STATE OF HAWAII ANNUAL SUMMARY 2023 AIR QUALITY DATA

Aerial View of West Oahu, Hawaii

KENNETH S. FINK, MD, MGA, MPH DIRECTOR OF HEALTH KA LUNA HO'OKELE

STATE OF HAWAII DEPARTMENT OF HEALTH KA 'OIHANA OLAKINO SEPTEMBER 2024 JOSH GREEN, M.D. GOVERNOR OF HAWAII KE KIA'ĀINA O KA MOKU'ĀINA 'O HAWAI'I

2023 Hawaii Air Quality Data

Contents

LIST OF TABLESii
LIST OF FIGURESiii
Section 1 INTRODUCTION1
Section 2 DEFINITIONS
Section 3 SITE LOCATIONS AND DESCRIPTIONS7
Section 4 AIR QUALITY DATA
Section 5 PM _{2.5} SPECIATION DATA
Section 6 AMBIENT AIR QUALITY TRENDS

List of Tables

Table

Title

2-1	State of Hawaii and Federal Ambient Air Quality Standards	6
3-1	State of Hawaii Ambient Air Monitoring Network	
3-2	Sampling Equipment at Each Monitoring Station	17
4-1	2023 Summary of the 24-Hour PM ₁₀ Averages	19
4-2	Attainment Determination of the 24-Hour PM ₁₀ NAAQS	
4-3	2023 Summary of the 24-Hour PM2.5 Averages: SLAMS Stations	
4-4	Attainment Determination of the 24-Hour PM2.5 NAAQS: SLAMS Stations	19
4-5	Attainment Determination of the Annual PM2.5 NAAQS: SLAMS Stations	20
4-6	2023 Summary of the 24-Hour PM _{2.5} Averages: SPM Stations	20
4-7	2023 Summary of the 8-Hour O ₃ Averages	21
4-8	Attainment Determination of the 8-Hour O ₃ NAAQS	21
4-9	2023 Summary of the 1-Hour and Annual NO ₂ Averages	21
4-10	Attainment Determination of the 1-Hour NO ₂ NAAQS: SLAMS Stations	22
4-11	2023 Summary of the 1-Hour H ₂ S Averages (State Standard)	22
4-12	2023 Summary of the 1-Hour SO ₂ Averages NAAQS	23
4-13	Attainment Determination of the 1-Hour SO ₂ NAAQS: SLAMS Stations	24
4-14	2023 Summary of the 3-Hour SO ₂ Averages	25
4-15	2023 Summary of the 24-Hour and Annual SO ₂ Averages	26
4-16	2023 Summary of the 1-Hour CO Averages	27
4-17	2023 Summary of the 8-Hour CO Averages	27
4-18	2023 Monthly Maximum of 24-Hour PM ₁₀ Values (µg/m ³)	
4-19	2023 Monthly Maximum of 24-Hour PM _{2.5} Values (µg/m ³)	28
4-20	2023 Monthly Maximum of 1-Hour NO ₂ Values (ppb)	29
4-21	2023 Monthly Maximum of 1-Hour H ₂ S Values (ppb)	
4-22	2023 Monthly Maximum of 1-Hour CO Values (ppm)	
4-23	2023 Monthly Maximum of 8-Hour CO Values (ppm)	29
4-24	2023 Monthly Maximum of 8-Hour O ₃ Values (ppm)	
4-25	2023 Monthly Maximum of 1-Hour SO ₂ Values (ppb)	30
4-26	2023 Monthly Maximum of 3-Hour SO ₂ Values (ppm)	
4-27	2023 Monthly Maximum of 24-Hour SO ₂ Values (ppm)	
5-1	Annual Summary of PM2.5 Speciation Data	
5-2	Speciation Collection and Analysis Methods	35

List of Figures

Figure Title Page 3-1 Island of Oahu Air Monitoring Stations7 3-2 Island of Maui Air Monitoring Stations9 3-3 Island of Hawaii Air Monitoring Stations11 3-4 Island of Kauai Air Monitoring Station......15 6-1 6-2 6-3 6-4 6-5 6-6 6-7 NO₂ Annual Average: 2019-2023 40 6-8 6-9 O₃ Fourth Highest Daily Maximum 8-Hour Average: 2019-2023 41 6-10 CO Maximum 1-Hour Average: 2019-2023 41 CO Maximum 8-Hour Average: 2019-2023 42 6-11

Section 1 INTRODUCTION

The Department of Health, Clean Air Branch, monitors the ambient air in the State of Hawaii for various gaseous and particulate air pollutants. The U.S. Environmental Protection Agency (EPA) has set national ambient air quality standards (NAAQS) for six criteria pollutants: carbon monoxide, nitrogen dioxide, sulfur dioxide, lead, ozone, and particulate matter (PM₁₀ and PM_{2.5}). Hawaii has also established a state ambient air standard for hydrogen sulfide. The primary purpose of the statewide monitoring network is to measure ambient air concentrations of these pollutants and ensure that these air quality standards are met.

In addition to monitoring the ambient air for criteria pollutants, the State of Hawaii also participates in the NCore multi pollutant monitoring network; the NCore station in Hawaii is located at the Kapolei monitoring station. The NCore network addresses the following objectives:

- Timely reporting of data to public by supporting AIRNow, air quality forecasting, and other public reporting mechanisms;
- Support for development of emission strategies through air quality model evaluation and other observational methods;
- Accountability of emission strategy progress through tracking long-term trends of criteria and non-criteria pollutants and their precursors;
- Support for long-term health assessments that contribute to ongoing reviews of the NAAQS;
- Compliance through establishing nonattainment/attainment areas through comparison with the NAAQS;
- Support to scientific studies ranging across technological, health, and atmospheric process disciplines;
- Support to ecosystem assessments recognizing that national air quality networks benefit ecosystem assessments and, in turn, benefit from data specifically designed to address ecosystem analyses; and
- PM_{2.5} speciation monitoring that EPA determined to be essential for establishing a relationship between particle concentrations and adverse health effects and would provide valuable information in characterizing aerosols, determining the effectiveness of control strategies, and understanding the effects of particle pollution on atmospheric and regional haze.

Air pollution is caused by different man-made and natural sources, which include industrial, such as power plants and refineries; mobile, such as cars, trucks, and buses; agricultural burning; and naturally occurring, such as wildfires and volcanic activity. In 2023, the state maintained 17 air monitoring stations statewide. On Oahu, 4 stations measured air emissions from commercial, industrial, and transportation activities. On Maui, 2 stations measure particulates due to impacts from agricultural burning and wildfires. Kauai's 1 monitoring station monitors the air quality impacts from cruise ships.

The majority of the state's monitoring stations are located on the island of Hawaii to provide air quality data to communities impacted by emissions from the volcano and geothermal energy production. Although the state's ambient air monitoring network is reviewed annually, any relocations, additions and/or discontinuations can occur as the need arises.

This report summarizes the validated air pollutant data collected at the 17 monitoring stations during calendar year 2023. Tabular summaries are provided which compare the measured concentrations of criteria pollutants with federal ambient air quality standards and of the state's hydrogen sulfide standard. Particulate speciation data and graphical trend summaries are also included in this report.

The Department of Health has a web site that displays near real-time air quality data collected from the air monitoring stations. The data has not been reviewed for quality assurance and is subject to change but provides the public with viewing access to current air pollutant and meteorological information. To view this data online, go to http://health.hawaii.gov/cab and link to "Hawaii Ambient Air Quality Data."

Additionally, because sulfur dioxide (SO₂) emissions from the Kilauea volcano may affect communities on the island of Hawaii during an eruption, the Department of Health provides a webpage displaying short term SO₂ data (15-minute averages) from the Hawaii island stations. The website also provides an advisory level with guidance to help individuals determine what actions need to be taken to protect against possible health effects. This website can be found at <u>https://air.doh.hawaii.gov/home/text/118</u>.

The 2023 "Hawaii Air Quality Data Book" and books from 2016 through 2022 can be found at: <u>https://health.hawaii.gov/cab/hawaii-air-quality-data-books/</u>

Questions or comments regarding data in this report and other air quality information can be emailed to <u>CAB@doh.hawaii.gov</u> or mailed to:

Clean Air Branch Department of Health 2827 Waimano Home Road #130 Pearl City, HI, 96782

The Department of Health provides access to its programs and activities without regard to race, color, national origin (including language), age, sex, religion, or disability. Write our Affirmative Action Officer at P.O. Box 3378, Honolulu, Hawaii 96801-3378, or call (808)586-4616 (voice) within 180 days of a problem.

Section 2 DEFINITIONS

- 98th Percentile ValueThe PM2.5 24-hour average or the maximum daily 1-hour NO2
average in the year below which 98% of all values fall.
- *99th Percentile Value* The maximum daily 1-hour SO₂ value in the year below which 99% of all values fall.
- Ambient Air The general outdoor atmosphere, external to buildings, to which the general public has access.
- Ambient Air Quality Standard A limit in the quantity and exposure to pollutants dispersed or suspended in the ambient air. Primary standards are set to protect public health, including sensitive populations such as asthmatics, children, and the elderly. Secondary standards are set to protect public welfare including protection against visibility degradation, and damage to animals, crops, vegetation and buildings.
- Carbon Monoxide Carbon monoxide (CO) is a colorless, odorless, tasteless gas under atmospheric conditions. It is produced by the incomplete combustion of carbon fuels with the majority of emissions coming from transportation sources.
- *CFR* Code of Federal Regulations is the codification of the general and permanent rules published in the Federal Register by the executive departments and agencies of the Federal government. Title 40 is the Protection of the Environment.
- Collocated This is a procedure required for a certain percentage of PM₁₀ and PM_{2.5} samplers in the monitoring network. Collocated samplers determine precision or variation in the PM₁₀ or PM_{2.5} concentration measurements of identical samplers run in the same location under the same sampling conditions.
- *Criteria Pollutants* These are the six pollutants for which the EPA has established national air quality standards. The pollutants are ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide, lead and particulate matter (PM₁₀ and PM_{2.5}).
- DRR Data Requirements Rule for 1-hour SO₂ NAAQS.

EPA	The U.S. Environmental Protection Agency; established to protect human health and the natural environment.	
Hydrogen Sulfide	Hydrogen sulfide (H ₂ S) is a toxic, colorless gas with a characteristic "rotten egg" odor detectable at very low levels. It occurs naturally during the decomposition of organic matter, near geothermal sources and is also produced during certain industrial processes, including wastewater treatment facilities.	
Micron	One micron is one millionth of a meter or approximately 1/25,000 of an inch.	
μg/m³	Micrograms per cubic meter. This is the measurement of air quality expressed as mass per unit volume.	
NAAQS	National Ambient Air Quality Standards. These are pollutant standards that the EPA has established to protect public health and welfare. NAAQS have been set for carbon monoxide, nitrogen dioxide, PM_{10} , $PM_{2.5}$, ozone, sulfur dioxide, and lead. These are commonly referred to as criteria pollutants.	
NCore	A multi-pollutant network that integrates several advanced measurement systems for particles, pollutant gases and meteorology. Most NCore stations have been operating since the formal start of the network on January 1, 2011, including Hawaii's.	
Nitrogen Dioxide	Nitrogen dioxide (NO_2) is a brownish, highly corrosive gas with a pungent odor. It is formed in the atmosphere from emissions of nitrogen oxides (NO_x) . Sources of nitrogen oxides include electric utilities, industrial boilers, motor vehicle exhaust and combustion of fossil fuels. NO_2 is also a component in the atmospheric reaction that produces ground-level ozone.	
Ozone	Ozone (O ₃) is the main constituent in photochemical air pollution. It is formed in the atmosphere by a chemical reaction of nitrogen oxides (NO _x) and volatile organic compounds (VOCs) in the presence of sunlight. In the upper atmosphere, O ₃ shields the earth from harmful ultraviolet radiation; however, at ground level, it can cause harmful effects in humans and plants.	

Particulate Matter	This refers to any solid or liquid matter dispersed in the air. Particulate matter (PM) includes dust, soot, smoke, and liquid droplets from sources such as factories, power plants, motor vehicles, construction, agricultural activities, and fires.
PM ₁₀	Particulate matter that is 10 microns or less in aerodynamic diameter. These are considered "coarse" particles, generally from sources such as road and windblown dust, and crushing and grinding operations.
PM _{2.5}	Particulate matter that is 2.5 microns or less in aerodynamic diameter. Considered "fine" particles, these are generally a result of fuel combustion such as from motor vehicles, utility generation and industrial facilities. Fine particles can also be formed when gases, such as sulfur dioxide and nitrogen dioxide, are chemically transformed into particles.
ppb	Parts per billion is one particle in 1,000,000,000 other particles.
ppm	Parts per million is one particle in 1,000,000 other particles. It is approximately one drop in 13 gallons.
SLAMS	State and Local Air Monitoring Stations. The Clean Air Act requires that every state establish a network of air monitoring stations for criteria pollutants.
SPM	Special Purpose Monitoring stations. These are stations established to provide data for special studies in support of air program interests and activities. SPM stations supplement the SLAMS network as special circumstances require and adequate resources permit.
Sulfur Dioxide	Sulfur dioxide (SO ₂) is a colorless gas that easily combines with water vapor forming sulfuric acid. Emissions of sulfur dioxide are largely from sources that burn fossil fuels such as coal and oil. In Hawaii, another possible major source of sulfur dioxide emissions is from any active eruption of Kilauea Volcano on the Big Island.
Vog	Vog is a local term used to express volcanic smog. Vog occurs when volcanic gas and particles combine with air and sunlight to produce atmospheric haze.

Table 2-1 State and Federal Ambient Air Quality Standards

Air	Averaging	Standards		
Pollutant	Averaging Time	Hawaii State Standard	Federal Primary Standard ^a	Federal Secondary Standard ^b
Carbon Monoxide	1-hour	9 ppm	35 ppm	None
(CO)	8-hour	4.4 ppm	9 ppm	None
Nitrogen Dioxide	1-hour		100 ppb	
(NO ₂)	Annual	0.04 ppm	53 ppb	0.053 ppm
PM10	24-hour	150 µg/m³	150 µg/m³	
F W 110	Annual ^c	50 µg/m³		
PM2.5	24-hour		35 µg/m³	35 µg/m³
P W12.5	Annual		12 µg/m³	15 µg/m³
Ozone (O ₃)	8-hour	0.08 ppm	0.070 ppm	0.070 ppm
	1-hour		75 ppb	
Sulfur Dioxide	3-hour	0.5 ppm		0.5 ppm
(SO ₂)	24-hour	0.14 ppm		
	Annual	0.03 ppm		
Lead (Pb)	Rolling 3-month	1.5 µg/m ^{3 d}	0.15 μg/m ³	0.15 μg/m³
Hydrogen Sulfide	1-hour	25 ppb	None	None

Sources: State standards HAR §11-59; Federal standards 40 CFR Part 50

^a *Primary Standards* set limits to protect public health, including the health of "sensitive" populations such as asthmatics, children and the elderly.

^b **Secondary Standards** set limits to protect public welfare, including protection against decreased visibility, damage to animals, crops, vegetation, and buildings.

^C Due to a lack of evidence linking health problems to long-term exposure to coarse particle pollution, EPA revoked the annual PM₁₀ standard effective December 17, 2006. However, the state still has an annual standard.

^d The state standard is based on calendar quarter.

Compliance with the National Ambient Air Quality Standards

CO 1-hour:	May not be exceeded more than once per year.
CO 8-hour:	May not be exceeded more than once per year.
NO ₂ 1-hour:	The 3-year average of the 98 th percentile daily maximum 1-hour averages must not exceed the standard.
NO ₂ Annual:	Average of all 1-hour values in the year may not exceed the level of the standard.
PM ₁₀ 24-hour:	Must not be exceeded more than one day per year, after compensating for days when monitoring did not occur (estimated number of exceedances).
PM _{2.5} 24-hour:	The 3-year average of the 98 th percentile 24-hour concentrations must not exceed the level of the standard.
PM _{2.5} Annual:	The 3-year average of 24-hour values must not exceed the level of the standard.
Ozone 8-hour:	The 3-year average of the fourth highest daily maximum value must not exceed the level of the standard.
SO ₂ 1-hour:	The 3-year average of the 99 th percentile daily maximum 1-hour averages must not exceed the standard.
SO₂ 3-hour: Lead:	Not be exceeded more than once per year. Average of all 24-hour values in any rolling 3-month period may not exceed the level of the standard.

Section 3 SITE LOCATIONS AND DESCRIPTIONS

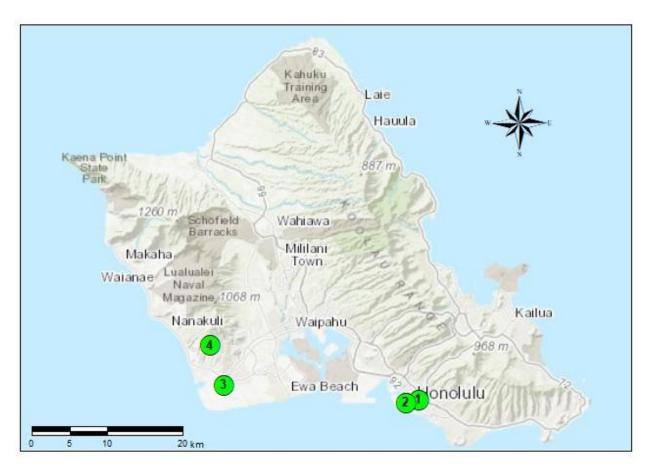
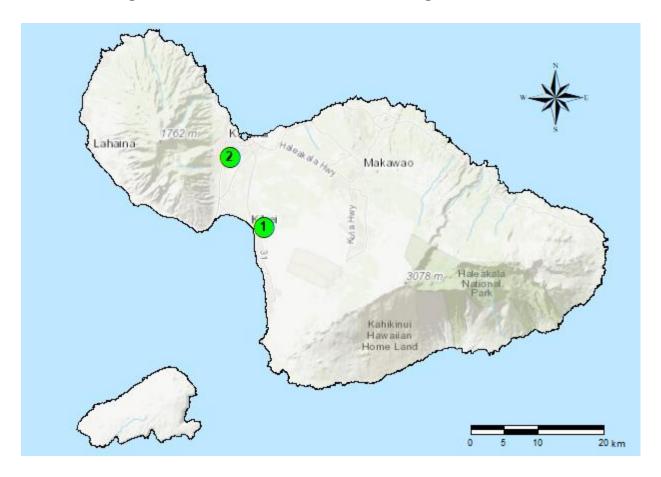


Figure 3-1: Island of Oahu – Air Monitoring Stations

Station	Name	Location	Pollutants/Parameters Monitored
1	Honolulu	1250 Punchbowl Street	CO, SO ₂ , PM _{2.5} , PM ₁₀
2	Sand Island	1039 Sand Island Parkway	O ₃ , PM _{2.5} , PM _{2.5} Collocated
3	Kapolei / NCore	2052 Lauwiliwili Street	NO ₂ / CO $_{trace}$, SO ₂ $_{trace}$, NO/NO _y , O ₃ , PM _{2.5} , PM _{2.5} speciation, PM ₁₀ , PM _{10-2.5} , WS/WD
4	Kahe	Palehua Road	SO ₂

The following station descriptions include latitude and longitude in decimal degrees and altitude in meters above mean sea level.


Honolulu (DH)			
	Location:	1250 Punchbowl St., Honolulu	
	Latitude:	21.30758	
	Longitude:	-157.85542	
	Altitude:	20 m	
	Parameters:	SO ₂ , CO, PM ₁₀ , PM _{2.5}	
	Established:	April 1971	
	Brief Description	:	
	Located in downto	own Honolulu on the roof of the	
		alth building, across from the Queen's	
	Medical Center, in	a busy commercial, business and	
	government distric	ct.	

Kapolei (KA)				
	Location:	2052 Lauwiliwili St., Kapolei		
	Latitude:	21.32374		
	Longitude:	-158.08861		
	Altitude:	17.9 m		
	Parameters:	SO ₂ , CO, NO ₂ , PM ₁₀ , PM _{2.5} ,		
	Farameters.	PM _{2.5} speciation, NCore		
	Established:	July 2002		
	Brief Description	n:		
	Located in Kapole	ei Business Park, southeast of Kapolei		
Fire Station, next to a drainage canal that separ park from Barber's Point. Approximately 1.5 mil		to a drainage canal that separates the		
	Malakole Street in	Campbell Industrial Park.		

Sand Island (SI)				
	Location:	1039 Sand Island Pkwy., Honolulu		
	Latitude:	21.30384		
	Longitude:	-157.87117		
	Altitude:	5.3 m		
	Parameters:	O ₃ , PM _{2.5}		
	Established:	February 1981		
	Brief Description:			
	Located in a light ir	ndustrial, commercial and recreational		
	area approximately	two miles downwind of downtown		
	Honolulu near the	entrance to the Sand Island State		
	Recreation Area.			

Kahe (KE) (Data Requirements Rule)			
	Location:	Palehua Road, Makakilo	
ZI B	Latitude:	21.3678	
	Longitude:	-158.103	
	Altitude:	388 m	
	Parameters:	SO ₂	
	Established:	January 2017	
	Brief Description	ו:	
	Located on the hil	llside south of Palehua Road,	
	approximately 2.7	kilometers northeast of the Kahe	
	Generating Statio	n. The area around the station is	
	undeveloped and	is currently used for cattle grazing.	
	The city of Makak	ilo is located to the east and southeast.	

Figure 3-2: Island of Maui – Air Monitoring Stations

Station	Name	Location	Pollutant Monitored
1	Kihei	Hale Piilani Park	PM _{2.5}
2	Kahului	TMK (2)-3-8-007-153	PM _{2.5}

Kihei (KH)			
	Location:	Hale Piilani Park, Kihei	
	Latitude:	20.780997	
	Longitude:	-156.44637	
	Altitude:	46.5 m	
	Parameters:	PM _{2.5}	
	Established:	February 1999	
	Brief Description:		
		ential community park, next to a recent pment on what was once agricultural	

Kahului (KL)			
The second se	Location:	TMK (2)-3—8-007-153, Kahului	
the second second	Latitude:	20.869444	
	Longitude:	-156.492417	
A PLAN	Altitude:	55.5 m	
	Parameters:	PM _{2.5}	
	Established:	January 2015	
	Brief Description:		
		enced area off Mauilani Parkway, TMK ne area is surrounded primarily by	

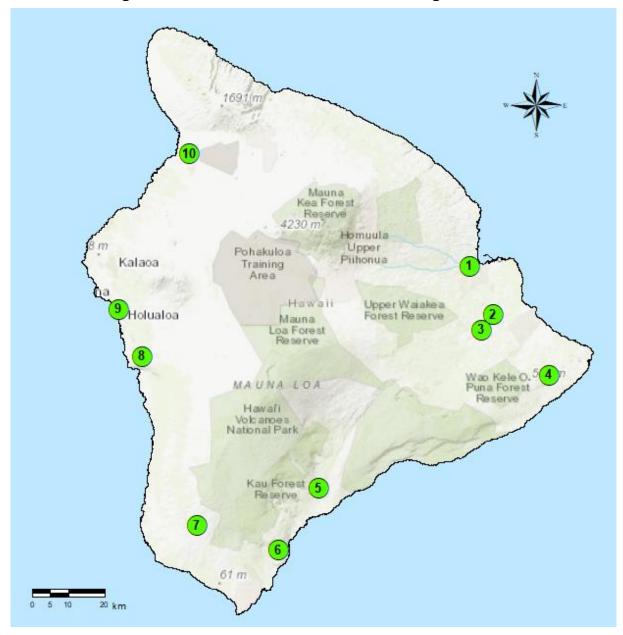


Figure 3-3: Island of Hawaii – Air Monitoring Stations

Station	Name	Location	Pollutants Monitored
1	Hilo	1099 Waianuenue Avenue	SO ₂ , PM _{2.5}
2	Keaau	16-714 Volcano Road	SO ₂ , PM _{2.5}
3	Mountain View	18-1235 Volcano Road	SO ₂ , PM _{2.5}
4	Leilani	13-3441 Moku Street	SO ₂ , H ₂ S
5	Pahala	96-3150 Pikake Street	SO ₂ , PM _{2.5}
6	Naalehu	Naalehu Elementary School	SO ₂ , PM _{2.5}
7	Ocean View	92-6091 Orchid Mauka Circle	SO ₂ , PM _{2.5}
8	Kona	81-1043 Konawaena School Road	SO2, PM2.5
9	Kailua-Kona	DWS Puapua'a Reservoir	PM _{2.5}
10	Waikoloa	TMK 3-6-8-002-019	SO ₂ , PM _{2.5}

	Hilo (HL)	
Constant Charles	Location: 1099 Waianuenue Ave., Hilo	
	Latitude:	19.71756
and the second se	Longitude:	-155.11053
	Altitude:	136.8 m
	Parameters:	SO ₂ , PM _{2.5}
	Established:	January 1997
	Brief Description:	
		e Hilo Medical Center, this station was onitor vog on the east side of the

Kona (KN)			
	Location:	81-1043 Konawaena School Rd.,	
And the second s		Kona	
ALL A COMPANY	Latitude:	19.50978	
	Longitude:	-155.91342	
	Altitude:	517.2 m	
	Parameters:	SO ₂ , PM _{2.5}	
	Established:	September 2005	
	Brief Description:		
	Located on the upper campus of Konawaena High		
	School, this station monitors for vog on the west side of		
	the island of Hawa	aii.	

Mt. View (MV)			
	Location:	18-1235 Volcano Rd., Mt. View	
	Latitude:	19.57002	
the second se	Longitude:	-155.08046	
	Altitude:	436.5 m	
	Parameters:	SO ₂ , PM _{2.5}	
	Established:	December 2010	
	Brief Description:		
		ounds of the Mt. View Elementary	
	School, this station was established to monitor vog		
	during southerly wind conditions.		

Ocean View (OV)			
T	Location:	92-6091 Orchid Mauka Circle,	
		Ocean View	
	Latitude:	19.11756	
	Longitude:	-155.77814	
1	Altitude:	862.6 m	
	Parameters:	SO ₂ , PM _{2.5}	
	Established:	April 2010	
	Brief Description:		
	Located at the Ocean View Fire Station in Hawaii		
	Ocean View Estates, this station monitors for volcanic		
	emissions.		

de la compañía de la comp	2	-	:2	*	
	The Diffe			P	1
			*//		
			- Ad		

Pahala (PA)	
Location:	96-3150 Pikake St., Pahala
Latitude:	19.2039
Longitude:	-155.48018
Altitude:	320 m
Parameters:	SO ₂ , PM _{2.5}
Established:	August 2007
Brief Description	:
Located on the gro	ounds of the Kau High and Pahala
Elementary Schoo	l, this station monitors for volcanic
emissions.	

KAILUA-KONA (KK)			
	Location:	DWS Puapua'a Reservoir, Kailua-	
		Kona	
12. 15	Latitude:	19.61815833	
and the state	Longitude:	-155. 9711111	
	Altitude:	92.4 m	
	Parameters:	PM _{2.5}	
	Established:	November 2018	
	Brief Descriptio	n:	
	This station is in the middle of Kailua-Kona town withi the County of Hawaii's water reservoir and pump		
A AND I SHALL AND A			
	house, monitoring for volcanic emissions.		

KEAAU (KS)			
	Location:	Kamehameha Schools,16-714 Volcano Road, Keaau, HI 96749	
	Latitude:	19.605424	
	Longitude:	-155.051379	
	Altitude:	179.8 m	
	Parameters:	SO ₂ , PM _{2.5}	
	Established:	June 2022	
	Brief Description:		
	This station is in the town of Keaau on the		
		chools Hawaii campus, monitoring for ns during southerly wind conditions.	

Leilani (LE)			
71	Location:	13-3441 Moku St., Pahoa	
A Stranger	Latitude:	19.46555556	
alle alle	Longitude:	-154.91583333	
	Altitude:	229 m	
And Black When the	Parameters:	H ₂ S, SO ₂	
	Established:	June 2021	
	Brief Description:		
	a residential subd	ilani Community Association Center in livision, the station monitors emissions leothermal energy facility.	

N	laalehu (NA)							
	Location:	Naalehu Elementary School, 95- 5547 Mamalahoa Hwy., Naalehu						
	Latitude:	19.060656						
	Longitude:	-155.579167						
	Altitude:	196.3 m						
516 7	Parameters:	SO ₂ , PM _{2.5}						
	Established:	September 2018						
	Brief Description	1:						
	This station is located at the USGS Seismograph building on the campus of Naalehu Elementary S monitoring for volcanic emissions.							

V	/aikoloa (WL)							
	Location:	TMK 3-6-8-002-019, Waikoloa						
	Latitude:	19.977500						
	Longitude:	-155.798056						
	Altitude:	182.9 m						
	Parameters:	SO ₂ , PM _{2.5}						
	Established:	July 2021						
	Brief Description:							
		e County of Hawaii's water tank and						
		roximately 3 km northeast of						
	Waikoloa, this sta	ation monitors for volcanic emissions.						

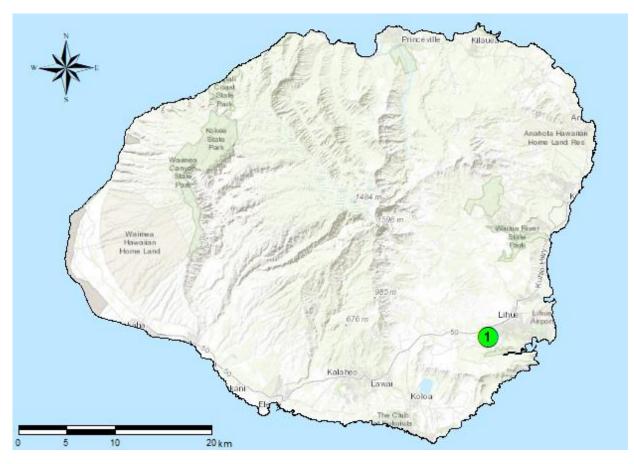


Figure 3-4: Island of Kauai – Air Monitoring Station

Station	Name	Location	Pollutant Monitored
1	Niumalu	2342 Hulemalu Road	SO ₂

	Niumalu (NI)							
and the second s	Location:	2342 Hulemalu Road, Lihue						
	Latitude:	21.9495						
	Longitude:	-159.365						
	Altitude:	11 m						
	Parameters:	SO ₂						
	Established:	April 2011						
	Brief Description:							
	Located in the Niu	malu residential subdivision, this station						
		sions from the cruise ships in Nawiliwili						
	Harbor approxima	tely 1.0 mile upwind.						
The second se								

	Pol	lutants	Monit	ored a	and Sta	tion Ty	уре		
SITE	PM 10	PM2.5	со	O 3	SO ₂	NO ₂	H ₂ S	MONITORING OBJECTIVE	LOCATION SETTING
OAHU									
Honolulu	S	S	S	-	S	-	-	Population Exposure	Urban and Center City
Kapolei ¹	S	S,C	S	S	S	S	-	Population Exposure	Suburban
Sand Island	-	S,C	-	S	-	-	-	Maximum Concentration (O ₃)/ Transport (PM _{2.5})	Urban and Center City
Kahe ²	-	-	-	-	S	-	-	Source Impact (DRR)	Neighborhood
ΜΑυΙ									
Kihei ³	-	SPM	-	-	-	-	-	Population Exposure	Suburban
Kahului	-	SPM	-	-	-	-	-	Population Exposure	Neighborhood
HAWAII									
Hilo	-	SPM	-	-	S	-	-	Population Exposure	Suburban
Kona	-	SPM	-	-	S	-	-	Population Exposure (SO ₂)/	Suburban
					-			Maximum concentration (PM _{2.5})	
Mountain View	-	SPM	-	-	SPM	-	-	Source Impact	Suburban
Ocean View	-	SPM	-	-	SPM	-	-	Welfare Impact (SO ₂)/	Rural
								Source Impact (PM _{2.5})	
Pahala	-	SPM	-	-	SPM	-	-	Maximum concentration (SO ₂)/	Rural
								Source Impact (PM _{2.5})	
Kailua-Kona	-	SPM	-	-	-	-	-	Source Impact	Suburban
Keaau	-	SPM	-	-	SPM	-	-	Source Impact	Suburban
Leilani	-	-	-	-	SPM	-	SPM	Source Impact (geothermal)	Rural
Naalehu	-	SPM	-	-	SPM	-	-	Source Impact	Rural
Waikoloa ⁴	-	SPM	-	-	SPM	-	-	Source Impact	Rural
KAUAI									
Niumalu	-	-	-	-	SPM	-	-	Source Impact (cruise ships)	Suburban

Table 3-1 State of Hawaii Ambient Air Monitoring Network

S = (SLAMS) State and Local Air Monitoring Station C = Collocated Site

SPM = Special Purpose Monitoring Station (for monitoring vog, geothermal energy production and cruise ships)

¹ Includes NCore station.

 ² As required by the Data Requirements Rule.
 ³ The Kihei station was discontinued in March of 2022 but restarted on August 22, 2023 for purposes of monitoring the impacts from wildfires. *Data is* preliminary.

⁴ Monitoring for SO₂ began on 12/8/2022 at the Waikoloa station.

Table 3-2 Sampling Equipment at Each Monitoring Station

Monitoring Station	PM ₁₀ Continuous Ambient Particulate Monitor	PM _{2.5} Manual Particulate Monitor	PM _{2.5} Continuous Monitor	CO Continuous Gas Filter Correlation Analyzer	SO ₂ Continuous Pulsed Fluorescence Ambient Air Analyzer	O₃ Continuous UV Photometric Analyzer	NO₂ Continuous Chemiluminescence Analyzer	H₂S Continuous Pulsed Fluorescence Ambient Air Analyzer
OAHU								
Honolulu			_		_			
Kapolei								
Sand Island			•			•		
MAUI								
Kihei			•					
Kahului			•					
HAWAII								
Hilo					•			
Kona								
Mt. View								
Ocean View					-			
Pahala					-			
Kailua-Kona								
Keaau					-			
Leilani					•			•
Naalaehu					•			
Waikoloa								
KAUAI Niumalu								

• The Kihei station was discontinued in March of 2022 but restarted on August 22, 2023 for purposes of monitoring the impacts from wildfires. *Data is preliminary*.

▲ Monitoring for SO₂ began on 12/8/2022 at the Waikoloa station.

Section 4 AIR QUALITY DATA

To protect the state's air quality from degradation, the Department of Health's Clean Air Branch is responsible for regulating and monitoring pollution sources to ensure that the levels of criteria pollutants remain well below the state and federal ambient air quality standards. Data collected from the ambient air network is validated and audited to ensure that the reported data is of good quality and meets all quality control and assurance requirements.

In 2023 the State of Hawaii was in attainment of all NAAQS.

Description of Summary Tables 4-1 through 4-17:

- Summaries are by pollutant and averaging period, with the number of occurrences exceeding the NAAQS;
- Table 4-11, provides the number of exceedances of the state's H₂S standard (there is no federal H₂S standard);
- The "Maximum" is the highest and second highest valid values recorded in the year for the averaging period;
- For PM_{2.5}, the maximum and 98th percentile concentrations are provided;
- For O₃, the 4th highest daily maximum value is also displayed;
- The "Annual Mean" is the arithmetic mean of all valid values recorded in the year;
- "Possible Periods" is the total number of possible sampling periods in the year for the averaging period;
- "Valid Periods" is the total number of acceptable sampling periods after data validation;
- "Percent Recovery" represents the amount of quality data reported;
- Attainment with the NAAQS is determined according to 40 CFR 50.

Description of Tables 4-18 through 4-27:

- For each pollutant and averaging period, the highest concentration for each month is presented;
- The month with the highest value recorded in the year for each site is highlighted.

	Maxi	mum	Annual Mean		No. of 24-Hour Averages Greater than 150 $\mu\text{g/m}^3$													
	1 st High	2 nd High	All Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
OAHU																		
Honolulu ¹	33	28	12.4	0	0	0	0	0	0	0	0	0	0	0	0	365	365	100.0%
Kapolei ¹	76	46	16.7	0	0	0	0	0	0	0	0	0	0	0	0	365	328	89.9%

Table 4-1. 2023 Summary of the 24-Hour PM₁₀ Averages

¹ Data recovery was <75% in 2nd quarter.

Table 4-2. Attainment Determination of the 24-Hour PM₁₀ NAAQS

Station	Exceedances in 2021	Exceedances in 2022	Exceedances in 2023	Sites in Violation of the NAAQS									
Honolulu	0	0	0	0									
Kapolei	0	0	0	0									
	Attainment: The standard not to be exceeded more than once per year on average over 3 years. In 2023, Hawaii was in attainment with the 24-hour PM ₁₀ NAAQS.												

Table 4-3. 2023 Summary of the 24-Hour PM_{2.5} Averages: SLAMS Stations

	Maxi	mum	Annual Mean		No. of 24-Hour Averages Greater than 35 μ g/m ³													
	1 st High	98 th %	All Hours	Jan	an Leob I Mar I Anr I May I lun I lul I Aug I Son I Oct I Nov I Doc I								Possible Periods	Valid Periods	Percent Recovery			
OAHU																		
Honolulu	22.0	9.0	4.2	0	0	0	0	0	0	0	0	0	0	0	0	365	365	100%
Kapolei ¹	15.8	10.0	4.4	0	0	0	0	0	0	0	0	0	0	0	0	365	328	89.9%
Sand Island	42.0 ²	10.0	3.7	1	0	0	0	0	0	0	0	0	0	0	0	365	356	97.5%

¹ Data recovery was <75% in 2nd quarter, valid periods supplemented by collocated monitor, providing an additional 8 back-up sampling periods – design value valid for attainment determination.

² Due to New Year's fireworks celebration.

Table 4-4. Attainment Determination of the 24-Hour PM_{2.5} NAAQS: SLAMS Stations

Station	2021 98th Value	2022 98th Value	2023 98th Value	3-Year Average	Sites in Violation of the NAAQS							
Honolulu	5.9	7.2	8.3	7	0							
Kapolei	6.7	8.1	9.3	8	0							
Sand Island	6.2	8.2	10.0	8	0							
Attainment: The 3-year average of the 98 th percentile values must be less than or equal to 35 µg/m ³ ; design values are calculated to the nearest µg/m ³ .												
In 2023, Hawaii was in attainment with the 24-hour PM2.5 NAAQS.												

Station	2021 Annual Average	2022 Annual Average	2023 Annual Average	3-Year Average	Sites in Violation of the NAAQS							
Honolulu	2.9	3.3	4.1	3.4	0							
Kapolei	2.9	3.8	4.4	3.7	0							
Sand Island	3.3	3.7	3.9	3.6	0							
Attainment: The 3-year average of annual mean values must be less than 12 µg/m ³ ; design values are calculated to the nearest 0.1 µg/m ³ . In 2023, Hawaii was in attainment with the annual PM _{2.5} NAAQS.												

Table 4-5. Attainment Determination of the Annual PM_{2.5} NAAQS: SLAMS Stations

	Maxi	mum	Annual Mean			No. of	24-H	our Av	erage	es Gre	eater tl	han 35	5 μg/m	3				
	1 st High	98 th %	All Hours	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
HAWAII																		
Hilo	10.1	6.2	3.2	0	0	0	0	0	0	0	0	0	0	0	0	365	343	94.0%
Kona	18.7	11.5	3.2	0	0	0	0	0	0	0	0	0	0	0	0	365	360	98.6%
Mt. View	20.0	5.3	2.1	0	0	0	0	0	0	0	0	0	0	0	0	365	359	98.4%
Ocean View	16.4	10.2	2.6	0	0	0	0	0	0	0	0	0	0	0	0	365	360	98.6%
Pahala	10.2	7.0	3.6	0	0	0	0	0	0	0	0	0	0	0	0	365	359	98.4%
Kailua-Kona	17.6	11.2	3.4	0	0	0	0	0	0	0	0	0	0	0	0	365	360	98.6%
Keaau	8.6	5.3	2.5	0	0	0	0	0	0	0	0	0	0	0	0	365	355	97.3%
Naalehu	11.2	6.7	3.0	0	0	0	0	0	0	0	0	0	0	0	0	365	364	99.7%
Waikoloa	13.0	9.9	2.8	0	0	0	0	0	0	0	0	0	0	0	0	365	357	97.8%
MAUI																		
Kahului	57.2 ¹	8.3	4.0	1	0	0	0	0	0	0	0	0	0	0	0	365	341	93.4%
Kihei ²	6.1	5.3	2.3	-	-	-	-	-	-	-	0	0	0	0	0	132	126	95.5%
	The special purpose stations on Hawaii island were established to monitor ambient air concentrations of PM _{2.5} from volcanic emissions. The special purpose station on Maui was established to monitor air quality impacts from agricultural burning activities.																	

Table 4-6. 2023 Summary of the 24-Hour PM_{2.5} Averages: SPM Stations

¹ Due to New Year's fireworks celebration.

² The Kihei station was discontinued in March of 2022 but restarted on August 22, 2023 for purposes of monitoring the impacts from wildfires. *Data is preliminary*.

	N	laximur	n	Annual Mean	No	. of Da	aily Ma	ximur	n 8-Ho	our Av	erage	es Gre	eater th	nan 0.	070 p	pm			
	1 st High	2 nd High	4 th High	All Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
OAHU																			
Sand Island	0.048	0.046	0.046	0.027	0	0	0	0	0	0	0	0	0	0	0	0	6200	6015	97.0%
Kapolei	0.045	0.044	0.043	0.026	0	0	0	0	0	0	0	0	0	0	0	0	6200	5880	94.8%

Table 4-7. 2023 Summary of the 8-Hour O3 Averages

Table 4-8. Attainment Determination of the 8-Hour O₃ NAAQS

Station	2021 4 th Highest	2022 4 th Highest	2023 4 th Highest	3-Year Average	Sites in Violation of the NAAQS
Sand Island	0.045	0.044	0.046	0.045	0
Kapolei	0.047	0.041	0.043	0.043	0
	3-year average of the an vas in attainment with the second se	5	ximum 8-hour average n	nust be less than or equa	l to 0.070 ppm.

	Max	imum	Annual Mean	No	o. of D	aily M	laximu	um 1-H	lour A	vera	ges G	reater	than	100 p	pb			
	1 st High	98 th %	All Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
OAHU	SLAMS	Station																
Kapolei	34.3	23.2	3.3	0	0	0	0	0	0	0	0	0	0	0	0	8760	8366	95.5%
			AAQS: The annuation of				ceed t	53 ppb.										

Table 4-10.	Attainment	Determination	of the	1-Hour NO ₂ NAAQS
-------------	------------	---------------	--------	------------------------------

Station	2021 98 th Value	2022 98 th Value	2023 98th Value	3-Year Average	Sites in Violation of the NAAQS
OAHU	SLAMS Station				
Kapolei	21.5	23.1	23.2	23	0
	3-year average of the 98 vas in attainment with t	•	•	100 ppb; design values	are rounded to the nearest ppb.

 Table 4-11.
 2023 Summary of the 1-Hour H₂S Averages (State Standard)

	Maxi	mum	Annual Mean			No.	of 1-⊢	lour Av	erages	s Gre	ater th	an 25	ppb					
	1 st High	2 nd High	All Hours	All Hours Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec												Possible Periods	Valid Periods	Percent Recovery
HAWAII				uis Jain reb Ivial Apr Ivial Juin Aug Sep Oct Iviol Dec Periods Periods Periods Recover														
Leilani	2.4	2.4	1.2	0	0	0	0	0	0	0	0	0	0	0	0	8760	8308	94.8%
			es not to exceed 25 eed the state 1-ho		S stand	dard.			•						•		•	

	Maxin	num	Annual Mean			No. o	f 1-Ho	our Av	erage	s Gre	eater t	han 75	5 ppb					
	1 st High	99 th %	All Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
OAHU	SLAMS	Stations	5															
Honolulu	4.8	2.9	1.2	0	0	0	0	0	0	0	0	0	0	0	0	8760	8475	96.7%
Kaplolei/NCore	23.8	11.4	0.2	0	0	0	0	0	0	0	0	0	0	0	0	8760	8377	95.6%
Kahe	62.7	60.3	1.1	0	0	0	0	0	0	0	0	0	0	0	0	8760	8602	98.2%
HAWAII	SPM Sta	ations (s	ee NOTE)															
Hilo ¹	144.3	92.1	1.3	4	0	0	0	0	0	0	0	0	0	0	0	8760	8527	97.3%
Kona ¹	69.0	18.0	1.7	0	0	0	0	0	0	0	0	0	0	0	0	8760	8584	98.0%
Mt. View ¹	132.0	42.9	1.0	1	0	0	0	0	0	0	0	0	0	0	0	8760	8593	98.1%
Ocean View ¹	1,083.4	213.0	3.8	4	0	0	0	0	5	0	0	4	0	0	0	8760	8564	97.8%
Pahala1	293.0	236.1	3.4	12	4	0	0	0	0	0	0	4	0	0	0	8760	8329	95.1%
Keaau ¹	84.7	27.2	0.0	1	0	0	0	0	0	0	0	0	0	0	0	8760	8227	93.9%
Leilani	4.2	2.6	1.1	0	0	0	0	0	0	0	0	0	0	0	0	8760	8308	94.8%
Naalehu ¹	337.5	94.8	2.3	4	1	0	0	0	1	0	0	1	0	0	0	8760	8582	98.0%
Waikoloa ²	11.5	6.2	0.3	0	0	0	0	0	0	0	0	0	0	0	0	8760	8528	97.4%
KAUAI	SPM St	ation (se	e NOTE)															
Niumalu ³	Niumalu ³ 3.0 1.9 0.8						0	0	0	0	0	0	0	0	0	8760	7851	89.6%
Attainment: Th	e 3-year a	verage c	of the 99 th perce	entile va	alues r	nust be	e less	than or	equal	to 75	ppb.					•		

Table 4-12. 2023 Summary of the 1-Hour SO₂ Averages

In 2023, Hawaii was in attainment with the 1-hour SO₂ NAAQS (SLAMS stations only).

NOTE: The SPM stations on Hawaii Island were established to monitor ambient air concentrations of SO₂ from volcanic emissions. Although Hilo and Kona stations are designated SLAMS, high levels of SO₂ attributed to to volcanic emissions is comparable to the NAAQS. Volcanic eruptions are considered natural events, EPA concurrence of an exceptional event demonstration allows the exclusion of data for attainment determinations.

The SPM station on Kauai was established to monitor emissions from cruise ships.

¹ Elevated values due to emissions from eruptions at Halema'uma'u crater on the summit of Kilauea volcano.

² Monitoring for SO₂ began at the Waikoloa station on 12/8/2022.

	2021 99 th Value	2022 99 th Value	2023 99 th Value	3-Year Average	Violation of the NAAQS
OAHU SLAMS				-	N= NO
Stations					Y= YES
Honolulu	1.6	1.6	2.9	2	Ν
Kapolei/NCore	5.8	1.9	11.4	6	Ν
Kahe	44.1	63.1	60.3	56	Ν
HAWAII SPM Stations					
(see NOTE)					
Hilo ¹	26.7	25.3	92.1	48	Ν
Kona ¹	9.5	8.2	18.0	12	Ν
Mt. View ¹	61.4	55.6	42.9	53	Ν
Ocean View ¹	140.5	107.3	213.0	154	Y
Pahala ¹	420.0	229.2	236.1	295	Y
Keaau ¹	44.9	36.1	27.2	36	Ν
Leilani	3.2	2.2	2.6	3	Ν
Naalehu ¹	66.8	39.0	94.8	67	Ν
Waikoloa ²	-	1.5	6.2	4	Ν
KAUAI SPM Station					
(see NOTE)					
Niumalu ³	2.8	1.8	1.9	2	Ν

Table 4-13. Attainment Determination of the 1-Hour SO₂ NAAQS: SLAMS Stations

Attainment: The 3-year average of the 99th percentile values must be less than or equal to 75 ppb; design values are rounded to the nearest ppb. In 2023, Hawaii was in attainment with the 1-hour SO₂ NAAQS (SLAMS stations only).

NOTE: The SPM stations on Hawaii Island were established to monitor ambient air concentrations of SO₂ from volcanic emissions. Although Hilo and Kona stations are designated SLAMS, high levels of SO₂ attributed to to volcanic emissions is comparable to the NAAQS. Volcanic eruptions are considered natural events, EPA concurrence of an exceptional event demonstration allows the exclusion of data for attainment determinations. The SPM station on Kauai was established to monitor emissions from cruise ships.

¹ Elevated values due to emissions from eruptions at Halema'uma'u crater on the summit of Kilauea volcano.

² Monitoring for SO₂ began at the Waikoloa station on 12/8/2022, the 2022 99th value is based on only 24 days of operation during the year.

	Maxi	mum	Annual Mean			No. of	f 3-Ho	our Ave	erages	Gre	ater th	an 0.9	5 ppm					
	1 st High	2 nd High	All Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
OAHU	SLAMS	Station:	6															
Honolulu	0.004	0.003	0.001	0	0	0	0	0	0	0	0	0	0	0	0	2920	2755	94.3%
Kaplolei/NCore	0.015	0.012	0.000	0	0	0	0	0	0	0	0	0	0	0	0	2920	2733	93.6%
Kahe	0.042	0.042	0.001	0	0	0	0	0	0	0	0	0	0	0	0	2920	2844	97.4%
HAWAII	SPM St	tations (s	ee NOTE)															
Hilo ¹	0.109	0.095	0.001	0	0	0	0	0	0	0	0	0	0	0	0	2920	2819	96.5%
Kona ¹	0.045	0.023	0.002	0	0	0	0	0	0	0	0	0	0	0	0	2920	2785	95.4%
Mt. View ¹	0.066	0.054	0.001	0	0	0	0	0	0	0	0	0	0	0	0	2920	2786	95.4%
Ocean View ¹	0.413	0.225	0.004	0	0	0	0	0	0	0	0	0	0	0	0	2920	2806	96.1%
Pahala1	0.203	0.196	0.003	0	0	0	0	0	0	0	0	0	0	0	0	2920	2720	93.2%
Keaau ¹	0.032	0.021	0.000	0	0	0	0	0	0	0	0	0	0	0	0	2920	2687	92.0%
Leilani	0.003	0.003	0.001	0	0	0	0	0	0	0	0	0	0	0	0	2920	2726	93.4%
Naalehu ¹	0.153	0.087	0.002	0	0	0	0	0	0	0	0	0	0	0	0	2920	2832	97.4%
Waikoloa ²	0.007	0.007	0.000	0	0	0	0	0	0	0	0	0	0	0	0	2920	2803	96.0%
KAUAI	SPM St																	
Niumalu ³	0.002	0.002	0.001	0	0	0	0	0	0	0	0	0	0	0	0	2920	2506	85.8%

Table 4-14. 2023 Summary of the 3-Hour SO₂ Averages

Attainment: 3-hour values not to exceed 0.5 ppm more than once per year.

In 2023, Hawaii was in attainment with the 3-hour SO₂ NAAQS.

NOTE: The SPM stations on Hawaii Island were established to monitor ambient air concentrations of SO₂ from volcanic emissions. Although Hilo and Kona stations are designated SLAMS, high levels of SO₂ attributed to to volcanic emissions is comparable to the NAAQS. Volcanic eruptions are considered natural events, EPA concurrence of an exceptional event demonstration allows the exclusion of data for attainment determinations.

The SPM station on Kauai was established to monitor emissions from cruise ships.

¹ Elevated values due to emissions from eruptions at Halema'uma'u crater on the summit of Kilauea volcano.

² Monitoring for SO₂ began at the Waikoloa station on 12/8/2022.

	Maxi	mum	Annual Mean			No. of	24-H	our Ave	erages	Grea	ater tha	an 0.14	4 ppm					
	1 st High	2 nd High	All Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
OAHU	SLAMS	Stations	5															
Honolulu	0.002	0.002	0.001	0	0	0	0	0	0	0	0	0	0	0	0	365	350	95.9%
Kaplolei/NCore	0.002	0.002	0.000	0	0	0	0	0	0	0	0	0	0	0	0	365	354	97.0%
Kahe	0.012	0.010	0.001	0	0	0	0	0	0	0	0	0	0	0	0	365	364	99.7%
HAWAII	SPM St	tations (s	ee NOTE)															
Hilo ¹	0.033	0.024	0.001	0	0	0	0	0	0	0	0	0	0	0	0	365	360	96.2%
Kona ¹	0.012	0.012	0.002	0	0	0	0	0	0	0	0	0	0	0	0	365	361	98.9%
Mt. View ¹	0.014	0.009	0.001	0	0	0	0	0	0	0	0	0	0	0	0	365	362	99.2%
Ocean View ¹	0.088	0.051	0.004	0	0	0	0	0	0	0	0	0	0	0	0	365	355	97.3%
Pahala1	0.075	0.054	0.003	0	0	0	0	0	0	0	0	0	0	0	0	365	349	95.6%
Keaau ¹	0.010	0.003	0.000	0	0	0	0	0	0	0	0	0	0	0	0	365	341	93.4%
Leilani	0.002	0.002	0.001	0	0	0	0	0	0	0	0	0	0	0	0	365	348	95.3%
Naalehu ¹	0.034	0.027	0.002	0	0	0	0	0	0	0	0	0	0	0	0	365	362	99.2%
Waikoloa ²	0.004	0.003	0.000	0	0	0	0	0	0	0	0	0	0	0	0	365	354	97.0%
KAUAI	SPM St	tation (se	e NOTE)															
Niumalu ³						0	0	0	0	0	0	0	0	0	0	365	324	88.8%
Attainment: 24	-hour val	ues not to	exceed 0.1	4 ppm i	nore th	nan ond	ce per y	year.				•						

Table 4-15. 2023 Summary of the 24-Hour and Annual SO₂ Averages

In 2023, Hawaii was in attainment of the state 24-hour SO₂ standard.

Attainment: Annual average (from SLAMS stations only) not to exceed 0.03 ppm.

In 2023, Hawaii was in attainment of the state annual SO₂ standard.

NOTE: The SPM stations on Hawaii Island were established to monitor ambient air concentrations of SO₂ from volcanic emissions. Hilo and Kona stations are designated as SLAMS, high levels of SO₂ attributed to volcanic emissions is comparable to the NAAQS. Volcanic eruptions are considered a natural event, EPA concurrence of an exceptional event demonstration allows the exclusion of data for attainment determinations.

The SPM station on Kauai was established to monitor emissions from cruise ships.

¹ Elevated values due to emissions from eruptions at Halema'uma'u crater on the summit of Kilauea volcano.

² Monitoring for SO₂ began at the Waikoloa station on 12/8/2022.

Table 4-16. 2023 Summary of the 1-Hour CO Averages

	Maxir	mum	Annual Mean		I	No. of	1-Ho	ur Ave	erages	Grea	ater th	an 35	ppm					
	1 st High	2 nd High	All Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
OAHU	SLAMS	Stations	;															
Honolulu ¹	0.7	0.6	0.2	0	0	0	0	0	0	0	0	0	0	0	0	8760	6987	79.8%
Kapolei/NCore1	0.6	0.5	0.1	0	0	0	0	0	0	0	0	0	0	0	0	8760	7129	81.4%
Attainment: 1-ł In 2023, Hawai							er year		•			•	•				•	

¹ Data recovery was <75% in 3rd quarter.

Table 4-17. 2023 Summary of the 8-Hour CO Averages

	Maxir	num	Annual Mean			No. of	f 8-Ho	our Ave	erage	s Gre	ater th	nan 9	ppm					
	1 st High	2 nd High	All Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
OAHU	SLAMS Stations																	
Honolulu ¹	0.4	0.4	0.2	0	0	0	0	0	0	0	0	0	0	0	0	8755	7024	80.2%
Kapolei/NCore1	0.3	0.3	0.1	0	0	0	0	0	0	0	0	0	0	0	0	8755	7130	81.4%
Attainment: 8-ł In 2023, Hawai							year.		•			•	•					

¹ Data recovery was <75% in 3rd quarter.

Table 4-18. 2023 Monthly Maximum of 24-Hour PM₁₀ Values (µg/m³)

The month with the highest value in the year is highlighted

The state and federal 24-hr PM₁₀ standard is 150 μ g/m³

Station	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Honolulu	24	28	28	22	19	18	21	33	20	13	20	21
Kapolei ¹	40	39	33	25	28	14	44	76	32	22	27	24

The month with the	highest va	lue in the	year is hig	hlighted	TI	he federal 2	24-hr PM _{2.5}	standard	is 35 µg/m³	ł		
Station	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
SLAMS Stations												
Honolulu	22.0	8.4	8.0	6.4	6.0	6.6	8.4	12.7	7.8	4.9	6.4	10.9
Kapolei ¹	15.8	10.3	10.1	7.2	9.3	3.2	7.2	13.3	7.9	10.4	8.6	6.6
Sand Island	42.0 ²	7.5	7.2	8.6	5.1	4.4	10.1	20.7	6.5	5.2	5.4	15.9
Kihei ³	no data	no data	no data	no data	no data	no data	no data	5.6	6.1	4.0	4.6	4.5
SPM Stations												
Kahului	57.2 ²	10.2	8.4	5.6	6.9	5.7	6.2	7.4	6.4	4.3	6.2	5.5
Hilo (volcano)	5.1	5.9	7.4	4.5	5.1	4.9	5.6	10.1	6.7	3.4	4.7	4.1
Kona (volcano)	12.4	7.8	4.9	3.7	5.0	11.1	4.7	6.7	18.7	3.2	2.7	2.8
Mt. View (volcano)	20.0	5.5	6.7	4.3	4.9	3.7	5.1	7.5	4.7	2.7	3.1	7.2
Ocean View (volcano)	10.5	7.8	4.2	3.0	3.3	11.2	4.4	6.3	16.4	3.2	3.0	3.2
Pahala (volcano)	8.9	6.0	5.7	4.5	6.0	5.5	7.0	8.2	7.0	4.3	5.8	10.2
Kailua-Kona (volcano)	12.7	8.4	5.4	3.9	4.9	10.3	5.5	8.9	17.6	3.7	3.5	5.7
Keaau (volcano)	8.6	5.3	6.3	3.7	4.6	4.6	5.2	8.6	5.5	3.1	4.2	4.0
Naalehu (volcano)	7.8	7.5	5.7	4.5	6.0	5.2	6.2	11.2	7.5	4.5	4.9	4.1
Waikoloa (volcano)	13.0	9.5	5.7	4.3	4.6	4.2	4.4	11.2	9.3	2.7	3.7	2.9

Table 4-19. 2023 Monthly Maximum of 24-Hour PM_{2.5} Values (µg/m³)

¹ Data recovery was <75% in 2nd quarter, substitution test valid.
 ² Exceedance was due to New Year's fireworks celebration.

³ The Kihei station was discontinued in March of 2022 but restarted on August 22, 2023 for purposes of monitoring the impacts from wildfires. **Data is preliminary**.

Table 4-20. 2023 Monthly Maximum of 1-Hour NO₂ Values (ppb)

The month with the	e highest v	alue in the	year is high	ghlighted	Tł	ne federal 1	-hour stan	dard for N	O2 is 100 p	pb		
Station	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Kapolei	34.3	22.6	25.9	24.1	17.2	16.2	10.5	12.8	11.5	17.7	18.7	25.6

Table 4-21. 2023 Monthly Maximum of 1-Hour H₂S Values (ppb)

The month with the	e highest v	alue in the	year is hig	ghlighted	Tł	ne state 1-h	our standa	ard for H_2S	is 25 ppb			
Station	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Leilani	1.6	1.8	2.0	2.3	2.4	0.6	0.7	0.9	1.0	1.3	1.3	1.6

Table 4-22. 2023 Monthly Maximum of 1-Hour CO Values (ppm)

The month with the	e highest v	alue in the	year is high	ghlighted	Tł	ne federal 1	-hr CO sta	andard is 3	5 ppm, the	state stan	dard is 9 p	pm
Station	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Honolulu ¹	0.6	0.7	0.5	0.4	0.4	0.5	0.3	0.3	0.0	0.5	0.4	0.5
Kapolei/NCore1	0.6	0.5	0.3	0.3	0.5	0.2	0.1	0.4	0.2	0.4	0.4	0.4

¹ Data recovery was <75% in 3rd quarter.

Table 4-23. 2023 Monthly Maximum of 8-Hour CO Values (ppm)

The month with the highest value in the	vear is highlighted	The federal 8-hr CO standard is 9 ppm, the state standard is 4.4 ppm

	<u> </u>		1									-
Station	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Honolulu ¹	0.3	0.3	0.3	0.3	0.4	0.4	0.3	0.3	0.0	0.2	0.3	0.3
Kapolei/NCore ¹	0.2	0.3	0.2	0.1	0.2	0.1	0.1	0.1	0.1	0.3	0.2	0.2

¹ Data recovery was <75% in 3rd quarter.

Table 4-24. 2023 Monthly Maximum of 8-Hour O₃ Values (ppm)

The month with the	e highest v	alue in the	year is high	ghlighted	Tł	ne federal 8	R-hr O₃ stai	ndard is 0.	070 ppm			
Station	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Sand Island	0.047	0.045	0.049	0.040	0.047	0.038	0.035	0.026	0.031	0.033	0.044	0.043
Kapolei/NCore	0.041	0.039	0.045	0.035	0.039	0.031	0.028	0.025	0.030	0.038	0.044	0.043

Table 4-25. 2023 Monthly Maximum of 1-Hour SO₂ Values (ppb)

The month with the highest value in the year is highlighted

The federal 1-hr SO₂ standard is 75 ppb

Station Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Do												
Station	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
SLAMS Stations												
Honolulu	3.3	1.6	3.2	1.5	1.4	1.4	1.4	1.5	1.6	2.8	2.8	4.8
Kapolei/NCore	0.2	3.5	10.2	19.7	11.2	23.8	4.2	4.1	2.6	7.4	2.5	8.1
Kahe	62.7	54.3	47.4	48.0	38.9	17.0	4.2	3.3	43.6	62.1	60.4	23.5
SPM Stations (see NOTE)	-											
Niumalu ¹ (cruise ships)	1.9	1.6	0.7	1.4	0.6	1.3	3.0	1.5	1.3	2.0	1.3	1.0
Hilo ² (volcano)	144.3	13.0	7.6	10.7	8.4	6.7	10.1	2.8	5.6	3.7	7.8	3.8
Kona ² (volcano)	69.0	5.8	2.0	1.5	1.3	4.9	1.8	1.7	25.7	2.5	2.8	2.5
Mt. View ² (volcano)	132.0	43.6	24.2	2.8	2.2	2.0	2.4	1.8	2.6	3.6	5.4	0.9
Ocean View ² (volcano)	370.7	58.0	15.6	5.3	3.8	427.8	7.2	3.7	1,083.4	3.6	3.3	5.7
Pahala ² (volcano)	293.0	125.9	15.5	12.5	13.8	73.8	16.2	7.6	254.8	10.9	10.7	8.7
Keaau ² (volcano)	84.7	6.7	11.4	0.6	0.1	-0.2	0.3	1.0	0.0	0.8	1.4	1.5
Leilani (volcano)	2.7	3.2	4.2	2.4	2.6	0.6	0.9	1.0	1.3	1.3	1.2	1.7
Naalehu ² (volcano)	178.0	78.3	9.8	8.7	5.8	26.6	5.2	5.9	337.5	9.5	4.9	7.8
Waikoloa ³ (volcano)	7.1	4.1	0.7	0.5	0.4	1.2	0.6	1.2	11.5	1.6	1.2	1.1

NOTE: The SPM stations on Hawaii Island were established to monitor ambient air concentrations of SO₂ from volcanic emissions. Hilo and Kona stations are designated as SLAMS, high levels of SO₂ attributed to volcanic emissions is comparable to the NAAQS. Volcanic eruptions are considered a natural event, EPA concurrence of an exceptional event demonstration allows the exclusion of data for attainment determinations.

¹ Data recovery was <75% in 4th quarter, substitution test valid.

² Elevated values due to emissions from eruptions at Halema'uma'u crater on the summit of Kilauea volcano.

³ Monitoring for SO₂ began at the Waikoloa station on 12/8/2022.

Table 4-26. 2023 Monthly Maximum of 3-Hour SO₂ Values (ppm)

The month with the highest value in the year is highlighted

The state and federal 3-hr SO2 standard is 0.5 ppm

Station	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
SLAMS Stations												
Honolulu	0.003	0.001	0.003	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002	0.004
Kapolei/NCore	0.000	0.003	0.004	0.012	0.004	0.015	0.003	0.003	0.002	0.004	0.001	0.005
Kahe	0.035	0.022	0.026	0.029	0.030	0.006	0.003	0.002	0.026	0.042	0.036	0.015
SPM Stations (see NOTE)												
Niumalu ¹ (cruise ships)	0.002	0.002	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.002	0.001	0.001
Hilo ² (volcano)	0.109	0.010	0.004	0.004	0.006	0.003	0.004	0.003	0.004	0.003	0.003	0.003
Kona ² (volcano)	0.045	0.005	0.002	0.001	0.001	0.005	0.002	0.002	0.023	0.002	0.003	0.002
Mt. View ² (volcano)	0.066	0.025	0.022	0.002	0.001	0.001	0.002	0.001	0.002	0.003	0.004	0.001
Ocean View ² (volcano)	0.216	0.028	0.009	0.004	0.003	0.225	0.006	0.002	0.413	0.003	0.003	0.004
Pahala ² (volcano)	0.203	0.072	0.009	0.007	0.009	0.044	0.011	0.005	0.152	0.008	0.007	0.006
Keaau ² (volcano)	0.032	0.004	0.008	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001
Leilani (volcano)	0.002	0.003	0.003	0.002	0.003	0.000	0.001	0.001	0.001	0.001	0.001	0.002
Naalehu ² (volcano)	0.073	0.038	0.008	0.007	0.004	0.020	0.004	0.005	0.153	0.006	0.004	0.004
Waikoloa ³ (volcano)	0.006	0.003	0.001	0.000	0.000	0.001	0.000	0.001	0.007	0.002	0.001	0.001

NOTE: The SPM stations on Hawaii Island were established to monitor ambient air concentrations of SO₂ from volcanic emissions. Volcanic eruptions are considered natural events.

¹ Data recovery was <75% in 4th quarter, substitution test valid.

² Elevated values due to emissions from eruptions at Halema'uma'u crater on the summit of Kilauea volcano.

³ Monitoring for SO₂ began at the Waikoloa station on 12/8/2022.

Table 4-27. 2023 Monthly Maximum of 24-Hour SO₂ Values (ppm)

The month with the highest value in the year is highlighted

The state 24-hr SO₂ standard is 0.14 ppm

												1
Station	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
SLAMS Stations												
Honolulu	0.002	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002
Kapolei/NCore	0.000	0.001	0.002	0.002	0.001	0.002	0.001	0.001	0.001	0.001	0.000	0.001
Kahe	0.007	0.009	0.008	0.007	0.007	0.001	0.001	0.001	0.006	0.012	0.009	0.003
SPM Stations (see NOTE)												
Niumalu ¹ (cruise ships)	0.002	0.001	0.000	0.001	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Hilo ² (volcano)	0.033	0.004	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
Kona² (volcano)	0.011	0.004	0.001	0.001	0.001	0.003	0.002	0.002	0.012	0.002	0.002	0.002
Mt. View ² (volcano)	0.014	0.008	0.005	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.001
Ocean View ² (volcano)	0.045	0.013	0.004	0.003	0.003	0.051	0.004	0.001	0.088	0.002	0.002	0.002
Pahala ² (volcano)	0.075	0.027	0.004	0.003	0.004	0.013	0.003	0.002	0.054	0.002	0.003	0.002
Keaau ² (volcano)	0.010	0.001	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
Leilani (volcano)	0.002	0.002	0.002	0.002	0.002	0.000	0.001	0.001	0.001	0.001	0.001	0.001
Naalehu ² (volcano)	0.027	0.012	0.005	0.004	0.003	0.005	0.002	0.002	0.034	0.002	0.002	0.002
Waikoloa ³ (volcano)	0.004	0.001	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.001	0.001	0.001

NOTE: The SPM stations on Hawaii Island were established to monitor ambient air concentrations of SO₂ from volcanic emissions. Volcanic eruptions are considered natural events.

¹ Data recovery was <75% in 1st quarter, substitution test valid.

² Elevated values due to emissions from eruptions at Halema'uma'u crater on the summit of Kilauea volcano.

³ Monitoring for SO₂ began at the Waikoloa station on 12/8/2022.

Section 5 PM_{2.5} SPECIATION DATA

Atmospheric aerosols are solid or liquid particles suspended in air that come directly from a variety of sources (primary) or are formed by chemical reactions (secondary). Primary and secondary particles tend to have long lifetimes in the atmosphere and can travel long distances, up to hundreds or perhaps thousands of miles. Sources include dust from roads, construction, and agriculture; combustion particles from motor vehicles, electric utilities and agricultural burning; and particles from natural sources such as the ocean or volcano.

Most of the PM_{2.5} is a combination of the following components: sulfates, nitrates, ammonium, elemental carbon, organic compounds, water and metals. The EPA selected target particulates of interest based on data use objectives, primary constituents of PM_{2.5}, and the capability and availability of current analytical methods.

The filter-based speciation sampler collects samples once every 3 days for analyses performed by an EPA contract laboratory. The speciation sampler is located at the Kapolei NCore monitoring station.

Table 5-1 lists the parameters measured, highest and second highest values recorded in the year, the annual arithmetic mean of all valid samples and the total number of samples collected in the year. Table 5-2 lists the analysis methods for each parameter.

Except for lead, there are no ambient air quality standards for the individual components of speciated PM_{2.5}.

For more information on EPA's speciation program, go to: <u>www.epa.gov/ttn/amtic/speciepg.html</u>

Parameter	1 st High (µg/m³)	2 nd High (µg/m³)	Annual Mean (µg/m ³)	No. of Samples	Percent Recovery
CARBON				•	y
Organic Carbon	3.286	1.312	0.3161	118	98%
Elemental Carbon	0.671	0.359	0.1062	118	98%
METALS					
Aluminum	0.161	0.135	0.0159	114	94%
Antimony	0.031	0.029	0.0007	114	94%
Arsenic	0.000	0.000	0.0000	114	94%
Barium	0.069	0.066	0.0069	114	94%
Bromine	0.002	0.002	0.0001	112	93%
Cadmium	0.021	0.017	0.0010	114	94%
Calcium	0.213	0.207	0.0582	114	94%
Cerium	0.055	0.038	0.0033	114	94%
Cesium	0.039	0.038	0.0030	114	94%
Chlorine	1.715	1.656	0.4770	112	93%
Chromium	0.012	0.011	0.0010	111	92%
Cobalt	0.003	0.002	-0.0002	111	92%
Copper	0.005	0.003	-0.0008	111	92%
Indium	0.032	0.024	0.0022	114	94%
Iron	0.085	0.084	0.0301	111	92%
Lead	0.013	0.012	0.0012	114	94%
Magnesium	0.214	0.172	0.0004	114	94%
Manganese	0.010	0.008	0.0004	114	94%
Nickel	0.010	0.009	0.0022	111	93%
Phosphorus	0.005	0.002	0.0001	114	94%
Potassium	0.089	0.081	0.0234	114	94%
Rubidium	0.005	0.004	0.0003	114	94%
Selenium	0.006	0.004	0.0001	114	94%
Silicon	0.176	0.175	0.0354	114	94%
Silver	0.019	0.017	-0.0002	114	94%
Sodium	1.120	1.034	0.3127	114	94%
Strontium	0.005	0.005	0.0008	114	94%
Sulfur	1.583	0.856	0.2012	114	94%
Tin	0.027	0.024	0.0030	114	94%
Titanium	0.009	0.009	0.0025	114	94%
Vanadium	0.009	0.004	0.0008	114	94%
Zinc	0.097	0.037	0.0051	114	94%
Zirconium	0.022	0.021	0.0011	114	94%

Table 5-1. Annual Summary of PM2.5 Speciation Data

Table 5-1 Continued

Parameter	1 st High (µg/m³)	2 nd High (µg/m³)	Annual Mean (µg/m ³)	No. of Samples	Percent Recovery
IONS					
Ammonium Ion	1.03	0.44	0.028	107	88%
Potassium Ion	0.09	0.09	0.019	107	88%
Sodium Ion	1.14	1.09	0.369	107	88%
Total Nitrate	0.53	0.39	0.168	107	88%
Sulfate	4.38	2.39	0.624	107	88%

Table 5-2. Speciation Collection and Analysis Methods

Parameter	Collection Method	Analysis Method		
Carbon	URG 300N Quartz Filter	Thermal Optical Transmittance		
Metals	Met-One SASS Teflon Filter	Energy Dispersive X-Ray Fluorescence		
lons	Met-One SASS Nylon Filter	Ion Chromatography		

Section 6 AMBIENT AIR QUALITY TRENDS

The following graphs illustrate 5-year trends for PM₁₀, PM_{2.5}, SO₂, NO₂, O₃, and CO from 2019 to 2023 at all SLAMS stations monitoring for those pollutants.

Figures 6-1 and 6-2 are graphs of the PM₁₀ annual and maximum 24-hour averages. PM₁₀ monitoring at the Pearl City station was discontinued on April 6, 2022.

Figure 6-3 is the graph of the $PM_{2.5}$ annual averages. Attainment of the $PM_{2.5}$ 24-hour standard is based on the 98th percentile value at each station, which is depicted in Figure 6-4. $PM_{2.5}$ monitoring at the Pearl City station was discontinued on March 31, 2022. $PM_{2.5}$ monitoring was discontinued at the Kihei station on March 30, 2022 but restarted on August 22, 2023 with the purpose of monitoring impacts from agricultural activities or wildfires.

Figures 6-5 and 6-6 are graphs of the SO₂ annual and maximum 24-hour averages.

Figure 6-7 and 6-8 shows the annual and maximum 1-hour averages of NO₂ compared to the federal NAAQS.

Attainment of the 8-hour ozone standard is achieved by averaging 3 years of the fourth highest daily maximum 8-hour average concentrations, which must not exceed 0.070 ppm. Figure 6-9 is a graph of the fourth highest daily maximum values recorded at the Sand Island and Kapolei ozone monitoring stations in the past five years.

The graphs for 1-hour and 8-hour carbon monoxide (figures 6-10 and 6-11, respectively) represent the maximum 1-hour or 8-hour values recorded in the year.

Criteria pollutant levels remain below state and federal ambient air quality standards at all SLAMS stations in the state.

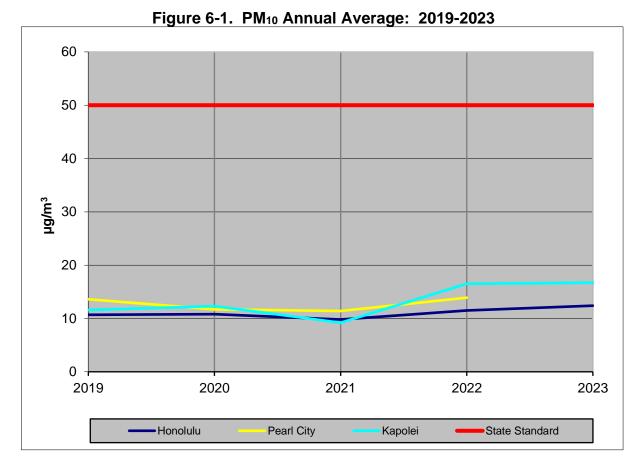
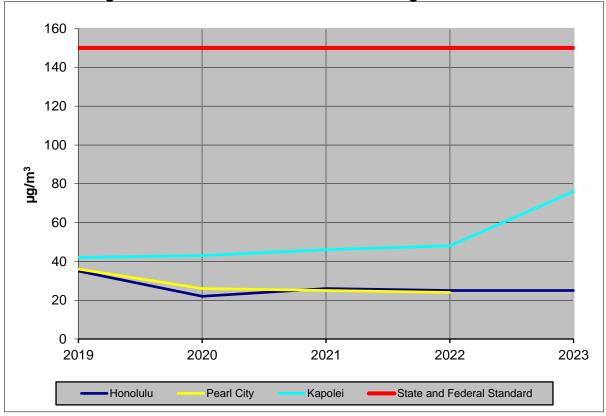



Figure 6-2. PM₁₀ Maximum 24-Hour Average: 2019-2023

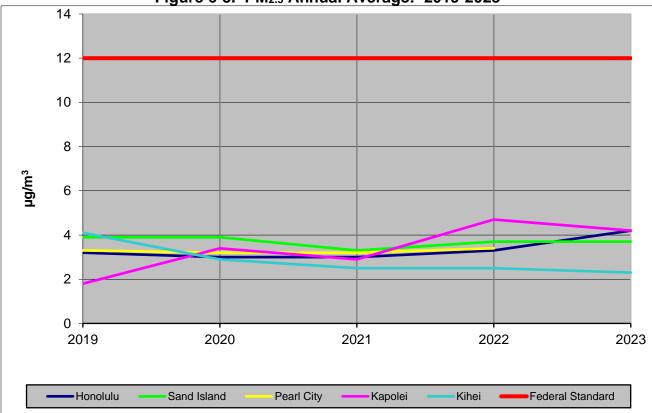
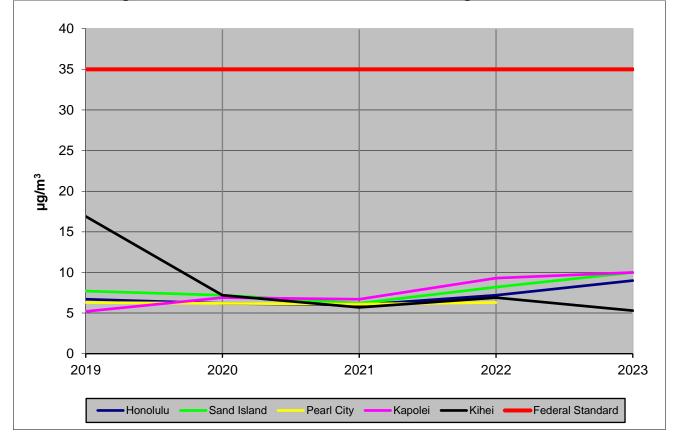



Figure 6-3. PM_{2.5} Annual Average: 2019-2023

Figure 6-4. PM_{2.5} 98th Percentile 24-Hour Average: 2019-2023

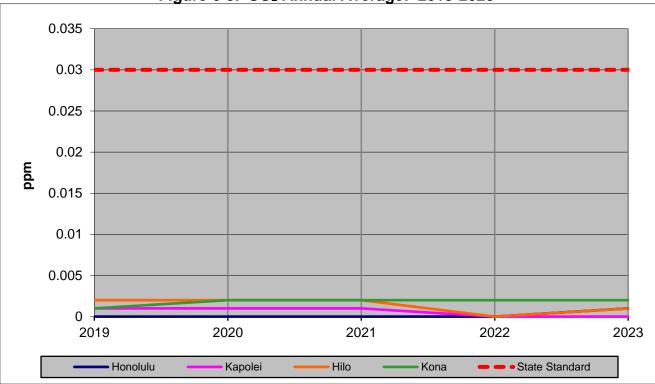
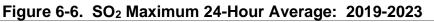
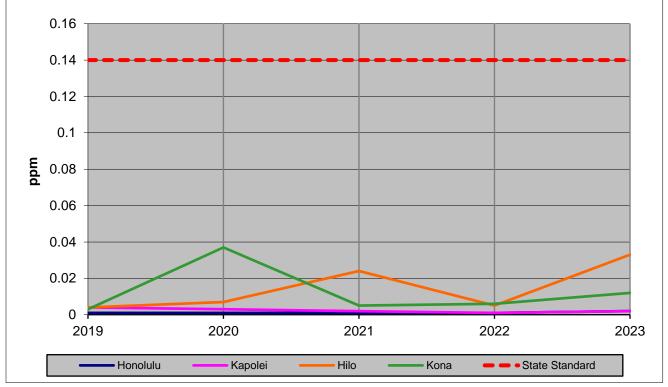




Figure 6-5. SO₂ Annual Average: 2019-2023

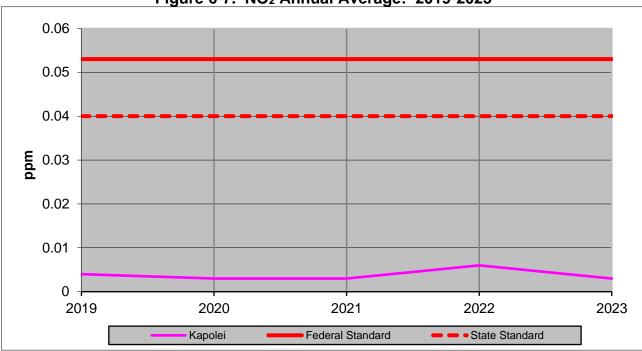
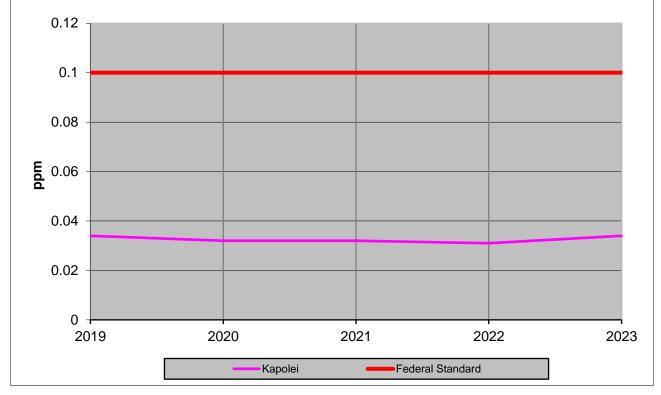



Figure 6-7. NO₂ Annual Average: 2019-2023

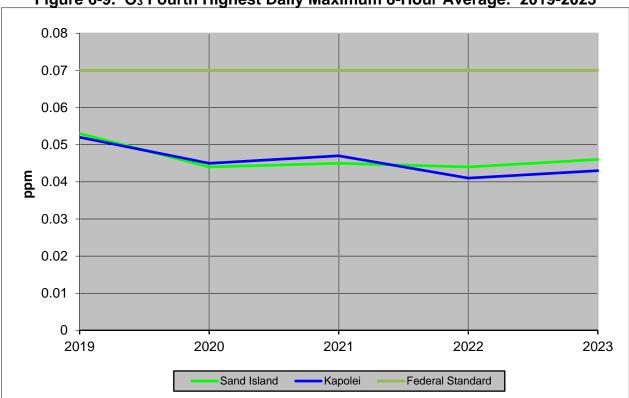
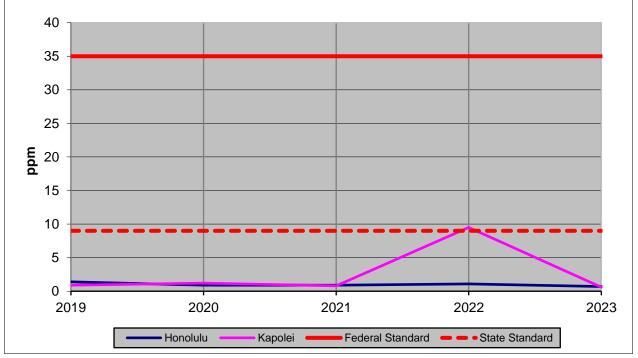



Figure 6-9. O₃ Fourth Highest Daily Maximum 8-Hour Average: 2019-2023

Figure 6-10. CO Maximum 1-Hour Average: 2019-2023

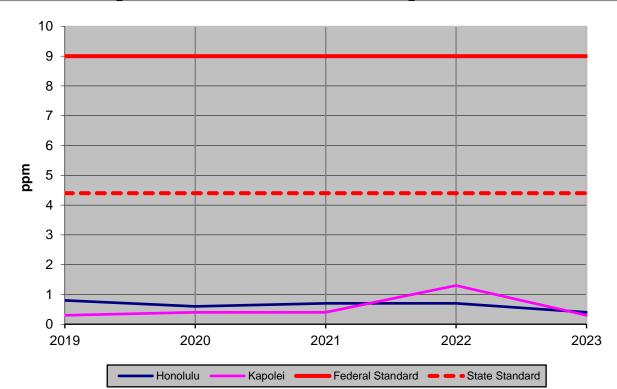


Figure 6-11. CO Maximum 8-Hour Average: 2019-2023