
STATE OF HAWAII ANNUAL SUMMARY 2022 AIR QUALITY DATA

Menehune Fishpond (Alekoko) and Huleia Stream, Kauai, Hawaii

KENNETH S. FINK, MD, MGA, MPH DIRECTOR OF HEALTH KA LUNA HO'OKELE

STATE OF HAWAII DEPARTMENT OF HEALTH KA 'OIHANA OLAKINO SEPTEMBER 2023 JOSH GREEN, M.D. GOVERNOR OF HAWAII KE KIA'ĀINA O KA MOKU'ĀINA 'O HAWAI'I

2022 Hawaii Air Quality Data

Contents

IST OF TABLESi
IST OF FIGURESii
Section 1 NTRODUCTION
Section 2 DEFINITIONS
Section 3 SITE LOCATIONS AND DESCRIPTIONS
Section 4 2022 AIR QUALITY DATA19
Section 5 2022 PM _{2.5} SPECIATION DATA38
Section 6 AMBIENT AIR QUALITY TRENDS38

List of Tables

Table	Title	Page
2-1	State of Hawaii and Federal Ambient Air Quality Standards	6
3-1	State of Hawaii Ambient Air Monitoring Network	
3-2	Sampling Equipment at Each Monitoring Station	
4-1	2022 Summary of the 24-Hour PM ₁₀ Averages	20
4-2	Attainment Determination of the 24-Hour PM ₁₀ NAAQS	
4-3	2022 Summary of the 24-Hour PM _{2.5} Averages: SLAMS Stations	
4-4	Attainment Determination of the 24-Hour PM _{2.5} NAAQS: SLAMS Stations	
4-5	Attainment Determination of the Annual PM _{2.5} NAAQS: SLAMS Stations	
4-6	2022 Summary of the 24-Hour PM _{2.5} Averages: SPM Stations	
4-7	2022 Summary of the 8-Hour O ₃ Averages	23
4-8	Attainment Determination of the 8-Hour O ₃ NAAQS	
4-9	2022 Summary of the 1-Hour and Annual NO ₂ Averages	
4-10	Attainment Determination of the 1-Hour NO ₂ NAAQS: SLAMS Stations	
4-11	2022 Summary of the 1-Hour H ₂ S Averages (State Standard)	
4-12	2022 Summary of the 1-Hour SO ₂ Averages NAAQS	25
4-13	Attainment Determination of the 1-Hour SO ₂ NAAQS: SLAMS Stations	
4-14	2022 Summary of the 3-Hour SO ₂ Averages	27
4-15	2022 Summary of the 24-Hour and Annual SO ₂ Averages	28
4-16	2022 Summary of the 1-Hour CO Averages	
4-17 4-18	2022 Summary of the 8-Hour CO Averages	
4-16 4-19	2022 Monthly Maximum of 24-Hour PM ₁₀ Values (µg/m³)	20
4-19 4-20	2022 Monthly Maximum of 24-Hour PM _{2.5} Values (μg/m ³)	21
4-20 4-21	2022 Monthly Maximum of 1-Hour H ₂ S Values (ppb)	
4-21	2022 Monthly Maximum of 1-Hour CO Values (ppm)	
4-22	2022 Monthly Maximum of 8-Hour CO Values (ppm)	
4-24	2022 Monthly Maximum of 8-Hour O ₃ Values (ppm)	
4-25	2022 Monthly Maximum of 1-Hour SO ₂ Values (pph)	
4-26	2022 Monthly Maximum of 3-Hour SO ₂ Values (ppm)	
4-27	2022 Monthly Maximum of 24-Hour SO ₂ Values (ppm)	
5-1	Annual Summary of PM _{2.5} Speciation Data	
5-2	Speciation Collection and Analysis Methods	
~ -		01

List of Figures

Figure	e Title	Page
3-1	Island of Oahu Air Monitoring Stations	7
3-2	Island of Maui Air Monitoring Stations	10
3-3	Island of Hawaii Air Monitoring Stations	
3-4	Island of Kauai Air Monitoring Station	16
6-1	PM ₁₀ Annual Average: 2018-2022	39
6-2	PM ₁₀ Maximum 24-Hour Average: 2018-2022	39
6-3	PM _{2.5} Annual Average: 2018-2022	40
6-4	PM _{2.5} 98 th Percentile 24-Hour Average: 2018-2022	40
6-5	SO ₂ Annual Average: 2018-2022	41
6-6	SO ₂ Maximum 24-Hour Average: 2018-2022	41
6-7	NO ₂ Annual Average: 2018-2022	42
6-8	NO ₂ Maximum 1-Hour Average: 2018-2022	42
6-9	O ₃ Fourth Highest Daily Maximum 8-Hour Average: 2018-2022	43
6-10	CO Maximum 1-Hour Average: 2018-2022	43
6-11	CO Maximum 8-Hour Average: 2018-2022	44

Section 1 INTRODUCTION

The Department of Health, Clean Air Branch, monitors the ambient air in the State of Hawaii for various gaseous and particulate air pollutants. The U.S. Environmental Protection Agency (EPA) has set national ambient air quality standards (NAAQS) for six criteria pollutants: carbon monoxide, nitrogen dioxide, sulfur dioxide, lead, ozone, and particulate matter (PM₁₀ and PM_{2.5}). Hawaii also established a state ambient air standard for hydrogen sulfide. The primary purpose of the statewide monitoring network is to measure ambient air concentrations for these pollutants and ensure that these air quality standards are met.

In addition to monitoring the ambient air for criteria pollutants, the State of Hawaii participates in the NCore multi pollutant monitoring network; Hawaii's NCore station is located in Kapolei.

Hawaii's ambient air quality network addresses the following objectives:

- Timely reporting of data for the public by supporting AIRNow, air quality forecasting, and other public reporting mechanisms;
- Support the development of emission strategies through air quality model evaluation and other observational methods;
- Accountability of emission strategy progress by tracking long-term trends of criteria and non-criteria pollutants and their precursors;
- Support for long-term health assessments that contribute to ongoing reviews of the NAAQS;
- Compliance through establishing nonattainment/attainment areas through comparison with the NAAQS;
- Support for scientific studies including technological, health, and atmospheric disciplines;
- Support to ecosystem assessments recognizing that national air quality networks benefit ecosystem assessments and, in turn, benefit from data specifically designed to address ecosystem analyses; and
- PM_{2.5} speciation monitoring that EPA determined to be essential for establishing a relationship between particle concentrations and adverse health effects. Additionally, speciation would provide valuable information in characterizing aerosols, determining the effectiveness of control strategies, and understanding the effects of particle pollution on atmospheric and regional haze.

Air pollution is caused by many different man-made and natural sources. There are industrial sources of pollution, such as power plants and refineries; mobile sources, such as cars, trucks, and buses; agricultural sources, such as agricultural burning; and natural sources, such as windblown dust and volcanic activity. In 2022, the state maintained eighteen air monitoring stations on four islands until the end of the first quarter of the year, when the network was reduced to sixteen stations. Most commercial, industrial, and

transportation activities and their associated air quality effects occur on Oahu, where five of the stations are located. The two monitoring stations on Maui measure the air quality impacts from commercial, industrial, transportation and agricultural activities. Ten stations are located on the island of Hawaii to measure air quality impacts from the volcano and geothermal energy production. The remaining monitoring station on Kauai measures the air quality impacts from cruise ships. The state's ambient air monitoring network is reviewed annually and relocations, additions and/or discontinuations can occur in the future as the need arises.

This report summarizes the validated air pollutant data collected at the eighteen monitoring stations during calendar year 2022. Tabular summaries are provided which compare the measured concentrations of criteria pollutants with federal ambient air quality standards and of hydrogen sulfide with the state standard. The 2022 speciation data is also included in this report. Trend summaries of criteria pollutants parameters are shown graphically.

The Department of Health has a web site that displays near real-time air quality data updated throughout the day from the air monitoring stations. The data has not been reviewed for quality assurance and is subject to change but provides the public with viewing access to current air pollutant and meteorological information. To view this data online, go to http://health.hawaii.gov/cab and link to "Hawaii Ambient Air Quality Data."

Additionally, because emissions from the Kilauea volcano may affect communities on the island of Hawaii on a daily basis, the Department of Health has a webpage dedicated to displaying short term SO₂ data from stations located on the island. It provides near real-time 15-minute SO₂ averages and advisory level guidance to help individuals protect themselves against possible health effects. To view this data online, go to https://air.doh.hawaii.gov/home/text/118.

To view this entire book as well as books from 2016 through 2021 online, go to: http://health.hawaii.gov/cab and link to "Hawaii Air Quality Data Book."

Questions or comments regarding data in this report and other air quality information should be addressed to:

Clean Air Branch Phone: (808)586-4200 Department of Health Fax: (808)586-4359

2827 Waimano Home Road #130

Pearl City, HI, 96782

The Department of Health provides access to its programs and activities without regard to race, color, national origin (including language), age, sex, religion, or disability. Write our Affirmative Action Officer at P.O. Box 3378, Honolulu, Hawaii 96801-3378, or call (808)586-4616 (voice) within 180 days of a problem.

Section 2 DEFINITIONS

98th Percentile Value The PM_{2.5} 24-hour average or the maximum daily 1-hour NO₂

average in the year below which 98% of all values fall.

99th Percentile Value The maximum daily 1-hour SO₂ value in the year below

which 99% of all values fall.

Ambient Air The general outdoor atmosphere, external to buildings, to

which the general public has access.

Ambient Air Quality

A limit in the quantity and exposure to pollutants dispersed or suspended in the ambient air. Primary standards are set

or suspended in the ambient air. Primary standards are set to protect public health, including sensitive populations such as asthmatics, children, and the elderly. Secondary standards are set to protect public welfare including protection against visibility degradation, and damage to

animals, crops, vegetation and buildings.

Carbon Monoxide Carbon monoxide (CO) is a colorless, odorless, tasteless

gas under atmospheric conditions. It is produced by the incomplete combustion of carbon fuels with the majority of

emissions coming from transportation sources.

CFR Code of Federal Regulations is the codification of the general

and permanent rules published in the Federal Register by the executive departments and agencies of the Federal

government. Title 40 is the Protection of the Environment.

Collocated This is a procedure required for a certain percentage of PM₁₀

and $PM_{2.5}$ samplers in the monitoring network. Collocated samplers determine precision or variation in the PM_{10} or $PM_{2.5}$ concentration measurements of identical samplers run

in the same location under the same sampling conditions.

Criteria Pollutants These are the six pollutants for which the EPA has

established national air quality standards. The pollutants are ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide,

lead and particulate matter (PM₁₀ and PM_{2.5}).

DRR Data Requirements Rule for 1-hour SO₂ NAAQS.

EPA

The U.S. Environmental Protection Agency; established to protect human health and the natural environment.

Hydrogen Sulfide

Hydrogen sulfide (H₂S) is a toxic, colorless gas with a characteristic "rotten egg" odor detectable at very low levels. It occurs naturally during the decomposition of organic matter, near geothermal sources and is also produced during certain industrial processes, including wastewater treatment facilities.

Micron

One micron is one millionth of a meter or approximately 1/25,000 of an inch.

 $\mu g/m^3$

Micrograms per cubic meter. This is the measurement of air quality expressed as mass per unit volume.

NAAQS

National Ambient Air Quality Standards. These are pollutant standards that the EPA has established to protect public health and welfare. NAAQS have been set for carbon monoxide, nitrogen dioxide, PM₁₀, PM_{2.5}, ozone, sulfur dioxide, and lead. These are commonly referred to as criteria pollutants.

NCore

A multi-pollutant network that integrates several advanced measurement systems for particles, pollutant gases and meteorology. Most NCore stations have been operating since the formal start of the network on January 1, 2011, including Hawaii's.

Nitrogen Dioxide

Nitrogen dioxide (NO₂) is a brownish, highly corrosive gas with a pungent odor. It is formed in the atmosphere from emissions of nitrogen oxides (NO_x). Sources of nitrogen oxides include electric utilities, industrial boilers, motor vehicle exhaust and combustion of fossil fuels. NO₂ is also a component in the atmospheric reaction that produces ground-level ozone.

Ozone

Ozone (O_3) is the main constituent in photochemical air pollution. It is formed in the atmosphere by a chemical reaction of nitrogen oxides (NO_x) and volatile organic compounds (VOC_3) in the presence of sunlight. In the upper atmosphere, O_3 shields the earth from harmful ultraviolet radiation; however, at ground level, it can cause harmful effects in humans and plants.

Particulate Matter

This refers to any solid or liquid matter dispersed in the air. Particulate matter (PM) includes dust, soot, smoke, and liquid droplets from sources such as factories, power plants, motor vehicles, construction, agricultural activities, and fires.

PM₁₀

Particulate matter that is 10 microns or less in aerodynamic diameter. These are considered "coarse" particles, generally from sources such as road and windblown dust, and crushing and grinding operations.

 $PM_{2.5}$

Particulate matter that is 2.5 microns or less in aerodynamic diameter. Considered "fine" particles, these are generally a result of fuel combustion such as from motor vehicles, utility generation and industrial facilities. Fine particles can also be formed when gases, such as sulfur dioxide and nitrogen dioxide, are chemically transformed into particles.

ppb

Parts per billion is one particle in 1,000,000,000 other particles.

ppm

Parts per million is one particle in 1,000,000 other particles. It is approximately one drop in 13 gallons.

SLAMS

State and Local Air Monitoring Stations. The Clean Air Act requires that every state establish a network of air monitoring stations for criteria pollutants.

SPM

Special Purpose Monitoring stations. These are stations established to provide data for special studies in support of air program interests and activities. SPM stations supplement the SLAMS network as special circumstances require and adequate resources permit.

Sulfur Dioxide

Sulfur dioxide (SO₂) is a colorless gas that easily combines with water vapor forming sulfuric acid. Emissions of sulfur dioxide are largely from sources that burn fossil fuels such as coal and oil. In Hawaii, another possible major source of sulfur dioxide emissions is from any active eruption of Kilauea Volcano on the Big Island.

Vog

Vog is a local term used to express volcanic smog. Vog occurs when volcanic gas and particles combine with air and sunlight to produce atmospheric haze.

Table 2-1 State and Federal Ambient Air Quality Standards

Sources: State standards HAR §11-59; Federal standards 40 CFR Part 50

		Standards		
Air Pollutant	Averaging Time	Hawaii State Standard	Federal Primary Standard ^a	Federal Secondary Standard ^b
Carbon Monoxide	1-hour	9 ppm	35 ppm	None
(CO)	8-hour	4.4 ppm	9 ppm	None
Nitrogen Dioxide	1-hour		100 ppb	
(NO ₂)	Annual	0.04 ppm	53 ppb	0.053 ppm
PM ₁₀	24-hour	150 μg/m ³	150 μg/m ³	
PIVI10	Annual ^c	50 μg/m³		
DM	24-hour		35 μg/m ³	35 μg/m³
PM _{2.5}	Annual		12 μg/m ³	15 μg/m³
Ozone (O ₃)	8-hour	0.08 ppm	0.070 ppm	0.070 ppm
	1-hour		75 ppb	
Sulfur Dioxide	3-hour	0.5 ppm		0.5 ppm
(SO ₂)	24-hour	0.14 ppm		
	Annual	0.03 ppm		
Lead (Pb)	Rolling 3-month	1.5 µg/m³ ^d	0.15 μg/m ³	0.15 μg/m ³
Hydrogen Sulfide	1-hour	25 ppb	None	None

Primary Standards set limits to protect public health, including the health of "sensitive" populations such as asthmatics, children and the elderly.

Compliance with the National Ambient Air Quality Standards

CO 1-hour: May not be exceeded more than once per year.

May not be exceeded more than once per year.

May not be exceeded more than once per year.

NO₂ 1-hour: The 3-year average of the 98th percentile daily maximum 1-hour averages must not exceed

the standard.

NO₂ Annual: Average of all 1-hour values in the year may not exceed the level of the standard. PM₁₀ 24-hour: Must not be exceeded more than one day per year, after compensating for days when

monitoring did not occur (estimated number of exceedances).

PM_{2.5} 24-hour: The 3-year average of the 98th percentile 24-hour concentrations must not exceed the level of

the standard.

PM_{2.5} Annual: The 3-year average of 24-hour values must not exceed the level of the standard.

Ozone 8-hour: The 3-year average of the fourth highest daily maximum value must not exceed the level of

the standard.

SO₂ 1-hour: The 3-year average of the 99th percentile daily maximum 1-hour averages must not exceed

the standard.

SO₂ 3-hour: Not be exceeded more than once per year.

Lead: Average of all 24-hour values in any rolling 3-month period may not exceed the level of the

standard.

Secondary Standards set limits to protect public welfare, including protection against decreased visibility, damage to animals, crops, vegetation, and buildings.

^C Due to a lack of evidence linking health problems to long-term exposure to coarse particle pollution, EPA revoked the annual PM₁₀ standard effective December 17, 2006. However, the state still has an annual standard.

^d The state standard is based on calendar quarter.

Section 3 SITE LOCATIONS AND DESCRIPTIONS

Kahuku Training Area 1260 m Schofield Wahiawa Barracks Militani Makaha Town. Lualualei Naval Magazine, 1068 m Nanakuli 968 m onolulu

Figure 3-1: Island of Oahu – Air Monitoring Stations

Station	Name	Location	Pollutants/Parameters Monitored
1	Honolulu	1250 Punchbowl Street	CO, SO ₂ , PM _{2.5} , PM ₁₀
2	Sand Island	1039 Sand Island Parkway	O ₃ , PM _{2.5}
3	Pearl City	860 4th Street	PM _{2.5} , PM ₁₀
4	Kapolei / NCore	2052 Lauwiliwili Street	CO, SO ₂ , NO ₂ / CO _{trace} , SO _{2 trace} , NO/NO _y , O ₃ , PM _{2.5} , PM _{2.5} speciation, PM ₁₀ , PM _{10-2.5} , WS/WD
5	Kahe	Palehua Road	SO ₂

The following station descriptions include latitude and longitude in decimal degrees and altitude in meters above mean sea level.

ionoidiu (DH)		
Location:	1250 Punchbowl St., Honolulu	
Latitude:	21.30758	
Longitude:	-157.85542	
Altitude:	20 m	
Parameters:	SO ₂ , CO, PM ₁₀ , PM _{2.5}	
Established:	February 1971	

Brief Description:

Vanalai (VA)

Located in downtown Honolulu on the roof of the Department of Health building, across from the Queen's Medical Center, in a busy commercial, business and government district.

napolei (na)		
Location:	2052 Lauwiliwili St., Kapolei	
Latitude:	21.32374	
Longitude:	-158.08861	
Altitude:	17.9 m	
Doromotoro	SO ₂ , CO, NO ₂ , PM ₁₀ , PM _{2.5} ,	
Parameters:	PM _{2.5} speciation, NCore	
Established:	July 2002	
Brief Description	A.	

Brief Description:

Located in Kapolei Business Park, southeast of Kapolei Fire Station, next to a drainage canal that separates the park from Barber's Point. Approximately 1.5 miles from Malakole Street in Campbell Industrial Park. Monitoring for SO₂ and CO was discontinued on March 31, 2022, as trace SO₂ and CO is being monitoried at NCore.

reari City (PC)		
Location:	860 4th St., Pearl City	
Latitude:	21.39283	
Longitude:	-157.96913	
Altitude:	23.1 m	
Parameters:	PM ₁₀ , PM _{2.5}	
Established:	May 1979	

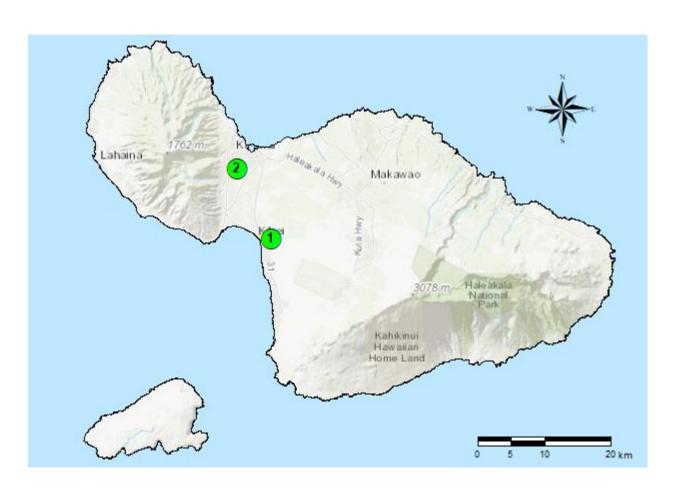
Brief Description:

Located on the roof of the Leeward Health Center in a commercial, residential and light industrial area approximately 1.5 miles northwest of the Waiau power plant and near the Pearl Harbor Naval Complex. This station was shut down on April 6, 2022.

S	Sand Island (SI)		
	Location:	1039 Sand Island Pkwy., Honolulu	
	Latitude:	21.30384	
	Longitude:	-157.87117	
	Altitude:	5.3 m	
	Parameters:	O ₃ , PM _{2.5}	
	Established:	February 1981	

Located in a light industrial, commercial and recreational area approximately two miles downwind of downtown Honolulu near the entrance to the Sand Island State Recreation Area.

Kahe (KE) (Data Requirements Rule)



Location:	Palehua Road, Makakilo
Latitude:	21.3678
Longitude:	-158.103
Altitude:	388 m
Parameters:	SO ₂
Established:	January 2017
Duief Decembries	

Brief Description:

Located on the hillside south of Palehua Road, approximately 2.7 kilometers northeast of the Kahe Generating Station. The area around the station is undeveloped and is currently used for cattle grazing. The city of Makakilo is located to the east and southeast. The areas immediately to the west through north are undeveloped.

Figure 3-2: Island of Maui – Air Monitoring Stations

Station	Name	Location	Pollutants Monitored
1	Kihei	Hale Piilani Park	PM _{2.5}
2	Kahului	TMK (2)-3-8-007-153	PM _{2.5}

Kihei (KH)	
Location:	Hale Piilani Park, Kihei
Latitude:	20.780997
Longitude:	-156.44637
Altitude:	46.5 m
Parameters:	PM _{2.5}
Established:	February 1999
Briof Description:	

Located in a residential community park, next to a recent residential development on what was once agricultural land. PM_{2.5} monitoring was discontinued on March 30, 2022.

Kahului (KL)			
Location:	TMK (2)-3—8-007-153, Kahului		
Latitude:	20.869444		
Longitude:	-156.492417		
Altitude:	55.5 m		
Parameters:	PM _{2.5}		
Established:	January 2016		
Brief Description:			

Located within a fenced area off of Mauilani Parkway, TMK 2-3-8-007-153. The area is surrounded primarily by residential land.

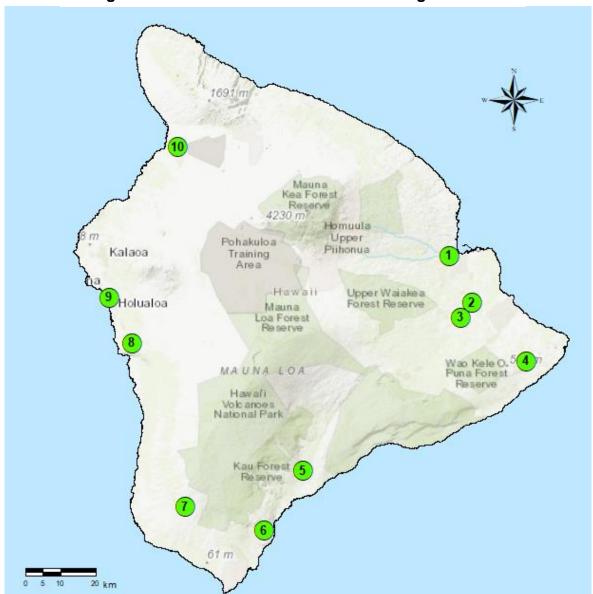


Figure 3-3: Island of Hawaii – Air Monitoring Stations

Station	Name Location		Pollutants Monitored
1	Hilo	1099 Waianuenue Avenue	SO ₂ , PM _{2.5}
2	Keeau	16-714 Volcano Road	SO ₂ , PM _{2.5}
3	Mountain View	18-1235 Volcano Road	SO ₂ , PM _{2.5}
4	Leilani	13-3441 Moku Street	H ₂ S, SO ₂
5	Pahala	96-3150 Pikake Street	SO ₂ , PM _{2.5}
6	Naalehu	Naalehu Elementary School	SO ₂ , PM _{2.5}
7	Ocean View	92-6091 Orchid Mauka Circle	SO ₂ , PM _{2.5}
8	Kona	81-1043 Konawaena School Road	SO ₂ , PM _{2.5}
9	Kailua-Kona DWS Puapua'a Reservoir		PM _{2.5}
10 Waikoloa		TMK 3-6-8-002-019	PM _{2.5}

Hilo (HL)	
Location:	1099 Waianuenue Ave., Hilo
Latitude:	19.71756
Longitude:	-155.11053
Altitude:	136.8 m
Parameters:	SO ₂ , PM _{2.5}
Established:	January 1997
Brief Description	

Located near the Hilo Medical Center, this station was established to monitor vog during "Kona" or southerly wind conditions.

Kona (KN)				
Location:	81-1043 Konawaena School Rd.,			
	Kona			
Latitude:	19.50978			
Longitude:	-155.91342			
Altitude:	517.2 m			
Parameters:	SO ₂ , PM _{2.5}			
Established:	September 2005			
Duief Decemention				

Brief Description:

Located on the upper campus of Konawaena High School, this station monitors for vog on the west side of the island of Hawaii.

It. View (MV)				
Location:	18-1235 Volcano Rd., Mt. View			
Latitude:	19.57002			
Longitude:	-155.08046			
Altitude:	436.5 m			
Parameters:	SO ₂ , PM _{2.5}			
Established:	December 2010			
Brief Description:				

Located on the grounds of the Mt. View Elementary School, this station was established to monitor vog during southerly wind conditions.

ean view (Ov)		
Location:	92-6091 Orchid Mauka Circle,	
	Ocean View	
Latitude:	19.11756	
Longitude:	-155.77814	
Altitude:	862.6 m	
Parameters:	SO ₂ , PM _{2.5}	
Established:	April 2010	
Brief Description:		

This station is located in Hawaii Ocean View Estates at the Ocean View Fire Station and monitors for volcanic emissions.

Pahala (PA)

Location:	96-3150 Pikake St., Pahala	
Latitude:	19.2039	
Longitude:	-155.48018	
Altitude:	320 m	
Parameters:	SO ₂ , PM _{2.5}	
Established:	August 2007	

Brief Description:

The station is on the grounds of the Kau High and Pahala Elementary School, monitoring for volcanic emissions.

KAILUA-KONA (KK)

Location:	DWS Puapua'a Reservoir, Kailua-	
	Kona	
Latitude:	19.61815833	
Longitude:	-155. 9711111	
Altitude:	92.4 m	
Parameters:	PM _{2.5}	
Established:	November 2018	

Brief Description:

This station is located in the middle Kailua-Kona town within a fenced area that contains a County of Hawaii water reservoir and pump house, monitoring for volcanic emissions.

KEEAU (KS)

Location:	Kamehameha Schools,16-714		
	Volcano Road, Keaau, HI 96749		
Latitude:	19.605424		
Longitude:	-155.051379		
Altitude:	179.8 m		
Parameters:	SO ₂ , PM _{2.5}		
Established:	June 2018		

Brief Description:

This temporary station is located in the town of Keaau on the Kamehameha Schools Hawaii campus, monitoring for volcanic emissions during southerly wind conditions.

Leilani (LE)

Location:	13-3441 Moku St., Pahoa		
Latitude:	19.46555556		
Longitude:	-154.91583333		
Altitude:	229 m		
Parameters:	H ₂ S, SO ₂		
Established:	September 2019		
Duit (December (in time			

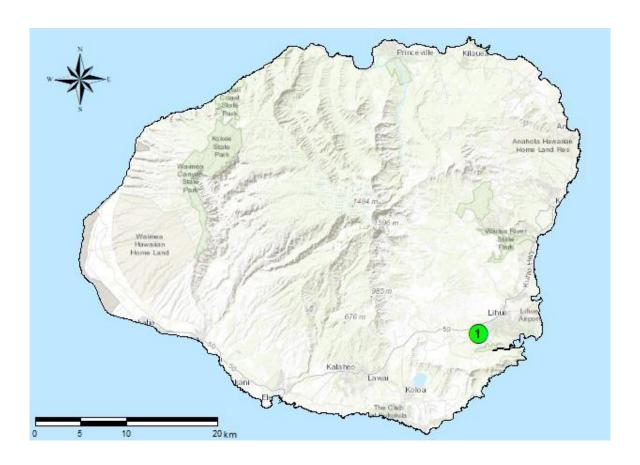
Brief Description:

This station is located in a residential subdivision within a fenced area that contains the Leilani Community Association Center, monitoring emissions from the nearby geothermal energy facility.

Naalehu (NA) Location: Naalehu Elementary School, 955547 Mamalahoa Hwy., Naalehu Latitude: 19.060656 Longitude: -155.579167 Altitude: 196.3 m Parameters: SO₂, PM_{2.5} Established: August 2018

Brief Description:

This station is located at the USGS Seismograph building on the campus of Naalehu Elementary School, monitoring for volcanic emissions.



V	vaikoloa (vvL)				
	Location:	TMK 3-6-8-002-019, Waikoloa			
Latitude: 19.977		19.977500			
Longitude: -155.798056		-155.798056			
	Altitude:	182.9 m			
Parameters: PM _{2.5}		PM _{2.5}			
	Established:	July 2021			

Brief Description:

This temporary station is located within a fenced area that contains a County of Hawaii water tank and pump house, approximately 3 km northeast of Waikoloa, monitoring for volcanic emissions.

Figure 3-4: Island of Kauai – Air Monitoring Station

Stat	ion	Name	Location	Pollutants Monitored
1		Niumalu	2342 Hulemalu Road	SO ₂ , NO ₂ , PM _{2.5}

N	liumalu (NI)	
	Location:	2342 Hulemalu Road, Lihue
	Latitude:	21.9495
	Longitude:	-159.365
	Altitude:	11 m
	Parameters:	SO ₂ , NO ₂ , PM _{2.5}
	Established:	April 2011
	Drief Description	_

Located in the Niumalu residential subdivision, this station monitors for emissions from the cruise ships in Nawiliwili Harbor approximately 1.0 mile upwind. Monitoring for NO₂ and PM_{2.5} was discontinued on March 31, 2022.

Table 3-1 State of Hawaii Ambient Air Monitoring Network

	Pol	lutants	Monit	ored a	and Sta	tion Ty	pe		
SITE	PM ₁₀	PM _{2.5}	СО	O ₃	SO ₂	NO ₂	H ₂ S	MONITORING OBJECTIVE	LOCATION SETTING
OAHU									
Honolulu	S	S	S	-	S	-	-	Population Exposure	Urban and Center City
Kapolei ¹	S	S,C	S	S	S	S	-	Population Exposure	Suburban
Pearl City ²	S ²	S ²	-	-	-	-	-	Population Exposure	Urban and Center City
Sand Island	-	S	-	S	-	-	-	Maximum Concentration (O ₃)/ Transport (PM _{2.5})	Urban and Center City
Kahe ³	-	-	-	-	S	-	-	Source Impact (DRR)	Neighborhood
MAUI									
Kihei ²	-	s	-	-	_	_	-	Population Exposure	Suburban
Kahului	-	SPM	-	-	-	-	-	Population Exposure	Neighborhood
HAWAII									
Hilo	_	SPM	_	_	S	_	_	Population Exposure	Suburban
Kona	_	SPM	-	-	S	_	_	Population Exposure (SO ₂)/	Suburban
110110								Maximum concentration (PM _{2.5})	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mountain View	-	SPM	-	-	SPM	-	-	Source Impact	Suburban
Ocean View	-	SPM	-	-	SPM	-	-	Welfare Impact (SO ₂)/	Rural
								Source Impact (PM _{2.5})	
Pahala	-	SPM	-	-	SPM	-	-	Maximum concentration (SO ₂)/ Source Impact (PM _{2.5})	Rural
Kailua-Kona	-	SPM	-	-	-	_	-	Source Impact	Suburban
Keeau	-	SPM	-	-	SPM	-	-	Source Impact	Suburban
Leilani	-	-	-	-	SPM	-	SPM	Source Impact (geothermal)	Rural
Naalehu	-	SPM ⁴	-	-	SPM	-	-	Source Impact	Rural
Waikoloa	-	SPM	-	-	-	-	-	Source Impact	Rural
KAUAI Niumalu	-	SPM ⁵		-	SPM	SPM ⁵	-	Source Impact (cruise ships)	Suburban

C = Collocated Site

SPM = Special Purpose Monitoring Station (for monitoring vog, geothermal energy production and cruise ships)

S = (SLAMS) State and Local Air Monitoring Station

¹ Includes NCore station.

² PM₁₀ and PM_{2.5} discontinued at Pearl City on April 6, 2022 and March 31, 2023, respectively; Kihei station shut down on March 30, 2022.

³ As required by the Data Requirements Rule.

⁴ PM_{2.5} sampling began at Naalehu on December 2, 2022.

⁵ PM_{2.5} and NO₂ sampling discontinued at Niumalu on March 31, 2022.

Table 3-2 Sampling Equipment at Each Monitoring Station

Monitoring Station	PM ₁₀ Continuous Ambient Particulate Monitor	PM _{2.5} Manual Particulate Monitor	PM _{2.5} Continuous Monitor	CO Continuous Gas Filter Correlation Analyzer	SO ₂ Continuous Pulsed Fluorescence Ambient Air Analyzer	O ₃ Continuous UV Photometric Analyzer	NO ₂ Continuous Chemiluminescence Analyzer	H₂S Continuous Pulsed Fluorescence Ambient Air Analyzer
OAHU Honolulu	•		•	•	•	,		
Kapolei		•	•	•	•	•	•	
Pearl City	•		A					
Sand Island			•			•		
MAUI Kihei			•					
Kahului			•					
HAWAII Hilo			•		•			
Kona			•		•			
Mt. View			•		•			
Ocean View			•		•			
Pahala			•		•			
Kailua-Kona			•					
Keeau			•		•			
Leilani					•			
Naalaehu			•		•			
Waikoloa			•					
KAUAI Niumalu			A		•		A	

- Pearl City PM₁₀ sampling discontinued on April 6, 2022.
 Pearl City and Niumalu PM_{2.5} and Niumalu NO₂ sampling discontinued on March 31, 2022.
- ♦ Kihei PM_{2.5} sampling discontinued on March 30, 2022.

Section 4 2022 AIR QUALITY DATA

To protect the state's air quality from degradation, the Department of Health's Clean Air Branch is responsible for regulating and monitoring air pollution sources to ensure that the levels of criteria pollutants remain well below the state and federal ambient air quality standards. Data collected from the ambient air network is validated by the Clean Air Branch Monitoring Section to ensure that the reported data is of good quality and meets all quality control and assurance requirements.

In 2022 the State of Hawaii was in attainment of all NAAQS.

Explanation of Summary Tables 4-1 through 4-17:

- Summaries are by pollutant and averaging period, with the number of occurrences exceeding the NAAQS or, in Table 4-11, the number of exceedances of the state H₂S standard (there is no federal H₂S standard);
- The "Maximum" is the highest and second highest valid values recorded in the year for the averaging period. For PM_{2.5}, the maximum and 98th percentile concentrations are provided and for O₃, the 4th highest daily maximum value is also displayed;
- The "Annual Mean" is the arithmetic mean of all valid values recorded in the year;
- "Possible Periods" is the total number of possible sampling periods in the year for the averaging period;
- "Valid Periods" is the total number of acceptable sampling periods after data validation;
- "Percent Recovery" represents the amount of quality data reported;
- Attainment with the NAAQS is determined according to 40 CFR 50.

Explanation of Tables 4-18 through 4-27:

- For each pollutant and averaging period, the highest concentration for each month is presented;
- The month with the highest value recorded in the year for each site is highlighted.

20

Table 4-1. 2022 Summary of the 24-Hour PM₁₀ Averages

	Maxi	mum	Annual Mean		N	o. of 2	24-Ho	ur Ave	rages	Grea	ater th	an 15	0 μg/r	n ³				
	1 st High All Hours Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec												Dec	Possible Periods	Valid Periods	Percent Recovery		
OAHU																		
Honolulu ¹	25	23	10.8	0	0	0	0	0	0	0	0	0	0	0	0	365	299	81.9%
Kapolei	Kapolei 48 45 16.5					0	0	0	0	0	0	0	0	0	0	365	351	96.2%
Pearl City ²	City ² 24 22 13.9 0 0 0 0									-	95	80	84.2%					

¹ Does not meet summary criteria, <75% data recovery in 2nd and 3rd quarters.

Table 4-2. Attainment Determination of the 24-Hour PM₁₀ NAAQS

Station	Exceedances in 2020	Exceedances in 2021	Exceedances in 2022	Sites in Violation of the NAAQS
Honolulu	0	0	0	0
Kapolei	0	0	0	0
Pearl City	0	0	0	0

Attainment: The standard not to be exceeded more than once per year on average over 3 years. In 2022, Hawaii was in attainment with the 24-hour PM₁₀ NAAQS.

² Sampling was discontinued on April 6, 2022.

Table 4-3. 2022 Summary of the 24-Hour PM_{2.5} Averages: SLAMS Stations

	Maxi	mum	Annual Mean		i	No. of	24-Ho	ur Ave	rages	Grea	ater th	an 35	μg/m ³	3				
	1 st High	98 th %	All Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
OAHU																		
Honolulu	12.3	7.2	3.3	0	0	0	0	0	0	0	0	0	0	0	0	365	354	97.0%
Kapolei ¹	apolei ¹ 25.9 9.3 4.7					0	0	0	0	0	0	0	0	0	0	365	319	87.4%
Pearl City ²	111			0	0	0	-	ı	-	-	-	-	-	-	-	90	86	95.6%
Sand Island	10.0	8.2	3.7	0	0	0	0	0	0	0	0	0	0	0	0	365	350	95.9%
MAUI																		
Kihei ³	ihei ³ 8.2 6.9 2.5					0	-	-	-	-	-	-	-	-	-	89	86	96.6%

¹ Does not meet summary criteria, <75% data recovery in 1st quarter valid periods supplemented by collocated monitor, providing an additional 15 back-up sampling periods – design value valid for attainment determination.

Table 4-4. Attainment Determination of the 24-Hour PM_{2.5} NAAQS: SLAMS Stations

Station	2020 98th Value	2021 98 th Value	2022 98 th Value	3-Year Average	Sites in Violation of the NAAQS
Honolulu	6.2	6.0	7.2	6.5	0
Kapolei	6.9	6.7	9.3	7.6	0
Pearl City	6.2	6.1	6.3	6.2	0
Sand Island	7.2	6.2	8.2	7.2	0
Kihei	7.2	5.7	6.9	6.6	0
A 44 - 1 Th O		th	at lead to a the second account	L4- OF/3	

Attainment: The 3-year average of the 98th percentile values must be less than or equal to 35 μg/m³. In 2022, Hawaii was in attainment with the 24-hour PM_{2.5} NAAQS.

Table 4-5. Attainment Determination of the Annual PM_{2.5} NAAQS: SLAMS Stations

Station	2020 Annual Avg.	2021 Annual Avg.	2022 Annual Avg.	3-Year Average	Sites in Violation of the NAAQS
Honolulu	3.0	3.0	3.3	3.1	0
Kapolei	3.4	2.9	4.7	3.7	0
Pearl City	3.2	3.2	3.4	3.3	0
Sand Island	3.9	3.3	3.7	3.6	0
Kihei	2.9	2.5	2.5	2.6	0

Attainment: The 3-year average of annual mean values must be less than 12 μ g/m³. In 2022, Hawaii was in attainment with the annual PM_{2.5} NAAQS.

² Sampling was discontinued at Pearl City on March 31, 2022.

³ Sampling was discontinued at Kihei on March 30, 2022.

22

Table 4-6. 2022 Summary of the 24-Hour PM_{2.5} Averages: SPM Stations

	Maxir	mum	Annual Mean			No. of	24-H	our Av	erage	s Gr	eater t	han 35	5 μg/m	3				
	1 st High	98 th %	All Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
HAWAII																		
Hilo	10.5	7.0	3.4	0	0	0	0	0	0	0	0	0	0	0	0	365	324	88.8%
Kona	12.1	9.1	4.7	0	0	0	0	0	0	0	0	0	0	0	0	365	330	90.4%
Mt. View	19.7	6.8	2.4	0	0	0	0	0	0	0	0	0	0	0	0	365	347	95.1%
Ocean View	11.0	9.3	4.6	0	0	0	0	0	0	0	0	0	0	0	0	365	346	94.8%
Pahala	10.1	7.0	3.6	0	0	0	0	0	0	0	0	0	0	0	0	365	357	97.8%
Kailua-Kona	12.3	10.2	5.3	0	0	0	0	0	0	0	0	0	0	0	0	365	337	92.3%
Keeau	11.0	6.6	2.7	0	0	0	0	0	0	0	0	0	0	0	0	365	346	94.8%
Naalehu ¹	5.7	5.7	3.3	-	-	-	-	-	-	-	-	-	-	-	0	30	27	90.0%
Waikoloa	9.0	6.4	2.3	0	0	0	0	0	0	0	0	0	0	0	0	365	347	95.1%
KAUAI																		
Niumalu ²	6.8	5.2	2.3	0	0	0	-	-	-	-	-	-	-	-	-	90	90	100%
MAUI																		
Kahului	13.0	7.7	4.1	0	0	0	0	0	0	0	0	0	0	0	0	365	358	98.1%

The special purpose stations on Hawaii island were established to monitor ambient air concentrations of PM_{2.5} from volcanic emissions. The special purpose station on Kauai was established to monitor emissions from cruise ships. The special purpose station on Maui was established to monitor air quality impacts from commercial, industrial, transportation and agricultural activities.

¹ Sampling began at Naalehu on December 2, 2022.

² Sampling was discontinued at Niumalu on March 31, 2022.

23

Table 4-7. 2022 Summary of the 8-Hour O₃ Averages

	N	Maximu	m	Annual Mean	No.	of Da	ily Ma	ximum	ı 8-Ho	ur Ave	erage	s Gre	ater th	nan 0.	070 p _l	om			
	1 st 2 nd 4 th All High High Hours Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec										Dec	Possible Periods	Valid Periods	Percent Recovery					
OAHU																			
Sand Island						0	0	0	0	0	0	0	0	0	0	0	8755	7993	91.3%
Kapolei	Kapolei 0.044 0.043 0.041 0.026 0								0	0	0	8755	8004	91.4%					

Table 4-8. Attainment Determination of the 8-Hour O₃ NAAQS

Station	2020 4 th Highest	2021 4 th Highest	2022 4 th Highest	3-Year Average	Sites in Violation of the NAAQS
Sand Island	0.044	0.045	0.044	0.044	0
Kapolei	0.045	0.047	0.041	0.044	0
Attainment: The 3	3-year average of the an	nual 4 th highest daily ma	ximum 8-hour average r	nust be less than or equa	al to 0.070 ppm.
In 2022, Hawaii w	as in attainment with t	he 8-hour O₃ NAAQS.			

Table 4-9. 2022 Summary of the 1-Hour and Annual NO₂ Averages

Max	imum	Annual Mean	No	o. of D	aily M	aximu	ım 1-H	lour A	vera	ges G	reater	than	100 թլ	ob			
1 st High 98 th % All Hours Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec										Dec	Possible Periods	Valid Periods	Percent Recovery				
SLAMS Station																	
31.4	23.1	3	0	0	-	1	-	0	0	0	0	0	0	0	8760	5711	65.2%
SPM S	tation																
36.2	29.2	2	0	0	0	-	-	-	-	-	-	-	-	-	2160	2027	93.8%
	1st High SLAMS 31.4 SPM St	High 98th% SLAMS Station 31.4 23.1 SPM Station 36.2 29.2	1st High 98th% All Hours SLAMS Station 31.4 23.1 3 SPM Station 36.2 29.2 2	1st High 98th% All Hours Jan SLAMS Station 31.4 23.1 3 0 SPM Station 36.2 29.2 2 0	1st High 98th% All Hours Jan Feb SLAMS Station 31.4 23.1 3 0 0 SPM Station 36.2 29.2 2 0 0	1st High 98th% All Hours Jan Feb Mar SLAMS Station 31.4 23.1 3 0 0 - SPM Station 36.2 29.2 2 0 0 0	1st High 98th% All Hours Jan Feb Mar Apr SLAMS Station 31.4 23.1 3 0 0 - - SPM Station - - - -	1st High 98th% All Hours Jan Feb Mar Apr May SLAMS Station 31.4 23.1 3 0 0 - - - SPM Station 36.2 29.2 2 0 0 0 - -	1st High 98th% All Hours Jan Feb Mar Apr May Jun SLAMS Station 31.4 23.1 3 0 0 - - - 0 SPM Station 36.2 29.2 2 0 0 0 - - - -	1st High 98th% All Hours Jan Feb Mar Apr May Jun Jul SLAMS Station 31.4 23.1 3 0 0 - - - 0 0 SPM Station 36.2 29.2 2 0 0 0 - - - - - - -	1st High 98th% All Hours Jan Feb Mar Apr May Jun Jul Aug SLAMS Station 31.4 23.1 3 0 0 - - - 0 0 0 SPM Station 36.2 29.2 2 0 0 0 - <td< td=""><td> 1st High 98th% All Hours Jan Feb Mar Apr May Jun Jul Aug Sep </td><td>1st High 98th% All Hours Jan Feb Mar Apr May Jun Jul Aug Sep Oct SLAMS Station 31.4 23.1 3 0 0 - - 0 0 0 0 SPM Station 36.2 29.2 2 0 0 0 -</td><td> 1st High 98th% All Hours Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov </td><td> 1st High 98th% All Hours Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec </td><td>1st High 98th% All Hours Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Possible Periods SLAMS Station 31.4 23.1 3 0 0 - - 0 0 0 0 0 0 0 8760 SPM Station Image: Sep of the periods 36.2 29.2 2 0 0 - - 0 0 0 0 0 0 0 8760</td><td>1st High 98th% All Hours Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Possible Periods Valid Periods SLAMS Station 31.4 23.1 3 0 0 - - 0 0 0 0 0 0 8760 5711 SPM Station L</td></td<>	1st High 98th% All Hours Jan Feb Mar Apr May Jun Jul Aug Sep	1st High 98th% All Hours Jan Feb Mar Apr May Jun Jul Aug Sep Oct SLAMS Station 31.4 23.1 3 0 0 - - 0 0 0 0 SPM Station 36.2 29.2 2 0 0 0 -	1st High 98th% All Hours Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov	1st High 98th% All Hours Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	1st High 98th% All Hours Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Possible Periods SLAMS Station 31.4 23.1 3 0 0 - - 0 0 0 0 0 0 0 8760 SPM Station Image: Sep of the periods 36.2 29.2 2 0 0 - - 0 0 0 0 0 0 0 8760	1st High 98th% All Hours Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Possible Periods Valid Periods SLAMS Station 31.4 23.1 3 0 0 - - 0 0 0 0 0 0 8760 5711 SPM Station L

Attainment of the annual NO₂ NAAQS: The annual mean shall not exceed 53 ppb.

Table 4-10. Attainment Determination of the 1-Hour NO₂ NAAQS

Station	2020 98th Value	2021 98 th Value	2022 98 th Value	3-Year Average	Sites in Violation of the NAAQS
OAHU	SLAMS Station				
Kapolei	25.5	21.5	23.1	23.4	0
Attainment: The	3-year average of the 98th	h percentile values must	be less than or equal to	100 ppb.	
In 2022, Hawaii v	vas in attainment with t	he 1-hour NO2 NAAQS			

Table 4-11. 2022 Summary of the 1-Hour H₂S Averages (State Standard)

	Maxi	mum	Annual Mean			No.	of 1-H	lour Av	erages	Gre	ater th	an 25	ppb					
	1 st High	2 nd High	All Hours	Jan	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov I								Dec	Possible Periods	Valid Periods	Percent Recovery		
HAWAII																		
Leilani	3.8	2.7	0.7	0	0	0	0	0	0	0	0	0	0	0	0	8760	8327	95.1%

Attainment of the state standard: 1-hour values not to exceed 25 ppb. In 2022, Hawaii was in attainment of the state 1-hour H₂S standard.

In 2022, Hawaii was in attainment with the annual NO₂ NAAQS.

Does not meet summary criteria, <50% data recovery in 1st and 2nd quarters.

² Sampling was discontinued at Niumalu on March 31, 2022.

Table 4-12. 2022 Summary of the 1-Hour SO₂ Averages

	Maxin	num	Annual Mean			No. o	f 1-Ho	our Av	erage	s Gre	eater t	han 7	5 ppb					
	1 st High	99 th %	All Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
OAHU	SLAMS	Stations	3															
Honolulu	2.5	1.6	0.3	0	0	0	0	0	0	0	0	0	0	0	0	8760	8049	91.9%
Kapolei ¹	1.1	1.1	0.4	0	0	-	-	-	-	-	-	-	-	-	-	1418	1311	92.5%
Kaplolei/NCore	2.7	1.9	0.2	0	0	0	0	0	0	0	0	0	0	0	0	8760	8605	98.2%
Kahe	70.5	63.1	1.2	0	0	0	0	0	0	0	0	0	0	0	0	8760	8553	97.6%
HAWAII	SPM Sta	tions (s	ee NOTE)															
Hilo ²	41.8	25.3	0.3	0	0	0	0	0	0	0	0	0	0	0	0	8760	8318	95.0%
Kona ²	43.1	8.2	1.6	0	0	0	0	0	0	0	0	0	0	0	0	8760	8453	96.5%
Mt. View ²	93.9	55.6	0.7	1	0	0	0	0	0	0	0	0	1	0	0	8760	8562	97.7%
Ocean View ²	168.2	107.3	3.6	2	1	1	0	6	2	0	0	0	0	0	0	8760	8199	93.6%
Pahala ²	366.8	229.2	7.8	2	5	7	4	11	12	5	5	6	4	1	0	8760	8444	96.4%
Keeau ²	92.8	36.1	0	0	0	0	0	0	0	0	0	0	1	0	0	8760	7314	83.5%
Leilani	2.4	2.2	0.8	0	0	0	0	0	0	0	0	0	0	0	0	8760	8020	91.6%
Naalehu ²	89.1	39.0	2.2	0	0	0	0	0	1	0	0	0	0	0	0	8760	8620	98.4%
KAUAI	SPM St	ation (se	ee NOTE)															
Niumalu ³	1.9	1.8	0.8	0	0	0	0	0	0	0	0	0	0	0	0	8760	7851	89.6%

Attainment: The 3-year average of the 99th percentile values must be less than or equal to 75 ppb. Effective June 2, 2010. In 2022, Hawaii was in attainment with the 1-hour SO₂ NAAQS (SLAMS stations only).

NOTE: The SPM stations on Hawaii Island were established to monitor ambient air concentrations of SO₂ from volcanic emissions. Although Hilo and Kona stations are designated SLAMS, the values are still mostly attributed to volcanic emissions. Volcanic eruptions are considered natural events and therefore EPA may exclude the exceedances of the 1-hour NAAQS from attainment determinations. The SPM station on Kauai was established to monitor emissions from cruise ships.

¹ Sampling discontinued on February 28, 2022 at Kapolei; data from the trace SO₂ analyzer at NCore to be used beginning March 1, 2022.

² Elevated values due to emissions from eruptions at Halema'uma'u crater on the summit of Kilauea volcano.

³ Does not meet summary criteria, <75% data recovery 1st quarter, substitution test valid.

26

Table 4-13. Attainment Determination of the 1-Hour SO₂ NAAQS: SLAMS Stations

	2020 99th Value	2021 99th Value	2022 99th Value	3-Year Average	Violation of the NAAQS
OAHU SLAMS Stations					N= NO Y= YES
Honolulu	0.6	1.6	1.6	1	N N
Kapolei ¹	5.8	8.9	1.9	6	N
Kahe	57.1	44.1	63.1	55	N
HAWAII SPM Stations	3711		00.1	33	
(see NOTE)					
Hilo ²	11.6	26.7	25.3	21	N
Kona ²	12.0	9.5	8.2	10	N
Mt. View ²	4.6	61.4	55.6	41	N
Ocean View ²	204.8	166.5	107.3	160	Υ
Pahala ²	273.8	420.0	229.2	308	Υ
Keeau ²	-	-	36.1	36	N
Leilani	-	-	2.2	2	N
Naalehu ²	-	-	39.0	39	N
KAUAI SPM Station (see NOTE)					
Niumalu ³	3.7	2.7	1.8	3	N

Attainment: The 3-year average of the 99th percentile values must be less than or equal to 75 ppb. Effective June 2, 2010. In 2022, Hawaii was in attainment with the 1-hour SO₂ NAAQS (SLAMS stations only).

NOTE: The SPM stations on Hawaii Island were established to monitor ambient air concentrations of SO₂ from volcanic emissions. Although Hilo and Kona stations are designated SLAMS, the values are still mostly attributed to volcanic emissions. Volcanic eruptions are considered natural events and therefore EPA may exclude the exceedances of the 1-hour NAAQS from attainment determinations. The SPM station on Kauai was established to monitor emissions from cruise ships.

¹ Kapolei design value uses the higher value between Kapolei and NCore; using NCore for 2020-22. Sampling at Kapolei discontinued on February 28, 2022.

² Elevated values due to emissions from eruptions at Halema'uma'u crater on the summit of Kilauea volcano.

³ Does not meet summary criteria, <75% data recovery in 1st guarter, substitution test valid.

Table 4-14. 2022 Summary of the 3-Hour SO₂ Averages

	Maxi	mum	Annual Mean			No. of	f 3-Ho	ur Ave	erages	Gre	ater th	an 0.5	5 ppm	l				
	1 st High	2 nd High	All Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
OAHU	SLAMS	S Stations	S															
Honolulu	0.001	0.001	0.000	0	0	0	0	0	0	0	0	0	0	0	0	2920	2608	89.3%
Kapolei ¹	0.001	0.001	0.000	0	0	-	-	-	-	-	-	-	-	-	-	472	430	91.1%
Kaplolei/NCore	0.002	0.002	0.000	0	0	0	0	0	0	0	0	0	0	0	0	2920	2833	97.0%
Kahe	0.054	0.042	0.001	0	0	0	0	0	0	0	0	0	0	0	0	2920	2814	96.4%
HAWAII	SPM S	tations (s	see NOTE)															
Hilo ²	0.019	0.019	0.000	0	0	0	0	0	0	0	0	0	0	0	0	2920	2747	94.1%
Kona ²	0.034	0.023	0.002	0	0	0	0	0	0	0	0	0	0	0	0	2920	2739	93.8%
Mt. View ²	0.065	0.060	0.001	0	0	0	0	0	0	0	0	0	0	0	0	2920	2777	95.1%
Ocean View ²	0.102	0.085	0.004	0	0	0	0	0	0	0	0	0	0	0	0	2920	2687	92.0%
Pahala ²	0.217	0.175	0.008	0	0	0	0	0	0	0	0	0	0	0	0	2920	2764	94.7%
Keeau ²	0.071	0.027	0.000	0	0	0	0	0	0	0	0	0	0	0	0	2920	2208	75.6%
Leilani	0.002	0.002	0.001	0	0	0	0	0	0	0	0	0	0	0	0	2920	2731	93.5%
Naalehu ²	0.045	0.036	0.002	0	0	0	0	0	0	0	0	0	0	0	0	2920	2844	97.4%
KAUAI	SPM S	tation (se	e NOTE)															
Niumalu ³	0.002	0.002	0.001	0	0	0	0	0	0	0	0	0	0	0	0	2920	2544	87.1%

Attainment: 3-hour values not to exceed 0.5 ppm more than once per year.

In 2022, Hawaii was in attainment with the 3-hour SO₂ NAAQS.

NOTE: The SPM stations on Hawaii island were established to monitor ambient air concentrations of SO_2 from volcanic emissions. Although Hilo and Kona stations are designated SLAMS, the values are still mostly attributed to volcanic emissions. The SPM station on Kauai was established to monitor emissions from cruise ships.

¹ Sampling discontinued on February 28, 2022 at Kapolei; data from the trace SO₂ analyzer at NCore to be used beginning March 1, 2022.

² Elevated values due to emissions from eruptions at Halema'uma'u crater on the summit of Kilauea volcano.

³ Does not meet summary criteria, <75% data recovery 1st quarter, substitution test valid.

Table 4-15. 2022 Summary of the 24-Hour and Annual SO₂ Averages

	Maxi	mum	Annual Mean			No. of	24-H	our Ave	erages	Grea	ater tha	an 0.1	4 ppm					
	1 st High	2 nd High	All Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
OAHU	SLAMS	Stations	3															
Honolulu	0.001	0.001	0.000	0	0	0	0	0	0	0	0	0	0	0	0	365	334	91.5%
Kapolei ¹	0.001	0.001	0.000	0	0	-	-	-	-	-	-	-	-	-	-	59	55	93.2%
Kaplolei/NCore	0.001	0.001	0.000	0	0	0	0	0	0	0	0	0	0	0	0	365	363	99.5%
Kahe	0.014	0.013	0.001	0	0	0	0	0	0	0	0	0	0	0	0	365	361	98.9%
HAWAII	SPM St	ations (s	ee NOTE)															
Hilo	0.005	0.004	0.000	0	0	0	0	0	0	0	0	0	0	0	0	365	351	96.2%
Kona	0.006	0.006	0.002	0	0	0	0	0	0	0	0	0	0	0	0	365	354	97.0%
Mt. View	0.018	0.014	0.001	0	0	0	0	0	0	0	0	0	0	0	0	365	360	98.6%
Ocean View ²	0.032	0.026	0.004	0	0	0	0	0	0	0	0	0	0	0	0	365	334	91.5%
Pahala ²	0.053	0.050	0.008	0	0	0	0	0	0	0	0	0	0	0	0	365	356	97.5%
Keeau	0.016	0.008	0.000	0	0	0	0	0	0	0	0	0	0	0	0	365	282	77.3%
Leilani	0.002	0.002	0.001	0	0	0	0	0	0	0	0	0	0	0	0	365	353	96.7%
Naalehu	0.011	0.011	0.002	0	0	0	0	0	0	0	0	0	0	0	0	365	364	99.7%
KAUAI	SPM St	ation (se	e NOTE)															
Niumalu ³	0.001	0.001	0.001	0	0	0	0	0	0	0	0	0	0	0	0	365	329	90.1%

Attainment: 24-hour values not to exceed 0.14 ppm more than once per year.

In 2022, Hawaii was in attainment of the state 24-hour SO₂ standard.

NOTE: The SPM stations on Hawaii island were established to monitor ambient air concentrations of SO₂ from volcanic emissions. Although Hilo and Kona stations are designated SLAMS, the values are still mostly attributed to volcanic emissions. Volcanic eruptions are considered natural events and therefore EPA may exclude the exceedances of the 24-hour NAAQS from attainment determinations.

Attainment: Annual average (from SLAMS stations only) not to exceed 0.03 ppm.

In 2022, Hawaii was in attainment of the state annual SO₂ standard.

NOTE: The SPM stations on Hawaii island were established to monitor ambient air concentrations of SO_2 from volcanic emissions. Although Hilo and Kona stations are designated SLAMS, the values are still mostly attributed to volcanic emissions. The SPM station on Kauai was established to monitor emissions from cruise ships.

¹ Sampling discontinued on February 28, 2022 at Kapolei; data from the trace SO₂ analyzer at NCore to be used beginning March 1, 2022.

² Elevated values due to emissions from eruptions at Halema'uma'u crater on the summit of Kilauea volcano.

³ Does not meet summary criteria, <75% data recovery 1st quarter, substitution test valid.

Table 4-16. 2022 Summary of the 1-Hour CO Averages

	Maxir	mum	Annual Mean		ı	No. of	1-Ho	ur Ave	rages	Grea	ater th	an 35	ppm					
	1 st High	2 nd High	All Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
OAHU	SLAMS	Stations	1															
Honolulu	1.1	1.1	0.1	0	0	0	0	0	0	0	0	0	0	0	0	8760	7268	83.0%
Kapolei ¹	0.7	0.6	0.2	0	0	0	-	-	-	-	-	-	-	-	-	2160	2020	93.5%
Kapolei/NCore	9.5 ²	6.0 ²	0.1	0	0	0	0	0	0	0	0	0	0	0	0	8760	8265	94.3%

Attainment: 1-hour values not to exceed 35 ppm more than once per year.

In 2022, Hawaii was in attainment with the 1-hour CO NAAQS.

Table 4-17. 2022 Summary of the 8-Hour CO Averages

	Maxir	num	Annual Mean			No. of	f 8-Hc	ur Ave	erages	s Gre	ater th	nan 9 _l	opm					
	1 st High	2 nd High	All Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
OAHU	SLAMS	Stations																
Honolulu	0.7	0.7	0.1	0	0	0	0	0	0	0	0	0	0	0	0	8755	7315	83.6%
Kapolei ¹	0.4	0.4	0.2	0	0	0	0	0	0	0	0	0	0	0	0	2155	1982	92.0%
Kapolei/NCore	1.3 ²	0.8 ²	0.1	0	0	0	0	0	0	0	0	0	0	0	0	8755	8249	94.2%

Attainment: 8-hour values not to exceed 9 ppm more than once per year. In 2022, Hawaii was in attainment with the 8-hour CO NAAQS.

Table 4-18. 2022 Monthly Maximum of 24-Hour PM₁₀ Values (µg/m³)

The month with the highest value in the year is highlighted

The state and federal 24-hr PM_{10} standard is 150 $\mu g/m^3$

Station	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Honolulu	20	15	21	23	19	17	14	15	15	17	22	25
Kapolei	26	33	36	45	38	30	23	24	17	22	33	48
Pearl City ¹	22	15	24	19	no data							

¹ Sampling was discontinued at Pearl City on March 31, 2022.

¹ Sampling discontinued on March 31, 2022 at Kapolei; data from the trace CO analyzer at NCore to be used beginning April 1, 2022.

² Elevated values due to a brush fire right next to station.

¹ Sampling discontinued on March 31, 2022 at Kapolei; data from the trace CO analyzer at NCore to be used beginning April 1, 2022.

² Elevated values due to a brush fire right next to station.

Table 4-19. 2022 Monthly Maximum of 24-Hour PM_{2.5} Values (µg/m³)

The month with the highest value in the year is highlighted

The federal 24-hr PM_{2.5} standard is 35 µg/m³

The month with	Ī								iaru is 35 μ			_
Station	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
SLAMS Stations												
Honolulu	6.7	4.4	6.3	9.7	7.2	5.2	4.2	4.0	3.4	4.9	6.3	12.3
Kapolei	4.2	5.2	7.4	10.1	8.9	6.3	5.5	25.9	4.8	5.8	7.9	11.1
Pearl City ¹	8.7	4.7	6.1	no data	no data	no data	no data					
Sand Island	7.1	4.9	7.1	10.0	8.6	5.8	4.5	5.0	4.7	4.9	6.0	9.4
Kihei ²	8.2	3.5	5.5	no data	no data	no data	no data					
SPM Stations												
Niumalu ³ (cruise ships)	6.8	4.0	5.1	no data	no data	no data	no data					
Kahului	9.7	5.7	6.9	13.0	9.7	6.0	5.8	5.5	5.4	4.9	7.1	6.9
Hilo (volcano)	10.5	5.5	6.8	8.3	9.6	5.3	3.9	4.0	3.1	7.0	4.7	5.3
Kona (volcano)	10.4	9.1	9.0	8.8	9.8	8.9	6.2	8.9	9.0	5.7	4.7	12.1
Mt. View (volcano)	8.5	3.8	6.3	6.8	9.9	3.7	3.4	2.8	2.9	8.1	4.3	19.7
Ocean View (volcano)	10.7	9.3	11.0	9.4	10.7	9.5	7.0	10.8	7.4	6.5	5.3	8.3
Pahala (volcano)	9.0	6.5	6.0	6.3	8.4	6.5	4.6	5.7	6.3	7.0	6.1	10.1
Kailua-Kona (volcano)	10.2	9.4	9.3	9.8	10.8	9.2	7.6	12.3	6.5	5.7	5.3	11.4
Keeau (volcano)	4.7	4.6	5.0	7.5	8.0	5.8	3.2	5.2	5.3	11.0	6.8	6.6
Naalehu ⁴ (volcano)	no data	no data	no data	5.7								
Waikoloa (volcano)	9.0	5.9	6.1	4.7	8.2	5.5	3.4	6.6	4.0	7.5	7.1	6.2

¹ Sampling was discontinued at Pearl City on March 31, 2022. ² Sampling was discontinued at Kihei on March 30, 2022.

³ Sampling was discontinued at Niumalu on March 31, 2022.

⁴ Sampling began at Naalehu on December 2, 2022.

Table 4-20. 2022 Monthly Maximum of 1-Hour NO₂ Values (ppb)

The month with the highest value in the year is highlighted

The federal 1-hour standard for NO₂ is 100 ppb

Station	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Kapolei	31.4	23.1	no data	no data	no data	5.3	4.4	5.0	6.3	4.6	6.1	9.6
Niumalu ¹	36.2	29.2	19.8	no data								

¹ Sampling was discontinued at Niumalu on March 31, 2022.

Table 4-21. 2022 Monthly Maximum of 1-Hour H₂S Values (ppb)

The month with the highest value in the year is highlighted

The state 1-hour standard for H₂S is 25 ppb

Station	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Leilani	3.8	0.6	0.7	0.9	0.6	1.2	0.8	0.9	1.0	1.0	1.2	1.4

Table 4-22. 2022 Monthly Maximum of 1-Hour CO Values (ppm)

The month with the highest value in the year is highlighted

The federal 1-hr CO standard is 35 ppm, the state standard is 9 ppm

Station	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Honolulu	1.1	0.7	0.8	0.5	0.1	0.1	0.1	0.1	0.2	0.3	0.4	0.4
Kapolei ¹	0.7	0.5	0.5	no data	no data	no data	no data	no data				
Kapolei NCore	0.5	0.4	0.3	0.1	0.2	0.2	0.2	9.5 ²	0.4	0.5	0.4	6.0

¹ Sampling was discontinued at Kapolei on March 31, 2022.

Table 4-23. 2022 Monthly Maximum of 8-Hour CO Values (ppm)

The month with the highest value in the year is highlighted

The federal 8-hr CO standard is 9 ppm, the state standard is 4.4 ppm

Station	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Honolulu	0.7	0.5	0.6	0.5	0	0	0	0	0	0.1	0.2	0.1		
Kapolei ¹	0.4	0.3	0.3	no data	no data	no data	no data	no data						
Kapolei NCore	0.2	0.1	0.1	0.1	0.1	0.1	0.1	1.3 ²	0.2	0.2	0.2	0.8		

¹ Sampling was discontinued at Kapolei on March 31, 2022.

Table 4-24. 2022 Monthly Maximum of 8-Hour O₃ Values (ppm)

The month with the highest value in the year is highlighted

The federal 8-hr O₃ standard is 0.070 ppm

Station	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	<u>Sер</u>	Oct	Nov	Dec
Sand Island	0.044	0.041	0.039	0.044	0.039	0.030	0.027	0.024	0.023	0.042	0.048	0.044
Kapolei NCore	0.042	0.043	0.043	0.042	0.038	0.035	0.032	0.033	0.030	0.043	0.047	0.046

² Elevated value due to a brush fire right next to station.

² Elevated value due to a brush fire right next to station.

Table 4-25. 2022 Monthly Maximum of 1-Hour SO₂ Values (ppb)

The month with the highest value in the year is highlighted

The federal 1-hr SO₂ standard is 75 ppb

Station	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
SLAMS Stations												
Honolulu	0.7	1.0	0.7	0.3	1.0	0.4	0.5	0.6	0.5	2.5	1.6	1.6
Kapolei ¹	0.9	1.1	no data									
Kapolei NCore	0.6	0.2	0.2	0.2	0.1	0.2	0.4	2.2	0.3	2.7	0.7	0.1
Kahe	68.1	59.9	47.0	1.4	19.2	63.3	41.0	38.3	37.6	70.5	53.6	63.1
SPM Stations (see NOTE)												
Niumalu² (cruise ships)	1.0	1.3	1.3	1.3	1.2	1.9	1.6	1.5	1.7	1.9	1.9	1.7
Hilo ³ (volcano)	26.9	24.5	14.1	2.9	41.8	1.6	6.5	20.9	25.3	29.9	6.7	4.5
Kona ³ (volcano)	43.1	8.0	4.1	6.3	8.2	12.4	3.7	4.7	6.6	5.4	3.3	5.0
Mt. View ³ (volcano)	93.9	8.9	23.7	1.1	23.0	0.6	0.8	55.6	0.9	91.3	1.4	13.8
Ocean View³ (volcano)	107.3	77.6	94.2	64.7	149.3	168.2	18.4	53.8	46.1	46.5	18.9	23.3
Pahala ³ (volcano)	112.6	202.5	249.5	179.7	172.8	366.8	108.6	167.1	133.9	136.2	85.8	18.2
Keeau ³ (volcano)	36.1	2.1	6.7	1.2	12.0	0.3	3.9	24.3	5.5	92.8	2.5	6.1
Leilani (volcano)	2.4	1.1	1.4	1.1	1.1	1.4	1.4	1.9	2.1	2.0	2.4	2.2
Naalehu³ (volcano)	24.6	39.0	47.2	24.3	31.4	89.1	7.2	28.5	37.8	30.3	21.8	7.8

NOTE: The SPM stations on Hawaii Island were established to monitor ambient air concentrations of SO_2 from volcanic emissions. Although Hilo and Kona stations are designated SLAMS, the values are still mostly attributed to volcanic emissions. Volcanic eruptions are considered natural events and therefore EPA may exclude the exceedances of the 1-hour NAAQS from attainment determinations.

¹ Sampling was discontinued at Kapolei on February 28, 2022.

² Does not meet summary criteria, <75% data recovery 1st quarter, substitution test valid.

³ Elevated values due to emissions from eruptions at Halema'uma'u crater on the summit of Kilauea volcano.

Table 4-26. 2022 Monthly Maximum of 3-Hour SO₂ Values (ppm)

The month with the highest value in the year is highlighted

The state and federal 3-hr SO₂ standard is 0.5 ppm

Station	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
SLAMS Stations												
Honolulu	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.001	0.001	0.001	0.001
Kapolei ¹	0.001	0.001	no data									
Kapolei NCore	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.002	0.000	0.000
Kahe	0.054	0.039	0.028	0.001	0.013	0.042	0.020	0.029	0.019	0.036	0.028	0.037
SPM Stations (see NOTE)												
Niumalu ² (cruise ships)	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002
Hilo ³ (volcano)	0.019	0.015	0.013	0.002	0.019	0.001	0.004	0.015	0.009	0.016	0.004	0.003
Kona ³ (volcano)	0.034	0.006	0.002	0.004	0.008	0.009	0.004	0.004	0.005	0.004	0.003	0.005
Mt. View ³ (volcano)	0.060	0.004	0.017	0.001	0.015	0.001	0.001	0.029	0.001	0.065	0.001	0.008
Ocean View³ (volcano)	0.084	0.044	0.053	0.046	0.085	0.102	0.009	0.037	0.038	0.027	0.016	0.019
Pahala³ (volcano)	0.067	0.170	0.217	0.119	0.106	0.175	0.078	0.096	0.102	0.107	0.042	0.014
Keeau ³ (volcano)	0.031	0.001	0.003	0.001	0.009	0.000	0.003	0.017	0.002	0.071	0.002	0.004
Leilani (volcano)	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002	0.002
Naalehu³ (volcano)	0.015	0.031	0.036	0.014	0.028	0.045	0.004	0.015	0.034	0.019	0.016	0.006

NOTE: The SPM stations on Hawaii Island were established to monitor ambient air concentrations of SO₂ from volcanic emissions. Volcanic eruptions are considered natural events.

¹ Sampling was discontinued at Kapolei on February 28, 2022.

² Does not meet summary criteria, <75% data recovery 1st quarter, substitution test valid.

³ Elevated values due to emissions from eruptions at Halema'uma'u crater on the summit of Kilauea volcano.

Table 4-27. 2022 Monthly Maximum of 24-Hour SO₂ Values (ppm)

The month with the highest value in the year is highlighted

The state 24-hr SO₂ standard is 0.14 ppm

Station	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
SLAMS Stations												
Honolulu	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001
Kapolei ¹	0.001	0.001	no data									
Kapolei NCore	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000
Kahe	0.014	0.012	0.007	0.000	0.003	0.011	0.005	0.006	0.004	0.009	0.006	0.013
SPM Stations (see NOTE)												
Niumalu ² (cruise ships)	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
Hilo (volcano)	0.005	0.003	0.003	0.000	0.004	0.000	0.001	0.003	0.002	0.004	0.001	0.001
Kona (volcano)	0.006	0.002	0.001	0.002	0.004	0.003	0.002	0.003	0.003	0.003	0.003	0.004
Mt. View (volcano)	0.014	0.001	0.004	0.001	0.004	0.000	0.000	0.005	0.000	0.018	0.001	0.003
Ocean View³ (volcano)	0.032	0.020	0.017	0.015	0.023	0.026	0.004	0.008	0.012	0.012	0.006	0.010
Pahala³ (volcano)	0.019	0.023	0.053	0.021	0.027	0.050	0.019	0.022	0.023	0.026	0.013	0.004
Keeau (volcano)	0.009	0.000	0.001	0.000	0.001	0.000	0.000	0.003	0.000	0.016	0.000	0.001
Leilani (volcano)	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002
Naalehu³ (volcano)	0.007	0.011	0.011	0.006	0.006	0.006	0.001	0.003	0.008	0.005	0.005	0.003

NOTE: The SPM stations on Hawaii Island were established to monitor ambient air concentrations of SO₂ from volcanic emissions. Volcanic eruptions are considered natural events.

¹ Sampling was discontinued at Kapolei on February 28, 2022.

² Does not meet summary criteria, <75% data recovery 1st quarter, substitution test valid.

³ Elevated values due to emissions from eruptions at Halema'uma'u crater on the summit of Kilauea volcano.

Section 5 2022 PM_{2.5} SPECIATION DATA

Atmospheric aerosols are solid or liquid particles suspended in air that come directly from a variety of sources (primary) or are formed by chemical reactions (secondary). Primary and secondary particles tend to have long lifetimes in the atmosphere and can travel long distances, up to hundreds or perhaps thousands of miles. Sources include dust from roads, construction, and agriculture; combustion particles from motor vehicles, electric utilities and agricultural burning; and particles from natural sources such as the ocean or volcano.

Most of the $PM_{2.5}$ is a combination of the following components: sulfates, nitrates, ammonium, elemental carbon, organic compounds, water and metals. The EPA selected target particulates of interest based on data use objectives, primary constituents of $PM_{2.5}$, and the capability and availability of current analytical methods.

The filter-based speciation sampler collects samples once every 3 days for analyses performed by an EPA contract laboratory. The speciation sampler is located at the Kapolei NCore monitoring station.

Table 5-1 lists the parameters measured, highest and second highest values recorded in the year, the annual arithmetic mean of all valid samples and the total number of samples collected in the year. Table 5-2 lists the analysis methods for each parameter.

With the exception of lead, there are no ambient air quality standards for the individual components of speciated PM_{2.5}.

For more information on EPA's speciation program, go to: www.epa.gov/ttn/amtic/speciepg.html

Table 5-1. Annual Summary of PM_{2.5} Speciation Data

Parameter	1 st High (µg/m³)	2 nd High (µg/m³)	Annual Mean (µg/m³)	No. of Samples	Percent Recovery
CARBON	" " "	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		_	_
Organic Carbon	2.145	1.130	0.2691	116	95%
Elemental Carbon	0.364	0.281	0.1030	116	95%
METALS					
Aluminum	1.312	0.347	0.0346	122	100%
Antimony	0.021	0.020	-0.0009	122	100%
Arsenic	0.000	0.000	0.0000	122	100%
Barium	0.108	0.057	0.0041	122	100%
Bromine	0.006	0.004	0.0001	121	99%
Cadmium	0.026	0.022	0.0012	122	100%
Calcium	0.394	0.280	0.0827	122	100%
Cerium	0.062	0.047	-0.0033	122	100%
Cesium	0.047	0.044	0.0024	122	100%
Chlorine	1.759	1.604	0.5287	121	99%
Chromium	0.009	0.007	0.0008	122	100%
Cobalt	0.002	0.002	-0.0003	122	100%
Copper	0.045	0.009	0.0006	122	100%
Indium	0.024	0.023	0.0018	122	100%
Iron	0.115	0.087	0.0336	122	100%
Lead	0.016	0.014	0.0013	122	100%
Magnesium	0.200	0.188	0.0460	122	100%
Manganese	0.011	0.007	0.0006	122	100%
Nickel	0.007	0.005	0.0015	122	100%
Phosphorus	0.003	0.002	0.0001	122	100%
Potassium	2.627	0.140	0.0487	122	100%
Rubidium	0.006	0.005	0.0004	122	100%
Selenium	0.005	0.004	0.0003	122	100%
Silicon	0.352	0.274	0.0379	122	100%
Silver	0.029	0.026	0.0013	122	100%
Sodium	1.046	1.005	0.3513	122	100%
Strontium	0.037	0.008	0.0013	122	100%
Sulfur	0.967	0.482	0.1685	122	100%
Tin	0.027	0.025	0.0008	122	100%
Titanium	0.017	0.012	0.0035	122	100%
Vanadium	0.004	0.003	0.0005	122	100%
Zinc	0.052	0.044	0.0063	122	100%
Zirconium	0.035	0.030	0.0003	122	100%

Table 5-1 Continued

Parameter	1 st High (µg/m³)	2 nd High (µg/m³)	Annual Mean (µg/m³)	No. of Samples	Percent Recovery
IONS					
Ammonium Ion	1.16	0.18	0.026	120	98%
Potassium Ion	2.58	0.11	0.036	120	98%
Sodium Ion	1.19	1.00	0.380	120	98%
Total Nitrate	3.36	0.53	0.188	120	98%
Sulfate	2.98	1.64	0.569	120	98%

Table 5-2. Speciation Collection and Analysis Methods

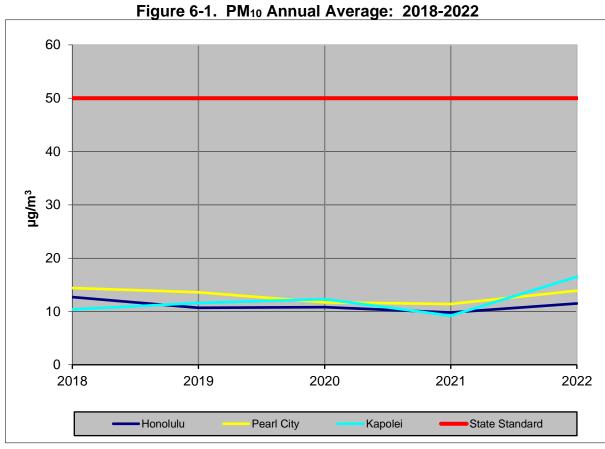
Parameter	Collection Method	Analysis Method
Carbon	URG 300N Quartz Filter	Thermal Optical Transmittance
Metals	Met-One SASS Teflon Filter	Energy Dispersive X-Ray Fluorescence
lons	Met-One SASS Nylon Filter	Ion Chromatography

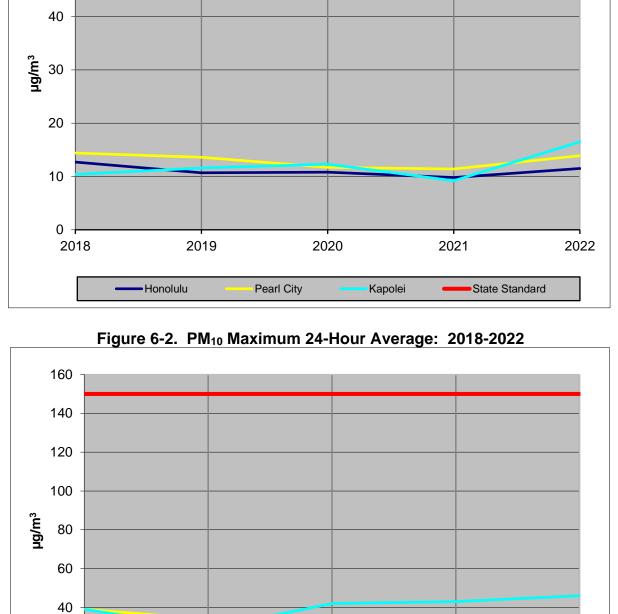
Section 6 AMBIENT AIR QUALITY TRENDS

The following graphs illustrate 5-year trends for PM₁₀, PM_{2.5}, SO₂, NO₂, O₃, and CO from 2018 to 2022 at all SLAMS stations monitoring for those pollutants.

Figures 6-1 and 6-2 are graphs of the PM₁₀ annual and maximum 24-hour averages.

Figure 6-3 is the graph of the PM_{2.5} annual averages. Attainment of the PM_{2.5} 24-hour standard is based on the 98th percentile value at each station, which is depicted in Figure 6-4.

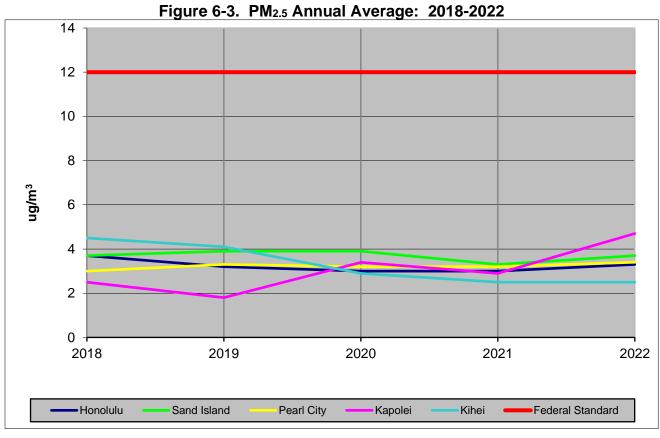

Figures 6-5 and 6-6 are graphs of the SO₂ annual and maximum 24-hour averages.

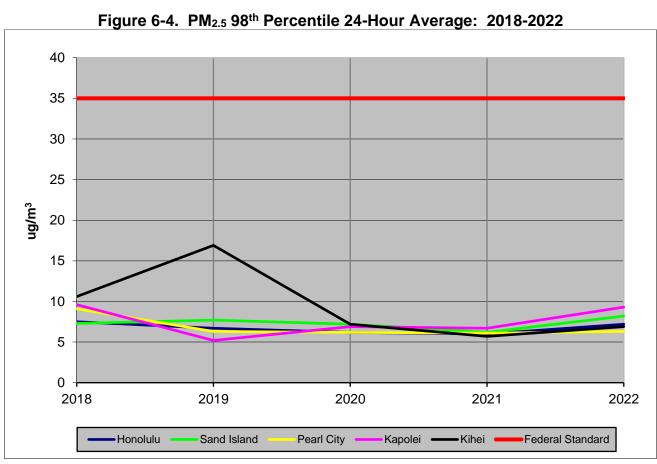

Figure 6-7 and 6-8 shows the annual and maximum 1-hour averages of NO₂ compared to the federal NAAQS.

Attainment of the 8-hour ozone standard is achieved by averaging 3 years of the fourth highest daily maximum 8-hour average concentrations, which must not exceed 0.070 ppm. Figure 6-9 is a graph of the fourth highest daily maximum values recorded at the Sand Island and Kapolei ozone monitoring stations in the past five years.

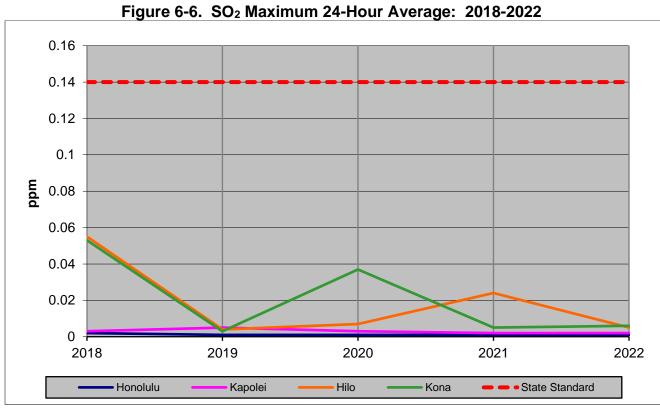
The graphs for 1-hour and 8-hour carbon monoxide (figures 6-10 and 6-11, respectively) represent the maximum 1-hour or 8-hour values recorded in the year.

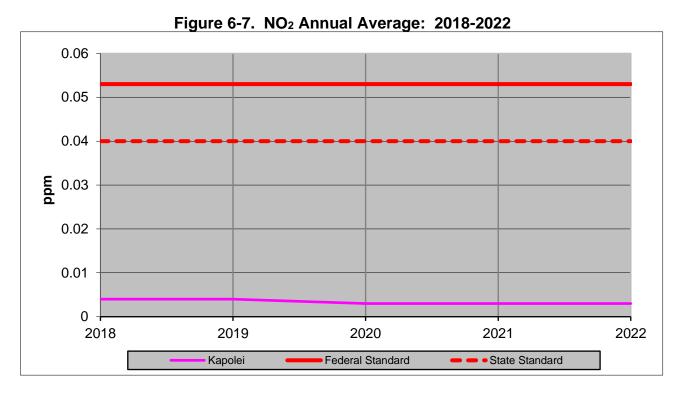
Criteria pollutant levels remain below state and federal ambient air quality standards at all SLAMS stations in the state.




Kapolei

State and Federal Standard


Pearl City


-Honolulu

