Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment

FINAL

Honolulu, Honolulu County, Hawaii

Prepared for:

Board of Water Supply 630 S. Beretania Street, Room 201 Honolulu, Hawaii 96843

Prepared by:

3240 Richardson Rd, Suite 2 Richland, Washington 99354

December 13, 2016

EXECUTIVE SUMMARY

The purpose of this report is to evaluate the potential human health risks for exposures to groundwater in the Halawa Valley, Hawai'i, based on analysis of data obtained from groundwater sampling conducted on 10 Halawa Valley monitoring wells between January 2011 and January 2016.

Groundwater screening levels were identified and a groundwater baseline risk assessment was conducted on 10 monitoring wells located within the Halawa Valley. The purpose of identifying groundwater screening levels is to determine the concentrations that protect human health from potential adverse effects. Groundwater screening levels were identified by selecting the lower of:

- (1) the Hawai'i Department of Health (HDOH) taste and odor threshold, or
- (2) the risk-based screening level calculated using the Environmental Protection Agency's (EPA) tap water scenario, which analyzes exposure risks to adult and child residents using groundwater as a drinking water source.

Risk-based screening levels were calculated based on EPA's acceptable excess lifetime cancer risk range (ELCR) of 1 x 10^{-6} to 1×10^{-4} for carcinogens; or, for noncarcinogens, by using a target hazard quotient (HQ) for individual analytes resulting in a hazard index (HI) for each well.

The purpose of the baseline risk assessment is to identify monitoring wells that report contaminant concentrations that exceed the upper end of the EPA's acceptable ELCR of 1×10^{-4} or a target HI of 1. Monitoring wells that exceed the upper end of the acceptable ELCR range or an HI of 1 warrant further evaluation to determine whether remedial action is necessary.

A total ELCR greater than 1×10^{-4} was reported at two wells, including RHMW02 (4.4×10^{-4}) and RHMW04 (1.8×10^{-4}). The primary contributors to risk at well RHMW02 include 1,2,3-trichloropropane (1.0×10^{-4}), 1-methylnaphthalene (1.2×10^{-5}), benzo(a)anthracene (2.1×10^{-6}), and naphthalene (5.2×10^{-4}). The primary contributor to risk at RHMW04 is dibenzo(a,h)anthracene (1.8×10^{-4}).

The groundwater screening levels identified for the primary cancer risk contributors are as follows:

- 1,2,3-trichloropropane (0.0075 μg/L),
- 1-methylnaphthalane (1.1 μg/L),
- benzo(a)anthracene (0.012 μg/L),
- dibenzo(a,h)anthracene (0.0034 μg/L), and
- naphthalene (0.17 μg/L)

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL ES-1

The remaining eight wells (HDMW2253-03, ODWFMW01, RHMW01, RHMW03, RHMW05, RHMW06, RHMW07 and RHMW2254-01) report cancer risks within or below the EPA's acceptable cancer risk range of 1×10^{-4} and 1×10^{-6} .

A noncancer HI greater than 1 was reported at four wells: HDMW2253-03 (HI = 1.3), OWDFMW01 (HI = 20), RHMW01 (HI = 1.3), and RHMW02 (HI = 36). The primary contributor to the noncancer HI at wells HDMW2253-03, RHMW01, and OWDFMW01 is TPH-middle distillates; and the primary contributors to noncancer HI at well RHMW02 are TPH-middle distillates and naphthalane.

The groundwater screening levels identified for the primary noncancer hazard contributors are as follows:

- TPH-middle distillates (160 micrograms per liter [μg/L])
- naphthalene $(0.17 \mu g/L)$.

The remaining six wells (RHMW03, RHMW04, RHMW05, RHMW06, RHMW07, RHMW2254-01) report an HI less than 1.

TABLE OF CONTENTS

EXEC	UTIVE	E SUMMARY	. 1
LIST (OF TA	BLES	iii
ACRO	NYMS	S AND ABBREVIATIONS	. v
1.0	INTR	ODUCTION	. 1
2.0		ANALYSIS	
2.0			
	2.1	Analytical Data Processing	
		2.1.1 Sample Results	
		2.1.2 Laboratory and Data Validation Flags	
		2.1.3 Field Duplicate Results	
	2.2	Identification of COPCs	. 5
3.0	EXPO	SURE ASSESSMENT	. 6
	3.1	Contaminant Sources	6
	3.2	Release Mechanisms and Environmental Transport Media	
	3.3	Potentially Complete Human Exposure Pathways and Receptors	
		3.3.1 EPA Tap Water Scenario (Residential)	
		3.3.1.1 Equations Used to Calculate Screening Levels for Water Ingestion	
		3.3.1.1.1 Ingestion of Water – Carcinogenic Effects	7
		3.3.1.1.2 Ingestion of Water – Noncarcinogen Effects	
		3.3.1.1.3 Ingestion of Water – Mutagenic Effects	
		3.3.1.1.4 Ingestion of Water – Trichloroethylene	
		3.3.1.2.1 Dermal Contact with Water – Carcinogenic Effects	9
		3.3.1.2.2 Dermal Contact with Water – Noncarcinogen Effects	
		3.3.1.2.3 Dermal Contact with Water – Mutagenic Effects	
		3.3.1.2.4 Dermal Contact with Water – Trichloroethylene	
		3.3.1.3 Equations Used to Calculate Dermally Absorbed Dose	
		3.3.1.4.1 Inhalation of Volatiles – Carcinogenic Effects	
		3.3.1.4.2 Inhalation of Volatiles— Noncarcinogen Effects	
		3.3.1.4.3 Inhalation of Volatiles – Mutagenic Effects	
		3.3.1.4.4 Inhalation of Volatiles – Trichloroethylene	
		3.3.1.5 Equations Used to Calculate Screening Levels for All Exposure Routes Combined 3.3.1.5.1 Total Screening Level – Carcinogenic Effects	
		3.3.1.5.2 Total Screening Level – Carcinogenic Effects	
		3.3.1.5.3 Total Screening Level – Mutagenic Effects	
		3.3.1.5.4 Total Screening Level – Trichloroethylene	13
	3.4	Exposure Point Concentrations.	13
		3.4.1 95 Percent Upper Confidence Limit (95% UCL) Calculation	
		Methodology	14
4.0	TOXI	CITY ASSESSMENT	15
	4.1	Hazard Characterization	
	4.2	Dose Response	
		4.2.1 Reference Doses for Noncancer Effects	
		4.2.2 Slope Factors for Cancer Effects	10

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL i

		4.2.3 Selection of Toxicity V	alues	17
		•		
			Reviewed Toxicity Values	
			/alues	
		4.2.3.4 Total Petroleum Hydroc	arbon Fractions	18
5.0	RISK	CHARACTERIZATION		20
	5.1	Evaluation of Measured Ground	water Concentrations	20
		5.1.1 Screening Levels		20
		5.1.2 Results of Comparison	to Groundwater Screening Levels	22
		5.1.2.1 Well HDMW2253-03		22
		5.1.2.2 Well OWDFMW01		22
		5.1.2.3 Well RHMW01		23
	5.2		zards	
	J , Lui			
			Method	
			nation Method	
			isk and Noncancer Hazard Results	
6.0	CIIM			
7.0				
/ •U	IZCICI	CH/C3	,	30

LIST OF TABLES

Table 2-1	Halawa Valley Monitoring Wells
Table 2-2	Summary of Contaminants of Potential Concern
Table 3-1	Summary of Exposure Assumptions Used for the Tap Water Exposure Scenario
Table 3-2	Summary of the EPCs for Each Well and Each Detected COPC
Table 4-1	Summary of Toxicity Values
Table 4-2	Select Carbon Ranges for TPH Fractions
Table 4-3	Select Toxicity Values and Critcal Effects for Carbon Ranges
Table 4-4	Weighted Reference Dose and Reference Concentration Values for TPH Fractions
Table 5-1	Summary of Federal and State DWSs Used as Human Health Screening Levesl
	for the BWS Halway Valley Groundwater Study
Table 5-2	Results of Comparisons of Groundwater Concentrations to Groundwater
	Screening Levels
Table 5-3	Target Analytes for Petroleum Contaminated Media
Table 5-4	Summary of Cancer Risks and Noncancer Hazards for Well HDMW2253-03
Table 5-5	Summary of Cancer Risks and Noncancer Hazards for Well OWDFMW01
Table 5-6	Summary of Cancer Risks and Noncancer Hazards for Well RHMW01
Table 5-7	Summary of Cancer Risks and Noncancer Hazards for Well RHMW02
Table 5-8	Summary of Cancer Risks and Noncancer Hazards for Well RHMW03
Table 5-9	Summary of Cancer Risks and Noncancer Hazards for Well RHMW04
Table 5-10	Summary of Cancer Risks and Noncancer Hazards for Well RHMW05
Table 5-11	Summary of Cancer Risks and Noncancer Hazards for Well RHMW06
Table 5-12	Summary of Cancer Risks and Noncancer Hazards for Well RHMW07
Table 5-13	Summary of Cancer Risks and Noncancer Hazards for Well HDMW2254-01
Table 6-1	Summary of Cancer Risks, Noncancer Hazards, and Groundwater Screening
	Levels for Well HDMW2253-03
Table 6-2	Summary of Cancer Risks, Noncancer Hazards, and Groundwater Screening
	Levels for Well OWDFMW01
Table 6-3	Summary of Cancer Risks, Noncancer Hazards, and Groundwater Screening
	Levels for Well RHMW01
Table 6-4	Summary of Cancer Risks, Noncancer Hazards, and Groundwater Screening
	Levels for Well RHMW02
Table 6-5	Summary of Cancer Risks, Noncancer Hazards, and Groundwater Screening
	Levels for Well RHMW03

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL iii

Table 6-6	Summary of Cancer Risks, Noncancer Hazards, and Groundwater Screening
	Levels for Well RHMW04
Table 6-7	Summary of Cancer Risks, Noncancer Hazards, and Groundwater Screening
	Levels for Well RHMW05
Table 6-8	Summary of Cancer Risks, Noncancer Hazards, and Groundwater Screening
	Levels for Well RHMW06
Table 6-9	Summary of Cancer Risks, Noncancer Hazards, and Groundwater Screening
	Levels for Well RHMW07
Table 6-10	Summary of Cancer Risks, Noncancer Hazards, and Groundwater Screening
	Levels for Well RHMW2254-01

LIST OF APPENDICES

Appendix A Summary of Tap Water Exposure Scenario Results

ACRONYMS AND ABBREVIATIONS

μg/L micrograms per liter

95% UCL 95th percent upper confidence limit

ATSDR Agency for Toxic Substances and Disease Registry

BRA baseline risk assessment BWS bureau of water supply

CalEPA California Environmental Protection Agency

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

COPC contaminant of potential concern

DWS drinking water standard

EAL environmental action level ELCR excess lifetime cancer risk

EPA U.S. Environmental Protection Agency

EPC exposure point concentrations ESL environmental screening level

HDOH Hawai'i Department of Health
HHE human health and the environment
HHRA human health risk assessment

HI hazard index HQ hazard quotient

IRIS EPA Integrated Risk Information System

MCL maximum contaminant level MCLG maximum contaminant limit goal

NCP National Oil and Hazardous Substances Pollution Contingency Plan

PAH polnuclear aromatic hydrocarbons

RfC reference concentration

RfD reference dose

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL v

December 13, 2016

RME reasonably maximally exposed

RSL regional screening levels

TPH total petroleum hydrocarbon

UCL upper confidence limit

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL vi

December 13, 2016

1.0 INTRODUCTION

The purpose of this report is to identify screening levels for contaminants that have been detected in groundwater from the Hawai'i Bureau of Water Supply (BWS) Halawa Valley. Additionally, a groundwater baseline risk assessment (BRA) has been conducted to identify those contaminants that are the primary contributors to risk, based on the contaminants that are currently detected in the 10 wells included in this evaluation.

U.S. Environmental Protection Agency (EPA) guidance provided in *Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions* (Clay, 1991) describes how to use the BRA to make risk management decisions, such as determining whether remedial action under Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Section 104 or Section 106 is necessary. *Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions* (Clay, 1991) describes the following conditions when a CERCLA action is generally warranted:

- The BRA indicates that a cumulative site risk to an individual, using reasonably maximally exposed (RME) assumptions, for either current or future land use, exceeds the 10⁻⁴ excess lifetime cancer risk (ELCR) end of the risk range.
- For groundwater actions, maximum contaminant levels (MCLs) and nonzero maximum contaminant limit goals (MCLGs) will generally be used to gauge whether remedial action is warranted.
- Chemical-specific standards that define acceptable risk levels also may be used to determine whether an exposure is associated with an unacceptable risk to human health and the environment (HHE) and whether remedial action is warranted.

Additionally, human health protection was evaluated by comparing individual groundwater concentrations detected in the Halawa Valley groundwater monitoring wells to existing federal or state MCLs or nonzero MCLGs. Individual groundwater concentrations were also compared to risk-based concentrations based on the EPA Regional Screening Levels Tap Water scenario. Cancer risk and noncancer hazards are calculated using the tap water (residential) scenario which is used to identify the wells that report cancer risks and noncancer hazards greater than the acceptable cancer risk and noncancer hazard thresholds, and finally to identify the contaminants of potential concern (COPCs) that are the most likely contributors to cancer risk and noncancer hazards.

The following analyses are performed to identify COPCs and associated screening levels:

• Individual groundwater concentrations are compared to the lower of the MCLs and nonzero MCLGs, the Hawai'i Department of Health (HDOH) Tier 1 Environmental

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL

Action Levels (EALs) (HDOH, 2012b), and risk-based concentrations using the EPA tap water scenario to determine if individual concentrations are greater than screening levels based on a target cancer risk of 1×10^{-6} or a noncancer hazard index (HI) greater than or equal to 1.

• Cumulative cancer risks and noncancer hazards for chemicals based on the results of the EPA tap water (residential) scenario are compared to the upper end of the *National Oil* and *Hazardous Substances Pollution Contingency Plan* (NCP) (40 CFR 300) risk range for cumulative carcinogenic site risk (1 x 10⁻⁴), or a HI of 1 to an individual based on RME to return groundwater to its highest beneficial use.

The following information is presented in this report:

- Section 2 contains the data analysis (identifies the data set that is used in this evaluation);
- Section 3 contains the exposure assessment, which is a description of the exposure assumptions and equations used to calculate screening levels;
- Section 4 contains the toxicity assessment that provides a list of the toxicity values used, their sources, and HDOH-specific information on reference dose and reference concentrations;
- Section 5 contains the risk characterization, which presents a summary of the identified screening levels, the results of comparing individual concentrations from each well to screening levels, and the cumulative cancer risks and noncancer hazards based on the tap water scenario;
- Section 6 contains the summary of the results of the evaluation.

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL December 13, 2016

2.0 DATA ANALYSIS

This section describes the source of analytical data, the data processing and reduction steps, and the steps used to identify contaminants of potential concern in groundwater that will be included in the groundwater evaluation. The comparison of individual groundwater concentrations to screening levels and the groundwater risk assessment are used to prioritize those COPCs that may pose an unacceptable risk and identify wells that may warrant a remedial action.

The groundwater data set used for this evaluation consists of sampling and analysis data from 10 monitoring wells within the Halawa Valley. The monitoring well network represents locations where human receptors could potentially encounter groundwater. The primary exposure pathway for humans is through groundwater obtained from a residential or community water well. The data set contains the analytical results from groundwater samples collected between January 2011 and January 2016, which were considered representative of current groundwater conditions. A list of the monitoring wells included in this evaluation are provided in Table 2-1.

2.1 Analytical Data Processing

The groundwater data set used for evaluation includes the analytical results from samples collected from 10 monitoring wells (Table 2-1). This analytical data set was processed to obtain a single set of results per sampling location and time of collection.

After analytical data processing and reduction (as described below), the data set was used for computation of exposure point concentrations (EPCs) and to develop summary statistics that include frequency of detection, minimum and maximum detection limits, and minimum and maximum detected concentrations. The data set included the following types of information:

- Analytical results from both unfiltered and filtered samples
- Data qualification and data validation flags, including rejected results
- Parent and field duplicate sample results

The analytical data were processed using the steps below to identify one set of results per sampling location and date of sample collection. Descriptions of the data processing steps follow.

2.1.1 Sample Results

Analytical results from unfiltered samples are used in identifying COPCs; note that most wells only reported filtered lead results. Because total lead concentrations were not available, dissolved lead concentrations were used for comparison to screening levels. Unfiltered sample results represent total concentrations of the analytes, while filtered sample results represent only dissolved

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL 3

concentrations. Use of filtered sampling results might lead to underestimation of chemical concentrations (e.g., in water from an unfiltered tap).

The risk assessment guide (EPA/540/1-89/002), addresses this issue in providing guidance on estimating exposure concentrations in groundwater:

While filtration of ground-water samples provides useful information for understanding chemical transport within an aquifer, the use of filtered samples for estimating exposure is very controversial, because these data may underestimate chemical concentrations in water from an unfiltered tap. Therefore, data from unfiltered samples should be used to estimate exposure concentrations.

2.1.2 Laboratory and Data Validation Flags

Analytical data are received from the laboratory with data qualification flags. Validation qualifiers are assigned during the data validation process. The following rules determine how flagged and/or qualified sample results are used to generate summary statistics and calculate EPCs:

- Sample results flagged with a "U" data qualifier or combinations of qualifiers that include a "U," such as a "UJ," are considered nondetected results.
- Sample results without a "U" data qualifier are considered detected concentrations, including results with no data qualifier or with a "J" data qualifier.
- Sample results that are rejected and flagged with an "R" validation qualifier are not used in identifying COPCs.

where:

U = Analyzed for but not detected above limiting criteria.

J = Estimated value.

R = Do not use. Further review indicates the result is not valid.

2.1.3 Field Duplicate Results

Field duplicate samples are collected in the field and analyzed by the laboratory as unique samples. The parent sample and field duplicate sample are collected from the same location (i.e., monitoring well) on the same date, resulting in more than one sample per location and date.

The following criteria are used to reduce multiple sample results for an individual location/date to a single result:

• If two detections are reported, then the highest concentration is used.

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL 4 December 13, 2016

- If there is one detected and one nondetected result, then the detected concentration is used.
- If there are two nondetected results, then the lowest detection limit is used.

2.2 Identification of COPCs

After extracting and processing the data set, the data set is further reduced by identifying a subset of analytes (COPCs) that will be have summary statistics calculated and also be processed through ProUCL software (EPA 2015a; EPA 2015b) to calculate the 95th percent upper confidence limit (95% UCL) (described in Section 3.4.1) which in turn are used as EPCs. These results will be included in the risk characterization step of the risk assessment (Section 5). Analytes that have been analyzed for but not detected in any sample were eliminated. In total, 34 analytes were not detected in any sample from the Halawa Valley wells. All analytes detected at least once were carried forward for the statistical or 95% UCL calculations. A total of 36 analytes were detected at least once and are identified as COPCs, and are carried forward into the next step of the evaluation. All analytes detected at least once are summarized in Table 2-2.

The exposure assessment, including the methodology used to calculate EPCs and the exposure assumptions and equations used to calculate risk-based screening levels, is discussed in Section 3, the toxicity assessment is presented in Section 4. Section 5 describes the risk characterization step, including the selection process for screening levels for each COPC, a comparison of EPCs to screening levels, and the cancer risks and noncancer hazards for the EPA tap water scenario.

3.0 EXPOSURE ASSESSMENT

The exposure assessment component of the risk assessment typically identifies the populations that may be exposed, the routes by which these receptors may become exposed, and the magnitude, frequency, and duration of potential exposures.

An exposure pathway can be described as the physical course that a COPC takes from the point of release to a receptor. The route of exposure is the means by which a COPC enters a receptor. For an exposure pathway to be complete, all of the following components must be present:

- Contaminant source (or release point)
- Mechanism of chemical release
- Environmental transport mechanism
- Exposure point
- Exposure route
- Receptor or exposed population

In the absence of any one of these components, an exposure pathway is considered incomplete; therefore, it creates no risk or hazard.

3.1 Contaminant Sources

The primary sources of contamination are releases from above-ground storage tanks used to store aviation fuel.

3.2 Release Mechanisms and Environmental Transport Media

The primary COPC release mechanisms and transport media include the following:

- Direct contact with groundwater containing COPCs
- Volatilization of COPCs in groundwater from showering or household activities

3.3 Potentially Complete Human Exposure Pathways and Receptors

Potential human receptors are assumed to be current and hypothetical future residential groundwater users. Potential routes of exposure to human receptors from groundwater contaminants include the following:

- Ingestion of contaminated water by drinking or in food preparation
- Inhalation of contaminant vapors during showering or other household activities

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL 6

Dermal contact exposure to contaminants in groundwater

The EPA tap water (residential) exposure scenario is used to calculate risk-based screening levels and to evaluate exposure to humans from the above exposure pathways and routes. A description of the EPA tap water (residential) scenario is provided below.

3.3.1 EPA Tap Water Scenario (Residential)

As described in EPA (2016a, b, c), Regional Screening Levels (RSLs) - User's Guide (hereafter referred to as EPA Regional Screening Levels), the EPA tap water scenario reflects an RME scenario. The EPA tap water scenario is consistent with a residential exposure scenario because it incorporates default residential exposure assumptions. Potentially complete exposure routes for the EPA tap water scenario include exposure of adult and children residents to groundwater used as a drinking water source.

A summary of the exposure assumptions used for the tap water (residential) scenario is provided in Table 3-1.

3.3.1.1 Equations Used to Calculate Screening Levels for Water Ingestion

The following section provides the equations used to calculate screening levels for carcinogens, noncarcinogens, mutagens, and trichloroethylene. A separate equation is provided for trichloroethylene because it is classified as both a carcinogen and a mutagen.

3.3.1.1.1 Ingestion of Water – Carcinogenic Effects

The following shows the equations used to calculate the screening levels for ingestion of carcinogens:

$$SL_{ca-ing} = \frac{TR \times AT_{can} \times CF_4}{CSF_o \times IRW_{adj}}$$

where:

$$IRW_{adj} = \frac{EF \times ED_c \times IRW_c}{BW_c} + \frac{EF \times (ED_a - ED_c) \times IRW_a}{BW_a}$$

3.3.1.1.2 Ingestion of Water – Noncarcinogen Effects

The following shows the equation used to calculate the screening levels for ingestion of noncarcinogens:

$$SL_{nc-ing} = \frac{THQ \times AT_{nc} \times BW_c \times CF_4}{EF \times ED_c \times IRW_c \times \frac{1}{RfD_o}}$$

3.3.1.1.3 Ingestion of Water – Mutagenic Effects

The following shows the equations used to calculate the screening levels for ingestion of mutagens:

$$SL_{mut-ing} = \frac{TR \times AT_{can} \times CF_4}{CSF_o \times IRWM_{adi}}$$

where:

$$\begin{split} IRWM_{adj} &= \frac{EF \times ED_{0-2} \times IRW_c \times 10}{BW_c} \\ &+ \frac{EF \times ED_{2-6} \times IRW_c \times 3 + EF \times ED_{6-16} \times IRW_a \times 3}{BW_c} \\ &+ \frac{EF \times ED_{16-26} \times IRW_a \times 1}{BW_a} \end{split}$$

3.3.1.1.4 Ingestion of Water – Trichloroethylene

The following shows the equation used to calculate the screening levels for ingestion of trichloroethylene:

$$SL_{tce-ing} = \frac{TR \times AT_{can} \times CF_4}{CSF_o \times \left(\left(IRWM_{adj} \times MAF_o \right) + \left(IRW_{adj} \times CAF_o \right) \right)}$$

3.3.1.2 Equations Used to Calculate Screening Levels for Dermal Contact with Water

The following section provides the equations used to calculate screening levels for dermal contact with carcinogens, noncarcinogens, mutagens, and trichloroethylene. A separate equation is provided for trichloroethylene because it is classified as both a carcinogen and a mutagen.

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL 8

3.3.1.2.1 Dermal Contact with Water – Carcinogenic Effects

The following shows the equations used to calculate the screening levels for dermal contact with carcinogens:

$$SL_{ca-der} = \frac{TR \times DA_{event} \times AT_{ca} \times CF_4}{\frac{CSF_o}{GIABS} \times SA_{adj}}$$

where:

$$SA_{adj} = \frac{EF \times ED_c \times SA_c \times EV}{BW_c} + \frac{EF \times (ED_a - ED_c) \times SA_a \times EV}{BW_a}$$

3.3.1.2.2 Dermal Contact with Water – Noncarcinogen Effects

The following shows the equation used to calculate the screening levels for dermal contact with noncarcinogens:

$$SL_{nc-der} = \frac{THQ \times DA_{event} \times AT_{nc} \times CF_4 \times BW_c}{EF \times ED_c \times SA_c \times \frac{1}{RfD_o} \times GIABS}$$

3.3.1.2.3 Dermal Contact with Water – Mutagenic Effects

The following shows the equations used to calculate the screening levels for dermal contact with mutagens:

$$SL_{mut-der} = \frac{TR \times DA_{event} \times AT_{ca} \times CF_4}{\frac{CSF_o}{GIABS} \times SA_{adj-mut}}$$

where:

$$SA_{adj-mut} = \frac{EF \times ED_{0-2} \times SA_c \times EV \times 10}{BW_c} + \frac{EF \times ED_{2-6} \times SA_c \times EV \times 3}{BW_c} \\ + \frac{EF \times ED_{6-16} \times SA_a \times EV \times 3}{BW_a} + \frac{EF \times ED_{16-26} \times SA_a \times EV \times 1}{BW_a}$$

3.3.1.2.4 Dermal Contact with Water – Trichloroethylene

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL 9

The following shows the equation used to calculate the screening levels for dermal contact with trichloroethylene:

$$SL_{tce-der} = \frac{TR \times DA_{event} \times AT_{can} \times CF_4}{\frac{CSF_o}{GIABS} \times \left(\left(SA_{adj} \times MAF_o \right) + \left(SA_{adj-mut} \times CAF_o \right) \right)}$$

3.3.1.3 Equations Used to Calculate Dermally Absorbed Dose

The exposure time used in the risk calculations is healtheffect-dependent. For noncarcinogens, the exposure time is not adjusted for age $(ET = ET_c)$. For carcinogens, an age-adjusted exposure time is calculated using the following equation:

$$ET_{adj} = \frac{(ED_c \times ET_c) + ([ED_a - ED_c] \times ET_a)}{ED_c}$$

For mutagens, an age-adjusted exposure time is calculated using the following equation:

$$ET_{adj-mut} = \frac{(ED_{0-2} \times ET_c) + (ED_{2-6} \times ET_c) + (ED_{6-16} \times ET_a) + (ED_{16-26} \times ET_a)}{ED_{0-2} + ED_{2-6} + ED_{6-16} + ED_{16-26}}$$

For organics, the following equations are used to calculate the dermally absorbed dose per event (DA_{event}), using the child exposure time for noncarcinogenic effects and the age-adjusted exposure time (as calculated above) for carcinogenic effects and mutagenic effects:

If $ET \le t^*$, the following nonsteady-state equation is used:

$$DA_{event} = 2 \times FA \times K_p \times C_w \times CF3 \times \sqrt{\frac{6 \times \tau \times ET}{\pi}}$$

If ET $> t^*$, the following pseudosteady-state equation is used:

$$DA_{event} = FA \times K_p \times C_w \times CF3 \times \left[\frac{ET}{1+B} + 2 \times \tau \times \left(\frac{1+3B+3B^2}{(1+B)^2} \right) \right]$$

where:

ET = for noncarcinogenic, carcinogenic, or mutagenic effects, respectively.

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL 10

December 13, 2016

BWS006156

For inorganics, the following steady-state equation is used to estimate DA_{event}:

$$DA_{event} = K_p \times C_w \times ET \times CF3$$

where:

 $ET = ET_c$ or ET_{adj} , or $ET_{adj-mut}$ for noncarcinogenic, carcinogenic, or mutagenic effects effects, respectively.

3.3.1.4 Equations Used to Calculate Screening Levels for Inhalation of Volatiles

The following section provides the equations used to calculate screening levels for inhalation of carcinogens, noncarcinogens, mutagens, and for trichloroethylene. A separate equation is provided for trichloroethylene because it is classified as both a carcinogen and a mutagen.

3.3.1.4.1 Inhalation of Volatiles - Carcinogenic Effects

The following shows the equations used to calculate the screening levels for inhalation of carcinogenic volatiles:

$$SL_{ca-inh} = \frac{TR \times AT_{can}}{EF \times ED_a \times ET_{inh} \times CF_2 \times VF \times IUR}$$

3.3.1.4.2 Inhalation of Volatiles – Noncarcinogen Effects

The following shows the equation used to calculate the screening levels for inhalation of noncarcinogenic volatiles:

$$SL_{nc-inh} = \frac{THQ \times AT_{nc} \times CF_4}{EF \times ED_c \times ET_{inh} \times CF_2 \times VF \times \frac{1}{RfC}}$$

3.3.1.4.3 Inhalation of Volatiles – Mutagenic Effects

The following shows the equations used to calculate the screening levels for inhalation of mutagenic volatiles:

$$SL_{mut-inh} = \frac{TR \times AT_{can}}{VF \times INHM_{adi} \times IUR}$$

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL 11

December 13, 2016

BWS006157

where:

$$INHM_{adj} = (EF \times ED_{0-2} \times ET_{inh} \times CF_2 \times 10) + (EF \times ED_{2-6} \times ET_{inh} \times CF_2 \times 3) + (EF \times ED_{6-16} \times ET_{inh} \times CF_2 \times 3) + (EF \times ED_{16-26} \times ET_{inh} \times CF_2 \times 1)$$

3.3.1.4.4 Inhalation of Volatiles – Trichloroethylene

The following shows the equations used to calculate the screening levels for inhalation of trichloroethylene:

$$SL_{ca-inh} = \frac{TR \times AT_{can}}{\left((EF \times ED_a \times ET_{inh} \times CF_2 \times CAF_i) + (INHM_{tce-inh}) \right) \times VF \times IUR}$$

where:

$$INHM_{adj-tce} = \left((EF \times ED_{0-2} \times ET_{inhc} \times CF_{24} \times MAF_i \times 10) + (EF \times ED_{2-6} \times ET_{cinh} \times CF_{42} \times MAF_i \times 3) + (EF \times ED_{6-16} \times ET_{inha} \times CF_{24} \times MAF_i \times 3) + (EF \times ED_{16-26} \times ET_{inh} \times CF_2 \times MAF_i \times 1) \right)$$

3.3.1.5 Equations Used to Calculate Screening Levels for All Exposure Routes Combined

The following section provides the equations used to calculate screening levels for exposure to carcinogens, noncarcinogens, mutagens, and trichloroethylene. A separate equation is provided for trichloroethylene because it is classified as both a carcinogen and a mutagen.

3.3.1.5.1 Total Screening Level – Carcinogenic Effects

The following shows the equation used to calculate the total screening levels for exposure to carcinogens:

$$SL_{ca-tot} = \frac{1}{SL_{ca-ing} + SL_{ca-der} + SL_{ca-inh}}$$

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL 12

December 13, 2016

3.3.1.5.2 Total Screening Level – Noncarcinogenic Effects

The following shows the equation used to calculate the total screening levels for exposure to noncarcinogens:

$$SL_{nc-tot} = \frac{1}{SL_{nc-ing} + SL_{nc-der} + SL_{nc-inh}}$$

3.3.1.5.3 Total Screening Level – Mutagenic Effects

The following shows the equation used to calculate the total screening levels for exposure to mutagens:

$$SL_{mut-tot} = \frac{1}{SL_{mut-ing} + SL_{mut-der} + SL_{mut-inh}}$$

3.3.1.5.4 Total Screening Level – Trichloroethylene

The following shows the equation used to calculate the total screening levels for exposure to trichloroethylene:

$$SL_{tce-tot} = \frac{1}{SL_{tce-ing} + SL_{tce-der} + SL_{tce-inh}}$$

3.4 Exposure Point Concentrations

OSWER Directive 9285.6-10, Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites (hereafter referred to as Calculating UCL for EPCs), states that, "...an exposure point concentration (EPC) is a conservative estimate of the average chemical concentration in an exposure medium." OSWER Publication 9285.7-08I, Supplemental Guidance to RAGS: Calculating the Concentration Term, states that, "...because of the uncertainty associated with estimating the true average concentration at a site, the 95% UCL of the arithmetic mean should be used for this variable." Use of the 95% UCL of the arithmetic mean yields risk estimates that correspond to an RME. Instances where a value different from a UCL is used as the EPC are clearly identified and the reasons and justifications for the departure are provided.

Calculating UCL for EPCs (OSWER Directive 9285.6-10) further states the following:

The EPC is determined for each individual exposure unit within a site. An exposure unit is the area throughout which a receptor moves and encounters an environmental medium for

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL December 13, 2016

the duration of the exposure. Unless there is site-specific evidence to the contrary, an individual receptor is assumed to be equally exposed to media within all portions of the exposure unit over the time frame of the risk assessment.

For this groundwater risk assessment, the terms "exposure unit" and "exposure area" are considered operationally equivalent. Each individual well included in this groundwater BRA is identified as an exposure area.

3.4.1 95 Percent Upper Confidence Limit (95% UCL) Calculation Methodology

Calculating UCL for EPCs (OSWER Directive 9285.6-10) is the most recent EPA guidance for UCL calculation, and ProUCL version 5.1 (EPA 2015a; EPA 2015b) serves as the companion software package for this guidance. ProUCL version 5.1 contains rigorous parametric and nonparametric statistical methods (including bootstrap methods) that can be used on data sets without nondetect results and on data sets with nondetect results (results reported below detection limits). Both ProUCL and OSWER Directive 9285.6-10 were used to calculate the UCLs for the Halawa Valley groundwater monitoring wells. A summary of the exposure point concentrations for each well and each detected COPC is provided in Table 3-2.

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL 14 Decer

4.0 TOXICITY ASSESSMENT

This toxicity assessment evaluates the relationship between the magnitude of exposure to a contaminant at the Halawa Valley and the likelihood of adverse health effects to potentially exposed populations. This assessment provides, where possible, a numerical estimate of the increased likelihood of adverse effects associated with contaminant exposure. The toxicity assessment contains two steps: hazard characterization and dose response evaluation, as discussed in the following subsections.

4.1 Hazard Characterization

Hazard characterization identifies the types of toxic effects that a chemical can exert. For the toxicity assessment, chemicals can be divided into three broad groups—noncarcinogens, carcinogens, and mutagens—based on their effects on human health.

Carcinogens are those contaminants that are known or suspected causes of cancer following exposure; noncarcinogenic compounds are associated with a wide variety of systemic effects, such as liver toxicity or developmental effects; mutagens are are those contaminants that are known or or suspected of cancer following early-life exposure and act through a mutagenic mode of action. Some contaminants (e.g., arsenic) are capable of eliciting both carcinogenic and noncarcinogenic responses; therefore, these contaminants are evaluated for both effects.

For cancer effects, EPA has developed a carcinogen classification system (*Guidelines for Carcinogen Risk Assessment* [EPA/630/P-03/001F]) that uses a weight-of-evidence approach for classifying the likelihood that a chemical is a human carcinogen. Information considered in developing the classification includes human studies of the association between cancer incidence and exposure, as well as long-term animal studies under controlled laboratory conditions. Other supporting evidence considered includes short-term tests for genotoxicity, metabolic and pharmacokinetic properties, toxicological effects other than cancer, structure-activity relationships, and physical and chemical properties of the chemical.

For mutagenic effects, EPA has developed an approach (Supplemental Guidance for Assessment Susceptibility from Early-Life Exposure to Carcinogens [EPA/630/R-03/003F]) that applies modifications (adjustment factors) to cancer slope factors to address the potential for differential risk of early-lifestage exposure. Default adjustment factors are used only when chemical-specific data are not available to assess direct cancer susceptibility from early life exposure to a carcinogen that acts through a mutagenic mode of action.

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL December 13, 2016

December 13, 2010

BWS006161

For noncancer effects, toxicity values are derived based on the critical toxic endpoint (i.e., the most sensitive adverse effect following exposure). Table 4-1 lists the COPCs detected in the Halawa Valley groundwater that have been identified as having documented systemic effects.

4.2 **Dose Response**

The magnitude of toxicity of a contaminant depends on the dose to a receptor. Dose refers to exposure to a contaminant concentration over a specified period of time. Human exposures are generally classified as acute (typically less than 2 weeks), subchronic (about 2 weeks to 7 years), or chronic (7 years to a lifetime). This Human Health Risk Assessment (HHRA) specifically addresses chronic exposure. Acute exposures and risks are evaluated only when chronic exposure estimates pose a high risk. A dose response curve describes the relationship between the degree of exposure (i.e., dose) and the incidence of the adverse effects (i.e., response) in the exposed population. EPA uses this dose response information to establish toxicity values for particular chemicals, as described in the following sections.

4.2.1 Reference Doses for Noncancer Effects

The toxicity value describing the dose-response relationship for noncancer effects is the RfD value. For noncarcinogenic effects, the body's protective mechanisms must be overcome before an adverse effect is manifested. If exposure is high enough and these protective mechanisms (or thresholds) are exceeded, adverse health effects can occur. EPA attempts to identify the upper bound of this tolerance range in the development of noncancer toxicity values. EPA uses the apparent toxic threshold value, in conjunction with uncertainty factors based on the strength of the toxicological evidence, to derive a reference dose (RfD) value. EPA defines an RfD value as follows:

In general, the RfD is an estimate (with uncertainty spanning perhaps an order of magnitude) of a daily exposure to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime. The RfD is generally expressed in units of mg/kg-day.

Available chronic RfD values for the oral and inhalation exposure routes are used to calculate screening levels. Because EPA has not derived toxicity values specific to skin contact, dermal slope factors and RfD values were derived from oral toxicity factors in accordance with EPA guidance. The RfD values for the contaminants evaluated are summarized in Table 4-1.

4.2.2 Slope Factors for Cancer Effects

The dose-response relationship for cancer effects is expressed as a cancer slope factor that converts estimated intake directly to ELCR. Slope factors are expressed in units of risk per level of exposure (or intake). The data used for estimating the dose-response relationship are taken from lifetime

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment **FINAL**

animal studies or human occupational or epidemiological studies where excess cancer risk has been associated with exposure to the chemical. However, because risk at low intake levels cannot be directly measured in animal or human epidemiological studies, a number of mathematical models and procedures have been developed to extrapolate from the high doses used in the studies to the low doses typically associated with environmental exposures. The model choice leads to uncertainty associated with the carcinogenic response at very low levels of exposure. EPA assumes linearity at low doses when uncertainty exists about the mechanism of action of a carcinogen and when information suggesting nonlinearity is absent.

It is assumed, therefore, that if a cancer response occurs at the dose levels used in the study, then there is some probability that a response will occur at all lower exposure levels (i.e., a dose-response relationship with no threshold is assumed). Moreover, the dose-response slope chosen is usually the 95% UCL on the mean on the actual dose-response curve observed in the laboratory studies. As a result, uncertainty and conservatism are built into the EPA risk extrapolation approach. EPA has stated that cancer risks estimated by this method produce estimates that "provide a rough but plausible upper limit of risk." The cancer slope factors used in this assessment are summarized in Table 4-1.

4.2.3 Selection of Toxicity Values

The COPC-specific toxicity values presented in Table 4-1 are determined using the recommended reference hierarchy as described in OSWER Directive 9285.7-53, *Human Health Toxicity Values in Superfund Risk Assessments*. The hierarchy is summarized below:

- Tier 1—The EPA Integrated Risk Information System (IRIS) database
- Tier 2—The EPA Provisional Peer Reviewed Toxicity Values
- Tier 3—Other Toxicity Values

4.2.3.1 Tier 1 - IRIS

The preferred source of toxicity data is EPA's IRIS database. Expert toxicologists at EPA have derived the values in this database and the values have undergone a thorough review and validation both within and outside EPA. If a toxicity value is available in IRIS, that value is used in preference to any other value.

4.2.3.2 Tier 2 - Provisional Peer Reviewed Toxicity Values

If a toxicity value is not available in IRIS, the next source is EPA's Provisional Peer Reviewed Toxicity Values. This source includes toxicity values that have been developed by the Office of Research and Development/National Center for Environmental Assessment/Superfund Health Risk Technical Support Center. This database is not available to the public, but is accessible to

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL 17 Decer

December 13, 2016

EPA risk assessors via EPA's intranet. These values are also published at *Regional Screening Levels* (EPA, 2016a, b, c).

4.2.3.3 Tier 3 - Other Toxicity Values

Tier 3 includes additional EPA and non-EPA sources of toxicity information, including the following:

- The California EPA (CalEPA) Toxicity Criteria Database contains toxicity values that are peer reviewed and address both cancer and noncancer effects.
- The *Agency for Toxic Substances and Disease Registry (ATSDR)* database Minimal Risk Levels for Hazardous Substances are peer-reviewed estimates of the daily human exposure to hazardous substances that is likely to be without appreciable risk of adverse noncancer health effects over a specified duration of exposure.

4.2.3.4 Total Petroleum Hydrocarbon Fractions

The Hawaii Department of Health (HDOH) Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater, Volume 2: Background Documentation for the Development of Tier 1 Environmental Action Levels (HDOH, 2012b) describes how reference dose and reference concentrations should be calculated for the three total petroleum hydrocarbon fractions (gasoline, middle distillates, and residual fuels). This guide describes the methodology for calculating a weighted reference concentration (RfC) for the inhalation exposure pathway and a weighted oral RfD.

The following equation is used to calculate the weighted RfC for each total petroleum hydrocarbon (TPH) fraction:

$$Weighted\ RfC(\frac{mg}{m^3}) = \frac{1}{\frac{Fraction\ C_5 - C_8\ aliphatics}{Rf\ C_{C5-C8\ aliphatics}}} + \frac{1}{\frac{Fraction\ C_9 - C_{12}\ aliphatics}{Rf\ C_{C9-C12\ aliphatics}}} + \frac{1}{\frac{Fraction\ C_9 - C_{10} + aromatics}{Rf\ C_{C9-C10+aromatics}}}$$

The following equation is used to calculate the weighted RfD for each TPH fraction.

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL December 13, 2016

$$Weighted\ RfD(\frac{mg}{kg-day}) = \frac{1}{\frac{Fraction\ C_5 - C_8\ aliphatics}{RfD_{C5-C8\ aliphatics}}} + \frac{1}{\frac{Fraction\ C_9 - C_{12}\ aliphatics}{RfD_{C9-C12\ aliphatics}}} + \frac{1}{\frac{Fraction\ C_{19+}\ aliphatics}{RfD_{C19+}\ aliphatics}} + \frac{1}{\frac{Fraction\ C_9 - C_{10} +\ aromatics}{RfC_{C9-C10+}\ aromatics}}$$

The default carbon range of each TPH fraction is based on the Indiana Department of Environmental Management. The default carbon ranges are shown in Table 4-2.

The toxicity factors and associated critical effects (mechanisms of action) identified for each individual carbon range fraction are shown in Table 4-3.

The weighted reference dose and reference concentrations are shown in Table 4-4.

December 13, 2016

5.0 RISK CHARACTERIZATION

Risk characterization is completed through the comparison of the EPC to the groundwater screening levels and the comparison of total cancer risk and noncancer HI to their respective thresholds. These comparisons are used to determine whether current groundwater concentrations protect human health or whether a remedial action may be warranted. It is also used to determine if current groundwater concentrations within an individual well have the potential to exceed an HI greater than 1 or the upper end of the NCP risk range for total cancer risk.

Although this risk assessment produces numerical estimates of risk, it should be recognized that these numbers might not predict actual health outcomes because they are based largely on hypothetical assumptions. Their purpose is to provide a frame of reference for risk management decision-making. Interpretation of the risk estimates provided should consider the nature and weight of evidence supporting these estimates, as well as the magnitude of uncertainty surrounding them.

5.1 Evaluation of Measured Groundwater Concentrations

This section presents a comprehensive interpretation of the sampling results used to identify COPC concentrations that are greater than groundwater screening levels. Groundwater screening levels are derived from chemical-specific drinking water standards, risk-based concentrations using default exposure assumptions from the tap water (residential) exposure scenario, and taste and odor thresholds (organoleptic effects). The results of this evaluation are used in combination with the groundwater BRA, to identify the COPCs that are the primary contributors to cancer risk and noncancer hazards. The groundwater BRA provides a comprehensive evaluation of cumulative cancer risks and noncancer hazards on a well-by-well basis.

Ten monitoring wells were identified for inclusion in this evaluation and samples were collected between January 2011 and January 2016, which were considered representative of current groundwater conditions. A list of the wells is provided in Table 2-1.

5.1.1 Screening Levels

The Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater, Volume I Users Guide (Fall 2012 rev June 2015) (HDOH, 2012a) states that all groundwater should be considered a potential source of drinking water unless otherwise approved by the overseeing regulatory agency. As a result, screening levels from chemical-specific drinking water standards (DWSs), risk-based concentrations using default exposure assumptions, and CalEPA taste and order thresholds (gross contamination) are included.

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL 20 Decemb

The User's Guide (HDOH, 2012a) also states that all shallow groundwater will ultimately discharge to a body of surface water that will potentially impact aquatic organisms. Groundwater included in this evaluation does not represent shallow groundwater conditions. As a result water quality standards and criteria protective of aquatic organisms are not evaluated. Finally, intrusion of subsurface vapors into buildings is considered an incomplete exposure pathway because groundwater monitoring wells are not located directly beneath buildings.

The sources of screening levels from federal regulations are as follows:

- 40 CFR 141, "National Primary Drinking Water Regulations"; consulted for MCLs; secondary MCLs; and nonzero maximum contaminant level goals (MCLGs) established under the Safe Drinking Water Act of 1974
- Regional Screening Levels (RSLs) for Chemical Contaminants at Superfund Sites, which details EPA's acceptable ELCR of 1 x 10^{-6} to 1×10^{-4} for carcinogens and target hazard quotients (HQs) for individual noncarcinogens

The source of screening levels from the Hawai'i Department of Health (HDOH) is the following:

Tier 1 Environmental Screening Levels (Tier 1 ESLs); Table F-1a (HDOH, 2012b)

The User's Guide (HDOH, 2012a) also indicates that the Tier 1 ESLs are considered to be adequately protective provided that no more than three carcinogenic COPCs and no more than five noncarcinogenic COPCs are present at a site. This is based on a combination of conservative exposure assumptions and target risk factors in direct-exposure models. That is, the individual Tier 1 ESLs are not based on a HQ of 1; rather an adjustment factor has been applied to the ESL account for multiple chemicals. For example, noncarcinogenic ESLs are calculated based on a target HQ of 0.2, which assumes that up to five COPCs have the same critical effect. As a result, these values are listed for reference but are not selected as a final screening level because more than three carcinogenic COPCs and more than five noncarcinogenic COPCs are detected in the Halawa Valley groundwater.

Section 6.6 of the *User's Guide* (HDOH, 2012a) provides guidance on the selection of screening levels for TPH-impacted groundwater. A TPH-diesel taste and odor threshold of 100 µg/L referenced in the technical document A Compilation of Water Quality Goals 17th Edition (CalEPA, 2016) was referred to as a substitute secondary MCL for all categories of TPH. This takes precedence over the toxicity-based action level for selection of a final drinking water action level.

A complete summary of the groundwater screening levels from the sources listed above is provided in Table 5-1.

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment **FINAL**

5.1.2 Results of Comparison to Groundwater Screening Levels

As described earlier, the groundwater data for each monitoring well were compiled and statistically analyzed, and the results are presented in Table 5-2. These tables present the summary statistics for each analyte detected with the monitoring well, the selected screening level, and the basis for the screening level.

The following sections describe the results for each well based on the TPH-fraction and its associated target analytes as shown in Table 5-3.

5.1.2.1 Well HDMW2253-03

TPH-gasoline was detected in 5 of 21 samples collected from this well at concentrations ranging between 15 μ g/L and 27 μ g/L. All concentrations were less than the nuisance-based screening level of 100 μ g/L and the risk-based concentration of 400 μ g/L. Benzene was detected in 3 of 22 samples collected from this well at concentrations ranging between 0.2 μ g/L and 0.92 μ g/L; one sample was greater than the risk-based concentration of 0.46 μ g/L. Toluene, naphthalene, and lead were also detected in this well but at concentrations less than their respective nuisance-based screening level or risk-based concentration. No other target analytes were detected.

TPH-middle distillates were detected in 13 of 22 samples collected with concentrations ranging between 13 $\mu g/L$ and 600 $\mu g/L$. Concentrations of TPH-middle distillates were greater than the nuisance-based screening level of 100 $\mu g/L$ in 3 samples and greater than the risk-based concentration of 160 $\mu g/L$ in 2 samples. Benzene, toluene, and naphthalene are common target analytes and are discussed above. No other target analytes were detected.

TPH-residual fuels were detected in 3 of 6 samples collected with concentrations ranging between 55 μ g/L and 77 μ g/L. All sample concentrations were less than the nuisance-based screening level of 100 μ g/L and the risk-based concentration of 2,500 μ g/L. Benzene, toluene, naphthalene are common target analytes and are discussed above. Benzo(a)anthracene was detected in 1 of 20 samples collected at a concentration of 0.0032 μ g/L, which is less than the risk-based concentration of 0.012 μ g/L. No other target analytes were detected.

5.1.2.2 Well OWDFMW01

TPH-gasoline was detected in 5 of 21 samples collected with concentrations ranging between 17 μ g/L and 31 μ g/L. All sample concentrations were less than the nuisance-based screening level of 100 μ g/L and the risk-based concentration of 400 μ g/L. TPH-gasoline was detected in 5 of 21 samples collected with concentrations ranging between 17 μ g/L and 31 μ g/L. Benzene was detected in 13 of 21 samples collected with concentrations ranging between 0.07 μ g/L and 0.13 μ g/L; 6 samples reported concentrations greater than the risk-based concentration of 0.46 μ g/L.

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL 22 December 13, 2016

Toluene, total xylenes, naphthalene, and lead were also detected in this well but at concentrations less than their respective cleanup levels. No other target analytes were detected.

TPH-middle distillates were detected in 15 of 21 samples collected with concentrations ranging between 17 μ g/L and 3,100 μ g/L. Concentrations of TPH-middle distillates were greater than the nuisance-based screening level of 100 μ g/L in 11 samples and greater than the risk-based concentration of 160 μ g/L in 10 samples. Benzene, toluene, xylenes, and naphthalene are common target analytes and are discussed above. Additionally, 1-methylnapthalene and 2-methylnapthalene were detected at this well, at concentrations less than their risk-based concentration or nuisance-based screening level, respectively. No other target analytes were detected.

TPH-residual fuels were detected in 4 of 6 samples collected with concentrations ranging between 69 μ g/L and 390 μ g/L. Concentrations of TPH-residual fuels were greater than the nuisance-based cleanup level of 100 μ g/L in 2 samples and no samples were greater than the risk-based concentration of 2,500 μ g/L. Benzene, toluene, xylenes, naphthalene, 1-methylnapthalene and 2-methylnapthalene are common target analytes and are discussed above. Six additional polynuclear aromatic hydrocarbons (PAHs) (acenaphthylene, benzo(a)anthracene, fluorene, phenanthrene, and pyrene) were detected in this well. All six of the PAHs were detected at concentrations less than their nuisance-based screening level or risk-based concentration. Four chlorinated solvents (1,2-dichloroethane, bromodichloromethane, chloromethane, methylene chloride) were detected at this well. Bromodichloromethane was detected in 1 of 20 samples at a concentration of 0.5 μ g/L, which is greater than the risk-based concentrations level of 0.13 μ g/L. Concentrations of 1,2-dichloroethane, chloromethane, and methylene chloride were less than their risk-based concentrations. Methylene chloride is also considered a common laboratory contaminant. No other target analytes were detected.

5.1.2.3 Well RHMW01

TPH-gasoline was detected in 4 of 22 samples collected with concentrations ranging between 13 $\mu g/L$ and 26 $\mu g/L$. All concentrations were less than the nuisance-based cleanup level of 100 $\mu g/L$ and the risk-based concentration of 400 $\mu g/L$. Naphthalene was detected in 11 of 28 samples collected with concentrations ranging between 0.037 $\mu g/L$ and 0.2 $\mu g/L$. Naphthalene was detected in 11 of 28 samples with concentrations ranging between 0.037 $\mu g/L$ and 0.2 $\mu g/L$; 2 samples were greater than the risk-based concentration of 0.17 $\mu g/L$. Toluene and lead concentrations were also detected but at concentrations less than their nuisance-based screening level or risk-based concentration. No other target analytes were detected.

TPH-middle distillates were detected in 25 of 28 samples collected with concentrations ranging between 33 μ g/L and 430 μ g/L. Concentrations of TPH-middle distillates were greater than the

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL December 13, 2016

nuisance-based screening level of $100~\mu g/L$ in 12 samples and greater than the risk-based concentration of $160~\mu g/L$ in 8 samples. Toluene and naphthalene are common target analytes and are discussed above. Additionally, 1-methylnapthalene and 2-methylnapthalene were detected at this well both at concentrations less than their risk-based or nuisance-based cleanup level. No other target analytes were detected.

TPH-residual fuels were detected in 4 of 6 samples collected with concentrations ranging between 21 μ g/L and 60 μ g/L. All concentrations were less than the nuisance-based screening level of 100 μ g/L and the risk-based concentration of 2,500 μ g/L. Toluene, naphthalene, 1-methylnapthalene, and 2-methylnapthalene are common target analytes for this fraction of TPH. Six additional PAHs (acenaphthene, acenaphthylene, benzo(a)anthracene, fluorene, phenanthrene, and pyrene) were detected in this well. All six of the PAHs were detected at concentrations less than their nuisance-based screening level or risk-based concentration. Two chlorinated solvents (chloroform and methylene chloride) were detected at this well. Concentrations of chloroform and methylene chloride were both less than their risk-based concentration. No other target analytes were detected.

5.1.2.4 Well RHMW02

TPH-gasoline was detected in 15 of 20 samples with concentrations ranging between 36 μ g/L and 660 μ g/L. Two samples were greater than the nuisance-based screening level of 100 μ g/L and one sample was greater than the risk-based concentration of 400 μ g/L. Benzene, ethylbenzene, naphthalene, toluene, xylenes, and lead were detected in this well. Naphthalene was detected in 11 of 28 samples collected with concentrations ranging between 0.037 μ g/L and 0.2 μ g/L. Naphthalene was detected in all 25 samples at concentrations ranging between 1 μ g/L and 160 μ g/L; all concentrations were greater than the risk-based concentration of 0.17 μ g/L. Benzene, ethylbenzene, toluene, xylenes, and lead concentrations were less than their nuisance-based or risk-based concentration. No other target analytes were detected.

TPH-middle distillates were detected all 27 samples collected with concentrations ranging between 750 μ g/L and 6,500 μ g/L. All sample concentrations were greater than the nuisance-based screening level of 100 μ g/L and the risk-based concentration of 160 μ g/L. Benzene, ethylbenzene, naphthalene, toluene, and xylenes are common target analytes and are discussed above. Additionally, 1-methylnapthalene and 2-methylnapthalene were both detected at this well. 1-methylnaphthalene was detected in all 26 samples where concentrations range between 0.57 μ g/L and 68 μ g/L; 24 samples were greater than the risk-based concentration of 1.1 μ g/L. 2-methylnaphthalene was detected in all 27 samples where concentrations range between 0.16 μ g/L and 43 μ g/L; 7 samples were greater than the nuisance-based screening level of 10 μ g/L and 2 were greater than the risk-based concentration of 36 μ g/L. No other target analytes were detected.

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL 24 December 13, 2016

TPH-residual fuels were detected in 4 of 6 samples with concentrations ranging between 260 μ g/L and 360 μ g/L. All concentrations were greater than the nuisance-based screening level of 100 μ g/L and all concentrations were less than the risk-based concentration of 2,500 μ g/L. Benzene, ethylbenzene, toluene, xylenes, naphthalene, 1-methylnapthalene, and 2-methylnapthalene are common target analytes and are discussed above. Six additional PAHs (acenaphthene, acenaphthylene, benzo(a)anthracene, fluorene, phenanthrene, and pyrene) were detected in this well. All six of the PAHs were detected at concentrations less than their nuisance-based or risk-based cleanup level. Three chlorinated solvents (1,1,2,2-tetrachloroethane, 1,2,3-trichloropropane, and methylene chloride) were detected in this well. 1,1,2,2-tetrachloroethane and methylene chloride were both detected at concentrations less than the risk-based concentrations level of 0.076 μ g/L and 11 μ g/L, respectively. 1,2,3-trichloropropane was detected in 1 of 19 samples at a concentration of 0.27 μ g/L, which is greater than the risk-based concentration of 0.00075 μ g/L. No other target analytes were detected.

5.1.2.5 Well RHMW03

TPH-gasoline was detected in 2 of 21 samples with concentrations ranging between 20 $\mu g/L$ and 23 $\mu g/L$. Both concentrations were less than the nuisance-based screening level of 100 $\mu g/L$ and the risk-based concentration of 400 $\mu g/L$. Toluene, naphthalene, and lead were detected in this well. Naphthalene was detected in 7 of 21 samples collected with concentrations ranging between 0.0094 $\mu g/L$ and 0.32 $\mu g/L$; 1 sample was greater than the risk-based concentration of 0.17 $\mu g/L$. Toluene and lead concentrations were less than their nuisance-based or risk-based concentration. No other target analytes were detected.

TPH-middle distillates were detected in 14 of 21 samples collected with concentrations ranging between 37 $\mu g/L$ and 150 $\mu g/L$. Concentrations of TPH-middle distillates were greater than the nuisance-based screening level of 100 $\mu g/L$ in 2 samples and no sample concentrations were greater than the risk-based concentration of 160 $\mu g/L$. Toluene and naphthalene are common target analytes and are discussed above. Additionally, 1-methylnapthalene and 2-methylnapthalene were detected at this well where concentrations for both analytes were less than the risk-based concentration or nuisance-based screening level of 1.1 $\mu g/L$ and 10 $\mu g/L$, respectively. No other target analytes were detected.

TPH-residual fuels were detected in 4 of 6 samples collected with concentrations ranging between 110 $\mu g/L$ and 160 $\mu g/L$. Four samples were greater than the nuisance-based screening level of 100 $\mu g/L$ and all sample concentrations were less than the risk-based concentration of 2,500 $\mu g/L$. Toluene, naphthalene, 1-methylnapthalene and 2-methylnapthalene are common target analytes and are discussed above. Two additional PAHs (benzo(a)anthracene and phenanthrene) were detected in this well. Both PAHs were detected at concentrations less than their risk-based concentrations. No other target analytes were detected.

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL December 13, 2016

5.1.2.6 Well RHMW04

TPH-gasoline was not detected in any of the samples collected from this well. Benzene, toluene, naphthalene, and lead were detected in this well but at concentrations less their nuisance-based screening level or risk-based concentration. No other target analytes were detected.

TPH-middle distillates were detected in 4 of 7 samples collected with concentrations ranging between $10 \,\mu\text{g/L}$ and $36 \,\mu\text{g/L}$. All concentrations were less than the nuisance-based cleanup level of $100 \,\mu\text{g/L}$ and the risk-based concentration of $160 \,\mu\text{g/L}$. Benzene, toluene, naphthalene are common target analytes and are discussed above. 1-methylnaphthalene and 2-methylnaphthalene were detected at this well at concentrations less than their risk-based concentration or nuisance-based screening level. No other target analytes were detected.

TPH-residual fuels were detected in 3 of 4 samples collected with concentrations ranging between 25 μg/L and 52 μg/L. All sample concentrations were less than the nuisance-based screening level of 100 µg/L and the risk-based concentration of 2,500 µg/L. Benzene, toluene, naphthalene, 1methylnaphthalene, and 2-methylnaphthalene are common target analytes and are discussed above. Six additional **PAHs** (acenaphthylene, anthracene, benzo(g,h,i)perylene, dibenzo(a,h)anthracene, fluorene, and phenanthrene) were detected in this well. Dibenzo(a,h)anthracene was detected in 1 of 6 samples at a concentration of 0.011 µg/L, which is greater than the risk-based concentration of 0.0034 µg/L. The remaining 5 PAHs were detected at concentrations less than their risk-based cleanup levels. No other target analytes were detected.

5.1.2.7 RHMW05

TPH-gasoline was in 4 of 20 samples with concentrations ranging between 15 μ g/L and 23 μ g/L. All concentrations were less than the nuisance-based screening level of 100 μ g/L and the risk-based concentration of 400 μ g/L. Toluene, naphthalene, and lead were detected in this well. All concentrations were less than their nuisance-based screening level or risk-based concentration. No other target analytes were detected.

TPH-middle distillates were detected in 10 of 25 samples collected with concentrations ranging between 16 μ g/L and 62 μ g/L. Concentrations of TPH-middle distillates were less than the nuisance-based screening level of 100 μ g/L and the risk-based screening level of 160 μ g/L. Toluene and naphthalene are common target analytes and are discussed above. Additionally, 1-methylnapthalene and 2-methylnapthalene were both detected at this well where all concentrations were less than the risk-based concentration or nuisance-based screening level. No other target analytes were detected.

TPH-residual fuels were detected in 3 of 6 samples collected with concentrations ranging between $34 \mu g/L$ and $45 \mu g/L$. All sample concentrations were less than the nuisance-based screening level

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL December 13, 2016

of 100 μ g/L and the risk-based screening level of 2,500 μ g/L. Toluene, naphthalene, 1-methylnapthalene, and 2-methylnapthalene are common target analytes and are discussed above. Two additional PAHs (benzo(a)anthracene and phenanthrene) were detected in this well. Both PAHs were detected at concentrations less than their risk-based concentrations. No other target analytes were detected.

5.1.2.8 RHMW06

TPH-gasoline was not detected in any of the 6 samples collected from this well. Toluene and lead were detected in this well but at concentrations less their nuisance-based screening level or risk-based concentration. No other target analytes were detected.

TPH-middle distillates were detected in 3 of 6 samples collected with concentrations ranging between 17 μ g/L and 21 μ g/L. All concentrations were less than the nuisance-based screening level of 100 μ g/L and the risk-based concentration of 160 μ g/L. Toluene is common target analyte and is discussed above. 2-methylnaphthalene was also detected in this well, but at concentrations less than the nuisance-based screening level. No other target analytes were detected.

TPH-residual fuels were detected in 1 of 6 samples collected at a concentration of 47 μ g/L. All concentrations were less than the nuisance-based screening level of 100 μ g/L and the risk-based concentration of 2,500 μ g/L. Toluene and 2-methylnaphthalene are common target analytes and are discussed above. One additional PAH (benzo(a)anthracene) was detected in this well at a concentration less than the risk-based concentration. One chlorinated solvent (bromodichloromethane) was detected in 2 of 5 samples at concentrations ranging between 0.00044 μ g/L and 0.0039 μ g/L, which were less than the risk-based concentration of 0.13 μ g/L. No other target analytes were detected.

5.1.2.9 RHMW07

TPH-gasoline was not detected in any of the 6 samples collected from this well. Toluene, naphthalene, and lead were detected in this well. All concentrations were less than their nuisance-based screening level or risk-based concentration. No other target analytes were detected.

TPH-middle distillates were detected in 5 of 6 samples collected with concentrations ranging between 22 μ g/L and 66 μ g/L. All concentrations were less than the nuisance-based screening level of 100 μ g/L the risk-based concentration of 160 μ g/L. Toluene and naphthalene are common target analytes and are discussed above. 1-naphthalene and 2-methylnaphthalene were detected at this well. All concentrations were less than their respective risk-based concentration or nuisance-based screening level. No other target analytes were detected.

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment
FINAL December 13, 2016

TPH-residual fuels were detected in 3 of 6 samples collected with concentrations ranging between 44 μ g/L and 48 μ g/L. All sample concentrations were less than the nuisance-based screening level of 100 μ g/L and the risk-based concentration of 2,500 μ g/L. Toluene, naphthalene, 1-naphthalene, and 2-methylnaphthalene are common target analytes and are discussed above. Three additional PAHs (benzo(a)anthracene, fluorene, and phenanthrene) were detected in this well, all at concentrations less than their risk-based concentrations. No other target analytes were detected.

5.1.2.10 RHMW2254-01

TPH-gasoline was detected in 3 of 20 samples with concentrations ranging between 13 μ g/L and 18 μ g/L. All concentrations were less than the nuisance-based screening level of 100 μ g/L and the risk-based concentration of 400 μ g/L. Toluene, naphthalene, and lead were detected in this well. All concentrations were less than their nuisance-based screening level or risk-based concentration. No other target analytes were detected.

TPH-middle distillates were detected in 6 of 24 samples collected with concentrations ranging between 14 μ g/L and 22 μ g/L. Concentrations of TPH-middle distillates were less than the nuisance-based screening level of 100 μ g/L and the risk-based concentration of 160 μ g/L. Toluene and naphthalene are common target analytes and are discussed above. No other target analytes were detected.

TPH-residual fuels were detected in 2 of 6 samples collected with concentrations ranging between 37 $\mu g/L$ and 42 $\mu g/L$. All sample concentrations were less than the nuisance-based screening level of 100 $\mu g/L$ and the risk-based concentration of 2,500 $\mu g/L$. Toluene and naphthalene are common target analytes and are discussed above. One chlorinated solvent (trichloroethylene) was detected in this well. Trichloroethylene was detected in 1 of 19 samples collected at a concentration of 0.17 $\mu g/L$, which is less than the risk-based concentration of 0.49 $\mu g/L$. No other target analytes were detected.

5.2 Cancer Risks and Noncancer Hazards

For the purpose of this risk characterization step, the potential for unacceptable human health risk is identified using the following risk thresholds:

• ELCR values are compared to the "target range" of 1 x 10⁻⁴ to 1 x 10⁻⁶ that is generally used by regulatory agencies. ELCR values within or exceeding this target range require a risk management decision that includes evaluating site-specific characteristics and exposure scenario factors to assess whether remedial action is warranted.

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL 28 Dece

December 13, 2016

BWS006174

• An HI (the sum of the ratios of the chemical intake to the RfDs for all COPCs) greater than 1 indicates that some potential exists for adverse noncancer health effects associated with exposure to the COPCs.

5.2.1 Cancer Risk Estimation Method

The potential for cancer effects is evaluated by estimating the ELCR. This risk is the incremental increase in the probability of developing cancer during one's lifetime in addition to the background probability of developing cvancer (that is, if no exposure to chemicals occurs). To estimate the cancer risks from exposure to an individual carcinogen from all exposure routes (ingestion, dermal contact routes, and inhalation of volatiles), the following equation is used:

$$Risk_i = \sum_{i} \frac{EPC_{water}}{SL_{carcinogen}} \times TR$$

Risk_i =ELCR for individual chemical

EPC_{water} = groundwater exposure point concentration (μ g/L)

SL_{carcinogen} =groundwater screening level based on 10⁻⁶ carcinogenic effect (μg/L)

TR = target cancer risk (10^{-6})

To estimate the cancer risks from exposure to mulitple carcinogens from all exposure routes considered, the following equation is used:

$$Risk_i = \sum_{T} \frac{EPC_{water}}{SL_{carcinogen}} \times TR$$

Risk_T =total ELCR for all chemicals

EPC_{water} =groundwater exposure point concentration (μ g/L)

SL_{carcinogen} =groundwater screening level based on 10⁻⁶ carcinogenic effect (μg/L)

TR = target cancer risk (10^{-6})

i =the sum of the ratios for the ith chemical

5.2.2 Noncancer Hazard Estimation Method

For noncancer effects, the likelihood that a receptor will develop an adverse effect is estimated by comparing the predicted level of exposure for a particular chemical with the highest level of exposure that is considered protective (that is, it's RfD). The ratio of the EPC divided by the screening level is the HQ.

When the HQ for a chemical exceeds 1 (that is, exposure exceeds RfD), a concern exists for potential noncancer health effects. To estimate the HQ from all exposure routes considered for an individual chemicals, the following equation is used.

$$HQ_i = \sum_i \frac{EPC_{water}}{SL_{noncarcinogen}}$$

Where:

HQ = hazard quotient for individual chemical

EPC_{water} = groundwater exposure point concentration (μ g/L)

 $SL_{noncarcinogen}$ =groundwater screening level based on a HQ of 1 (μ g/L)

To estimate the HI from all exposure routes considered for multiple chemicals, the following equation is used.

$$HI_T = \sum_{i} \frac{EPC_{water}}{SL_{noncarcinogen}}$$

HI = hazard index

EPC_{water} = groundwater exposure point concentration (μ g/L)

 $SL_{noncarcinogen}$ =groundwater screening level based on HQ of 1 (μ g/L)

i =the sum of the ratios for the ith chemical

5.2.3 Well-Specific Cancer Risk and Noncancer Hazard Results

The results of the well-specific risk evaluation results are provided in Tables 5-4 through 5-13.

5.2.3.1 Well HDMW2253-03

Table 5-4 provides a summary of the cancer risks and noncancer hazards by exposure route for Well HDMW2253-03. Additional details, including analyte-specific risk contributions, are provided in Appendix A (Tables A-1 and A-2).

The total ELCR for Well HDMW2254-03 is 1.3×10^{-6} , which is within the EPA acceptable cancer risk range of 1×10^{-4} to 1×10^{-6} .

The HI for Well HDMW2254-03 is 1.3, which is greater than the target HI value of 1. The primary contributor to the noncancer HI is TPH-middle distillates (HQ = 1.2; 93 percent contribution). The mechanisms of action (critical effects) for TPH-middle distillates is provided in Table 4-4.

5.2.3.2 Well OWDFMW01

Table 5-5 provides a summary of the cancer risks and noncancer hazards by exposure route for the Well OWDFMW01. Additional details, including analyte-specific risk contributions, are provided in Appendix A (Tables A-3 and A-4).

The total ELCR for Well OWDFMW01 is 7.3×10^{-6} , which is within the EPA acceptable cancer risk range of 1×10^{-4} to 1×10^{-6} .

The HI for Well OWDFMW01 is 20, which is greater than the target HI value of 1. The primary contributor to the noncancer HI is TPH-middle distillates (HQ = 20; 99 percent contribution). The mechanisms of action (critical effects) for TPH-middle distillates is provided in Table 4-4.

5.2.3.3 Well RHMW01

Table 5-6 provides a summary of the cancer risks and noncancer hazards by exposure route for the Well RHMW01. Additional details, including analyte-specific risk contributions, are provided in Appendix A (Tables A-5 and A-6).

The total ELCR for Well RHMW01 is 2.4×10^{-6} , which is within the EPA acceptable cancer risk range of 1×10^{-4} to 1×10^{-6} .

The HI for Well RHMW02is is 1.3, which is greater than the target HI value of 1. The primary contributor to the noncancer HI in this well is TPH-middle distillates (HQ = 1.2; 94 percent contribution). The mechanisms of action (critical effects) for TPH-middle distillates is provided in Table 4-4.

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL 31 December 13, 2016

5.2.3.4 Well RHMW02

Table 5-7 provides a summary of the cancer risks and noncancer hazards by exposure route for the Well RHMW02. Additional details, including analyte-specific risk contributions, are provided in Appendix A (Tables A-7 and A-8).

The total ELCR for Well RHMW02 is 6.4×10^{-4} , which is greater than the EPA upper cancer risk range of 1×10^{-4} . The primary contributors to risk include 1,2,3-trichloropropane (ELCR = 1.0×10^{-4} ; 16%), 1-methynaphthalene (ELCR = 1.2×10^{-6} ; 1.9%), benzo(a)anthracene (ELCR = 2.1×10^{-6} ; 0.32%), and naphthalene (ELCR = 5.2×10^{-4} ; 61%).

The HI for Well RHMW02 is 36, which is greater than the target HI value of 1. The primary contributors to the noncancer HI are TPH-middle distillates (HQ = 20; 56 percent contribution) and naphthalene (HQ = 14; 40 percent contribution). The mechanisms of action (critical effects) for TPH-middle distillates is provided in Table 4-4.

5.2.3.5 Well RHMW03

Table 5-8 provides a summary of the cancer risks and noncancer hazards by exposure route for the Well RHMW03. Additional details, including analyte-specific risk contributions, are provided in Appendix A (Tables A-9 and A-10).

The total ELCR for Well RHMW03 is 2.4×10^{-6} , which is within the EPA acceptable cancer risk range of 1×10^{-4} to 1×10^{-6} .

The HI for Well RHMW03 is 0.64, which is less than the target HI value of 1.

5.2.3.6 Well RHMW04

Table 5-9 provides a summary of the cancer risks and noncancer hazards by exposure route for the Well RHMW04. Additional details, including analyte-specific risk contributions, are provided in Appendix A (Tables A-11 and A-12).

The total ELCR for Well RHMW04 is 1.8×10^{-4} , which is greater than the EPA upper cancer risk threshold of 1×10^{-4} . The primary contributor to risk is dibenzo(a,h)anthracene (ELCR = 1.8×10^{-4} ; >99%).

The HI for Well RHMW04 is 0.19, which is less than the target HI value of 1.

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL 32 Decembe

December 13, 2016

5.2.3.7 Well RHMW05

Table 5-10 provides a summary of the cancer risks and noncancer hazards by exposure route for the Well RHMW05. Additional details, including analyte-specific risk contributions, are provided in Appendix A (Tables A-13 and A-14).

The total ELCR for Well RHMW05 is 2.0×10^{-6} , which is within the EPA acceptable cancer risk range of 1×10^{-4} to 1×10^{-6} .

The HI for Well RHMW05 is 0.22, which is less than the target HI value of 1.

5.2.3.8 Well RHMW06

Table 5-11 provides a summary of the cancer risks and noncancer hazards by exposure route for the Well RHMW06. Additional details, including analyte-specific risk contributions, are provided in Appendix A (Tables A-15 and A-6).

The total ELCR for Well RHMW06 is 1.3×10^{-6} , which is within the EPA acceptable cancer risk range of 1×10^{-4} to 1×10^{-6} .

The HI for Well RHMW06 is 0.17, which is less than the target HI value of 1.

5.2.3.9 Well RHMW07

Table 5-12 provides a summary of the cancer risks and noncancer hazards by exposure route for the Well RHMW07. Additional details, including analyte-specific risk contributions, are provided in Appendix A (Tables A-17 and A-18).

The total ELCR for Well RHMW07 is 1.2×10^{-6} , which is within the EPA acceptable cancer risk range of 1×10^{-4} to 1×10^{-6} .

The HI for Well RHMW07 is 0.35, which is less than the target HI value of 1.

5.2.3.10 Well RHMW2254-01

Table 5-13 provides a summary of the cancer risks and noncancer hazards by exposure route for the Well RHMW2254-01. Additional details, including analyte-specific risk contributions, are provided in Appendix A (Tables A-19 and A-20).

The total ELCR for Well RHMW2254-01 is 8.3×10^{-7} , which is below the EPA acceptable cancer risk range of 1×10^{-4} to 1×10^{-6} .

The HI for Well RHMW2254-01 is 0.24, which is less than the target HI value of 1.

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL 33 December 13, 2016

6.0 SUMMARY OF RESULTS

The overall results of comparing individual groundwater concentrations to screening levels and the groundwater risk assessment are provided in Tables 6-1 through Table 6-10. The primary contributors to cancer risk are the associated target analytes associated with TPH-middle distillates and TPH-residual fuels, including benzene, benzo(a)anthracene, bromodichloromethane, dibenzo(a)anthracene, 1-methylnaphthalene, naphthalene, and 1,2,3-trichloropropane. The primary contributors to noncancer hazards are TPH-gasoline and TPH-middle distillates.

A total ELCR greater than 1×10^{-4} was reported at two wells, including RHMW02 (4.4 × 10⁻⁴) and RHMW04 (1.8 × 10⁻⁴). The primary contributors to risk at well RHMW02 include 1,2,3-trichloropropane (1.0 × 10⁻⁴), 1-methylnaphthalene (1.2 × 10⁻⁵), benzo(a)anthracene (2.1 × 10⁻⁶), and naphthalene (5.2 × 10⁻⁴). The primary contributor to risk at RHMW04 is dibenzo(a,h)anthracene (1.8 × 10⁻⁴).

The groundwater screening levels identified for the primary cancer risk contributors are as follows:

- 1,2,3-trichloropropane (0.0075 μg/L),
- 1-methylnaphthalane (1.1 μg/L),
- benzo(a)anthracene (0.012 μg/L),
- dibenzo(a,h)anthracene (0.0034 μg/L), and
- naphthalene $(0.17 \mu g/L)$

The remaining eight wells (HDMW2253-03, ODWFMW01, RHMW01, RHMW03, RHMW05, RHMW06, RHMW07 and RHMW2254-01) report cancer risks within or below the EPA's acceptable cancer risk range of 1×10^{-4} and 1×10^{-6} .

A noncancer HI greater than 1 was reported at four wells: HDMW2253-03 (HI = 1.3), OWDFMW01 (HI = 20), RHMW01 (HI = 1.3), and RHMW02 (HI = 36). The primary contributor to the noncancer HI at wells HDMW2253-03, RHMW01, and OWDFMW01 is TPH-middle distillates; and the primary contributors to noncancer HI at well RHMW02 are TPH-middle distillates and naphthalane.

The groundwater screening levels identified for the primary noncancer hazard contributors are as follows:

- TPH-middle distillates (160 micrograms per liter [µg/L])
- naphthalene (0.17 μg/L).

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL 34 Dec

December 13, 2016

7.0 REFERENCES

- 40 CFR 141, *National Primary Drinking Water Regulations*. Available at: http://www.ecfr.gov/cgi-bin/text-idx?tpl=/ecfrbrowse/Title40/40cfr141_main_02.tpl.
- 40 CFR 300, *National Oil and Hazardous Substances Pollution Contingency Plan*. Available at: http://www.ecfr.gov/cgi-bin/text-idx?tpl=/ecfrbrowse/Title40/40cfr300_main_02.tpl.
- California Environmantal Protection Agency (CalEPA), 2016, A Compilation of Water Quality Goals 17th Edition, State Water Resources Control Board, California Environmental Protection Agency, Sacramento, California. Available at:

 http://www.waterboards.ca.gov/water_issues/programs/water_quality_goals/docs/wq_goals_text.pdf/.
- Clay, Don R., 1991, Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions, OSWER Directive 9355.
- EPA, 2009, Provisional Peer-Reviewed Toxicity Values for Complex Mixtures of Aliphatic and Aromatic Hydrocarbons: U.S. Environmental Protection Agency, Superfund Health Risk Technical Support Center National Center for Environmental Assessment, Office of Research and Development.
- EPA, 2015a, ProUCL Version 5.1 User Guide: Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations, U.S. Environmental Protection Agency, Washington, D.C. Available at:

 https://www.epa.gov/sites/production/files/2016-05/documents/proucl_5.1_user-guide.pdf.
- EPA, 2015b, *ProUCL Version 5.1 Technical Guide: Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations*, U.S. Environmental Protection Agency, Washington, D.C. Available at: https://www.epa.gov/sites/production/files/2016-05/documents/proucl_5.1_tech-guide.pdf.
- EPA, 2016a, Regional Screening Levels (RSLs) User's Guide (May 2016), U.S Environmental Protection Agency, Washington, D.C. Available at: https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide-may-2016.
- EPA, 2016b, May 2016 Updates to EPA Regional Screening Level Equations, U.S. Environmental Protection Agency, Washington, D.C. Available at: http://www.epa.gov/risk/regional-screening-table-whats-new.
- EPA, 2016c, *Summary Table*, dated May 2016, available online at "Regional Screening Levels for Chemical Contaminants at Superfund Sites," U.S. Environmental Protection Agency, Washington, D.C. Available at: http://www.epa.gov/risk/regional-screening-table.

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL 36 December 13, 2016

- EPA/540/1-89/002, 1989, *Risk Assessment Guidance for Superfund (RAGS): Part A*, U.S. Environmental Protection Agency, Washington, D.C. Available at: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part.
- EPA/540/R-92/003, 1991, Risk Assessment Guidance for Superfund: Volume I Human Health Evaluation Manual (Part B, Development of Risk-based Preliminary Remediation Goals): Interim, U.S. Environmental Protection Agency, Washington, D.C. Available at: https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part-b.
- EPA/540/R-97/036m, 1997, Health Effects Assessment Summary Tables: FY 1997 Update, U.S. Environmental Protection Agency, Washington, D.C. Available at:

 <a href="http://nepis.epa.gov/Exe/ZyNET.exe/2000O0GZ.TXT?ZyActionD=ZyDocument&Client=EPA&Index=1995+Thru+1999&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C95thru99%5CTxt%5C00000017%5C2000O0GZ.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/id25&Display=p%7Cf&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&Back=Desc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL.
- EPA/540/R-99/005, 2004, Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment): Final, U.S. Environmental Protection Agency, Washington, D.C. Available at:

 https://www.epa.gov/sites/production/files/2015-09/documents/part_e_final_revision_10-03-07.pdf.
- EPA/600/P-95/002Fa, 1997, Exposure Factors Handbook Volume 1: General Factors, U.S. Environmental Protection Agency, Washington, D.C. Available at: https://rais.ornl.gov/documents/EFH_Final_1997_EPA600P95002Fa.pdf.
- EPA/600/R-090/052F, 2011, Exposure Factors Handbook 2011 Edition (Final), U.S. Environmental Protection Agency, Washington, D.C. Available at: http://ofmpub.epa.gov/eims/eimscomm.getfile?p_download_id=522996.
- EPA/630/P-03/001F, 2005, *Guidelines for Carcinogen Risk Assessment*, U.S. Environmental Protection Agency, Washington, D.C. Available at:
 https://www.epa.gov/sites/production/files/2013-09/documents/cancer_guidelines_final_3-25-05.pdf.
- EPA/630/R-03/003F, 2005, Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens, U.S. Environmental Protection Agency, Washington, D.C. Available at: https://www3.epa.gov/airtoxics/childrens_supplement_final.pdf
- HDOH, 2012a, Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater, Volume I Users Guide (Fall 2012, rev June 2015), Hawai'i Department of Health, Honolulu, Hawai'i.

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL 37 December 13, 2016

- HDOH, 2012b, Hawai'i Department of Health Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater, Volume 2: Background Documentation for the Development of Tier 1 Environmental Action Levels, Appendix 1: Detailed Lookup Tables (rev April 2013), Hawai'i Department of Health, Honolulu, Hawai'i.
- HDOH, 2012c, Hawaii Department of Health Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater, Volume 2: Background Documentation for the Development of Tier 1 Environmental Action Levels, Appendices 2-8 (rev April 2013), Hawai'i Department of Health, Honolulu, Hawai'i.
- MADEP, 2003, Updated Petroleum Hydrocarbon Fraction Toxicity Values for the VPH/EPH/APH Methodology: Massachusetts Department of Environmental Protection, Bureau of Waste Site Cleanup.
- ORNL, 2016, "Chemical Parameters," available online at *Risk Assessment Information System* (*RAIS*). Available at: https://rais.ornl.gov/.
- OSWER Directive 9200.1-120, 2014, *Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors*, U.S. Environmental Protection Agency, Washington, D.C. Available at: https://rais.ornl.gov/documents/OSWER-Directive-9200-1-120-Exposure-Factors corrected.pdf.
- OSWER Directive 9285.6-03, 1991, Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual Supplemental Guidance, "Standard Default Exposure Factors," Interim Final, U.S. Environmental Protection Agency, Washington, D.C. Available at: https://rais.ornl.gov/documents/OSWERdirective9285.6-03.pdf.
- OSWER Directive 9285.6-10, 2002, Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites, U.S. Environmental Protection Agency, Washington, D.C. Available at:

 https://nepis.epa.gov/Exe/ZyNetrone=Point Concentration of the Concent
- OSWER Directive 9285.7-53, 2003, *Human Health Toxicity Values in Superfund Risk Assessments*, U.S. Environmental Protection Agency, Washington, D.C. Available at: https://rais.ornl.gov/documents/hhmemo.pdf.
- OSWER Publication 9285.7-08I, 1992, Supplemental Guidance to RAGS: Calculating the Concentration Term", U.S. Environmental Protection Agency, Washington, D.C. Available at:

 http://nepis.epa.gov/Exe/ZyNET.exe/9100UGVL.TXT?ZyActionD=ZyDocument&Clien

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL 38 December 13, 2016

t=EPA&Index=1991+Thru+1994&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C91thru94%5CTxt%5C00000026%5C9100UGVL.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-

&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i 425&Display=p%7Cf&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL.

Calculation of Groundwater Screening Levels and a Groundwater Baseline Risk Assessment FINAL 39 Decen

December 13, 2016

TABLES

Table 2-1. Halawa Valley Monitoring Wells

HDMW2253-03	OWDFMW01	RHMW01	RHMW02	RHMW03
RHMW04	RHMW05	RHMW06	RHMW08	RHMW2254-01

Table 2-1 Page 1 of 1

Table 2-2. Summary of Contaminants of Potential Concern

	Volatile Organic Compounds	
1,1,2,2-Tetrachloroethane	1,2,3-Trichloropropane	1,2-Dichloropropane
Acetone	Benzene	Bromodichloromethane
Chloroform	Chloromethane	Ethylbenzene
Methyl ethyl ketone	Methane	Methylene chloride
Toluene	Trichloroethylene	Xylenes (total)
	Polynuclear Aromatic Hydrocarbons	
1-Methylnapthalene	2-Methylnaphthalene	Acenaphthene
Acenaphthylene	Anthracene	Benzo(a)anthracene
Benzo(g,h,i)perylene	Dibenz(a,h0anthracene	Fluorene
Naphthalene	Phenanthrene	Pyrene
	Total Petroleum Hydrocarbon Fractions	
Gasoline	Middle distillates	Residual fuels
	Metals	
	Lead	
	Anions and General Chemical	
Chloride	Nitrate + nitrite as nitrogen	Sulfate
ote that alkalinity as CaCO3 was reported	ed, however it was not included in the evaluation.	

Table 2-2 Page 1 of 1

Table 3-1. Summary of Exposure Assumptions Used for the Tap Water Exposure Scenario

Exposure Factor	Symbol	Value	Units	Source
Averaging Time – Cancer Risk	AT _{can}	25,550	days	EPA/540/R-92/003
Averaging Time – Noncancer Hazard Index	ATnc	2,190	days	EPA, 2011
Partitioning constant derived by Bunge Model	В	Analyte-Specific	unitless	See Table 4-1
Adult Body Weight	BWa	80	kg	EPA/600/R-090/052F
Body Weight - child	BWc	15	kg	EPA/600/R-090/052F
Conversion Factor	CF1	365	days/year	1 year = 365 days
Conversion Factor	CF2	1/24	days/ hour	1 day = 24 hours
Conversion Factor	CF3	0.001	L/cm ³	1 L = 1,000 cm ³
Conversion Factor	CF4	1,000	µg/mg	1,000 µg = 1 mg
Cancer Slope Factor - oral	CSF ₀	Analyte-Specific	(mg/kg-day)-1	See Table 4-1
Screening Level – carcinogen ingestion	SL _{ca-ing}	Calculated value	μg/L	EPA 2016
Screening Level – noncarcinogen ingestion	SL _{nc-ing}	Calculated value	μg/L	EPA 2016
Screening Level – mutagen ingestion	SL _{mut-ing}	Calculated value	μg/L	EPA 2016
Screening Level – trichloroethylene ingestion	SL _{tce-ing}	Calculated value	μg/L	EPA 2016
Screening Level – dermal contact with carcinogens	SL _{ca-der}	Calculated value	μg/L	EPA 2016
Screening Level – dermal contact with noncarcinogens	SL _{nc-der}	Calculated value	μg/L	EPA 2016
Screening Level – dermal contact with mutagens	SL _{mut-der}	Calculated value	μg/L	EPA 2016
Screening Level –dermal contact with trichloroethylene	SL _{tce-der}	Calculated value	μg/L	EPA 2016
Screening Level – carcinogen inhalation	SL _{ca-inh}	Calculated value	μg/L	EPA 2016
Screening Level – noncarcinogen inhalation	SL _{nc-inh}	Calculated value	μg/L	EPA 2016
Screening Level – mutagen inhalation	SL _{mut-inh}	Calculated value	μg/L	EPA 2016

Table 3-1 Page 1 of 4

Table 3-1. Summary of Exposure Assumptions Used for the Tap Water Exposure Scenario

Exposure Factor	Symbol	Value	Units	Source
Screening Level – trichloroethylene inhalation	SL _{tce-inh}	Calculated value	μg/L	EPA 2016
Screening Level – carcinogen total	SL _{ca-tot}	Calculated value	µg/L	EPA 2016
Screening Level – noncarcinogen total	SL _{nc-tot}	Calculated value	μg/L	EPA 2016
Screening Level – mutagen total	SL _{mut-tot}	Calculated value	μg/L	EPA 2016
Screening Level – trichloroethylene total	SLtce-tot	Calculated value	μg/L	EPA 2016
Age-adjusted water ingestion rate- carcinogen	IRW _{adj}	327.95	L/kg	Calculated value
Age-adjusted water ingestion rate- mutagen	IRWM _{adj}	1019.9	L/kg	Calculated value
Absorbed dose per event	DA _{event}	Calculated value	mg/cm ² -event	EPA 2016
Carcinogenic adjustment factor - oral	CAFo	0.804	unitless	EPA 2016
Carcinogenic adjustment factor - inhalation	CAFi	0.756	unitless	EPA 2016
Exposure Duration - adult	EDa	26	years	EPA/600/R-090/052F
Exposure Duration - child	EDc	6	years	EPA/540/R-92/003
Exposure Duration – child (0 – 2 years)	ED ₀₋₂	2	years	EPA 2016
Exposure Duration – child (2 – 6 years)	ED ₂₋₆	4	years	EPA 2016
Exposure Duration – child (6 – 16 years)	ED ₆₋₁₆	10	years	EPA 2016
Exposure Duration – child (16 – 26 years)	ED ₁₆₋₂₆	10	years	EPA 2016
Exposure Frequency	EF	350	days/year	EPA/540/R-92/003
Exposure Time – resident inhalation	ETinh	24	hours/day	OSWER Directive 9200.1-120
Exposure Time – adult dermal	ETa	0.71	hours/day	EPA/600/R-090/052F
Exposure Time – child dermal	ETc	0.54	hours/day	EPA/600/R-090/052F

Table 3-1 Page 2 of 4

Table 3-1. Summary of Exposure Assumptions Used for the Tap Water Exposure Scenario

Exposure Factor	Symbol	Value Value	Units	Source
Age-Adjusted Exposure Time – dermal carcinogen	ET _{adj}	0.671	hours/event	Calculated value
Age-Adjusted Exposure Time – dermal mutagen	ET _{adj-mut}	0.671	hours/event	Calculated value
Event frequency	EV	1	event/day	EPA/540/R/99/005
Fraction of absorbed water	FA	Analyte-Specific	unitless	See Table 4-1
Gastrointestinal absorption factor	GIABS	Analyte-Specific	unitless	See Table 4-1
Inhalation Rate - adult	INHa	20	m³/day	OSWER Directive 9285.6-03
Inhalation Rate - child	INH₅	10	m³/day	EPA/600/P-95/002Fa
Age-adjusted inhalation rate - mutagenic	INHM _{adj}	604,800	hours	Calculated
Age-adjusted inhalation rate – mutagenic trichloroethylene	INHM _{adj-tce}	147,571	hours	Calculated
Water Ingestion Rate - adult	IRWa	2.5	L/day	EPA/600/R-090/052F
Water Ingestion Rate - child	IRW _c	0.78	L/day	EPA/600/R-090/052F
Inhalation Unit Risk	IUR	Analyte-Specific	(µg/m³)-1	See Table 4-1
Dermal permeability coefficient	Kp	Analyte-Specific	cm/hour	See Table 4-1
Mutagenic adjustment factor - oral	MAFo	0.202	unitless	EPA 2016
Mutagenic adjustment factor - inhalation	MAFi	0.244	unitless	EPA 2016
Reference Concentration	RfC	Analyte-Specific	mg/m³	See Table 4-1
Oral Chronic Reference Dose	RfD₀	Analyte-Specific	mg/kg-day	See Table 4-1
Age-adjusted Skin Surface Area - carcinogenic	SA _{adj}	2,610,650	cm ² -event/kg	Calculated value
Age-adjusted Skin Surface Area - mutagenic	SA _{adj-mut}	8,191,633	cm ² -event/kg	Calculated value

Table 3-1 Page 3 of 4

Table 3-1. Summary of Exposure Assumptions Used for the Tap Water Exposure Scenario

Exposure Factor	Symbol	Value	Units	Source
Skin Surface Area – adult	SAa	19,652	cm ²	EPA/600/R-090/052F
Skin Surface Area - child	SAc	6,365	cm ²	EPA/600/R-090/052F
Target hazard quotient	THQ	1	unitless	EPa 2016
Target risk	TR	1 × 10 ⁻⁶	unitless	EPA 2016
Time to reach steady state conditions	t*	Analyte-Specific	hour	See Table 4-1
Lag time	Т	Analyte-Specific	hours/event	See Table 4-1
Volatilization Factor	VF	0.5	L/m³	EPA/540/R-92/003

EPA, 2016, May 2016 updates to EPA Regional Screening Level equations (http://www.epa.gov/risk/regional-screening-table-whats-new)

EPA/540/R-92/003, Risk Assessment Guidance for Superfund: Volume I - Human Health Evaluation Manual (Part B, Development of Risk-based Preliminary Remediation Goals): Interim.

EPA/600/R-090/052F, Exposure Factors Handbook 2011 Edition (Final).

EPA/540/R/99/005, Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment): Final.

OSWER Directive 9200.1-120, Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors.

OSWER Directive 9285.6-03, Risk Assessment Guidance For Superfund Volume I: Human Health Evaluation Manual Supplemental Guidance, "Standard Default Exposure Factors," Interim Final.

EPA/600/P-95/002Fa, Exposure Factors Handbook Volume 1: General Factors.

Table 3-1 Page 4 of 4

Table 4-1. Summary of Toxicity Values

							Table T-1.	Janimar	y or roxicity values							
	Oral				Inhalation		1.1.1.0									
	Reference		Oral Cancer Slope		Reference		Inhalation									
	Dose		Factor (CSF _o) ^a		Concentration		Unit Risk					17.5	Bb		140.	FAa
Analyte Name	(RfD _o) ^a	l/au		I/ au	(RfC) ^a	l/au	(IUR) ^a	l/ au	ADCOLO	Mutaman Os	Volatile?a	K _p b	1000	T b	(h a)	
Analyte Name	(mg/kg-day)	Key	(mg/kg-day) ⁻¹	Key	(mg/m³)	Key	(µg/m³)-1	Key	ABSGI ^a	Mutagen?a		(cm/hr)	(unitless)	(hours/event)	(hours)	(unitless)
1,1,2,2-Tetrachloroethane	2.0E-02	l	2.0E-01				5.8E-05	С	1		V	6.9E-03	0	0.93	2.24	1
1,2,3-Trichloropropane	4.0E-03	l	3.0E+01		3.0E-04	l l			1		V	7.5E-03°				1
1,2-Dichloroethane	6.0E-03	X	9.1E-02		7.0E-03	Р	2.6E-05	I	1		V	4.2E-03	0	0.38	0.92	1
1-Methylnaphthalene	7.0E-02	Α	2.9E-02	Р					1		V	9.3E-02 ^c				1
2-Methylnaphthalene	4.0E-03	I		1					1		V	9.2E-02°				1
Acenaphthene	6.0E-02	I							1		V	8.6E-02°				1
Acenaphthylene									1			9.1E-02°				
Acetone	9.0E-01	I			3.10E+01	Α			1		V	5.1E-04°				
Anthracene	3.0E-01	I							1		V	1.4E-01°				1
Benzene	4.0E-03	I	5.5E-02	I	3.0E-02	1	7.8E-06	I	1		V	1.5E-02	0.1	0.29	0.70	1
Benzo(a)anthracene			7.3E-01	Е			1.1E-04	С	1	M	V	4.7E-01	2.8	2.03	8.53	1
Benzo(g,h,i)perylene									1							1
Bromodichloromethane	2.0E-02	I	6.2E-02	I			3.7E-05	С	1		V	4.6E-03	0	0.88	2.12	1
Chloroform	1.0E-02	ı	3.1E-02	С	9.8E-02	Α	2.3E-05	ı	1		V	6.8E-03	0	0.5	1.19	1
Chloromethane					9.0E-02	I			1		V	3.3E-03	0	0.20	0.49	1
Dibenzo(a,h)anthracene			7.3E+00	E			1.2E-03	С	1	M		1.5E+00	9.7	3.88	17.57	0.6
Ethylbenzene	1.0E-01	I	1.1E-02	С	1.0E+00	I	2.5E-06	С	1		V	4.9E-02	0.2	0.42	1.01	1
Fluorene	4.0E-02	I							1		V	1.1E-01°				1
Lead									1			1.0E-04				1
Methyl ethyl ketone	6.0E-01	I			5.0E+01	I			1		V	9.6E-04	0	0.27	0.65	1
Methylene chloride	6.0E-03	I	2.0E-03		6.0E-01	1	1.0E-08	1	1	M	V	3.5E-03	0	0.32	0.76	1
Naphthalene	2.0E-02	I			3.0E-03	1	3.4E-05	С	1		V	4.7E-02	0.2	0.56	1.34	1
Nitrate+Nitrite as N	1.6E+00	ı							1							
Phenanthrene									1			1.4E-01	0.7	1.06	4.11	1
Pyrene	3.0E-02	I							1		V	2.0E-01°				1
Toluene	8.0E-02	ı			5.0E+00	1			1		V	3.1E-02	0.1	0.35	0.84	1
TPH (gasolines)	3.0E-02	HDOH		71	5.7E-01	Р			1		V	1.5E-02°				1
TPH (middle distillates)	2.0E-02	HDOH			1.3E-01	P			1		V	6.9E-02°				1
TPH (residual fuels)	1.2E-02	HDOH							1			3.1E-01°				1
Trichloroethylene	5.0E-04	1	4.6E-02	1	2.0E-03	T	4.1E-06		1	M	V	1.20E-02	0.1	0.58	1.39	1
Xylene Total	2.0E-01	1			1.0E-01	Ī			1		V	5.3E-02	0.2	0.42	1.01	1
•		· · ·				· · ·			num .	<u> </u>	A		1		1	· · · · · ·

Notes:

a. Source = EPA, 2016.

b. Source = EPA/540/R-99/005, Exhibits 3-1 (inorganic analytes) and B-3 (organic analytes).

c. Source = ORNL, 2016.

-- = indicates toxicity value not available for this contaminant and exposure route.

Table 4-1

A = ATSDR
B = partitioning constant.
C = Cal EPA
E = See EPA 2016 Users Guide, Section 2.3.5.
FA = fraction absorbed.
GIABS = gastrointestinal absorption factor.
I = IRIS
K _p = dermal permeability constant.
P = PPRTV
t* = time to reach steady-state.
τ = lag time
V = volatile
EPA/540/R/99/005, Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment): Final.
EPA, 2016, "Summary Table", dated May 2016, available online at "Regional Screening Levels for Chemical Contaminants at Superfund Sites.", http://www.epa.gov/risk/regional-screening-table .
ORNI 2016 "Chemical Parameters" available online at "The Risk Assessment Information System (RAIS)" http://rais.org/.gov/

Table 4-1

Table 4-2. Select Carbon Ranges for TPH Fractions

Carbon Range	TPH-gasoline	TPH- middle distillates	TPH-residual fuels
C5-C8 aliphatics	45%	0.4%	0%
C9-C18 aliphatics	12%	35.2%	0%
C19+ aliphatics	0%	42.6%	75%
C9-16 aromatics	43%	21.8%	25%

Table 4-3. Select Toxicity Values and Critcal Effects for Carbon Ranges

rabio 1 c. coloct roxiotty valade and chican Elicote for carbon Ranges										
Carbon Range	RfD _{oral} (mg/kg- day)	RfD _{oral} Critical Effect	RfC (mg/m³)	RfC Critical Effect						
C5-C8 aliphatics	0.04ª	Reduced body weight and neurotoxicity at higher doses	0.6 ^b	Nasal epithelial cell hyperplasia, Biodynamics						
C9-C18 aliphatics	0.01b	Liver, kidney, and hematologic effects	0.1b	Nasal goblet cell hypertrophy and adrenal hyperplasia						
C19+ aliphatics	3 _p	Lower end of human therapeutic dose range for laxative effects								
C9+ aromatics	0.03b	Anemia, Bio/Dynamics	0.1b	Maternal body weight depression						
a. MADEP, 2003b. EPA, 2009										

Table 4-4. Weighted Reference Dose and Reference Concentration Values for TPH Fractions

TPH-Fraction	RfDoral (mg/kg- day)	RfC (mg/m³)		
TPH-gasoline	0.03	0.571		
TPH- middle distillates	0.02	0.126		
TPH-residual fuels	0.12			

Table 4-2, 4-3, and 4-4 Page 1 of 1

Table 5-1. Summary of Federal and State DWSs Used as Human Health Screening Levels for the BWS Halawa Valley Groundwater Study

					Applicable Groundwater S					
CAS Number	Analyte Name	Units	40 C	FR 141	Hawaii - Ti	er 1 EAL ^a	RSL	Human Health Screening Level Value		
	,	3,111.2	Federal MCL	Federal MCLG	Gross Contamination (Taste & Odors, etc)	Drinking Water (Toxicity) ^b	Tap Water Risk-Based Screening Level ^c	Final Groundwater Screening Level	Final Groundwater Screening Level Basis	
79-34-5	1,1,1,2-Tetrachloroethane	μg/L	_	_	500	0.067	0.076	0.076	RSL- Tapwater carcinogenic effects	
96-18-4	1,2,3-Trichloropropane	μg/L	_	_	50,000	0.0045	0.00075	0.00075	RSL- Tapwater carcinogenic effects	
107-06-2	1,2-Dichloroethane	μg/L	5	0	7,000	5	0.17	0.17	RSL- Tapwater carcinogenic effects	
90-12-0	1-Methylnaphthalene	μg/L	_	-	10	4.7	1.1	1.1	RSL- Tapwater carcinogenic effects	
91-57-6	2-Methylnaphthalene	μg/L	_	_	10	24	36	10	HDOH- gross contamination (taste & odor)	
83-32-9	Acenaphthene	μg/L	_	_	20	370	530	20	HDOH- gross contamination (taste & odor)	
208-96-8	Acenaphthylene	μg/L	_	-	2,000	240	_	240	HDOH – drinking water toxicity (noncarcinogenic effects)	
67-64-1	Acetone	μg/L	_	_	20,000	22,000	14,000	14,000	RSL- Tapwater noncarcinogenic effects	
120-12-7	Anthracene	μg/L	_	_	22	1,800	1,800	22	HDOH- gross contamination (taste & odor)	
71-43-2	Benzene	μg/L	5	0	170	5	0.46	0.46	RSL- Tapwater carcinogenic effects	
56-55-3	Benzo(a)anthracene	μg/L	_	_	4.7	0.029	0.012	0.012	RSL- Tapwater mutagenic effects	
191-24-2	Benzo(g,h,i)perylene	μg/L	_	_	0.13	1,500	_	0.13	HDOH- gross contamination (taste & odor)	
75-27-4	Bromodichloromethane	μg/L	80	_	50,000	0.12	0.13	0.13	RSL- Tapwater carcinogenic effects	
16887-00-6	Chloride	μg/L	_	_	_		_	_	40 CFR 141 – secondary MCL	
67-66-3	Chloroform	μg/L	80	_	2,400	100	0.22	0.22	RSL- Tapwater carcinogenic effects	
74-87-3	Chloromethane	μg/L	_	_	50,000	1.8	190	190	RSL- Tapwater noncarcinogenic effects	
53-70-3	Dibenzo(a,h)anthracene	μg/L	_	_	0.52	0.0029	0.0034	0.0034	RSL- Tapwater mutagenic effects	
100-41-4	Ethylbenzene	μg/L	700	700	30	700	1.5	1.5	RSL- Tapwater carcinogenic effects	
86-73-7	Fluorene	μg/L	_	_	950	240	290	290	RSL- Tapwater noncarcinogenic effects	
7439-92-1	Lead	μg/L	15	0	50,000	15	_	15	40 CFR 141 – federal MCL	
74-82-8	Methane	μg/L	_	_	_		_	_	_	
78-93-3	Methy ethyl ketone	μg/L	_	_	8,400	7,100	5,600	5,600	RSL- Tapwater noncarcinogenic effects	
75-09-2	Methylene chloride	μg/L	5	0	9,100	4.8	11	11	RSL- Tapwater carcinogenic effects	
91-20-3	Naphthalene	μg/L	_	_	21	17	0.17	0.17	RSL- Tapwater carcinogenic effects	
14797-55-8	Nitrate+ Nitrite as Nitrogen	μg/L	10,000	10,000	_	_	_	10,000	40 CFR 141 – federal MCL	
85-01-8	Phenanthrene	μg/L	_	_	410	240	_	240	HDOH – drinking water toxicity (noncarcinogenic effects)	
129-00-0	Pyrene	μg/L	_	_	68	180	120	68	HDOH- gross contamination (taste & odor)	
14808-79-8	Sulfate	μg/L	_	_	_	_	_	250,000	40 CFR 141 – secondary MCL	
108-88-3	Toluene	μg/L	1,000	1,000	40	1,000	1,100	40	HDOH- gross contamination (taste & odor)	
TPH (gasoline)	Total petroleum hydrocarbons (gasoline)	μg/L	_	_	100	210	400	100 400	HDOH- gross contamination (taste & odor) RSL- Tapwater noncarcinogenic effects	
TPH (middle distillates)	Total petroleum hydrocarbons (middle distillates)	μg/L	_	_	100	190	160	100 160	HDOH- gross contamination (taste & odor) RSL- Tapwater noncarcinogenic effects	

Table 5-1. Summary of Federal and State DWSs Used as Human Health Screening Levels for the BWS Halawa Valley Groundwater Study

		1 4.		, , , , , , , , , , , , , , , , , , , ,			ig Ecrolo for the Biro fit	inana rano, oroani	
				į.	Applicable Groundwater	Screening Levels			Urrean Health Careaning Lavel Value
CAS Number	Analyte Name	Units	40 C	FR 141	Hawaii - ⁻	Tier 1 EAL ^a	RSL		Human Health Screening Level Value
	/a. ,	J5	Federal MCL	Federal MCLG	Gross Contamination (Taste & Odors, etc)	Drinking Water (Toxicity) ^b	Tap Water Risk-Based Screening Level	Final Groundwater Screening Level	Final Groundwater Screening Level Basis
TPH (residual fuels)	Total petroleum hydrocarbons (residual fuels)	μg/L	_	_	100	4,400	2,500	100 2,500	HDOH- gross contamination (taste & odor) RSL- Tapwater noncarcinogenic effects
79-01-6	Trichloroethylene	μg/L	5	0	310	5	0.49	0.49	RSL- Tapwater carcinogenic and mutagenic effects
1330-20-7	Xylenes (total)	μg/L	10,000	10,000	20	10,000	190	20	HDOH- gross contamination (taste & odor)

Sources: 40 CFR 141, "National Primary Drinking Water Regulations."

State of Hawaii, Department of Health, 2015, Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater, Volume 2: Background Documentation for the Development of Tier 1 Environmental Action Levels, Appendix 1: Detailed Lookup Tables, Pacific Basin Edition.

EPA, 2016, "Resident Tapwater", dated May, 2016, available online at "Regional Screening Levels for Chemical Contaminants at Superfund Sites.", http://www.epa.gov/risk/regional-screening-table

- a. Values obtained from Table F-1a, Groundwater Screening Levels (groundwater IS a current or potential drinking water resource)
- b. EALs presented in this column are not considered in the final groundwater screening level selection. The Tier 1 ESLs are considered to be adequately protective when there are no more than three carcinogenic COPCs, and no more than five noncarcinogenic COPCs. There are more than three carcinogenic COPCs and more than five noncarcinogenic COPCs at this site.
- c. The RSL presented in this column is the lower of the target risk value of 1×10^{-6} or a hazard quotient (HQ) of 1.

CAS= Chemical Abstract Services

EAL= Environmental Action Level

MCL = maximum contaminant level

MCLG = maximum contaminant level goal

RSL = regional screening level

Table 5-2. Results of Comparisons of Groundwater Concentrations to Groundwater Screening Levels

			1	Table 5-2. K	esuits of	Companiso	ons of Gro	undwater C	oncentratio	ns to Ground	awater Scre	ening Levels		
Analyte	Filtered?	Units	First Sample Date	Last Sample Date	No. of Results	No. of Detects	Frequency of Detects (%)	Minimum Nondetect	Maximum Nondetect	Minimum Detect	Maximum Detect	GW Screening Level	No. of Detects > GW Screening Level	GW Screening Level Basis
								HDMW225	53-03					
Benzene	No	μg/L	1/21/2011	1/19/2016	22	3	13.64	0.062	0.5	0.20	0.92	0.46	1	RSL - Tapwater, Carcinogenic Effect
Benzo(a)anthracene	No	μg/L	1/21/2011	10/19/2015	20	1	5	0.0026	0.14	0.0032	0.0032	0.012	0	RSL - Tapwater, Carcinogenic Effect
Lead, Dissolved	Yes	μg/L	1/21/2011	10/19/2015	20	9	45	0.20	0.22	0.025	0.90	15	0	40 CFR 141 - federal MCL
Naphthalene	No	μg/L	1/21/2011	1/19/2016	22	6	27.27	0.0038	0.10	0.0042	0.16	0.17	0	RSL - Tapwater, Carcinogenic Effect
Toluene	No	μg/L	1/21/2011	1/19/2016	22	4	18.18	0.1	0.5	0.07	3.8	40	0	HDOH- gross contamination (taste & odor
TPH (gasolines)	No	μg/L	1/21/2011	1/19/2016	21	5	23.81	8.3	30	15	27	100 400	0 0	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration
TPH (middle distillates)	No	μg/L	1/21/2011	1/19/2016	22	13	59.09	12	81	13	600	100 160	3 2	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration
TPH (residual fuels)	No	μg/L	7/21/2011	1/19/2016	6	3	50	22	212	55	77	100 2,500	0	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration
								OWDFM	W01					
1,2-Dichloroethane	No	μg/L	1/21/2011	1/19/2016	21	4	19.05	0.28	0.5	0.0009	0.012	0.17	0	RSL - Tapwater, Carcinogenic Effect
1-Methylnaphthalene	No	μg/L	1/21/2011	1/19/2016	21	4	19.05	0.048	0.12	0.0096	0.03	1.1	0	RSL - Tapwater, Carcinogenic Effect
2-Methylnaphthalene	No	μg/L	1/21/2011	1/19/2016	21	4	19.05	0.048	0.12	0.0097	0.02	10	0	HDOH – gross contamination (taste & odor)
Acenaphthylene	No	μg/L	1/21/2011	10/19/2015	20	1	5	0.005	0.12	0.0082	0.0082	240	0	HDOH – drinking water toxicity (noncarcinogenic effects)
Acetone	No	μg/L	1/21/2011	10/19/2015	20	14	70	1.9	10	2.3	150	14,000	0	RSL - Tapwater, Noncarcinogenic Effect
Benzene	No	μg/L	1/21/2011	1/19/2016	21	13	61.9	0.062	0.5	0.07	1.3	0.46	6	RSL - Tapwater, Carcinogenic Effect
Benzo(a)anthracene	No	μg/L	1/21/2011	10/19/2015	20	2	10	0.0026	0.14	0.0033	0.0046	0.012	0	RSL - Tapwater, Mutagenic Effect
Bromodichloromethane	No	μg/L	1/21/2011	10/19/2015	20	1	5	0.0034	0.5	0.5	0.5	0.13	1	RSL - Tapwater, Carcinogenic Effect
Chloromethane	No	μg/L	1/21/2011	10/19/2015	20	3	15	0.62	5	0.07	0.12	190	0	RSL - Tapwater, Noncarcinogenic Effect
Fluorene	No	μg/L	1/21/2011	10/19/2015	20	1	5	0.0038	0.12	0.0039	0.0039	290	0	RSL - Tapwater, Noncarcinogenic Effect
Lead, Dissolved	Yes	μg/L	1/21/2011	10/19/2015	20	9	45	0.20	0.22	0.033	0.43	15	0	40 CFR 141 - federal MCL
Methyl ethyl ketone	No	μg/L	1/21/2011	7/22/2015	19	1	5.26	1.2	5	1	1	5,600	0	RSL - Tapwater, Noncarcinogenic Effect
Methylene chloride	No	μg/L	1/21/2011	10/19/2015	20	1	5	0.1	1	0.2	0.2	11	0	RSL - Tapwater, Mutagenic Effect

Table 5-2. Results of Comparisons of Groundwater Concentrations to Groundwater Screening Levels

				Table 5-2. R	esults of	Compariso	ns of Gro	undwater C	oncentratioi	ns to Ground	dwater Scre	ening Levels		
Analyte	Filtered?	Units	First Sample Date	Last Sample Date	No. of Results	No. of Detects	Frequency of Detects (%)	Minimum Nondetect	Maximum Nondetect	Minimum Detect	Maximum Detect	GW Screening Level	No. of Detects > GW Screening Level	GW Screening Level Basis
Naphthalene	No	μg/L	1/21/2011	1/19/2016	21	12	57.14	0.049	0.10	0.016	0.12	0.17	0	RSL - Tapwater, Carcinogenic Effect
Phenanthrene	No	μg/L	1/21/2011	10/19/2015	20	3	15	0.048	0.14	0.0073	0.014	240	0	HDOH – drinking water toxicity (noncarcinogenic effects)
Pyrene	No	μg/L	1/21/2011	10/19/2015	20	1	5	0.0053	0.16	0.0063	0.0063	68	0	HDOH – gross contamination (taste & odor)
Toluene	No	μg/L	1/21/2011	1/19/2016	21	4	19.05	0.10	0.5	0.06	0.4	40	0	HDOH – gross contamination (taste & odor)
TPH (gasolines)	No	μg/L	1/21/2011	1/19/2016	21	4	19.05	8.3	30	17	31	100 400	0 0	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration
TPH (middle distillates)	No	μg/L	1/21/2011	1/19/2016	21	15	71.43	81	81	17	3,100	100 160	12 11	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration
TPH (residual fuels)	No	μg/L	7/21/2011	1/19/2016	6	4	66.67	212	212	69	390	100 2,500	2 0	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration
Xylene, Total	No	μg/L	1/21/2011	1/19/2016	21	1,	4.76	0.18	1	0.39	0.39	20	0	HDOH – gross contamination (taste & odor)
								RHMW	01					
1-Methylnaphthalene	No	μg/L	1/20/2011	1/20/2016	28	5	17.86	0.050000 001	0.12	0.014	0.040	1.1	0	RSL - Tapwater, Carcinogenic Effect
2-Methylnaphthalene	No	μg/L	1/20/2011	1/20/2016	28	6	21.43	0.05	0.12	0.0093	0.040	10	0	HDOH – gross contamination (taste & odor)
Acenaphthene	No	μg/L	1/20/2011	10/20/2015	21	4	19.05	0.05	0.12	0.0053	0.027	20	0	HDOH – gross contamination (taste & odor)
Acenaphthylene	No	μg/L	1/20/2011	10/20/2015	21	1	4.76	0.005	0.12	0.0041	0.0041	240	0	HDOH – drinking water toxicity (noncarcinogenic effects)
Acetone	No	μg/L	1/20/2011	10/20/2015	22	1.	4.55	1.90	10	15	15	14,000	0	RSL - Tapwater, Noncarcinogenic Effect
Benzo(a)anthracene	No	μg/L	1/20/2011	10/20/2015	21	2	9.52	0.0026	0.14	0.0026	0.0029	0.012	0	RSL - Tapwater, Mutagenic Effect
Chloroform	No	μg/L	1/20/2011	10/20/2015	22	1	4.55	0.072	0.5	0.13	0.13	0.22	0	RSL - Tapwater, Carcinogenic Effect
Fluorene	No	μg/L	1/20/2011	10/20/2015	21	4	19.05	0.05	0.12	0.0096	0.035	290	0	RSL - Tapwater, Noncarcinogenic Effect
Lead, Dissolved	Yes	μg/L	1/20/2011	10/20/2015	26	16	61.54	0.20	0.22	0.09	2.1	15	0	40 CFR 141 - federal MCL
Methylene chloride	No	μg/L	1/20/2011	10/20/2015	22	1	4.55	0.1	2	0.59	0.59	11	0	RSL - Tapwater, Mutagenic Effect
Naphthalene	No	μg/L	1/20/2011	1/20/2016	28	11	39.29	0.050	0.10	0.037	0.2	0.17	2	RSL - Tapwater, Carcinogenic Effect
Phenanthrene	No	μg/L	1/20/2011	10/20/2015	21	2	9.52	0.005	0.14	0.011	0.012	240	0	HDOH – drinking water toxicity (noncarcinogenic effects)
Pyrene	No	μg/L	1/20/2011	10/20/2015	21	1	4.76	0.0053	0.16	0.027	0.027	68	0	HDOH – gross contamination (taste & odor)

Table 5-2. Results of Comparisons of Groundwater Concentrations to Groundwater Screening Levels

				Table 5-2. R	esuits of	Compariso	ons of Gro	undwater C	oncentration	ns to Ground	dwater Scre	ening Levels		
Analyte	Filtered?	Units	First Sample Date	Last Sample Date	No. of Results	No. of Detects	Frequency of Detects (%)	Minimum Nondetect	Maximum Nondetect	Minimum Detect	Maximum Detect	GW Screening Level	No. of Detects > GW Screening Level	GW Screening Level Basis
Toluene	No	μg/L	1/20/2011	1/20/2016	28	4	14.29	0.1	0.5	0.17	2.5	40	0	HDOH – gross contamination (taste & odor)
TPH (gasolines)	No	μg/L	1/20/2011	1/20/2016	22	4	18.18	8.3	30	13	26	100 400	0	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration
TPH (middle distillates)	No	μg/L	1/20/2011	1/20/2016	28	25	89.29	81	81	33	430	100 160	12 8	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration
TPH (residual fuels)	No	μg/L	7/20/2011	1/20/2016	5	3	60	21	212	21	60	100 2,500	0	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration
								RHMW	02					
1,1,2,2-Tetrachloroethane	No	μg/L	1/18/2011	7/20/2015	18	1	5.56	0.12	0.5	0.065	0.065	0.076	0	RSL - Tapwater, Carcinogenic Effect
1,2,3-Trichloropropane	No	μg/L	1/18/2011	10/20/2015	19	1	5.26	0.2	2	0.27	0.27	0.00075	1	RSL - Tapwater, Carcinogenic Effect
1-Methylnaphthalene	No	μg/L	1/18/2011	1/20/2016	26	26	100			0.57	68	1.1	24	RSL - Tapwater, Carcinogenic Effect
2-Methylnaphthalene	No	μg/L	1/18/2011	1/20/2016	27	27	100			0.16	43	10	7	HDOH – gross contamination (taste & odor)
Acenaphthene	No	μg/L	1/18/2011	10/20/2015	20	20	100			0.17	0.65	20	0	HDOH – gross contamination (taste & odor)
Acenaphthylene	No	μg/L	1/18/2011	10/20/2015	20	5	25	0.047	0.24	0.071	0.26	240	0	HDOH – drinking water toxicity (noncarcinogenic effects)
Benzene	No	μg/L	1/18/2011	1/20/2016	26	5	19.23	0.32	0.5	0.08	0.15	0.46	0	RSL - Tapwater, Carcinogenic Effect
Benzo(a)anthracene	No	μg/L	1/18/2011	10/20/2015	19	1.	5.26	0.0026	0.14	0.0047	0.0047	0.012	0	RSL - Tapwater, Mutagenic Effect
Ethylbenzene	No	μg/L	1/18/2011	1/20/2016	26	22	84.62	0.46	0.5	0.014	0.30	1.5	0	RSL - Tapwater, Carcinogenic Effect
Fluorene	No	μg/L	1/18/2011	10/20/2015	19	18	94.74	0.047	0.047	0.083	0.32	290	0	RSL - Tapwater, Noncarcinogenic Effect
Lead, Dissolved	Yes	μg/L	1/18/2011	10/20/2015	24	15	62.5	0.20	0.22	0.025	1.2	15	0	40 CFR 141 - federal MCL
Methylene chloride	No	μg/L	1/18/2011	10/20/2015	19	1	5.26	0.1	2	0.10	0.10	11	0	RSL - Tapwater, Mutagenic Effect
Naphthalene	No	μg/L	1/18/2011	1/20/2016	25	25	100			1	160	0.17	25	RSL - Tapwater, Carcinogenic Effect
Phenanthrene	No	μg/L	1/18/2011	10/20/2015	19	1,	5.26	0.005	0.14	0.019	0.019	240	0	HDOH – drinking water toxicity (noncarcinogenic effects)
Pyrene	No	μg/L	1/18/2011	10/20/2015	19	1	5.26	0.0053	0.16	0.0058	0.0058	68	0	HDOH – gross contamination (taste & odor)
Toluene	No	μg/L	1/18/2011	1/20/2016	26	4	15.38	0.10	0.5	0.06	0.60	40	0	HDOH – gross contamination (taste & odor)
TPH (gasolines)	No	μg/L	1/18/2011	1/20/2016	20	15	75	12	12	36	660	100 400	2 1	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration

Table 5-2. Results of Comparisons of Groundwater Concentrations to Groundwater Screening Levels

				Table 5-2. R	esults of	Compariso	ons of Gro	undwater C	oncentratio	ns to Groun	dwater Scre	ening Levels		
Analyte	Filtered?	Units	First Sample Date	Last Sample Date	No. of Results	No. of Detects	Frequency of Detects (%)	Minimum Nondetect	Maximum Nondetect	Minimum Detect	Maximum Detect	GW Screening Level	No. of Detects > GW Screening Level	GW Screening Level Basis
TPH (middle distillates)	No	μg/L	1/18/2011	1/20/2016	27	27	100			750	6,500	100 160	27 27	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration
TPH (residual fuels)	No	μg/L	7/19/2011	1/20/2016	6	4	66.67	212	212	260	360	100 2,500	4 0	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration
Xylene, Total	No	μg/L	1/18/2011	1/20/2016	28	24	85.71	0.38	0.38	0.21	0.69	20	0	HDOH – gross contamination (taste & odor)
		,						RHMW	03	1	1			
1-Methylnaphthalene	No	μg/L	1/19/2011	1/20/2016	21	3	14.29	0.0035	0.12	0.0039	0.10	1.1	0	RSL - Tapwater, Carcinogenic Effect
2-Methylnaphthalene	No	μg/L	1/19/2011	1/20/2016	21	3	14.29	0.0023	0.12	0.0034	0.069	10	0	HDOH – gross contamination (taste & odor)
Benzo(a)anthracene	No	μg/L	1/19/2011	10/20/2015	20	2	10	0.0026	0.14	0.0037	0.0043	0.012	0	RSL - Tapwater, Mutagenic Effect
Lead, Dissolved	Yes	μg/L	1/19/2011	10/20/2015	20	7	35	0.20	0.22	0.011	1.4	15	0	40 CFR 141 - federal MCL
Naphthalene	No	μg/L	1/19/2011	1/20/2016	21	7	33.33	0.0038	0.10	0.0094	0.32	0.17	1	RSL - Tapwater, Carcinogenic Effect
Phenanthrene	No	μg/L	1/19/2011	10/20/2015	20	2	10	0.005	0.14	0.0057	0.0058	240	0	HDOH – drinking water toxicity (noncarcinogenic effects)
Toluene	No	μg/L	1/19/2011	1/20/2016	21	3	14.29	0.1	0.5	0.14	0.54	40	0	HDOH – gross contamination (taste & odor)
TPH (gasolines)	No	μg/L	1/19/2011	1/20/2016	21	2	9.52	12	30	20	23	100 400	0 0	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration
TPH (middle distillates)	No	μg/L	1/19/2011	1/20/2016	21	14	66.67	81	81	37	150	100 160	2 0	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration
TPH (residual fuels)	No	μg/L	7/19/2011	1/20/2016	6	4	66.67	212	212	110	160	100 2,500	4 0	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration
				1			•	RHMW	04	-		1		
1-Methylnaphthalene	No	μg/L	7/23/2014	1/19/2016	7	1	14.29	0.0035	0.10	0.0043	0.0043	1.1	0	RSL - Tapwater, Carcinogenic Effect
2-Methylnaphthalene	No	μg/L	7/23/2014	1/19/2016	7	2	28.57	0.0023	0.052	0.0047	0.0059	10	0	HDOH – gross contamination (taste & odor)
Acenaphthylene	No	μg/L	7/23/2014	10/19/2015	6	1,	16.67	0.0034	0.052	0.0037	0.0037	240	0	HDOH – drinking water toxicity (noncarcinogenic effects)
Acetone	No	μg/L	7/23/2014	10/19/2015	6	1	16.67	3.3	10	43	43	14,000	0	RSL - Tapwater, Noncarcinogenic Effect
Anthracene	No	μg/L	7/23/2014	8/20/2015	5	1	20	0.005	0.052	0.0051	0.0051	22	0	HDOH – gross contamination (taste & odor)
Benzene	No	μg/L	7/23/2014	1/19/2016	7	1	14.29	0.062	0.5	0.08	0.08	0.46	0	RSL - Tapwater, Carcinogenic Effect
Benzo(g,h,i)perylene	No	μg/L	7/23/2014	10/19/2015	6	1	16.67	0.005	0.10	0.0076	0.0076	0.13	0	HDOH – gross contamination (taste & odor)

Table 5-2. Results of Comparisons of Groundwater Concentrations to Groundwater Screening Levels

				Table 3-2. IN	courto or	Companis	JIIS UI UIU	unuwater C	Uncentiation	is to Ground	uwater ocie	ening Leveis		
Analyte	Filtered?	Units	First Sample Date	Last Sample Date	No. of Results	No. of Detects	Frequency of Detects (%)	Minimum Nondetect	Maximum Nondetect	Minimum Detect	Maximum Detect	GW Screening Level	No. of Detects > GW Screening Level	GW Screening Level Basis
Dibenzo(a,h)anthracene	No	μg/L	7/23/2014	10/19/2015	6	1	16.67	0.005	0.052	0.011	0.011	0.0034	1	RSL - Tapwater, Mutagenic Effect
Fluorene	No	μg/L	7/23/2014	10/19/2015	6	1	16.67	0.0038	0.052	0.006	0.006	290	0	RSL - Tapwater, Noncarcinogenic Effect
Lead, Dissolved	Yes	μg/L	7/23/2014	10/19/2015	6	3	50	0.20	0.20	0.006	0.044	15	0	40 CFR 141 - federal MCL
Naphthalene	No	μg/L	7/23/2014	1/19/2016	7	2	28.57	0.0038	0.052	0.0051	0.0075	0.17	0	RSL - Tapwater, Carcinogenic Effect
Phenanthrene	No	μg/L	7/23/2014	10/19/2015	6	1	16.67	0.005	0.052	0.0069	0.0069	240	0	HDOH – drinking water toxicity (noncarcinogenic effects)
Toluene	No	μg/L	7/23/2014	1/19/2016	7	2	28.57	0.1	0.5	0.11	0.42	40	0	HDOH – gross contamination (taste & odor)
TPH (middle distillates)	No	μg/L	7/23/2014	1/19/2016	7	4	57.14	12	21	10	36	100 160	0 0	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration
TPH (residual fuels)	No	μg/L	4/22/2015	1/19/2016	4	3	75	21	21	25	52	100 2,500	0 0	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration
		1	<u>'</u>					RHMW	05	1		I		
1-Methylnaphthalene	No	μg/L	1/19/2011	1/20/2016	25	2	8	0.0035	0.12	0.0041	0.005	1.1	0	RSL - Tapwater, Carcinogenic Effect
2-Methylnaphthalene	No	μg/L	1/19/2011	1/20/2016	25	3	12	0.005	0.12	0.0036	0.0066	10	0	HDOH – gross contamination (taste & odor)
Benzo(a)anthracene	No	μg/L	1/19/2011	10/20/2015	19	1	5.26	0.0026	0.14	0.0038	0.0038	0.012	0	RSL - Tapwater, Mutagenic Effect
Lead, Dissolved	No	μg/L	1/19/2011	10/20/2015	23	7	30.43	0.20	0.22	0.032	0.29	15	0	Primary Maximum Contaminant Level
Naphthalene	No	μg/L	1/19/2011	1/20/2016	25	12	48	0.005	0.10	0.0046	0.17	0.17	0	RSL - Tapwater, Carcinogenic Effect
Phenanthrene	No	μg/L	1/19/2011	10/20/2015	19	1	5.26	0.005	0.14	0.0052	0.0052	240	0	HDOH – drinking water toxicity (noncarcinogenic effects)
Toluene	No	μg/L	1/19/2011	1/20/2016	25	3	12	0.1	0.5	0.18	0.59	40	0	HDOH – gross contamination (taste & odor)
TPH (gasolines)	No	μg/L	1/19/2011	1/20/2016	20	4	20	8.3	30	15	23	100 400	0 0	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration
TPH (middle distillates)	No	μg/L	1/19/2011	1/20/2016	25	10	40	10	81	16	62	100 160	0	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration
TPH (residual fuels)	No	μg/L	7/19/2011	1/20/2016	6	3	50	21	212	34	45	100 2,500	0 0	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration
						•		RHMW	06		•			
2-Methylnaphthalene	No	μg/L	10/21/2014	1/19/2016	6	1	16.67	0.0023	0.01	0.0064	0.0064	10	0	HDOH – gross contamination (taste & odor)

Table 5-2. Results of Comparisons of Groundwater Concentrations to Groundwater Screening Levels

				Table 5-2. R	esults of	Compariso	ons of Gro	undwater C	oncentratio	ns to Groun	dwater Scre	ening Levels		
Analyte	Filtered?	Units	First Sample Date	Last Sample Date	No. of Results	No. of Detects	Frequency of Detects (%)	Minimum Nondetect	Maximum Nondetect	Minimum Detect	Maximum Detect	GW Screening Level	No. of Detects > GW Screening Level	GW Screening Level Basis
Benzo(a)anthracene	No	μg/L	10/21/2014	10/19/2015	5	1	20	0.0026	0.011	0.0028	0.0028	0.012	0	RSL - Tapwater, Mutagenic Effect
Bromodichloromethane	No	μg/L	10/21/2014	10/19/2015	5	2	40	0.01	0.30	0.00044	0.0039	0.13	0	RSL - Tapwater, Carcinogenic Effect
Chloride	No	μg/L	10/21/2014	10/21/2014	1	1	100			319,000	319,000	250,000	1	40 CFR 141 - secondary MCL
Lead, Dissolved	Yes	μg/L	10/21/2014	10/19/2015	5	3	60	0.40	0.80	0.006	0.016	15	0	40 CFR 141 - federal MCL
Methane	No	μg/L	10/21/2014	1/23/2015	2	1	50	0.45	0.45	1.7	1.7			
Nitrate+Nitrite as N	No	μg/L	10/21/2014	1/23/2015	2	2	100			530	630	10,000	0	40 CFR 141 - federal MCL
Sulfate	No	μg/L	10/21/2014	1/23/2015	2	2	100			66,600	87,800	250,000	0	40 CFR 141-secondary MCL
Toluene	No	μg/L	10/21/2014	1/19/2016	6	2	33.33	0.1	0.30	0.1	1.1	40	0	HDOH – gross contamination (taste & odor)
TPH (middle distillates)	No	μg/L	10/21/2014	1/19/2016	6	3	50	20	86	17	21	100 160	0 0	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration
TPH (residual fuels)	No	μg/L	10/21/2014	1/19/2016	6	1	16.67	20	86	47	47	100 2,500	0 0	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration
							1	RHMW	07		1			
1-Methylnaphthalene	No	μg/L	10/20/2014	1/19/2016	6	2	33.33	0.0035	0.01	0.0046	0.0051	1.1	0	RSL - Tapwater, Carcinogenic Effect
2-Methylnaphthalene	No	μg/L	10/20/2014	1/19/2016	6	4	66.67	0.0052	0.01	0.0077	0.01	10	0	HDOH – gross contamination (taste & odor)
Acetone	No	μg/L	10/20/2014	10/19/2015	5	1	20	2	10	1.9	1.9	14,000	0	RSL - Tapwater, Noncarcinogenic Effect
Benzo(a)anthracene	No	μg/L	10/20/2014	10/19/2015	5	1	20	0.0026	0.01	0.0027	0.0027	0.012	0	RSL - Tapwater, Mutagenic Effect
Chloride	No	μg/L	10/20/2014	10/20/2014	1	1	100			362,000	319,000	250,000	1	40 CFR 141 - secondary MCL
Fluorene	No	μg/L	10/20/2014	10/19/2015	5	2	40	0.0038	0.01	0.0042	0.0042	290	0	RSL - Tapwater, Noncarcinogenic Effect
Lead, Dissolved	Yes	μg/L	10/20/2014	10/19/2015	5	3	60	0.40	0.80	0.006	0.013	15	0	40 CFR 141 - federal MCL
Methane	No	μg/L	10/20/2014	1/22/2015	2	1	50	0.45	0.45	2.8	2.8			
Naphthalene	No	μg/L	10/20/2014	1/19/2016	6	3	50	0.0052	0.050	0.0038	0.01	0.17	0	RSL - Tapwater, Carcinogenic Effect
Nitrate+Nitrite as N	No	μg/L	10/20/2014	1/22/2015	2	2	100			63	330	10,000	0	Primary Maximum Contaminant Level
Phenanthrene	No	μg/L	10/20/2014	10/19/2015	5	2	40	0.005	0.01	0.0072	0.0084	240	0	HDOH – drinking water toxicity (noncarcinogenic effects)
Sulfate	No	μg/L	10/20/2014	1/22/2015	2	2	100			59,900	64,200	250,000	0	40 CFR 141 - secondary MCL
Toluene	No	μg/L	10/20/2014	1/19/2016	6	1	16.67	0.054	0.30	0.64	0.64	40	0	HDOH – gross contamination (taste & odor)

Table 5-2. Results of Comparisons of Groundwater Concentrations to Groundwater Screening Levels

				Table 3-2. IV		p u	110 01 010	dilatidioi o		io to orount	umator 00100	9		
Analyte	Filtered?	Units	First Sample Date	Last Sample Date	No. of Results	No. of Detects	Frequency of Detects (%)	Minimum Nondetect	Maximum Nondetect	Minimum Detect	Maximum Detect	GW Screening Level	No. of Detects > GW Screening Level	GW Screening Level Basis
TPH (middle distillates)	No	μg/L	10/20/2014	1/19/2016	6	5	83.33	75	75	22	66	100 160	0	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration
TPH (residual fuels)	No	μg/L	10/20/2014	1/19/2016	6	3	50	23	77	44	48	100 2,500	0	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration
								RHMW225	54-01					
Lead, Dissolved	Yes	μg/L	1/20/2011	6/24/2014	12	3	25	0.20	0.22	0.21	2.2	15	0	40 CFR 141 - federal MCL
Lead, Total	No	μg/L	1/20/2011	10/20/2015	17	10	58.82	0.0898	0.090	0.14	0.83	15	0	40 CFR 141 - federal MCL
Naphthalene	No	μg/L	1/20/2011	1/20/2016	24	7	29.17	0.0038	0.10	0.036	0.099	0.17	0	RSL - Tapwater, Carcinogenic Effect
Toluene	No	μg/L	1/20/2011	1/20/2016	24	3	12.5	0.1	0.5	0.16	0.99	40	0	HDOH – gross contamination (taste & odor)
TPH (gasolines)	No	μg/L	1/20/2011	1/20/2016	20	3	15	8.3	30	13	18	100 400	0	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration
TPH (middle distillates)	No	μg/L	1/20/2011	1/20/2016	24	6	25	10	81	14	22	100 160	0	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration
TPH (residual fuels)	No	μg/L	7/20/2011	1/20/2016	6	2	33.33	21	212	37	42	100 2,500	0	HDOH- gross contamination (taste & odor) HDOH- risk-based concentration
Trichloroethylene	No	μg/L	1/20/2011	10/20/2015	19	1	5.26	0.1	0.5	0.17	0.17	0.49	0	RSL - Tapwater, Mutagenic Effect

Sources:

40 CFR 141, "National Primary Drinking Water Regulations."

DOE/RL-96-61, Hanford Site Background: Part 3, Groundwater Background.

WAC 173-340-720, "Model Toxics Control Act—Cleanup," "Groundwater Cleanup Standards."

CalEPA = California Environmental Protection Agency

RSL = regional screening level

MCL = maximum contaminant level

HDOH = Hawaii Department of Health

Table 5-2

Table 5-3. Target Analytes for Petroleum Contaminated Media

Petroleum Product	Recommended Target Analytes
Gasolines	TPH Benzene Toluene Ethylbenzene Xylenes Naphthalene MTBE Lead
Middle Distillates (diesel, kerosene, Stoddard solvent, heating fuels, jet fuel, etc.)	TPH Benzene Toluene Ethylbenzene Xylenes Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene
Residual Fuels (lube oils, hydraulic oils, transformer oils, Fuel oil #6/Bunker C, waste oil, etc)	TPH Benzene Toluene Ethylbenzene Xylenes Chlorinated solvents Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene 16 priority pollutant PAHs

Table 5-3 Page 1 of 1

Table 5-4. Summary of Cancer Risks and Noncancer Hazards for Well HDMW2253-03

Exposure Route	ELCR	% Risk Contribution	н	% HI Contribution
Ingestion	2.8 × 10 ⁻⁷	Benzo(a)anthracene	0.53	TPH – Middle distillates (HQ = 1.2;
Dermal Contact	1.2 × 10 ⁻⁶	(ELCR = 1.4 × 10 ⁻⁶ ; 62%)	<0.01	93%)
Inhalation of Volatiles	8.1 × 10 ⁻⁷		0.74	
Total Risk	2.3 × 10 ⁻⁶		Total HI	1.3

HI = hazard index

HQ = hazard quotient

Table 5-5. Summary of Cancer Risks and Noncancer Hazards for Well OWDFMW01

Exposure Route	ELCR	% Risk Contribution	н	% HI Contribution
Ingestion	9.2 × 10 ⁻⁷	Benzene	7.9	TPH – Middle distillates (HQ = 20;
Dermal Contact	1.7 × 10 ⁻⁶	(ELCR = 1.1 × 10 ⁻⁶ ; 15%) Benzo(a)anthracene	<0.01	99%)
Inhalation of Volatiles	4.6 × 10 ⁻⁶	(ELCR = 2.0 × 10 ⁻⁶ ; 28%) Bromodichloromethane (ELCR = 3.7 × 10 ⁻⁶ ; 51%)	12	
Total Risk	7.3 × 10 ⁻⁶		Total HI	20

ELCR = excess lifetime cancer risk

HI = hazard index

HQ = hazard quotient

Tables 5-4 and 5-5 Page 1 of 1

Table 5-6. Summary of Cancer Risks and Noncancer Hazards for Well RHMW01

Exposure Route	ELCR	% Risk Contribution	н	% HI Contribution
Ingestion	2.0 × 10 ⁻⁷	Benzo(a)anthracene	0.54	TPH – Middle distillates (HQ = 1.2;
Dermal Contact	1.0 × 10 ⁻⁶	(ELCR = 1.3 × 10 ⁻⁶ ; 53%)	<0.01	94%)
Inhalation of Volatiles	1.2 × 10 ⁻⁶		0.77	
Total Risk	2.4 × 10 ⁻⁶		Total HI	1.3

HI = hazard index

HQ = hazard quotient

Table 5-7. Summary of Cancer Risks and Noncancer Hazards for Well RHMW02

Exposure Route	ELCR	% Risk Contribution	Н	% HI Contribution
Ingestion	1.2 × 10 ⁻⁴	1,2,3-Trichloropropane	9.0	TPH – Middle distillates (HQ = 20;
Dermal Contact	1.8 × 10 ⁻⁶	(ELCR = 1.0 × 10 ⁻⁴ ; 16%) 1-Methynaphthalene	0.13	56%) Naphthalene (HQ = 14; 40%)
Inhalation of Volatiles	5.3 × 10 ⁻⁴	(ELCR = 1.2 × 10 ⁻⁶ ; 1.9%) Benzo(a)anthracene (ELCR = 2.1 × 10 ⁻⁶ ; 0.32%) Naphthalene (ELCR = 5.2 × 10 ⁻⁴ ; 81%)	27	
Total Risk	6.4 × 10 ⁻⁴		Total HI	36

ELCR = excess lifetime cancer risk

HI = hazard index

HQ = hazard quotient

Table 5-8. Summary of Cancer Risks and Noncancer Hazards for Well RHMW03

Exposure Route	ELCR	% Risk Contribution	Н	% HI Contribution
Ingestion	1.4 × 10 ⁻⁷	Benzo(a)anthracene	0.30	None
Dermal Contact	1.5 × 10⁻ ⁶	(ELCR = 1.9 × 10 ⁻⁶ ;80%)	<0.01	

Tables 5-6 and 5-7 Page 1 of 1

Total Risk	2.4 × 10 ⁻⁶	Total HI	0.64
Inhalation of Volatiles	6.9 × 10 ⁻⁷	0.34	

HI = hazard index

HQ = hazard quotient

Table 5-9. Summary of Cancer Risks and Noncancer Hazards for Well RHMW04

Exposure Route	ELCR	% Risk Contribution	н	% HI Contribution
Ingestion	3.3 × 10 ⁻⁶	Dibenzo(a,h)anthracene	0.087	None
Dermal Contact	1.7 × 10 ⁻⁴	(ELCR = 1.8 × 10 ⁻⁴ ;>99%)	<0.01	
Inhalation of Volatiles	1.5 × 10 ⁻⁷		0.098	
Total Risk	1.8 × 10-4		Total HI	0.19

ELCR = excess lifetime cancer risk

HI = hazard index

HQ = hazard quotient

Table 5-10. Summary of Cancer Risks and Noncancer Hazards for Well RHMW05

Exposure Route	ELCR	% Risk Contribution	н	% HI Contribution
Ingestion	1.1 × 10 ⁻⁷	Benzo(a)anthracene	0.10	None
Dermal Contact	1.3 × 10 ⁻⁶	(ELCR = 1.7 × 10 ⁻⁶ ;>84%)	<0.01	
Inhalation of Volatiles	5.3 × 10 ⁻⁷		0.11	
Total Risk	2.0 × 10 ⁻⁶		Total HI	0.22

Tables 5-8 and 5-9 Page 1 of 1

HI = hazard index

HQ = hazard quotient

Table 5-11. Summary of Cancer Risks and Noncancer Hazards for Well RHMW06

Exposure Route	ELCR	% Risk Contribution	н	% HI Contribution
Ingestion	8.5 × 10 ⁻⁸	Benzo(a)anthracene	0.092	None
Dermal Contact	9.9 × 10 ⁻⁷	(ELCR = 1.2 × 10 ⁻⁶ ;98%)	<0.01	
Inhalation of Volatiles	1.8 × 10 ⁻⁷		0.080	
Total Risk	1.3 × 10 ⁻⁶		Total HI	0.17

ELCR = excess lifetime cancer risk

HI = hazard index

HQ = hazard quotient

Table 5-12. Summary of Cancer Risks and Noncancer Hazards for Well RHMW07

Exposure Route	ELCR	% Risk Contribution	н	% HI Contribution
Ingestion	8.1 × 10 ⁻⁸	Benzo(a)anthracene	0.16	None
Dermal Contact	9.6 × 10 ⁻⁷	(ELCR = 1.2 × 10 ⁻⁶ ;>95%)	<0.01	
Inhalation of Volatiles	2.0 × 10 ⁻⁷		0.19	
Total Risk	1.2 × 10 ⁻⁶		Total HI	0.35

ELCR = excess lifetime cancer risk

HI = hazard index

HQ = hazard quotient

Tables 5-10 and 5-11 Page 1 of 1

Table 5-13. Summary of Cancer Risks and Noncancer Hazards for Well RHMW2254-01

Exposure Route	ELCR	% Risk Contribution	н	% HI Contribution
Ingestion	1.4 × 10 ⁻⁷	None	0.094	None
Dermal Contact	2.4 × 10 ⁻⁷		0.026	
Inhalation of Volatiles	4.5 × 10 ⁻⁷		0.12	
Total Risk	8.3 × 10 ⁻⁷		Total HI	0.24

ELCR = excess lifetime cancer risk

HI = hazard index

HQ = hazard quotient

Table 6-1. Summary of Cancer Risks, Noncancer Hazards, and Groundwater Screening Levels for Well HDMW2253-03

HDMW2253-03		Primary Contributors	Exposure Point Concentration (µg/L)	Maximum Concentration (μg/L)	Screening Level (µg/L)
Excess Lifetime Cancer Risk	2.3 × 10 ⁻⁶	Benzo(a)anthracene 1.4 × 10-6; 62%	0.0032 0.0032		0.012
Hazard Index	1.3	TPH-middle Distillates HQ = 1.2 ; 92%	187	600	100/160
		-gasoline	15	27	100/400
TPH-Fract	tions	-residual fuels	77	77	100/2,500

Tables 5-12 and 5-13 Page 1 of 1

Table 6-2. Summary of Cancer Risks, Noncancer Hazards, and Groundwater Screening Levels for Well OWDFMW01

OWDFMW01		Primary Contributors	Exposure Point Concentration (µg/L)	Maximum Concentration (µg/L)	Screening Level (µg/L)
		Benzene 1.1 × 10 ⁻⁶ ; 15%	0.5	1,3	0.46
Excess Lifetime Cancer Risk	7.3 × 10 ⁻⁶	Benzo(a)anthracene 2.0 × 10 ⁻⁶ ; 28%	0.0046	0.0046	0.012
		Bromodichloromethane 3.7 × 10 ⁻⁶ ; 51%	0.5	0.5	0.13
Hazard Index	20	TPH-middle Distillates HQ = 20 ; 99%	3,100	3,100	100/160
TPH-Fractions		-gasoline	15	31	100/400
IFII-FIAC	uona	-residual fuels	258	390	100/2,500

Table 6-3. Summary of Cancer Risks, Noncancer Hazards, and Groundwater Screening Levels for Well RHMW01

RHMW01		Primary Contributors	Exposure Point Concentration (µg/L)	Maximum Concentration (µg/L)	Screening Level (μg/L)
Excess Lifetime Cancer Risk	Tetime 2.4 × 10 ⁻⁶ Benzo(a)anthracene		0.0029	0.0029 0.0029 0.0	
Hazard Index 1.3		TPH-middle Distillates HQ = 1.2 ; 94%	1 10/1 1 //		100/160
TPH-Fractions		-gasoline	14	26	100/400
1111-114	CHOHS	-residual fuels	53	60	100/2,500

Tables 6-2 and 6-3 Page 1 of 1

Table 6-4. Summary of Cancer Risks, Noncancer Hazards, and Groundwater Screening Levels for Well RHMW02

RHMW02		Primary Contributors	Exposure Point Concentration (µg/L)	Maximum Concentration (µg/L)	Screening Level (μg/L)
		1,2,3-Trichloropropane 1.0 × 10 ⁻⁴ ; 16%	0.27	0.27	0.0075
Excess Lifetime	4.4 × 10 ⁻⁴	1-Methylnaphthalene 1.2 × 10 ⁻⁵ ; 1.9%	33	68	1.1
Cancer Risk	4.4 × 10 ·	Benzo(a)anthracene 2.1 × 10 ⁻⁶ ; 0.32%	0.0047	0.0047	0.012
		Naphthalene 5.2 × 10 ⁻⁴ ; 81%	87	160	0.17
Hazard Index	36	TPH-middle distillates HQ = 20 ; 56%	3,190	6,500	100/160
Hazaru muex	36	Naphthalene HQ = 14; 40%	87	160	0.17
		-gasoline	238	660	100/400
TPH-Fractions Analy		-residual fuels	340	360	100/2,500
		2-methylnaphthalene	19	43	10

Table 6-5. Summary of Cancer Risks, Noncancer Hazards, and Groundwater Screening Levels for Well RHMW03

RHMW03		Primary Contributors	Exposure Point Concentration (µg/L)	Maximum Concentration (μg/L)	Screening Level (µg/L)
Excess Lifetime Cancer Risk	2.4 × 10 ⁻⁶	Benzo(a)anthracene 1.9 × 10 ⁻⁶ ; 80%	0.0043	0.0043	0.012
Hazard Index	0.64	None			
	-gasoline		17	23	100/400
TPH-Fractions		-middle distillates	82	150	100/160
		-residual fuels	160	160	100/2,500

Tables 6-4 and 6-5 Page 1 of 1

Table 6-6. Summary of Cancer Risks, Noncancer Hazards, and Groundwater Screening Levels for Well RHMW04

RHMW04		Primary Contributors	Exposure Point Concentration (µg/L)	Maximum Concentration (µg/L)	Screening Level (μg/L)	
Excess Lifetime Cancer Risk	1.8 × 10 ⁻⁴	Dibenzo(a,h)anthracene 1.8 × 10 ⁻⁴ ; >99%	(a,h)anthracene		0.0034	
Hazard Index	0.19	None		-		
	-gasoline		ND	ND	100/400	
TPH-Fractions		-middle distillates	25 36		100/160	
		-residual fuels	52	52	100/2,500	

Table 6-7. Summary of Cancer Risks, Noncancer Hazards, and Groundwater Screening Levels for Well RHMW05

RHMW05		Primary Contributors	Exposure Point Concentration (µg/L)	Maximum Concentration (µg/L)	Screening Level (µg/L)
Excess Lifetime Cancer Risk	2.0 × 10 ⁻⁶	Benzo(a)anthracene 1.7 × 10 ⁻⁶ ; 84%	ne 0.0038 0.0038		0.012
Hazard Index	0.22	None		-	
		-gasoline	14	23	100/400
TPH-Fractions		-middle distillates	24	62	100/160
		-residual fuels	45	45	100/2,500

Table 6-8. Summary of Cancer Risks, Noncancer Hazards, and Groundwater Screening Levels for Well RHMW06

RHMW06		Primary Contributors	Exposure Point Concentration (µg/L)	Maximum Concentration (µg/L)	Screening Level (µg/L)	
Excess Lifetime Cancer Risk	1.3 × 10 ⁻⁶	Benzo(a)anthracene 1.2 × 10 ⁻⁶ ; 98%			0.012	
Hazard Index	0.17	None				
	-gasoline		ND	ND	100/400	
TPH-Fractions		ns -middle distillates		21	100/160	
		-residual fuels	47	47	100/2,500	

Tables 6-6, 6-7, and 6-8 Page 1 of 1

Table 6-9. Summary of Cancer Risks, Noncancer Hazards, and Groundwater Screening Levels for Well RHMW07

RHMW07		Primary Contributors	Exposure Point Concentration (µg/L)	Maximum Concentration (µg/L)	Screening Level (µg/L)
Excess Lifetime Cancer Risk	1.2 × 10⁻⁵	Benzo(a)anthracene 1.2 × 10 ⁻⁶ ; 95%	0.0027 0.0027		0.012
Hazard Index	0.35	None		-	
	-gasoline		ND	ND	100/400
TPH-Fractions		-middle distillates	50	66	100/160
		-residual fuels	48	48	100/2,500

Table 6-10. Summary of Cancer Risks, Noncancer Hazards, and Groundwater Screening Levels for Well RHMW2254-01

RHMW2254-01		Primary Contributors	Exposure Point Concentration (µg/L)	Maximum Concentration (µg/L)	Screening Level (µg/L)
Excess Lifetime Cancer Risk	8.7 × 10 ⁻⁷	None		1	
Hazard Index	0.35	None			
		-gasoline	12	18	100/400
TPH-Fractions		-middle distillates	16	22	100/160
		-residual fuels	42	42	100/2,500

Tables 6-9 and 6-10 Page 1 of 1

Appendix A Summary of Tap Water Exposure Scenario Results

B-18 BWS006215

Table A-1. BWS Halawa Valley Groundwater Study HDMW2253-03 Tap Water Risk Assessment--Summary of Tap Water Exposure Scenario Noncancer Hazard Results

	·	Exposure Point Concentration	<u> </u>	r i				%
Analyte Name	CAS#	(mg/L)	Volatile*b	HQ (Ingestion)	HQ (Dermal)	HQ (Inhalation)	Total HQ	Contribution
Benzene	71-43-2	0.00027	Yes	3.32E-03	4.44E-04	4.26E-03	8.02E-03	0.63
Benzo(a)anthracene	56-55-3	3.20E-06	Yes				0.00E+00	0.00
Lead, Dissolved	Lead, Dissolved	0.00090					0.00E+00	0.00
Naphthalene	91-20-3	4.38E-05	Yes	1.09E-04	6.37E-05	7.00E-03	7.18E-03	0.57
Toluene	108-88-3	0.0038	Yes	2.37E-03	7.20E-04	3.64E-04	3.45E-03	0.27
TPH (gasolines)	TPH (gasolines)	0.016	Yes	2.61E-02		1.32E-02	3.93E-02	3.10
TPH (middle distillates)	TPH (middle distillates)	0.19	Yes	4.66E-01		7.12E-01	1.18E+00	92.91
TPH (residual fuels)	TPH (residual fuels)	0.077		3.20E-02			3.20E-02	2.52
Total Hi				5.30E-01	1.23E-03	7.37E-01	1.27E+00	100

^aVolatile contaminants as defined by EPA, 2016 "Regional Screening Levels for Chemical Contaminants at Superfund Sites," May, 2016.

 $^{^{\}rm b}\mbox{Nonvolatile}$ constituents are not considered in the inhalation exposure route

^{-- =} Indicates toxicity criteria not available to quantify contaminant's noncancer hazard via this exposure route.

HI = hazard index.

HQ = hazard quotient.

Table A-2. BWS Halawa Valley Groundwater Study HDMW2253-03 Tap Water Risk Assessment--Summary of Tap Water Exposure Scenario Cancer Risk Results

	<u> </u>	Exposure Point Concentration		Risk				%
Analyte Name	CAS#	(mg/L)	Volatile**b	(Ingestion)	Risk (Dermal)	Risk (Inhalation)	Total Risk	Contribution
Benzene	71-43-2	0.00027	Yes	1.88E-07	2.74E-08	3.70E-07	5.85E-07	25.98
Benzo(a)anthracene	56-55-3	3.20E-06	Yes	9.32E-08	1.14E-06	1.74E-07	1.40E-06	62.24
Lead, Dissolved	Lead, Dissolved	0.00090					0.00E+00	0.00
Naphthalene	91-20-3	4.38E-05	Yes			2.65E-07	2.65E-07	11.78
Toluene	108-88-3	0.0038	Yes				0.00E+00	0.00
TPH (gasolines)	TPH (gasolines)	0.016	Yes				0.00E+00	0.00
TPH (middle distillates)	TPH (middle distillates)	0.19	Yes				0.00E+00	0.00
TPH (residual fuels)	TPH (residual fuels)	0.077				-	0.00E+00	0.00
Total Nonradionuclide ELCR			2.81E-07	1.16E-06	8.09E-07	2.25E-06	100	

^aVolatile contaminants as defined by EPA, 2016 "Regional Screening Levels for Chemical Contaminants at Superfund Sites," May, 2016.

Benzo(a)anthracene and methylene chloride are identified as mutagenic compoounds.

Trichloethylene is identified as a carcinogenic and mutagenic compound.

^bNonvolatile constituents are not considered in the inhalation exposure route

^{-- =} Indicates toxicity criteria not available to quantify contaminant's cancer risk via this exposure route.

ELCR = excess lifetime cancer risk.

Table A-3. BWS Halawa Valley Groundwater Study OWDFMW01 Tap Water Risk Assessment -- Summary of Tap Water Exposure Scenario Noncancer Hazard Results

	ĺ	Exposure Point Concentration		Γ				%
Analyte Name	CAS#	(mg/L)	Volatile*b	HQ (Ingestion)	HQ (Dermal)	HQ (Inhalation)	Total HQ	Contribution
1,2-Dichloroethane	107-06-2	1.20E-05	Yes	9.97E-05	4.28E-06	8.22E-04	9.26E-04	0.00
1-Methylnaphthalene	90-12-0	2.77E-05	Yes	1.98E-05			1.98E-05	0.00
2-Methylnaphthalene	91-57-6	1.88E-05	Yes	2.35E-04			2.35E-04	0.00
Acenaphthylene	208-96-8	8.20E-06	Yes				0.00E+00	0.00
Acetone	67-64-1	0.15	Yes	8.31E-03		2.32E-03	1.06E-02	0.05
Benzene	71-43-2	0.00050	Yes	6.18E-03	8.27E-04	7.92E-03	1.49E-02	0.08
Benzo(a)anthracene	56-55-3	4.60E-06	Yes				0.00E+00	0.00
Bromodichloromethane	75-27-4	0.00050	Yes	1.25E-03	8.92E-05		1.34E-03	0.01
Chloromethane	74-87-3	0.00012	Yes			6.31E-04	6.31E-04	0.00
Fluorene	86-73-7	3.90E-06	Yes	4.86E-06			4.86E-06	0.00
Lead, Dissolved	Lead, Dissolved	0.00018					0.00E+00	0.00
Methyl ethyl ketone	78-93-3	0.0010	Yes	8.31E-05	6.87E-07	1.60E-04	2.44E-04	0.00
Methylene chloride	75-09-2	0.00020	Yes	1.66E-03	5.45E-05		1.72E-03	0.01
Naphthalene	91-20-3	5.58E-05	Yes	1.39E-04	8.12E-05	8.92E-03	9.14E-03	0.05
Phenanthrene	85-01-8	1.34E-05	Yes				0.00E+00	0.00
Pyrene	129-00-0	6.30E-06	Yes	1.05E-05			1.05E-05	0.00
Toluene	108-88-3	0.00023	Yes	1.43E-04	4.36E-05	2.21E-05	2.09E-04	0.00
TPH (gasolines)	TPH (gasolines)	0.015	Yes	2.54E-02		1.28E-02	3.83E-02	0.19
TPH (middle distillates)	TPH (middle distillates)	3.1	Yes	7.73E+00		1.18E+01	1.95E+01	99.05
TPH (residual fuels)	TPH (residual fuels)	0.26		1.07E-01			1.07E-01	0.54
Xylene, Total	1330-20-7	0.00039	Yes	9.72E-05	5.54E-05	1.87E-03	2.02E-03	0.01
Total HI				7.88E+00	1.16E-03	1.18E+01	1.97E+01	100

^aVolatile contaminants as defined by EPA, 2016 "Regional Screening Levels for Chemical Contaminants at Superfund Sites," May, 2016.

 $^{^{\}rm b}\mbox{Nonvolatile}$ constituents are not considered in the inhalation exposure route

^{-- =} Indicates toxicity criteria not available to quantify contaminant's noncancer hazard via this exposure route.

HI = hazard index.

HQ = hazard quotient.

Table A-4. BWS Halawa Valley Groundwater Study OWDFMW01 Tap Water Risk Assessment--Summary of Tap Water Exposure Scenario Cancer Risk Results

		Exposure Point Concentration		Risk				%
Analyte Name	CAS#	(mg/L)	Volatile*b	(Ingestion)	Risk (Dermal)	Risk (Inhalation)	Total Risk	Contribution
1,2-Dichloroethane	107-06-2	1.20E-05	Yes	1.40E-08	6.54E-10	5.56E-08	7.02E-08	0.97
1-Methylnaphthalene	90-12-0	2.77E-05	Yes	1.03E-08			1.03E-08	0.14
2-Methylnaphthalene	91-57-6	1.88E-05	Yes				0.00E+00	0.00
Acenaphthylene	208-96-8	8.20E-06	Yes				0.00E+00	0.00
Acetone	67-64-1	0.15	Yes				0.00E+00	0.00
Benzene	71-43-2	0.00050	Yes	3.50E-07	5.09E-08	6.89E-07	1.09E-06	15.00
Benzo(a)anthracene	56-55-3	4.60E-06	Yes	1.34E-07	1.63E-06	2.50E-07	2.02E-06	27.75
Bromodichloromethane	75-27-4	0.00050	Yes	3.98E-07	3.09E-08	3.29E-06	3.72E-06	51.25
Chloromethane	74-87-3	0.00012	Yes				0.00E+00	0.00
Fluorene	86-73-7	3.90E-06	Yes				0.00E+00	0.00
Lead, Dissolved	Lead, Dissolved	0.00018					0.00E+00	0.00
Methyl ethyl ketone	78-93-3	0.0010	Yes				0.00E+00	0.00
Methylene chloride	75-09-2	0.00020	Yes	1.60E-08	5.75E-10	9.86E-10	1.75E-08	0.24
Naphthalene	91-20-3	5.58E-05	Yes			3.38E-07	3.38E-07	4.65
Phenanthrene	85-01-8	1.34E-05	Yes				0.00E+00	0.00
Pyrene	129-00-0	6.30E-06	Yes				0.00E+00	0.00
Foluene	108-88-3	0.00023	Yes				0.00E+00	0.00
FPH (gasolines)	TPH (gasolines)	0.015	Yes				0.00E+00	0.00
TPH (middle distillates)	TPH (middle distillates)	3.1	Yes				0.00E+00	0.00
FPH (residual fuels)	TPH (residual fuels)	0.26					0.00E+00	0.00
(ylene, Total	1330-20-7	0.00039	Yes				0.00E+00	0.00
otal Nonradionuclide ELCR				9.22E-07	1.72E-06	4.63E-06	7.26E-06	100

^aVolatile contaminants as defined by EPA, 2016 "Regional Screening Levels for Chemical Contaminants at Superfund Sites," May, 2016.

^bNonvolatile constituents are not considered in the inhalation exposure route

^{-- =} Indicates toxicity criteria not available to quantify contaminant's cancer risk via this exposure route.

ELCR = excess lifetime cancer risk.

Benzo(a)anthracene and methylene chloride are identified as mutagenic compoounds.

Trichloethylene is identified as a carcinogenic and mutagenic compound.

Table A-5. BWS Halawa Valley Groundwater Study RHMW01 Tap Water Risk Assessment -- Summary of Tap Water Exposure Scenario Noncancer Hazard Results

		Exposure Point Concentration						%
Analyte Name	CAS#	(mg/L)	Volatile ^{a,b}	HQ (Ingestion)	HQ (Dermal)	HQ (Inhalation)	Total HQ	Contribution
1-Methylnaphthalene	90-12-0	3.62E-05	Yes	2.58E-05			2.58E-05	0.00
2-Methylnaphthalene	91-57-6	3.29E-05	Yes	4.11E-04			4.11E-04	0.03
Acenaphthene	83-32-9	2.70E-05	Yes	2.24E-05			2.24E-05	0.00
Acenaphthylene	208-96-8	4.10E-06	Yes				0.00E+00	0.00
Acetone	67-64-1	0.015	Yes	8.31E-04		2.32E-04	1.06E-03	0.08
Benzo(a)anthracene	56-55-3	2.90E-06	Yes				0.00E+00	0.00
Chloroform	67-66-3	0.00013	Yes	6.48E-04	5.17E-05	6.36E-04	1.34E-03	0.10
Fluorene	86-73-7	3.09E-05	Yes	3.86E-05			3.86E-05	0.00
Lead, Dissolved	Lead, Dissolved	0.00068					0.00E+00	0.00
Methylene chloride	75-09-2	0.00059	Yes	4.90E-03	1.61E-04		5.06E-03	0.39
Naphthalene	91-20-3	7.82E-05	Yes	1.95E-04	1.14E-04	1.25E-02	1.28E-02	0.98
Phenanthrene	85-01-8	1.20E-05	Yes				0.00E+00	0.00
Pyrene	129-00-0	2.70E-05	Yes	4.49E-05			4.49E-05	0.00
Toluene	108-88-3	0.00046	Yes	2.88E-04	8.75E-05	4.43E-05	4.20E-04	0.03
TPH (gasolines)	TPH (gasolines)	0.014	Yes	2.34E-02		1.18E-02	3.52E-02	2.71
TPH (middle distillates)	TPH (middle distillates)	0.19	Yes	4.84E-01		7.39E-01	1.22E+00	93.94
TPH (residual fuels)	TPH (residual fuels)	0.053		2.20E-02			2.20E-02	1.69
Total HI				5.37E-01	4.14E-04	7.65E-01	1.30E+00	100

^aVolatile contaminants as defined by EPA, 2016 "Regional Screening Levels for Chemical Contaminants at Superfund Sites," May, 2016.

^bNonvolatile constituents are not considered in the inhalation exposure route

^{-- =} Indicates toxicity criteria not available to quantify contaminant's noncancer hazard via this exposure route.

HI = hazard index.

HQ = hazard quotient.

Table A-6. BWS Halawa Valley Groundwater Study RHMW01 Tap Water Risk Assessment--Summary of Tap Water Exposure Scenario Cancer Risk Results

	, i	Exposure Point Concentration	,	Risk				%
Analyte Name	CAS#	(mg/L)	Volatile**b	(Ingestion)	Risk (Dermal)	Risk (Inhalation)	Total Risk	Contribution
1-Methylnaphthalene	90-12-0	3.62E-05	Yes	1.35E-08			1.35E-08	0.56
2-Methylnaphthalene	91-57-6	3.29E-05	Yes				0.00E+00	0.00
Acenaphthene	83-32-9	2.70E-05	Yes				0.00E+00	0.00
Acenaphthylene	208-96-8	4.10E-06	Yes				0.00E+00	0.00
Acetone	67-64-1	0.015	Yes				0.00E+00	0.00
Benzo(a)anthracene	56-55-3	2.90E-06	Yes	8.45E-08	1.03E-06	1.57E-07	1.27E-06	52.99
Chloroform	67-66-3	0.00013	Yes	5.17E-08	4.48E-09	5.32E-07	5.89E-07	24.55
Fluorene	86-73-7	3.09E-05	Yes				0.00E+00	0.00
Lead, Dissolved	Lead, Dissolved	0.00068					0.00E+00	0.00
Methylene chloride	75-09-2	0.00059	Yes	4.71E-08	1.70E-09	2.91E-09	5.17E-08	2.16
Naphthalene	91-20-3	7.82E-05	Yes			4.73E-07	4.73E-07	19.74
Phenanthrene	85-01-8	1.20E-05	Yes				0.00E+00	0.00
Pyrene	129-00-0	2.70E-05	Yes				0.00E+00	0.00
Toluene	108-88-3	0.00046	Yes				0.00E+00	0.00
TPH (gasolines)	TPH (gasolines)	0.014	Yes				0.00E+00	0.00
TPH (middle distillates)	TPH (middle distillates)	0.19	Yes				0.00E+00	0.00
TPH (residual fuels)	TPH (residual fuels)	0.053					0.00E+00	0.00
Total Nonradionuclide ELCR				1.97E-07	1.03E-06	1.17E-06	2.40E-06	100

^aVolatile contaminants as defined by EPA, 2016 "Regional Screening Levels for Chemical Contaminants at Superfund Sites," May, 2016.

^bNonvolatile constituents are not considered in the inhalation exposure route

^{-- =} Indicates toxicity criteria not available to quantify contaminant's cancer risk via this exposure route.

ELCR = excess lifetime cancer risk.

Benzo(a)anthracene and methylene chloride are identified as mutagenic compoounds.

Trichloethylene is identified as a carcinogenic and mutagenic compound.

Table A-7. BWS Halawa Valley Groundwater Study RHMW02 Tap Water Risk Assessment--Summary of Tap Water Exposure Scenario Noncancer Hazard Results

Table 1	I Compared validy distant	awater study kniviwoż rap water kisk Assessment-	Summary of the	I I I I I I I I I I I I I I I I I I I	are seenano non	concer ridzara riesaris		
Analyte Name	CAS#	Exposure Point Concentration (mg/L)	Volatile ^{a,b}	HQ (Ingestion)	HQ (Dermal)	HQ (Inhalation)	Total HQ	70 Contribution
1,1,2,2-Tetrachloroethane	79-34-5	6.50E-05	Yes	1.62E-04	1.79E-05		1.80E-04	0.00
1,2,3-Trichloropropane	96-18-4	0.00027	Yes	3.37E-03		4.32E-01	4.35E-01	1.22
1-Methylnaphthalene	90-12-0	0.033	Yes	2.37E-02			2.37E-02	0.07
2-Methylnaphthalene	91-57-6	0.019	Yes	2.36E-01			2.36E-01	0.66
Acenaphthene	83-32-9	0.00050	Yes	4.13E-04			4.13E-04	0.00
Acenaphthylene	208-96-8	9.26E-05	Yes				0.00E+00	0.00
Benzene	71-43-2	0.00012	Yes	1.54E-03	2.06E-04	1.97E-03	3.71E-03	0.01
Benzo(a)anthracene	56-55-3	4.70E-06	Yes				0.00E+00	0.00
Ethylbenzene	100-41-4	0.00021	Yes	1.05E-04	3.56E-04	1.00E-04	5.61E-04	0.00
Fluorene	86-73-7	0.00025	Yes	3.12E-04			3.12E-04	0.00
Lead, Dissolved	Lead, Dissolved	0.00034					0.00E+00	0.00
Methylene chloride	75-09-2	0.00010	Yes	8.31E-04	2.73E-05		8.58E-04	0.00
Naphthalene	91-20-3	0.087	Yes	2.16E-01	1.26E-01	1.38E+01	1.42E+01	39.75
Phenanthrene	85-01-8	1.90E-05	Yes				0.00E+00	0.00
Pyrene	129-00-0	5.80E-06	Yes	9.64E-06			9.64E-06	0.00
Toluene	108-88-3	0.00020	Yes	1.26E-04	3.83E-05	1.94E-05	1.84E-04	0.00
TPH (gasolines)	TPH (gasolines)	0.24	Yes	3.96E-01		2.00E-01	5.96E-01	1.67
TPH (middle distillates)	TPH (middle distillates)	3.2	Yes	7.94E+00		1.21E+01	2.01E+01	56.22
TPH (residual fuels)	TPH (residual fuels)	0.34		1.41E-01			1.41E-01	0.40
Xylene, Total	1330-20-7	0.00042	Yes	1.05E-04	5.97E-05	2.02E-03	2.18E-03	0.01
Total HI	<u> </u>			8.96E+00	1.27E-01	2.66E+01	3.57E+01	100

^aVolatile contaminants as defined by EPA, 2016 "Regional Screening Levels for Chemical Contaminants at Superfund Sites," May, 2016.

^bNonvolatile constituents are not considered in the inhalation exposure route

^{-- =} Indicates toxicity criteria not available to quantify contaminant's noncancer hazard via this exposure route.

HI = hazard index.

HQ = hazard quotient.

Table A-8. BWS Halawa Valley Groundwater Study RHMW02 Tap Water Risk Assessment--Summary of Tap Water Exposure Scenario Cancer Risk Results

Table A-6. DWS nalawa valley Groundwater Study kniwwoz Tap water kisk Assessment-Summary of Tap water Exposure Scenario Califer kisk Results										
		Exposure Point Concentration		Risk				%		
Analyte Name	CAS#	(mg/L)	Volatile ^{a,b}	(Ingestion)	Risk (Dermal)	Risk (Inhalation)	Total Risk	Contribution		
1,1,2,2-Tetrachloroethane	79-34-5	6.50E-05	Yes	1.67E-07	2.00E-08	6.71E-07	8.58E-07	0.13		
1,2,3-Trichloropropane	96-18-4	0.00027	Yes	1.04E-04			1.04E-04	16.14		
1-Methylnaphthalene	90-12-0	0.033	Yes	1.24E-05			1.24E-05	1.92		
2-Methylnaphthalene	91-57-6	0.019	Yes				0.00E+00	0.00		
Acenaphthene	83-32-9	0.00050	Yes				0.00E+00	0.00		
Acenaphthylene	208-96-8	9.26E-05	Yes				0.00E+00	0.00		
Benzene	71-43-2	0.00012	Yes	8.70E-08	1.27E-08	1.71E-07	2.71E-07	0.04		
Benzo(a)anthracene	56-55-3	4.70E-06	Yes	1.37E-07	1.67E-06	2.55E-07	2.06E-06	0.32		
Ethylbenzene	100-41-4	0.00021	Yes	2.96E-08	1.10E-07	9.33E-08	2.32E-07	0.04		
Fluorene	86-73-7	0.00025	Yes				0.00E+00	0.00		
Lead, Dissolved	Lead, Dissolved	0.00034					0.00E+00	0.00		
Methylene chloride	75-09-2	0.00010	Yes	7.98E-09	2.87E-10	4.93E-10	8.76E-09	0.00		
Naphthalene	91-20-3	0.087	Yes			5.24E-04	5.24E-04	81.41		
Phenanthrene	85-01-8	1.90E-05	Yes				0.00E+00	0.00		
Pyrene	129-00-0	5.80E-06	Yes				0.00E+00	0.00		
Toluene	108-88-3	0.00020	Yes				0.00E+00	0.00		
TPH (gasolines)	TPH (gasolines)	0.24	Yes				0.00E+00	0.00		
TPH (middle distillates)	TPH (middle distillates)	3.2	Yes				0.00E+00	0.00		
TPH (residual fuels)	TPH (residual fuels)	0.34					0.00E+00	0.00		
Xylene, Total	1330-20-7	0.00042	Yes				0.00E+00	0.00		
Total Nonradionuclide ELCR				1.17E-04	1.81E-06	5.26E-04	6.44E-04	100		

^aVolatile contaminants as defined by EPA, 2016 "Regional Screening Levels for Chemical Contaminants at Superfund Sites," May, 2016.

^bNonvolatile constituents are not considered in the inhalation exposure route

^{-- =} Indicates toxicity criteria not available to quantify contaminant's cancer risk via this exposure route.

ELCR = excess lifetime cancer risk.

Benzo(a)anthracene and methylene chloride are identified as mutagenic compoounds.

Trichloethylene is identified as a carcinogenic and mutagenic compound.

Table A-9. BWS Halawa Valley Groundwater Study RHMW03 Tap Water Risk Assessment--Summary of Tap Water Exposure Scenario Noncancer Hazard Results

Table	Table A-5. Dws nalawa valley Gloundwater Study Anniwos Tap Water hisk Assessment-Summary of Tap Water Exposure Stelland Noticalities nazaru Results										
		Exposure Point Concentration						%			
Analyte Name	CAS#	(mg/L)	Volatile ^{≪b}	HQ (Ingestion)	HQ (Dermal)	HQ (Inhalation)	Total HQ	Contribution			
1-Methylnaphthalene	90-12-0	2.91E-05	Yes	2.07E-05			2.07E-05	0.00			
2-Methylnaphthalene	91-57-6	1.86E-05	Yes	2.31E-04			2.31E-04	0.04			
Benzo(a)anthracene	56-55-3	4.30E-06	Yes				0.00E+00	0.00			
Lead, Dissolved	Lead, Dissolved	0.0014					0.00E+00	0.00			
Naphthalene	91-20-3	7.55E-05	Yes	1.88E-04	1.10E-04	1.21E-02	1.24E-02	1.95			
Phenanthrene	85-01-8	5.80E-06	Yes				0.00E+00	0.00			
Toluene	108-88-3	0.00023	Yes	1.40E-04	4.27E-05	2.16E-05	2.05E-04	0.03			
TPH (gasolines)	TPH (gasolines)	0.017	Yes	2.75E-02		1.39E-02	4.13E-02	6.50			
TPH (middle distillates)	TPH (middle distillates)	0.082	Yes	2.04E-01		3.11E-01	5.15E-01	81.02			
TPH (residual fuels)	TPH (residual fuels)	0.16		6.65E-02			6.65E-02	10.46			
Total Hi	-	-		2.98E-01	1.52E-04	3.37E-01	6.36E-01	100			

^aVolatile contaminants as defined by EPA, 2016 "Regional Screening Levels for Chemical Contaminants at Superfund Sites," May, 2016.

 $^{^{\}rm b}\mbox{Nonvolatile}$ constituents are not considered in the inhalation exposure route

^{-- =} Indicates toxicity criteria not available to quantify contaminant's noncancer hazard via this exposure route.

HI = hazard index.

HQ = hazard quotient.

Table A-10. BWS Halawa Valley Groundwater Study RHMW03 Tap Water Risk Assessment--Summary of Tap Water Exposure Scenario Cancer Risk Results

	Table 74 201 Date Halland Talle, Cl	Exposure Point Concentration	T. Gammar,	Risk		Carreer Risk Results		1 %
Analyte Name	CAS#	(mg/L)	Volatile*b	(Ingestion)	Risk (Dermal)	Risk (Inhalation)	Total Risk	Contribution
1-Methylnaphthalene	90-12-0	2.91E-05	Yes	1.08E-08			1.08E-08	0.46
2-Methylnaphthalene	91-57-6	1.86E-05	Yes				0.00E+00	0.00
Benzo(a)anthracene	56-55-3	4.30E-06	Yes	1.25E-07	1.53E-06	2.33E-07	1.88E-06	80.10
Lead, Dissolved	Lead, Dissolved	0.0014					0.00E+00	0.00
Naphthalene	91-20-3	7.55E-05	Yes			4.57E-07	4.57E-07	19.44
Phenanthrene	85-01-8	5.80E-06	Yes				0.00E+00	0.00
Toluene	108-88-3	0.00023	Yes				0.00E+00	0.00
TPH (gasolines)	TPH (gasolines)	0.017	Yes				0.00E+00	0.00
TPH (middle distillates)	TPH (middle distillates)	0.082	Yes				0.00E+00	0.00
TPH (residual fuels)	TPH (residual fuels)	0.16					0.00E+00	0.00
Total Nonradionuclide ELCR				1.36E-07	1.53E-06	6.90E-07	2.35E-06	100

^aVolatile contaminants as defined by EPA, 2016 "Regional Screening Levels for Chemical Contaminants at Superfund Sites," May, 2016.

B-18 BWS006225

^bNonvolatile constituents are not considered in the inhalation exposure route

^{-- =} Indicates toxicity criteria not available to quantify contaminant's cancer risk via this exposure route.

ELCR = excess lifetime cancer risk.

Benzo(a)anthracene and methylene chloride are identified as mutagenic compoounds.

Trichloethylene is identified as a carcinogenic and mutagenic compound.

Table A-11. BWS Halawa Valley Groundwater Study RHMW04 Tap Water Risk Assessment-Summary of Tap Water Exposure Scenario Noncancer Hazard Results

Id	ible A-11. DWS nalawa valley Glouit	awater Study Kriivivvo4 rap vvater Kisk Assessmen	tsummary or	Tap water Expos	sure scenario ivoi	icalicel Hazalu Results	1	
		Exposure Point Concentration						%
Analyte Name	CAS#	(mg/L)	Volatile**	HQ (Ingestion)	HQ (Dermal)	HQ (Inhalation)	Total HQ	Contribution
1-Methylnaphthalene	90-12-0	4.30E-06	Yes	3.06E-06			3.06E-06	0.00
2-Methylnaphthalene	91-57-6	5.90E-06	Yes	7.35E-05			7.35E-05	0.04
Acenaphthylene	208-96-8	3.70E-06	Yes				0.00E+00	0.00
Acetone	67-64-1	0.043	Yes	2.38E-03		6.65E-04	3.05E-03	1.65
Anthracene	120-12-7	5.10E-06	Yes	8.48E-07			8.48E-07	0.00
Benzene	71-43-2	8.00E-05	Yes	9.97E-04	1.34E-04	1.28E-03	2.41E-03	1.30
Benzo(g,h,i)perylene	191-24-2	7.60E-06					0.00E+00	0.00
Dibenzo(a,h)anthracene	53-70-3	1.10E-05					0.00E+00	0.00
Fluorene	86-73-7	6.00E-06	Yes	7.48E-06			7.48E-06	0.00
Lead, Dissolved	Lead, Dissolved	4.40E-05					0.00E+00	0.00
Naphthalene	91-20-3	7.13E-06	Yes	1.78E-05	1.04E-05	1.14E-03	1.17E-03	0.63
Phenanthrene	85-01-8	6.90E-06	Yes				0.00E+00	0.00
Toluene	108-88-3	0.00042	Yes	2.62E-04	7.96E-05	4.03E-05	3.82E-04	0.21
TPH (middle distillates)	TPH (middle distillates)	0.025	Yes	6.20E-02		9.46E-02	1.57E-01	84.51
TPH (residual fuels)	TPH (residual fuels)	0.052		2.16E-02			2.16E-02	11.67
Total HI				8.73E-02	2.23E-04	9.77E-02	1.85E-01	100

^aVolatile contaminants as defined by EPA, 2016 "Regional Screening Levels for Chemical Contaminants at Superfund Sites," May, 2016.

^bNonvolatile constituents are not considered in the inhalation exposure route

^{-- =} Indicates toxicity criteria not available to quantify contaminant's noncancer hazard via this exposure route.

HI = hazard index.

HQ = hazard quotient.

Table A-12, BWS Halawa Valley Groundwater Study RHMW04 Tap Water Risk Assessment--Summary of Tap Water Exposure Scenario Cancer Risk Results

i e	ible A-12. DWS Halawa Valley Gr	oundwater Study KHIVIWU4 Tap Water Kisk Assessm	ientsummary		kposure scenario (Lancer Risk Results		
		Exposure Point Concentration	Volatile**b	Risk				%
Analyte Name	CAS#	(mg/L)		(Ingestion)	Risk (Dermal)	Risk (Inhalation)	Total Risk	Contribution
1-Methylnaphthalene	90-12-0	4.30E-06	Yes	1.60E-09			1.60E-09	0.00
2-Methylnaphthalene	91-57-6	5.90E-06	Yes				0.00E+00	0.00
Acenaphthylene	208-96-8	3.70E-06	Yes				0.00E+00	0.00
Acetone	67-64-1	0.043	Yes				0.00E+00	0.00
Anthracene	120-12-7	5.10E-06	Yes				0.00E+00	0.00
Benzene	71-43-2	8.00E-05	Yes	5.65E-08	8.22E-09	1.11E-07	1.76E-07	0.10
Benzo(g,h,i)perylene	191-24-2	7.60E-06					0.00E+00	0.00
Dibenzo(a,h)anthracene	53-70-3	1.10E-05		3.21E-06	1.72E-04		1.75E-04	99.87
Fluorene	86-73-7	6.00E-06	Yes				0.00E+00	0.00
Lead, Dissolved	Lead, Dissolved	4.40E-05					0.00E+00	0.00
Naphthalene	91-20-3	7.13E-06	Yes			4.31E-08	4.31E-08	0.02
Phenanthrene	85-01-8	6.90E-06	Yes				0.00E+00	0.00
Toluene	108-88-3	0.00042	Yes				0.00E+00	0.00
TPH (middle distillates)	TPH (middle distillates)	0.025	Yes				0.00E+00	0.00
TPH (residual fuels)	TPH (residual fuels)	0.052					0.00E+00	0.00
Total Nonradionuclide ELCR				3.26E-06	1.72E-04	1.54E-07	1.76E-04	100

^aVolatile contaminants as defined by EPA, 2016 "Regional Screening Levels for Chemical Contaminants at Superfund Sites," May, 2016.

Benzo(a)anthracene and methylene chloride are identified as mutagenic compoounds.

^bNonvolatile constituents are not considered in the inhalation exposure route

^{-- =} Indicates toxicity criteria not available to quantify contaminant's cancer risk via this exposure route.

ELCR = excess lifetime cancer risk.

Trichloethylene is identified as a carcinogenic and mutagenic compound.

Table A-13. BWS Halawa Valley Groundwater Study RHMW05 Tap Water Risk Assessment-Summary of Tap Water Exposure Scenario Noncancer Hazard Results

Table	lable A-13. BWS Halawa Valley Groundwater Study Khiviwus Tap Water Kisk AssessmentSummary or Tap Water Exposure Scenario Noncancer Hazard Kesuits										
		Exposure Point Concentration						%			
Analyte Name	CAS#	(mg/L)	Volatile**	HQ (Ingestion)	HQ (Dermal)	HQ (Inhalation)	Total HQ	Contribution			
1-Methylnaphthalene	90-12-0	4.84E-06	Yes	3.45E-06			3.45E-06	0.00			
2-Methylnaphthalene	91-57-6	5.77E-06	Yes	7.19E-05			7.19E-05	0.03			
Benzo(a)anthracene	56-55-3	3.80E-06	Yes				0.00E+00	0.00			
Lead, Dissolved	Lead, Dissolved	0.00014					0.00E+00	0.00			
Naphthalene	91-20-3	5.31E-05	Yes	1.32E-04	7.72E-05	8.49E-03	8.70E-03	4.05			
Phenanthrene	85-01-8	5.20E-06	Yes				0.00E+00	0.00			
Toluene	108-88-3	0.00028	Yes	1.76E-04	5.34E-05	2.71E-05	2.56E-04	0.12			
TPH (gasolines)	TPH (gasolines)	0.014	Yes	2.34E-02		1.18E-02	3.53E-02	16.40			
TPH (middle distillates)	TPH (middle distillates)	0.024	Yes	6.02E-02		9.18E-02	1.52E-01	70.70			
TPH (residual fuels)	TPH (residual fuels)	0,045		1.87E-02			1.87E-02	8.70			
Total HI				1.03E-01	1.31E-04	1.12E-01	2.15E-01	100			

^aVolatile contaminants as defined by EPA, 2016 "Regional Screening Levels for Chemical Contaminants at Superfund Sites," May, 2016.

^bNonvolatile constituents are not considered in the inhalation exposure route

^{-- =} Indicates toxicity criteria not available to quantify contaminant's noncancer hazard via this exposure route.

HI = hazard index.

HQ = hazard quotient.

Table A-14. BWS Halawa Valley Groundwater Study RHMW05 Tap Water Risk Assessment--Summary of Tap Water Exposure Scenario Cancer Risk Results

	I assert 24 State Halland Talley Cla	Exposure Point Concentration	T. Guillian,	Risk		Carreer Risk Results		1 %
Analyte Name	CAS#	(mg/L)	Volatile*,b	(Ingestion)	Risk (Dermal)	Risk (Inhalation)	Total Risk	Contribution
1-Methylnaphthalene	90-12-0	4.84E-06	Yes	1.80E-09			1.80E-09	0.09
2-Methylnaphthalene	91-57-6	5.77E-06	Yes				0.00E+00	0.00
Benzo(a)anthracene	56-55-3	3.80E-06	Yes	1.11E-07	1.35E-06	2.06E-07	1.67E-06	83.73
Lead, Dissolved	Lead, Dissolved	0.00014					0.00E+00	0.00
Naphthalene	91-20-3	5.31E-05	Yes			3.22E-07	3.22E-07	16.18
Phenanthrene	85-01-8	5.20E-06	Yes				0.00E+00	0.00
Toluene	108-88-3	0.00028	Yes				0.00E+00	0.00
TPH (gasolines)	TPH (gasolines)	0.014	Yes				0.00E+00	0.00
TPH (middle distillates)	TPH (middle distillates)	0.024	Yes				0.00E+00	0.00
TPH (residual fuels)	TPH (residual fuels)	0.045					0.00E+00	0.00
Total Nonradionuclide ELCR				1.13E-07	1.35E-06	5.28E-07	1.99E-06	100

^aVolatile contaminants as defined by EPA, 2016 "Regional Screening Levels for Chemical Contaminants at Superfund Sites," May, 2016.

^bNonvolatile constituents are not considered in the inhalation exposure route

^{-- =} Indicates toxicity criteria not available to quantify contaminant's cancer risk via this exposure route.

ELCR = excess lifetime cancer risk.

Benzo(a)anthracene and methylene chloride are identified as mutagenic compoounds.

Trichloethylene is identified as a carcinogenic and mutagenic compound.

Table A-15. BWS Halawa Valley Groundwater Study RHMW06 Tap Water Risk Assessment--Summary of Tap Water Exposure Scenario Noncancer Hazard Results

	Ι ,	Exposure Point Concentration	,					%
Analyte Name	CAS#	(mg/L)	Volatile*b	HQ (Ingestion)	HQ (Dermal)	HQ (Inhalation)	Total HQ	Contribution
2-Methylnaphthalene	91-57-6	6.40E-06	Yes	7.98E-05			7.98E-05	0.05
Benzo(a)anthracene	56-55-3	2.80E-06	Yes				0.00E+00	0.00
Bromodichloromethane	75-27-4	3.90E-06	Yes	9.72E-06	6.95E-07		1.04E-05	0.01
Lead, Dissolved	Lead, Dissolved	1.60E-05					0.00E+00	0.00
Methane	74-82-8	0.0017				0.00E+00	0.00E+00	0.00
Nitrate+Nitrite as N	Nitrate+Nitrite as N	0.63		1.96E-02	8.65E-05		1.97E-02	11.44
Toluene	108-88-3	0.0011	Yes	6.86E-04	2.08E-04	1.05E-04	1.00E-03	0.58
TPH (middle distillates)	TPH (middle distillates)	0.021	Yes	5.22E-02		7.97E-02	1.32E-01	76.59
TPH (residual fuels)	TPH (residual fuels)	0.047		1.95E-02			1.95E-02	11.33
Total HI				9.22E-02	2.96E-04	7.98E-02	1.72E-01	100

^aVolatile contaminants as defined by EPA, 2016 "Regional Screening Levels for Chemical Contaminants at Superfund Sites," May, 2016.

^bNonvolatile constituents are not considered in the inhalation exposure route

^{-- =} Indicates toxicity criteria not available to quantify contaminant's noncancer hazard via this exposure route.

HI = hazard index.

HQ = hazard quotient.

Table A-16. BWS Halawa Valley Groundwater Study RHMW06 Tap Water Risk Assessment--Summary of Tap Water Exposure Scenario Cancer Risk Results

Table A-10. David Halawa Valley Glouildwater Study Kritiviavo Tap Water Kisk Assessment - Sullilitary of Tap Water Exposure Scenario Cancer Kisk Results									
		Exposure Point Concentration		Risk				%	
Analyte Name	CAS#	(mg/L)	Volatile*b	(Ingestion)	Risk (Dermal)	Risk (Inhalation)	Total Risk	Contribution	
2-Methylnaphthalene	91-57-6	6.40E-06	Yes				0.00E+00	0.00	
Benzo(a)anthracene	56-55-3	2.80E-06	Yes	8.16E-08	9.93E-07	1.52E-07	1.23E-06	97.69	
Bromodichloromethane	75-27-4	3.90E-06	Yes	3.10E-09	2.41E-10	2.57E-08	2.90E-08	2.31	
Lead, Dissolved	Lead, Dissolved	1.60E-05					0.00E+00	0.00	
Methane	74-82-8	0.0017	Yes				0.00E+00	0.00	
Nitrate+Nitrite as N	Nitrate+Nitrite as N	0.63					0.00E+00	0.00	
Toluene	108-88-3	0.0011	Yes				0.00E+00	0.00	
TPH (middle distillates)	TPH (middle distillates)	0.021	Yes				0.00E+00	0.00	
TPH (residual fuels)	TPH (residual fuels)	0.047					0.00E+00	0.00	
Total Nonradionuclide ELCR				8.47E-08	9.94E-07	1.78E-07	1.26E-06	100	

^oVolatile contaminants as defined by EPA, 2016 "Regional Screening Levels for Chemical Contaminants at Superfund Sites," May, 2016.

^bNonvolatile constituents are not considered in the inhalation exposure route

^{-- =} Indicates toxicity criteria not available to quantify contaminant's cancer risk via this exposure route.

ELCR = excess lifetime cancer risk.

Benzo(a)anthracene and methylene chloride are identified as mutagenic compoounds.

Trichloethylene is identified as a carcinogenic and mutagenic compound.

Table A-17. BWS Halawa Valley Groundwater Study RHMW07 Tap Water Risk Assessment--Summary of Tap Water Exposure Scenario Noncancer Hazard Results

	<u> </u>	Exposure Point Concentration	<u> </u>	T i				%
Analyte Name	CAS#	(mg/L)	Volatile**	HQ (Ingestion)	HQ (Dermal)	HQ (Inhalation)	Total HQ	Contribution
1-Methylnaphthalene	90-12-0	5.10E-06	Yes	3.63E-06			3.63E-06	0.00
2-Methylnaphthalene	91-57-6	9.82E-06	Yes	1.22E-04			1.22E-04	0.03
Acetone	67-64-1	0.0019	Yes	1.05E-04		2.94E-05	1.35E-04	0.04
Benzo(a)anthracene	56-55-3	2.70E-06	Yes				0.00E+00	0.00
Fluorene	86-73-7	4.20E-06	Yes	5.24E-06			5.24E-06	0.00
Lead, Dissolved	Lead, Dissolved	1.30E-05					0.00E+00	0.00
Methane	74-82-8	0.0028				0.00E+00	0.00E+00	0.00
Naphthalene	91-20-3	9.02E-06	Yes	2.25E-05	1.31E-05	1.44E-03	1.48E-03	0.42
Nitrate+Nitrite as N	Nitrate+Nitrite as N	0.33		1.03E-02	4.53E-05		1.03E-02	2.95
Phenanthrene	85-01-8	8.40E-06	Yes				0.00E+00	0,00
Toluene	108-88-3	0.00064	Yes	3.99E-04	1.21E-04	6.14E-05	5.82E-04	0.17
TPH (middle distillates)	TPH (middle distillates)	0.050	Yes	1.26E-01		1.92E-01	3.17E-01	90.68
TPH (residual fuels)	TPH (residual fuels)	0.048		1.99E-02			1.99E-02	5.70
Total HI				1.56E-01	1.80E-04	1.93E-01	3.50E-01	100

^aVolatile contaminants as defined by EPA, 2016 "Regional Screening Levels for Chemical Contaminants at Superfund Sites," May, 2016.

^bNonvolatile constituents are not considered in the inhalation exposure route

^{-- =} Indicates toxicity criteria not available to quantify contaminant's noncancer hazard via this exposure route.

HI = hazard index.

HQ = hazard quotient.

Table A-18. BWS Halawa Valley Groundwater Study RHMW07 Tap Water Risk Assessment--Summary of Tap Water Exposure Scenario Cancer Risk Results

		Exposure Point Concentration		Risk				%
Analyte Name	CAS#	(mg/L)	Volatile ^{a,b}	(Ingestion)	Risk (Dermal)	Risk (Inhalation)	Total Risk	Contribution
1-Methylnaphthalene	90-12-0	5.10E-06	Yes	1.90E-09			1.90E-09	0.15
2-Methylnaphthalene	91-57-6	9.82E-06	Yes				0.00E+00	0.00
Acetone	67-64-1	0.0019	Yes				0.00E+00	0.00
Benzo(a)anthracene	56-55-3	2.70E-06	Yes	7.87E-08	9.58E-07	1.46E-07	1.18E-06	95.44
Fluorene	86-73-7	4.20E-06	Yes				0.00E+00	0.00
Lead, Dissolved	Lead, Dissolved	1.30E-05					0.00E+00	0.00
Methane	74-82-8	0.0028	Yes				0.00E+00	0.00
Naphthalene	91-20-3	9.02E-06	Yes			5.46E-08	5.46E-08	4.41
Nitrate+Nitrite as N	Nitrate+Nitrite as N	0.33					0.00E+00	0.00
Phenanthrene	85-01-8	8.40E-06	Yes				0.00E+00	0.00
Toluene	108-88-3	0.00064	Yes				0.00E+00	0.00
TPH (middle distillates)	TPH (middle distillates)	0.050	Yes				0.00E+00	0.00
TPH (residual fuels)	TPH (residual fuels)	0.048					0.00E+00	0.00
Total Nonradionuclide ELCR				8.06E-08	9.58E-07	2.01E-07	1.24E-06	100

^aVolatile contaminants as defined by EPA, 2016 "Regional Screening Levels for Chemical Contaminants at Superfund Sites," May, 2016.

^bNonvolatile constituents are not considered in the inhalation exposure route

^{-- =} Indicates toxicity criteria not available to quantify contaminant's cancer risk via this exposure route.

ELCR = excess lifetime cancer risk.

Benzo(a)anthracene and methylene chloride are identified as mutagenic compoounds.

Trichloethylene is identified as a carcinogenic and mutagenic compound.

Table A-19. BWS Halawa Valley Groundwater Study RHMW2254-01 Tap Water Risk Assessment--Summary of Tap Water Exposure Scenario Noncancer Hazard Results

	I	Exposure Point Concentration					ı	9/
Analyte Name	CAS#	(mg/L)	Volatile ^{s,b}	HQ (Ingestion)	HQ (Dermal)	HQ (Inhalation)	Total HQ	Contribution
Lead, Dissolved	Lead, Dissolved	0.00095					0.00E+00	0.00
Lead, Total	Lead, Total	0.00032					0.00E+00	0.00
Naphthalene	91-20-3	4.43E-05	Yes	1.11E-04	6.45E-05	7.09E-03	7.26E-03	3.07
Toluene	108-88-3	0.00027	Yes	1.71E-04	5.20E-05	2.63E-05	2.49E-04	0.11
TPH (gasolines)	TPH (gasolines)	0.012	Yes	2.03E-02		1.02E-02	3.05E-02	12.88
TPH (middle distillates)	TPH (middle distillates)	0.016	Yes	3.88E-02		5.92E-02	9.80E-02	41.36
TPH (residual fuels)	TPH (residual fuels)	0.042		1.75E-02			1.75E-02	7.37
Trichloroethylene	79-01-6	0.00017	Yes	1.70E-02	2.57E-02	4.08E-02	8.34E-02	35.21
Total HI				9.37E-02	2.58E-02	1,17E-01	2.37E-01	100

^aVolatile contaminants as defined by EPA, 2016 "Regional Screening Levels for Chemical Contaminants at Superfund Sites," May, 2016.

 $^{^{\}rm b}\mbox{Nonvolatile}$ constituents are not considered in the inhalation exposure route

^{-- =} Indicates toxicity criteria not available to quantify contaminant's noncancer hazard via this exposure route.

HI = hazard index.

HQ = hazard quotient.

Table A-20. BWS Halawa Valley Groundwater Study RHMW2254-01 Tap Water Risk Assessment--Summary of Tap Water Exposure Scenario Cancer Risk Results

Table A-20, DWS flatawa valley Gloundwater Stady Killer W2254-01 Fab Water Kisk Assessment - Summittary of Fab Water Exposure Scenario Cancer Kisk Results									
		Exposure Point Concentration		Risk				%	
Analyte Name	CAS#	(mg/L)	Volatile**b	(Ingestion)	Risk (Dermal)	Risk (Inhalation)	Total Risk	Contribution	
Lead, Dissolved	Lead, Dissolved	0.00095					0.00E+00	0.00	
Lead, Total	Lead, Total	0.00032					0.00E+00	0.00	
Naphthalene	91-20-3	4.43E-05	Yes			2.69E-07	2.69E-07	32.44	
Toluene	108-88-3	0.00027	Yes				0.00E+00	0.00	
TPH (gasolines)	TPH (gasolines)	0.012	Yes				0.00E+00	0.00	
TPH (middle distillates)	TPH (middle distillates)	0.016	Yes				0.00E+00	0.00	
TPH (residual fuels)	TPH (residual fuels)	0.042					0.00E+00	0.00	
Trichloroethylene	79-01-6	0.00017	Yes	1.44E-07	2.38E-07	1.78E-07	5.59E-07	67.56	
Total Nonradionuclide ELCR				1.44E-07	2.38E-07	4.46E-07	8.28E-07	100	

^aVolatile contaminants as defined by EPA, 2016 "Regional Screening Levels for Chemical Contaminants at Superfund Sites," May, 2016.

Benzo(a)anthracene and methylene chloride are identified as mutagenic compoounds.

Trichloethylene is identified as a carcinogenic and mutagenic compound.

B-18 BWS006235

^bNonvolatile constituents are not considered in the inhalation exposure route

^{-- =} Indicates toxicity criteria not available to quantify contaminant's cancer risk via this exposure route.

ELCR = excess lifetime cancer risk.