       04/20/24 23:59         4042941-11       Air       04/20/24 23:59         4042941-12       Air       04/20/24 23:59         4042941-13       Air       04/20/24 23:59         4042941-14       Air       04/21/24 23:59         4042941-15       Air       04/21/24 23:59         4042941-16       Air       04/21/24 23:59         4042941-18       Air       04/21/24 23:59         4042941-19       Air       04/21/24 00:00         4042941-19       Air       04/22/24 23:59 |

Eastern Research Group

The results in this report apply only to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

| Blue Bell, PA 19422                          | <b>SUBMITTED:</b> 04/29/24          |
|----------------------------------------------|-------------------------------------|
| Blue Bell, PA 19422  ATTN: Ms. Chelsea Saber | SUBMITTED: 04/29/24  AQS SITE CODE: |
| Blue Bell, PA 19422                          | SUBMITTED: 04/29/24                 |
|                                              | <b>SUBMITTED:</b> 04/29/24          |
| 1777 Sentry Pkwy, Bldg 12                    | <b>REPORTED:</b> 05/08/24 13:25     |
| Tetra Tech, Inc.                             | FILE #: 4205.00.003.001             |

| ATTN. IVIS. CHEISEA SADEI    |            |     | AQS SITE CODE. |                |
|------------------------------|------------|-----|----------------|----------------|
| <b>PHONE:</b> (703) 885-5495 | FAX:       |     | SITE CODE:     | Lahaina fires  |
| MFL-AM04-042224-HM           | 4042941-22 | Air | 04/22/24 23:59 | 04/29/24 14:32 |
| MFL-AM01-042324-HM           | 4042941-23 | Air | 04/23/24 23:59 | 04/29/24 14:32 |
| MFL-AM02-042324-HM           | 4042941-24 | Air | 04/23/24 23:59 | 04/29/24 14:32 |
| MFL-AM03-042324-HM           | 4042941-25 | Air | 04/23/24 23:59 | 04/29/24 14:32 |
| MFL-AM04-042324-HM           | 4042941-26 | Air | 04/23/24 23:59 | 04/29/24 14:32 |
| MFL-FB01-042324-HM           | 4042941-27 | Air | 04/23/24 00:00 | 04/29/24 14:32 |
| MFL-AM01-042424-HM           | 4042941-28 | Air | 04/24/24 23:59 | 04/29/24 14:32 |
| MFL-AM02-042424-HM           | 4042941-29 | Air | 04/24/24 23:59 | 04/29/24 14:32 |
| MFL-AM03-042424-HM           | 4042941-30 | Air | 04/24/24 23:59 | 04/29/24 14:32 |
| MFL-AM04-042424-HM           | 4042941-31 | Air | 04/24/24 23:59 | 04/29/24 14:32 |

Tetra Tech, Inc.

Description:

Matrix:

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE**: (703) 885-5495 **FAX**:

Air

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

MFL-AM01-041824-HM **Lab ID:** 4042941-01

**Sampled:** 04/18/24 23:59

**Sample Volume:** 2054.28 m<sup>3</sup> **Received:** 04/29/24 14:32

Filter ID:

**Analysis Date:** 04/30/24 22:32

**Comments:** Q8521163 - Received in good condition

|                |                   | <u>Results</u> |             | <u>MDL</u> |
|----------------|-------------------|----------------|-------------|------------|
| <u>Analyte</u> | <b>CAS Number</b> | ng/m³ Air      | <u>Flag</u> | ng/m³ Air  |
| Antimony       | 7440-36-0         | 0.0600         | SL          | 0.0306     |
| Arsenic        | 7440-38-2         | 0.211          |             | 0.00742    |
| Barium         | 7440-39-3         | 2.28           | QB-01       | 0.847      |
| Beryllium      | 7440-41-7         | 0.00450        |             | 0.00253    |
| Cadmium        | 7440-43-9         | 0.00597        | U           | 0.0587     |
| Chromium       | 7440-47-3         | 1.49           | U           | 1.75       |
| Cobalt         | 7440-48-4         | 0.184          |             | 0.0345     |
| Copper         | 7440-50-8         | 72.5           |             | 2.08       |
| Lead           | 7439-92-1         | 0.323          |             | 0.169      |
| Manganese      | 7439-96-5         | 5.56           |             | 1.50       |
| Molybdenum     | 7439-98-7         | 3.94           |             | 0.284      |
| Nickel         | 7440-02-0         | 0.899          |             | 0.516      |
| Selenium       | 7782-49-2         | 0.118          |             | 0.00710    |
| Thallium       | 7440-28-0         | 7.82E-4        |             | 4.66E-4    |
| Vanadium       | 7440-62-2         | 0.485          |             | 0.0419     |
| Zinc           | 7440-66-6         | 40.4           | U           | 60.8       |

Tetra Tech, Inc.

Description:

Matrix:

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

Air

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

MFL-AM02-041824-HM Lab ID: 4042941-02

Sample Volume: 2055.379 m<sup>3</sup>

**Sampled:** 04/18/24 23:59

**Received:** 04/29/24 14:32 Filter ID:

**Analysis Date:** 04/30/24 20:48

**Comments:** Q8521161 - Received in good condition

|                |                   | <u>Results</u> |             | <u>MDL</u> |
|----------------|-------------------|----------------|-------------|------------|
| <u>Analyte</u> | <b>CAS Number</b> | ng/m³ Air      | <u>Flag</u> | ng/m³ Air  |
| Antimony       | 7440-36-0         | 0.185          | SL          | 0.0306     |
| Arsenic        | 7440-38-2         | 0.284          |             | 0.00742    |
| Barium         | 7440-39-3         | 5.45           | QB-01       | 0.847      |
| Beryllium      | 7440-41-7         | 0.0126         |             | 0.00253    |
| Cadmium        | 7440-43-9         | 0.0128         | U           | 0.0587     |
| Chromium       | 7440-47-3         | 2.16           |             | 1.75       |
| Cobalt         | 7440-48-4         | 0.377          |             | 0.0345     |
| Copper         | 7440-50-8         | 35.3           | QM-07       | 2.08       |
| Lead           | 7439-92-1         | 1.07           |             | 0.169      |
| Manganese      | 7439-96-5         | 12.1           |             | 1.50       |
| Molybdenum     | 7439-98-7         | 1.47           |             | 0.284      |
| Nickel         | 7440-02-0         | 1.45           |             | 0.516      |
| Selenium       | 7782-49-2         | 0.166          |             | 0.00709    |
| Thallium       | 7440-28-0         | 9.82E-4        |             | 4.66E-4    |
| Vanadium       | 7440-62-2         | 1.16           |             | 0.0419     |
| Zinc           | 7440-66-6         | 43.4           | U           | 60.8       |

Tetra Tech, Inc.

Description:

Matrix:

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

Air

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

MFL-AM03-041824-HM **Lab ID:** 4042941-03

**Sampled:** 04/18/24 23:59

**Sample Volume:** 1939.986 m<sup>3</sup> **Received:** 04/29/24 14:32

Filter ID: Analysis Date: 04/30/24 22:43

**Comments:** Q8521159 - Received in good condition

|                |                   | <u>Results</u> |             | <u>MDL</u> |
|----------------|-------------------|----------------|-------------|------------|
| <u>Analyte</u> | <b>CAS Number</b> | ng/m³ Air      | <u>Flag</u> | ng/m³ Air  |
| Antimony       | 7440-36-0         | 0.0886         | SL          | 0.0324     |
| Arsenic        | 7440-38-2         | 0.171          |             | 0.00786    |
| Barium         | 7440-39-3         | 4.30           | QB-01       | 0.897      |
| Beryllium      | 7440-41-7         | 0.0141         |             | 0.00268    |
| Cadmium        | 7440-43-9         | 0.00670        | U           | 0.0621     |
| Chromium       | 7440-47-3         | 2.02           |             | 1.85       |
| Cobalt         | 7440-48-4         | 0.288          |             | 0.0366     |
| Copper         | 7440-50-8         | 49.0           |             | 2.21       |
| Lead           | 7439-92-1         | 1.01           |             | 0.179      |
| Manganese      | 7439-96-5         | 7.27           |             | 1.59       |
| Molybdenum     | 7439-98-7         | 2.41           |             | 0.301      |
| Nickel         | 7440-02-0         | 1.18           |             | 0.547      |
| Selenium       | 7782-49-2         | 0.146          |             | 0.00751    |
| Thallium       | 7440-28-0         | 0.00110        |             | 4.94E-4    |
| Vanadium       | 7440-62-2         | 0.741          |             | 0.0444     |
| Zinc           | 7440-66-6         | 34.6           | U           | 64.4       |

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

Description:

Matrix:

ATTN: Ms. Chelsea Saber

Air

**PHONE:** (703) 885-5495 **FAX:** 

MFL-AM04-041824-HM

Lab ID:

Filter ID:

4042941-04

Sample Volume: 1982.558 m<sup>3</sup>

FILE #: 4205.00.003.001

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE:

**REPORTED:** 05/08/24 13:25

Lahaina fires

Sampled: 04/18/24 23:59 **Received:** 04/29/24 14:32

**Analysis Date:** 04/30/24 22:53

**Comments:** Q8521154 - Received in good condition

| <u>Results</u>    |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>MDL</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>CAS Number</b> | ng/m³ Air                                                                                                                                             | <u>Flag</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ng/m³ Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 7440-36-0         | 0.101                                                                                                                                                 | SL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 7440-38-2         | 0.374                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00769                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 7440-39-3         | 3.88                                                                                                                                                  | QB-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 7440-41-7         | 0.0131                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 7440-43-9         | 0.0122                                                                                                                                                | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 7440-47-3         | 2.53                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 7440-48-4         | 0.419                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 7440-50-8         | 32.6                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 7439-92-1         | 0.840                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 7439-96-5         | 13.3                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 7439-98-7         | 1.34                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 7440-02-0         | 1.40                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 7782-49-2         | 0.166                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 7440-28-0         | 9.13E-4                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.83E-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 7440-62-2         | 1.04                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 7440-66-6         | 36.7                                                                                                                                                  | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                   | 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-48-4 7440-50-8 7439-92-1 7439-96-5 7439-98-7 7440-02-0 7782-49-2 7440-28-0 7440-62-2 | CAS Number         ng/m³ Air           7440-36-0         0.101           7440-38-2         0.374           7440-39-3         3.88           7440-41-7         0.0131           7440-43-9         0.0122           7440-47-3         2.53           7440-48-4         0.419           7440-50-8         32.6           7439-92-1         0.840           7439-96-5         13.3           7440-02-0         1.40           7782-49-2         0.166           7440-28-0         9.13E-4           7440-62-2         1.04 | CAS Number         ng/m³ Air         Flag           7440-36-0         0.101         SL           7440-38-2         0.374         SL           7440-39-3         3.88         QB-01           7440-41-7         0.0131         U           7440-43-9         0.0122         U           7440-47-3         2.53         U           7440-48-4         0.419         U           7439-92-1         0.840         U           7439-96-5         13.3         U           7440-02-0         1.40         U           7782-49-2         0.166         U           7440-28-0         9.13E-4         U |  |

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

Description: MFL-AM01-041924-HM

**PHONE:** (703) 885-5495 **FAX:** 

Lab ID: 4042941-05 **Sampled:** 04/19/24 23:59

Matrix: Air

**Received:** 04/29/24 14:32

Filter ID:

**Analysis Date:** 04/30/24 23:03

**Comments:** Q8521153 - Received in good condition

Inorganics by Compendium Method IO-3.5

Sample Volume: 2024.351 m<sup>3</sup>

|                |                   | <u>Results</u> |             | <u>MDL</u>       |
|----------------|-------------------|----------------|-------------|------------------|
| <u>Analyte</u> | <b>CAS Number</b> | ng/m³ Air      | <u>Flag</u> | <u>ng/m³ Air</u> |
| Antimony       | 7440-36-0         | 0.0604         | SL          | 0.0310           |
| Arsenic        | 7440-38-2         | 0.356          |             | 0.00753          |
| Barium         | 7440-39-3         | 2.56           | QB-01       | 0.860            |
| Beryllium      | 7440-41-7         | 0.00527        |             | 0.00257          |
| Cadmium        | 7440-43-9         | 0.00803        | U           | 0.0596           |
| Chromium       | 7440-47-3         | 1.86           |             | 1.78             |
| Cobalt         | 7440-48-4         | 0.245          |             | 0.0350           |
| Copper         | 7440-50-8         | 97.1           |             | 2.11             |
| Lead           | 7439-92-1         | 0.411          |             | 0.172            |
| Manganese      | 7439-96-5         | 6.45           |             | 1.52             |
| Molybdenum     | 7439-98-7         | 4.04           |             | 0.289            |
| Nickel         | 7440-02-0         | 1.14           |             | 0.524            |
| Selenium       | 7782-49-2         | 0.110          |             | 0.00720          |
| Thallium       | 7440-28-0         | 7.48E-4        |             | 4.73E-4          |
| Vanadium       | 7440-62-2         | 0.647          |             | 0.0425           |
| Zinc           | 7440-66-6         | 36.2           | U           | 61.7             |
|                |                   |                |             |                  |

Tetra Tech, Inc.

Description:

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

Bido Boil, 171 10 122

Matrix:

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

Air

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

**Lab ID:** 4042941-06

**Sampled:** 04/19/24 23:59

**Sample Volume:** 2079.326 m<sup>3</sup> **Received:** 04/29/24 14:32

Filter ID: Analysis Date: 04/30/24 23:14

**Comments:** Q8521152 - Received in good condition

MFL-AM02-041924-HM

|                |                   | <u>Results</u> |             | <u>MDL</u> |
|----------------|-------------------|----------------|-------------|------------|
| <u>Analyte</u> | <b>CAS Number</b> | ng/m³ Air      | <u>Flag</u> | ng/m³ Air  |
| Antimony       | 7440-36-0         | 0.150          | SL          | 0.0302     |
| Arsenic        | 7440-38-2         | 0.178          |             | 0.00733    |
| Barium         | 7440-39-3         | 3.85           | QB-01       | 0.837      |
| Beryllium      | 7440-41-7         | 0.00692        |             | 0.00250    |
| Cadmium        | 7440-43-9         | 0.00715        | U           | 0.0580     |
| Chromium       | 7440-47-3         | 1.90           |             | 1.73       |
| Cobalt         | 7440-48-4         | 0.226          |             | 0.0341     |
| Copper         | 7440-50-8         | 41.0           |             | 2.06       |
| Lead           | 7439-92-1         | 0.552          |             | 0.167      |
| Manganese      | 7439-96-5         | 6.99           |             | 1.48       |
| Molybdenum     | 7439-98-7         | 1.80           |             | 0.281      |
| Nickel         | 7440-02-0         | 1.04           |             | 0.510      |
| Selenium       | 7782-49-2         | 0.142          |             | 0.00701    |
| Thallium       | 7440-28-0         | 7.47E-4        |             | 4.61E-4    |
| Vanadium       | 7440-62-2         | 0.747          |             | 0.0414     |
| Zinc           | 7440-66-6         | 52.7           | U           | 60.1       |

Tetra Tech, Inc.

Description:

Matrix:

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE**: (703) 885-5495 **FAX**:

Air

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

MFL-AM03-041924-HM **Lab ID:** 4042941-07

**Sampled:** 04/19/24 23:59

Sample Volume: 1970.416 m<sup>3</sup>

**Analysis Date:** 04/30/24 23:24

**Received:** 04/29/24 14:32

Filter ID:

**Comments:** Q8521151 - Received in good condition

|                |                   | <u>Results</u> |             | <u>MDL</u> |
|----------------|-------------------|----------------|-------------|------------|
| <u>Analyte</u> | <b>CAS Number</b> | ng/m³ Air      | <u>Flag</u> | ng/m³ Air  |
| Antimony       | 7440-36-0         | 0.0980         | SL          | 0.0319     |
| Arsenic        | 7440-38-2         | 0.157          |             | 0.00774    |
| Barium         | 7440-39-3         | 2.81           | QB-01       | 0.884      |
| Beryllium      | 7440-41-7         | 0.0160         |             | 0.00264    |
| Cadmium        | 7440-43-9         | 0.0121         | U           | 0.0612     |
| Chromium       | 7440-47-3         | 2.02           |             | 1.82       |
| Cobalt         | 7440-48-4         | 0.307          |             | 0.0360     |
| Copper         | 7440-50-8         | 42.7           |             | 2.17       |
| Lead           | 7439-92-1         | 16.2           |             | 0.177      |
| Manganese      | 7439-96-5         | 8.23           |             | 1.56       |
| Molybdenum     | 7439-98-7         | 2.02           |             | 0.296      |
| Nickel         | 7440-02-0         | 1.11           |             | 0.538      |
| Selenium       | 7782-49-2         | 0.145          |             | 0.00740    |
| Thallium       | 7440-28-0         | 8.80E-4        |             | 4.86E-4    |
| Vanadium       | 7440-62-2         | 0.823          |             | 0.0437     |
| Zinc           | 7440-66-6         | 32.3           | U           | 63.4       |

Tetra Tech, Inc.

FILE #: 4205.00.003.001

1777 Sentry Pkwy, Bldg 12

**REPORTED:** 05/08/24 13:25

Blue Bell, PA 19422

**SUBMITTED:** 04/29/24

ATTN: Ms. Chelsea Saber

**AQS SITE CODE:** 

**PHONE:** (703) 885-5495 **FAX:** 

SITE CODE:

Description:

4042941-08

Sampled: 04/19/24 23:59

Matrix: Air

MFL-AM04-041924-HM Lab ID:

**Received:** 04/29/24 14:32

Sample Volume: 1947.945 m<sup>3</sup> Filter ID:

Lahaina fires

**Analysis Date:** 04/30/24 23:34

**Comments:** 

Q8521149 - Received in good condition

|                |                   | <u>Results</u> |             | <u>MDL</u> |
|----------------|-------------------|----------------|-------------|------------|
| <u>Analyte</u> | <b>CAS Number</b> | ng/m³ Air      | <u>Flag</u> | ng/m³ Air  |
| Antimony       | 7440-36-0         | 0.0919         | SL          | 0.0322     |
| Arsenic        | 7440-38-2         | 0.192          |             | 0.00783    |
| Barium         | 7440-39-3         | 3.29           | QB-01       | 0.894      |
| Beryllium      | 7440-41-7         | 0.00786        |             | 0.00267    |
| Cadmium        | 7440-43-9         | 0.0123         | U           | 0.0619     |
| Chromium       | 7440-47-3         | 2.50           |             | 1.85       |
| Cobalt         | 7440-48-4         | 0.263          |             | 0.0364     |
| Copper         | 7440-50-8         | 39.5           |             | 2.20       |
| Lead           | 7439-92-1         | 0.520          |             | 0.179      |
| Manganese      | 7439-96-5         | 8.14           |             | 1.58       |
| Molybdenum     | 7439-98-7         | 1.59           |             | 0.300      |
| Nickel         | 7440-02-0         | 1.56           |             | 0.545      |
| Selenium       | 7782-49-2         | 0.157          |             | 0.00748    |
| Thallium       | 7440-28-0         | 6.80E-4        |             | 4.92E-4    |
| Vanadium       | 7440-62-2         | 0.750          |             | 0.0442     |
| Zinc           | 7440-66-6         | 35.7           | U           | 64.1       |
|                |                   |                |             |            |

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

Description:

Matrix:

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

Air

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

MFL-FB01-041924-HM Lab ID: 4042941-09 Sampled: 04/19/24 00:00

Sample Volume: 2024.351 m<sup>3</sup> **Received:** 04/29/24 14:32

Filter ID:

**Analysis Date:** 04/30/24 23:45

**Comments:** Q8521147 - Received in good condition

|                | <u>Results</u>    |                  |              | MDL       |  |
|----------------|-------------------|------------------|--------------|-----------|--|
| <u>Analyte</u> | <b>CAS Number</b> | <u>ng/m³ Air</u> | <u>Flag</u>  | ng/m³ Air |  |
| Antimony       | 7440-36-0         | 0.0213           | SL, U        | 0.0310    |  |
| Arsenic        | 7440-38-2         | 0.00317          | U            | 0.00753   |  |
| Barium         | 7440-39-3         | 1.10             | FB-01, QB-01 | 0.860     |  |
| Beryllium      | 7440-41-7         | 6.44E-4          | U            | 0.00257   |  |
| Cadmium        | 7440-43-9         | 7.66E-4          | U            | 0.0596    |  |
| Chromium       | 7440-47-3         | 0.906            | U            | 1.78      |  |
| Cobalt         | 7440-48-4         | 0.0111           | U            | 0.0350    |  |
| Copper         | 7440-50-8         | 1.10             | U            | 2.11      |  |
| Lead           | 7439-92-1         | 0.0249           | U            | 0.172     |  |
| Manganese      | 7439-96-5         | 0.192            | U            | 1.52      |  |
| Molybdenum     | 7439-98-7         | 0.168            | U            | 0.289     |  |
| Nickel         | 7440-02-0         | 0.400            | U            | 0.524     |  |
| Selenium       | 7782-49-2         | 0.00466          | U            | 0.00720   |  |
| Thallium       | 7440-28-0         | 1.51E-4          | U            | 4.73E-4   |  |
| Vanadium       | 7440-62-2         | 0.0109           | U            | 0.0425    |  |
| Zinc           | 7440-66-6         | 30.9             | U            | 61.7      |  |

Tetra Tech, Inc.

Description:

Matrix:

1777 Sentry Pkwy, Bldg 12

Air

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE**: (703) 885-5495 **FAX**:

**FILE #:** 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

MFL-AM01-042024-HM **Lab ID:** 4042941-10

4042941-10 **Sampled:** 04/20/24 23:59

**Sample Volume:** 1940.693 m<sup>3</sup> **Received:** 04/29/24 14:32

Filter ID: Analysis Date: 04/30/24 23:55

**Comments:** Q8521146 - Received in good condition

|                |                   | <u>Results</u> |             | <u>MDL</u> |
|----------------|-------------------|----------------|-------------|------------|
| <u>Analyte</u> | <b>CAS Number</b> | ng/m³ Air      | <u>Flag</u> | ng/m³ Air  |
| Antimony       | 7440-36-0         | 0.0650         | SL          | 0.0324     |
| Arsenic        | 7440-38-2         | 0.359          |             | 0.00786    |
| Barium         | 7440-39-3         | 3.33           | QB-01       | 0.897      |
| Beryllium      | 7440-41-7         | 0.00798        |             | 0.00268    |
| Cadmium        | 7440-43-9         | 0.0274         | U           | 0.0621     |
| Chromium       | 7440-47-3         | 2.36           |             | 1.85       |
| Cobalt         | 7440-48-4         | 0.313          |             | 0.0366     |
| Copper         | 7440-50-8         | 101            |             | 2.20       |
| Lead           | 7439-92-1         | 0.665          |             | 0.179      |
| Manganese      | 7439-96-5         | 9.17           |             | 1.58       |
| Molybdenum     | 7439-98-7         | 3.68           |             | 0.301      |
| Nickel         | 7440-02-0         | 1.43           |             | 0.547      |
| Selenium       | 7782-49-2         | 0.134          |             | 0.00751    |
| Thallium       | 7440-28-0         | 0.00123        |             | 4.94E-4    |
| Vanadium       | 7440-62-2         | 0.871          |             | 0.0443     |
| Zinc           | 7440-66-6         | 31.7           | U           | 64.4       |

Tetra Tech, Inc.

FILE #: 4205.00.003.001

1777 Sentry Pkwy, Bldg 12

**REPORTED:** 05/08/24 13:25

Blue Bell, PA 19422

**SUBMITTED:** 04/29/24

ATTN: Ms. Chelsea Saber

**AQS SITE CODE:** 

**PHONE:** (703) 885-5495 **FAX:** 

SITE CODE:

Description:

MFL-AM02-042024-HM

Lab ID: 4042941-11

Sampled: 04/20/24 23:59

Matrix: Air Sample Volume: 2022.599 m<sup>3</sup>

**Received:** 04/29/24 14:32

Filter ID:

**Analysis Date:** 05/01/24 00:06

Lahaina fires

**Comments:** 

Q8521145 - Received in good condition

|                |                   | <u>Results</u> |             | <u>MDL</u> |
|----------------|-------------------|----------------|-------------|------------|
| <u>Analyte</u> | <b>CAS Number</b> | ng/m³ Air      | <u>Flag</u> | ng/m³ Air  |
| Antimony       | 7440-36-0         | 0.104          | SL          | 0.0311     |
| Arsenic        | 7440-38-2         | 0.315          |             | 0.00754    |
| Barium         | 7440-39-3         | 5.94           | QB-01       | 0.861      |
| Beryllium      | 7440-41-7         | 0.00802        |             | 0.00257    |
| Cadmium        | 7440-43-9         | 0.0138         | U           | 0.0596     |
| Chromium       | 7440-47-3         | 1.99           |             | 1.78       |
| Cobalt         | 7440-48-4         | 0.288          |             | 0.0351     |
| Copper         | 7440-50-8         | 53.2           |             | 2.12       |
| Lead           | 7439-92-1         | 0.845          |             | 0.172      |
| Manganese      | 7439-96-5         | 8.22           |             | 1.52       |
| Molybdenum     | 7439-98-7         | 1.87           |             | 0.289      |
| Nickel         | 7440-02-0         | 1.27           |             | 0.524      |
| Selenium       | 7782-49-2         | 0.147          |             | 0.00721    |
| Thallium       | 7440-28-0         | 0.00133        |             | 4.74E-4    |
| Vanadium       | 7440-62-2         | 0.887          |             | 0.0426     |
| Zinc           | 7440-66-6         | 37.0           | U           | 61.8       |

Tetra Tech, Inc.

Description:

Matrix:

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

Air

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

MFL-AM03-042024-HM **Lab ID:** 4042941-12

Sample Volume: 1930.253 m<sup>3</sup>

**Sampled:** 04/20/24 23:59 **Received:** 04/29/24 14:32

Filter ID: Analysis Date: 05/01/24 00:47

**Comments:** Q8521142 - Received in good condition

|                |                   | <u>Results</u> |             | <u>MDL</u>       |
|----------------|-------------------|----------------|-------------|------------------|
| <u>Analyte</u> | <b>CAS Number</b> | ng/m³ Air      | <u>Flag</u> | <u>ng/m³ Air</u> |
| Antimony       | 7440-36-0         | 0.0645         | SL          | 0.0325           |
| Arsenic        | 7440-38-2         | 0.127          |             | 0.00790          |
| Barium         | 7440-39-3         | 2.30           | QB-01       | 0.902            |
| Beryllium      | 7440-41-7         | 0.00891        |             | 0.00270          |
| Cadmium        | 7440-43-9         | 0.00743        | U           | 0.0625           |
| Chromium       | 7440-47-3         | 1.72           | U           | 1.86             |
| Cobalt         | 7440-48-4         | 0.193          |             | 0.0368           |
| Copper         | 7440-50-8         | 52.0           |             | 2.22             |
| Lead           | 7439-92-1         | 0.448          |             | 0.180            |
| Manganese      | 7439-96-5         | 5.07           |             | 1.59             |
| Molybdenum     | 7439-98-7         | 2.46           |             | 0.303            |
| Nickel         | 7440-02-0         | 0.996          |             | 0.550            |
| Selenium       | 7782-49-2         | 0.148          |             | 0.00755          |
| Thallium       | 7440-28-0         | 0.00117        |             | 4.96E-4          |
| Vanadium       | 7440-62-2         | 0.557          |             | 0.0446           |
| Zinc           | 7440-66-6         | 38.0           | U           | 64.7             |

Tetra Tech, Inc.

Description:

Matrix:

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

Air

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

MFL-AM04-042024-HM **Lab ID:** 4042941-13

Filter ID:

**Sampled:** 04/20/24 23:59

**Sample Volume:** 1971.021 m<sup>3</sup>

**Analysis Date:** 05/01/24 01:08

**Received:** 04/29/24 14:32

**Comments:** Q8521141 - Received in good condition

|                |                   | <u>Results</u> |             | <u>MDL</u> |
|----------------|-------------------|----------------|-------------|------------|
| <u>Analyte</u> | <b>CAS Number</b> | ng/m³ Air      | <u>Flag</u> | ng/m³ Air  |
| Antimony       | 7440-36-0         | 0.102          | SL          | 0.0319     |
| Arsenic        | 7440-38-2         | 0.270          |             | 0.00773    |
| Barium         | 7440-39-3         | 3.59           | QB-01       | 0.883      |
| Beryllium      | 7440-41-7         | 0.0109         |             | 0.00264    |
| Cadmium        | 7440-43-9         | 0.0102         | U           | 0.0612     |
| Chromium       | 7440-47-3         | 2.04           |             | 1.82       |
| Cobalt         | 7440-48-4         | 0.334          |             | 0.0360     |
| Copper         | 7440-50-8         | 30.1           |             | 2.17       |
| Lead           | 7439-92-1         | 0.899          |             | 0.177      |
| Manganese      | 7439-96-5         | 10.3           |             | 1.56       |
| Molybdenum     | 7439-98-7         | 1.11           |             | 0.296      |
| Nickel         | 7440-02-0         | 1.21           |             | 0.538      |
| Selenium       | 7782-49-2         | 0.178          |             | 0.00740    |
| Thallium       | 7440-28-0         | 0.00116        |             | 4.86E-4    |
| Vanadium       | 7440-62-2         | 0.924          |             | 0.0437     |
| Zinc           | 7440-66-6         | 47.8           | U           | 63.4       |

Tetra Tech, Inc.

Description:

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

MFL-AM01-042124-HM

Matrix: Air

**Comments:** Q8521140 - Received in good condition FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE:

Lahaina fires

Sampled: 04/21/24 23:59

**Received:** 04/29/24 14:32

**Analysis Date:** 05/01/24 01:18

**Inorganics by Compendium Method IO-3.5** 

4042941-14

Sample Volume: 1923.684 m³

|                | <b></b>           | <u>Results</u> |             | MDL       |
|----------------|-------------------|----------------|-------------|-----------|
| <u>Analyte</u> | <b>CAS Number</b> | ng/m³ Air      | <u>Flag</u> | ng/m³ Air |
| Antimony       | 7440-36-0         | 0.105          | SL          | 0.0326    |
| Arsenic        | 7440-38-2         | 0.478          |             | 0.00792   |
| Barium         | 7440-39-3         | 3.18           | QB-01       | 0.905     |
| Beryllium      | 7440-41-7         | 0.00666        |             | 0.00271   |
| Cadmium        | 7440-43-9         | 0.0375         | U           | 0.0627    |
| Chromium       | 7440-47-3         | 1.97           |             | 1.87      |
| Cobalt         | 7440-48-4         | 0.233          |             | 0.0369    |
| Copper         | 7440-50-8         | 112            |             | 2.22      |
| Lead           | 7439-92-1         | 0.779          |             | 0.181     |
| Manganese      | 7439-96-5         | 6.86           |             | 1.60      |
| Molybdenum     | 7439-98-7         | 4.00           |             | 0.304     |
| Nickel         | 7440-02-0         | 0.930          |             | 0.551     |
| Selenium       | 7782-49-2         | 0.156          |             | 0.00758   |
| Thallium       | 7440-28-0         | 0.00202        |             | 4.98E-4   |
| Vanadium       | 7440-62-2         | 0.699          |             | 0.0447    |
| Zinc           | 7440-66-6         | 86.1           |             | 65.0      |

Lab ID:

Filter ID:

Tetra Tech, Inc.

Description:

Matrix:

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

Air

MFL-AM02-042124-HM

Lab ID:

4042941-15

Sample Volume: 2032.011 m<sup>3</sup>

Filter ID:

FILE #: 4205.00.003.001

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE:

**REPORTED:** 05/08/24 13:25

Lahaina fires

**Received:** 04/29/24 14:32

**Analysis Date:** 05/01/24 01:29

Sampled: 04/21/24 23:59

**Comments:** Q8521139 - Received in good condition

|                |                   | <u>Results</u> |             | <u>MDL</u> |
|----------------|-------------------|----------------|-------------|------------|
| <u>Analyte</u> | <b>CAS Number</b> | ng/m³ Air      | <u>Flag</u> | ng/m³ Air  |
| Antimony       | 7440-36-0         | 0.165          | SL          | 0.0309     |
| Arsenic        | 7440-38-2         | 0.257          |             | 0.00750    |
| Barium         | 7440-39-3         | 49.1           | QB-01       | 0.857      |
| Beryllium      | 7440-41-7         | 0.00576        |             | 0.00256    |
| Cadmium        | 7440-43-9         | 0.0186         | U           | 0.0593     |
| Chromium       | 7440-47-3         | 1.64           | U           | 1.77       |
| Cobalt         | 7440-48-4         | 0.143          |             | 0.0349     |
| Copper         | 7440-50-8         | 153            |             | 2.11       |
| Lead           | 7439-92-1         | 0.853          |             | 0.171      |
| Manganese      | 7439-96-5         | 4.77           |             | 1.51       |
| Molybdenum     | 7439-98-7         | 2.01           |             | 0.287      |
| Nickel         | 7440-02-0         | 0.967          |             | 0.522      |
| Selenium       | 7782-49-2         | 0.169          |             | 0.00717    |
| Thallium       | 7440-28-0         | 0.00171        |             | 4.72E-4    |
| Vanadium       | 7440-62-2         | 0.497          |             | 0.0424     |
| Zinc           | 7440-66-6         | 44.4           | U           | 61.5       |

Tetra Tech, Inc.

Description:

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** SITE CODE: Lahaina fires

Lab ID:

4042941-16 Sample Volume: 1802.793 m<sup>3</sup> Matrix: Air **Received:** 04/29/24 14:32

> Filter ID: **Analysis Date:** 05/01/24 01:39

Sampled: 04/21/24 23:59

FILE #: 4205.00.003.001

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

**REPORTED:** 05/08/24 13:25

**Comments:** Q8521136 - Received in good condition

MFL-AM03-042124-HM

| <u>Analyte</u> | <u>Results</u>    |           |             | <u>MDL</u> |
|----------------|-------------------|-----------|-------------|------------|
|                | <b>CAS Number</b> | ng/m³ Air | <u>Flag</u> | ng/m³ Air  |
| Antimony       | 7440-36-0         | 0.104     | SL          | 0.0348     |
| Arsenic        | 7440-38-2         | 0.143     |             | 0.00846    |
| Barium         | 7440-39-3         | 2.34      | QB-01       | 0.966      |
| Beryllium      | 7440-41-7         | 0.00640   |             | 0.00289    |
| Cadmium        | 7440-43-9         | 0.0145    | U           | 0.0669     |
| Chromium       | 7440-47-3         | 1.65      | U           | 1.99       |
| Cobalt         | 7440-48-4         | 0.172     |             | 0.0393     |
| Copper         | 7440-50-8         | 58.0      |             | 2.37       |
| Lead           | 7439-92-1         | 0.848     |             | 0.193      |
| Manganese      | 7439-96-5         | 4.61      |             | 1.71       |
| Molybdenum     | 7439-98-7         | 2.19      |             | 0.324      |
| Nickel         | 7440-02-0         | 0.884     |             | 0.588      |
| Selenium       | 7782-49-2         | 0.156     |             | 0.00809    |
| Thallium       | 7440-28-0         | 0.00180   |             | 5.32E-4    |
| Vanadium       | 7440-62-2         | 0.456     |             | 0.0477     |
| Zinc           | 7440-66-6         | 34.3      | U           | 69.3       |

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

Matrix:

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

Air

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

Description: MFL-AM04-042124-HM

Lab ID: 4042941-17 Sampled: 04/21/24 23:59

Sample Volume: 1892.813 m<sup>3</sup>

**Received:** 04/29/24 14:32

Filter ID:

**Analysis Date:** 05/01/24 01:50

**Comments:** Q8521135 - Received in good condition

|                |                   | <u>Results</u> |             | <u>MDL</u>       |
|----------------|-------------------|----------------|-------------|------------------|
| <u>Analyte</u> | <b>CAS Number</b> | ng/m³ Air      | <u>Flag</u> | <u>ng/m³ Air</u> |
| Antimony       | 7440-36-0         | 0.150          | SL          | 0.0332           |
| Arsenic        | 7440-38-2         | 0.245          |             | 0.00805          |
| Barium         | 7440-39-3         | 3.64           | QB-01       | 0.920            |
| Beryllium      | 7440-41-7         | 0.00838        |             | 0.00275          |
| Cadmium        | 7440-43-9         | 0.0139         | U           | 0.0637           |
| Chromium       | 7440-47-3         | 1.81           | U           | 1.90             |
| Cobalt         | 7440-48-4         | 0.295          |             | 0.0375           |
| Copper         | 7440-50-8         | 40.3           |             | 2.26             |
| Lead           | 7439-92-1         | 1.07           |             | 0.184            |
| Manganese      | 7439-96-5         | 8.50           |             | 1.62             |
| Molybdenum     | 7439-98-7         | 1.40           |             | 0.309            |
| Nickel         | 7440-02-0         | 1.06           |             | 0.560            |
| Selenium       | 7782-49-2         | 0.176          |             | 0.00770          |
| Thallium       | 7440-28-0         | 0.00164        |             | 5.06E-4          |
| Vanadium       | 7440-62-2         | 0.688          |             | 0.0455           |
| Zinc           | 7440-66-6         | 41.7           | U           | 66.0             |

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

Description:

Matrix:

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

Air

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

MFL-FB01-042124-HM Lab ID: 4042941-18 Sampled: 04/21/24 00:00

Sample Volume: 1923.684 m³

**Received:** 04/29/24 14:32

Filter ID:

**Analysis Date:** 05/01/24 02:00

**Comments:** Q8506910 - Received in good condition

|                |                   | <u>Results</u>   |              | <u>MDL</u> |
|----------------|-------------------|------------------|--------------|------------|
| <u>Analyte</u> | <b>CAS Number</b> | <u>ng/m³ Air</u> | <u>Flag</u>  | ng/m³ Air  |
| Antimony       | 7440-36-0         | 0.0182           | SL, U        | 0.0326     |
| Arsenic        | 7440-38-2         | 0.00236          | U            | 0.00792    |
| Barium         | 7440-39-3         | 0.920            | FB-01, QB-01 | 0.905      |
| Beryllium      | 7440-41-7         | 5.45E-4          | U            | 0.00271    |
| Cadmium        | 7440-43-9         | 6.04E-4          | U            | 0.0627     |
| Chromium       | 7440-47-3         | 1.13             | U            | 1.87       |
| Cobalt         | 7440-48-4         | 0.00995          | U            | 0.0369     |
| Copper         | 7440-50-8         | 0.532            | U            | 2.22       |
| Lead           | 7439-92-1         | 0.0292           | U            | 0.181      |
| Manganese      | 7439-96-5         | 0.155            | U            | 1.60       |
| Molybdenum     | 7439-98-7         | 0.154            | U            | 0.304      |
| Nickel         | 7440-02-0         | 0.474            | U            | 0.551      |
| Selenium       | 7782-49-2         | 0.00323          | U            | 0.00758    |
| Thallium       | 7440-28-0         | 1.52E-4          | U            | 4.98E-4    |
| Vanadium       | 7440-62-2         | 0.00900          | U            | 0.0447     |
| Zinc           | 7440-66-6         | 24.4             | U            | 65.0       |

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

**Description:** MFL-AM01-042224-HM/MS/MS

**Lab ID:** 4042941-19

**Sampled:** 04/22/24 23:59

Matrix: Air

**Sample Volume:** 1997.123 m<sup>3</sup>

**Received:** 04/29/24 14:32

Filter ID:

**Analysis Date:** 04/30/24 18:44

**Comments:** Q8521134 - Received in good condition

|                |                   | <b>Results</b> |             | <u>MDL</u> |
|----------------|-------------------|----------------|-------------|------------|
| <u>Analyte</u> | <b>CAS Number</b> | ng/m³ Air      | <u>Flag</u> | ng/m³ Air  |
| Antimony       | 7440-36-0         | 0.0636         | SL          | 0.0314     |
| Arsenic        | 7440-38-2         | 0.662          |             | 0.00763    |
| Barium         | 7440-39-3         | 3.84           | QB-01       | 0.872      |
| Beryllium      | 7440-41-7         | 0.0140         |             | 0.00261    |
| Cadmium        | 7440-43-9         | 0.0122         | U           | 0.0604     |
| Chromium       | 7440-47-3         | 2.65           | PS-01       | 1.80       |
| Cobalt         | 7440-48-4         | 0.563          |             | 0.0355     |
| Copper         | 7440-50-8         | 70.3           | A-01, QM-07 | 2.14       |
| Lead           | 7439-92-1         | 0.451          |             | 0.174      |
| Manganese      | 7439-96-5         | 14.6           | A-01        | 1.54       |
| Molybdenum     | 7439-98-7         | 2.30           |             | 0.292      |
| Nickel         | 7440-02-0         | 2.00           |             | 0.531      |
| Selenium       | 7782-49-2         | 0.167          |             | 0.00730    |
| Thallium       | 7440-28-0         | 0.00258        |             | 4.80E-4    |
| Vanadium       | 7440-62-2         | 1.43           |             | 0.0431     |
| Zinc           | 7440-66-6         | 29.1           | U           | 62.6       |

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

Matrix:

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

Air

**REPORTED:** 05/08/24 13:25 **SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

FILE #: 4205.00.003.001

SITE CODE: Lahaina fires

Description: MFL-AM02-042224-HM Lab ID: 4042941-20

Sampled: 04/22/24 23:59 Sample Volume: 2045.7 m³ **Received:** 04/29/24 14:32

Filter ID: **Analysis Date:** 05/01/24 02:10

**Comments:** Q8506907 - Received in good condition

|                |                   | <u>Results</u> |             | <u>MDL</u> |
|----------------|-------------------|----------------|-------------|------------|
| <u>Analyte</u> | <b>CAS Number</b> | ng/m³ Air      | <u>Flag</u> | ng/m³ Air  |
| Antimony       | 7440-36-0         | 0.0965         | SL          | 0.0307     |
| Arsenic        | 7440-38-2         | 0.293          |             | 0.00745    |
| Barium         | 7440-39-3         | 5.23           | QB-01       | 0.851      |
| Beryllium      | 7440-41-7         | 0.0127         |             | 0.00255    |
| Cadmium        | 7440-43-9         | 0.0453         | U           | 0.0589     |
| Chromium       | 7440-47-3         | 2.87           |             | 1.76       |
| Cobalt         | 7440-48-4         | 0.496          |             | 0.0347     |
| Copper         | 7440-50-8         | 51.7           |             | 2.09       |
| Lead           | 7439-92-1         | 0.725          |             | 0.170      |
| Manganese      | 7439-96-5         | 13.0           |             | 1.50       |
| Molybdenum     | 7439-98-7         | 1.52           |             | 0.286      |
| Nickel         | 7440-02-0         | 1.84           |             | 0.519      |
| Selenium       | 7782-49-2         | 0.162          |             | 0.00713    |
| Thallium       | 7440-28-0         | 0.00236        |             | 4.68E-4    |
| Vanadium       | 7440-62-2         | 1.45           |             | 0.0421     |
| Zinc           | 7440-66-6         | 46.2           | U           | 61.1       |

Tetra Tech, Inc.

Description:

Matrix:

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE**: (703) 885-5495 **FAX**:

Air

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

MFL-AM03-042224-HM **Lab ID:** 4042941-21

Sample Volume: 1813.398 m<sup>3</sup>

**Sampled:** 04/22/24 23:59 **Received:** 04/29/24 14:32

Filter ID: Analysis Date: 05/01/24 02:21

**Comments:** Q8506904 - Received in good condition

|                |                   | <u>Results</u> |             | <u>MDL</u> |
|----------------|-------------------|----------------|-------------|------------|
| <u>Analyte</u> | <b>CAS Number</b> | ng/m³ Air      | <u>Flag</u> | ng/m³ Air  |
| Antimony       | 7440-36-0         | 0.0535         | SL          | 0.0346     |
| Arsenic        | 7440-38-2         | 0.154          |             | 0.00841    |
| Barium         | 7440-39-3         | 2.71           | QB-01       | 0.960      |
| Beryllium      | 7440-41-7         | 0.0120         |             | 0.00287    |
| Cadmium        | 7440-43-9         | 0.00939        | U           | 0.0665     |
| Chromium       | 7440-47-3         | 2.17           |             | 1.98       |
| Cobalt         | 7440-48-4         | 0.267          |             | 0.0391     |
| Copper         | 7440-50-8         | 64.3           |             | 2.36       |
| Lead           | 7439-92-1         | 0.355          |             | 0.192      |
| Manganese      | 7439-96-5         | 6.99           |             | 1.70       |
| Molybdenum     | 7439-98-7         | 2.14           |             | 0.322      |
| Nickel         | 7440-02-0         | 1.12           |             | 0.585      |
| Selenium       | 7782-49-2         | 0.150          |             | 0.00804    |
| Thallium       | 7440-28-0         | 0.00218        |             | 5.28E-4    |
| Vanadium       | 7440-62-2         | 0.694          |             | 0.0475     |
| Zinc           | 7440-66-6         | 53.3           | U           | 68.9       |
|                |                   |                |             |            |

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

**Description:** MFL-AM04-042224-HM

**Lab ID:** 4042941-22

**Sampled:** 04/22/24 23:59

Matrix: Air

Sample Volume: 1879.699 m<sup>3</sup>

**Received:** 04/29/24 14:32

Filter ID:

**Analysis Date:** 05/01/24 02:52

**Comments:** Q8521133 - Received in good condition

|                |                   | <u>Results</u> |             | <u>MDL</u> |
|----------------|-------------------|----------------|-------------|------------|
| <u>Analyte</u> | <b>CAS Number</b> | ng/m³ Air      | <u>Flag</u> | ng/m³ Air  |
| Antimony       | 7440-36-0         | 0.148          | SL          | 0.0334     |
| Arsenic        | 7440-38-2         | 0.452          |             | 0.00811    |
| Barium         | 7440-39-3         | 4.21           | QB-01       | 0.926      |
| Beryllium      | 7440-41-7         | 0.0119         |             | 0.00277    |
| Cadmium        | 7440-43-9         | 0.0132         | U           | 0.0641     |
| Chromium       | 7440-47-3         | 2.24           |             | 1.91       |
| Cobalt         | 7440-48-4         | 0.375          |             | 0.0377     |
| Copper         | 7440-50-8         | 36.4           |             | 2.28       |
| Lead           | 7439-92-1         | 0.882          |             | 0.185      |
| Manganese      | 7439-96-5         | 12.2           |             | 1.64       |
| Molybdenum     | 7439-98-7         | 1.29           |             | 0.311      |
| Nickel         | 7440-02-0         | 1.26           |             | 0.564      |
| Selenium       | 7782-49-2         | 0.193          |             | 0.00776    |
| Thallium       | 7440-28-0         | 0.00223        |             | 5.10E-4    |
| Vanadium       | 7440-62-2         | 0.978          |             | 0.0458     |
| Zinc           | 7440-66-6         | 37.7           | U           | 66.5       |

Tetra Tech, Inc.

Description:

Matrix:

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE**: (703) 885-5495 **FAX**:

Air

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

MFL-AM01-042324-HM **Lab ID:** 4042941-23

**D:** 4042941-23 **Sampled:** 04/23/24 23:59

**Sample Volume:** 1944.306 m<sup>3</sup> **Received:** 04/29/24 14:32

Filter ID: Analysis Date: 05/01/24 03:02

**Comments:** Q8521132 - Received in good condition

| <u>Analyte</u> | <u>Results</u>    |           |             | <u>MDL</u> |  |
|----------------|-------------------|-----------|-------------|------------|--|
|                | <b>CAS Number</b> | ng/m³ Air | <u>Flag</u> | ng/m³ Air  |  |
| Antimony       | 7440-36-0         | 0.0738    | SL          | 0.0323     |  |
| Arsenic        | 7440-38-2         | 0.594     |             | 0.00784    |  |
| Barium         | 7440-39-3         | 4.50      | QB-01       | 0.895      |  |
| Beryllium      | 7440-41-7         | 0.0161    |             | 0.00268    |  |
| Cadmium        | 7440-43-9         | 0.0134    | U           | 0.0620     |  |
| Chromium       | 7440-47-3         | 2.96      |             | 1.85       |  |
| Cobalt         | 7440-48-4         | 0.607     |             | 0.0365     |  |
| Copper         | 7440-50-8         | 88.5      |             | 2.20       |  |
| Lead           | 7439-92-1         | 0.470     |             | 0.179      |  |
| Manganese      | 7439-96-5         | 17.8      |             | 1.58       |  |
| Molybdenum     | 7439-98-7         | 2.74      |             | 0.300      |  |
| Nickel         | 7440-02-0         | 1.66      |             | 0.546      |  |
| Selenium       | 7782-49-2         | 0.157     |             | 0.00750    |  |
| Thallium       | 7440-28-0         | 0.00179   |             | 4.93E-4    |  |
| Vanadium       | 7440-62-2         | 1.68      |             | 0.0443     |  |
| Zinc           | 7440-66-6         | 32.0      | U           | 64.3       |  |

Tetra Tech, Inc.

Description:

Matrix:

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

Air

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

MFL-AM02-042324-HM **Lab ID:** 4042941-24

24 **Sampled:** 04/23/24 23:59

**Sample Volume:** 2071.089 m³ **Received:** 04/29/24 14:32 **Filter ID: Analysis Date:** 05/01/24 03:13

**Comments:** Q8521131 - Received in good condition

|                |                   | <u>Results</u> |             | <u>MDL</u> |
|----------------|-------------------|----------------|-------------|------------|
| <u>Analyte</u> | <b>CAS Number</b> | ng/m³ Air      | <u>Flag</u> | ng/m³ Air  |
| Antimony       | 7440-36-0         | 0.112          | SL          | 0.0303     |
| Arsenic        | 7440-38-2         | 0.333          |             | 0.00736    |
| Barium         | 7440-39-3         | 4.69           | QB-01       | 0.841      |
| Beryllium      | 7440-41-7         | 0.0107         |             | 0.00251    |
| Cadmium        | 7440-43-9         | 0.0132         | U           | 0.0582     |
| Chromium       | 7440-47-3         | 2.19           |             | 1.74       |
| Cobalt         | 7440-48-4         | 0.367          |             | 0.0343     |
| Copper         | 7440-50-8         | 50.4           |             | 2.07       |
| Lead           | 7439-92-1         | 0.910          |             | 0.168      |
| Manganese      | 7439-96-5         | 10.8           |             | 1.48       |
| Molybdenum     | 7439-98-7         | 1.46           |             | 0.282      |
| Nickel         | 7440-02-0         | 1.36           |             | 0.512      |
| Selenium       | 7782-49-2         | 0.132          |             | 0.00704    |
| Thallium       | 7440-28-0         | 0.00135        |             | 4.63E-4    |
| Vanadium       | 7440-62-2         | 1.08           |             | 0.0416     |
| Zinc           | 7440-66-6         | 33.2           | U           | 60.3       |

Tetra Tech, Inc.

Description:

Matrix:

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

Air

**SUBMITTED:** 04/29/24

**REPORTED:** 05/08/24 13:25

FILE #: 4205.00.003.001

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

MFL-AM03-042324-HM Lab ID: 4042941-25

Sample Volume: 1811.884 m³

**Received:** 04/29/24 14:32

Sampled: 04/23/24 23:59

Filter ID: **Analysis Date:** 05/01/24 03:23

**Comments:** Q8521130 - Received in good condition

| <u>Analyte</u> | <u>Results</u>    |           |             | <u>MDL</u> |
|----------------|-------------------|-----------|-------------|------------|
|                | <b>CAS Number</b> | ng/m³ Air | <u>Flag</u> | ng/m³ Air  |
| Antimony       | 7440-36-0         | 0.0826    | SL          | 0.0347     |
| Arsenic        | 7440-38-2         | 0.251     |             | 0.00841    |
| Barium         | 7440-39-3         | 2.98      | QB-01       | 0.961      |
| Beryllium      | 7440-41-7         | 0.0143    |             | 0.00287    |
| Cadmium        | 7440-43-9         | 0.00797   | U           | 0.0665     |
| Chromium       | 7440-47-3         | 2.27      |             | 1.98       |
| Cobalt         | 7440-48-4         | 0.336     |             | 0.0392     |
| Copper         | 7440-50-8         | 82.4      |             | 2.36       |
| Lead           | 7439-92-1         | 0.527     |             | 0.192      |
| Manganese      | 7439-96-5         | 8.50      |             | 1.70       |
| Molybdenum     | 7439-98-7         | 2.33      |             | 0.322      |
| Nickel         | 7440-02-0         | 1.22      |             | 0.585      |
| Selenium       | 7782-49-2         | 0.131     |             | 0.00805    |
| Thallium       | 7440-28-0         | 0.00120   |             | 5.29E-4    |
| Vanadium       | 7440-62-2         | 0.804     |             | 0.0475     |
| Zinc           | 7440-66-6         | 29.0      | U           | 69.0       |

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

Description: MFL-AM04-042324-HM Lab ID: 4042941-26 Sampled: 04/23/24 23:59

Matrix: Air

**Received:** 04/29/24 14:32

Filter ID:

**Analysis Date:** 05/01/24 03:44

**Comments:** Q8521129 - Received in good condition

**Inorganics by Compendium Method IO-3.5** 

Sample Volume: 1873.41 m³

|                |                   | <u>Results</u> |             | <u>MDL</u> |
|----------------|-------------------|----------------|-------------|------------|
| <u>Analyte</u> | <b>CAS Number</b> | ng/m³ Air      | <u>Flag</u> | ng/m³ Air  |
| Antimony       | 7440-36-0         | 0.0900         | SL          | 0.0335     |
| Arsenic        | 7440-38-2         | 0.352          |             | 0.00814    |
| Barium         | 7440-39-3         | 3.61           | QB-01       | 0.929      |
| Beryllium      | 7440-41-7         | 0.0104         |             | 0.00278    |
| Cadmium        | 7440-43-9         | 0.0150         | U           | 0.0644     |
| Chromium       | 7440-47-3         | 2.09           |             | 1.92       |
| Cobalt         | 7440-48-4         | 0.317          |             | 0.0379     |
| Copper         | 7440-50-8         | 37.3           |             | 2.28       |
| Lead           | 7439-92-1         | 0.748          |             | 0.186      |
| Manganese      | 7439-96-5         | 10.0           |             | 1.64       |
| Molybdenum     | 7439-98-7         | 1.45           |             | 0.312      |
| Nickel         | 7440-02-0         | 1.08           |             | 0.566      |
| Selenium       | 7782-49-2         | 0.135          |             | 0.00778    |
| Thallium       | 7440-28-0         | 0.00120        |             | 5.12E-4    |
| Vanadium       | 7440-62-2         | 0.843          |             | 0.0459     |
| Zinc           | 7440-66-6         | 34.5           | U           | 66.7       |
|                |                   |                |             |            |

Tetra Tech, Inc.

Description:

**Comments:** 

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

MFL-FB01-042324-HM

Matrix: Air

Q8506903 - Received in good condition

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

Sampled: 04/23/24 00:00

**Received:** 04/29/24 14:32

**Analysis Date:** 05/01/24 03:54

**Inorganics by Compendium Method IO-3.5** 

4042941-27

Sample Volume: 1944.306 m<sup>3</sup>

|                | _                 | Results   |             | <u>MDL</u> |
|----------------|-------------------|-----------|-------------|------------|
| <u>Analyte</u> | <b>CAS Number</b> | ng/m³ Air | <u>Flag</u> | ng/m³ Air  |
| Antimony       | 7440-36-0         | 0.0170    | SL, U       | 0.0323     |
| Arsenic        | 7440-38-2         | 0.00243   | U           | 0.00784    |
| Barium         | 7440-39-3         | 0.849     | QB-01, U    | 0.895      |
| Beryllium      | 7440-41-7         | 6.35E-4   | U           | 0.00268    |
| Cadmium        | 7440-43-9         | 6.69E-4   | U           | 0.0620     |
| Chromium       | 7440-47-3         | 1.09      | U           | 1.85       |
| Cobalt         | 7440-48-4         | 0.0124    | U           | 0.0365     |
| Copper         | 7440-50-8         | 0.482     | U           | 2.20       |
| Lead           | 7439-92-1         | 0.0281    | U           | 0.179      |
| Manganese      | 7439-96-5         | 0.187     | U           | 1.58       |
| Molybdenum     | 7439-98-7         | 0.144     | U           | 0.300      |
| Nickel         | 7440-02-0         | 0.444     | U           | 0.546      |
| Selenium       | 7782-49-2         | 2.62E-4   | U           | 0.00750    |
| Thallium       | 7440-28-0         | 1.10E-4   | U           | 4.93E-4    |
| Vanadium       | 7440-62-2         | 0.0104    | U           | 0.0443     |
| Zinc           | 7440-66-6         | 17.5      | U           | 64.3       |

Lab ID:

Filter ID:

Tetra Tech, Inc.

Description:

Matrix:

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

Air

**FILE #:** 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

MFL-AM01-042424-HM **Lab ID:** 4042941-28

Sample Volume: 1983.872 m<sup>3</sup>

**Sampled:** 04/24/24 23:59 **Received:** 04/29/24 14:32

Filter ID: Analysis Date: 05/01/24 04:05

**Comments:** Q8521128 - Received in good condition

|                   | Results                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>MDL</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>CAS Number</b> | ng/m³ Air                                                                                                                                             | <u>Flag</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ng/m³ Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7440-36-0         | 0.0615                                                                                                                                                | SL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7440-38-2         | 0.420                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7440-39-3         | 3.50                                                                                                                                                  | QB-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7440-41-7         | 0.0116                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7440-43-9         | 0.0117                                                                                                                                                | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7440-47-3         | 3.02                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7440-48-4         | 0.591                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7440-50-8         | 95.1                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7439-92-1         | 0.353                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7439-96-5         | 14.6                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7439-98-7         | 3.11                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7440-02-0         | 2.21                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7782-49-2         | 0.167                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7440-28-0         | 0.00231                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.83E-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7440-62-2         | 1.47                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7440-66-6         | 22.2                                                                                                                                                  | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 63.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-48-4 7440-50-8 7439-92-1 7439-96-5 7439-98-7 7440-02-0 7782-49-2 7440-28-0 7440-62-2 | CAS Number         ng/m³ Air           7440-36-0         0.0615           7440-38-2         0.420           7440-39-3         3.50           7440-41-7         0.0116           7440-43-9         0.0117           7440-47-3         3.02           7440-48-4         0.591           7439-92-1         0.353           7439-96-5         14.6           7439-98-7         3.11           7440-02-0         2.21           7782-49-2         0.167           7440-28-0         0.00231           7440-62-2         1.47 | CAS Number         ng/m³ Air         Flag           7440-36-0         0.0615         SL           7440-38-2         0.420         CP-01           7440-39-3         3.50         QP-01           7440-41-7         0.0116         CP-01           7440-43-9         0.0117         U           7440-47-3         3.02         CP-01           7440-48-4         0.591         CP-01           7439-92-1         0.353         CP-01           7439-96-5         14.6         CP-01           7440-02-0         2.21         CP-01           7782-49-2         0.167         CP-01           7440-28-0         0.00231         CP-01           7440-62-2         1.47 |

Tetra Tech, Inc.

Description:

Matrix:

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

Air

MFL-AM02-042424-HM

Lab ID:

Filter ID:

Sample Volume: 2093.976 m<sup>3</sup>

4042941-29

Lahaina fires

FILE #: 4205.00.003.001

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE:

**REPORTED:** 05/08/24 13:25

Sampled: 04/24/24 23:59 **Received:** 04/29/24 14:32

**Analysis Date:** 05/01/24 04:15

**Comments:** Q8521127 - Received in good condition

|                |                   | <u>Results</u> |             | <u>MDL</u> |
|----------------|-------------------|----------------|-------------|------------|
| <u>Analyte</u> | <b>CAS Number</b> | ng/m³ Air      | <u>Flag</u> | ng/m³ Air  |
| Antimony       | 7440-36-0         | 0.109          | SL          | 0.0300     |
| Arsenic        | 7440-38-2         | 0.273          |             | 0.00728    |
| Barium         | 7440-39-3         | 3.55           | QB-01       | 0.831      |
| Beryllium      | 7440-41-7         | 0.00875        |             | 0.00249    |
| Cadmium        | 7440-43-9         | 0.0151         | U           | 0.0576     |
| Chromium       | 7440-47-3         | 1.91           |             | 1.72       |
| Cobalt         | 7440-48-4         | 0.319          |             | 0.0339     |
| Copper         | 7440-50-8         | 49.9           |             | 2.04       |
| Lead           | 7439-92-1         | 0.644          |             | 0.166      |
| Manganese      | 7439-96-5         | 9.03           |             | 1.47       |
| Molybdenum     | 7439-98-7         | 1.55           |             | 0.279      |
| Nickel         | 7440-02-0         | 1.22           |             | 0.507      |
| Selenium       | 7782-49-2         | 0.151          |             | 0.00696    |
| Thallium       | 7440-28-0         | 0.00216        |             | 4.58E-4    |
| Vanadium       | 7440-62-2         | 0.897          |             | 0.0411     |
| Zinc           | 7440-66-6         | 23.2           | U           | 59.7       |

Tetra Tech, Inc.

FILE #: 4205.00.003.001

1777 Sentry Pkwy, Bldg 12

**REPORTED:** 05/08/24 13:25

Blue Bell, PA 19422

**SUBMITTED:** 04/29/24

ATTN: Ms. Chelsea Saber

**AQS SITE CODE:** 

**PHONE:** (703) 885-5495 **FAX:** 

SITE CODE:

Lahaina fires

Description:

MFL-AM03-042424-HM

**Lab ID:** 4042941-30

**Sampled:** 04/24/24 23:59

Matrix: Air

Lau ID.

**Received:** 04/29/24 14:32

ir Sample Volume: 1925.153 m³
Filter ID:

**Analysis Date:** 05/01/24 04:25

**Comments:** Q8506911 - Received in good condition

|                |                   | <u>Results</u> |             | <u>MDL</u> |
|----------------|-------------------|----------------|-------------|------------|
| <u>Analyte</u> | <b>CAS Number</b> | ng/m³ Air      | <u>Flag</u> | ng/m³ Air  |
| Antimony       | 7440-36-0         | 0.0787         | SL          | 0.0326     |
| Arsenic        | 7440-38-2         | 0.239          |             | 0.00792    |
| Barium         | 7440-39-3         | 3.25           | QB-01       | 0.904      |
| Beryllium      | 7440-41-7         | 0.0191         |             | 0.00270    |
| Cadmium        | 7440-43-9         | 0.0113         | U           | 0.0626     |
| Chromium       | 7440-47-3         | 2.83           |             | 1.87       |
| Cobalt         | 7440-48-4         | 0.433          |             | 0.0368     |
| Copper         | 7440-50-8         | 65.7           |             | 2.22       |
| Lead           | 7439-92-1         | 0.722          |             | 0.181      |
| Manganese      | 7439-96-5         | 10.8           |             | 1.60       |
| Molybdenum     | 7439-98-7         | 2.18           |             | 0.303      |
| Nickel         | 7440-02-0         | 1.45           |             | 0.551      |
| Selenium       | 7782-49-2         | 0.178          |             | 0.00757    |
| Thallium       | 7440-28-0         | 0.00216        |             | 4.98E-4    |
| Vanadium       | 7440-62-2         | 1.08           |             | 0.0447     |
| Zinc           | 7440-66-6         | 25.1           | U           | 64.9       |
|                |                   |                |             |            |

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

**Description:** MFL-AM04-042424-HM

**PHONE:** (703) 885-5495 **FAX:** 

**Lab ID:** 4042941-31

**Sampled:** 04/24/24 23:59

Matrix: Air

Sample Volume: 1547.784 m<sup>3</sup>

**Received:** 04/29/24 14:32

Filter ID:

**Analysis Date:** 05/01/24 05:07

**Comments:** Q8506902 - Received in good condition

|                |                   | <u>Results</u> |             | <u>MDL</u> |
|----------------|-------------------|----------------|-------------|------------|
| <u>Analyte</u> | <b>CAS Number</b> | ng/m³ Air      | <u>Flag</u> | ng/m³ Air  |
| Antimony       | 7440-36-0         | 0.133          | SL          | 0.0406     |
| Arsenic        | 7440-38-2         | 0.503          |             | 0.00985    |
| Barium         | 7440-39-3         | 5.56           | QB-01       | 1.12       |
| Beryllium      | 7440-41-7         | 0.0170         |             | 0.00336    |
| Cadmium        | 7440-43-9         | 0.0183         | U           | 0.0779     |
| Chromium       | 7440-47-3         | 3.20           |             | 2.32       |
| Cobalt         | 7440-48-4         | 0.534          |             | 0.0458     |
| Copper         | 7440-50-8         | 49.9           |             | 2.76       |
| Lead           | 7439-92-1         | 1.33           |             | 0.225      |
| Manganese      | 7439-96-5         | 17.0           |             | 1.99       |
| Molybdenum     | 7439-98-7         | 1.60           |             | 0.377      |
| Nickel         | 7440-02-0         | 1.66           |             | 0.685      |
| Selenium       | 7782-49-2         | 0.210          |             | 0.00942    |
| Thallium       | 7440-28-0         | 0.00261        |             | 6.19E-4    |
| Vanadium       | 7440-62-2         | 1.41           |             | 0.0556     |
| Zinc           | 7440-66-6         | 36.8           | U           | 80.7       |
|                |                   |                |             |            |



FILE #: 4205.00.003.001

1777 Sentry Pkwy, Bldg 12

**REPORTED:** 05/08/24 13:25

Blue Bell, PA 19422

**SUBMITTED:** 04/29/24

ATTN: Ms. Chelsea Saber

AQS SITE CODE:

Source

Spike

**PHONE:** (703) 885-5495 **FAX:** 

SITE CODE: Lahaina fires

%REC

chain of custody document. This analytical report must be reproduced in its entirety.

Page 36 of 60

RPD

| alyte                                    | Result PQL                   | Units         | Level | Result   | %REC     | Limits   | RPD | Limit | Note |
|------------------------------------------|------------------------------|---------------|-------|----------|----------|----------|-----|-------|------|
| organics by Compendatch 2404094 - B4D300 | dium Method IO-3.5 - Qu<br>% | uality Contro | ol    |          |          |          |     |       |      |
| Calibration Blank (2404                  |                              |               | Pren  | ared & A | nalyzed: | 04/30/24 |     |       |      |
| Intimony                                 | 0.504                        | ng/l          |       |          | ,        | - ,,     |     |       |      |
| rsenic                                   | 0.0930                       | ng/l          |       |          |          |          |     |       |      |
| arium                                    | 0.576                        | ng/l          |       |          |          |          |     |       |      |
| eryllium                                 | 0.302                        | ng/l          |       |          |          |          |     |       |      |
| Cadmium                                  | 0.181                        | ng/l          |       |          |          |          |     |       |      |
| Chromium                                 | 4.55                         | ng/l          |       |          |          |          |     |       |      |
| Cobalt                                   | 0.474                        | ng/l          |       |          |          |          |     |       |      |
| Copper                                   | 52.6                         | ng/l          |       |          |          |          |     |       |      |
| ead                                      | 10.5                         | ng/l          |       |          |          |          |     |       |      |
| 1anganese                                | 2.08                         | ng/l          |       |          |          |          |     |       |      |
| 1olybdenum                               | 12.0                         | ng/l          |       |          |          |          |     |       |      |
| lickel                                   | 0.396                        | ng/l          |       |          |          |          |     |       |      |
| elenium                                  | 9.29                         | ng/l          |       |          |          |          |     |       |      |
| 'hallium                                 | 1.25                         | ng/l          |       |          |          |          |     |       |      |
| 'anadium                                 | -40.9                        | ng/l          |       |          |          |          |     |       | U    |
| inc                                      | 16.8                         | ng/l          |       |          |          |          |     |       |      |
| Calibration Blank (2404                  | 1094-CCB2)                   |               | Prep  | ared & A | nalyzed: | 04/30/24 |     |       |      |
| ntimony                                  | 0.470                        | ng/l          |       |          |          |          |     |       |      |
| rsenic                                   | -0.329                       | ng/l          |       |          |          |          |     |       | U    |
| arium                                    | 0.850                        | ng/l          |       |          |          |          |     |       |      |
| eryllium                                 | 0.290                        | ng/l          |       |          |          |          |     |       |      |
| Cadmium                                  | 0.113                        | ng/l          |       |          |          |          |     |       |      |
| Chromium                                 | 1.90                         | ng/l          |       |          |          |          |     |       |      |
| Cobalt                                   | 0.337                        | ng/l          |       |          |          |          |     |       |      |
| Copper                                   | 18.0                         | ng/l          |       |          |          |          |     |       |      |
| ead                                      | 5.70                         | ng/l          |       |          |          |          |     |       |      |
| 1anganese                                | -1.30                        | ng/l          |       |          |          |          |     |       | U    |
| 1olybdenum                               | 4.65                         | ng/l          |       |          |          |          |     |       |      |
| lickel                                   | 0.361                        | ng/l          |       |          |          |          |     |       |      |
| elenium                                  | 8.25                         | ng/l          |       |          |          |          |     |       |      |
| hallium                                  | 1.08                         | ng/l          |       |          |          |          |     |       |      |
| 'anadium                                 | -38.1                        | ng/l          |       |          |          |          |     |       | U    |
| inc                                      | 32.5                         | ng/l          |       |          |          |          |     |       |      |
| Calibration Blank (2404                  |                              | <i>5.</i>     | Prep  | ared & A | nalyzed: | 04/30/24 |     |       |      |
| ntimony                                  | 0.303                        | ng/l          |       |          | •        |          |     |       |      |
| rsenic                                   | -0.279                       | ng/l          |       |          |          |          |     |       | U    |
| arium                                    | 0.747                        | ng/l          |       |          |          |          |     |       | -    |
| eryllium                                 | 0.285                        | ng/l          |       |          |          |          |     |       |      |



FILE #: 4205.00.003.001

1777 Sentry Pkwy, Bldg 12

**REPORTED:** 05/08/24 13:25

Blue Bell, PA 19422

**SUBMITTED:** 04/29/24

ATTN: Ms. Chelsea Saber

AQS SITE CODE:

**PHONE:** (703) 885-5495 **FAX:** 

SITE CODE: Lahaina fires

| Analyte                | Result             | PQL       | Units      | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD      | RPD<br>Limit | Notes |
|------------------------|--------------------|-----------|------------|----------------|------------------|----------|----------------|----------|--------------|-------|
| inorganics by Compe    |                    | .5 - Qual | ity Contro | ol             |                  |          |                |          |              |       |
| Batch 2404094 - B4D30  | 006                |           |            |                |                  |          |                |          |              |       |
| Calibration Blank (240 | 04094-CCB3) Contin |           |            | Prep           | ared & A         | nalyzed: | 04/30/24       |          |              |       |
| Cadmium                | 0.0568             |           | ng/l       |                |                  |          |                |          |              |       |
| Chromium               | 2.47               |           | ng/l       |                |                  |          |                |          |              |       |
| Cobalt                 | 0.262              |           | ng/l       |                |                  |          |                |          |              |       |
| Copper                 | 13.8               |           | ng/l       |                |                  |          |                |          |              |       |
| Lead                   | 2.55               |           | ng/l       |                |                  |          |                |          |              |       |
| Manganese              | -1.66              |           | ng/l       |                |                  |          |                |          |              | U     |
| Molybdenum             | 2.36               |           | ng/l       |                |                  |          |                |          |              |       |
| Nickel                 | -0.00781           |           | ng/l       |                |                  |          |                |          |              | U     |
| Selenium               | 0.215              |           | ng/l       |                |                  |          |                |          |              |       |
| Thallium               | 0.566              |           | ng/l       |                |                  |          |                |          |              |       |
| Vanadium               | -26.0              |           | ng/l       |                |                  |          |                |          |              | U     |
| Zinc                   | 10.7               |           | ng/l       |                |                  |          |                |          |              |       |
| Calibration Blank (240 |                    |           |            | Prep           | ared: 04/        | /30/24 A | nalyzed:       | 05/01/24 | 1            |       |
| Antimony               | 0.460              |           | ng/l       |                |                  |          |                |          |              |       |
| Arsenic                | 0.556              |           | ng/l       |                |                  |          |                |          |              |       |
| Barium                 | 0.842              |           | ng/l       |                |                  |          |                |          |              |       |
| Beryllium              | 0.289              |           | ng/l       |                |                  |          |                |          |              |       |
| Cadmium                | 0.121              |           | ng/l       |                |                  |          |                |          |              |       |
| Chromium               | 3.18               |           | ng/l       |                |                  |          |                |          |              |       |
| Cobalt                 | 0.367              |           | ng/l       |                |                  |          |                |          |              |       |
| Copper                 | 25.4               |           | ng/l       |                |                  |          |                |          |              |       |
| Lead                   | 7.74               |           | ng/l       |                |                  |          |                |          |              |       |
| Manganese              | -0.806             |           | ng/l       |                |                  |          |                |          |              | U     |
| Molybdenum             | 5.98               |           | ng/l       |                |                  |          |                |          |              |       |
| Nickel                 | 0.726              |           | ng/l       |                |                  |          |                |          |              |       |
| Selenium               | 0.487              |           | ng/l       |                |                  |          |                |          |              |       |
| Thallium               | 1.26               |           | ng/l       |                |                  |          |                |          |              |       |
| Vanadium               | -41.6              |           | ng/l       |                |                  |          |                |          |              | U     |
| Zinc                   | 11.9               |           | ng/l       |                |                  |          |                |          |              |       |
| Calibration Blank (240 |                    |           |            | Prep           | ared: 04/        | /30/24 A | nalyzed:       | 05/01/24 | 1            |       |
| Antimony               | 0.437              |           | ng/l       |                |                  |          |                |          |              |       |
| Arsenic                | 1.77               |           | ng/l       |                |                  |          |                |          |              |       |
| Barium                 | 0.431              |           | ng/l       |                |                  |          |                |          |              |       |
| Beryllium              | -0.245             |           | ng/l       |                |                  |          |                |          |              | U     |
| Cadmium                | 0.0387             |           | ng/l       |                |                  |          |                |          |              |       |
| Chromium               | 2.89               |           | ng/l       |                |                  |          |                |          |              |       |
| Cobalt                 | 0.299              |           | ng/l       |                |                  |          |                |          |              |       |
| Copper                 | 19.0               |           | ng/l       |                |                  |          |                |          |              |       |

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

| Analyte                | Result            | PQL      | Units       | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD      | RPD<br>Limit | Notes |
|------------------------|-------------------|----------|-------------|----------------|------------------|---------|----------------|----------|--------------|-------|
| norganics by Comper    |                   | .5 - Qua | lity Contro | ol             | _                |         | _              | -        | _            | _     |
| Batch 2404094 - B4D30  | 106               |          |             |                |                  |         |                |          |              |       |
| Calibration Blank (240 | 4094-CCB5) Contin |          |             | Prep           | ared: 04/        | 30/24 A | nalyzed:       | 05/01/24 | }            |       |
| Lead                   | 5.23              |          | ng/l        |                |                  |         |                |          |              |       |
| Manganese              | -2.03             |          | ng/l        |                |                  |         |                |          |              | U     |
| Molybdenum             | 5.44              |          | ng/l        |                |                  |         |                |          |              |       |
| Nickel                 | 1.69              |          | ng/l        |                |                  |         |                |          |              |       |
| Selenium               | 5.82              |          | ng/l        |                |                  |         |                |          |              |       |
| Thallium               | 1.13              |          | ng/l        |                |                  |         |                |          |              |       |
| Vanadium               | -41.2             |          | ng/l        |                |                  |         |                |          |              | U     |
| Zinc                   | 16.9              |          | ng/l        |                |                  |         |                |          |              |       |
| Calibration Blank (240 | 4094-CCB6)        |          |             | Prep           | ared: 04/        | 30/24 A | nalyzed:       | 05/01/24 | ļ            |       |
| Antimony               | 0.697             |          | ng/l        |                |                  |         |                |          |              |       |
| Arsenic                | 0.733             |          | ng/l        |                |                  |         |                |          |              |       |
| Barium                 | 0.694             |          | ng/l        |                |                  |         |                |          |              |       |
| Beryllium              | 0.0530            |          | ng/l        |                |                  |         |                |          |              |       |
| Cadmium                | 0.143             |          | ng/l        |                |                  |         |                |          |              |       |
| Chromium               | 2.81              |          | ng/l        |                |                  |         |                |          |              |       |
| Cobalt                 | 0.309             |          | ng/l        |                |                  |         |                |          |              |       |
| Copper                 | 24.6              |          | ng/l        |                |                  |         |                |          |              |       |
| Lead                   | 9.12              |          | ng/l        |                |                  |         |                |          |              |       |
| Manganese              | -1.08             |          | ng/l        |                |                  |         |                |          |              | U     |
| Molybdenum             | 6.63              |          | ng/l        |                |                  |         |                |          |              |       |
| Nickel                 | 1.00              |          | ng/l        |                |                  |         |                |          |              |       |
| Selenium               | 9.97              |          | ng/l        |                |                  |         |                |          |              |       |
| Thallium               | 1.22              |          | ng/l        |                |                  |         |                |          |              |       |
| Vanadium               | -48.0             |          | ng/l        |                |                  |         |                |          |              | U     |
| Zinc                   | 18.7              |          | ng/l        |                |                  |         |                |          |              |       |
| Calibration Blank (240 | 4094-CCB7)        |          |             | Prep           | ared: 04/        | 30/24 A | nalyzed:       | 05/01/24 | ļ            |       |
| Antimony               | 0.715             |          | ng/l        |                |                  |         |                |          |              |       |
| Arsenic                | 1.13              |          | ng/l        |                |                  |         |                |          |              |       |
| Barium                 | 0.292             |          | ng/l        |                |                  |         |                |          |              |       |
| Beryllium              | 0.0773            |          | ng/l        |                |                  |         |                |          |              |       |
| Cadmium                | 0.114             |          | ng/l        |                |                  |         |                |          |              |       |
| Chromium               | 3.49              |          | ng/l        |                |                  |         |                |          |              |       |
| Cobalt                 | 0.300             |          | ng/l        |                |                  |         |                |          |              |       |
| Copper                 | 20.1              |          | ng/l        |                |                  |         |                |          |              |       |
| Lead                   | 6.44              |          | ng/l        |                |                  |         |                |          |              |       |
| Manganese              | -0.713            |          | ng/l        |                |                  |         |                |          |              | U     |
| Molybdenum             | 5.74              |          | ng/l        |                |                  |         |                |          |              |       |
| Nickel                 | 1.02              |          | ng/l        |                |                  |         |                |          |              |       |

Eastern Research Group



1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

| ınalyte                | Result            | PQL       | Units     | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD     | RPD<br>Limit | Notes |
|------------------------|-------------------|-----------|-----------|----------------|------------------|----------|----------------|---------|--------------|-------|
| norganics by Comper    |                   | .5 - Qual | ity Contr | ol             |                  |          |                |         |              |       |
| Batch 2404094 - B4D30  |                   |           |           |                |                  |          |                |         |              |       |
| Calibration Blank (240 | 4094-CCB7) Contin |           |           | Prep           | ared: 04,        | /30/24 / | Analyzed:      | 05/01/2 | 4            |       |
| Selenium               | 3.47              |           | ng/l      |                |                  |          |                |         |              |       |
| Thallium               | 1.03              |           | ng/l      |                |                  |          |                |         |              |       |
| Vanadium               | -47.0             |           | ng/l      |                |                  |          |                |         |              | U     |
| Zinc                   | 25.8              |           | ng/l      |                |                  |          |                |         |              |       |
| Calibration Check (240 | 4094-CCV1)        |           |           | Prep           | ared & A         | nalyzed: | 04/30/24       |         |              |       |
| Antimony               | 19900             |           | ng/l      | 20000          |                  | 99.6     | 90-110         |         |              |       |
| Arsenic                | 20000             |           | ng/l      | 20000          |                  | 99.8     | 90-110         |         |              |       |
| Barium                 | 200000            |           | ng/l      | 200000         |                  | 99.9     | 90-110         |         |              |       |
| Beryllium              | 4920              |           | ng/l      | 5000.0         |                  | 98.5     | 90-110         |         |              |       |
| Cadmium                | 20300             |           | ng/l      | 20000          |                  | 101      | 90-110         |         |              |       |
| Chromium               | 250000            |           | ng/l      | 240000         |                  | 104      | 90-110         |         |              |       |
| Cobalt                 | 51500             |           | ng/l      | 50000          |                  | 103      | 90-110         |         |              |       |
| Copper                 | 2.06E6            |           | ng/l      | 2.0000E6       |                  | 103      | 90-110         |         |              |       |
| Lead                   | 198000            |           | ng/l      | 200000         |                  | 99.1     | 90-110         |         |              |       |
| Manganese              | 513000            |           | ng/l      | 500000         |                  | 103      | 90-110         |         |              |       |
| Molybdenum             | 49300             |           | ng/l      | 50000          |                  | 98.6     | 90-110         |         |              |       |
| Nickel                 | 124000            |           | ng/l      | 120000         |                  | 103      | 90-110         |         |              |       |
| Selenium               | 19900             |           | ng/l      | 20000          |                  | 99.6     | 90-110         |         |              |       |
| Thallium               | 506               |           | ng/l      | 500.00         |                  | 101      | 90-110         |         |              |       |
| Vanadium               | 20200             |           | ng/l      | 20000          |                  | 101      | 90-110         |         |              |       |
| Zinc                   | 515000            |           | ng/l      | 500000         |                  | 103      | 90-110         |         |              |       |
| Calibration Check (240 |                   |           | <b>.</b>  | Prep           | ared & A         | nalyzed: | 04/30/24       |         |              |       |
| Antimony               | 19800             |           | ng/l      | 20000          |                  | 99.0     | 90-110         |         |              |       |
| Arsenic                | 20100             |           | ng/l      | 20000          |                  | 100      | 90-110         |         |              |       |
| Barium                 | 199000            |           | ng/l      | 200000         |                  | 99.7     | 90-110         |         |              |       |
| Beryllium              | 4990              |           | ng/l      | 5000.0         |                  | 99.8     | 90-110         |         |              |       |
| ,<br>Cadmium           | 20300             |           | ng/l      | 20000          |                  | 101      | 90-110         |         |              |       |
| Chromium               | 254000            |           | ng/l      | 240000         |                  | 106      | 90-110         |         |              |       |
| Cobalt                 | 52500             |           | ng/l      | 50000          |                  | 105      | 90-110         |         |              |       |
| Copper                 | 2.10E6            |           | ng/l      | 2.0000E6       |                  | 105      | 90-110         |         |              |       |
| Lead                   | 198000            |           | ng/l      | 200000         |                  | 98.8     | 90-110         |         |              |       |
| Manganese              | 523000            |           | ng/l      | 500000         |                  | 105      | 90-110         |         |              |       |
| Molybdenum             | 50200             |           | ng/l      | 50000          |                  | 100      | 90-110         |         |              |       |
| Nickel                 | 126000            |           | ng/l      | 120000         |                  | 105      | 90-110         |         |              |       |
| Selenium               | 19900             |           | ng/l      | 20000          |                  | 99.4     | 90-110         |         |              |       |
| Thallium               | 487               |           | ng/l      | 500.00         |                  | 97.5     | 90-110         |         |              |       |
| Vanadium               | 20700             |           | ng/l      | 20000          |                  | 104      | 90-110         |         |              |       |
| Zinc                   | 518000            |           | ng/l      | 500000         |                  | 104      | 90-110         |         |              |       |

Eastern Research Group



1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

| Analyte                | Result      | PQL      | Units      | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD      | RPD<br>Limit | Notes |
|------------------------|-------------|----------|------------|----------------|------------------|---------|----------------|----------|--------------|-------|
| norganics by Compe     |             | .5 - Qua | lity Contr | ol             |                  |         |                |          |              |       |
| Batch 2404094 - B4D30  |             |          |            |                |                  |         |                |          |              |       |
| Calibration Check (240 |             |          |            | Prepa          | ared & Ai        | nalyzed | l: 04/30/24    | 1        |              | _     |
| Antimony               | 19900       |          | ng/l       | 20000          |                  | 99.6    | 90-110         |          |              |       |
| Arsenic                | 19800       |          | ng/l       | 20000          |                  | 98.9    | 90-110         |          |              |       |
| Barium                 | 200000      |          | ng/l       | 200000         |                  | 100     | 90-110         |          |              |       |
| Beryllium              | 4940        |          | ng/l       | 5000.0         |                  | 98.7    | 90-110         |          |              |       |
| Cadmium                | 20400       |          | ng/l       | 20000          |                  | 102     | 90-110         |          |              |       |
| Chromium               | 253000      |          | ng/l       | 240000         |                  | 105     | 90-110         |          |              |       |
| Cobalt                 | 51800       |          | ng/l       | 50000          |                  | 104     | 90-110         |          |              |       |
| Copper                 | 2.09E6      |          | ng/l       | 2.0000E6       |                  | 104     | 90-110         |          |              |       |
| Lead                   | 199000      |          | ng/l       | 200000         |                  | 99.3    | 90-110         |          |              |       |
| Manganese              | 516000      |          | ng/l       | 500000         |                  | 103     | 90-110         |          |              |       |
| Molybdenum             | 50400       |          | ng/l       | 50000          |                  | 101     | 90-110         |          |              |       |
| Nickel                 | 125000      |          | ng/l       | 120000         |                  | 104     | 90-110         |          |              |       |
| Selenium               | 19600       |          | ng/l       | 20000          |                  | 97.8    | 90-110         |          |              |       |
| Thallium               | 492         |          | ng/l       | 500.00         |                  | 98.5    | 90-110         |          |              |       |
| Vanadium               | 20500       |          | ng/l       | 20000          |                  | 103     | 90-110         |          |              |       |
| Zinc                   | 516000      |          | ng/l       | 500000         |                  | 103     | 90-110         |          |              |       |
| Calibration Check (240 | 04094-CCV4) |          |            | Prepa          | ared: 04/        | ′30/24  | Analyzed:      | 05/01/24 |              |       |
| Antimony               | 20000       |          | ng/l       | 20000          |                  | 100     | 90-110         |          |              |       |
| Arsenic                | 19900       |          | ng/l       | 20000          |                  | 99.7    | 90-110         |          |              |       |
| Barium                 | 198000      |          | ng/l       | 200000         |                  | 98.8    | 90-110         |          |              |       |
| Beryllium              | 4930        |          | ng/l       | 5000.0         |                  | 98.6    | 90-110         |          |              |       |
| Cadmium                | 20200       |          | ng/l       | 20000          |                  | 101     | 90-110         |          |              |       |
| Chromium               | 253000      |          | ng/l       | 240000         |                  | 105     | 90-110         |          |              |       |
| Cobalt                 | 52200       |          | ng/l       | 50000          |                  | 104     | 90-110         |          |              |       |
| Copper                 | 2.12E6      |          | ng/l       | 2.0000E6       |                  | 106     | 90-110         |          |              |       |
| Lead                   | 198000      |          | ng/l       | 200000         |                  | 99.0    | 90-110         |          |              |       |
| Manganese              | 521000      |          | ng/l       | 500000         |                  | 104     | 90-110         |          |              |       |
| Molybdenum             | 50300       |          | ng/l       | 50000          |                  | 101     | 90-110         |          |              |       |
| Nickel                 | 126000      |          | ng/l       | 120000         |                  | 105     | 90-110         |          |              |       |
| Selenium               | 19700       |          | ng/l       | 20000          |                  | 98.4    | 90-110         |          |              |       |
| Thallium               | 504         |          | ng/l       | 500.00         |                  | 101     | 90-110         |          |              |       |
| Vanadium               | 20400       |          | ng/l       | 20000          |                  | 102     | 90-110         |          |              |       |
| Zinc                   | 518000      |          | ng/l       | 500000         |                  | 104     | 90-110         |          |              |       |
| Calibration Check (240 | 04094-CCV5) |          |            | Prepa          | ared: 04/        | ′30/24  | Analyzed:      | 05/01/24 |              |       |
| Antimony               | 19900       |          | ng/l       | 20000          |                  | 99.6    | 90-110         | <u> </u> |              |       |
| Arsenic                | 20100       |          | ng/l       | 20000          |                  | 100     | 90-110         |          |              |       |
| Barium                 | 200000      |          | ng/l       | 200000         |                  | 100     | 90-110         |          |              |       |
| Beryllium              | 5030        |          | ng/l       | 5000.0         |                  | 101     | 90-110         |          |              |       |

Eastern Research Group



Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

| Analyte                     | Result       | PQL        | Units             | Spike<br>Level | Source<br>Result | %REC  | %REC<br>Limits | RPD      | RPD<br>Limit | Notes |
|-----------------------------|--------------|------------|-------------------|----------------|------------------|-------|----------------|----------|--------------|-------|
| Inorganics by Compendium    | Method IO-3  | .5 - Ouali | tv Conti          | rol            |                  |       |                |          |              |       |
| Batch 2404094 - B4D3006     |              | 42 mm/li   | -, - <del>-</del> |                |                  |       |                |          |              |       |
| Calibration Check (2404094- | CCV5) Contin |            |                   | Pren           | ared: 04/        | 30/24 | Analyzed:      | 05/01/24 |              |       |
| Cadmium                     | 20300        |            | ng/l              | 20000          | u. u u.,         | 101   | 90-110         | 00,01,1  |              |       |
| Chromium                    | 258000       |            | ng/l              | 240000         |                  | 107   | 90-110         |          |              |       |
| Cobalt                      | 52900        |            | ng/l              | 50000          |                  | 106   | 90-110         |          |              |       |
| Copper                      | 2.14E6       |            | ng/l              | 2.0000E6       |                  | 107   | 90-110         |          |              |       |
| Lead                        | 199000       |            | ng/l              | 200000         |                  | 99.3  | 90-110         |          |              |       |
| Manganese                   | 528000       |            | ng/l              | 500000         |                  | 106   | 90-110         |          |              |       |
| Molybdenum                  | 50800        |            | ng/l              | 50000          |                  | 102   | 90-110         |          |              |       |
| Nickel                      | 128000       |            | ng/l              | 120000         |                  | 107   | 90-110         |          |              |       |
| Selenium                    | 19600        |            | ng/l              | 20000          |                  | 97.8  | 90-110         |          |              |       |
| Thallium                    | 486          |            | ng/l              | 500.00         |                  | 97.2  | 90-110         |          |              |       |
| Vanadium                    | 20900        |            | ng/l              | 20000          |                  | 105   | 90-110         |          |              |       |
| Zinc                        | 517000       |            | ng/l              | 500000         |                  | 103   | 90-110         |          |              |       |
| Calibration Check (2404094- |              |            | 3,                | Prep           | ared: 04/        | 30/24 | Analyzed:      | 05/01/24 |              |       |
| Antimony                    | 20000        |            | ng/l              | 20000          |                  | 99.8  | 90-110         |          |              |       |
| Arsenic                     | 19900        |            | ng/l              | 20000          |                  | 99.7  | 90-110         |          |              |       |
| Barium                      | 199000       |            | ng/l              | 200000         |                  | 99.3  | 90-110         |          |              |       |
| Beryllium                   | 4940         |            | ng/l              | 5000.0         |                  | 98.7  | 90-110         |          |              |       |
| ,<br>Cadmium                | 20200        |            | ng/l              | 20000          |                  | 101   | 90-110         |          |              |       |
| Chromium                    | 256000       |            | ng/l              | 240000         |                  | 107   | 90-110         |          |              |       |
| Cobalt                      | 52700        |            | ng/l              | 50000          |                  | 105   | 90-110         |          |              |       |
| Copper                      | 2.13E6       |            | ng/l              | 2.0000E6       |                  | 106   | 90-110         |          |              |       |
| Lead                        | 198000       |            | ng/l              | 200000         |                  | 99.0  | 90-110         |          |              |       |
| Manganese                   | 523000       |            | ng/l              | 500000         |                  | 105   | 90-110         |          |              |       |
| Molybdenum                  | 50600        |            | ng/l              | 50000          |                  | 101   | 90-110         |          |              |       |
| Nickel                      | 127000       |            | ng/l              | 120000         |                  | 106   | 90-110         |          |              |       |
| Selenium                    | 19800        |            | ng/l              | 20000          |                  | 98.8  | 90-110         |          |              |       |
| Thallium                    | 498          |            | ng/l              | 500.00         |                  | 99.5  | 90-110         |          |              |       |
| Vanadium                    | 20800        |            | ng/l              | 20000          |                  | 104   | 90-110         |          |              |       |
| Zinc                        | 523000       |            | ng/l              | 500000         |                  | 105   | 90-110         |          |              |       |
| Calibration Check (2404094- | CCV7)        |            |                   | Prep           | ared: 04/        | 30/24 | Analyzed:      | 05/01/24 |              |       |
| Antimony                    | 19800        |            | ng/l              | 20000          |                  | 99.1  | 90-110         |          |              |       |
| Arsenic                     | 19800        |            | ng/l              | 20000          |                  | 99.1  | 90-110         |          |              |       |
| Barium                      | 200000       |            | ng/l              | 200000         |                  | 99.9  | 90-110         |          |              |       |
| Beryllium                   | 4910         |            | ng/l              | 5000.0         |                  | 98.3  | 90-110         |          |              |       |
| Cadmium                     | 20100        |            | ng/l              | 20000          |                  | 100   | 90-110         |          |              |       |
| Chromium                    | 256000       |            | ng/l              | 240000         |                  | 107   | 90-110         |          |              |       |
| Cobalt                      | 52400        |            | ng/l              | 50000          |                  | 105   | 90-110         |          |              |       |
| Copper                      | 2.11E6       |            | ng/l              | 2.0000E6       |                  | 106   | 90-110         |          |              |       |
|                             |              |            |                   |                |                  |       |                |          |              |       |

Eastern Research Group



1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

| Analyte                   | Result           | PQL      | Units     | Spike<br>Level | Source<br>Result | %REC            | %REC<br>Limits | RPD      | RPD<br>Limit | Notes |
|---------------------------|------------------|----------|-----------|----------------|------------------|-----------------|----------------|----------|--------------|-------|
| norganics by Compend      |                  | 5 - Qual | ity Contr | ol             |                  |                 |                |          |              |       |
| Batch 2404094 - B4D3006   |                  |          |           |                |                  |                 |                |          |              |       |
| Calibration Check (2404)  | 094-CCV7) Contin |          |           | Prep           | ared: 04/        | /30/24 <i>A</i> | Analyzed:      | 05/01/24 | 4            |       |
| Lead                      | 199000           |          | ng/l      | 200000         |                  | 99.4            | 90-110         |          |              |       |
| Manganese                 | 523000           |          | ng/l      | 500000         |                  | 105             | 90-110         |          |              |       |
| Molybdenum                | 50500            |          | ng/l      | 50000          |                  | 101             | 90-110         |          |              |       |
| Nickel                    | 126000           |          | ng/l      | 120000         |                  | 105             | 90-110         |          |              |       |
| Selenium                  | 19500            |          | ng/l      | 20000          |                  | 97.5            | 90-110         |          |              |       |
| Thallium                  | 491              |          | ng/l      | 500.00         |                  | 98.3            | 90-110         |          |              |       |
| Vanadium                  | 20600            |          | ng/l      | 20000          |                  | 103             | 90-110         |          |              |       |
| Zinc                      | 518000           |          | ng/l      | 500000         |                  | 104             | 90-110         |          |              |       |
| High Cal Check (2404094   | 4-HCV1)          |          |           | Prep           | ared & A         | nalyzed:        | 04/30/24       |          |              |       |
| Antimony                  | 39800            |          | ng/l      | 40000          |                  | 99.6            | 95-105         |          |              |       |
| Arsenic                   | 39800            |          | ng/l      | 40000          |                  | 99.6            | 95-105         |          |              |       |
| Barium                    | 399000           |          | ng/l      | 400000         |                  | 99.9            | 95-105         |          |              |       |
| Beryllium                 | 10000            |          | ng/l      | 10000          |                  | 100             | 95-105         |          |              |       |
| Cadmium                   | 39600            |          | ng/l      | 40000          |                  | 98.9            | 95-105         |          |              |       |
| Chromium                  | 473000           |          | ng/l      | 480000         |                  | 98.5            | 95-105         |          |              |       |
| Cobalt                    | 98200            |          | ng/l      | 100000         |                  | 98.2            | 95-105         |          |              |       |
| Copper                    | 3.94E6           |          | ng/l      | 4.0000E6       |                  | 98.5            | 95-105         |          |              |       |
| Lead                      | 402000           |          | ng/l      | 400000         |                  | 100             | 95-105         |          |              |       |
| Manganese                 | 984000           |          | ng/l      | 1.0000E6       |                  | 98.4            | 95-105         |          |              |       |
| Molybdenum                | 99000            |          | ng/l      | 100000         |                  | 99.0            | 95-105         |          |              |       |
| Nickel                    | 236000           |          | ng/l      | 240000         |                  | 98.2            | 95-105         |          |              |       |
| Selenium                  | 39900            |          | ng/l      | 40000          |                  | 99.6            | 95-105         |          |              |       |
| Thallium                  | 1020             |          | ng/l      | 1000.0         |                  | 102             | 95-105         |          |              |       |
| Vanadium                  | 39600            |          | ng/l      | 40000          |                  | 99.1            | 95-105         |          |              |       |
| Zinc                      | 980000           |          | ng/l      | 1.0000E6       |                  | 98.0            | 95-105         |          |              |       |
| Initial Cal Blank (240409 | 94-ICB1)         |          |           | Prep           | ared & A         | nalyzed:        | 04/30/24       |          |              |       |
| Antimony                  | 0.625            |          | ng/l      |                |                  |                 |                |          |              |       |
| Arsenic                   | 0.186            |          | ng/l      |                |                  |                 |                |          |              |       |
| Barium                    | 0.823            |          | ng/l      |                |                  |                 |                |          |              |       |
| Beryllium                 | 0.330            |          | ng/l      |                |                  |                 |                |          |              |       |
| Cadmium                   | 0.0636           |          | ng/l      |                |                  |                 |                |          |              |       |
| Chromium                  | 4.13             |          | ng/l      |                |                  |                 |                |          |              |       |
| Cobalt                    | 0.355            |          | ng/l      |                |                  |                 |                |          |              |       |
| Copper                    | 82.0             |          | ng/l      |                |                  |                 |                |          |              |       |
| Lead                      | 15.7             |          | ng/l      |                |                  |                 |                |          |              |       |
| Manganese                 | 3.39             |          | ng/l      |                |                  |                 |                |          |              |       |
| Molybdenum                | 7.63             |          | ng/l      |                |                  |                 |                |          |              |       |
| Nickel                    | -0.223           |          | ng/l      |                |                  |                 |                |          |              | U     |

Eastern Research Group



1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

| Analyte                   | Result          | PQL        | Units     | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|---------------------------|-----------------|------------|-----------|----------------|------------------|----------|----------------|-----|--------------|-------|
| inorganics by Compendi    | um Method IO-3  | .5 - Quali | ity Contr | ol             |                  |          |                |     |              |       |
| Batch 2404094 - B4D3006   |                 |            |           |                |                  |          |                |     |              |       |
| Initial Cal Blank (240409 | 4-ICB1) Continu |            |           | Prep           | ared & A         | nalyzed: | 04/30/24       |     |              |       |
| Selenium                  | -0.801          |            | ng/l      |                |                  |          |                |     |              | U     |
| Thallium                  | 0.937           |            | ng/l      |                |                  |          |                |     |              |       |
| Vanadium                  | -41.9           |            | ng/l      |                |                  |          |                |     |              | U     |
| Zinc                      | 12.1            |            | ng/l      |                |                  |          |                |     |              |       |
| Initial Cal Check (240409 | 94-ICV1)        |            |           | Prep           | ared & A         | nalyzed: | 04/30/24       |     |              |       |
| Antimony                  | 19700           |            | ng/l      | 20000          |                  | 98.5     | 90-110         |     |              |       |
| Arsenic                   | 19700           |            | ng/l      | 20000          |                  | 98.5     | 90-110         |     |              |       |
| Barium                    | 195000          |            | ng/l      | 200000         |                  | 97.7     | 90-110         |     |              |       |
| Beryllium                 | 4940            |            | ng/l      | 5000.0         |                  | 98.7     | 90-110         |     |              |       |
| Cadmium                   | 20500           |            | ng/l      | 20000          |                  | 103      | 90-110         |     |              |       |
| Chromium                  | 239000          |            | ng/l      | 240000         |                  | 99.6     | 90-110         |     |              |       |
| Cobalt                    | 49600           |            | ng/l      | 50000          |                  | 99.1     | 90-110         |     |              |       |
| Copper                    | 2.07E6          |            | ng/l      | 2.0000E6       |                  | 104      | 90-110         |     |              |       |
| Lead                      | 196000          |            | ng/l      | 200000         |                  | 98.2     | 90-110         |     |              |       |
| Manganese                 | 495000          |            | ng/l      | 500000         |                  | 99.1     | 90-110         |     |              |       |
| Molybdenum                | 48300           |            | ng/l      | 50000          |                  | 96.6     | 90-110         |     |              |       |
| Nickel                    | 122000          |            | ng/l      | 120000         |                  | 101      | 90-110         |     |              |       |
| Selenium                  | 20100           |            | ng/l      | 20000          |                  | 101      | 90-110         |     |              |       |
| Thallium                  | 516             |            | ng/l      | 500.00         |                  | 103      | 90-110         |     |              |       |
| Vanadium                  | 19700           |            | ng/l      | 20000          |                  | 98.4     | 90-110         |     |              |       |
| Zinc                      | 512000          |            | ng/l      | 500000         |                  | 102      | 90-110         |     |              |       |
| Interference Check A (24  | 04094-IFA1)     |            |           | Prep           | ared & A         | nalyzed: | 04/30/24       |     |              |       |
| Antimony                  | 0.00            |            | ng/l      |                |                  |          | 80-120         |     |              | U     |
| Arsenic                   | 0.00            |            | ng/l      |                |                  |          | 80-120         |     |              | U     |
| Barium                    | 0.00            |            | ng/l      |                |                  |          | 80-120         |     |              | U     |
| Beryllium                 | 0.00            |            | ng/l      |                |                  |          | 80-120         |     |              | U     |
| Cadmium                   | 0.00            |            | ng/l      |                |                  |          | 80-120         |     |              | U     |
| Chromium                  | 0.00            |            | ng/l      |                |                  |          | 80-120         |     |              | U     |
| Cobalt                    | 0.00            |            | ng/l      |                |                  |          | 80-120         |     |              | U     |
| Copper                    | 0.00            |            | ng/l      |                |                  |          | 80-120         |     |              | U     |
| Lead                      | 0.00            |            | ng/l      |                |                  |          | 80-120         |     |              | U     |
| Manganese                 | 0.00            |            | ng/l      |                |                  |          | 80-120         |     |              | U     |
| Molybdenum                | 298000          |            | ng/l      | 300000         |                  | 99.3     | 80-120         |     |              |       |
| Nickel                    | 0.00            |            | ng/l      |                |                  |          | 80-120         |     |              | U     |
| Selenium                  | 0.00            |            | ng/l      |                |                  |          | 80-120         |     |              | U     |
| Thallium                  | 0.00            |            | ng/l      |                |                  |          | 80-120         |     |              | U     |
| Vanadium                  | 0.00            |            | ng/l      |                |                  |          | 80-120         |     |              | U     |
| Zinc                      | 0.00            |            | ng/l      |                |                  |          | 80-120         |     |              | U     |

Eastern Research Group



1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE**: (703) 885-5495 **FAX**:

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

| Analyte                      | Result      | PQL       | Units     | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|------------------------------|-------------|-----------|-----------|----------------|------------------|--------------|----------------|-----|--------------|-------|
| Inorganics by Compendium     | Method IO-3 | .5 - Qual | ity Contr | ol             |                  |              |                |     |              |       |
| Batch 2404094 - B4D3006      |             |           |           |                |                  |              |                |     |              |       |
| Interference Check B (24040  | 94-IFB1)    |           |           | Prepa          | ared & A         | nalyzed:     | 04/30/24       |     |              |       |
| Antimony                     | 19900       |           | ng/l      | 20000          |                  | 99.7         | 80-120         |     |              |       |
| Arsenic                      | 20300       |           | ng/l      | 20000          |                  | 102          | 80-120         |     |              |       |
| Barium                       | 203000      |           | ng/l      | 200000         |                  | 101          | 80-120         |     |              |       |
| Beryllium                    | 5250        |           | ng/l      | 5000.0         |                  | 105          | 80-120         |     |              |       |
| Cadmium                      | 18800       |           | ng/l      | 20000          |                  | 94.1         | 80-120         |     |              |       |
| Chromium                     | 250000      |           | ng/l      | 240000         |                  | 104          | 80-120         |     |              |       |
| Cobalt                       | 48800       |           | ng/l      | 50000          |                  | 97.7         | 80-120         |     |              |       |
| Copper                       | 1.86E6      |           | ng/l      | 2.0000E6       |                  | 93.0         | 80-120         |     |              |       |
| Lead                         | 204000      |           | ng/l      | 200000         |                  | 102          | 80-120         |     |              |       |
| Manganese                    | 531000      |           | ng/l      | 500000         |                  | 106          | 80-120         |     |              |       |
| Molybdenum                   | 345000      |           | ng/l      | 350000         |                  | 98.6         | 80-120         |     |              |       |
| Nickel                       | 114000      |           | ng/l      | 120000         |                  | 95.2         | 80-120         |     |              |       |
| Selenium                     | 19100       |           | ng/l      | 20000          |                  | 95.6         | 80-120         |     |              |       |
| Thallium                     | 525         |           | ng/l      | 500.00         |                  | 105          | 80-120         |     |              |       |
| Vanadium                     | 21900       |           | ng/l      | 20000          |                  | 110          | 80-120         |     |              |       |
| Zinc                         | 445000      |           | ng/l      | 500000         |                  | 88.9         | 80-120         |     |              |       |
| Batch 2405002 - B4D3006      |             |           |           |                |                  |              |                |     |              |       |
| Calibration Blank (2405002-0 | CB1)        |           |           | Prepa          | ared & A         | nalyzed:     | 05/01/24       |     |              |       |
| Antimony                     | 0.659       |           | ng/l      |                |                  | <del>-</del> |                |     |              |       |
| Arsenic                      | 0.776       |           | ng/l      |                |                  |              |                |     |              |       |
| Barium                       | 2.16        |           | ng/l      |                |                  |              |                |     |              |       |
| Beryllium                    | 0.247       |           | ng/l      |                |                  |              |                |     |              |       |
| Cadmium                      | 0.184       |           | ng/l      |                |                  |              |                |     |              |       |
| Chromium                     | 4.39        |           | ng/l      |                |                  |              |                |     |              |       |
| Cobalt                       | 0.362       |           | ng/l      |                |                  |              |                |     |              |       |
| Copper                       | 48.8        |           | ng/l      |                |                  |              |                |     |              |       |
| Lead                         | 10.2        |           | ng/l      |                |                  |              |                |     |              |       |
| Manganese                    | 7.75        |           | ng/l      |                |                  |              |                |     |              |       |
| Molybdenum                   | 12.4        |           | ng/l      |                |                  |              |                |     |              |       |
| Nickel                       | -0.600      |           | ng/l      |                |                  |              |                |     |              | U     |
| Selenium                     | 0.00885     |           | ng/l      |                |                  |              |                |     |              |       |
| Thallium                     | 1.17        |           | ng/l      |                |                  |              |                |     |              |       |
| Vanadium                     | -40.1       |           | ng/l      |                |                  |              |                |     |              | U     |
| Zinc                         | 2.03        |           | ng/l      |                |                  |              |                |     |              |       |
| Calibration Blank (2405002-0 | CB2)        |           |           | Prepa          | ared & A         | nalyzed:     | 05/01/24       |     |              |       |
| Antimony                     | 0.658       |           | ng/l      |                |                  |              |                |     |              |       |
| Arsenic                      | 0.106       |           | ng/l      |                |                  |              |                |     |              |       |
| Barium                       | 0.629       |           | ng/l      |                |                  |              |                |     |              |       |

Eastern Research Group



. ..

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

| Analyte                | Result            | PQL        | Units     | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|------------------------|-------------------|------------|-----------|----------------|------------------|----------|----------------|-----|--------------|-------|
| Inorganics by Compe    |                   | .5 - Quali | ty Contro | ol             |                  |          |                |     |              |       |
| Batch 2405002 - B4D30  | 106               |            |           |                |                  |          |                |     |              |       |
| Calibration Blank (240 | 5002-CCB2) Contin |            |           | Prep           | ared & A         | nalyzed: | 05/01/24       |     |              |       |
| Beryllium              | 0.0983            |            | ng/l      |                |                  |          |                |     |              |       |
| Cadmium                | 0.125             |            | ng/l      |                |                  |          |                |     |              |       |
| Chromium               | 3.75              |            | ng/l      |                |                  |          |                |     |              |       |
| Cobalt                 | 0.128             |            | ng/l      |                |                  |          |                |     |              |       |
| Copper                 | 27.8              |            | ng/l      |                |                  |          |                |     |              |       |
| Lead                   | 6.36              |            | ng/l      |                |                  |          |                |     |              |       |
| Manganese              | 5.57              |            | ng/l      |                |                  |          |                |     |              |       |
| Molybdenum             | 5.13              |            | ng/l      |                |                  |          |                |     |              |       |
| Nickel                 | -1.31             |            | ng/l      |                |                  |          |                |     |              | U     |
| Selenium               | -0.927            |            | ng/l      |                |                  |          |                |     |              | U     |
| Thallium               | 0.918             |            | ng/l      |                |                  |          |                |     |              |       |
| Vanadium               | -41.3             |            | ng/l      |                |                  |          |                |     |              | U     |
| Zinc                   | -3.59             |            | ng/l      |                |                  |          |                |     |              | U     |
| Calibration Blank (240 | )5002-CCB3)       |            |           | Prep           | ared & A         | nalyzed: | 05/01/24       |     |              |       |
| Antimony               | 0.670             |            | ng/l      |                |                  |          |                |     |              |       |
| Arsenic                | 0.244             |            | ng/l      |                |                  |          |                |     |              |       |
| Barium                 | 1.97              |            | ng/l      |                |                  |          |                |     |              |       |
| Beryllium              | -0.0542           |            | ng/l      |                |                  |          |                |     |              | U     |
| Cadmium                | 0.160             |            | ng/l      |                |                  |          |                |     |              |       |
| Chromium               | 3.82              |            | ng/l      |                |                  |          |                |     |              |       |
| Cobalt                 | 0.175             |            | ng/l      |                |                  |          |                |     |              |       |
| Copper                 | 21.3              |            | ng/l      |                |                  |          |                |     |              |       |
| Lead                   | 6.42              |            | ng/l      |                |                  |          |                |     |              |       |
| Manganese              | 5.18              |            | ng/l      |                |                  |          |                |     |              |       |
| Molybdenum             | 6.07              |            | ng/l      |                |                  |          |                |     |              |       |
| Nickel                 | -0.843            |            | ng/l      |                |                  |          |                |     |              | U     |
| Selenium               | -0.00745          |            | ng/l      |                |                  |          |                |     |              | U     |
| Thallium               | 1.16              |            | ng/l      |                |                  |          |                |     |              |       |
| Vanadium               | -40.2             |            | ng/l      |                |                  |          |                |     |              | U     |
| Zinc                   | -4.26             |            | ng/l      |                |                  |          |                |     |              | U     |
| Calibration Blank (240 |                   |            |           | Prep           | ared & A         | nalyzed: | 05/01/24       |     |              |       |
| Antimony               | 0.559             |            | ng/l      |                |                  |          |                |     |              |       |
| Arsenic                | 0.319             |            | ng/l      |                |                  |          |                |     |              |       |
| Barium                 | 0.115             |            | ng/l      |                |                  |          |                |     |              |       |
| Beryllium              | -0.513            |            | ng/l      |                |                  |          |                |     |              | U     |
| Cadmium                | 0.0118            |            | ng/l      |                |                  |          |                |     |              |       |
| Chromium               | 2.32              |            | ng/l      |                |                  |          |                |     |              |       |
| Cobalt                 | 0.0634            |            | ng/l      |                |                  |          |                |     |              |       |

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

| Analyte                       | Result     | PQL        | Units    | Spike<br>Level | Source<br>Result | %REC            | %REC<br>Limits | RPD      | RPD<br>Limit | Notes |
|-------------------------------|------------|------------|----------|----------------|------------------|-----------------|----------------|----------|--------------|-------|
| Inorganics by Compendium M    | ethod IO-3 | .5 - Quali | ty Conti | ol             |                  |                 |                |          |              |       |
| Batch 2405002 - B4D3006       |            |            |          |                |                  |                 |                |          |              |       |
| Calibration Blank (2405002-CC | B4) Contin |            |          | Prep           | ared & A         | nalyzed:        | 05/01/24       |          |              |       |
| Copper                        | 22.5       |            | ng/l     |                |                  |                 |                |          |              |       |
| Lead                          | 7.43       |            | ng/l     |                |                  |                 |                |          |              |       |
| Manganese                     | 3.51       |            | ng/l     |                |                  |                 |                |          |              |       |
| Molybdenum                    | 5.38       |            | ng/l     |                |                  |                 |                |          |              |       |
| Nickel                        | -1.20      |            | ng/l     |                |                  |                 |                |          |              | U     |
| Selenium                      | -4.23      |            | ng/l     |                |                  |                 |                |          |              | U     |
| Thallium                      | 1.06       |            | ng/l     |                |                  |                 |                |          |              |       |
| Vanadium                      | -41.9      |            | ng/l     |                |                  |                 |                |          |              | U     |
| Zinc                          | 4.81       |            | ng/l     |                |                  |                 |                |          |              |       |
| Calibration Blank (2405002-CC | B5)        |            |          | Prep           | pared: 05,       | /01/24 <i>A</i> | Analyzed:      | 05/02/24 | 1            |       |
| Antimony                      | 0.720      |            | ng/l     |                |                  |                 |                |          |              |       |
| Arsenic                       | 0.0824     |            | ng/l     |                |                  |                 |                |          |              |       |
| Barium                        | 0.622      |            | ng/l     |                |                  |                 |                |          |              |       |
| Beryllium                     | -0.414     |            | ng/l     |                |                  |                 |                |          |              | U     |
| Cadmium                       | -0.00628   |            | ng/l     |                |                  |                 |                |          |              | U     |
| Chromium                      | 4.29       |            | ng/l     |                |                  |                 |                |          |              |       |
| Cobalt                        | 0.0188     |            | ng/l     |                |                  |                 |                |          |              |       |
| Copper                        | 20.0       |            | ng/l     |                |                  |                 |                |          |              |       |
| Lead                          | 7.06       |            | ng/l     |                |                  |                 |                |          |              |       |
| Manganese                     | 3.28       |            | ng/l     |                |                  |                 |                |          |              |       |
| Molybdenum                    | 5.96       |            | ng/l     |                |                  |                 |                |          |              |       |
| Nickel                        | -1.33      |            | ng/l     |                |                  |                 |                |          |              | U     |
| Selenium                      | -10.2      |            | ng/l     |                |                  |                 |                |          |              | U     |
| Thallium                      | 1.12       |            | ng/l     |                |                  |                 |                |          |              |       |
| Vanadium                      | -41.2      |            | ng/l     |                |                  |                 |                |          |              | U     |
| Zinc                          | -7.34      |            | ng/l     |                |                  |                 |                |          |              | U     |
| Calibration Check (2405002-CC | CV1)       |            |          | Prep           | oared & A        |                 | 05/01/24       |          |              |       |
| Antimony                      | 20000      |            | ng/l     | 20000          |                  | 100             | 90-110         |          |              |       |
| Arsenic                       | 19900      |            | ng/l     | 20000          |                  | 99.3            | 90-110         |          |              |       |
| Barium                        | 196000     |            | ng/l     | 200000         |                  | 97.8            | 90-110         |          |              |       |
| Beryllium                     | 4940       |            | ng/l     | 5000.0         |                  | 98.9            | 90-110         |          |              |       |
| Cadmium                       | 20200      |            | ng/l     | 20000          |                  | 101             | 90-110         |          |              |       |
| Chromium                      | 248000     |            | ng/l     | 240000         |                  | 103             | 90-110         |          |              |       |
| Cobalt                        | 50700      |            | ng/l     | 50000          |                  | 101             | 90-110         |          |              |       |
| Copper                        | 2.04E6     |            | ng/l     | 2.0000E6       |                  | 102             | 90-110         |          |              |       |
| Lead                          | 194000     |            | ng/l     | 200000         |                  | 97.1            | 90-110         |          |              |       |
| Manganese                     | 507000     |            | ng/l     | 500000         |                  | 101             | 90-110         |          |              |       |
| Molybdenum                    | 49000      |            | ng/l     | 50000          |                  | 98.1            | 90-110         |          |              |       |

Eastern Research Group



1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

**FILE #:** 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |              |          |            | Cnilco   | Course     |          | 0/.DEC   |     | מממ |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|----------|------------|----------|------------|----------|----------|-----|-----|-------|
| Batch 2405002 - B4D3006         Prepared & Analyzed: 05/01/24           Calibration Check (2405002-CCV1) Contin         Prepared & Analyzed: 05/01/24           Nickel         122000         ng/l         120000         101         90-110           Selenium         20000         ng/l         50000         97.2         90-110           Thallium         486         ng/l         500.00         97.2         90-110           Vanadium         19500         ng/l         20000         97.6         90-110           Zinc         510000         ng/l         20000         97.6         90-110           Artimony         19900         ng/l         20000         98.3         90-110           Arsenic         19700         ng/l         20000         98.3         90-110           Berrium         19400         ng/l         20000         98.3         90-110           Cadmium         29400         ng/l         20000         99.3         90-110           Chromium         24200         ng/l         20000         99.3         90-110           Chromium         24200         ng/l         20000         101         90-110           Chromium         29000         ng/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Analyte                               | Result       | PQL      | Units      |          |            | %REC     |          | RPD |     | Notes |
| Batch 2405002 - B4D3006         Prepared & Analyzed: 05/01/24           Calibration Check (2405002-CCV1) Contir         Prepared & Analyzed: 05/01/24           Nickel         122000         ng/l         120000         101         90-110           Selenium         20000         ng/l         20000         100         90-110           Vanadium         19500         ng/l         500.00         97.2         90-110           Zinc         510000         ng/l         200000         97.6         90-110           Calibration Check (240502-CCV2)         Prepared & Analyzed: 05/01/24         Prepared & Analyzed: 05/01/24           Antimony         19900         ng/l         20000         98.6         90-110           Arsenic         19700         ng/l         20000         98.3         90-110           Berlium         19400         ng/l         20000         98.3         90-110           Cadmium         20400         ng/l         20000         99.3         90-110           Chromium         242000         ng/l         20000         101         90-110           Chromium         24200         ng/l         20000         101         90-110           Chromium         29000 <th< th=""><th>,</th><th></th><th></th><th>lity Cont</th><th><u>~</u></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                     |              |          | lity Cont  | <u>~</u> |            |          |          |     |     |       |
| Prepared & Analyzed: 05/01/24   Nickel   122000   ng/l   120000   101   90-110     Selenium   20000   ng/l   20000   100   90-110     Selenium   486   ng/l   500.00   97.2   90-110     Yanadium   19500   ng/l   500000   102   90-110     Zinc   510000   ng/l   500000   102   90-110     Zinc   510000   ng/l   20000   97.6   90-110     Zinc   510000   ng/l   20000   98.3   90-110     Arisenic   19700   ng/l   20000   98.3   90-110     Barlum   194000   ng/l   20000   98.3   90-110     Barlum   194000   ng/l   20000   98.3   90-110     Barlum   20400   ng/l   20000   99.9   90-110     Cadmium   20400   ng/l   20000   102   90-110     Cadmium   20400   ng/l   20000   102   90-110     Cadmium   20400   ng/l   200000   97.9   90-110     Cadmium   488   ng/l   200000   97.9   90-110     Manganese   497000   ng/l   200000   97.9   90-110     Manganese   497000   ng/l   200000   97.6   90-110     Nickel   121000   ng/l   20000   97.6   90-110     Thallium   488   ng/l   500.00   97.6   90-110     Thallium   488   ng/l   500.00   97.6   90-110     Calmium   19500   ng/l   20000   97.7   90-110     Calmium   20400   ng/l   20000   102   90-110     Calmium   20400   ng/l   20000   97.7   90-110     Calmium   20400   ng/l   20000   102   90-110     Calmium   20400   ng/l   20 |                                       |              | .5 - Qua | ncy Colici | OI .     |            |          |          |     |     |       |
| Nicker   122000   ng/  120000   101   90-110   Selenium   20000   ng/  20000   100   90-110   Thaillium   486   ng/  500.00   97-2   90-110   Thaillium   19500   ng/  20000   97-6   90-110   Political   19500   ng/  20000   100   90-110   Political   19500   ng/  20000   100   90-110   Political   19500   ng/  20000   100   90-110   Political   19500   ng/  20000   98-6   90-110   Political   19500   ng/  20000   98-6   90-110   Political   19500   ng/  20000   98-6   90-110   Political   19500   ng/  20000   98-9   90-110   Political   19500   ng/  20000   98-9   90-110   Political   19500   ng/  20000   102   90-110   Political   19500   ng/  20000   102   90-110   Political   19500   ng/  20000   102   90-110   Political   19500   ng/  20000   103   90-110   Political   195000   ng/  20000   103   90-110   Political   195000   ng/  20000   97-9   90-110   Political   195000   ng/  20000   98-0   99-110   Political   195000   ng/  20000   103   90-110   Political   195000   ng/  20000   99-0   99-110   Political   195000   ng/  20000   103   90-110   Political   195000   ng/  200000   103   90-110   Political   195000   ng/  200000   103   90-110   Political   195000   ng/  200000 |                                       |              |          |            | Dear     | arod 0. A. | nalvzod: | 05/01/24 |     |     |       |
| Selenium         20000         100         90-110           Thallium         486         ng/l         500.00         97.2         90-110           Vanadium         19500         ng/l         20000         97.5         90-110           Zloc         \$10000         ng/l         20000         97.6         90-110           Artmony         19900         ng/l         20000         99.6         90-110           Arsenic         19700         ng/l         20000         99.3         90-110           Beryllum         19400         ng/l         20000         99.3         90-110           Cadmium         20400         ng/l         20000         102         90-110           Chromium         244000         ng/l         20000         102         90-110           Cobalt         50300         ng/l         20000         102         90-110           Cobalt         50300         ng/l         20000         101         90-110           Lead         196000         ng/l         20000         97.9         90-110           Manganese         497000         ng/l         50000         98.6         90-110           Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>-</u>                              | <b>-</b>     |          | n          | •        | areu & A   | •        |          |     |     |       |
| Thallium         486         ng/l         500.00         97.2         90-110           Vanadium         19500         ng/l         20000         97.6         90-110           Zinc         \$15000         ng/l         500000         102         90-110           Calibration Check (2405002-CCV2)         Prepared & Analyzed: 05/01/24           Antimony         19900         ng/l         20000         99.6         90-110           Arsenic         19700         ng/l         20000         99.3         90-110           Barium         194000         ng/l         20000         99.3         90-110           Berlium         4960         ng/l         20000         99.3         90-110           Cadmium         20400         ng/l         20000         101         90-110           Chromium         242000         ng/l         240000         101         90-110           Chobat         50300         ng/l         20000         97.9         90-110           Lead         19600         ng/l         20000         97.9         90-110           Manganese         497000         ng/l         50000         98.6         90-110 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |              |          |            |          |            |          |          |     |     |       |
| Vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |              |          |            |          |            |          |          |     |     |       |
| Solution   Solution |                                       |              |          |            |          |            |          |          |     |     |       |
| Prepared & Analyzed: 05/01/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |              |          |            |          |            |          |          |     |     |       |
| Antimony 19900 ng/l 20000 99.6 90-110 Arsenic 19700 ng/l 20000 98.3 90-110 Beryllium 194000 ng/l 20000 98.3 90-110 Beryllium 4960 ng/l 5000.0 99.3 90-110 Cadmium 20400 ng/l 20000 102 90-110 Chromium 242000 ng/l 20000 101 90-110 Cobalt 50300 ng/l 50000 101 90-110 Copper 2.04E6 ng/l 2.0000E6 102 90-110 Lead 196000 ng/l 20000 99.3 90-110 Manganese 497000 ng/l 20000 99.3 90-110 Mickel 121000 ng/l 50000 99.3 90-110 Selenium 19600 ng/l 50000 98.6 90-110 Thallium 488 ng/l 500.00 98.2 90-110 Zinc 515000 ng/l 20000 95.4 90-110 Zinc 515000 ng/l 20000 95.4 90-110 Zinc 515000 ng/l 20000 99.4 90-110 Arsenic 19700 ng/l 20000 99.4 90-110 Arsenic 19700 ng/l 20000 99.7 90-110 Beryllium 4960 ng/l 20000 99.7 90-110 Cadmium 20400 ng/l 20000 99.3 90-110 Chromium 244000 ng/l 20000 99.3 90-110 Chromium 244000 ng/l 20000 99.3 90-110 Cobalt 50700 ng/l 50000 101 90-110 Cobalt 50700 ng/l 50000 90.9 90-110 Mickel 121000 ng/l 50000 99.5 90-110 Mickel 121000 ng/l 50000 99.5 90-110 Mickel 121000 ng/l 50000 99.5 90-110 Nickel 121000 ng/l 20000 99.5 90-110 Thallium 494 ng/l 50000 99.0 90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |              |          | ng/I       |          |            |          |          |     |     |       |
| Arsenic         19700         ng/l         20000         98.3         90-110           Barlum         194000         ng/l         200000         96.9         90-110           Beryllium         4960         ng/l         20000         192.9         90-110           Cadmium         20400         ng/l         20000         102         90-110           Chromium         242000         ng/l         240000         101         90-110           Cobalt         50300         ng/l         250000         101         90-110           Copper         2.04E6         ng/l         200000         97.9         90-110           Lead         196000         ng/l         500000         97.9         90-110           Molybdenum         49300         ng/l         500000         99.3         90-110           Nickel         121000         ng/l         20000         98.5         90-110           Thallium         488         ng/l         20000         98.2         90-110           Vanadium         19100         ng/l         20000         95.4         90-110           Zinc         515000         ng/l         20000         97.7         90-110<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | <del>_</del> |          |            |          | ared & A   | •        |          |     |     |       |
| Barium         194000         ng/l         200000         96.9         90-110           Beryllium         4960         ng/l         5000.0         99.3         90-110           Cadmium         20400         ng/l         20000         102         90-110           Chromium         242000         ng/l         240000         101         90-110           Cobalt         50300         ng/l         200000E6         102         90-110           Copper         2.04E6         ng/l         200000E6         102         90-110           Lead         196000         ng/l         200000         97.9         90-110           Manganese         497000         ng/l         50000         99.3         90-110           Mickel         121000         ng/l         50000         99.6         90-110           Nickel         121000         ng/l         20000         98.2         90-110           Selenium         19600         ng/l         20000         97.6         90-110           Vanadium         19100         ng/l         500.00         97.6         90-110           Vanadium         19100         ng/l         50000         99.4 <td< td=""><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                     |              |          |            |          |            |          |          |     |     |       |
| Beryllium         4960         ng/l         5000.0         99.3         90-110           Cadmium         20400         ng/l         20000         101         90-110           Chromium         242000         ng/l         240000         101         90-110           Cobalt         50300         ng/l         50000         101         90-110           Copper         2.04E6         ng/l         2.00000E6         102         90-110           Lead         196000         ng/l         50000         99.3         90-110           Manganese         497000         ng/l         50000         99.3         90-110           Molybdenum         49300         ng/l         50000         98.6         90-110           Nickel         121000         ng/l         20000         98.2         90-110           Thallium         488         ng/l         20000         98.2         90-110           Vanadium         19100         ng/l         20000         98.4         90-110           Arisenic         19500         ng/l         20000         98.7         90-110           Arisenic         19700         ng/l         20000         98.7         90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |              |          |            |          |            |          |          |     |     |       |
| Cadmium         20400         ng/l         20000         102         90-110           Chromium         242000         ng/l         240000         101         90-110           Cobalt         50300         ng/l         50000         101         90-110           Copper         2.04E6         ng/l         2.0000E6         102         90-110           Lead         196000         ng/l         200000         97.9         90-110           Manganese         497000         ng/l         500000         98.6         90-110           Molybdenum         49300         ng/l         500000         98.6         90-110           Nickel         121000         ng/l         120000         101         90-110           Selenium         19600         ng/l         20000         98.2         90-110           Thallium         488         ng/l         500.00         97.6         90-110           Vanadium         19100         ng/l         20000         95.4         90-110           Zinc         515000         ng/l         20000         97.6         90-110           Calibration Check (2405002-CCV3)         Prepared & Analyzed: 05/01/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |              |          |            |          |            |          |          |     |     |       |
| Chromium         242000         ng/l         240000         101         90-110           Cobalt         50300         ng/l         50000         101         90-110           Copper         2.04E6         ng/l         2.0000E6         102         90-110           Lead         196000         ng/l         200000         97.9         90-110           Manganese         497000         ng/l         500000         99.3         90-110           Molybdenum         49300         ng/l         500000         99.3         90-110           Nickel         121000         ng/l         120000         101         90-110           Selenium         19600         ng/l         20000         98.2         90-110           Vanadium         19600         ng/l         20000         95.6         90-110           Vanadium         19100         ng/l         20000         95.4         90-110           Zinc         515000         ng/l         20000         95.4         90-110           Antimony         19900         ng/l         20000         99.4         90-110           Arsenic         19700         ng/l         20000         97.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                     |              |          | ٥.         |          |            |          |          |     |     |       |
| Cobalt         50300         ng/l         50000         101         90-110           Copper         2.04E6         ng/l         2.0000E6         102         90-110           Lead         196000         ng/l         200000         97.9         90-110           Manganese         497000         ng/l         50000         99.3         90-110           Molybdenum         49300         ng/l         50000         98.6         90-110           Nickel         121000         ng/l         120000         101         90-110           Selenium         19600         ng/l         20000         98.2         90-110           Thallium         488         ng/l         500.00         97.6         90-110           Vanadium         19100         ng/l         20000         95.4         90-110           Zinc         515000         ng/l         50000         103         90-110           Arimony         19900         ng/l         20000         99.4         90-110           Arsenic         19700         ng/l         20000         97.7         90-110           Barium         195000         ng/l         20000         97.7         90-110 </td <td></td> <td></td> <td></td> <td>٠.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |              |          | ٠.         |          |            |          |          |     |     |       |
| Copper         2.04E6         ng/l         2.0000E6         102         90-110           Lead         196000         ng/l         200000         97-9         90-110           Manganese         497000         ng/l         50000         99.3         90-110           Molybdenum         49300         ng/l         50000         98.6         90-110           Nickel         121000         ng/l         120000         98.2         90-110           Selenium         19600         ng/l         20000         98.2         90-110           Vanadium         19100         ng/l         20000         95.4         90-110           Zinc         515000         ng/l         20000         95.4         90-110           Antimony         19900         ng/l         20000         99.4         90-110           Arsenic         19700         ng/l         20000         98.7         90-110           Barium         195000         ng/l         20000         97.7         90-110           Cadmium         20400         ng/l         20000         99.3         90-110           Chromium         244000         ng/l         240000         102         9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |              |          |            |          |            |          |          |     |     |       |
| Lead         196000         ng/l         200000         97.9         90-110           Manganese         497000         ng/l         500000         99.3         90-110           Molybdenum         49300         ng/l         500000         98.6         90-110           Nickel         121000         ng/l         120000         101         90-110           Selenium         19600         ng/l         20000         98.2         90-110           Thallium         488         ng/l         500.00         97.6         90-110           Vanadium         19100         ng/l         20000         95.4         90-110           Zinc         515000         ng/l         500000         103         90-110           Prepared & Analyzed: 05/01/24           Antimony         19900         ng/l         20000         98.7         90-110           Arsenic         19700         ng/l         20000         98.7         90-110           Barium         195000         ng/l         20000         97.7         90-110           Cadmium         20400         ng/l         20000         99.3         90-110           Chromium         244000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |              |          | ٥.         |          |            |          |          |     |     |       |
| Manganese         497000         ng/l         500000         99.3         90-110           Molybdenum         49300         ng/l         50000         98.6         90-110           Nickel         121000         ng/l         120000         101         90-110           Selenium         19600         ng/l         20000         98.2         90-110           Thallium         488         ng/l         500.00         97.6         90-110           Vanadium         19100         ng/l         20000         95.4         90-110           Zinc         515000         ng/l         500000         103         90-110           Zinc         515000         ng/l         20000         99.4         90-110           Zinc         515000         ng/l         20000         99.4         90-110           Zinc         19700         ng/l         20000         99.7         90-110           Arsenic         19700         ng/l         20000         98.7         90-110           Barium         195000         ng/l         20000         99.3         90-110           Cadmium         20400         ng/l         20000         102         90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • •                                   |              |          |            |          |            |          |          |     |     |       |
| Molybdenum         49300         ng/l         50000         98.6         90-110           Nickel         121000         ng/l         120000         101         90-110           Selenium         19600         ng/l         20000         98.2         90-110           Thallium         488         ng/l         500.00         97.6         90-110           Vanadium         19100         ng/l         20000         95.4         90-110           Zinc         515000         ng/l         20000         95.4         90-110           Zinc         515000         ng/l         200000         103         90-110           Calibration Check (2405002-CCV3)           Prepared & Analyzed: 05/01/24           Antimony         19900         ng/l         20000         99.4         90-110           Antimony         19900         ng/l         20000         98.7         90-110           Arsenic         19700         ng/l         20000         98.7         90-110           Beryllium         4960         ng/l         20000         97.7         90-110           Cadmium         20400         ng/l         24000         102 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |              |          |            |          |            |          |          |     |     |       |
| Nickel         121000         ng/l         120000         98.2         90-110           Selenium         19600         ng/l         20000         98.2         90-110           Thallium         488         ng/l         500.00         97.6         90-110           Vanadium         19100         ng/l         20000         95.4         90-110           Zinc         515000         ng/l         500000         103         90-110           Prepared & Analyzed: 05/01/24           Antimony         19900         ng/l         20000         99.4         90-110           Arsenic         19700         ng/l         20000         98.7         90-110           Barium         195000         ng/l         20000         97.7         90-110           Beryllium         4960         ng/l         5000.0         99.3         90-110           Cadmium         20400         ng/l         240000         102         90-110           Cobalt         50700         ng/l         240000         102         90-110           Cobalt         50700         ng/l         20000         98.0         90-110           Lead         196000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                     |              |          | ٠.         |          |            |          |          |     |     |       |
| Selenium         19600         ng/l         20000         98.2         90-110           Thallium         488         ng/l         500.00         97.6         90-110           Vanadium         19100         ng/l         20000         95.4         90-110           Zinc         515000         ng/l         500000         103         90-110           Calibration Check (2405002-CCV3)           Prepared & Analyzed: 05/01/24           Antimony         19900         ng/l         20000         99.4         90-110           Arsenic         19700         ng/l         20000         98.7         90-110           Barium         195000         ng/l         20000         97.7         90-110           Barium         4960         ng/l         5000.0         99.3         90-110           Cadmium         20400         ng/l         20000         102         90-110           Chromium         244000         ng/l         240000         102         90-110           Cobalt         50700         ng/l         50000         101         90-110           Copper         2.06E6         ng/l         20000E6         103         90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                     |              |          |            |          |            |          |          |     |     |       |
| Thallium         488 vanadium         ng/l vanadium         500.00 vanadium         97.6 vanadium         90-110 vanadium           Zinc         515000         ng/l vanadium         90-110 vanadium         90-110 vanadium           Zinc         515000         ng/l vanadium         103 vanadium         90-110 vanadium           Calibration Check (2405002-CCV3)         Prepared & Analyzed: ○5/01/24           Antimony         19900         ng/l vanadium         20000 vanadium         99.4 vanadium         90-110 vanadium           Arsenic         19700         ng/l vanadium         20000 vanadium         97.7 vanadium         90-110 vanadium           Beryllium         4960 valid vanadium         195000 valid vanadium         90-110 vanadium         90-110 vanadium           Cadmium         20400 valid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |              |          |            |          |            |          |          |     |     |       |
| Vanadium         19100         ng/l         20000         95.4         90-110           Zinc         515000         ng/l         500000         103         90-110           Calibration Check (2405002-CCV3)           Prepared & Analyzed: 05/01/24           Antimony         19900         ng/l         20000         99.4         90-110           Arsenic         19700         ng/l         20000         98.7         90-110           Barium         195000         ng/l         20000         97.7         90-110           Beryllium         4960         ng/l         5000.0         99.3         90-110           Cadmium         20400         ng/l         20000         102         90-110           Chromium         244000         ng/l         240000         102         90-110           Cobalt         50700         ng/l         50000         101         90-110           Copper         2.06E6         ng/l         2.0000E6         103         90-110           Lead         196000         ng/l         500000         101         90-110           Molybdenum         49800         ng/l         500000         99.5         90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |              |          |            |          |            |          |          |     |     |       |
| Zinc         515000         ng/l         500000         103         90-110           Calibration Check (2405002-CCV3)         Prepared & Analyzed: 05/01/24           Antimony         19900         ng/l         20000         99.4         90-110           Arsenic         19700         ng/l         20000         98.7         90-110           Barium         195000         ng/l         200000         97.7         90-110           Beryllium         4960         ng/l         5000.0         99.3         90-110           Cadmium         20400         ng/l         20000         102         90-110           Chromium         244000         ng/l         240000         102         90-110           Cobalt         50700         ng/l         50000         101         90-110           Copper         2.06E6         ng/l         2.0000E6         103         90-110           Lead         196000         ng/l         500000         98.0         90-110           Manganese         503000         ng/l         500000         101         90-110           Molybdenum         49800         ng/l         500000         99.5         90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |              |          |            |          |            |          |          |     |     |       |
| Calibration Check (2405002-CCV3)         Prepared & Analyzed: 05/01/24           Antimony         19900         ng/l         20000         99.4         90-110           Arsenic         19700         ng/l         20000         98.7         90-110           Barium         195000         ng/l         200000         97.7         90-110           Beryllium         4960         ng/l         5000.0         99.3         90-110           Cadmium         20400         ng/l         20000         102         90-110           Chromium         244000         ng/l         50000         101         90-110           Cobalt         50700         ng/l         50000         101         90-110           Copper         2.06E6         ng/l         2.0000E6         103         90-110           Lead         196000         ng/l         200000         98.0         90-110           Manganese         503000         ng/l         500000         101         90-110           Molybdenum         49800         ng/l         50000         99.5         90-110           Nickel         121000         ng/l         20000         99.0         90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |              |          |            |          |            |          |          |     |     |       |
| Antimony         19900         ng/l         20000         99.4         90-110           Arsenic         19700         ng/l         20000         98.7         90-110           Barium         195000         ng/l         200000         97.7         90-110           Beryllium         4960         ng/l         5000.0         99.3         90-110           Cadmium         20400         ng/l         20000         102         90-110           Chromium         244000         ng/l         240000         102         90-110           Cobalt         50700         ng/l         50000         101         90-110           Copper         2.06E6         ng/l         2.0000E6         103         90-110           Lead         196000         ng/l         200000         98.0         90-110           Manganese         503000         ng/l         50000         101         90-110           Molybdenum         49800         ng/l         50000         99.5         90-110           Nickel         121000         ng/l         20000         99.0         90-110           Selenium         19800         ng/l         20000         99.0         90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |              |          | ng/I       |          |            |          |          |     |     |       |
| Arsenic       19700       ng/l       20000       98.7       90-110         Barium       195000       ng/l       200000       97.7       90-110         Beryllium       4960       ng/l       5000.0       99.3       90-110         Cadmium       20400       ng/l       20000       102       90-110         Chromium       244000       ng/l       240000       102       90-110         Cobalt       50700       ng/l       50000       101       90-110         Copper       2.06E6       ng/l       200000       98.0       90-110         Lead       196000       ng/l       500000       98.0       90-110         Manganese       503000       ng/l       500000       99.5       90-110         Mickel       121000       ng/l       120000       99.5       90-110         Selenium       19800       ng/l       20000       99.0       90-110         Thallium       494       ng/l       500.00       98.9       90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · · · · · · · · · · · · · · · · · |              |          |            |          | ared & A   | •        |          |     |     |       |
| Barium         195000         ng/l         200000         97.7         90-110           Beryllium         4960         ng/l         5000.0         99.3         90-110           Cadmium         20400         ng/l         20000         102         90-110           Chromium         244000         ng/l         240000         102         90-110           Cobalt         50700         ng/l         50000         101         90-110           Copper         2.06E6         ng/l         2.0000E6         103         90-110           Lead         196000         ng/l         200000         98.0         90-110           Manganese         503000         ng/l         50000         101         90-110           Molybdenum         49800         ng/l         50000         99.5         90-110           Nickel         121000         ng/l         120000         101         90-110           Selenium         19800         ng/l         20000         99.0         90-110           Thallium         494         ng/l         500.00         98.9         90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                     |              |          |            |          |            |          |          |     |     |       |
| Beryllium       4960       ng/l       5000.0       99.3       90-110         Cadmium       20400       ng/l       20000       102       90-110         Chromium       244000       ng/l       240000       102       90-110         Cobalt       50700       ng/l       50000       101       90-110         Copper       2.06E6       ng/l       2.0000E6       103       90-110         Lead       196000       ng/l       200000       98.0       90-110         Manganese       503000       ng/l       500000       101       90-110         Molybdenum       49800       ng/l       50000       99.5       90-110         Nickel       121000       ng/l       120000       101       90-110         Selenium       19800       ng/l       20000       99.0       90-110         Thallium       494       ng/l       500.00       98.9       90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |              |          |            |          |            |          |          |     |     |       |
| Cadmium         20400         ng/l         20000         102         90-110           Chromium         244000         ng/l         240000         102         90-110           Cobalt         50700         ng/l         50000         101         90-110           Copper         2.06E6         ng/l         2.0000E6         103         90-110           Lead         196000         ng/l         200000         98.0         90-110           Manganese         503000         ng/l         500000         101         90-110           Molybdenum         49800         ng/l         50000         99.5         90-110           Nickel         121000         ng/l         120000         101         90-110           Selenium         19800         ng/l         20000         99.0         90-110           Thallium         494         ng/l         500.00         98.9         90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |              |          |            |          |            |          |          |     |     |       |
| Chromium         244000         ng/l         240000         102         90-110           Cobalt         50700         ng/l         50000         101         90-110           Copper         2.06E6         ng/l         2.0000E6         103         90-110           Lead         196000         ng/l         200000         98.0         90-110           Manganese         503000         ng/l         500000         101         90-110           Molybdenum         49800         ng/l         50000         99.5         90-110           Nickel         121000         ng/l         120000         101         90-110           Selenium         19800         ng/l         20000         99.0         90-110           Thallium         494         ng/l         500.00         98.9         90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                     |              |          |            |          |            |          |          |     |     |       |
| Cobalt         50700         ng/l         50000         101         90-110           Copper         2.06E6         ng/l         2.0000E6         103         90-110           Lead         196000         ng/l         200000         98.0         90-110           Manganese         503000         ng/l         50000         101         90-110           Molybdenum         49800         ng/l         50000         99.5         90-110           Nickel         121000         ng/l         120000         101         90-110           Selenium         19800         ng/l         20000         99.0         90-110           Thallium         494         ng/l         500.00         98.9         90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |              |          | ٥.         |          |            |          |          |     |     |       |
| Copper         2.06E6         ng/l         2.0000E6         103         90-110           Lead         196000         ng/l         200000         98.0         90-110           Manganese         503000         ng/l         500000         101         90-110           Molybdenum         49800         ng/l         50000         99.5         90-110           Nickel         121000         ng/l         120000         101         90-110           Selenium         19800         ng/l         20000         99.0         90-110           Thallium         494         ng/l         500.00         98.9         90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |              |          |            |          |            |          |          |     |     |       |
| Lead       196000       ng/l       200000       98.0       90-110         Manganese       503000       ng/l       500000       101       90-110         Molybdenum       49800       ng/l       50000       99.5       90-110         Nickel       121000       ng/l       120000       101       90-110         Selenium       19800       ng/l       20000       99.0       90-110         Thallium       494       ng/l       500.00       98.9       90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |              |          |            |          |            |          |          |     |     |       |
| Manganese         503000         ng/l         500000         101         90-110           Molybdenum         49800         ng/l         50000         99.5         90-110           Nickel         121000         ng/l         120000         101         90-110           Selenium         19800         ng/l         20000         99.0         90-110           Thallium         494         ng/l         500.00         98.9         90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • •                                   |              |          | ٥.         |          |            |          |          |     |     |       |
| Molybdenum         49800         ng/l         50000         99.5         90-110           Nickel         121000         ng/l         120000         101         90-110           Selenium         19800         ng/l         20000         99.0         90-110           Thallium         494         ng/l         500.00         98.9         90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |              |          |            |          |            |          |          |     |     |       |
| Nickel         121000         ng/l         120000         101         90-110           Selenium         19800         ng/l         20000         99.0         90-110           Thallium         494         ng/l         500.00         98.9         90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                     |              |          | ٥.         |          |            |          |          |     |     |       |
| Selenium         19800         ng/l         20000         99.0         90-110           Thallium         494         ng/l         500.00         98.9         90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                     |              |          | ٠.         |          |            |          |          |     |     |       |
| Thallium 494 ng/l 500.00 98.9 90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |              |          |            |          |            |          |          |     |     |       |
| 5,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |              |          | ٠.         |          |            |          |          |     |     |       |
| vanagium 19200 ng/l 20000 95.8 90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |              |          |            |          |            |          |          |     |     |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vanadium                              | 19200        |          | ng/I       | 20000    |            | 95.8     | 90-110   |     |     |       |

Eastern Research Group



Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

Source

Spike Level

SITE CODE: Lahaina fires

%REC

RPD Limit

| nalyte                                   | Result              | PQL       | Units     | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits   | RPD      | RPD<br>Limit | Notes |
|------------------------------------------|---------------------|-----------|-----------|----------------|------------------|----------|------------------|----------|--------------|-------|
| norganics by Comp<br>Batch 2405002 - B4D | endium Method IO-3  | .5 - Qual | lity Cont | rol            |                  |          |                  |          |              |       |
|                                          | 405002-CCV3) Contin |           |           | Dron           | arad & Ai        | nalvzed: | 05/01/24         |          |              |       |
| Zinc                                     | 517000              |           | ng/l      | 500000         | aica a Ai        | 103      | 90-110           |          |              |       |
|                                          |                     |           | 119/1     |                | auad 0 A.        |          |                  |          |              |       |
| Calibration Check (2                     | <u>*</u>            |           |           | •              | areu & Ai        |          | 05/01/24         |          |              |       |
| Antimony                                 | 20100               |           | ng/l      | 20000          |                  | 100      | 90-110           |          |              |       |
| Arsenic                                  | 19500               |           | ng/l      | 20000          |                  | 97.7     | 90-110           |          |              |       |
| Barium                                   | 195000              |           | ng/l      | 200000         |                  | 97.5     | 90-110           |          |              |       |
| Beryllium                                | 4910                |           | ng/l      | 5000.0         |                  | 98.2     | 90-110           |          |              |       |
| Cadmium                                  | 20400               |           | ng/l      | 20000          |                  | 102      | 90-110           |          |              |       |
| Chromium                                 | 244000              |           | ng/l      | 240000         |                  | 102      | 90-110           |          |              |       |
| Cobalt                                   | 50800               |           | ng/l      | 50000          |                  | 102      | 90-110           |          |              |       |
| Copper                                   | 2.07E6              |           | ng/l      | 2.0000E6       |                  | 103      | 90-110           |          |              |       |
| Lead                                     | 198000              |           | ng/l      | 200000         |                  | 98.8     | 90-110           |          |              |       |
| Manganese                                | 502000              |           | ng/l      | 500000         |                  | 100      | 90-110           |          |              |       |
| Molybdenum                               | 50000               |           | ng/l      | 50000          |                  | 100      | 90-110           |          |              |       |
| Nickel                                   | 121000              |           | ng/l      | 120000         |                  | 101      | 90-110           |          |              |       |
| Selenium                                 | 19700               |           | ng/l      | 20000          |                  | 98.7     | 90-110           |          |              |       |
| Thallium                                 | 490                 |           | ng/l      | 500.00         |                  | 98.0     | 90-110           |          |              |       |
| Vanadium                                 | 19200               |           | ng/l      | 20000          |                  | 95.9     | 90-110           |          |              |       |
| Zinc                                     | 515000              |           | ng/l      | 500000         |                  | 103      | 90-110           |          |              |       |
| Calibration Check (2                     | 405002-CCV5)        |           |           | Prepa          | ared: 05/        | 01/24 /  | Analyzed:        | 05/02/24 |              |       |
| Antimony                                 | 20100               |           | ng/l      | 20000          |                  | 100      | 90-110           |          |              |       |
| Arsenic                                  | 19700               |           | ng/l      | 20000          |                  | 98.5     | 90-110           |          |              |       |
| Barium                                   | 194000              |           | ng/l      | 200000         |                  | 97.1     | 90-110           |          |              |       |
| Beryllium                                | 5000                |           | ng/l      | 5000.0         |                  | 100      | 90-110           |          |              |       |
| Cadmium                                  | 20500               |           | ng/l      | 20000          |                  | 102      | 90-110           |          |              |       |
| Chromium                                 | 249000              |           | ng/l      | 240000         |                  | 104      | 90-110           |          |              |       |
| Cobalt                                   | 51300               |           | ng/l      | 50000          |                  | 103      | 90-110           |          |              |       |
| Copper                                   | 2.08E6              |           | ng/l      | 2.0000E6       |                  | 104      | 90-110           |          |              |       |
| Lead                                     | 196000              |           | ng/l      | 200000         |                  | 97.9     | 90-110           |          |              |       |
| Manganese                                | 511000              |           | ng/l      | 500000         |                  | 102      | 90-110           |          |              |       |
| Molybdenum                               | 50400               |           | ng/l      | 50000          |                  | 101      | 90-110           |          |              |       |
| Nickel                                   | 123000              |           | ng/l      | 120000         |                  | 102      | 90-110           |          |              |       |
| Selenium                                 | 19400               |           | ng/l      | 20000          |                  | 97.1     | 90-110           |          |              |       |
| Thallium                                 | 484                 |           | ng/l      | 500.00         |                  | 96.7     | 90-110           |          |              |       |
| Vanadium                                 | 19600               |           | ng/l      | 20000          |                  | 98.1     | 90-110           |          |              |       |
| Zinc                                     | 516000              |           | ng/l      | 500000         |                  | 103      | 90-110           |          |              |       |
| High Cal Check (240                      |                     |           |           |                | ared & Ai        | nalvzed: | 05/01/24         |          |              |       |
| Antimony                                 | 40300               |           | ng/l      | 40000          | Ju w / 11        | 101      | 95-105           |          |              |       |
| Arsenic                                  | 39900               |           | ng/l      | 40000          |                  | 99.7     | 95-105<br>95-105 |          |              |       |

Eastern Research Group



1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

| nalyte                                          | Result   | PQL       | Units     | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|-------------------------------------------------|----------|-----------|-----------|----------------|------------------|----------|----------------|-----|--------------|-------|
| norganics by Compend<br>Batch 2405002 - B4D3006 |          | .5 - Qual | ity Contr | ol             |                  |          |                |     |              |       |
| High Cal Check (240500                          |          |           |           | Prepa          | ared & A         | nalyzed: | 05/01/24       |     |              |       |
| Barium                                          | 402000   |           | ng/l      | 400000         |                  | 101      | 95-105         |     |              |       |
| Beryllium                                       | 10100    |           | ng/l      | 10000          |                  | 101      | 95-105         |     |              |       |
| Cadmium                                         | 39700    |           | ng/l      | 40000          |                  | 99.4     | 95-105         |     |              |       |
| Chromium                                        | 467000   |           | ng/l      | 480000         |                  | 97.3     | 95-105         |     |              |       |
| Cobalt                                          | 97300    |           | ng/l      | 100000         |                  | 97.3     | 95-105         |     |              |       |
| Copper                                          | 3.87E6   |           | ng/l      | 4.0000E6       |                  | 96.7     | 95-105         |     |              |       |
| Lead                                            | 404000   |           | ng/l      | 400000         |                  | 101      | 95-105         |     |              |       |
| Manganese                                       | 975000   |           | ng/l      | 1.0000E6       |                  | 97.5     | 95-105         |     |              |       |
| Molybdenum                                      | 100000   |           | ng/l      | 100000         |                  | 100      | 95-105         |     |              |       |
| Nickel                                          | 231000   |           | ng/l      | 240000         |                  | 96.4     | 95-105         |     |              |       |
| Selenium                                        | 39900    |           | ng/l      | 40000          |                  | 99.6     | 95-105         |     |              |       |
| Thallium                                        | 1010     |           | ng/l      | 1000.0         |                  | 101      | 95-105         |     |              |       |
| Vanadium                                        | 39800    |           | ng/l      | 40000          |                  | 99.5     | 95-105         |     |              |       |
| Zinc                                            | 976000   |           | ng/l      | 1.0000E6       |                  | 97.6     | 95-105         |     |              |       |
| Initial Cal Blank (24050                        | 02-ICB1) |           |           | Prepa          | ared & A         | nalyzed: | 05/01/24       |     |              |       |
| Antimony                                        | 0.832    |           | ng/l      |                |                  |          |                |     |              |       |
| Arsenic                                         | 0.343    |           | ng/l      |                |                  |          |                |     |              |       |
| Barium                                          | 1.38     |           | ng/l      |                |                  |          |                |     |              |       |
| Beryllium                                       | -0.0474  |           | ng/l      |                |                  |          |                |     |              | J     |
| Cadmium                                         | 0.173    |           | ng/l      |                |                  |          |                |     |              |       |
| Chromium                                        | 5.03     |           | ng/l      |                |                  |          |                |     |              |       |
| Cobalt                                          | 0.163    |           | ng/l      |                |                  |          |                |     |              |       |
| Copper                                          | 56.7     |           | ng/l      |                |                  |          |                |     |              |       |
| Lead                                            | 13.9     |           | ng/l      |                |                  |          |                |     |              |       |
| Manganese                                       | 6.96     |           | ng/l      |                |                  |          |                |     |              |       |
| Molybdenum                                      | 7.66     |           | ng/l      |                |                  |          |                |     |              |       |
| Nickel                                          | -1.13    |           | ng/l      |                |                  |          |                |     | Į            | IJ    |
| Selenium                                        | 10.5     |           | ng/l      |                |                  |          |                |     |              |       |
| Thallium                                        | 0.993    |           | ng/l      |                |                  |          |                |     |              |       |
| Vanadium                                        | -36.6    |           | ng/l      |                |                  |          |                |     |              | IJ    |
| Zinc                                            | 9.12     |           | ng/l      |                |                  |          |                |     |              |       |
| Initial Cal Check (24050                        | 02-ICV1) |           |           | Prepa          | ared & A         | nalyzed: | 05/01/24       |     |              |       |
| Antimony                                        | 20000    |           | ng/l      | 20000          |                  | 99.9     | 90-110         |     |              |       |
| Arsenic                                         | 19800    |           | ng/l      | 20000          |                  | 99.0     | 90-110         |     |              |       |
| Barium                                          | 197000   |           | ng/l      | 200000         |                  | 98.4     | 90-110         |     |              |       |
| Beryllium                                       | 5020     |           | ng/l      | 5000.0         |                  | 100      | 90-110         |     |              |       |
| ,<br>Cadmium                                    | 20700    |           | ng/l      | 20000          |                  | 104      | 90-110         |     |              |       |
| Chromium                                        | 239000   |           | ng/l      | 240000         |                  | 99.4     | 90-110         |     |              |       |

Eastern Research Group



1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

| Analyte                         | Result     | PQL         | Units   | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|---------------------------------|------------|-------------|---------|----------------|------------------|----------|----------------|-----|--------------|-------|
| Inorganics by Compendium Me     | ethod IO-3 | .5 - Qualit | ty Cont | rol            |                  |          |                |     |              |       |
| Batch 2405002 - B4D3006         |            | _           | -       |                |                  |          |                |     |              |       |
| Initial Cal Check (2405002-ICV) | L) Continu |             |         | Prep           | ared & A         | nalyzed: | 05/01/24       |     |              |       |
| Cobalt                          | 49700      |             | ng/l    | 50000          |                  | 99.4     | 90-110         |     |              |       |
| Copper                          | 2.08E6     |             | ng/l    | 2.0000E6       |                  | 104      | 90-110         |     |              |       |
| Lead                            | 195000     |             | ng/l    | 200000         |                  | 97.6     | 90-110         |     |              |       |
| Manganese                       | 498000     |             | ng/l    | 500000         |                  | 99.5     | 90-110         |     |              |       |
| Molybdenum                      | 49400      |             | ng/l    | 50000          |                  | 98.8     | 90-110         |     |              |       |
| Nickel                          | 121000     |             | ng/l    | 120000         |                  | 101      | 90-110         |     |              |       |
| Selenium                        | 20600      |             | ng/l    | 20000          |                  | 103      | 90-110         |     |              |       |
| Thallium                        | 514        |             | ng/l    | 500.00         |                  | 103      | 90-110         |     |              |       |
| Vanadium                        | 19200      |             | ng/l    | 20000          |                  | 96.0     | 90-110         |     |              |       |
| Zinc                            | 516000     |             | ng/l    | 500000         |                  | 103      | 90-110         |     |              |       |
| Interference Check A (2405002   | -IFA1)     |             |         | Prep           | ared & A         | nalyzed: | 05/01/24       |     |              |       |
| Antimony                        | 0.00       |             | ng/l    |                |                  |          | 80-120         |     |              | U     |
| Arsenic                         | 0.00       |             | ng/l    |                |                  |          | 80-120         |     |              | U     |
| Barium                          | 0.00       |             | ng/l    |                |                  |          | 80-120         |     |              | U     |
| Beryllium                       | 0.00       |             | ng/l    |                |                  |          | 80-120         |     |              | U     |
| Cadmium                         | 0.00       |             | ng/l    |                |                  |          | 80-120         |     |              | U     |
| Chromium                        | 0.00       |             | ng/l    |                |                  |          | 80-120         |     |              | U     |
| Cobalt                          | 0.00       |             | ng/l    |                |                  |          | 80-120         |     |              | U     |
| Copper                          | 0.00       |             | ng/l    |                |                  |          | 80-120         |     |              | U     |
| Lead                            | 0.00       |             | ng/l    |                |                  |          | 80-120         |     |              | U     |
| Manganese                       | 0.00       |             | ng/l    |                |                  |          | 80-120         |     |              | U     |
| Molybdenum                      | 293000     |             | ng/l    | 300000         |                  | 97.8     | 80-120         |     |              |       |
| Nickel                          | 0.00       |             | ng/l    |                |                  |          | 80-120         |     |              | U     |
| Selenium                        | 0.00       |             | ng/l    |                |                  |          | 80-120         |     |              | U     |
| Thallium                        | 0.00       |             | ng/l    |                |                  |          | 80-120         |     |              | U     |
| Vanadium                        | 0.00       |             | ng/l    |                |                  |          | 80-120         |     |              | U     |
| Zinc                            | 0.00       |             | ng/l    |                |                  |          | 80-120         |     |              | U     |
| Interference Check B (2405002   | -IFB1)     |             |         | Prep           | ared & A         | nalyzed: | 05/01/24       |     |              |       |
| Antimony                        | 20100      |             | ng/l    | 20000          |                  | 100      | 80-120         |     |              |       |
| Arsenic                         | 20300      |             | ng/l    | 20000          |                  | 102      | 80-120         |     |              |       |
| Barium                          | 204000     |             | ng/l    | 200000         |                  | 102      | 80-120         |     |              |       |
| Beryllium                       | 5350       |             | ng/l    | 5000.0         |                  | 107      | 80-120         |     |              |       |
| Cadmium                         | 19000      |             | ng/l    | 20000          |                  | 95.1     | 80-120         |     |              |       |
| Chromium                        | 252000     |             | ng/l    | 240000         |                  | 105      | 80-120         |     |              |       |
| Cobalt                          | 48400      |             | ng/l    | 50000          |                  | 96.8     | 80-120         |     |              |       |
| Copper                          | 1.86E6     |             | ng/l    | 2.0000E6       |                  | 92.8     | 80-120         |     |              |       |
| Lead                            | 201000     |             | ng/l    | 200000         |                  | 100      | 80-120         |     |              |       |
| Manganese                       | 533000     |             | ng/l    | 500000         |                  | 107      | 80-120         |     |              |       |

Eastern Research Group



1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

| Analyte                                                | Result   | PQL        | Units       | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD | RPD<br>Limit | Notes    |
|--------------------------------------------------------|----------|------------|-------------|----------------|------------------|----------|----------------|-----|--------------|----------|
| norganics by Compendium Met<br>Batch 2405002 - B4D3006 | hod IO-3 | 3.5 - Qual | lity Contro | ol             |                  |          |                |     |              |          |
| Interference Check B (2405002-I                        | FB1) Coı |            |             | Prep           | ared & A         | nalvzed: | 05/01/24       |     |              |          |
| Molybdenum                                             | 341000   |            | ng/l        | 350000         |                  | 97.4     | 80-120         |     |              |          |
| Nickel                                                 | 113000   |            | ng/l        | 120000         |                  | 94.4     | 80-120         |     |              |          |
| Selenium                                               | 19200    |            | ng/l        | 20000          |                  | 96.0     | 80-120         |     |              |          |
| Thallium                                               | 514      |            | ng/l        | 500.00         |                  | 103      | 80-120         |     |              |          |
| Vanadium                                               | 21400    |            | ng/l        | 20000          |                  | 107      | 80-120         |     |              |          |
| Zinc                                                   | 449000   |            | ng/l        | 500000         |                  | 89.7     | 80-120         |     |              |          |
| Batch B4D3006 - ICP-MS Extraction                      |          |            | ٥.          |                |                  |          |                |     |              |          |
| Blank (B4D3006-BLK1)                                   |          |            |             | Prep           | ared & A         | nalyzed: | 04/30/24       |     |              |          |
| Antimony                                               | ND       | 0.0386     | ng/m³ Air   |                |                  |          |                |     |              | SL, U    |
| Arsenic                                                | ND       | 0.00937    | ng/m³ Air   |                |                  |          |                |     |              | U        |
| Barium                                                 | ND       | 1.07       | ng/m³ Air   |                |                  |          |                |     |              | QB-01, U |
| Beryllium                                              | ND       | 0.00320    | ng/m³ Air   |                |                  |          |                |     |              | U        |
| Cadmium                                                | ND       | 0.0741     | ng/m³ Air   |                |                  |          |                |     |              | U        |
| Chromium                                               | ND       | 2.21       | ng/m³ Air   |                |                  |          |                |     |              | U        |
| Cobalt                                                 | ND       | 0.0436     | ng/m³ Air   |                |                  |          |                |     |              | U        |
| Copper                                                 | ND       | 2.63       | ng/m³ Air   |                |                  |          |                |     |              | U        |
| Lead                                                   | ND       | 0.214      | ng/m³ Air   |                |                  |          |                |     |              | U        |
| Manganese                                              | ND       | 1.89       | ng/m³ Air   |                |                  |          |                |     |              | U        |
| Molybdenum                                             | ND       | 0.359      | ng/m³ Air   |                |                  |          |                |     |              | U        |
| Nickel                                                 | ND       | 0.652      | ng/m³ Air   |                |                  |          |                |     |              | U        |
| Selenium                                               | ND       | 0.00896    | ng/m³ Air   |                |                  |          |                |     |              | U        |
| Thallium                                               | ND       | 5.89E-4    | ng/m³ Air   |                |                  |          |                |     |              | U        |
| Vanadium                                               | ND       | 0.0529     | ng/m³ Air   |                |                  |          |                |     |              | U        |
| Zinc                                                   | ND       | 76.8       | ng/m³ Air   |                |                  |          |                |     |              | U        |
| LCS (B4D3006-BS1)                                      |          |            |             | Prep           | ared & A         | nalyzed: | 04/30/24       |     |              |          |
| Antimony                                               | 0.712    | 0.0386     | ng/m³ Air   | 1.3829         |                  | 51.5     | 80-120         |     |              | SL       |
| Arsenic                                                | 2.58     | 0.00937    | ng/m³ Air   | 2.7658         |                  | 93.3     | 80-120         |     |              |          |
| Barium                                                 | 27.5     | 1.07       | ng/m³ Air   | 27.658         |                  | 99.3     | 80-120         |     |              | QB-01    |
| Beryllium                                              | 1.28     | 0.00320    |             | 1.3829         |                  | 92.7     | 80-120         |     |              |          |
| Cadmium                                                | 1.40     | 0.0741     | ng/m³ Air   | 1.3829         |                  | 101      | 80-120         |     |              |          |
| Chromium                                               | 15.3     | 2.21       | 5,          | 13.829         |                  | 111      | 80-120         |     |              |          |
| Cobalt                                                 | 1.41     | 0.0436     | ng/m³ Air   |                |                  | 102      | 80-120         |     |              |          |
| Copper                                                 | 29.1     | 2.63       | ng/m³ Air   |                |                  | 105      | 80-120         |     |              |          |
| Lead                                                   | 12.9     | 0.214      | ng/m³ Air   | 13.829         |                  | 93.2     | 80-120         |     |              |          |
| Manganese                                              | 7.97     | 1.89       | ng/m³ Air   |                |                  | 96.1     | 80-120         |     |              |          |
| Molybdenum                                             | 1.42     | 0.359      | 5,          | 1.3829         |                  | 102      | 80-120         |     |              |          |
| Nickel                                                 | 3.28     | 0.652      | ng/m³ Air   |                |                  | 118      | 80-120         |     |              |          |
| Selenium                                               | 2.62     | 0.00896    | ng/m³ Air   | 2.7658         |                  | 94.9     | 80-120         |     |              |          |

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

| Analyte                           | Result  | PQL       | Units             | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|-----------------------------------|---------|-----------|-------------------|----------------|------------------|----------|----------------|------|--------------|-------|
| Inorganics by Compendium Met      |         | 3.5 - Qua | lity Contro       | ol             |                  |          |                |      |              |       |
| Batch B4D3006 - ICP-MS Extraction | 1       |           |                   |                |                  |          |                |      |              |       |
| LCS (B4D3006-BS1) Continued       |         |           |                   | Prep           | ared & A         |          | 04/30/24       |      |              |       |
| Thallium                          | 0.132   | 5.89E-4   | ng/m³ Air         | 0.13829        |                  | 95.3     | 80-120         |      |              |       |
| Vanadium                          | 2.65    | 0.0529    | ng/m³ Air         | 2.7658         |                  | 95.8     | 80-120         |      |              |       |
| Zinc                              | 140     | 76.8      | ng/m³ Air         | 82.975         |                  | 168      | 80-120         |      |              |       |
| LCS (B4D3006-BS2)                 |         |           |                   | Prep           | ared & A         | nalyzed: | 04/30/24       |      |              |       |
| Antimony                          | 0.681   | 0.0386    | ng/m³ Air         | 1.3829         |                  | 49.3     | 80-120         |      |              | SL    |
| Arsenic                           | 2.61    | 0.00937   | ng/m³ Air         | 2.7658         |                  | 94.4     | 80-120         |      |              |       |
| Barium                            | 27.2    | 1.07      | ng/m³ Air         | 27.658         |                  | 98.3     | 80-120         |      |              | QB-01 |
| Beryllium                         | 1.28    | 0.00320   | ng/m³ Air         | 1.3829         |                  | 92.6     | 80-120         |      |              |       |
| Cadmium                           | 1.38    | 0.0741    | ng/m³ Air         | 1.3829         |                  | 99.7     | 80-120         |      |              |       |
| Chromium                          | 15.5    | 2.21      | ng/m³ Air         | 13.829         |                  | 112      | 80-120         |      |              |       |
| Cobalt                            | 1.42    | 0.0436    | ng/m³ Air         | 1.3829         |                  | 103      | 80-120         |      |              |       |
| Copper                            | 29.7    | 2.63      | ng/m³ Air         | 27.658         |                  | 107      | 80-120         |      |              |       |
| Lead                              | 13.1    | 0.214     | ng/m³ Air         | 13.829         |                  | 94.4     | 80-120         |      |              |       |
| Manganese                         | 8.00    | 1.89      | ng/m³ Air         | 8.2975         |                  | 96.4     | 80-120         |      |              |       |
| Molybdenum                        | 1.42    | 0.359     | ng/m³ Air         | 1.3829         |                  | 103      | 80-120         |      |              |       |
| Nickel                            | 3.28    | 0.652     | ng/m³ Air         | 2.7658         |                  | 119      | 80-120         |      |              |       |
| Selenium                          | 2.59    | 0.00896   | ng/m³ Air         | 2.7658         |                  | 93.5     | 80-120         |      |              |       |
| Thallium                          | 0.135   | 5.89E-4   | ng/m³ Air         | 0.13829        |                  | 97.7     | 80-120         |      |              |       |
| Vanadium                          | 2.70    | 0.0529    | ng/m³ Air         | 2.7658         |                  | 97.6     | 80-120         |      |              |       |
| Zinc                              | 138     | 76.8      | ng/m³ Air         | 82.975         |                  | 166      | 80-120         |      |              |       |
| Duplicate (B4D3006-DUP1)          | S       | ource: 40 | 42941-19          |                | ared & A         | nalyzed: | 04/30/24       |      |              |       |
| Antimony                          | 0.0602  | 0.0314    | ng/m³ Air         | · · ·          | 0.0636           | ,        |                | 5.45 | 10           | SL    |
| Arsenic                           | 0.647   | 0.00763   | ng/m³ Air         |                | 0.662            |          |                | 2.32 | 10           |       |
| Barium                            | 4.27    | 0.872     | ng/m³ Air         |                | 3.84             |          |                | 10.6 | 10           | QB-01 |
| Beryllium                         | 0.0136  | 0.00261   | ng/m³ Air         |                | 0.0140           |          |                | 2.95 | 10           | -     |
| Cadmium                           | ND      | 0.0604    | ng/m³ Air         |                | ND               |          |                |      | 10           | U     |
| Chromium                          | 2.92    | 1.80      | ng/m³ Air         |                | 2.65             |          |                | 9.44 | 10           |       |
| Cobalt                            | 0.597   | 0.0355    | ng/m³ Air         |                | 0.563            |          |                | 5.94 | 10           |       |
| Copper                            | 73.3    | 2.14      | ng/m³ Air         |                | 70.3             |          |                | 4.09 | 10           |       |
| Lead                              | 0.497   | 0.174     | ng/m³ Air         |                | 0.451            |          |                | 9.57 | 10           |       |
| Manganese                         | 15.3    | 1.54      | ng/m³ Air         |                | 14.6             |          |                | 4.61 | 10           |       |
| Molybdenum                        | 2.35    | 0.292     | ng/m³ Air         |                | 2.30             |          |                | 2.16 | 10           |       |
| Nickel                            | 2.13    | 0.531     | ng/m³ Air         |                | 2.00             |          |                | 6.20 | 10           |       |
| Selenium                          | 0.169   | 0.00730   | ng/m³ Air         |                | 0.167            |          |                | 1.09 | 10           |       |
| Thallium                          | 0.00252 | 4.80E-4   | ng/m³ Air         |                | 0.00258          |          |                | 2.10 | 10           |       |
| Vanadium                          | 1.51    | 0.0431    | ng/m³ Air         |                | 1.43             |          |                | 5.46 | 10           |       |
| Zinc                              | ND      | 62.6      | ng/m³ Air         |                | ND               |          |                |      | 10           | U     |
| Duplicate (B4D3006-DUP2)          |         |           | 42941-02          | Pren           |                  | nalyzed: | 04/30/24       |      |              | •     |
| Duplicate (D7D3000-DUF2)          | 3       | ouice: 40 | 727 <b>7</b> 1-02 | riep           | arca & A         | naryzeu. | 0 1/30/27      |      |              |       |

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

Source

Spike

SITE CODE: Lahaina fires

%REC

RPD

| nalyte                                                     | Result     | PQL       | Units       | Level | Result    | %REC     | Limits     | RPD      | Limit | Note     |
|------------------------------------------------------------|------------|-----------|-------------|-------|-----------|----------|------------|----------|-------|----------|
| norganics by Compendium I<br>Batch B4D3006 - ICP-MS Extrac |            | 3.5 - Qua | lity Contro | ı     |           |          |            |          |       |          |
| Duplicate (B4D3006-DUP2) Co                                | ontinued S | ource: 40 | 42941-02    | Prep  | ared & A  | nalyzed  | : 04/30/24 | ļ        |       |          |
| Antimony                                                   | 0.195      | 0.0306    | ng/m³ Air   |       | 0.185     |          |            | 5.56     | 10    | SL       |
| Arsenic                                                    | 0.295      | 0.00742   | ng/m³ Air   |       | 0.284     |          |            | 3.64     | 10    |          |
| Barium                                                     | 5.70       | 0.847     | ng/m³ Air   |       | 5.45      |          |            | 4.49     | 10    | QB-01    |
| Beryllium                                                  | 0.0122     | 0.00253   | ng/m³ Air   |       | 0.0126    |          |            | 3.30     | 10    | -        |
| Cadmium                                                    | ND         | 0.0587    | ng/m³ Air   |       | ND        |          |            |          | 10    | U        |
| Chromium                                                   | 2.04       | 1.75      | ng/m³ Air   |       | 2.16      |          |            | 5.69     | 10    |          |
| Cobalt                                                     | 0.367      | 0.0345    | ng/m³ Air   |       | 0.377     |          |            | 2.66     | 10    |          |
| Copper                                                     | 35.9       | 2.08      | ng/m³ Air   |       | 35.3      |          |            | 1.76     | 10    |          |
| Lead                                                       | 0.985      | 0.169     | ng/m³ Air   |       | 1.07      |          |            | 8.64     | 10    |          |
| Manganese                                                  | 12.0       | 1.50      | ng/m³ Air   |       | 12.1      |          |            | 0.897    | 10    |          |
| Molybdenum                                                 | 1.48       | 0.284     | ng/m³ Air   |       | 1.47      |          |            | 0.698    | 10    |          |
| Nickel                                                     | 1.39       | 0.516     | ng/m³ Air   |       | 1.45      |          |            | 4.34     | 10    |          |
| Selenium                                                   | 0.161      | 0.00709   | ng/m³ Air   |       | 0.166     |          |            | 3.37     | 10    |          |
| Thallium                                                   | 9.49E-4    | 4.66E-4   | ng/m³ Air   |       | 9.82E-4   |          |            | 3.43     | 10    |          |
| Vanadium                                                   | 1.12       | 0.0419    | ng/m³ Air   |       | 1.16      |          |            | 3.41     | 10    |          |
| Zinc                                                       | ND         | 60.8      | ng/m³ Air   |       | ND        |          |            |          | 10    | U        |
| Duplicate (B4D3006-DUP3)                                   | 42941-25   | Prep      | ared: 04/   | 30/24 | Analyzed: | 05/01/24 |            |          |       |          |
| Antimony                                                   | 0.0829     | 0.0347    | ng/m³ Air   | •     | 0.0826    |          | <b>,</b>   | 0.305    | 10    | SL       |
| Arsenic                                                    | 0.253      | 0.00841   | ng/m³ Air   |       | 0.251     |          |            | 0.631    | 10    | -        |
| Barium                                                     | 2.98       | 0.961     | ng/m³ Air   |       | 2.98      |          |            | 0.0409   | 10    | QB-01    |
| Beryllium                                                  | 0.0144     | 0.00287   | ng/m³ Air   |       | 0.0143    |          |            | 0.293    | 10    |          |
| Cadmium                                                    | ND         | 0.0665    | ng/m³ Air   |       | ND        |          |            |          | 10    | U        |
| Chromium                                                   | 2.27       | 1.98      | ng/m³ Air   |       | 2.27      |          |            | 0.0869   | 10    |          |
| Cobalt                                                     | 0.336      | 0.0392    | ng/m³ Air   |       | 0.336     |          |            | 0.181    | 10    |          |
| Copper                                                     | 82.8       | 2.36      | ng/m³ Air   |       | 82.4      |          |            | 0.511    | 10    |          |
| Lead                                                       | 0.531      | 0.192     | ng/m³ Air   |       | 0.527     |          |            | 0.734    | 10    |          |
| Manganese                                                  | 8.58       | 1.70      | ng/m³ Air   |       | 8.50      |          |            | 0.957    | 10    |          |
| Molybdenum                                                 | 2.41       | 0.322     | ng/m³ Air   |       | 2.33      |          |            | 3.23     | 10    |          |
| Nickel                                                     | 1.23       | 0.585     | ng/m³ Air   |       | 1.22      |          |            | 0.704    | 10    |          |
| Selenium                                                   | 0.124      | 0.00805   | ng/m³ Air   |       | 0.131     |          |            | 5.35     | 10    |          |
| Thallium                                                   | 0.00121    | 5.29E-4   | ng/m³ Air   |       | 0.00120   |          |            | 1.17     | 10    |          |
| Vanadium                                                   | 0.801      | 0.0475    | ng/m³ Air   |       | 0.804     |          |            | 0.376    | 10    |          |
| Zinc                                                       | ND         | 69.0      | ng/m³ Air   |       | ND        |          |            |          | 10    | U        |
| Duplicate (B4D3006-DUP4)                                   |            |           | 42941-12    | Pren  |           | 30/24    | Analyzed:  | 05/01/24 | -     | -        |
| Antimony                                                   | 0.0640     | 0.0325    | ng/m³ Air   |       | 0.0645    | ,        | ,          | 0.698    | 10    | SL       |
| Arsenic                                                    | 0.130      | 0.00790   | ng/m³ Air   |       | 0.127     |          |            | 1.97     | 10    | <u>-</u> |
| Barium                                                     | 2.31       | 0.902     | ng/m³ Air   |       | 2.30      |          |            | 0.551    | 10    | QB-01    |
| Beryllium                                                  | 0.00871    | 0.00270   | ng/m³ Air   |       | 0.00891   |          |            | 2.27     | 10    | 45 OI    |

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

Source

Spike

SITE CODE: Lahaina fires

%REC

RPD

| nalyte                                               | Result        | PQL       | Units       | Level           | Result    | %REC            | Limits    | RPD      | Limit | Note  |
|------------------------------------------------------|---------------|-----------|-------------|-----------------|-----------|-----------------|-----------|----------|-------|-------|
| norganics by Compendiu<br>Batch B4D3006 - ICP-MS Ext |               | 3.5 - Qua | lity Contro | ol              |           |                 |           |          |       |       |
| Duplicate (B4D3006-DUP4)                             | ) Continued S | ource: 40 | 42941-12    | Prep            | ared: 04/ | /30/24 <i>A</i> | Analyzed: | 05/01/24 |       |       |
| Cadmium                                              | ND            | 0.0625    | ng/m³ Air   |                 | ND        |                 |           |          | 10    | U     |
| Chromium                                             | ND            | 1.86      | ng/m³ Air   |                 | ND        |                 |           |          | 10    | U     |
| Cobalt                                               | 0.195         | 0.0368    | ng/m³ Air   |                 | 0.193     |                 |           | 0.749    | 10    |       |
| Copper                                               | 52.4          | 2.22      | ng/m³ Air   |                 | 52.0      |                 |           | 0.747    | 10    |       |
| Lead                                                 | 0.443         | 0.180     | ng/m³ Air   |                 | 0.448     |                 |           | 1.15     | 10    |       |
| Manganese                                            | 5.13          | 1.59      | ng/m³ Air   |                 | 5.07      |                 |           | 1.06     | 10    |       |
| Molybdenum                                           | 2.45          | 0.303     | ng/m³ Air   |                 | 2.46      |                 |           | 0.621    | 10    |       |
| Nickel                                               | 1.00          | 0.550     | ng/m³ Air   |                 | 0.996     |                 |           | 0.543    | 10    |       |
| Selenium                                             | 0.148         | 0.00755   | ng/m³ Air   |                 | 0.148     |                 |           | 0.0669   | 10    |       |
| Thallium                                             | 0.00111       | 4.96E-4   | ng/m³ Air   |                 | 0.00117   |                 |           | 5.08     | 10    |       |
| Vanadium                                             | 0.569         | 0.0446    | ng/m³ Air   |                 | 0.557     |                 |           | 2.15     | 10    |       |
| Zinc                                                 | ND            | 64.7      | ng/m³ Air   |                 | ND        |                 |           |          | 10    | U     |
| Duplicate (B4D3006-DUP5)                             | 42941-19R     | Prep      | ared: 04/   | /30/24 <i>A</i> | Analyzed: | 05/01/24        |           |          |       |       |
| Antimony                                             | 0.0612        | 0.0314    | ng/m³ Air   |                 | 0.0640    |                 |           | 4.52     | 10    |       |
| Arsenic                                              | 0.647         | 0.00763   | ng/m³ Air   |                 | 0.653     |                 |           | 0.925    | 10    |       |
| Barium                                               | 4.25          | 0.872     | ng/m³ Air   |                 | 3.78      |                 |           | 11.8     | 10    |       |
| Beryllium                                            | 0.0134        | 0.00261   | ng/m³ Air   |                 | 0.0135    |                 |           | 0.907    | 10    |       |
| Cadmium                                              | ND            | 0.0604    | ng/m³ Air   |                 | ND        |                 |           |          | 10    | U     |
| Chromium                                             | 2.83          | 1.80      | ng/m³ Air   |                 | 2.58      |                 |           | 9.30     | 10    |       |
| Cobalt                                               | 0.591         | 0.0355    | ng/m³ Air   |                 | 0.558     |                 |           | 5.70     | 10    |       |
| Copper                                               | 73.0          | 2.14      | ng/m³ Air   |                 | 70.7      |                 |           | 3.07     | 10    |       |
| Lead                                                 | 0.499         | 0.174     | ng/m³ Air   |                 | 0.452     |                 |           | 10.0     | 10    |       |
| Manganese                                            | 15.1          | 1.54      | ng/m³ Air   |                 | 14.4      |                 |           | 4.85     | 10    |       |
| Molybdenum                                           | 2.42          | 0.292     | ng/m³ Air   |                 | 2.33      |                 |           | 3.65     | 10    |       |
| Nickel                                               | 2.09          | 0.531     | ng/m³ Air   |                 | 1.99      |                 |           | 5.38     | 10    |       |
| Selenium                                             | 0.175         | 0.00730   | ng/m³ Air   |                 | 0.171     |                 |           | 2.74     | 10    |       |
| Thallium                                             | 0.00243       | 4.80E-4   | ng/m³ Air   |                 | 0.00256   |                 |           | 5.32     | 10    |       |
| Vanadium                                             | 1.44          | 0.0431    | ng/m³ Air   |                 | 1.37      |                 |           | 5.15     | 10    |       |
| Zinc                                                 | ND            | 62.6      | ng/m³ Air   |                 | ND        |                 |           |          | 10    | U     |
| Matrix Spike (B4D3006-MS                             | S1) S         | ource: 40 | 42941-19    | Prep            | ared & A  | nalyzed:        | 04/30/24  | }        |       |       |
| Antimony                                             | 0.643         | 0.0314    | ng/m³ Air   | 1.1266          | 0.0636    | 51.4            | 80-120    |          |       | SL    |
| Arsenic                                              | 2.70          | 0.00763   | ng/m³ Air   | 2.2532          | 0.662     | 90.6            | 80-120    |          |       |       |
| Barium                                               | 24.7          | 0.872     | ng/m³ Air   | 22.532          | 3.84      | 92.7            | 80-120    |          |       | QB-01 |
| Beryllium                                            | 1.08          | 0.00261   | ng/m³ Air   | 1.1266          | 0.0140    | 94.6            | 80-120    |          |       | -     |
| Cadmium                                              | 1.10          | 0.0604    | ng/m³ Air   | 1.1266          | ND        | 98.1            | 80-120    |          |       |       |
| Chromium                                             | 14.9          | 1.80      | ng/m³ Air   | 11.266          | 2.65      | 109             | 80-120    |          |       |       |
| Cobalt                                               | 1.75          | 0.0355    | ng/m³ Air   | 1.1266          | 0.563     | 105             | 80-120    |          |       |       |
| Copper                                               | 97.4          | 2.14      | ng/m³ Air   |                 | 70.3      | 120             | 80-120    |          |       | QM-07 |

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

| Analyte                                                                               | Result | PQL       | Units      | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD      | RPD<br>Limit | Notes |  |
|---------------------------------------------------------------------------------------|--------|-----------|------------|----------------|------------------|---------|----------------|----------|--------------|-------|--|
| Inorganics by Compendium Method IO-3.5 - Quality Control                              |        |           |            |                |                  |         |                |          |              |       |  |
| Batch B4D3006 - ICP-MS Extraction                                                     |        |           |            |                |                  |         |                |          |              |       |  |
| Matrix Spike (B4D3006-MS1) Continued Source: 4042941-19 Prepared & Analyzed: 04/30/24 |        |           |            |                |                  |         |                |          |              |       |  |
| Lead                                                                                  | 10.9   | 0.174     | ng/m³ Air  | 11.266         | 0.451            | 93.1    | 80-120         |          |              |       |  |
| Manganese                                                                             | 21.7   | 1.54      | ng/m³ Air  | 6.7597         | 14.6             | 105     | 80-120         |          |              |       |  |
| Molybdenum                                                                            | 3.27   | 0.292     | ng/m³ Air  | 1.1266         | 2.30             | 86.1    | 80-120         |          |              |       |  |
| Nickel                                                                                | 4.41   | 0.531     | ng/m³ Air  | 2.2532         | 2.00             | 107     | 80-120         |          |              |       |  |
| Selenium                                                                              | 2.17   | 0.00730   | ng/m³ Air  | 2.2532         | 0.167            | 88.8    | 80-120         |          |              |       |  |
| Thallium                                                                              | 0.107  | 4.80E-4   | ng/m³ Air  | 0.11266        | 0.00258          | 93.1    | 80-120         |          |              |       |  |
| Vanadium                                                                              | 3.76   | 0.0431    | ng/m³ Air  | 2.2532         | 1.43             | 103     | 80-120         |          |              |       |  |
| Zinc                                                                                  | 96.8   | 62.6      | ng/m³ Air  | 67.597         | ND               | 143     | 80-120         |          |              |       |  |
| Matrix Spike (B4D3006-MS2)                                                            | S      | ource: 40 | )42941-02  | Prep           | oared & A        | nalyzed | l: 04/30/24    | 1        |              |       |  |
| Antimony                                                                              | 0.769  | 0.0306    | ng/m³ Air  | 1.0947         | 0.185            | 53.4    | 80-120         |          |              | SL    |  |
| Arsenic                                                                               | 2.31   | 0.00742   | ng/m³ Air  | 2.1894         | 0.284            | 92.5    | 80-120         |          |              |       |  |
| Barium                                                                                | 26.3   | 0.847     | ng/m³ Air  | 21.894         | 5.45             | 95.0    | 80-120         |          |              | QB-01 |  |
| Beryllium                                                                             | 1.05   | 0.00253   | ng/m³ Air  | 1.0947         | 0.0126           | 94.3    | 80-120         |          |              |       |  |
| Cadmium                                                                               | 1.08   | 0.0587    | ng/m³ Air  | 1.0947         | ND               | 98.3    | 80-120         |          |              |       |  |
| Chromium                                                                              | 14.5   | 1.75      | ng/m³ Air  | 10.947         | 2.16             | 113     | 80-120         |          |              |       |  |
| Cobalt                                                                                | 1.55   | 0.0345    | ng/m³ Air  | 1.0947         | 0.377            | 107     | 80-120         |          |              |       |  |
| Copper                                                                                | 60.9   | 2.08      | ng/m³ Air  | 21.894         | 35.3             | 117     | 80-120         |          |              |       |  |
| Lead                                                                                  | 11.0   | 0.169     | ng/m³ Air  | 10.947         | 1.07             | 91.0    | 80-120         |          |              |       |  |
| Manganese                                                                             | 19.1   | 1.50      | ng/m³ Air  | 6.5681         | 12.1             | 107     | 80-120         |          |              |       |  |
| Molybdenum                                                                            | 2.36   | 0.284     | ng/m³ Air  | 1.0947         | 1.47             | 81.5    | 80-120         |          |              |       |  |
| Nickel                                                                                | 3.81   | 0.516     | ng/m³ Air  | 2.1894         | 1.45             | 108     | 80-120         |          |              |       |  |
| Selenium                                                                              | 2.05   | 0.00709   | ng/m³ Air  | 2.1894         | 0.166            | 86.0    | 80-120         |          |              |       |  |
| Thallium                                                                              | 0.0998 | 4.66E-4   | ng/m³ Air  | 0.10947        | 9.82E-4          | 90.3    | 80-120         |          |              |       |  |
| Vanadium                                                                              | 3.51   | 0.0419    | ng/m³ Air  |                | 1.16             | 107     | 80-120         |          |              |       |  |
| Zinc                                                                                  | 112    | 60.8      | ng/m³ Air  | 65.681         | ND               | 170     | 80-120         |          |              |       |  |
| Matrix Spike (B4D3006-MS3)                                                            | S      | ource: 40 | )42941-19R | Prep           | pared: 04        | /30/24  | Analyzed:      | 05/01/24 |              |       |  |
| Antimony                                                                              | 0.643  | 0.0314    | ng/m³ Air  | 1.1266         | 0.0640           | 51.4    | 80-120         |          |              | SL    |  |
| Arsenic                                                                               | 2.69   | 0.00763   | ng/m³ Air  | 2.2532         | 0.653            | 90.6    | 80-120         |          |              |       |  |
| Barium                                                                                | 24.9   | 0.872     | ng/m³ Air  | 22.532         | 3.78             | 93.6    | 80-120         |          |              | QB-01 |  |
| Beryllium                                                                             | 1.08   | 0.00261   | ng/m³ Air  | 1.1266         | 0.0135           | 94.8    | 80-120         |          |              |       |  |
| Cadmium                                                                               | 1.12   | 0.0604    | ng/m³ Air  | 1.1266         | ND               | 99.1    | 80-120         |          |              |       |  |
| Chromium                                                                              | 14.8   | 1.80      | ng/m³ Air  | 11.266         | 2.58             | 108     | 80-120         |          |              |       |  |
| Cobalt                                                                                | 1.74   | 0.0355    | ng/m³ Air  | 1.1266         | 0.558            | 105     | 80-120         |          |              |       |  |
| Copper                                                                                | 96.9   | 2.14      | ng/m³ Air  | 22.532         | 70.7             | 116     | 80-120         |          |              |       |  |
| Lead                                                                                  | 11.0   | 0.174     | ng/m³ Air  | 11.266         | 0.452            | 93.3    | 80-120         |          |              |       |  |
| Manganese                                                                             | 21.6   | 1.54      | ng/m³ Air  | 6.7597         | 14.4             | 107     | 80-120         |          |              |       |  |
| Molybdenum                                                                            | 3.30   | 0.292     | ng/m³ Air  | 1.1266         | 2.33             | 86.2    | 80-120         |          |              |       |  |
| Nickel                                                                                | 4.38   | 0.531     | ng/m³ Air  | 2.2532         | 1.99             | 106     | 80-120         |          |              |       |  |
|                                                                                       |        |           |            |                |                  |         |                |          |              |       |  |

Eastern Research Group



Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

Source

Spike Level

SITE CODE: Lahaina fires

%REC

RPD Limit

| nalyte                            | Result | PQL        | Units      | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD      | RPD<br>Limit | Note  |
|-----------------------------------|--------|------------|------------|----------------|------------------|----------|----------------|----------|--------------|-------|
| norganics by Compendium Metho     | d IO-3 | 3.5 - Qual | ity Contro | ol             |                  |          |                |          |              |       |
| Batch B4D3006 - ICP-MS Extraction |        |            |            | . Duran        |                  | (20/24   | l              | 05/01/24 |              |       |
| Matrix Spike (B4D3006-MS3) Contin |        |            |            |                | -                | -        | •              | 05/01/24 |              |       |
| Selenium                          | 2.17   | 0.00730    | ng/m³ Air  |                | 0.171            | 88.5     | 80-120         |          |              |       |
| Thallium                          | 0.105  | 4.80E-4    | ng/m³ Air  |                | 0.00256          | 91.4     | 80-120         |          |              |       |
| Vanadium                          | 3.62   | 0.0431     | ng/m³ Air  |                | 1.37             | 100      | 80-120         |          |              |       |
| Zinc                              | 97.5   | 62.6       | ng/m³ Air  |                | ND               | 144      | 80-120         |          |              |       |
| Matrix Spike Dup (B4D3006-MSD1)   |        | ource: 404 |            |                | ared & A         | nalyzed: | 04/30/24       | -        |              |       |
| Antimony                          | 0.636  | 0.0314     | ng/m³ Air  |                | 0.0636           | 50.8     | 80-120         | 1.05     | 20           | SL    |
| Arsenic                           | 2.64   | 0.00763    | ng/m³ Air  |                | 0.662            | 87.6     | 80-120         | 2.52     | 20           |       |
| Barium                            | 25.1   | 0.872      | ng/m³ Air  | 22.532         | 3.84             | 94.3     | 80-120         | 1.43     | 20           | QB-01 |
| Beryllium                         | 1.09   | 0.00261    | ng/m³ Air  | 1.1266         | 0.0140           | 95.1     | 80-120         | 0.533    | 20           |       |
| Cadmium                           | 1.10   | 0.0604     | ng/m³ Air  | 1.1266         | ND               | 97.9     | 80-120         | 0.162    | 20           |       |
| Chromium                          | 14.8   | 1.80       | ng/m³ Air  | 11.266         | 2.65             | 108      | 80-120         | 0.683    | 20           |       |
| Cobalt                            | 1.75   | 0.0355     | ng/m³ Air  | 1.1266         | 0.563            | 106      | 80-120         | 0.0431   | 20           |       |
| Copper                            | 99.8   | 2.14       | ng/m³ Air  | 22.532         | 70.3             | 131      | 80-120         | 2.39     | 20           | QM-07 |
| Lead                              | 10.9   | 0.174      | ng/m³ Air  | 11.266         | 0.451            | 92.6     | 80-120         | 0.530    | 20           |       |
| Manganese                         | 21.9   | 1.54       | ng/m³ Air  | 6.7597         | 14.6             | 108      | 80-120         | 1.14     | 20           |       |
| Molybdenum                        | 3.37   | 0.292      | ng/m³ Air  | 1.1266         | 2.30             | 95.3     | 80-120         | 3.13     | 20           |       |
| Nickel                            | 4.39   | 0.531      | ng/m³ Air  | 2.2532         | 2.00             | 106      | 80-120         | 0.517    | 20           |       |
| Selenium                          | 2.16   | 0.00730    | ng/m³ Air  | 2.2532         | 0.167            | 88.3     | 80-120         | 0.465    | 20           |       |
| Thallium                          | 0.107  | 4.80E-4    | ng/m³ Air  | 0.11266        | 0.00258          | 93.0     | 80-120         | 0.0937   | 20           |       |
| Vanadium                          | 3.74   | 0.0431     | ng/m³ Air  | 2.2532         | 1.43             | 102      | 80-120         | 0.493    | 20           |       |
| Zinc                              | 101    | 62.6       | ng/m³ Air  | 67.597         | ND               | 149      | 80-120         | 3.73     | 20           |       |
| Matrix Spike Dup (B4D3006-MSD2)   | S      | ource: 404 | 12941-02   | Prep           | ared & A         | nalyzed: | 04/30/24       | ļ        |              |       |
| Antimony                          | 0.792  | 0.0306     | ng/m³ Air  | 1.0947         | 0.185            | 55.5     | 80-120         | 2.94     | 20           | SL    |
| Arsenic                           | 2.33   | 0.00742    | ng/m³ Air  |                | 0.284            | 93.6     | 80-120         | 1.02     | 20           |       |
| Barium                            | 26.5   | 0.847      | ng/m³ Air  | 21.894         | 5.45             | 96.3     | 80-120         | 1.08     | 20           | QB-01 |
| Beryllium                         | 1.08   | 0.00253    | ng/m³ Air  | 1.0947         | 0.0126           | 97.7     | 80-120         | 3.44     | 20           |       |
| Cadmium                           | 1.06   | 0.0587     | ng/m³ Air  | 1.0947         | ND               | 96.9     | 80-120         | 1.45     | 20           |       |
| Chromium                          | 15.0   | 1.75       | ng/m³ Air  | 10.947         | 2.16             | 118      | 80-120         | 3.77     | 20           |       |
| Cobalt                            | 1.58   | 0.0345     | ng/m³ Air  | 1.0947         | 0.377            | 110      | 80-120         | 2.53     | 20           |       |
| Copper                            | 62.8   | 2.08       | ng/m³ Air  |                | 35.3             | 126      | 80-120         | 3.11     | 20           | QM-07 |
| Lead                              | 11.2   | 0.169      | ng/m³ Air  | 10.947         | 1.07             | 92.7     | 80-120         | 1.65     | 20           | -     |
| Manganese                         | 19.6   | 1.50       | ng/m³ Air  | 6.5681         | 12.1             | 114      | 80-120         | 2.53     | 20           |       |
| Molybdenum                        | 2.47   | 0.284      | ng/m³ Air  |                | 1.47             | 91.8     | 80-120         | 4.64     | 20           |       |
| ,<br>Nickel                       | 3.97   | 0.516      | ng/m³ Air  |                | 1.45             | 115      | 80-120         | 4.05     | 20           |       |
| Selenium                          | 2.11   | 0.00709    | ng/m³ Air  | 2.1894         | 0.166            | 88.9     | 80-120         | 3.05     | 20           |       |
| Thallium                          | 0.102  | 4.66E-4    | ng/m³ Air  | 0.10947        | 9.82E-4          | 92.1     | 80-120         | 2.02     | 20           |       |
| Vanadium                          | 3.61   | 0.0419     | ng/m³ Air  |                | 1.16             | 112      | 80-120         | 2.92     | 20           |       |
| Zinc                              | 108    | 60.8       | ng/m³ Air  |                | ND               | 165      | 80-120         | 3.50     | 20           |       |

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

| Analyte                                                                                   | Result  | PQL       | Units       | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD     | RPD<br>Limit | Notes |  |
|-------------------------------------------------------------------------------------------|---------|-----------|-------------|----------------|------------------|------|----------------|---------|--------------|-------|--|
| Inorganics by Compendium Metho                                                            | od IO-3 | 3.5 - Qua | lity Contro | ol             |                  |      |                |         |              |       |  |
| Batch B4D3006 - ICP-MS Extraction                                                         |         |           |             |                |                  |      |                |         |              |       |  |
| Matrix Spike Dup (B4D3006-MSD3) Source: 4042941-19R Prepared: 04/30/24 Analyzed: 05/01/24 |         |           |             |                |                  |      |                |         |              |       |  |
| Antimony                                                                                  | 0.632   | 0.0314    | ng/m³ Air   | 1.1266         | 0.0640           | 50.4 | 80-120         | 1.69    | 20           |       |  |
| Arsenic                                                                                   | 2.62    | 0.00763   | ng/m³ Air   | 2.2532         | 0.653            | 87.4 | 80-120         | 2.70    | 20           |       |  |
| Barium                                                                                    | 24.5    | 0.872     | ng/m³ Air   | 22.532         | 3.78             | 92.1 | 80-120         | 1.34    | 20           |       |  |
| Beryllium                                                                                 | 1.08    | 0.00261   | ng/m³ Air   | 1.1266         | 0.0135           | 94.9 | 80-120         | 0.0577  | 20           |       |  |
| Cadmium                                                                                   | 1.09    | 0.0604    | ng/m³ Air   | 1.1266         | ND               | 97.1 | 80-120         | 2.00    | 20           |       |  |
| Chromium                                                                                  | 14.8    | 1.80      | ng/m³ Air   | 11.266         | 2.58             | 108  | 80-120         | 0.0652  | 20           |       |  |
| Cobalt                                                                                    | 1.74    | 0.0355    | ng/m³ Air   | 1.1266         | 0.558            | 105  | 80-120         | 0.00880 | 20           |       |  |
| Copper                                                                                    | 99.7    | 2.14      | ng/m³ Air   | 22.532         | 70.7             | 128  | 80-120         | 2.88    | 20           |       |  |
| Lead                                                                                      | 11.0    | 0.174     | ng/m³ Air   | 11.266         | 0.452            | 93.3 | 80-120         | 0.0293  | 20           |       |  |
| Manganese                                                                                 | 21.9    | 1.54      | ng/m³ Air   | 6.7597         | 14.4             | 110  | 80-120         | 1.03    | 20           |       |  |
| Molybdenum                                                                                | 3.42    | 0.292     | ng/m³ Air   | 1.1266         | 2.33             | 96.3 | 80-120         | 3.39    | 20           |       |  |
| Nickel                                                                                    | 4.35    | 0.531     | ng/m³ Air   | 2.2532         | 1.99             | 105  | 80-120         | 0.871   | 20           |       |  |
| Selenium                                                                                  | 2.16    | 0.00730   | ng/m³ Air   | 2.2532         | 0.171            | 88.2 | 80-120         | 0.324   | 20           |       |  |
| Thallium                                                                                  | 0.105   | 4.80E-4   | ng/m³ Air   | 0.11266        | 0.00256          | 90.8 | 80-120         | 0.647   | 20           |       |  |
| Vanadium                                                                                  | 3.63    | 0.0431    | ng/m³ Air   | 2.2532         | 1.37             | 100  | 80-120         | 0.231   | 20           |       |  |
| Zinc                                                                                      | 102     | 62.6      | ng/m³ Air   | 67.597         | ND               | 151  | 80-120         | 4.64    | 20           |       |  |
| Post Spike (B4D3006-PS1) Source: 4042941-19 Prepared & Analyzed: 04/30/24                 |         |           |             |                |                  |      |                |         |              |       |  |
| Antimony                                                                                  | 0.286   | 0.0314    | ng/m³ Air   | 0.22532        | 0.0636           | 98.5 | 75-125         |         |              | SL    |  |
| Arsenic                                                                                   | 1.73    | 0.00763   | ng/m³ Air   | 1.1266         | 0.662            | 94.9 | 75-125         |         |              |       |  |
| Barium                                                                                    | 5.98    | 0.872     | ng/m³ Air   | 2.2532         | 3.84             | 94.8 | 75-125         |         |              | QB-01 |  |
| Beryllium                                                                                 | 0.236   | 0.00261   | ng/m³ Air   | 0.22532        | 0.0140           | 98.6 | 75-125         |         |              |       |  |
| Cadmium                                                                                   | 0.123   | 0.0604    | ng/m³ Air   | 0.11266        | ND               | 110  | 75-125         |         |              |       |  |
| Chromium                                                                                  | 4.07    | 1.80      | ng/m³ Air   | 1.1266         | 2.65             | 125  | 75-125         |         |              | PS-01 |  |
| Cobalt                                                                                    | 0.828   | 0.0355    | ng/m³ Air   | 0.22532        | 0.563            | 118  | 75-125         |         |              |       |  |
| Copper                                                                                    | 85.6    | 2.14      | ng/m³ Air   |                | 70.3             | 135  | 75-125         |         |              | A-01  |  |
| Lead                                                                                      | 21.5    | 0.174     | ng/m³ Air   |                | 0.451            | 93.5 | 75-125         |         |              |       |  |
| Manganese                                                                                 | 17.8    | 1.54      | ng/m³ Air   |                | 14.6             | 141  | 75-125         |         |              | A-01  |  |
| Molybdenum                                                                                | 3.19    | 0.292     | ٠,          | 1.1266         | 2.30             | 79.2 | 75-125         |         |              |       |  |
| Nickel                                                                                    | 4.55    | 0.531     | ng/m³ Air   |                | 2.00             | 113  | 75-125         |         |              |       |  |
| Selenium                                                                                  | 1.18    | 0.00730   | ng/m³ Air   |                | 0.167            | 90.1 | 75-125         |         |              |       |  |
| Thallium                                                                                  | 0.0563  | 4.80E-4   | ng/m³ Air ! |                |                  | 95.3 | 75-125         |         |              |       |  |
| Vanadium<br>                                                                              | 2.70    | 0.0431    | ng/m³ Air   |                | 1.43             | 113  | 75-125         |         |              |       |  |
| Zinc                                                                                      | ND      | 62.6      | ng/m³ Air   |                | ND               |      | 75-125         | _       |              | U     |  |
| Post Spike (B4D3006-PS2)                                                                  |         |           | 42941-02    |                |                  | •    | 04/30/24       | }       |              |       |  |
| Antimony                                                                                  | 0.406   | 0.0306    | ng/m³ Air   |                | 0.185            | 101  | 75-125         |         |              | SL    |  |
| Arsenic                                                                                   | 1.33    | 0.00742   | ng/m³ Air   | 1.0947         | 0.284            | 95.7 | 75-125         |         |              |       |  |
| Barium                                                                                    | 7.62    | 0.847     | ng/m³ Air   | 2.1894         | 5.45             | 99.3 | 75-125         |         |              | QB-01 |  |
| Beryllium                                                                                 | 0.230   | 0.00253   | ng/m³ Air   | 0.21894        | 0.0126           | 99.3 | 75-125         |         |              |       |  |

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

| nalyte                                                                             | Result   | PQL       | Units       | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD  | RPD<br>Limit | Notes    |
|------------------------------------------------------------------------------------|----------|-----------|-------------|----------------|------------------|----------|----------------|------|--------------|----------|
| norganics by Compendium Metl                                                       | nod IO-3 | 8.5 - Qua | lity Contro | ol             |                  |          |                |      |              |          |
| Batch B4D3006 - ICP-MS Extraction                                                  |          |           |             |                |                  |          |                |      |              |          |
| Post Spike (B4D3006-PS2) Contin                                                    | ued S    | ource: 40 | 42941-02    | Prepa          | ared & A         | nalyzed: | 04/30/24       |      |              |          |
| Cadmium                                                                            | 0.121    | 0.0587    | ng/m³ Air   | 0.10947        | ND               | 111      | 75-125         |      |              |          |
| Chromium                                                                           | 3.48     | 1.75      | ng/m³ Air   | 1.0947         | 2.16             | 120      | 75-125         |      |              |          |
| Cobalt                                                                             | 0.620    | 0.0345    | ng/m³ Air   | 0.21894        | 0.377            | 111      | 75-125         |      |              |          |
| Copper                                                                             | 48.1     | 2.08      | ng/m³ Air   | 10.947         | 35.3             | 116      | 75-125         |      |              |          |
| Lead                                                                               | 21.6     | 0.169     | ng/m³ Air   | 21.894         | 1.07             | 93.6     | 75-125         |      |              |          |
| Manganese                                                                          | 14.7     | 1.50      | ng/m³ Air   | 2.1894         | 12.1             | 121      | 75-125         |      |              |          |
| Molybdenum                                                                         | 2.39     | 0.284     | ng/m³ Air   | 1.0947         | 1.47             | 84.3     | 75-125         |      |              |          |
| Nickel                                                                             | 3.84     | 0.516     | ng/m³ Air   | 2.1894         | 1.45             | 109      | 75-125         |      |              |          |
| Selenium                                                                           | 1.15     | 0.00709   | ng/m³ Air   | 1.0947         | 0.166            | 89.6     | 75-125         |      |              |          |
| Thallium                                                                           | 0.0539   | 4.66E-4   | ng/m³ Air   | 5.4734E-2      | 9.82E-4          | 96.7     | 75-125         |      |              |          |
| Vanadium                                                                           | 2.40     | 0.0419    | ng/m³ Air   | 1.0947         | 1.16             | 114      | 75-125         |      |              |          |
| Zinc                                                                               | 66.5     | 60.8      | ng/m³ Air   | 21.894         | ND               | 304      | 75-125         |      |              |          |
| Post Spike (B4D3006-PS3) Source: 4042941-19R Prepared: 04/30/24 Analyzed: 05/01/24 |          |           |             |                |                  |          |                |      |              |          |
| Antimony                                                                           | 0.291    | 0.0314    | ng/m³ Air   | 0.22532        | 0.0640           | 101      | 75-125         |      |              |          |
| Arsenic                                                                            | 1.73     | 0.00763   | ng/m³ Air   | 1.1266         | 0.653            | 95.9     | 75-125         |      |              |          |
| Barium                                                                             | 5.94     | 0.872     | ng/m³ Air   | 2.2532         | 3.78             | 96.0     | 75-125         |      |              |          |
| Beryllium                                                                          | 0.237    | 0.00261   | ng/m³ Air   | 0.22532        | 0.0135           | 99.2     | 75-125         |      |              |          |
| Cadmium                                                                            | 0.125    | 0.0604    | ng/m³ Air   | 0.11266        | ND               | 111      | 75-125         |      |              |          |
| Chromium                                                                           | 3.99     | 1.80      | ng/m³ Air   | 1.1266         | 2.58             | 125      | 75-125         |      |              |          |
| Cobalt                                                                             | 0.821    | 0.0355    | ng/m³ Air   | 0.22532        | 0.558            | 117      | 75-125         |      |              |          |
| Copper                                                                             | 85.5     | 2.14      | ng/m³ Air   | 11.266         | 70.7             | 131      | 75-125         |      |              |          |
| Lead                                                                               | 22.2     | 0.174     | ng/m³ Air   | 22.532         | 0.452            | 96.4     | 75-125         |      |              |          |
| Manganese                                                                          | 17.7     | 1.54      | ng/m³ Air   | 2.2532         | 14.4             | 146      | 75-125         |      |              |          |
| Molybdenum                                                                         | 3.30     | 0.292     | ng/m³ Air   | 1.1266         | 2.33             | 86.1     | 75-125         |      |              |          |
| Nickel                                                                             | 4.41     | 0.531     | ng/m³ Air   | 2.2532         | 1.99             | 108      | 75-125         |      |              |          |
| Selenium                                                                           | 1.21     | 0.00730   | ng/m³ Air   | 1.1266         | 0.171            | 92.2     | 75-125         |      |              |          |
| Thallium                                                                           | 0.0569   | 4.80E-4   | ng/m³ Air   | 5.6331E-2      | 0.00256          | 96.5     | 75-125         |      |              |          |
| Vanadium                                                                           | 2.65     | 0.0431    | ng/m³ Air   | 1.1266         | 1.37             | 113      | 75-125         |      |              |          |
| Zinc                                                                               | ND       | 62.6      | ng/m³ Air   | 22.532         | ND               |          | 75-125         |      |              | U        |
| Dilution Check (B4D3006-SRL1)                                                      | S        | ource: 40 | 42941-19    | Prepa          | ared & A         | nalyzed: | 04/30/24       |      |              |          |
| Antimony                                                                           | ND       | 0.157     | ng/m³ Air   |                | ND               |          |                |      | 10           | SL, U    |
| Arsenic                                                                            | 0.672    | 0.0382    | ng/m³ Air   |                | 0.662            |          |                | 1.51 | 10           |          |
| Barium                                                                             | ND       | 4.36      | ng/m³ Air   |                | ND               |          |                |      | 10           | QB-01, U |
| Beryllium                                                                          | 0.0151   | 0.0130    | ng/m³ Air   |                | 0.0140           |          |                | 7.11 | 10           |          |
| Cadmium                                                                            | ND       | 0.302     | ng/m³ Air   |                | ND               |          |                |      | 10           | U        |
| Chromium                                                                           | ND       | 9.00      | ng/m³ Air   |                | ND               |          |                |      | 10           | U        |
| Cobalt                                                                             | 0.595    | 0.178     | ng/m³ Air   |                | 0.563            |          |                | 5.61 | 10           |          |
| Copper                                                                             | 74.7     | 10.7      | ng/m³ Air   |                | 70.3             |          |                | 6.02 | 10           |          |

Eastern Research Group

Tetra Tech, Inc.

1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

FILE #: 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

**AQS SITE CODE:** 

SITE CODE: Lahaina fires

| Analyte                                                                                   | Result  | PQL       | Units     | Spike<br>Level | Source<br>Result | %REC     | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |  |  |
|-------------------------------------------------------------------------------------------|---------|-----------|-----------|----------------|------------------|----------|----------------|-------|--------------|-------|--|--|
| norganics by Compendium Method IO-3.5 - Quality Control Batch B4D3006 - ICP-MS Extraction |         |           |           |                |                  |          |                |       |              |       |  |  |
| Dilution Check (B4D3006-SRL1) C                                                           |         | ource: 40 | 42941-19  | Pren           | ared & A         | nalvzed: | 04/30/24       |       |              |       |  |  |
| Lead                                                                                      | ND      | 0.872     | ng/m³ Air | ср             | ND               | ,        | , 50, 21       |       | 10           | U     |  |  |
| Manganese                                                                                 | 15.7    | 7.70      | ng/m³ Air |                | 14.6             |          |                | 7.02  | 10           | •     |  |  |
| Molybdenum                                                                                | 2.61    | 1.46      | ng/m³ Air |                | 2.30             |          |                | 12.6  | 10           |       |  |  |
| Nickel                                                                                    | ND      | 2.66      | ng/m³ Air |                | ND               |          |                | -     | 10           | U     |  |  |
| Selenium                                                                                  | 0.179   | 0.0365    | ng/m³ Air |                | 0.167            |          |                | 6.97  | 10           |       |  |  |
| Thallium                                                                                  | 0.00345 | 0.00240   | ng/m³ Air |                | 0.00258          |          |                | 28.9  | 10           |       |  |  |
| Vanadium                                                                                  | 1.48    | 0.215     | ng/m³ Air |                | 1.43             |          |                | 3.15  | 10           |       |  |  |
| Zinc                                                                                      | ND      | 313       | ng/m³ Air |                | ND               |          |                |       | 10           | U     |  |  |
| Dilution Check (B4D3006-SRL2)                                                             |         |           |           |                | ared & A         | nalyzed: | 04/30/24       |       |              |       |  |  |
| Antimony                                                                                  | 0.179   | 0.153     | ng/m³ Air |                | 0.185            |          |                | 3.14  | 10           | SL    |  |  |
| Arsenic                                                                                   | 0.296   | 0.0371    | ng/m³ Air |                | 0.284            |          |                | 3.90  | 10           |       |  |  |
| Barium                                                                                    | 5.53    | 4.23      | ng/m³ Air |                | 5.45             |          |                | 1.40  | 10           | QB-01 |  |  |
| Beryllium                                                                                 | ND      | 0.0127    | ng/m³ Air |                | ND               |          |                |       | 10           | U     |  |  |
| Cadmium                                                                                   | ND      | 0.293     | ng/m³ Air |                | ND               |          |                |       | 10           | U     |  |  |
| Chromium                                                                                  | ND      | 8.75      | ng/m³ Air |                | ND               |          |                |       | 10           | U     |  |  |
| Cobalt                                                                                    | 0.390   | 0.173     | ng/m³ Air |                | 0.377            |          |                | 3.43  | 10           |       |  |  |
| Copper                                                                                    | 37.2    | 10.4      | ng/m³ Air |                | 35.3             |          |                | 5.05  | 10           |       |  |  |
| Lead                                                                                      | 1.11    | 0.847     | ng/m³ Air |                | 1.07             |          |                | 3.44  | 10           |       |  |  |
| Manganese                                                                                 | 12.5    | 7.48      | ng/m³ Air |                | 12.1             |          |                | 3.37  | 10           |       |  |  |
| Molybdenum                                                                                | 1.60    | 1.42      | ng/m³ Air |                | 1.47             |          |                | 8.63  | 10           |       |  |  |
| Nickel                                                                                    | ND      | 2.58      | ng/m³ Air |                | ND               |          |                |       | 10           | U     |  |  |
| Selenium                                                                                  | 0.188   | 0.0355    | ng/m³ Air |                | 0.166            |          |                | 11.9  | 10           |       |  |  |
| Thallium                                                                                  | ND      | 0.00233   | ng/m³ Air |                | ND               |          |                |       | 10           | U     |  |  |
| Vanadium                                                                                  | 1.16    | 0.209     | ng/m³ Air |                | 1.16             |          |                | 0.516 | 10           |       |  |  |
| Zinc                                                                                      | ND      | 304       | ng/m³ Air |                | ND               |          |                |       | 10           | U     |  |  |



1777 Sentry Pkwy, Bldg 12

Blue Bell, PA 19422

ATTN: Ms. Chelsea Saber

**PHONE:** (703) 885-5495 **FAX:** 

**FILE #:** 4205.00.003.001

**REPORTED:** 05/08/24 13:25

**SUBMITTED:** 04/29/24

AQS SITE CODE:

SITE CODE: Lahaina fires

#### **Notes and Definitions**

U Under Detection Limit

SL The spike recovery was outside acceptance limits. Reported value may be biased low.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD.

QB-01 Analyte exceeds method blank criteria
PS-01 Post Spike exceeds DQO criteria.
FB-01 Analyte exceeds Field Blank criteria.
A-01 Parent sample >4x post spike amount

ND Analyte NOT DETECTED

NR Not Reported

MDL Method Detection Limit
RPD Relative Percent Difference

Note: This test is accredited under the 2016 TNI Standard.

#### **Stage 1 Data Verification Checklist – Metals**

#### HDOH CAB - Ambient Community Air Sampling - Lahaina

#### Task Order No. 23141

#### Reviewed by:

Kierra Johnson 05/09/2024 and Shanna Vasser 05/10/2024

Laboratory: Eastern Research Group – Morrisville, NC Collection date(s): 04/15/2024 and 04/18/2024 – 04/24/2024

Report No: 4042941

| 1 | <ol> <li>Chair</li> </ol> | of custody | (CoC) | documentation | is present. |
|---|---------------------------|------------|-------|---------------|-------------|
|   |                           |            |       |               |             |

- $\underline{\checkmark}$  2. Sample receipt condition information is present and acceptable.
- $\sqrt{\phantom{a}}$  3. Laboratory conducting the analysis is identified.
- $\sqrt{\phantom{a}}$  4. All samples submitted to the laboratory are accounted for.
- $\underline{\checkmark}$  5. Requested analytical methods were performed.
- $\sqrt{\phantom{a}}$  6. Analysis dates are provided.
- $\sqrt{\phantom{a}}$  7. Analyte results are provided.
- $\sqrt{\phantom{a}}$  8. Result qualifiers and definitions are provided.
- $\sqrt{\phantom{a}}$  9. Result units are reported.
- NA 10. Requested reporting limits are present.
- $\sqrt{\phantom{a}}$  11. Method detection limits are present.
- $\sqrt{\phantom{a}}$  12. Sample collection date and time are present.
- X 13. No detections in field QC blanks (lot/media blanks, field blanks, etc).

#### Discrepancies:

13. Field blank detections above the method detection limit were reported for barium in MFL-FB01-041924-HM and MFL-FB01-042124-HM.

#### Notes:

1. Samples MFL-AM04-042424-HM and MFL-AM02-041524-HM had sample volumes below the acceptance criteria.