### STATE OF HAWAII ANNUAL SUMMARY 2024 AIR QUALITY DATA



Kilauea Volcano, Hawaii

KENNETH S. FINK, MD, MGA, MPH
DIRECTOR OF HEALTH
KA LUNA HO'OKELE



STATE OF HAWAII DEPARTMENT OF HEALTH KA 'OIHANA OLAKINO SEPTEMBER 2025 JOSH GREEN, M.D. GOVERNOR OF HAWAII KE KIA'ĀINA O KA MOKU'ĀINA 'O HAWAI'I

# 2024 Hawaii Air Quality Data

### **Contents**

| IST OF TABLES                                  | ii    |
|------------------------------------------------|-------|
| IST OF FIGURES                                 | . iii |
| Section 1 NTRODUCTION                          | . 1   |
| Section 2<br>DEFINITIONS                       | . 3   |
| Section 3 SITE LOCATIONS AND DESCRIPTIONS      | . 7   |
| Section 4<br>AIR QUALITY DATA                  | 18    |
| Section 5<br>PM <sub>2.5</sub> SPECIATION DATA | 33    |
| Section 6<br>AMBIENT AIR QUALITY TRENDS        | 36    |

### **List of Tables**

| Table | Title                                                                           | Page |
|-------|---------------------------------------------------------------------------------|------|
| 2-1   | State of Hawaii and Federal Ambient Air Quality Standards                       |      |
| 3-1   | State of Hawaii Ambient Air Monitoring Network                                  |      |
| 3-2   | Sampling Equipment at Each Monitoring Station                                   |      |
| 4-1   | 2024 Summary of the 24-Hour PM <sub>10</sub> Averages                           | 19   |
| 4-2   | Attainment Determination of the 24-Hour PM <sub>10</sub> NAAQS                  |      |
| 4-3   | 2024 Summary of the 24-Hour PM <sub>2.5</sub> Averages: SLAMS Stations          |      |
| 4-4   | Attainment Determination of the 24-Hour PM <sub>2.5</sub> NAAQS: SLAMS Stations |      |
| 4-5   | Attainment Determination of the Annual PM <sub>2.5</sub> NAAQS: SLAMS Stations  |      |
| 4-6   | 2024 Summary of the 24-Hour PM <sub>2.5</sub> Averages: SPM Stations            |      |
| 4-7   | 2024 Summary of the 8-Hour O <sub>3</sub> Averages                              |      |
| 4-8   | Attainment Determination of the 8-Hour O <sub>3</sub> NAAQS                     |      |
| 4-9   | 2024 Summary of the 1-Hour and Annual NO <sub>2</sub> Averages                  |      |
| 4-10  | Attainment Determination of the 1-Hour NO <sub>2</sub> NAAQS                    |      |
| 4-11  | 2024 Summary of the 1-Hour H <sub>2</sub> S Averages (State Standard)           |      |
| 4-12  | 2024 Summary of the 1-Hour SO <sub>2</sub> Averages                             |      |
| 4-13  | Attainment Determination of the 1-Hour SO <sub>2</sub> NAAQS: SLAMS Stations    |      |
| 4-14  | 2024 Summary of the 3-Hour SO <sub>2</sub> Averages                             |      |
| 4-15  | 2024 Summary of the 24-Hour and Annual SO <sub>2</sub> Averages                 |      |
| 4-16  | 2024 Summary of the 1-Hour CO Averages                                          |      |
| 4-17  | 2024 Summary of the 8-Hour CO Averages                                          |      |
| 4-18  | 2024 Monthly Maximum of 24-Hour PM <sub>10</sub> Values (µg/m <sup>3</sup> )    |      |
| 4-19  | 2024 Monthly Maximum of 24-Hour PM <sub>2.5</sub> Values (μg/m³)                |      |
| 4-20  | 2024 Monthly Maximum of 1-Hour NO <sub>2</sub> Values (ppb)                     |      |
| 4-21  | 2024 Monthly Maximum of 1-Hour H <sub>2</sub> S Values (ppb)                    |      |
| 4-22  | 2024 Monthly Maximum of 1-Hour CO Values (ppm)                                  |      |
| 4-23  | 2024 Monthly Maximum of 8-Hour CO Values (ppm)                                  |      |
| 4-24  | 2024 Monthly Maximum of 8-Hour O <sub>3</sub> Values (ppm)                      |      |
| 4-25  | 2024 Monthly Maximum of 1-Hour SO <sub>2</sub> Values (ppb)                     |      |
| 4-26  | 2024 Monthly Maximum of 3-Hour SO <sub>2</sub> Values (ppm)                     |      |
| 4-27  | 2024 Monthly Maximum of 24-Hour SO <sub>2</sub> Values (ppm)                    |      |
| 5-1   | Annual Summary of PM <sub>2.5</sub> Speciation Data                             |      |
| 5-2   | Speciation Collection and Analysis Methods                                      | 35   |

### **List of Figures**

| Figure | e Title                                                                                             | Page |
|--------|-----------------------------------------------------------------------------------------------------|------|
| 3-1    | Island of Oahu Air Monitoring Stations                                                              | 7    |
| 3-2    | Island of Maui Air Monitoring Stations                                                              | 9    |
| 3-3    | Island of Hawaii Air Monitoring Stations                                                            | 11   |
| 3-4    | Island of Kauai Air Monitoring Station                                                              | 15   |
| 6-1    | CO Maximum 1-Hour Average (ppm): 2020-2024                                                          | 37   |
|        | CO Maximum 8-Hour Average (ppm): 2020-2024                                                          |      |
| 6-3    | O <sub>3</sub> Fourth Highest Daily 8-Hour Average (ppm): 2020-2024                                 | 38   |
| 6-4    | PM <sub>10</sub> Maximum 24-hour Average (μg/m <sup>3</sup> ): 2020-2024                            | 38   |
| 6-5    | NO <sub>2</sub> Annual Average (ppb): 2020-2024                                                     | 39   |
| 6-6    | NO <sub>2</sub> 98 <sup>th</sup> Percentile 1-Hour Average (ppb): 2020-2024                         | 39   |
| 6-7    | SO <sub>2</sub> 99 <sup>th</sup> Percentile 1-Hour Average (ppb): SLAMS 2020-2024                   | 40   |
| 6-8    | SO <sub>2</sub> 99 <sup>th</sup> Percentile 1-Hour Average (ppb): SPMS 2020-2024                    | 40   |
| 6-9    | PM <sub>2.5</sub> 98 <sup>th</sup> Percentile 24-Hour Average (µg/m <sup>3</sup> ): SLAMS 2020-2024 | 41   |
| 6-10   | PM <sub>2.5</sub> Annual Average (μg/m <sup>3</sup> ): SLAMS 2020-2024                              | 41   |
| 6-11   | PM <sub>2.5</sub> 98th Percentile 24-Hour Average (μg/m <sup>3</sup> ): SPMS 2020-2024              | 42   |
| 6-12   | PM <sub>2.5</sub> Annual Average (μg/m <sup>3</sup> ): SPMS 2020-2024                               | 42   |

## Section 1 INTRODUCTION

The Department of Health, Clean Air Branch, monitors the ambient air in the State of Hawaii for various gaseous and particulate air pollutants. The U.S. Environmental Protection Agency (EPA) has set national ambient air quality standards (NAAQS) for six criteria pollutants: carbon monoxide, nitrogen dioxide, sulfur dioxide, lead, ozone, and particulate matter ( $PM_{10}$  and  $PM_{2.5}$ ). Hawaii has also established a state ambient air standard for hydrogen sulfide. The primary purpose of the statewide monitoring network is to measure ambient air concentrations of these pollutants and ensure that these air quality standards are met.

In addition to monitoring the ambient air for criteria pollutants, the State of Hawaii also participates in the NCore multi-pollutant monitoring network; the NCore station in Hawaii is located at the Kapolei monitoring station. The NCore network addresses the following objectives:

- Timely reporting of data to public by supporting AIRNow, air quality forecasting, and other public reporting mechanisms;
- Support for development of emission strategies through air quality model evaluation and other observational methods;
- Accountability of emission strategy progress through tracking long-term trends of criteria and non-criteria pollutants and their precursors;
- Support for long-term health assessments that contribute to ongoing reviews of the NAAQS;
- Compliance through establishing nonattainment/attainment areas through comparison with the NAAQS;
- Support to scientific studies ranging across technological, health, and atmospheric process disciplines;
- Support to ecosystem assessments recognizing that national air quality networks benefit ecosystem assessments and, in turn, benefit from data specifically designed to address ecosystem analyses; and
- PM<sub>2.5</sub> speciation monitoring that EPA determined to be essential for establishing a relationship between particle concentrations and adverse health effects and would provide valuable information in characterizing aerosols, determining the effectiveness of control strategies, and understanding the effects of particle pollution on atmospheric and regional haze.

Air pollution is caused by different man-made and natural sources, which include industrial, such as power plants and refineries; mobile, such as cars, trucks, and buses; agricultural burning; and naturally occurring, such as wildfires and volcanic activity. In 2024, the state maintained 16 air monitoring stations statewide. On Oahu, four stations measure air emissions from commercial, industrial, and transportation activities. On Maui, two stations measure particulates due to impacts from agricultural burning and wildfires. Kauai's one monitoring station monitors the air quality impacts from cruise

ships. The majority of the state's monitoring stations are located on the island of Hawaii to provide air quality data to communities that may be impacted by emissions from Kilauea volcano and geothermal energy production. Although the state's ambient air monitoring network is reviewed annually, any relocations, additions and/or discontinuations can occur as the need arises.

This report summarizes the validated air pollutant data collected at the 16 monitoring stations during calendar year 2024. Tabular summaries are provided which compare the measured concentrations of criteria pollutants with federal ambient air quality standards and the state's hydrogen sulfide standard. Particulate speciation data and graphical trend summaries are also included in this report.

The Department of Health has a website that displays near real-time air quality data collected from the air monitoring stations. The data has not been reviewed for quality assurance and is subject to change but provides the public with viewing access to current air pollutant and meteorological information. To view this data online, go to <a href="https://health.hawaii.gov/cab">https://health.hawaii.gov/cab</a> and link to "Hawaii Ambient Air Quality Data."

Additionally, because sulfur dioxide (SO<sub>2</sub>) emissions from Kilauea Volcano may affect communities on the island of Hawaii during an eruption, the Department of Health provides a webpage displaying short term SO<sub>2</sub> data (15-minute averages) from the Hawaii Island stations. The website also provides advisory levels and guidance to help individuals determine what actions need to be taken to protect against possible health effects. This website can be found at https://air.doh.hawaii.gov/home/text/118.

The 2024 "Hawaii Air Quality Data Book", and the Data books from 2016 through 2023 can be found at: https://health.hawaii.gov/cab/hawaii-air-quality-data-books/.

Questions or comments regarding data in this report and other air quality information can be emailed to <a href="CAB@doh.hawaii.gov">CAB@doh.hawaii.gov</a> or mailed to:

Clean Air Branch Department of Health 2827 Waimano Home Road, #130 Pearl City, HI, 96782

The Department of Health provides access to its programs and activities without regard to race, color, national origin (including language), age, sex, religion, or disability. Write our Affirmative Action Officer at P.O. Box 3378, Honolulu, Hawaii 96801-3378, or call (808)586-4616 (voice) within 180 days of a problem.

## Section 2 DEFINITIONS

98<sup>th</sup> Percentile Value The PM<sub>2.5</sub> 24-hour average or the maximum daily 1-hour NO<sub>2</sub>

average in the year below which 98% of all values fall.

99th Percentile Value The maximum daily 1-hour SO<sub>2</sub> value in the year below

which 99% of all values fall.

Ambient Air The general outdoor atmosphere, external to buildings, to

which the general public has access.

Ambient Air Quality

A limit in the quantity and exposure to pollutants dispersed or suspended in the ambient air. Primary standards are set

or suspended in the ambient air. Primary standards are set to protect public health, including sensitive populations such as people with respiratory conditions, children, and the elderly. Secondary standards are set to protect public welfare, including protection against decreased visibility, and

damage to animals, crops, vegetation, and buildings.

Carbon Monoxide Carbon monoxide (CO) is a colorless, odorless, and

tasteless gas under normal atmospheric conditions. It is produced by the incomplete combustion of carbon fuels with the majority of emissions coming from transportation

sources.

CFR Code of Federal Regulations is the codification of the general

and permanent rules published in the Federal Register by the executive departments and agencies of the Federal

Government. Title 40 is the Protection of the Environment.

Collocated This is a procedure required for a certain percentage of PM<sub>10</sub>

and PM<sub>2.5</sub> samplers in the monitoring network. Collocated samplers determine precision or variation in the PM<sub>10</sub> or PM<sub>2.5</sub> concentration measurements of identical samplers run

in the same location under the same sampling conditions.

Criteria Pollutants These are the six pollutants for which the EPA has

established national air quality standards. The pollutants are ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide,

lead and particulate matter (PM<sub>10</sub> and PM<sub>2.5</sub>).

DRR Data Requirements Rule for 1-hour SO<sub>2</sub> NAAQS.

EPA

The U.S. Environmental Protection Agency; established to protect human health and the natural environment.

Hydrogen Sulfide

Hydrogen sulfide (H<sub>2</sub>S) is a toxic, colorless gas with a characteristic "rotten egg" odor detectable at very low levels. It occurs naturally during the decomposition of organic matter, near geothermal sources, and is also produced during certain industrial processes, including wastewater treatment facilities.

Micron

One micron is one millionth of a meter or approximately 1/25,000 of an inch.

 $\mu g/m^3$ 

Micrograms per cubic meter. This is the measurement of air quality expressed as mass per unit volume.

NAAQS

National Ambient Air Quality Standards. These are pollutant standards that the EPA has established to protect public health and welfare. NAAQS have been set for carbon monoxide, nitrogen dioxide, PM<sub>10</sub>, PM<sub>2.5</sub>, ozone, sulfur dioxide, and lead. These are commonly referred to as criteria pollutants.

**NCore** 

A multi-pollutant network that integrates several advanced measurement systems for particles, pollutant gases, and meteorology. Most NCore stations have been operating since the formal start of the network on January 1, 2011, including Hawaii's.

Nitrogen Dioxide

Nitrogen dioxide (NO<sub>2</sub>) is a brownish, highly corrosive gas with a pungent odor. It is formed in the atmosphere from emissions of nitrogen oxides (NO<sub>x</sub>). Sources of nitrogen oxides include electric utilities, industrial boilers, motor vehicle exhaust and combustion of fossil fuels. NO<sub>2</sub> is also a component in the atmospheric reaction that produces ground-level ozone.

Ozone

Ozone  $(O_3)$  is the main constituent in photochemical air pollution. It is formed in the atmosphere by a chemical reaction of nitrogen oxides  $(NO_x)$  and volatile organic compounds (VOCs) in the presence of sunlight. In the upper atmosphere,  $O_3$  shields the earth from harmful ultraviolet radiation; however, at ground level, it can cause harmful effects in humans and plants.

Particulate Matter

This refers to any solid or liquid matter dispersed in the air. Particulate matter (PM) includes dust, soot, smoke, and liquid droplets from sources such as factories, power plants, motor vehicles, construction, agricultural activities, and fires.

PM<sub>10</sub>

Particulate matter that is 10 microns or less in aerodynamic diameter. These are considered "coarse" particles, generally from sources such as road and windblown dust, and crushing and grinding operations.

 $PM_{2.5}$ 

Particulate matter that is 2.5 microns or less in aerodynamic diameter. Considered "fine" particles, these are generally a result of fuel combustion such as from motor vehicles, utility generation, and industrial facilities. Fine particles can also be formed when gases, such as sulfur dioxide and nitrogen dioxide, are chemically transformed into particles.

ppb

Parts per billion is one particle in 1,000,000,000 other particles.

ppm

Parts per million is one particle in 1,000,000 other particles. It is approximately one drop in 13 gallons.

**SLAMS** 

State and Local Air Monitoring Stations. The Clean Air Act requires that every state establish a network of air monitoring stations for criteria pollutants.

SPM

Special Purpose Monitoring stations. These are stations established to provide data for special studies in support of air program interests and activities. SPM stations supplement the SLAMS network as special circumstances require and adequate resources permit.

Sulfur Dioxide

Sulfur dioxide (SO<sub>2</sub>) is a colorless gas that easily combines with water vapor forming sulfuric acid. Emissions of sulfur dioxide are largely from sources that burn fossil fuels such as coal and oil. In Hawaii, another possible major source of sulfur dioxide emissions is from any active eruption of Kilauea Volcano on the Big Island.

Vog

Vog is a term used to express volcanic smog. Vog occurs when volcanic gas and particles combine with air and sunlight to produce atmospheric haze.

Table 2-1 State and Federal Ambient Air Quality Standards

Sources: State standards HAR §11-59; Federal standards 40 CFR Part 50

| Air                     |                     | Standards                |                                          |                                            |
|-------------------------|---------------------|--------------------------|------------------------------------------|--------------------------------------------|
| Pollutant               | Averaging<br>Time   | Hawaii State<br>Standard | Federal Primary<br>Standard <sup>a</sup> | Federal Secondary<br>Standard <sup>b</sup> |
| Carbon Monoxide         | 1-hour              | 9 ppm                    | 35 ppm                                   | None                                       |
| (CO)                    | 8-hour              | 4.4 ppm                  | 9 ppm                                    | none                                       |
| Nitrogen Dioxide        | 1-hour              |                          | 100 ppb                                  |                                            |
| (NO <sub>2</sub> )      | Annual              | 0.04 ppm                 | 53 ppb                                   | 0.053 ppm                                  |
| PM <sub>10</sub>        | 24-hour             | 150 μg/m³                | 150 μg/m³                                |                                            |
| PIVI10                  | Annual <sup>c</sup> | 50 μg/m³                 |                                          |                                            |
| PM <sub>2.5</sub>       | 24-hour             |                          | 35 μg/m <sup>3</sup>                     | 35 μg/m <sup>3</sup>                       |
| PIVI2.5                 | Annual              |                          | 9 μg/m³                                  | 15 μg/m³                                   |
| Ozone (O <sub>3</sub> ) | 8-hour              | 0.08 ppm                 | 0.070 ppm                                | 0.070 ppm                                  |
|                         | 1-hour              |                          | 75 ppb                                   |                                            |
| Sulfur Dioxide          | 3-hour              | 0.5 ppm                  |                                          | <del>0.5 ppm</del> <sup>d</sup>            |
| (SO <sub>2</sub> )      | 24-hour             | 0.14 ppm                 |                                          |                                            |
|                         | Annual              | 0.03 ppm                 |                                          | 10 ppb <sup>d</sup>                        |
| Lead (Pb)               | Rolling 3-month     | 1.5 μg/m <sup>3 e</sup>  | 0.15 μg/m <sup>3</sup>                   | 0.15 μg/m <sup>3</sup>                     |
| Hydrogen Sulfide        | 1-hour              | 25 ppb                   | None                                     | None                                       |

a Primary Standards set limits to protect public health, including the health of sensitive populations such as people with respiratory conditions, children and the elderly.

#### **Compliance with the National Ambient Air Quality Standards**

CO 1-hour: May not be exceeded more than once per year. CO 8-hour: May not be exceeded more than once per year.

The 3-year average of the 98th percentile daily maximum 1-hour averages must not exceed NO<sub>2</sub> 1-hour:

the standard.

Average of all 1-hour values in the year may not exceed the level of the standard. NO<sub>2</sub> Annual: PM<sub>10</sub> 24-hour: Must not be exceeded more than one day per year, after compensating for days when

monitoring did not occur (estimated number of exceedances).

PM<sub>2.5</sub> 24-hour: The 3-year average of the 98<sup>th</sup> percentile 24-hour concentrations must not exceed the level of

the standard.

PM<sub>2.5</sub> Annual: The 3-year average of 24-hour values must not exceed the level of the standard.

Ozone 8-hour: The 3-year average of the fourth highest daily maximum value must not exceed the level of

the standard.

The 3-year average of the 99th percentile daily maximum 1-hour averages must not exceed SO<sub>2</sub> 1-hour:

the standard.

SO<sub>2</sub> Annual: The 3-year average of the annual concentration must not exceed the level of the standard. Lead:

Average of all 24-hour values in any rolling 3-month period may not exceed the level of the

standard.

Secondary Standards set limits to protect public welfare, including protection against decreased visibility, damage to animals, crops, vegetation, and buildings.

Because there was insufficient evidence linking long-term exposure to coarse particle pollution with health problems, EPA revoked the annual PM<sub>10</sub> standard effective December 17, 2006.

d The federal secondary SO<sub>2</sub> standard was revised on December 11, 2024, revoking the previous 3-hour standard of 0.5 ppm not to be exceeded more than once in a year, and revising it to an annual standard of 10 ppb averaged over 3 years...

<sup>&</sup>lt;sup>e</sup> The state standard is based on calendar quarter.

# Section 3 SITE LOCATIONS AND DESCRIPTIONS

Kahuku Training Laie Area Hauula Kaena Point State Park 887 m 1260 m Schofield Wahiawa Barracks Militani Makaha Town Walanae Lualualei Naval -Magazine, 1068 m Kailua Nanakuli Waipahu 968 m Ewa Beach onolulu 20 km 10

Figure 3-1: Island of Oahu – Air Monitoring Stations

| Station | Name               | Location                 | Pollutants/Parameters Monitored                                                                                                                                                                         |
|---------|--------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | Honolulu           | 1250 Punchbowl Street    | CO, SO <sub>2</sub> , PM <sub>2.5</sub> , PM <sub>10</sub>                                                                                                                                              |
| 2       | Sand Island        | 1039 Sand Island Parkway | O <sub>3</sub> , PM <sub>2.5</sub> , PM <sub>2.5</sub> Collocated                                                                                                                                       |
| 3       | Kapolei /<br>NCore | 2052 Lauwiliwili Street  | NO <sub>2</sub> / CO <sub>trace</sub> , SO <sub>2 trace</sub> , NO/NO <sub>y</sub> , O <sub>3</sub> , PM <sub>2.5</sub> , PM <sub>2.5</sub> speciation, PM <sub>10</sub> , PM <sub>10-2.5</sub> , WS/WD |
| 4       | Kahe               | Palehua Road             | SO <sub>2</sub>                                                                                                                                                                                         |

The following station descriptions include latitude and longitude in decimal degrees and altitude in meters above mean sea level.



| ŀ | Honolulu (DH)      |                                                            |  |
|---|--------------------|------------------------------------------------------------|--|
|   | Location:          | 1250 Punchbowl Street, Honolulu                            |  |
|   | Latitude:          | 21.30758                                                   |  |
|   | Longitude:         | -157.85542                                                 |  |
|   | Altitude:          | 20 m                                                       |  |
|   | Parameters:        | SO <sub>2</sub> , CO, PM <sub>10</sub> , PM <sub>2.5</sub> |  |
|   | Established:       | April 1971                                                 |  |
|   | Brief Description: |                                                            |  |

Brief Description:

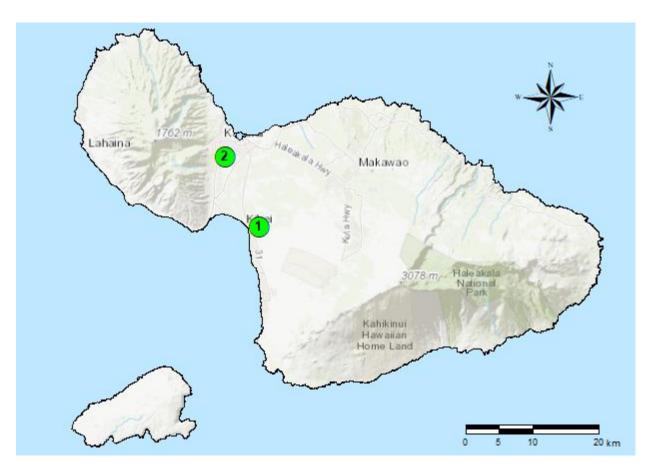
Located in downtown Honolulu on the roof of the Department of Health building, across from the Queen's Medical Center, in a busy commercial, business, and government district.



| Kapolei (KA)      |                                                                                |
|-------------------|--------------------------------------------------------------------------------|
| Location:         | 2052 Lauwiliwili Street, Kapolei                                               |
| Latitude:         | 21.32374                                                                       |
| Longitude:        | -158.08861                                                                     |
| Altitude:         | 17.9 m                                                                         |
| Parameters:       | SO <sub>2</sub> , CO, NO <sub>2</sub> , PM <sub>10</sub> , PM <sub>2.5</sub> , |
| Farameters.       | PM <sub>2.5</sub> speciation, NCore                                            |
| Established:      | July 2002                                                                      |
| Brief Description | ۱۰                                                                             |

Located in Kapolei Business Park, southeast of Kapolei Fire Station, next to a drainage canal that separates the park from Barber's Point. Approximately 1.5 miles from Malakole Street in Campbell Industrial Park.




| S | Sand Island (SI)   |                                    |  |  |
|---|--------------------|------------------------------------|--|--|
|   | Location:          | 1039 Sand Island Parkway,          |  |  |
|   |                    | Honolulu                           |  |  |
|   | Latitude:          | 21.30384                           |  |  |
|   | Longitude:         | -157.87117                         |  |  |
|   | Altitude:          | 5.3 m                              |  |  |
|   | Parameters:        | O <sub>3</sub> , PM <sub>2.5</sub> |  |  |
|   | Established:       | February 1981                      |  |  |
|   | Brief Descriptions |                                    |  |  |

**Brief Description:** 

Located in a light industrial, commercial, and recreational area approximately two miles downwind of downtown Honolulu near the entrance to the Sand Island State Recreation Area.

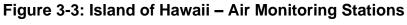
| Kahe (KE) (Data Requirements Rule) |                          |                                                                         |
|------------------------------------|--------------------------|-------------------------------------------------------------------------|
|                                    | Location:                | Palehua Road, Makakilo                                                  |
| 1                                  | Latitude:                | 21.3678                                                                 |
|                                    | Longitude:               | -158.103                                                                |
|                                    | Altitude:                | 388 m                                                                   |
|                                    | Parameters:              | SO <sub>2</sub>                                                         |
|                                    | Established:             | January 2017                                                            |
|                                    | <b>Brief Description</b> | ) <b>:</b>                                                              |
|                                    |                          | Iside south of Palehua Road,                                            |
|                                    |                          | kilometers northeast of the Kahe                                        |
|                                    |                          | n. The area around the station is is currently used for cattle grazing. |
|                                    | The city of Makaki       | ilo is located to the east and southeast.                               |

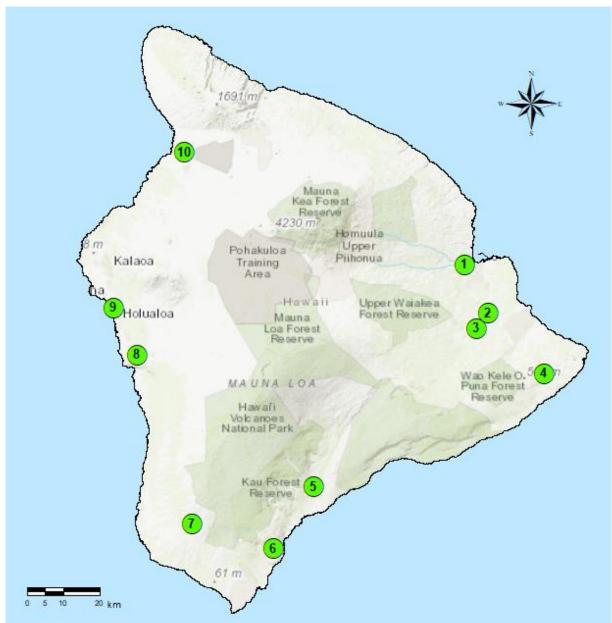
Figure 3-2: Island of Maui – Air Monitoring Stations



| Station | Name    | Location            | Pollutant Monitored |
|---------|---------|---------------------|---------------------|
| 1       | Kihei   | Hale Piilani Park   | PM <sub>2.5</sub>   |
| 2       | Kahului | TMK (2)-3-8-007-153 | PM <sub>2.5</sub>   |




| Kihei (KH)         |                          |  |
|--------------------|--------------------------|--|
| Location:          | Hale Piilani Park, Kihei |  |
| Latitude:          | 20.780997                |  |
| Longitude:         | -156.44637               |  |
| Altitude:          | 46.5 m                   |  |
| Parameters:        | PM <sub>2.5</sub>        |  |
| Established:       | February 1999            |  |
| Brief Description: |                          |  |


Located in a residential community park, next to a recent residential development on what was once agricultural land.



| Kahului (KL)             |                              |  |
|--------------------------|------------------------------|--|
| Location:                | TMK (2)-3—8-007-153, Kahului |  |
| Latitude:                | 20.869444                    |  |
| Longitude:               | -156.492417                  |  |
| Altitude:                | 55.5 m                       |  |
| Parameters:              | PM <sub>2.5</sub>            |  |
| Established:             | January 2015                 |  |
| <b>Brief Description</b> | 1:                           |  |

Located within a fenced area off Maui Lani Parkway, TMK 2-3-8-007-153. The area is surrounded primarily by residential land.





| Station | Name          | Location Pollutants Monitored |                                     |  |
|---------|---------------|-------------------------------|-------------------------------------|--|
| 1       | Hilo          | 1099 Waianuenue Avenue        | SO <sub>2</sub> , PM <sub>2.5</sub> |  |
| 2       | Keaau         | 16-714 Volcano Road           | SO <sub>2</sub> , PM <sub>2.5</sub> |  |
| 3       | Mountain View | 18-1235 Volcano Road          | SO <sub>2</sub> , PM <sub>2.5</sub> |  |
| 4       | Leilani       | 13-3441 Moku Street           | SO <sub>2</sub> , H <sub>2</sub> S  |  |
| 5       | Pahala        | 96-3150 Pikake Street         | SO <sub>2</sub> , PM <sub>2.5</sub> |  |
| 6       | Naalehu       | Naalehu Elementary School     | SO <sub>2</sub> , PM <sub>2.5</sub> |  |
| 7       | Ocean View    | 92-6091 Orchid Mauka Circle   | SO <sub>2</sub> , PM <sub>2.5</sub> |  |
| 8       | Kona          | 81-1043 Konawaena School Road | SO <sub>2</sub> , PM <sub>2.5</sub> |  |
| 9       | Kailua-Kona   | DWS Puapuaa Reservoir         | PM <sub>2.5</sub>                   |  |
| 10      | Waikoloa      | TMK 3-6-8-002-019             | SO <sub>2</sub> , PM <sub>2.5</sub> |  |



| Hilo (HL)         |                                     |
|-------------------|-------------------------------------|
| Location:         | 1099 Waianuenue Avenue, Hilo        |
| Latitude:         | 19.71756                            |
| Longitude:        | -155.11053                          |
| Altitude:         | 136.8 m                             |
| Parameters:       | SO <sub>2</sub> , PM <sub>2.5</sub> |
| Established:      | January 1997                        |
| Priof Description |                                     |

**Brief Description:** 

Located near the Hilo Medical Center, this station was established to monitor vog on the east side of the island of Hawaii.



| Kona (KN)                   |                                     |  |
|-----------------------------|-------------------------------------|--|
| Location:                   | 81-1043 Konawaena School Road,      |  |
|                             | Kona                                |  |
| Latitude:                   | 19.50978                            |  |
| Longitude:                  | -155.91342                          |  |
| Altitude:                   | 517.2 m                             |  |
| Parameters:                 | SO <sub>2</sub> , PM <sub>2.5</sub> |  |
| Established: September 2005 |                                     |  |
| Brief Description:          |                                     |  |
|                             |                                     |  |

Located on the upper campus of Konawaena High School, this station monitors for vog on the west side of the island of Hawaii.



| Mou                | Mountain View (MV) |                                     |  |  |  |
|--------------------|--------------------|-------------------------------------|--|--|--|
|                    | Location:          | 18-1235 Volcano Road, Mountain      |  |  |  |
| 19                 |                    | View                                |  |  |  |
| -636               | Latitude:          | 19.57002                            |  |  |  |
| 45                 | Longitude:         | -155.08046                          |  |  |  |
| -                  | Altitude:          | 436.5 m                             |  |  |  |
|                    | Parameters:        | SO <sub>2</sub> , PM <sub>2.5</sub> |  |  |  |
|                    | Established:       | December 2010                       |  |  |  |
| Brief Description: |                    | :                                   |  |  |  |

Located on the grounds of the Mt. View Elementary School, this station was established to monitor vog during southerly wind conditions.



| Oce | Ocean View (OV)    |                                     |  |
|-----|--------------------|-------------------------------------|--|
|     | Location:          | 92-6091 Orchid Mauka Circle,        |  |
|     |                    | Ocean View                          |  |
|     | Latitude:          | 19.11756                            |  |
|     | Longitude:         | -155.77814                          |  |
|     | Altitude:          | 862.6 m                             |  |
|     | Parameters:        | SO <sub>2</sub> , PM <sub>2.5</sub> |  |
|     | Established:       | April 2010                          |  |
|     | Brief Description: |                                     |  |

Located at the Ocean View Fire Station in Hawaii Ocean View Estates, this station monitors for volcanic emissions.



### Pahala (PA)

| Location:    | 96-3150 Pikake Street, Pahala       |  |
|--------------|-------------------------------------|--|
| Latitude:    | 19.2039                             |  |
| Longitude:   | -155.48018                          |  |
| Altitude:    | 320 m                               |  |
| Parameters:  | SO <sub>2</sub> , PM <sub>2.5</sub> |  |
| Established: | August 2007                         |  |

#### **Brief Description:**

Located on the grounds of the Kau High and Pahala Elementary School, this station monitors for volcanic emissions.



#### KAILUA-KONA (KK)

| Location: DWS Puapuaa Reservoir, Kailua- |                   |  |
|------------------------------------------|-------------------|--|
|                                          | Kona              |  |
| Latitude:                                | 19.61815833       |  |
| Longitude:                               | -155. 9711111     |  |
| Altitude:                                | 92.4 m            |  |
| Parameters:                              | PM <sub>2.5</sub> |  |
| Established:                             | November 2018     |  |
| Brief Description:                       |                   |  |

This station is in the middle of Kailua-Kona town within the County of Hawaii's water reservoir and pump house, monitoring for volcanic emissions.



#### KEAAU (KS)

| Location: Kamehameha Schools,16-714 |                                     |  |
|-------------------------------------|-------------------------------------|--|
| Volcano Road, Keaau, HI 96749       |                                     |  |
| <b>Latitude:</b> 19.605424          |                                     |  |
| Longitude:                          | -155.051379                         |  |
| Altitude:                           | 179.8 m                             |  |
| Parameters:                         | SO <sub>2</sub> , PM <sub>2.5</sub> |  |
| Established:                        | June 2022                           |  |
|                                     |                                     |  |

#### **Brief Description:**

This station is in the town of Keaau on the Kamehameha Schools Hawaii campus, monitoring for volcanic emissions during southerly wind conditions.



|                                 | Leilani (LE) |                                   |  |
|---------------------------------|--------------|-----------------------------------|--|
|                                 | Location:    | 13-3441 Moku Street, Pahoa        |  |
|                                 | Latitude:    | 19.46555556                       |  |
| <b>Longitude:</b> -154.91583333 |              | -154.91583333                     |  |
|                                 | Altitude:    | 229 m                             |  |
|                                 | Parameters:  | H <sub>2</sub> S, SO <sub>2</sub> |  |

June 2021

#### **Brief Description:**

Established:

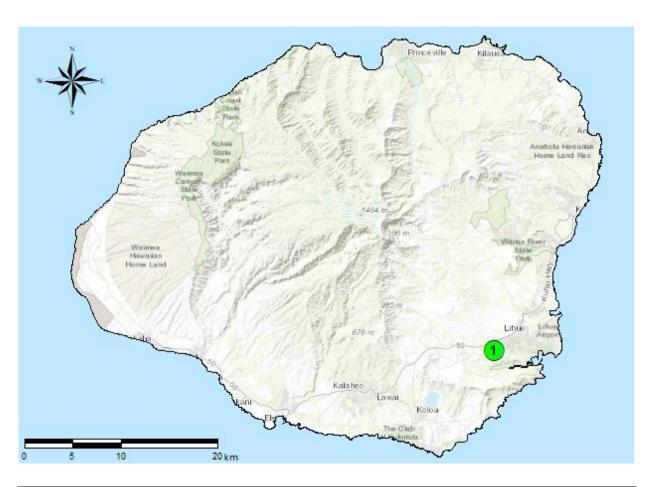
Located at the Leilani Community Association Center in a residential subdivision, the station monitors emissions from the nearby geothermal energy facility.



| iaalenu (NA)                             |                                     |  |
|------------------------------------------|-------------------------------------|--|
| Location: Naalehu Elementary School, 95- |                                     |  |
|                                          | 5547 Mamalahoa Hwy., Naalehu        |  |
| Latitude:                                | 19.060656                           |  |
| Longitude:                               | -155.579167                         |  |
| Altitude:                                | 196.3 m                             |  |
| Parameters:                              | SO <sub>2</sub> , PM <sub>2.5</sub> |  |
| Established:                             | September 2018                      |  |
| D : (D : ()                              |                                     |  |

#### **Brief Description:**

This station is located at the USGS Seismograph building on the campus of Naalehu Elementary School, monitoring for volcanic emissions.




| W                  | Waikoloa (WL) |                                     |  |
|--------------------|---------------|-------------------------------------|--|
|                    |               | TM( 0 0 0 000 040 M/s'll slee       |  |
| at the same        | Location:     | TMK 3-6-8-002-019, Waikoloa         |  |
|                    | Latitude:     | 19.977500                           |  |
|                    | Longitude:    | -155.798056                         |  |
| 100                | Altitude:     | 182.9 m                             |  |
|                    | Parameters:   | SO <sub>2</sub> , PM <sub>2.5</sub> |  |
| 4.7.7<br>          | Established:  | July 2021                           |  |
| Duief Decementions |               |                                     |  |

#### **Brief Description:**

Located within the County of Hawaii's water tank and pump house, approximately 3 km northeast of Waikoloa, this station monitors for volcanic emissions.

Figure 3-4: Island of Kauai – Air Monitoring Station



| Station | Name    | Location           | Pollutant Monitored |
|---------|---------|--------------------|---------------------|
| 1       | Niumalu | 2342 Hulemalu Road | $SO_2$              |

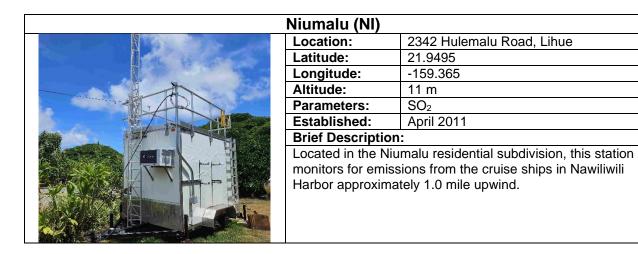



Table 3-1 State of Hawaii Ambient Air Monitoring Network

|                      | Pol              | lutants           | Monit | ored a                | and Sta         | tion Ty         | /ре              |                                                                                 |                       |
|----------------------|------------------|-------------------|-------|-----------------------|-----------------|-----------------|------------------|---------------------------------------------------------------------------------|-----------------------|
| SITE                 | PM <sub>10</sub> | PM <sub>2.5</sub> | СО    | <b>O</b> <sub>3</sub> | SO <sub>2</sub> | NO <sub>2</sub> | H <sub>2</sub> S | MONITORING OBJECTIVE                                                            | LOCATION SETTING      |
| OAHU                 |                  |                   |       |                       |                 |                 |                  |                                                                                 |                       |
| Honolulu             | S                | S                 | S     | -                     | S               | -               | -                | Population Exposure                                                             | Urban and Center City |
| Kapolei <sup>1</sup> | S                | S,C               | S     | S                     | S               | S               | -                | Population Exposure                                                             | Suburban              |
| Sand Island          | -                | S,C               | -     | S                     | -               | -               | -                | Maximum Concentration (O <sub>3</sub> )/<br>Transport (PM <sub>2.5</sub> )      | Urban and Center City |
| Kahe <sup>2</sup>    | -                | -                 | -     | -                     | S               | -               | -                | Source Impact (DRR)                                                             | Neighborhood          |
| MAUI                 |                  |                   |       |                       |                 |                 |                  |                                                                                 |                       |
| Kihei                | -                | SPM               | -     | -                     | -               | -               | -                | Population Exposure                                                             | Suburban              |
| Kahului              | -                | SPM               | -     | -                     | -               | -               | -                | Population Exposure                                                             | Neighborhood          |
| HAWAII               |                  |                   |       |                       |                 |                 |                  |                                                                                 |                       |
| Hilo                 | _                | SPM               | _     | _                     | S               | _               | _                | Population Exposure                                                             | Suburban              |
| Kona                 | _                | SPM               | _     | _                     | S               | _               | _                | Population Exposure (SO <sub>2</sub> )/                                         | Suburban              |
|                      |                  | 0                 |       |                       |                 |                 |                  | Maximum concentration (PM <sub>2.5</sub> )                                      | 3 4 5 4 1 5 4 1 1     |
| Mountain View        | _                | SPM               | -     | -                     | SPM             | -               | -                | Source Impact                                                                   | Suburban              |
| Ocean View           | -                | SPM               | -     | -                     | SPM             | -               | -                | Welfare Impact (SO <sub>2</sub> )/                                              | Rural                 |
|                      |                  |                   |       |                       |                 |                 |                  | Source Impact (PM <sub>2.5</sub> )                                              |                       |
| Pahala               | -                | SPM               | -     | -                     | SPM             | -               | -                | Maximum concentration (SO <sub>2</sub> )/<br>Source Impact (PM <sub>2.5</sub> ) | Rural                 |
| Kailua-Kona          | -                | SPM               | -     | -                     | -               | -               | -                | Source Impact                                                                   | Suburban              |
| Keaau                | -                | SPM               | -     | -                     | SPM             | -               | -                | Source Impact                                                                   | Suburban              |
| Leilani              | -                | -                 | -     | -                     | SPM             | -               | SPM              | Source Impact (geothermal)                                                      | Rural                 |
| Naalehu              | -                | SPM               | -     | -                     | SPM             | -               | -                | Source Impact                                                                   | Rural                 |
| Waikoloa             | -                | SPM               | -     | -                     | SPM             | -               | -                | Source Impact                                                                   | Rural                 |
| KAUAI<br>Niumalu     | -                | -                 | -     | -                     | SPM             | -               | -                | Source Impact (cruise ships)                                                    | Suburban              |

C = Collocated Site

S = (SLAMS) State and Local Air Monitoring Station

SPM = Special Purpose Monitoring Station (for monitoring vog, geothermal energy production and cruise ships)

<sup>1</sup> Includes NCore station.

<sup>&</sup>lt;sup>2</sup> As required by the Data Requirements Rule, this station was discontinued with EPA approval on September 30, 2024.

Table 3-2 Sampling Equipment at Each Monitoring Station

| Monitoring<br>Station | PM <sub>10</sub><br>Continuous<br>Ambient<br>Particulate<br>Monitor | PM <sub>2.5</sub><br>Manual<br>Particulate<br>Monitor | PM <sub>2.5</sub><br>Continuous<br>Monitor | CO<br>Continuous<br>Gas Filter<br>Correlation<br>Analyzer | SO <sub>2</sub><br>Continuous Pulsed<br>Fluorescence<br>Ambient Air<br>Analyzer | O <sub>3</sub><br>Continuous<br>UV<br>Photometric<br>Analyzer | NO₂<br>Continuous<br>Chemiluminescence<br>Analyzer | H₂S<br>Continuous Pulsed<br>Fluorescence<br>Ambient Air Analyzer |
|-----------------------|---------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|
| OAHU<br>Honolulu      | •                                                                   |                                                       | •                                          | •                                                         | •                                                                               |                                                               |                                                    |                                                                  |
| Kapolei               | •                                                                   |                                                       | •                                          | •                                                         | •                                                                               | •                                                             | •                                                  |                                                                  |
| Sand Island           |                                                                     | •                                                     | •                                          |                                                           |                                                                                 | •                                                             |                                                    |                                                                  |
| MAUI                  |                                                                     |                                                       |                                            |                                                           |                                                                                 |                                                               |                                                    |                                                                  |
| Kihei                 |                                                                     |                                                       |                                            |                                                           |                                                                                 |                                                               |                                                    |                                                                  |
| Kahului               |                                                                     |                                                       | •                                          |                                                           |                                                                                 |                                                               |                                                    |                                                                  |
| HAWAII                |                                                                     |                                                       |                                            |                                                           |                                                                                 |                                                               |                                                    |                                                                  |
| Hilo                  |                                                                     |                                                       |                                            |                                                           | •                                                                               |                                                               |                                                    |                                                                  |
| Kona                  |                                                                     |                                                       |                                            |                                                           | •                                                                               |                                                               |                                                    |                                                                  |
| Mountain View         |                                                                     |                                                       |                                            |                                                           | •                                                                               |                                                               |                                                    |                                                                  |
| Ocean View            |                                                                     |                                                       | •                                          |                                                           | •                                                                               |                                                               |                                                    |                                                                  |
| Pahala                |                                                                     |                                                       | •                                          |                                                           | •                                                                               |                                                               |                                                    |                                                                  |
| Kailua-Kona           |                                                                     |                                                       | •                                          |                                                           |                                                                                 |                                                               |                                                    |                                                                  |
| Keaau                 |                                                                     |                                                       | •                                          |                                                           | •                                                                               |                                                               |                                                    |                                                                  |
| Leilani               |                                                                     |                                                       |                                            |                                                           | •                                                                               |                                                               |                                                    | •                                                                |
| Naalaehu              |                                                                     |                                                       | •                                          |                                                           | -                                                                               |                                                               |                                                    |                                                                  |
| Waikoloa              |                                                                     |                                                       | •                                          |                                                           | -                                                                               |                                                               |                                                    |                                                                  |
| KAUAI                 |                                                                     |                                                       |                                            |                                                           | _                                                                               |                                                               |                                                    |                                                                  |
| Niumalu               |                                                                     |                                                       |                                            |                                                           | •                                                                               |                                                               |                                                    |                                                                  |

# Section 4 AIR QUALITY DATA

To protect the state's air quality from degradation, the Department of Health's Clean Air Branch is responsible for regulating and monitoring pollution sources to ensure that the levels of criteria pollutants remain well below the state and federal ambient air quality standards. Data collected from the ambient air network is validated and audited to ensure that the reported data is of good quality and meets all quality control and assurance requirements.

In 2024 the State of Hawaii was in attainment of all NAAQS.

#### **Description of Summary Tables 4-1 through 4-17:**

- Summaries are by pollutant and averaging period, with the number of occurrences exceeding the NAAQS;
- Table 4-11, provides the number of exceedances of the state's H<sub>2</sub>S standard (there is no federal H<sub>2</sub>S standard);
- The "Maximum" is the highest and second highest valid values recorded in the year for the averaging period;
- For PM<sub>2.5</sub>, the maximum and 98<sup>th</sup> percentile concentrations are provided;
- For O<sub>3</sub>, the 4<sup>th</sup> highest daily maximum value is also displayed;
- The "Annual Mean" is the arithmetic mean of all valid values recorded in the year;
- "Possible Periods" is the total number of possible sampling periods in the year for the averaging period;
- "Valid Periods" is the total number of acceptable sampling periods after data validation;
- "Percent Recovery" represents the amount of quality data reported;
- Attainment with the NAAQS is determined according to 40 CFR 50.

#### **Description of Tables 4-18 through 4-27:**

- For each pollutant and averaging period, the highest concentration for each month is presented;
- The month with the highest value recorded in the year for each site is highlighted.

#### Table 4-1. 2024 Summary of the 24-Hour PM<sub>10</sub> Averages

|          | Maxi                    | mum                     | Annual Mean |     | No. of 24-Hour Averages Greater than 150 μg/m <sup>3</sup> |     |     |     |     |     |     |     |     |     |     |                     |                  |                     |
|----------|-------------------------|-------------------------|-------------|-----|------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------------------|------------------|---------------------|
|          | 1 <sup>st</sup><br>High | 2 <sup>nd</sup><br>High | All Hours   | Jan | Feb                                                        | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Possible<br>Periods | Valid<br>Periods | Percent<br>Recovery |
| OAHU     |                         |                         |             |     |                                                            |     |     |     |     |     |     |     |     |     |     |                     |                  |                     |
| Honolulu | 41                      | 30                      | 11.9        | 0   | 0                                                          | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 366                 | 366              | 100.0%              |
| Kapolei  | 36                      | 34                      | 15.1        | 0   | 0                                                          | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 366                 | 360              | 98.4%               |

#### Table 4-2. Attainment Determination of the 24-Hour PM<sub>10</sub> NAAQS

| Station  | Exceedances in 2022 | Exceedances in 2023 | Exceedances in 2024 | Sites in Violation of the NAAQS |
|----------|---------------------|---------------------|---------------------|---------------------------------|
| Honolulu | 0                   | 0                   | 0                   | 0                               |
| Kapolei  | 0                   | 0                   | 0                   | 0                               |
|          |                     |                     |                     |                                 |

Attainment: The standard not to be exceeded more than once per year on average over 3 years. In 2024, Hawaii was in attainment with the 24-hour PM<sub>10</sub> NAAQS.

#### Table 4-3. 2024 Summary of the 24-Hour PM<sub>2.5</sub> Averages: SLAMS Stations

|             | Maxi                    | mum                   | Annual Mean |     |     | No. of | 24-Ho | ur Ave | rages | Grea | ater tha | an 35 | μg/m <sup>3</sup> | 3   |     |                     |                  |                     |
|-------------|-------------------------|-----------------------|-------------|-----|-----|--------|-------|--------|-------|------|----------|-------|-------------------|-----|-----|---------------------|------------------|---------------------|
|             | 1 <sup>st</sup><br>High | 98 <sup>th</sup><br>% | All Hours   | Jan | Feb | Mar    | Apr   | May    | Jun   | Jul  | Aug      | Sep   | Oct               | Nov | Dec | Possible<br>Periods | Valid<br>Periods | Percent<br>Recovery |
| OAHU        |                         |                       |             |     |     |        |       |        |       |      |          |       |                   |     |     |                     |                  |                     |
| Honolulu    | 27.4                    | 7.6                   | 4.1         | 0   | 0   | 0      | 0     | 0      | 0     | 0    | 0        | 0     | 0                 | 0   | 0   | 366                 | 366              | 100%                |
| Kapolei     | 11.5                    | 8.9                   | 4.6         | 0   | 0   | 0      | 0     | 0      | 0     | 0    | 0        | 0     | 0                 | 0   | 0   | 366                 | 360              | 98.4%               |
| Sand Island | 19.8                    | 7.6                   | 4.0         | 0   | 0   | 0      | 0     | 0      | 0     | 0    | 0        | 0     | 0                 | 0   | 0   | 366                 | 357              | 97.5%               |

#### Table 4-4. Attainment Determination of the 24-Hour PM<sub>2.5</sub> NAAQS: SLAMS Stations

| Station     | 2022 98th Value | 2023 98th Value | 2024 98th Value | 3-Year Average | Attainment of the NAAQS |
|-------------|-----------------|-----------------|-----------------|----------------|-------------------------|
| Honolulu    | 7.2             | 8.3             | 7.6             | 8              | Υ                       |
| Kapolei     | 8.1             | 10.0            | 8.9             | 9              | Υ                       |
| Sand Island | 8.2             | 10.0            | 7.6             | 9              | Υ                       |

Attainment: The 3-year average of the 98<sup>th</sup> percentile values must be less than or equal to 35 μg/m³; design values are calculated to the nearest μg/m³. In 2024, Hawaii was in attainment with the 24-hour PM<sub>2.5</sub> NAAQS.

7

Table 4-5. Attainment Determination of the Annual PM<sub>2.5</sub> NAAQS: SLAMS Stations

| 2022 Annual<br>Wtd. Mean | 2023 Annual<br>Wtd. Mean | 2024 Annual<br>Wtd. Mean                                                                                  | 3-Year<br>Design Value                                                                                                                        | Attainment of the NAAQS                                                                                                                                                                                |
|--------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.3                      | 4.1                      | 4.1                                                                                                       | 3.8                                                                                                                                           | Υ                                                                                                                                                                                                      |
| 3.8                      | 4.5                      | 4.6                                                                                                       | 4.3                                                                                                                                           | Υ                                                                                                                                                                                                      |
| 3.7                      | 3.9                      | 4.0                                                                                                       | 3.8                                                                                                                                           | Υ                                                                                                                                                                                                      |
|                          | 3.3<br>3.8               | Wtd. Mean         Wtd. Mean           3.3         4.1           3.8         4.5           3.7         3.9 | Wtd. Mean         Wtd. Mean           3.3         4.1         4.1           3.8         4.5         4.6           3.7         3.9         4.0 | Wtd. Mean         Wtd. Mean         Design Value           3.3         4.1         4.1         3.8           3.8         4.5         4.6         4.3           3.7         3.9         4.0         3.8 |

Attainment: The 3-year average of annual mean values must be less than 9 μg/m³; design values are calculated to the nearest 0.1 μg/m³. In 2024, Hawaii was in attainment with the annual PM<sub>2.5</sub> NAAQS.

Table 4-6. 2024 Summary of the 24-Hour PM<sub>2.5</sub> Averages: SPM Stations

|             | Maxir                   | mum                   | Annual Mean | No. of 24-Hour Averages Greater than 35 μg/m³ |     |     |     |     |     |     |     |     |     |     |     |                     |                  |                     |
|-------------|-------------------------|-----------------------|-------------|-----------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------------------|------------------|---------------------|
|             | 1 <sup>st</sup><br>High | 98 <sup>th</sup><br>% | All Hours   | Jan                                           | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Possible<br>Periods | Valid<br>Periods | Percent<br>Recovery |
| HAWAII      |                         |                       |             |                                               |     |     |     |     |     |     |     |     |     |     |     |                     |                  |                     |
| Hilo        | 6.8                     | 5.1                   | 2.6         | 0                                             | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 366                 | 352              | 96.2%               |
| Kona        | 20.3                    | 10.0                  | 2.5         | 0                                             | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 366                 | 361              | 98.6%               |
| Mt. View    | 9.6                     | 4.7                   | 2.1         | 0                                             | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 366                 | 360              | 98.4%               |
| Ocean View  | 19.2                    | 12.2                  | 2.0         | 0                                             | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 366                 | 353              | 96.4%               |
| Pahala      | 8.9                     | 6.7                   | 3.1         | 0                                             | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 366                 | 360              | 98.4%               |
| Kailua-Kona | 20.5                    | 10.0                  | 2.9         | 0                                             | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 366                 | 360              | 98.4%               |
| Keaau       | 8.7                     | 5.3                   | 2.8         | 0                                             | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 366                 | 360              | 98.4%               |
| Naalehu     | 8.0                     | 6.2                   | 2.9         | 0                                             | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 366                 | 357              | 97.5%               |
| Waikoloa    | 22.2                    | 7.1                   | 2.4         | 0                                             | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 366                 | 359              | 98.1%               |
| MAUI        |                         |                       |             |                                               |     |     |     |     |     |     |     |     |     |     |     |                     |                  |                     |
| Kahului     | 35.7 <sup>1</sup>       | 8.0                   | 3.9         | 1                                             | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 366                 | 346              | 94.5%               |
| Kihei       | 8.8                     | 6.0                   | 2.8         | 0                                             | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 366                 | 350              | 95.6%               |

The special purpose stations on Hawaii Island were established to monitor ambient air concentrations of PM<sub>2.5</sub> from volcanic emissions. The special purpose stations on Maui were established to monitor air quality impacts from agricultural burning activities and wildfires.

<sup>&</sup>lt;sup>1</sup> Due to New Year's fireworks celebration.

### Table 4-7. 2024 Summary of the 8-Hour O<sub>3</sub> Averages

|                | N                       | 1aximur                 | n                       | Annual Mean  | No  | No. of Daily Maximum 8-Hour Averages Greater than 0.070 ppm |     |     |     |     |     |     | pm  |     |     |     |                     |                  |                     |
|----------------|-------------------------|-------------------------|-------------------------|--------------|-----|-------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------------------|------------------|---------------------|
|                | 1 <sup>st</sup><br>High | 2 <sup>nd</sup><br>High | 4 <sup>th</sup><br>High | All<br>Hours | Jan | Feb                                                         | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Possible<br>Periods | Valid<br>Periods | Percent<br>Recovery |
| OAHU           |                         |                         |                         |              |     |                                                             |     |     |     |     |     |     |     |     |     |     |                     |                  |                     |
| Sand<br>Island | 0.046                   | 0.045                   | 0.044                   | 0.026        | 0   | 0                                                           | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 356                 | 366              | 97.3%               |
| Kapolei        | 0.045                   | 0.045                   | 0.045                   | 0.029        | 0   | 0                                                           | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 362                 | 366              | 98.9%               |

#### Table 4-8. Attainment Determination of the 8-Hour O<sub>3</sub> NAAQS

| Station                                                                                                                        | 2022 4th Highest | 2023 4th Highest | 2024 4th Highest | 3-Year Average | Attainment of the NAAQS |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|----------------|-------------------------|--|--|--|--|--|--|
| Sand Island                                                                                                                    | 0.044            | 0.046            | 0.044            | 0.044          | Υ                       |  |  |  |  |  |  |
| Kapolei                                                                                                                        | 0.041            | 0.043            | 0.045            | 0.043          | Υ                       |  |  |  |  |  |  |
| Attainment: The 3-year average of the annual 4th highest daily maximum 8-hour average must be less than or equal to 0.070 ppm. |                  |                  |                  |                |                         |  |  |  |  |  |  |

Attainment: The 3-year average of the annual 4<sup>th</sup> highest daily maximum 8-hour average must be less than or equal to 0.070 ppm. In 2024, Hawaii was in attainment with the 8-hour O₃ NAAQS.

#### Table 4-9. 2024 Summary of the 1-Hour and Annual NO<sub>2</sub> Averages

|         | Max                     | Maximum Annual Mean No. of Daily Maximum 1-Hour Averages Greater than 100 ppt |           |     |     |     |     |     |     |     | ob  |     |     |     |     |                     |                  |                     |
|---------|-------------------------|-------------------------------------------------------------------------------|-----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---------------------|------------------|---------------------|
|         | 1 <sup>st</sup><br>High | 98 <sup>th</sup> %                                                            | All Hours | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Possible<br>Periods | Valid<br>Periods | Percent<br>Recovery |
| OAHU    | HU SLAMS Station        |                                                                               |           |     |     |     |     |     |     |     |     |     |     |     |     |                     |                  |                     |
| Kapolei | 30.8                    | 19.6                                                                          | 2.6       | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 8784                | 8518             | 97.0%               |

Attainment of the annual NO<sub>2</sub> NAAQS: The annual mean shall not exceed 53 ppb. In 2024, Hawaii was in attainment with the annual NO<sub>2</sub> NAAQS.

Table 4-10. Attainment Determination of the 1-Hour NO<sub>2</sub> NAAQS

| Station         | 2022 98th Value | 2023 98 <sup>th</sup> Value | 2024 98 <sup>th</sup> Value | 3-Year Average | Attainment of the NAAQS               |
|-----------------|-----------------|-----------------------------|-----------------------------|----------------|---------------------------------------|
| OAHU            | SLAMS Station   |                             |                             |                |                                       |
| Kapolei         | 23.1            | 23.2                        | 19.6                        | 22             | Υ                                     |
| Attainment. The | 2 a             | th managatila valuas mavat  |                             | 400            | ana nacinala di ta tha na ana at mula |

Attainment: The 3-year average of the 98th percentile values must be less than or equal to 100 ppb; design values are rounded to the nearest ppb. In 2024, Hawaii was in attainment with the 1-hour NO<sub>2</sub> NAAQS.

Table 4-11. 2024 Summary of the 1-Hour H<sub>2</sub>S Averages (State Standard)

|         | Maxi                    | mum                     | Annual Mean |     |                                                 | No. | of 1-H | lour Av | erages | s Gre | ater th | an 25 | ppb                 |                  |                     |      |      |       |
|---------|-------------------------|-------------------------|-------------|-----|-------------------------------------------------|-----|--------|---------|--------|-------|---------|-------|---------------------|------------------|---------------------|------|------|-------|
|         | 1 <sup>st</sup><br>High | 2 <sup>nd</sup><br>High | All Hours   | Jan | lan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec |     |        |         |        |       |         |       | Possible<br>Periods | Valid<br>Periods | Percent<br>Recovery |      |      |       |
| HAWAII  |                         |                         |             |     |                                                 |     |        |         |        |       |         |       |                     |                  |                     |      |      |       |
| Leilani | 1.6                     | 1.6                     | 0.5         | 0   | 0                                               | 0   | 0      | 0       | 0      | 0     | 0       | 0     | 0                   | 0                | 0                   | 8784 | 7917 | 90.1% |

State standard: 1-hour values not to exceed 25 ppb. In 2024, Hawaii did not exceed the state 1-hour H₂S standard.

Table 4-12. 2024 Summary of the 1-Hour SO<sub>2</sub> Averages

|                         | Maxin                | num                | Annual<br>Mean |     |     | No. o | f 1-Ho | our Av | erage | s Gre | eater th | han 75 | 5 ppb |     |     |                     |                  |                     |
|-------------------------|----------------------|--------------------|----------------|-----|-----|-------|--------|--------|-------|-------|----------|--------|-------|-----|-----|---------------------|------------------|---------------------|
|                         | 1 <sup>st</sup> High | 99 <sup>th</sup> % | All Hours      | Jan | Feb | Mar   | Apr    | May    | Jun   | Jul   | Aug      | Sep    | Oct   | Nov | Dec | Possible<br>Periods | Valid<br>Periods | Percent<br>Recovery |
| OAHU                    | SLAMS                | Stations           | 3              |     |     |       |        |        |       |       |          |        |       |     |     |                     |                  |                     |
| Honolulu                | 3.7                  | 2.6                | 1.7            | 0   | 0   | 0     | 0      | 0      | 0     | 0     | 0        | 0      | 0     | 0   | 0   | 8784                | 8693             | 99.0%               |
| Kaplolei/NCore          | 13.4                 | 6.3                | 0.0            | 0   | 0   | 0     | 0      | 0      | 0     | 0     | 0        | 0      | 0     | 0   | 0   | 8784                | 8660             | 98.6%               |
| Kahe <sup>1</sup>       | 99.5                 | 46.2               | 0.7            | 0   | 1   | 0     | 0      | 0      | 0     | 0     | 0        | 0      | 0     | 0   | 0   | 6576                | 6423             | 98.2%               |
| HAWAII                  | SLAMS                | Stations           | (see NOTE)     |     |     |       |        |        |       |       |          |        |       |     |     |                     |                  |                     |
| Hilo                    | 7.2                  | 5.5                | 1.6            | 0   | 0   | 0     | 0      | 0      | 0     | 0     | 0        | 0      | 0     | 0   | 0   | 8784                | 8662             | 98.6%               |
| Kona <sup>2</sup>       | 48.6                 | 29.0               | 1.6            | 0   | 0   | 0     | 0      | 0      | 0     | 0     | 0        | 0      | 0     | 0   | 0   | 8784                | 8654             | 98.5%               |
| HAWAII                  | SPM Sta              | ations (s          | ee NOTE)       |     |     |       |        |        |       |       |          |        |       |     |     |                     |                  |                     |
| Mt. View                | 14.5                 | 7.8                | 0.9            | 0   | 0   | 0     | 0      | 0      | 0     | 0     | 0        | 0      | 0     | 0   | 0   | 8784                | 8608             | 98.0%               |
| Ocean View <sup>2</sup> | 173.1                | 92.8               | 1.9            | 0   | 0   | 0     | 0      | 0      | 0     | 0     | 0        | 0      | 0     | 0   | 4   | 8784                | 8365             | 95.2%               |
| Pahala <sup>2</sup>     | 174.8                | 93.0               | 2.4            | 0   | 0   | 0     | 0      | 0      | 1     | 0     | 0        | 3      | 0     | 0   | 1   | 8784                | 8440             | 96.1%               |
| Keaau                   | 5.9                  | 4.2                | 0.2            | 0   | 0   | 0     | 0      | 0      | 0     | 0     | 0        | 0      | 0     | 0   | 0   | 8784                | 8441             | 96.1%               |
| Leilani                 | 2.6                  | 1.8                | 0.7            | 0   | 0   | 0     | 0      | 0      | 0     | 0     | 0        | 0      | 0     | 0   | 0   | 8784                | 8090             | 92.1%               |
| Naalehu <sup>2</sup>    | 272.8                | 73.0               | 1.2            | 4   | 1   | 0     | 0      | 0      | 1     | 0     | 0        | 1      | 0     | 0   | 0   | 8784                | 8541             | 97.2%               |
| Waikoloa                | 37.5                 | 7.7                | 0.8            | 0   | 0   | 0     | 0      | 0      | 0     | 0     | 0        | 0      | 0     | 0   | 0   | 8784                | 8668             | 98.7%               |
| KAUAI                   | SPM St               | ation (se          | ee NOTE)       |     |     |       |        |        |       |       |          |        |       |     |     |                     |                  |                     |
| Niumalu <sup>3</sup>    | 2.1                  | 1.1                | 0.7            | 0   | 0   | 0     | 0      | 0      | 0     | 0     | 0        | 0      | 0     | 0   | 0   | 8784                | 5510             | 62.7%               |

Attainment: The 3-year average of the 99th percentile values must be less than or equal to 75 ppb.

#### In 2024, Hawaii was in attainment with the 1-hour SO<sub>2</sub> NAAQS (SLAMS stations only).

NOTE: The SPM stations on Hawaii Island were established to monitor ambient air concentrations of SO<sub>2</sub> from volcanic emissions. Although Hilo and Kona stations are designated SLAMS, high levels of SO<sub>2</sub> attributed to to volcanic emissions is comparable to the NAAQS. Volcanic eruptions are considered natural events, EPA concurrence of an exceptional event demonstration allows the exclusion of data for attainment determinations. The SPM station on Kauai was established to monitor emissions from cruise ships.

With EPA's approval, the Kahe station was shut down on September 30, 2024.

<sup>&</sup>lt;sup>2</sup> Elevated values due to emissions from eruptions at the summit of Kilauea Volcano.

<sup>&</sup>lt;sup>3</sup> Data recovery was <50% in 4<sup>th</sup> quarter, substitution test not allowed.

Table 4-13. Attainment Determination of the 1-Hour SO<sub>2</sub> NAAQS: SLAMS Stations

|                                     | 2022 99th Value | 2023 99th Value | 2024 99th Value | 3-Year Average | Attainment of the NAAQS |
|-------------------------------------|-----------------|-----------------|-----------------|----------------|-------------------------|
| OAHU SLAMS                          |                 |                 |                 |                | N= NO                   |
| Stations                            |                 |                 |                 |                | Y= YES                  |
| Honolulu                            | 1.6             | 2.9             | 2.6             | 2              | Υ                       |
| Kapolei/NCore                       | 1.9             | 11.4            | 6.3             | 7              | Y                       |
| Kahe <sup>1</sup>                   | 63.1            | 60.3            | 46.2            | 57             | Υ                       |
| HAWAII SLAMS<br>Stations (see NOTE) |                 |                 |                 |                |                         |
| Hilo <sup>2</sup>                   | 25.3            | 92.1            | 5.5             | 41             | Υ                       |
| Kona <sup>2</sup>                   | 8.2             | 18.0            | 29.0            | 18             | Υ                       |
| HAWAII SPM Stations                 |                 |                 |                 |                |                         |
| (see NOTE)                          |                 |                 |                 |                |                         |
| Mt. View <sup>2</sup>               | 55.6            | 42.9            | 7.8             | 35             | Υ                       |
| Ocean View <sup>2</sup>             | 107.3           | 213.0           | 92.8            | 138            | N                       |
| Pahala <sup>2</sup>                 | 229.2           | 236.1           | 93.0            | 186            | N                       |
| Keaau <sup>2</sup>                  | 36.1            | 27.2            | 4.2             | 23             | Υ                       |
| Leilani                             | 2.2             | 2.6             | 1.8             | 2              | Υ                       |
| Naalehu <sup>2</sup>                | 39.0            | 94.8            | 73.0            | 69             | Υ                       |
| Waikoloa                            | 1.5             | 6.2             | 7.7             | 4              | Υ                       |
| KAUAI SPM Station                   |                 |                 |                 |                |                         |
| (see NOTE)                          |                 |                 |                 |                |                         |
| Niumalu <sup>3</sup>                | 1.8             | 1.9             | 1.1             | 2              | Y                       |

Attainment: The 3-year average of the 99<sup>th</sup> percentile values must be less than or equal to 75 ppb; design values are rounded to the nearest ppb. In 2024, Hawaii was in attainment with the 1-hour SO<sub>2</sub> NAAQS (SLAMS stations only).

NOTE: The SPM stations on Hawaii Island were established to monitor ambient air concentrations of SO<sub>2</sub> from volcanic emissions. Although Hilo and Kona stations are designated SLAMS, high levels of SO<sub>2</sub> attributed to to volcanic emissions is comparable to the NAAQS. Volcanic eruptions are considered natural events, EPA concurrence of an exceptional event demonstration allows the exclusion of data for attainment determinations. The SPM station on Kauai was established to monitor emissions from cruise ships.

With EPA's approval, the Kahe station was shut down on September 30, 2024.

<sup>&</sup>lt;sup>2</sup> Elevated values due to emissions from eruptions at the summit of Kilauea Volcano.

<sup>&</sup>lt;sup>3</sup> Data recovery was <50% in 4<sup>th</sup> quarter, substitution test not allowed.

Table 4-14. 2024 Summary of the 3-Hour SO<sub>2</sub> Averages

|                         | Maxi                    | mum                     | Annual<br>Mean |     |     | No. of | 3-Но | ur Ave | erages | Gre | ater th | an 0.5 | 5 ppm |     |     |                     |                  |                     |
|-------------------------|-------------------------|-------------------------|----------------|-----|-----|--------|------|--------|--------|-----|---------|--------|-------|-----|-----|---------------------|------------------|---------------------|
|                         | 1 <sup>st</sup><br>High | 2 <sup>nd</sup><br>High | All Hours      | Jan | Feb | Mar    | Apr  | May    | Jun    | Jul | Aug     | Sep    | Oct   | Nov | Dec | Possible<br>Periods | Valid<br>Periods | Percent<br>Recovery |
| OAHU                    | SLAMS                   | Station                 | s              |     |     |        |      |        |        |     |         |        |       |     |     |                     |                  |                     |
| Honolulu                | 0.003                   | 0.003                   | 0.002          | 0   | 0   | 0      | 0    | 0      | 0      | 0   | 0       | 0      | 0     | 0   | 0   | 2928                | 2851             | 97.4%               |
| Kaplolei/NCore          | 0.005                   | 0.005                   | 0.000          | 0   | 0   | 0      | 0    | 0      | 0      | 0   | 0       | 0      | 0     | 0   | 0   | 2928                | 2819             | 96.3%               |
| Kahe <sup>1</sup>       | 0.045                   | 0.038                   | 0.001          | 0   | 0   | 0      | 0    | 0      | 0      | 0   | 0       | 0      | 0     | 0   | 0   | 2192                | 2118             | 96.6%               |
| HAWAII                  | SLAMS<br>(see NO        | Station:<br>OTE)        | 5              |     |     |        |      |        |        |     |         |        |       |     |     |                     |                  |                     |
| Hilo                    | 0.006                   | 0.005                   | 0.002          | 0   | 0   | 0      | 0    | 0      | 0      | 0   | 0       | 0      | 0     | 0   | 0   | 2928                | 2866             | 97.9%               |
| Kona <sup>2</sup>       | 0.040                   | 0.039                   | 0.002          | 0   | 0   | 0      | 0    | 0      | 0      | 0   | 0       | 0      | 0     | 0   | 0   | 2928                | 2862             | 97.7%               |
| HAWAII                  | SPM St                  | ations (s               | see NOTE)      |     |     |        |      |        |        |     |         |        |       |     |     |                     |                  |                     |
| Mt. View                | 0.011                   | 0.008                   | 0.001          | 0   | 0   | 0      | 0    | 0      | 0      | 0   | 0       | 0      | 0     | 0   | 0   | 2928                | 2798             | 95.6%               |
| Ocean View <sup>2</sup> | 0.136                   | 0.123                   | 0.002          | 0   | 0   | 0      | 0    | 0      | 0      | 0   | 0       | 0      | 0     | 0   | 0   | 2928                | 2732             | 93.3%               |
| Pahala <sup>2</sup>     | 0.119                   | 0.070                   | 0.002          | 0   | 0   | 0      | 0    | 0      | 0      | 0   | 0       | 0      | 0     | 0   | 0   | 2928                | 2762             | 94.3%               |
| Keaau                   | 0.005                   | 0.004                   | 0.000          | 0   | 0   | 0      | 0    | 0      | 0      | 0   | 0       | 0      | 0     | 0   | 0   | 2928                | 2794             | 95.4%               |
| Leilani                 | 0.002                   | 0.002                   | 0.001          | 0   | 0   | 0      | 0    | 0      | 0      | 0   | 0       | 0      | 0     | 0   | 0   | 2928                | 2655             | 90.7%               |
| Naalehu <sup>2</sup>    | 0.166                   | 0.139                   | 0.001          | 0   | 0   | 0      | 0    | 0      | 0      | 0   | 0       | 0      | 0     | 0   | 0   | 2928                | 2826             | 96.5%               |
| Waikoloa <sup>2</sup>   | 0.034                   | 0.025                   | 0.001          | 0   | 0   | 0      | 0    | 0      | 0      | 0   | 0       | 0      | 0     | 0   | 0   | 2928                | 2848             | 97.3%               |
| KAUAI                   | SPM St                  | ation (se               | ee NOTE)       |     |     |        |      |        |        |     |         |        |       |     |     |                     |                  |                     |
| Niumalu <sup>3</sup>    | 0.001                   | 0.001                   | 0.001          | 0   | 0   | 0      | 0    | 0      | 0      | 0   | 0       | 0      | 0     | 0   | 0   | 2928                | 2506             | 85.8%               |

Attainment: On December 11, 2024, the National secondary standard was changed from 3-hour values not to exceed 0.5 ppm more than once per year, to a 3-year average of the annual SO₂ concentration ≤10 ppb. The state standard of 3-hour values not to exceed 0.5 ppm remains.

#### In 2024, Hawaii was in attainment with the state 3-hour SO<sub>2</sub> standard.

NOTE: The SPM stations on Hawaii Island were established to monitor ambient air concentrations of  $SO_2$  from volcanic emissions. Although Hilo and Kona stations are designated SLAMS, high levels of  $SO_2$  attributed to to volcanic emissions is comparable to the NAAQS. Volcanic eruptions are considered natural events, EPA concurrence of an exceptional event demonstration allows the exclusion of data for attainment determinations.

The SPM station on Kauai was established to monitor emissions from cruise ships.

With EPA's approval, the Kahe station was shut down on September 30, 2024.

<sup>&</sup>lt;sup>2</sup> Elevated values due to emissions from eruptions at the summit of Kilauea Volcano.

<sup>&</sup>lt;sup>3</sup> Data recovery was <50% in 4<sup>th</sup> quarter, substitution test not allowed.

Table 4-15. 2024 Summary of the 24-Hour and Annual SO<sub>2</sub> Averages

|                         | Maxi                    | mum                     | Annual<br>Mean |     |     | No. of | 24-H | our Ave | rages | Grea | ater tha | an 0.1 | 4 ppm |     |     |                     |                  |                     |
|-------------------------|-------------------------|-------------------------|----------------|-----|-----|--------|------|---------|-------|------|----------|--------|-------|-----|-----|---------------------|------------------|---------------------|
|                         | 1 <sup>st</sup><br>High | 2 <sup>nd</sup><br>High | All Hours      | Jan | Feb | Mar    | Apr  | May     | Jun   | Jul  | Aug      | Sep    | Oct   | Nov | Dec | Possible<br>Periods | Valid<br>Periods | Percent<br>Recovery |
| OAHU                    | SLAMS                   | Stations                | S              |     |     |        |      |         |       |      |          |        |       |     |     |                     |                  |                     |
| Honolulu                | 0.002                   | 0.002                   | 0.002          | 0   | 0   | 0      | 0    | 0       | 0     | 0    | 0        | 0      | 0     | 0   | 0   | 366                 | 365              | 99.7%               |
| Kaplolei/NCore          | 0.001                   | 0.001                   | 0.000          | 0   | 0   | 0      | 0    | 0       | 0     | 0    | 0        | 0      | 0     | 0   | 0   | 366                 | 364              | 99.5%               |
| Kahe <sup>1</sup>       | 0.009                   | 0.009                   | 0.001          | 0   | 0   | 0      | 0    | 0       | 0     | 0    | 0        | 0      | 0     | 0   | 0   | 274                 | 271              | 98.9%               |
| HAWAII                  | SLAMS<br>(see NO        | Station:<br>OTE)        | 5              |     |     |        |      |         |       |      |          |        |       |     |     |                     |                  |                     |
| Hilo                    | 0.002                   | 0.002                   | 0.002          | 0   | 0   | 0      | 0    | 0       | 0     | 0    | 0        | 0      | 0     | 0   | 0   | 366                 | 360              | 96.2%               |
| Kona <sup>2</sup>       | 0.024                   | 0.016                   | 0.002          | 0   | 0   | 0      | 0    | 0       | 0     | 0    | 0        | 0      | 0     | 0   | 0   | 366                 | 366              | 100%                |
| HAWAII                  | SPM St                  | ations (s               | ee NOTE)       |     |     |        |      |         |       |      |          |        |       |     |     |                     |                  |                     |
| Mt. View                | 0.003                   | 0.003                   | 0.001          | 0   | 0   | 0      | 0    | 0       | 0     | 0    | 0        | 0      | 0     | 0   | 0   | 366                 | 362              | 98.9%               |
| Ocean View <sup>2</sup> | 0.038                   | 0.037                   | 0.002          | 0   | 0   | 0      | 0    | 0       | 0     | 0    | 0        | 0      | 0     | 0   | 0   | 366                 | 342              | 93.4%               |
| Pahala <sup>2</sup>     | 0.033                   | 0.022                   | 0.002          | 0   | 0   | 0      | 0    | 0       | 0     | 0    | 0        | 0      | 0     | 0   | 0   | 366                 | 357              | 97.5%               |
| Keaau                   | 0.002                   | 0.002                   | 0.000          | 0   | 0   | 0      | 0    | 0       | 0     | 0    | 0        | 0      | 0     | 0   | 0   | 366                 | 355              | 97.0%               |
| Leilani                 | 0.001                   | 0.001                   | 0.001          | 0   | 0   | 0      | 0    | 0       | 0     | 0    | 0        | 0      | 0     | 0   | 0   | 366                 | 341              | 93.2%               |
| Naalehu <sup>2</sup>    | 0.050                   | 0.044                   | 0.001          | 0   | 0   | 0      | 0    | 0       | 0     | 0    | 0        | 0      | 0     | 0   | 0   | 366                 | 360              | 98.4%               |
| Waikoloa <sup>2</sup>   | 0.016                   | 0.016                   | 0.001          | 0   | 0   | 0      | 0    | 0       | 0     | 0    | 0        | 0      | 0     | 0   | 0   | 366                 | 362              | 98.9%               |
| KAUAI                   | SPM St                  | ation (se               | e NOTE)        |     |     |        |      |         |       |      |          |        |       |     |     |                     |                  |                     |
| Niumalu <sup>3</sup>    | 0.001                   | 0.001                   | 0.001          | 0   | 0   | 0      | 0    | 0       | 0     | 0    | 0        | 0      | 0     | 0   | 0   | 366                 | 234              | 63.9%               |

Attainment: 24-hour values not to exceed 0.14 ppm.

In 2024, Hawaii was in attainment of the state 24-hour SO<sub>2</sub> standard.

Attainment: Annual average (from SLAMS stations only) not to exceed 0.03 ppm.

#### In 2024, Hawaii was in attainment of the state annual SO<sub>2</sub> standard.

NOTE: The SPM stations on Hawaii Island were established to monitor ambient air concentrations of  $SO_2$  from volcanic emissions. Hilo and Kona stations are designated as SLAMS, high levels of  $SO_2$  attributed to volcanic emissions is comparable to the NAAQS. Volcanic eruptions are considered a natural event, EPA concurrence of an exceptional event demonstration allows the exclusion of data for attainment determinations.

The SPM station on Kauai was established to monitor emissions from cruise ships.

<sup>&</sup>lt;sup>1</sup> With EPA's approval, the Kahe station was shut down on September 30, 2024.

<sup>&</sup>lt;sup>2</sup> Elevated values due to emissions from eruptions at the summit of Kilauea Volcano.

<sup>&</sup>lt;sup>3</sup> Data recovery was <50% in 4<sup>th</sup> quarter, substitution test not allowed.

#### Table 4-16. 2024 Summary of the 1-Hour CO Averages

|                            | Maxir                   | num                     | Annual<br>Mean |     | ľ                                              | No. of | 1-Ho | ur Ave | rages | Grea                | ater th          | an 35               | ppm |   |   |      |      |       |
|----------------------------|-------------------------|-------------------------|----------------|-----|------------------------------------------------|--------|------|--------|-------|---------------------|------------------|---------------------|-----|---|---|------|------|-------|
|                            | 1 <sup>st</sup><br>High | 2 <sup>nd</sup><br>High | All Hours      | Jan | an Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec |        |      |        |       | Possible<br>Periods | Valid<br>Periods | Percent<br>Recovery |     |   |   |      |      |       |
| OAHU                       | SLAMS                   | Stations                |                |     |                                                |        |      |        |       |                     |                  |                     |     |   |   |      |      |       |
| Honolulu                   | 6.8                     | 0.7                     | 0.1            | 0   | 0                                              | 0      | 0    | 0      | 0     | 0                   | 0                | 0                   | 0   | 0 | 0 | 8784 | 8680 | 98.8% |
| Kapolei/NCore <sup>1</sup> | 0.5                     | 0.5                     | 0.1            | 0   | 0                                              | 0      | 0    | 0      | 0     | 0                   | 0                | 0                   | 0   | 0 | 0 | 8784 | 6696 | 76.2% |

Attainment: 1-hour values not to exceed 35 ppm more than once per year.

In 2024, Hawaii was in attainment with the 1-hour CO NAAQS.

Table 4-17. 2024 Summary of the 8-Hour CO Averages

|                            | Maxir                   | num                     | Annual<br>Mean |     |     | No. of | f 8-Hc | our Ave | erage | s Gre | ater th | nan 9 <sub>l</sub> | opm |     |     |                     |                  |                     |
|----------------------------|-------------------------|-------------------------|----------------|-----|-----|--------|--------|---------|-------|-------|---------|--------------------|-----|-----|-----|---------------------|------------------|---------------------|
|                            | 1 <sup>st</sup><br>High | 2 <sup>nd</sup><br>High | All Hours      | Jan | Feb | Mar    | Apr    | May     | Jun   | Jul   | Aug     | Sep                | Oct | Nov | Dec | Possible<br>Periods | Valid<br>Periods | Percent<br>Recovery |
| OAHU                       | SLAMS                   | Stations                |                |     |     |        |        |         |       |       |         |                    |     |     |     |                     |                  |                     |
| Honolulu                   | 1.0                     | 0.4                     | 0.1            | 0   | 0   | 0      | 0      | 0       | 0     | 0     | 0       | 0                  | 0   | 0   | 0   | 8779                | 8718             | 99.3%               |
| Kapolei/NCore <sup>1</sup> | 0.2                     | 0.2                     | 0.1            | 0   | 0   | 0      | 0      | 0       | 0     | 0     | 0       | 0                  | 0   | 0   | 0   | 8779                | 6721             | 76.6%               |

Attainment: 8-hour values not to exceed 9 ppm more than once per year.

In 2024, Hawaii was in attainment with the 8-hour CO NAAQS.

#### Table 4-18. 2024 Monthly Maximum of 24-Hour PM<sub>10</sub> Values (μg/m³)

The month with the highest value in the year is highlighted The state and federal 24-hr  $PM_{10}$  standard is 150  $\mu$ g/m<sup>3</sup>

| Station  | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Honolulu | 41  | 21  | 29  | 23  | 19  | 17  | 15  | 17  | 15  | 18  | 23  | 21  |
| Kapolei  | 36  | 22  | 34  | 33  | 25  | 22  | 18  | 22  | 22  | 24  | 26  | 29  |

<sup>&</sup>lt;sup>1</sup> Data recovery was <75% in 1<sup>st</sup> and 3<sup>rd</sup> quarters.

<sup>&</sup>lt;sup>1</sup> Data recovery was <75% in 1<sup>st</sup> and 3<sup>rd</sup> quarters.

#### Z

#### Table 4-19. 2024 Monthly Maximum of 24-Hour PM<sub>2.5</sub> Values (μg/m³)

The month with the highest value in the year is highlighted

The federal 24-hr  $PM_{2.5}$  standard is 35  $\mu$ g/m<sup>3</sup>

| Station               | Jan               | Feb | Mar  | Apr | May | Jun  | Jul | Aug | Sep  | Oct | Nov | Dec  |
|-----------------------|-------------------|-----|------|-----|-----|------|-----|-----|------|-----|-----|------|
| SLAMS Stations        |                   |     |      |     |     |      |     |     |      |     |     |      |
| Honolulu              | 27.4              | 7.1 | 10.2 | 7.8 | 7.0 | 6.9  | 5.3 | 7.1 | 5.4  | 6.6 | 7.5 | 8.6  |
| Kapolei               | 11.5              | 7.4 | 10.7 | 8.5 | 6.8 | 9.0  | 6.3 | 9.7 | 6.8  | 8.9 | 8.6 | 9.2  |
| Sand Island           | 19.8              | 7.4 | 9.8  | 7.8 | 5.8 | 6.8  | 5.1 | 7.2 | 4.6  | 6.5 | 6.6 | 8.3  |
| SPM Stations          |                   |     |      |     |     |      |     |     |      |     |     |      |
| Kahului               | 35.7 <sup>1</sup> | 7.7 | 7.7  | 8.7 | 7.7 | 8.5  | 6.9 | 5.9 | 5.5  | 8.8 | 7.8 | 8.4  |
| Kihei                 | 4.0               | 6.0 | 8.2  | 8.6 | 5.0 | 5.5  | 4.5 | 4.6 | 4.6  | 6.0 | 5.9 | 8.8  |
| Hilo (volcano)        | 5.8               | 4.4 | 6.7  | 5.1 | 6.0 | 6.8  | 4.4 | 4.5 | 5.0  | 4.6 | 3.9 | 4.6  |
| Kona (volcano)        | 3.3               | 3.2 | 5.7  | 3.9 | 3.3 | 10.0 | 4.0 | 4.0 | 11.3 | 3.8 | 3.2 | 20.3 |
| Mt. View (volcano)    | 9.6               | 3.2 | 5.7  | 3.3 | 4.5 | 5.3  | 5.4 | 3.5 | 4.1  | 4.7 | 3.3 | 3.8  |
| Ocean View (volcano)  | 7.1               | 2.9 | 3.2  | 3.2 | 2.3 | 12.4 | 3.1 | 3.4 | 15.0 | 2.4 | 3.5 | 19.2 |
| Pahala (volcano)      | 6.0               | 4.3 | 7.6  | 6.6 | 6.3 | 8.9  | 7.0 | 4.3 | 4.5  | 8.0 | 3.0 | 5.0  |
| Kailua-Kona (volcano) | 3.9               | 3.4 | 6.1  | 4.3 | 4.2 | 10.5 | 4.1 | 3.7 | 10.8 | 3.8 | 3.8 | 20.5 |
| Keaau (volcano)       | 5.6               | 4.2 | 6.8  | 4.9 | 5.3 | 6.0  | 5.8 | 5.3 | 8.7  | 5.1 | 3.7 | 4.9  |
| Naalehu (volcano)     | 4.7               | 4.9 | 7.5  | 5.2 | 6.2 | 8.0  | 7.6 | 4.1 | 5.6  | 5.3 | 4.6 | 5.9  |
| Waikoloa (volcano)    | 4.0               | 3.8 | 7.1  | 5.0 | 3.9 | 9.2  | 4.5 | 4.0 | 3.7  | 4.0 | 3.1 | 22.2 |

<sup>&</sup>lt;sup>1</sup> Exceedance was due to New Year's fireworks celebration.

#### Table 4-20. 2024 Monthly Maximum of 1-Hour NO₂ Values (ppb)

The month with the highest value in the year is highlighted

The federal 1-hour standard for NO<sub>2</sub> is 100 ppb

| THE INCIDENT WITH THE | , ingiloct t | <u> </u> | your lotting | ggca |      | io ioaciai i | moun otan | aara ror ri | 02 10 100 p | P~   |      |      |
|-----------------------|--------------|----------|--------------|------|------|--------------|-----------|-------------|-------------|------|------|------|
| Station               | Jan          | Feb      | Mar          | Apr  | May  | Jun          | Jul       | Aug         | Sep         | Oct  | Nov  | Dec  |
| Kapolei               | 30.8         | 19.6     | 21.8         | 17.7 | 23.0 | 13.9         | 9.0       | 16.1        | 14.1        | 14.5 | 18.8 | 21.3 |

#### Table 4-21. 2024 Monthly Maximum of 1-Hour H<sub>2</sub>S Values (ppb)

The month with the highest value in the year is highlighted The state 1-hour standard for  $H_2S$  is 25 ppb

| Station | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Leilani | 1.6 | 0.9 | 0.8 | 0.8 | 0.5 | 0.5 | 0.5 | 0.5 | 0.7 | 1.5 | 0.4 | 0.5 |

#### Table 4-22. 2024 Monthly Maximum of 1-Hour CO Values (ppm)

The month with the highest value in the year is highlighted

The federal 1-hr CO standard is 35 ppm, the state standard is 9 ppm

| Station                    | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|----------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Honolulu                   | 0.7 | 0.5 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.3 | 6.8 | .04 | .05 | 0.6 |
| Kapolei/NCore <sup>1</sup> | 0.5 | 0.2 | 0.1 | 0.4 | 0.3 | 0.3 | 0.2 | 02  | 0.5 | 0.3 | 0.4 | 0.4 |

<sup>&</sup>lt;sup>1</sup> Data recovery was <75% in 1<sup>st</sup> and 3<sup>rd</sup> quarters.

#### Table 4-23. 2024 Monthly Maximum of 8-Hour CO Values (ppm)

The month with the highest value in the year is highlighted The federal 8-hr CO standard is 9 ppm, the state standard is 4.4 ppm

| Station                    | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|----------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Honolulu                   | 0.4 | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 1.0 | 0.2 | 0.3 | 0.2 |
| Kapolei/NCore <sup>1</sup> | 0.2 | 0.1 | 0.1 | 0.2 | 0.2 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |

<sup>&</sup>lt;sup>1</sup> Data recovery was <75% in 1<sup>st</sup> and 3<sup>rd</sup> quarters.

#### Table 4-24. 2024 Monthly Maximum of 8-Hour O<sub>3</sub> Values (ppm)

The month with the highest value in the year is highlighted The federal 8-hr O<sub>3</sub> standard is 0.070 ppm

| Station       | Jan   | Feb   | Mar   | Apr   | May   | Jun   | Jul   | Aug   | Sep   | Oct   | Nov   | Dec   |
|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Sand Island   | 0.040 | 0.045 | 0.045 | 0.043 | 0.046 | 0.035 | 0.031 | 0.024 | 0.028 | 0.036 | 0.041 | 0.032 |
| Kapolei/NCore | 0.043 | 0.045 | 0.045 | 0.043 | 0.045 | 0.036 | 0.036 | 0.028 | 0.032 | 0.036 | 0.041 | 0.037 |

#### Table 4-25. 2024 Monthly Maximum of 1-Hour SO<sub>2</sub> Values (ppb)

The month with the highest value in the year is highlighted

The federal 1-hr SO<sub>2</sub> standard is 75 ppb

| Station                             | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul | Aug | Sep     | Oct     | Nov     | Dec     |
|-------------------------------------|------|------|------|------|------|------|-----|-----|---------|---------|---------|---------|
| SLAMS Stations                      |      |      |      |      |      |      |     |     |         |         |         |         |
| Honolulu                            | 3.7  | 2.1  | 1.9  | 2.2  | 1.8  | 1.8  | 1.9 | 1.8 | 2.1     | 2.3     | 2.6     | 2.4     |
| Kapolei/NCore                       | 2.6  | 5.6  | 7.2  | 2.7  | 1.9  | 1.4  | 1.2 | 3.4 | 3.6     | 1.9     | 13.4    | 6.3     |
| Kahe <sup>1</sup>                   | 43.0 | 99.5 | 25.1 | 32.7 | 50.5 | 18.1 | 2.0 | 9.4 | 32.5    | No data | No data | No data |
| Hilo                                | 7.2  | 4.2  | 4.7  | 3.4  | 3.9  | 5.5  | 3.9 | 2.9 | 5.2     | 3.3     | 3.2     | 4.6     |
| Kona <sup>2</sup>                   | 1.8  | 1.7  | 1.8  | 1.4  | 1.7  | 7.6  | 2.4 | 1.6 | 9.1     | 1.8     | 1.8     | 48.6    |
| SPM Stations (see NOTE)             |      |      |      |      |      |      |     |     |         |         |         |         |
| Niumalu <sup>3</sup> (cruise ships) | 2.1  | 1.0  | 1.1  | 1.1  | 1.0  | 1.1  | 1.2 | 1.1 | No data | No data | No data | No data |
| Mt. View (volcano)                  | 13.4 | 4.9  | 3.5  | 3.8  | 7.8  | 1.3  | 1.3 | 4.7 | 1.9     | 2.0     | 2.2     | 14.5    |
| Ocean View² (volcano)               | 3.7  | 7.5  | 4.4  | 4.9  | 3.9  | 33.3 | 1.7 | 3.2 | 21.2    | 2.1     | 1.7     | 173.1   |
| Pahala² (volcano)                   | 8.2  | 7.9  | 6.7  | 6.2  | 8.7  | 93.0 | 5.5 | 7.0 | 174.8   | 7.8     | 4.5     | 144.8   |
| Keaau (volcano)                     | 5.9  | 3.9  | 2.4  | 1.0  | 1.9  | 1.7  | 1.3 | 1.2 | 1.8     | 2.2     | 2.1     | 2.2     |
| Leilani (volcano)                   | 1.6  | 1.6  | 1.0  | 1.4  | 1.3  | 1.7  | 2.6 | 1.8 | 1.6     | 1.9     | 1.0     | 1.4     |
| Naalehu² (volcano)                  | 4.3  | 5.0  | 4.4  | 3.4  | 2.4  | 3.3  | 3.5 | 3.8 | 272.8   | 3.4     | 1.7     | 17.0    |
| Waikoloa² (volcano)                 | 0.6  | 0.9  | 0.9  | 0.8  | 0.9  | 2.2  | 1.0 | 1.2 | 1.9     | 1.5     | 1.6     | 37.5    |

NOTE: The SPM stations on Hawaii Island were established to monitor ambient air concentrations of  $SO_2$  from volcanic emissions. Hilo and Kona stations are designated as SLAMS, high levels of  $SO_2$  attributed to volcanic emissions is comparable to the NAAQS. Volcanic eruptions are considered a natural event, EPA concurrence of an exceptional event demonstration allows the exclusion of data for attainment determinations.

<sup>&</sup>lt;sup>1</sup> With EPA's approval, the Kahe station was shut down on September 30, 2024.

<sup>&</sup>lt;sup>2</sup> Elevated values due to emissions from eruptions at the summit of Kilauea Volcano.

<sup>&</sup>lt;sup>3</sup> Data recovery was <50% in 4<sup>th</sup> quarter, substitution test not allowed.

#### Table 4-26. 2024 Monthly Maximum of 3-Hour SO<sub>2</sub> Values (ppm)

The month with the highest value in the year is highlighted

The state 3-hr SO<sub>2</sub> standard is 0.5 ppm

| Station                             | Jan    | Feb   | Mar   | Apr   | May   | Jun   | Jul   | Aug             | Sep     | Oct     | Nov     | Dec     |
|-------------------------------------|--------|-------|-------|-------|-------|-------|-------|-----------------|---------|---------|---------|---------|
| SLAMS Stations                      | 5 5333 |       |       | - 1   |       |       |       | - · · · · · · · | 5545    |         |         |         |
| Honolulu                            | 0.003  | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002           | 0.002   | 0.002   | 0.002   | 0.002   |
| Kapolei/NCore                       | 0.002  | 0.003 | 0.003 | 0.001 | 0.001 | 0.001 | 0.001 | 0.003           | 0.001   | 0.001   | 0.005   | 0.005   |
| Kahe <sup>1</sup>                   | 0.022  | 0.045 | 0.013 | 0.015 | 0.038 | 0.010 | 0.001 | 0.005           | 0.023   | No data | No data | No data |
| Hilo                                | 0.006  | 0.003 | 0.004 | 0.002 | 0.003 | 0.003 | 0.002 | 0.003           | 0.004   | 0.003   | 0.002   | 0.004   |
| Kona <sup>2</sup>                   | 0.002  | 0.002 | 0.002 | 0.001 | 0.001 | 0.005 | 0.002 | 0.002           | 0.008   | 0.002   | 0.002   | 0.040   |
| SPM Stations (see NOTE)             |        |       |       |       |       |       |       |                 |         |         |         |         |
| Niumalu <sup>3</sup> (cruise ships) | 0.001  | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001           | No data | No data | No data | No data |
| Mt. View (volcano)                  | 0.008  | 0.002 | 0.002 | 0.002 | 0.004 | 0.001 | 0.001 | 0.003           | 0.002   | 0.002   | 0.002   | 0.011   |
| Ocean View <sup>2</sup> (volcano)   | 0.003  | 0.006 | 0.004 | 0.004 | 0.004 | 0.022 | 0.001 | 0.002           | 0.017   | 0.002   | 0.001   | 0.136   |
| Pahala² (volcano)                   | 0.007  | 0.005 | 0.005 | 0.005 | 0.005 | 0.042 | 0.004 | 0.005           | 0.119   | 0.005   | 0.003   | 0.070   |
| Keaau (volcano)                     | 0.005  | 0.003 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001           | 0.001   | 0.001   | 0.002   | 0.001   |
| Leilani (volcano)                   | 0.002  | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.002 | 0.002           | 0.001   | 0.002   | 0.001   | 0.001   |
| Naalehu² (volcano)                  | 0.003  | 0.004 | 0.003 | 0.003 | 0.002 | 0.002 | 0.002 | 0.003           | 0.168   | 0.003   | 0.002   | 0.009   |
| Waikoloa² (volcano)                 | 0.000  | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.001 | 0.001           | 0.002   | 0.001   | 0.001   | 0.034   |

NOTE: The SPM stations on Hawaii Island were established to monitor ambient air concentrations of SO<sub>2</sub> from volcanic emissions. Volcanic eruptions are considered natural events.

<sup>&</sup>lt;sup>1</sup> With EPA's approval, the Kahe station was shut down on September 30, 2024.

<sup>&</sup>lt;sup>2</sup> Elevated values due to emissions from eruptions at the summit of Kilauea Volcano.

<sup>&</sup>lt;sup>3</sup> Data recovery was <50% in 4<sup>th</sup> quarter, substitution test not allowed.

#### Table 4-27. 2024 Monthly Maximum of 24-Hour SO<sub>2</sub> Values (ppm)

The month with the highest value in the year is highlighted

The state 24-hr SO<sub>2</sub> standard is 0.14 ppm

| Station                             | Jan   | Feb   | Mar   | Apr   | May   | Jun   | Jul   | Aug   | Sep     | Oct     | Nov     | Dec     |
|-------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|---------|---------|---------|---------|
| SLAMS Stations                      |       |       |       |       |       |       |       |       |         |         |         |         |
| Honolulu                            | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002   | 0.002   | 0.002   | 0.002   |
| Kapolei/NCore                       | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000   | 0.000   | 0.001   | 0.001   |
| Kahe <sup>1</sup>                   | 0.007 | 0.009 | 0.003 | 0.003 | 0.007 | 0.003 | 0.000 | 0.001 | 0.005   | No data | No data | No data |
| Hilo                                | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002   | 0.002   | 0.002   | 0.002   |
| Kona <sup>2</sup>                   | 0.001 | 0.002 | 0.002 | 0.001 | 0.001 | 0.003 | 0.002 | 0.002 | 0.004   | 0.002   | 0.002   | 0.024   |
| SPM Stations (see NOTE)             |       |       |       |       |       |       |       |       |         |         |         |         |
| Niumalu <sup>3</sup> (cruise ships) | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | No data | No data | No data | No data |
| Mt. View (volcano)                  | 0.003 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.001   | 0.001   | 0.001   | 0.003   |
| Ocean View <sup>2</sup> (volcano)   | 0.003 | 0.004 | 0.003 | 0.004 | 0.004 | 0.004 | 0.001 | 0.001 | 0.008   | 0.001   | 0.001   | 0.038   |
| Pahala² (volcano)                   | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.013 | 0.002 | 0.003 | 0.033   | 0.003   | 0.002   | 0.019   |
| Keaau (volcano)                     | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000   | 0.000   | 0.000   | 0.001   |
| Leilani (volcano)                   | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001   | 0.001   | 0.001   | 0.001   |
| Naalehu² (volcano)                  | 0.002 | 0.002 | 0.002 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 | 0.050   | 0.001   | 0.001   | 0.003   |
| Waikoloa² (volcano)                 | 0.000 | 0.001 | 0.000 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001   | 0.001   | 0.001   | 0.016   |

NOTE: The SPM stations on Hawaii Island were established to monitor ambient air concentrations of SO<sub>2</sub> from volcanic emissions. Volcanic eruptions are considered natural events.

<sup>&</sup>lt;sup>1</sup> With EPA's approval, the Kahe station was shut down on September 30, 2024. <sup>2</sup> Elevated values due to emissions from eruptions at the summit of Kilauea Volcano. <sup>3</sup> Data recovery was <50% in 4<sup>th</sup> quarter, substitution test not allowed.

# Section 5 PM<sub>2.5</sub> SPECIATION DATA

Atmospheric aerosols are solid or liquid particles suspended in air that come directly from a variety of sources (primary) or are formed by chemical reactions (secondary). Primary and secondary particles tend to have long lifetimes in the atmosphere and can travel long distances, up to hundreds or perhaps thousands of miles. Sources include dust from roads, construction, and agriculture; combustion particles from motor vehicles, electric utilities and agricultural burning; and particles from natural sources such as the ocean or volcano.

Most of the PM<sub>2.5</sub> is a combination of the following components: sulfates, nitrates, ammonium, elemental carbon, organic compounds, water and metals. The EPA selected target particulates of interest based on data use objectives, primary constituents of PM<sub>2.5</sub>, and the capability and availability of current analytical methods.

The filter-based speciation sampler collects samples once every 3 days for analyses performed by an EPA contract laboratory. The speciation sampler is located at the Kapolei NCore monitoring station.

Table 5-1 lists the parameters measured, highest and second highest values recorded in the year, the annual arithmetic mean of all valid samples, and the total number of samples collected in the year. Table 5-2 lists the analysis methods for each parameter.

Except for lead, there are no ambient air quality standards for the individual components of speciated PM<sub>2.5</sub>.

For more information on EPA's speciation program, go to: <a href="https://epa.gov/amtic/chemical-speciation-network-csn">https://epa.gov/amtic/chemical-speciation-network-csn</a>

Table 5-1. Annual Summary of PM<sub>2.5</sub> Speciation Data

| Parameter        | 1 <sup>st</sup> High<br>(µg/m³) | 2 <sup>nd</sup> High<br>(µg/m³) | Annual Mean<br>(µg/m³) | No. of<br>Samples | Percent<br>Recovery |
|------------------|---------------------------------|---------------------------------|------------------------|-------------------|---------------------|
| CARBON           | W L                             | W <b>=</b> /                    |                        |                   |                     |
| Organic Carbon   | 0.904                           | 0.797                           | 0.2282                 | 121               | 98%                 |
| Elemental Carbon | 0.254                           | 0.231                           | 0.0715                 | 121               | 98%                 |
| METALS           |                                 |                                 |                        |                   |                     |
| Aluminum         | 0.169                           | 0.150                           | 0.0146                 | 121               | 99%                 |
| Antimony         | 0.033                           | 0.024                           | 0.0013                 | 121               | 99%                 |
| Arsenic          | 0.000                           | 0.000                           | 0.0000                 | 121               | 99%                 |
| Barium           | 0.046                           | 0.045                           | 0.0056                 | 121               | 99%                 |
| Bromine          | 0.006                           | 0.004                           | 0.0002                 | 120               | 98%                 |
| Cadmium          | 0.025                           | 0.020                           | 0.0021                 | 121               | 99%                 |
| Calcium          | 0.493                           | 0.187                           | 0.0485                 | 121               | 99%                 |
| Cerium           | 0.071                           | 0.058                           | -0.0007                | 121               | 99%                 |
| Cesium           | 0.045                           | 0.039                           | 0.0008                 | 121               | 99%                 |
| Chlorine         | 1.315                           | 1.310                           | 0.5669                 | 120               | 98%                 |
| Chromium         | 0.012                           | 0.011                           | 0.0012                 | 112               | 92%                 |
| Cobalt           | 0.003                           | 0.002                           | 0.0001                 | 112               | 92%                 |
| Copper           | 0.026                           | 0.004                           | -0.0004                | 112               | 92%                 |
| Indium           | 0.025                           | 0.023                           | 0.0020                 | 121               | 99%                 |
| Iron             | 0.166                           | 0.088                           | 0.0251                 | 112               | 92%                 |
| Lead             | 0.010                           | 0.010                           | 0.0011                 | 121               | 99%                 |
| Magnesium        | 0.177                           | 0.173                           | 0.0474                 | 121               | 99%                 |
| Manganese        | 0.011                           | 0.009                           | 0.0005                 | 121               | 99%                 |
| Nickel           | 0.017                           | 0.008                           | 0.0017                 | 112               | 92%                 |
| Phosphorus       | 0.003                           | 0.003                           | 0.0002                 | 121               | 99%                 |
| Potassium        | 0.982                           | 0.275                           | 0.0356                 | 121               | 99%                 |
| Rubidium         | 0.005                           | 0.004                           | 0.0002                 | 121               | 99%                 |
| Selenium         | 0.005                           | 0.003                           | 0.0003                 | 121               | 99%                 |
| Silicon          | 0.176                           | 0.167                           | 0.0268                 | 121               | 99%                 |
| Silver           | 0.027                           | 0.025                           | 0.0016                 | 121               | 99%                 |
| Sodium           | 1.045                           | 1.035                           | 0.3464                 | 121               | 99%                 |
| Strontium        | 0.022                           | 0.005                           | 0.0010                 | 121               | 99%                 |
| Sulfur           | 1.127                           | 0.512                           | 0.1760                 | 121               | 99%                 |
| Tin              | 0.028                           | 0.025                           | 0.0023                 | 121               | 99%                 |
| Titanium         | 0.021                           | 0.016                           | 0.0023                 | 121               | 99%                 |
| Vanadium         | 0.011                           | 0.004                           | 0.0006                 | 121               | 99%                 |
| Zinc             | 0.008                           | 0.007                           | 0.0017                 | 121               | 99%                 |
| Zirconium        | 0.023                           | 0.020                           | 0.0004                 | 121               | 99%                 |

Table 5-1 Continued

| Parameter     | 1 <sup>st</sup> High<br>(µg/m³) | 2 <sup>nd</sup> High<br>(µg/m³) | Annual Mean<br>(µg/m³) | No. of<br>Samples | Percent<br>Recovery |
|---------------|---------------------------------|---------------------------------|------------------------|-------------------|---------------------|
| IONS          |                                 |                                 |                        |                   |                     |
| Ammonium Ion  | 0.58                            | 0.15                            | 0.012                  | 120               | 98%                 |
| Potassium Ion | 0.92                            | 0.05                            | 0.023                  | 120               | 98%                 |
| Sodium Ion    | 1.19                            | 0.96                            | 0.430                  | 120               | 98%                 |
| Total Nitrate | 0.49                            | 0.42                            | 0.159                  | 120               | 98%                 |
| Sulfate       | 3.37                            | 1.65                            | 0.581                  | 120               | 98%                 |

 Table 5-2.
 Speciation Collection and Analysis Methods

| Parameter | Collection Method          | Analysis Method                      |
|-----------|----------------------------|--------------------------------------|
| Carbon    | URG 300N Quartz Filter     | Thermal Optical Transmittance        |
| Metals    | Met-One SASS Teflon Filter | Energy Dispersive X-Ray Fluorescence |
| lons      | Met-One SASS Nylon Filter  | Ion Chromatography                   |

### Section 6 AMBIENT AIR QUALITY TRENDS

The following graphs illustrate 5-year trends for CO, O<sub>3</sub>, NO<sub>2</sub>, SO<sub>2</sub>, PM<sub>10</sub>, and PM<sub>2.5</sub>, from 2020 to 2024 at the stations monitoring for those pollutants as compared to their respective federal NAAQS.

Figures 6-1 and 6-2 represent the maximum 1-hour average and 8-hour average CO values recorded over the 5-year period at the Honolulu and Kapolei stations.

Attainment of the 8-hour ozone standard is achieved by averaging 3 years of the fourth highest daily maximum 8-hour average concentrations, which must not exceed 0.070 ppm. Figure 6-3 is a graph of the fourth highest daily maximum values recorded at the Sand Island and Kapolei ozone monitoring stations in the past five years.

Figure 6-4 is a graph of the maximum 24-hour averages of PM<sub>10</sub> values recorded at the Honolulu and Kapolei stations for each year over the 5-year period. PM<sub>10</sub> monitoring at the Pearl City station was discontinued on April 6, 2022.

Figures 6-5 and 6-6 shows the annual average and 98<sup>th</sup> percentile 1-hour average of NO<sub>2</sub> values recorded at the Kapolei station. The Niumalu NO<sub>2</sub> station was discontinued on March 31, 2022.

Attainment of the SO<sub>2</sub> 1-hour standard is based on the 99<sup>th</sup> percentile value at each station, which is depicted in Figures 6-7 and 6-8 for the SLAMS and SPMS stations, respectively. Elevated values due to emissions from eruptions at the Halemaumau crater on the summit of Kilauea volcano have impacted two of the downwind SPMS stations, Ocean View and Pahala. Volcanic eruptions are considered a natural event, EPA concurrence of an exceptional event demonstration allows the exclusion of data for attainment determinations.

Attainment of the PM<sub>2.5</sub> 24-hour standard is based on the 98<sup>th</sup> percentile value at each station, which is depicted in Figures 6-9 and 6-11 for the SLAMS and SPMS stations, respectively. Figures 6-10 and 6-12 show the PM<sub>2.5</sub> annual averages recorded at the SLAMS and SPMS stations. PM<sub>2.5</sub> monitoring at the Pearl City station was discontinued on March 31, 2022. PM<sub>2.5</sub> monitoring was discontinued at the Kihei station on March 30, 2022 but restarted on August 22, 2023 with the purpose of monitoring impacts from agricultural activities and wildfires.

Criteria pollutant levels remain below state and federal ambient air quality standards at all SLAMS stations in the state.

Figure 6-1. CO Maximum 1-Hour Average (ppm): 2020-2024

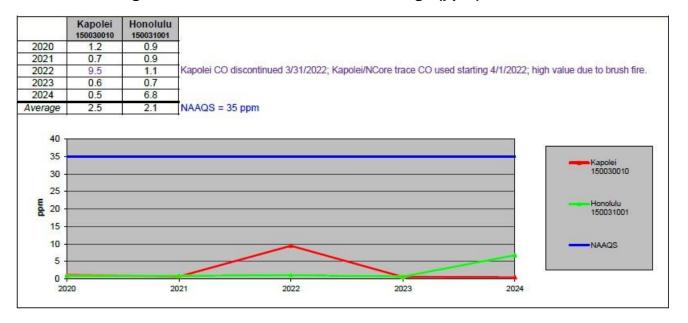



Figure 6-2. CO Maximum 8-Hour Average (ppm): 2020-2024

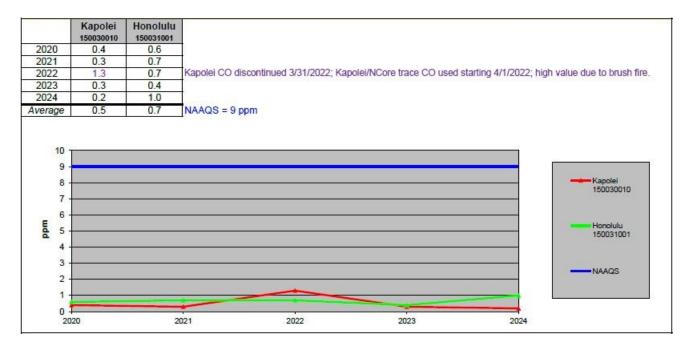



Figure 6-3. O<sub>3</sub> Fourth Highest Daily 8-Hour Average (ppm): 2020-2024

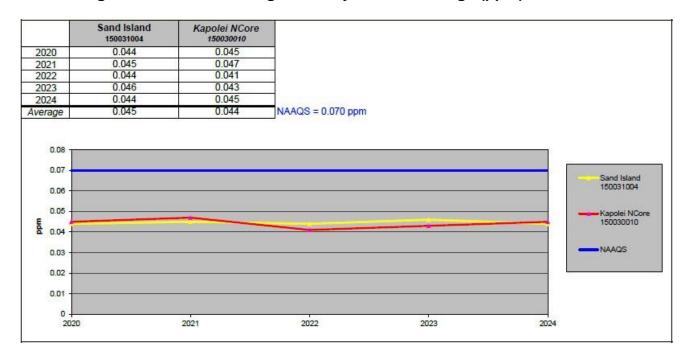



Figure 6-4. PM<sub>10</sub> Maximum 24-hour Average (µg/m³): 2020-2024



Figure 6-5. NO<sub>2</sub> Annual Average (ppb): 2020-2024

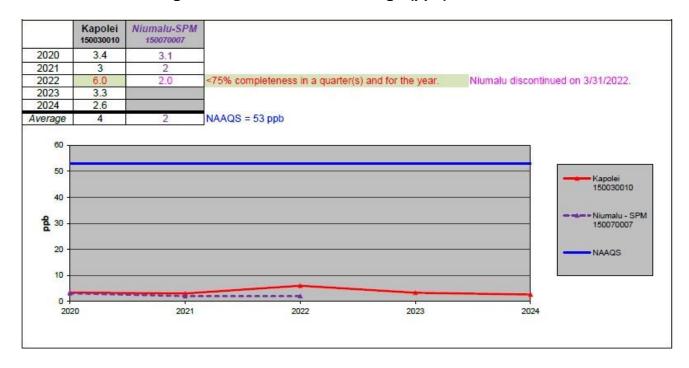



Figure 6-6. NO<sub>2</sub> 98<sup>th</sup> Percentile 1-Hour Average (ppb): 2020-2024

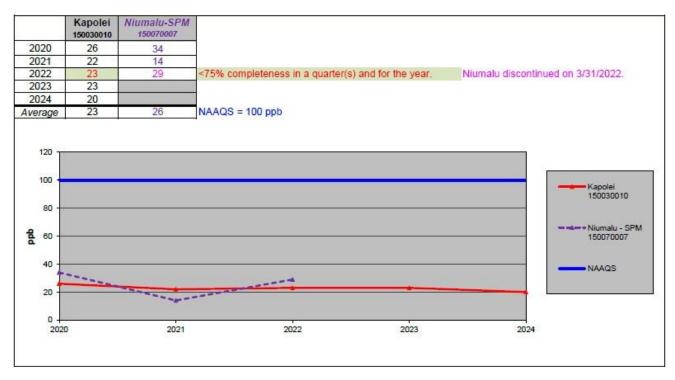



Figure 6-7. SO<sub>2</sub> 99th Percentile 1-Hour Average (ppb): SLAMS 2020-2024

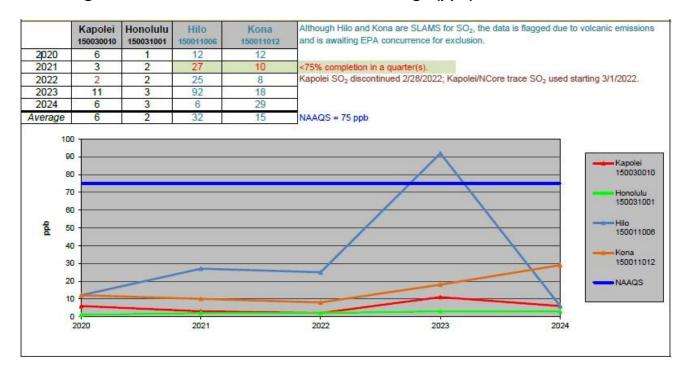



Figure 6-8. SO<sub>2</sub> 99th Percentile 1-Hour Average (ppb): SPMS 2020-2024

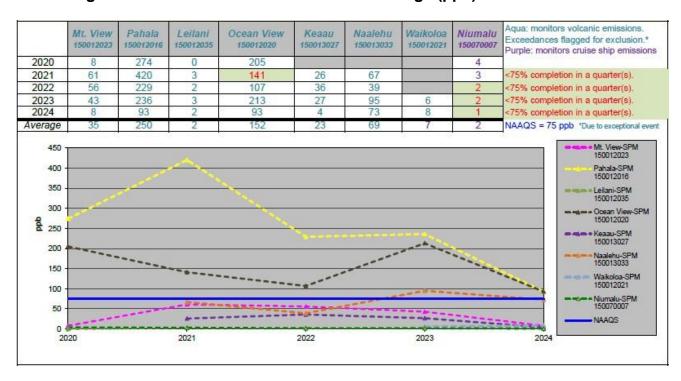



Figure 6-9. PM<sub>2.5</sub> 98<sup>th</sup> Percentile 24-Hour Average (µg/m³): SLAMS 2020-2024

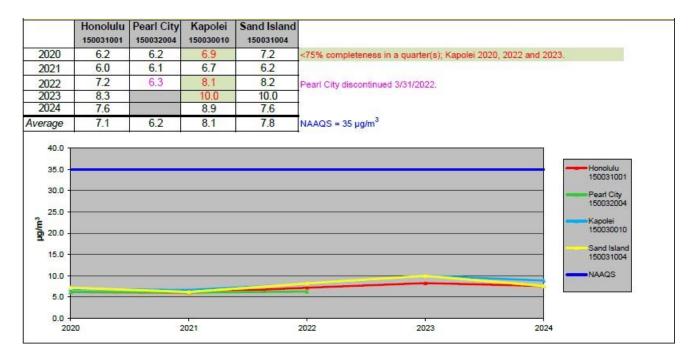



Figure 6-10. PM<sub>2.5</sub> Annual Average (µg/m<sup>3</sup>): SLAMS 2020-2024



Figure 6-11. PM<sub>2.5</sub> 98<sup>th</sup> Percentile 24-Hour Average (µg/m³): SPMS 2020-2024

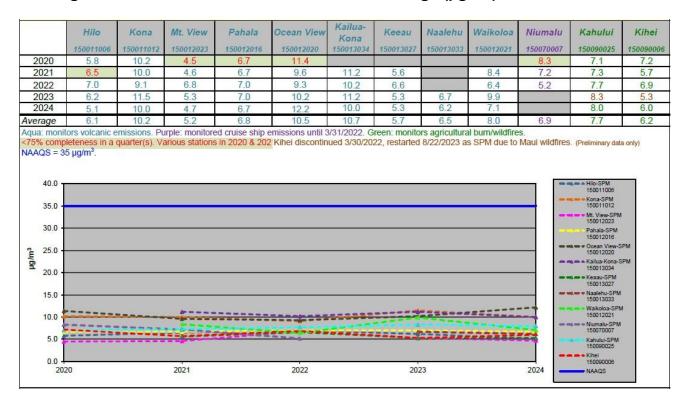



Figure 6-12. PM<sub>2.5</sub> Annual Average (µg/m<sup>3</sup>): SPMS 2020-2024

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hilo<br>150011006 | Kona<br>150011012 | Mt. View<br>150012023 | Pahala<br>150012016 | Ocean View<br>150012020 | Kailua-<br>Kona<br>150013034 | Keeau<br>150013027 | Naalehu<br>150013033 | Waikoloa<br>150012021 | Niumalu<br>150070007 | Kahului<br>150090025               | Kihei<br>150090000 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-----------------------|---------------------|-------------------------|------------------------------|--------------------|----------------------|-----------------------|----------------------|------------------------------------|--------------------|
| 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.5               | 2.0               | 2.0                   | 2.2                 | 2.0                     |                              |                    |                      |                       | 3.0                  | 3.9                                | 2.9                |
| 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.7               | 3.6               | 1.7                   | 2.5                 | 3.5                     | 4.7                          | 2.7                |                      | 1.8                   | 3.2                  | 3.9                                | 2.5                |
| 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.4               | 4.7               | 2.4                   | 3.6                 | 4.6                     | 5.3                          | 2.7                |                      | 2.3                   | 2.3                  | 4.0                                | 2.3                |
| 2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.9               | 3.2               | 2.1                   | 3.6                 | 2.6                     | 3.4                          | 2.5                | 3.0                  | 2.8                   |                      | 4.0                                | 2.3                |
| 2024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.6               | 2.5               | 2.1                   | 3.1                 | 2.0                     | 2.9                          | 2.8                | 2.9                  | 2.4                   |                      | 3.9                                | 2.8                |
| verage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.2               | 3.2               | 2.1                   | 3.0                 | 2.9                     | 4.1                          | 2.7                | 3.0                  | 2.3                   | 2.8                  | 3.9                                | 2.6                |
| 42.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                   |                       |                     |                         |                              |                    |                      |                       |                      | 150011006<br>Kona-SPM<br>150011012 |                    |
| 12.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10.0 • 10 |                   |                   |                       |                     |                         | ******                       |                    |                      |                       |                      | - Kona-SPM                         | PM SPM             |