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Abstract

Background: Roemer’s Law, a widely cited principle in health care policy, states that hospital beds that are built tend to be
used. This simple but powerful expression has been invoked to justify Certificate of Need regulation of hospital beds in an
effort to contain health care costs. Despite its influence, a surprisingly small body of empirical evidence supports its content.
Furthermore, known geographic factors influencing health services use and the spatial structure of the relationship
between hospital bed availability and hospitalization rates have not been sufficiently explored in past examinations of
Roemer’s Law. We pose the question, ‘‘Accounting for space in health care access and use, is there an observable
association between the availability of hospital beds and hospital utilization?’’

Methods: We employ an ecological research design based upon the Anderson behavioral model of health care utilization.
This conceptual model is implemented in an explicitly spatial context. The effect of hospital bed availability on the
utilization of hospital services is evaluated, accounting for spatial structure and controlling for other known determinants of
hospital utilization. The stability of this relationship is explored by testing across numerous geographic scales of analysis.
The case study comprises an entire state system of hospitals and population, evaluating over one million inpatient
admissions.

Results: We find compelling evidence that a positive, statistically significant relationship exists between hospital bed
availability and inpatient hospitalization rates. Additionally, the observed relationship is invariant with changes in the
geographic scale of analysis.

Conclusions: This study provides evidence for the effects of Roemer’s Law, thus suggesting that variations in hospitalization
rates have origins in the availability of hospital beds. This relationship is found to be robust across geographic scales of
analysis. These findings suggest continued regulation of hospital bed supply to assist in controlling hospital utilization is
justified.
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Introduction

Roemer’s Law famously and simply states, hospital beds that are

built tend to be used [1]. Although the authors’ original intent behind

the statement is debatable, the most common interpretation is that

as the supply of hospital beds increases the use of hospital services

also increases. Roemer’s Law has fostered the belief that excess

hospital beds leads to an overutilization of hospital services, when

the observed demand outpaces the population’s actual need for

services [2]. Hospital utilization rates rise, therefore, due to higher

levels of inpatient admissions which may or may not lead to longer

stays, contributing to higher costs. Wennberg [3] suggests that

Roemer’s Law may be due to physicians being influenced by a

subliminal knowledge regarding the availability of hospital beds.

In the USA, the high costs of inpatient hospitalizations, in

conjunction with the generally accepted implications of Roemer’s

Law, serve as the justification for state-based Certificate Of Need

(CON) programs. CON programs are independent entities that

are responsible for regulation of the supply of health care services

such that the supply meets the population’s health care needs

without an oversupply or duplication of services. Given that the

plurality of overall health care expenditure in the USA is for

inpatient hospital care [4], hospitalizations, and thus hospitals, are

logical candidates for cost control measures. Supply is regulated by

CON programs [5] wherein an unmet demand for services must

be demonstrated prior to CON approval of new expenditures for

hospital construction or expansion. Currently in the USA, 35

states have some form of CON program with 28 states specifically

regulating the supply of acute care hospital beds [6].

Roemer’s Law defines a positive relationship between the

availability of hospital beds and the use of hospital services. Past

research has provided support for the effects of Roemer’s Law
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[3,7–11], while other research has found conflicting [12–14] or

inconclusive results [15]. The intertwined relationships among

population health, access, use of health care services, and

outcomes provide a number of research dilemmas, both theoret-

ically and methodologically. Perhaps, the most difficult dilemma is

defining and characterizing the availability of hospital beds.

Although counting the number of beds in a hospital is trivial,

measuring the overall availability of those beds to a population is a

much more complex task and influenced by distance, demand,

and access-related factors. Measures of hospital bed availability

such as beds per county or minimum distance to a hospital [16,17]

ignore the multifaceted nature of access and the spatial and

geographic nature of health care service use. Others have noted

that the observed effects of Roemer’s Law may be due to

oversimplified methods used to assign hospital beds to regions

[18]. In addition, statistical methods that do not incorporate

spatial structure in the relationship between access and utilization

are at risk of being mis-estimated due to the effects of spatial

autocorrelation.

As Wennberg and colleagues [19] have noted, in American health

care, geography is destiny. The important role of spatial factors in

health care services use have not been been given full consider-

ation when exploring Roemer’s Law. Hence, we believe a

substantive re-examination is warranted.

So, the critical question remains, ‘‘does the availability of

hospital beds affect hospital utilization?’’. Whereas Roemer’s

natural experiment [20] was based on a regional study when a

single hospital added a substantial number of inpatient beds, we

approach this issue by examining an entire hospital system,

comprising the hospitals, populations, and transportation infra-

structure that connects populations to hospitals. We employ an

ecological research design that integrates individual behavioral

models of health care utilization in an explicitly spatial context.

The research question is reframed to ask, ‘‘Accounting for space in

health care access and use, is there an observable association

between the availability of hospital beds and hospital utilization?’’.

We characterize both the spatial and aspatial components of

access such that their individual and combined contributions can

be subsequently identified. Furthermore, by controlling for other

determinants of hospital utilization, we isolate the effects of

hospital bed availability on the utilization of hospital services,

allowing us to statistically examine the effects of Roemer’s Law on

hospitalization rates. In addition, we explore the stability of the

relationship between hospital bed availability and hospital

utilization by constructing models at varying scales of geographic

analysis.

Research Design

The Andersen model of health service utilization serves as the

underlying theoretical framework in our research: utilization of

health services results from a predisposing component, an enabling

component, and illness level or ‘‘need’’ [21]. This framework is

appealing because characteristics of both the population and the

health care delivery system are integrated into a single model:

U~f (n,P,E,N), ð1Þ

where U is health services utilization, n is the number of people, P

is the predisposing component, E is the enabling component, and

N is need for services. The Anderson model has been recognized as

most-commonly employed model for health service utilization

studies [22].

The predisposing component in the Anderson model arises from

the demographic structure of the population. We define:

P~f (Ag,G), ð2Þ

where Ag and G are the age and gender structure of the

population.

The enabling component in the Anderson model roughly

equates to access, but does not provide the detailed characteriza-

tion of access necessary to examine Roemer’s Law. Therefore, we

extend the Andersen model using the theoretical framework

offered by Penchansky and Thomas [23] that defines access as the

‘‘fit’’ between the population in need of services and services

offered. In this framework, access results from a combination of

five separate dimensions. Khan [24] classified the dimensions into

spatial components: accessibility (Ac) and availability (Av) and

aspatial components: affordability (Af), acceptability (Ap), and

accommodation (Am). In addition to the five access components

proposed, we add a mobility component (M) to capture differences

in the ability to overcome distance [25]. We redefine the enabling

component (E) as access (A) such that:

A~f (Ac,Av,Af ,Ap,Am,M): ð3Þ

It is important to highlight the distinction between need (N) and

demand (U) for services in the Anderson model. Although a certain

amount of U is predictable based on known demographic

characteristics of the population, N arises from the general health

status of the population [26] and, for hospitalizations, includes a

stochastic element triggered by unpredictable instances of ill-

health [27]. Measuring N is problematic in health services research

given that patients and health professionals often evaluate the need

for services differently [28], resulting in cases of both unmet need

and unnecessary utilization. Oleske [29] report six approaches to

measuring health care need, yet all are essentially proxies for

estimating H. Therefore, we represent N as:

N~f (H,Eh), ð4Þ

where H describes the general health of the population and Eh is a

random variable representing occurrences of ill-health. Measuring

H is problematic, as there is no measure that comprehensively

characterizes the health status of populations. Therefore, we use

socio-economic status (SES) measures, income (In), education (Ed),

and ethnicity/race (Et) to capture variations in population health

(see Young [30], pp.153–154 for a discussion of inclusion of

ethnicity/race in health models):

H~f (In,Ed,Et): ð5Þ

Although there may be questions regarding causality between SES

and health, SES has shown to be significantly correlated with both

morbidity and/or self-assessed health status (see examples

provided in [31]) in the US and internationally [30]. Given this

relationship, SES-related variables act as potential predictors of

variations in hospital utilization resulting from health-related

conditions.

To control for potential confounding due to variations in H not

fully captured in Eq. 5, we supplement our theoretical model by

including Low Variation (LV) hospitalizations (ULV ). LV hospi-

talizations are those with little clinical-based doubt regarding the
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need for hospitalization [3]; from a clinical and/or epidemiolog-

ical perspective, LV hospitalization rates can be considered as

arising from the actual health care needs of the population [32], as

they are generally unaffected by variations in hospital bed

availability [19]. By adding LV hospitalization rate as an predictor

variable in the model, we account for potential variability in

hospital utilization that is justified due to the underlying needs of

the population.

To further augment our theoretical model, we include

hospitalizations for Ambulatory Care Sensitive (ACS) conditions

(UACS ) as an explanatory variable. These hospitalizations (also

known as preventable hospitalizations) are considered avoidable if

primary care is available [33] and accessible [34]. By including

ACS hospitalizations in the model, we attempt to eliminate

confounding due to variations in hospital utilization that result

from inadequate access to primary care.

The theoretical model of hospital utilization is examined at an

ecological level. Observation units include aggregated populations

that reside in particular areal units or zones. Given that population

sizes among areal units are dissimilar, we normalize all variables

by population size, producing rate-based (e.g., beds/person) or

proportional (e.g., % of population with insurance) output units

where applicable. Therefore, we remove n from the theoretical

model when moving to an applied model. In addition, due to the

differences in age structure among populations, we age-standard-

ize the hospitalization rates (U, ULV , and UACS ). As a result, Ag is

removed from the theoretical model. In addition, the access-

related variables, Ap and Am, are removed from the model for the

following reasons: 1) Acceptability was defined by Penchansky and

Thomas [23] as capturing the religious or racial/ethnic fit between

a person and the health care facilities, thus is very likely outdated

and 2) Accommodation attempts to account for waiting times,

hours of operation, telephone appointment systems, and other

non-supply related factors of the health care facility. These factors

should be quite constant among modern hospitals. We specify a

full applied model of hospital utilization as:

Ustd~f (G,Ac,Av,Af ,M,In,Ed,Et,LVstd ,ACSstd ,Eh): ð6Þ

We evaluate the applied model using linear regression

techniques, thereby allowing the potential effect of Roemer’s

Law to be identified through the observed relationship between

hospital bed availability (Av) and hospital utilization (Ustd ). In the

regression model, the coefficient value for Av defines the

independent nature of this relationship, considering that differ-

ences in utilization among populations due to size, demographic

structure, insurance coverage, and health status are accounted and

potential confounding from LV and ACS hospitalizations are also

considered.

The proposed framework is implemented in an explicitly spatial

context, acknowledging the role of geography in interactions

among populations and hospitals. First, because all populations do

not have equivalent geographic access to the same hospital

services, we incorporate the spatial character of hospital utilization

by limiting our analysis to only those hospitalizations where

services were demanded locally. Second, we overcome incomplete

measures of hospital bed availability by calculating a metric that

captures the interaction between distance, hospital bed supply, and

demand. Third, we employ spatial regression models which

incorporate the spatial structure of the proposed framework, thus

counteracting the problems associated with spatial autocorrelation.

The nature of the available data requires that we examine

Roemer’s Law at an ecological level. Because the data are

aggregated to population units, we address issues stemming from

the Modifiable Areal Unit Problem (MAUP) [35,36]. The MAUP

arises when correlation or regression-based analysis are influenced

by the particular spatial resolution or zoning scheme of the data.

In extreme cases, regression coefficients may flip from positive to

negative or statistical significance may be greatly altered when

models are built at an alternate scale or with an alternate zoning

scheme [37–39]. Therefore, we explore the stability of Roemer’s

law by evaluating the relationship between hospital bed availability

and hospital utilization over multiple levels of data aggregation.

Materials and Methods

Study Area
Our case study explores the relationship between hospital bed

availability and utilization for the state of Michigan. As of 2010,

Michigan had a population of 9,883,640 residents served by 169

acute care hospitals with 26,180 total licensed inpatient beds. In

2010, there were 1,127,576 hospital admissions of Michigan

residents to Michigan hospitals and a total of 5,313,149 days spent

in hospitals, resulting in an overall patient day utilization rate of

0.537 patient days per person. For every 1,000 people, there were

9.51 hospital admissions per month, which is slightly higher than

the national averages of 8 per 1,000 found by Green et al. [40]

and 9 per 1,000 as reported by White et al. [41].

Michigan employs a CON program to regulate the availability

of inpatient hospital beds [42]. To assess the needs of the

population, a bed need methodology is implemented to predict the

future demand for hospital beds, which is compared with current

levels of supply [43]. Michigan serves as a satisfactory test case due

to the large number of hospitalizations and population, the state’s

relatively stable system of acute care hospitals, and a diverse

collection of rural and urban areas with varying population

densities, health care services distributions, and demographic

characteristics (see Figure 1) by which to examine Roemer’s Law.

Population Data
The Zip Code boundary data used for Michigan were acquired

from the ESRI ArcGIS v10 data CD. Prior to the analysis, the 908

unique Zip Codes were aggregated into 895 Zip Codes due to

mismatches between the spatial data and the hospital utilization

data. The 2010 population and demographic attribute data were

acquired from the US Census Bureau (http://2010.census.gov).

Block-level data for age (Ag), gender (G), race/ethnicity (Et) were

aggregated to their respective Zip Code boundaries. The age-

specific data were aggregated into 5 year categories for 0 to 84

years of age with an additional category for 85 and older. Income

(In), education (Ed), and mobility (M) attributes were culled from

the 2006–2010 American Community Survey 5-year estimates

(http://www.census.gov/acs/www/). These data are available at

the block group level and were aggregated to the Zip Code

boundaries. A small number of block group values were not

reported (48 blocks with a population of 52,593, roughly 0.5% of

the total state population). Values for the missing block group data

were estimated using a weighted average of first-order (queen’s

case) neighboring values [44]. First-order neighbors are defined as

areas sharing a common boundary. 2009 Small Area Health

Insurance Estimates (SAHIE, http://www.census.gov/did/www/

sahie/) data were used for health insurance rates (Af). For this

analysis, we only considered the health insurance status of people

under 65 years of age. Because SAHIE data are only available at

the county level, Zip Code-level data were estimated using the age-

specific rates found in the SAHIE data and age-specific population

distribution of the Zip Codes.

A Spatial Examination of Roemer’s Law
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Travel Time Data
Travel time data were derived using a custom-built GIS road

network model. The most recently available roads database (2009

version 10a, http://www.michigan.gov/cgi) was downloaded from

the Michigan Center for Geographic Information and used to

construct the network travel model. Travel speeds for each road

were assigned using the road attribute data and a hierarchical

speed limit classification system [45].

Ethics Statement
The Michigan Hospital Inpatient Database (MIDB) consists of

routinely collected information on patient’s hospital discharge for

billing purposes. The patients provided written consent for their

information to be stored in the hospital database. Because this

information is protected by HIPPA rules, all identifiable patient

information was removed from the MIDB prior for use in this

research. The participants therefore, did not provide their written

or verbal informed consent to participate in this study. Written

consent was not obtained because identifiable information on

patients was not available in the MIBD data used in this research.

The Michigan State University Internal Review Board Ethics

Committee approved this consent procedure and determined the

use of the de-identifiable MIDB data exempt for use in this

research (IRB #07-362– April 23, 2012).

Hospital Utilization Data
Inpatient hospitalization data were gathered from the 2010

MIDB, a comprehensive record of the state’s inpatient hospital-

izations. For each non-psychiatric hospital admission excluding

normal newborns, the age, principal discharge diagnosis (ICD-9-

CM), length of stay in days (LOS), Zip Code of residence, and

admitting hospital were collected. Travel time was attached to

each discharge, calculated from the population-weighted centroid

of the Zip Code of residence and the location of the admitting

hospital [46]. Hospitalizations occurring more than 60 minutes

from the patient’s residence were removed from the analysis. This

geographic constraint accounts for two scenarios in which

hospitalizations would not be affected by the hospital bed

availability of nearby hospitals, thus confounding the analysis.

First, it removes hospitalizations where patients traveled a long

distance due to the availability of hospital-specific services, not

hospital bed availability. Second, the constraint removes hospital-

izations that occurred when the patient was a significant distance

away from their residence (e.g., while on vacation) and not affected

by local hospital bed availability. While the 60 minute cutoff value

is arbitrary, it is based on previous research exploring spatial

accessibility in regions having highly rural populations [47]. Of the

total patient days in 2010, 93.2% were served by a hospital within

60 minutes of the patient’s residence.

The LV hospitalization (ULV ) data used in this analysis included

discharges for Myocardial Infarction, Ischemic Stroke, and Hip

Fracture [48] (ICD-9-CM codes: Myocardial Infarction (410),

Ischemic Stroke (431, 434–438), and Hip Fracture (808)). ICD-9-

CM codes for the ACS hospitalizations (UACS ) were culled from

the Dartmouth Atlas of Healthcare [19]. In 2010, there were

659,997 patient days for ACS conditions and 229,834 for LV

conditions.

Because the age distribution of populations is not homogeneous

among areal units, the hospitalization data were standardized via

the direct method of standardization [49]. Michigan’s 2010

population was used as the standard population. Age standardi-

zation was accomplished in a two step process. Some of the state’s

Zip Codes contain small populations in each age-specific category

and thus violate the 20/50 rule for calculating health-related

incidence rates [50]. In addition, as previously mentioned,

inpatient hospitalizations are also subject to random fluctuations

of ill-health events. Therefore, the first step in the age standard-

ization process was to calculate each areal unit’s age-specific

patient day usage rates using an local Empirical Bayes (EB)

smoothing method [51]. This smoothing method assumes that the

patient day count data follow a Poisson distribution, while also

borrowing strength from the patient days and populations of

Figure 1. Population distribution and hospital locations in Michigan.
doi:10.1371/journal.pone.0054900.g001
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neighboring regions [44,52]. The neighborhood structure for the

EB smoothing process was defined via first-order neighbors. Once

the age-specific rates were smoothed, each areal unit’s age-specific

patient day rates were multiplied by the age-specific distribution of

Michigan’s population. To calculate the final standardized

hospital utilization rates (Ustd , LVstd , and ACSstd ), the age-

specific data were summed and divided by the total state

population (see Figure 2).

Following the age-standardization process, the hospital utiliza-

tion rate data (Ustd ) were converted to a Standardized Rate

Difference by subtracting the average utilization rate of the entire

state from the age-adjusted utilization rate of each observation.

This was a simple scalar transformation allowed for improved

interpretation of the results such that observations with rates

greater than 0 are higher than the state average and those less than

0 are lower.

Hospital Bed Availability
A comprehensive and robust measure of hospital bed availabil-

ity (Av) is necessary to properly examine Roemer’s Law. However,

as previously stated, characterizing the availability of hospital beds

to populations can be a complex task. The complexity arises from

the intrinsic coupling of availability (supply and demand) and

accessibility (Ac, distance) that defines the quantity of opportunities

that can be considered available. In previous studies of Roemer’s

Law, container-based metrics have been commonly employed.

These metrics assign the supply of hospital beds to a population

unit when the hospital is located within the geographic boundaries

of the unit. The number of beds located within the unit is then

divided by the unit’s population, producing a beds per person rate.

Although container-based metrics are easy to understand and

provide highly interpretable output units, they ignore the

important accessibility component by omitting the ability to travel

outside of the population unit. As a result, Ac is not explicitly

considered in container-based measures.

The integration of availability and accessibility has been

deemed ‘‘spatial accessibility’’ [17]. Spatial accessibility metrics

consider the intertwined nature of supply, demand, and distance.

We employed a spatial accessibility metric, the enhanced two-step

floating catchment area (E2SFCA) [53], to measure the availability

of hospital beds. The E2SFCA overcomes the theoretical

limitations of container-based measures by allowing catchment

areas for supply and demand locations to ‘‘float’’ based on travel

distance or travel time in lieu of adherence to administrative

boundaries. As a result both Ac and Av are considered

simultaneously.

The E2SFCA is based on a gravity model wherein the theory of

distance decay – the probability that utilization will decrease with

increased distance – is implemented through a set of ‘‘weight

values’’. Gravity-based models are generally limited by an

arbitrary selection of a distance decay function and b parameter

describing the magnitude of decay [54]. However, because the

actual travel patterns of Michigan residents are known, our study

is not limited by this arbitrary selection process. Using all

hospitalizations in Michigan, we calculated the cumulative

probability of patient day utilization by distance (measured as

travel time) to hospitals. These data were employed to create a

model that provided weight values for the E2SFCA. The empirical

cumulative probability (C) and travel time (d) data were used to

estimate the parameters of the downward log-logistic decay

function [55]:

C~
c

1z(
d

b0

)b1

: ð7Þ

In this function, c, b0, and b1 are the parameters to be

estimated. The c parameter controls C at d~0; because C must

equal 1 at d~0 (all hospitalizations occurred at a hospital more

than 0 miles from the patient’s residence), we were able to simplify

Figure 2. Age adjusted hospital utilization (Ustd ) and hospital bed availability (Av, E2SFCA) in Michigan.
doi:10.1371/journal.pone.0054900.g002
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the parameter estimation process by fixing c to 1. The b0 and b1

parameters were estimated using the non-linear least squares

estimator available in R [56]. The resulting parameter values were

b0~13:89 and b1~1:82. Both parameters were statistically

significant (pv2 � 10{16) and the model produced a low residual

standard error (RSE = 0.003) with an excellent curve fit (see

Figure 3).

In the first step in the E2SFCA, the supply ratio is calculated at

each facility. Using the network dataset, travel time rings were

created for each hospital at 5 minute intervals to a maximum of 45

minutes and a final ring was created from 45 to 60 minutes to

incorporate travel in the rural regions in the state [47]. A weight

value (W) was assigned to each travel ring using the downward log-

likelihood function and the travel time values comprising the ring

(see Table 1, the sets Dr and Wr). The population data were

spatially joined to the travel time rings. The supply (Rj , beds/

person) is calculated at each facility as follows:

Rj~
SjP

k[Dr

PkWk

ð8Þ

where Sj is the number of licensed hospital beds at hospital j, Pk is

the population of the unit falling within a travel time ring (Dr), and

Wk is the specific weight value for the travel time ring (Wr) the

population unit falls within. Census block centroid points were

used in this step as they offered the most accurate representation of

population location.

The second step of the E2SFCA calculates the availability of

hospital beds (Av) as moderated by distance (Ac). Rather than using

travel time rings, we completed this step using the measured travel

time from the population weighted Zip Code centroids to the

hospitals (di,j ), thus calculating the availability of hospital beds at

the Zip Code level. This step is formalized as:

Avi~
X

h[½di,jv60�
RhWh, ð9Þ

where Avi is the availability of hospital beds at population unit i, h

is the set of hospitals within 60 minutes of population unit i, Rh is

the supply ratio at each hospital, and Wh is the weight value

calculated using using Eq. 7 and the travel time from unit i to

hospital j (di,j ).

The E2SFCA provides a measure of hospital bed availability in

a beds per person ratio for each population unit (see Figure 2).

Although the E2SFCA output is defined as an ‘‘availability’’

metric and labeled Av, we stress that the metric integrates both Av

and Ac in its formulation, and thus characterizes spatial

Figure 3. Distance decay of hospital utilization in Michigan. Left: The entire range of the inpatient travel data. Right: A subset of the travel
data. The circles are the cumulative proportion of patient day utilization (data are thinned for display purposes) and the line is the downward log-
logistic function fit to the data.
doi:10.1371/journal.pone.0054900.g003

Table 1. Weight values for E2SFCA.

Minutes Weight (W)

0–5 0.9459

5–10 0.7544

10–15 0.5511

15–20 0.3993

20–25 0.2957

25–30 0.2253

30–35 0.1765

35–40 0.1417

40–45 0.1161

45–60 0.0832

The weights were estimated from hospital utilization data, using the downward
log logistic function.
doi:10.1371/journal.pone.0054900.t001
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accessibility. A more detailed description of the E2SFCA, along

with a short worked example, is provided in Text S1.

Clustering Methodology
Much of the available literature regarding data aggregation in

health services research pertains to the creation of small-areas for

investigating health disparities among regions, e.g. [57]. Generally

speaking, these methods use demographic characteristics of the

initial areas to create clusters of homogeneous, contiguous regions

[58]. Although a number of methods have been proposed for

creating small-areas, these were deemed inappropriate for our

study. Specifically, we believe that implementing a method that

clusters the areal units by the same attributes that were being used

to explore Roemer’s Law would essentially be optimizing the

aggregation process to achieve a stronger statistical outcome [35].

Hence, the level of objectivity in our test of the MAUP would be

diminished [59].

Given this problem, we implemented a clustering methodology

that incorporates hospital utilization patterns and geographic

location, identifying geographically promixal areal units whose

populations use a similar set of hospitals [60]. The resulting

clusters are based on similarities in hospital use; however, they are

not explicitly optimized based on the same population attributes

used to construct the regression models. Essentially, the clustering

methodology is based on principles garnered from small-area

studies, but does not produce the statistical bias likely present when

using the same set of attributes for the purpose of grouping the

data and constructing the regression models.

The initial observation units (Zip Codes) were grouped into

clusters using the K-means clustering algorithm with rational

starting locations provided by Ward’s Hierarchical clustering [61].

We clustered the original Zip Code data based on their hospital

utilization patterns and geographic location simultaneously. The

utilization pattern data were an n 6 m matrix containing the

proportion of each Zip Code’s total inpatient hospital days (1:n)

spent at each hospital (1:m), otherwise known as the Commitment

Index (CI) [62]. The location of each observation is defined by the

travel time from each Zip Code (population weighted centroid) to

each hospital, thus comprising another n6m matrix. Representing

geographic location as a set of travel distances, rather than

coordinates from a traditional planar coordinate system (e.g.,

latitude and longitude), allows for factors influencing the true

separation among places (i.e., road infrastructure, travel speeds, or

the physical landscape) to be more accurately characterized [63].

The travel time data were rescaled to match that of the CI data (0–

1) by dividing by the maximum travel time between any Zip Code

and hospital pair. The two n 6 m matrices were appended to

create the final data matrix input to the clustering methodology.

By clustering the observation units on both locational data and

utilization patters, the resulting clusters were spatially contiguous

sets of Zip Codes that use a similar set of hospitals.

The clustering methodology was run iteratively such that it

provided a cluster solution for the set of all possible clusters from 2

to 894 (the set, S). We subset the resulting set S by implementing a

selection method based on the incremental F score (incF) of each

cluster solution [60,64]. IncF measures only the amount of ‘‘fit’’

gained from allowing an additional cluster within the solution,

while also penalizing for adding this additional cluster. Local

maxima in the incF scores represent cluster solutions that provide

an substantial improvement in the fit when compared with its

immediate neighbors. From the initial set S, 276 cluster solutions

had local maxima in incF scores. These solutions were selected as

the aggregation schemes for the regression analysis (see Figure S1

and Table S1). Figure 4 provides three example maps from the

final set of cluster solutions. In each aggregation scheme, the

attribute data of the Zip Code observation units were aggregated

based on their cluster membership. We added the non-clustered

units (with the 895 Zip Code observations) as an aggregation

scheme for a final set of 277 levels of aggregation.

Methods to Remove Multicollinearity
Roemer’s Law is examined via inference on the coefficient

values from a multiple regression analysis. In multiple regression,

multicollinearity arises due to the presence of correlation within

the independent variable set, invalidating the modeled coefficient

values. Preliminary tests revealed substantial correlation (Pearson’s

Correlation Coefficient, rw0:5) among our independent variables.

Given these findings, multicollinearity was addressed using a suite

of methods described in the following sections.

Principal components analysis. We performed a Principal

Components Analysis (PCA) on functional ‘‘sets’’ of variables:

income/education, ethnicity/race, transportation, and mobility.

Additionally, LV and ACS hospitalization rates were highly

correlated with one another; therefore, we identified a fifth

functional set, entitled case mix.

By producing uncorrelated component variables, PCA reduces

the number of independent variables without a large reduction in

the explanatory power of the independent variable set [65]. For

example, at most scales of data aggregation, the seven variables

within the income/education variable set yielded only a single

component. Rather than attempting to identify which of the seven

variables would be included in the regression analysis, we were

able to extract a single income/education component that

sufficiently described the entire suite of variables [66,67]. Because

the data were not standardized, we used the correlation matrix for

the PCA [65]. We employed a varimax rotation of the results to

assist in interpretation of the component structure [68].

General methods to determine the number of components to

extract include manual interpretation of the results or ‘‘rules of

thumb’’ [69], thus were not applicable for our study given the

large number of PCA runs that were necessary to complete the

multi-scale analysis. We implemented a heuristic that allowed for

automation of the process to select the number of components

extracted [unpublished data]. We added a randomly generated

variable to each of the variable sets included in the PCA analysis

and generated components. Because PCA provides the loadings on

each component for each input variable, the component most

heavily influenced by randomness was identified. The PCA was

then reimplemented without the random variable, extracting only

those components describing more variation in the data than

randomness.

The functional sets of variables, the initial input variables, and

the interpreted output of the PCA are as follows (see Table S2 for

detailed information including the number of components

extracted and the amount of variation captured by the extracted

components for each functional variable set at each level of data

aggregation):

N Income/education

Input variables

1. Median household income

2. Median earnings (16+)

3. % less than high school education (25+)

4. % with high school eduction (25+)

5. % with associates degree (25+)
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6. % with bachelors degree (25+)

7. % with graduate degree (25+)

Components

1. Income and education (SES): High scores reflect

populations with higher education, income, and earn-

ings – In 19 of the 277 levels of aggregation, 2

components were identified: one with high scores on

education and another with high scores on income and

earnings (SES2). The impacts of this split are noted in

the Results section.

N Ethnicity/race

Input variables

1. % White

2. % African American

3. % Hispanic

4. % Asian

5. % American Indian or Alaskan Native (AIAN)

6. % Hawaiian or Pacific Islander (HWPI)

Components

1. Black/White (Etblack): High scores reflect populations

with higher proportions of African Americans and lower

proportions of Whites

2–5. Minority population components: High scores reflect

observations with higher proportions of Hispanic

(Ethisp), Asian (Etasian), AIAN (Etaian), and HWPI

(Ethwpi) populations – The number of components

identified for ethnicity/race were highly variable across

the levels of aggregation. The breakdown was as follows:

1 component (32), 2 components (127), 3 components

(64), 4 components (52), 5 components (2). The

component interpretations are noted in the Results

section.

N Means of Transportation to Work (Mobility)

Input variables

1. % Automobile (16+)

2. % Car pool (16+)

3. % Public transportation (16+)

4. % Motorcycle (16+)

5. % Walk, Bicycle, other (16+)

Components

1. Transportation (Mtran1): High scores reflect populations

that are less reliant on automobiles as the means for their

journey to work

2. Shared transportation (Mtran2): High scores reflect

populations with a larger number of people using car

pools for their journey to work – In 37 of the 277 levels

of aggregation, only a single component was identified:

high scores on non-automobile means of transportation.

The component Mtran2 was not included in the final

regression analysis as we did not believe that a sufficient

theoretical relationship existed between populations with

a higher proportion of carpoolers and hospital utiliza-

tion.

N Average Travel Time to Work (Mobility)

Input variables

1. % 0–9 minutes (16+)

2. % 10–19 minutes (16+)

3. % 20–29 minutes (16+)

4. % 30–39 minutes (16+)

5. % 40–59 minutes (16+)

6. % 60–89 minutes (16+)

Components

1. High mobility (Mmob1): High scores reflect populations

that have a higher proportion of long distance (greater

than 40 minute) commuters

Figure 4. Zip Code cluster examples.
doi:10.1371/journal.pone.0054900.g004
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2. Medium mobility (Mmob2): High scores reflect popula-

tion that have a higher proportion of medium distance

(20–40 minute) commuters and a lower proportion of

short distance (less than 10 minutes) commuters

N Hospitalization Case Mix

Input variables

1. Age-adjusted rate of LV hospitalizations

2. Age-adjusted rate of ACS hospitalizations

Components

1. Case mix (Ucase): High scores reflect populations that

have higher rates of both LV and ACS hospitalizations

Bivariate regressions. Because we were interested in the

individual impacts of Av and Af on hospital utilization, these

variables (E2SFCA and % population with health insurance) were

held out of the PCA analysis. However, we found that Av was

moderately correlated with the African American population

component (Etblack) and Af was moderately correlated with the

SES component. In addition, the case mix component (Ucase) was

also correlated with the African American population component

(Etblack). Although the moderate correlation would not invalidate

the regression results, we wanted to identify the isolated effects of

these variables. Therefore, we adopted the strategy of regressing

the variable of interest on its associated correlated variable and

using the residuals for further analysis [66]. In this, the residuals

function as the ‘‘unexplained’’ portion of the variable of interest,

allowing both variables to be included in the final model. For

example, the variable Av becomes the availability of hospital beds

not associated with Etblack. This process was completed for the

three noted variables independently at all levels of aggregation

when r was greater than 0.4. The F scores of the overall model and

coefficients were tested to ensure the linear models provided

significant (pv0:05) results.

Test variance inflation factor. After the principal compo-

nents analysis and bivariate regressions, we calculated the variance

inflation factor (VIF) for the resulting set of independent variables

(see Table 2), removing those with a VIFw2 [66]. The variables

were removed in a reverse step-wise fashion starting with those

considered the least established predictors of hospital utilization

toward the most. As the level of aggregation increased and the

number of observations became smaller, correlation among the

independent variables increased substantially. As a result, we did

not perform any subsequent analysis at scales of aggregation with

fewer than 37 clusters/observations.

Regression Models
As noted earlier, previous studies of the effects of Roemer’s Law

have not incorporated spatial structure. The main implication of

this particular model misspecification is that regression coefficients

may have contained artificially low standard errors, leading to the

rejection of the null hypothesis when it should have been accepted.

Initial tests of non-spatial linear models showed high spatial

autocorrelation in the residuals with first-order neighboring values

(see Figure S2). To account for this phenomena, we used two sets

of spatial error models [70], Simultaneous and Conditional

Autoregressive Regression models (SAR and CAR, respectively).

Both models use the general form,

Y~bXzm ð10Þ

where

m~lWmzE: ð11Þ

In the spatial error model, Y is a vector of Ustd observations; X and

b are matrices of independent variables and coefficients, respec-

tively; m is a vector of autocorrelated residuals; l is the

autoregressive coefficient; W is a neighborhood weight matrix;

and E is a vector of non-autocorrelated residuals. The final model

can be represented as:

Ustd~bXzlWmzE, ð12Þ

where:

bX~b0zb1Gzb2Avzb3Af zb4SESzb5Etblack

zb6Mtran1zb7Mmob1zb8Mmob2zb9Ucase:
ð13Þ

For display purposes, we only include Etblack as the other

ethnicity/race components were present in far fewer levels of

aggregation.

SAR and CAR models differ in their treatment of the spatial

pattern in the dependent variable [37,71]. In the SAR model, the

spatial pattern is explained only by the independent variables,

simultaneously over all observations. The CAR model uses the

independent variables to explain the spatial pattern of the

dependent variable, but also conditions the value of the dependent

variable on its neighboring values [71]. For all regression models,

we defined W as first-order neighbors. No prior information in

our data suggested whether the SAR or the CAR model were

more appropriate for this analysis. Additionally, we were unable to

locate past research that provided compelling justification for the

use of one over the other.

Although we used rate-based data, a Levene test confirmed

heteroscedasticity in the initial regression models’ residuals due to

differing population sizes among areal units [69] (see Figure S4).

Therefore, we implemented weighted SAR and CAR models

[44,72] using the inverse of the square root of the population size

as the weights. This specification led to a substantial alleviation of

the heteroscedasticity in the model residuals (see Figure S5).

We constructed the weighted SAR and CAR regression models

at each level of data aggregation specified in the aggregation

schemes. At each level of aggregation, an automated stepwise-like

process was employed in the regression models to remove

independent variables that were insignificant predictors of hospital

utilization rate. The initial regression model was constructed and

the independent variables were tested for significance (pv0:05). If

all variables were significant, the process terminated. If any were

insignificant, the variable having the highest p value in the model

was removed and a new model was constructed. This process

continued iteratively until only statistically significant independent

variables remained in the final model.

A comprehensive overview of the research methodology can be

found in Figure 5. The figure provides a summary of the

techniques employed, along with a workflow of the data processing

steps.
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Results

In total, the SAR and CAR models were constructed at 268

levels of aggregation. In 12 and 31 models for the weighted SAR

and CAR models (respectively), the spatial parameter (l) was

insignificant and the model considered invalid. The overall

coefficient values of the independent variables were very similar

among the SAR and CAR models over all levels of aggregation;

however, the results of the CAR model contained latent spatial

autocorrelation in the residuals at higher levels of aggregation (see

Figure S3). Considering these findings, we believe the CAR model

was misspecified at these scales of analysis and report only the

results of the SAR model. Selected standardized coefficient values

for the SAR model are found in Figure 6. Table 3 contains a

diagnostic summary of the variables over all levels of aggregation.

Figure 6 shows that the magnitude of the statistical relationships

among the independent variables and hospital utilization rates was

quite stable across levels of aggregation. In particular, we find

strong evidence of Roemer’s Law as hospital bed availability (Av)

has a positive, significant relationship with hospital utilization rates

(Ustd ) that appears relatively invariant with changes in the scale of

the input data. Additionally, LV and ACS hospitalization rates

(Ucase), health insurance coverage (Af), proportion of African

Americans (Etblack), high income and education (SES), and higher

mobility (Mmob1 and Mmob2) had consistent, positive relationships

with hospital utilization rates across levels of aggregation. This

scalar stability of the coefficients suggests that the observed

relationships are process-based, not remnants of a particular scale

of analysis nor spurious correlations.

Table 2. Attribute variable set.

Input data TM1 TM2 TM3 Description

Hospital utilization U Ustd Ustd Age standardized hospital utilization rate
(normalized to the state’s age standardized
rate)

Age distribution of population P Ag Used to standardize hospital utilization rates

Female population % P G G

E2SFCA A Ac, Av Av Hospital bed availability not explained by
Etblack

% of population with health insurance
(under 65 years of age)

A Af Af Insurance status not explained by SES

% Automobile (16+) A M Mtran1 Non-automobile reliant component

% Car pool (16+)

% Public trans. (16+)

% Motorcycle (16+)

% Walk, Bicycle, other (16+)

% 0–9 minutes (16+) A M Mmob1 , Mmob2 Long commutes to work component, Medium
commutes to work component

% 10–19 minutes (16+)

% 20–29 minutes (16+)

% 30–39 minutes (16+)

% 40–59 minutes (16+)

% 60–89 minutes (16+)

Median household income N In SES High income and education component

Median earnings (16+)

% with less than HS education (25+) N Ed

% with HS eduction (25+)

% with associates degree (25+)

% with bachelors degree (25+)

% with graduate degree (25+)

% African American N Et Etblack African Am. component

% Hispanic Ethisp Hispanic component

% Asian Etasian Asian component

% AIAN Etaian AIAN component

% HWPI Ethwpi HWPI component

ACS hospitalizations N ACSstd Ucase ACSstd and LVstd

LV hospitalizations LVstd component not explained by Etblack

TM1 contains the variable labels in the modified Andersen model from Eqs. 2–4, TM2 contains the variable label from the full model specified in Eq. 6, TM3 contains the
final labels used after data processing steps were completed.
doi:10.1371/journal.pone.0054900.t002
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Table 3 provides the mean of the standardized coefficient values

(bST ) for all the explanatory variables in the SAR models (the

mean value was calculated using only statistically significant bST

values from the individual models). The results highlight the

relative magnitude of each variable’s contribution to variations in

hospital utilization rates (Ustd ). Etblack has the greatest affect on

Ustd (0.574), nearly two times that of Ucase, which has the 2nd

largest value (0.294). Importantly, these results show that the

impact of Av on Ustd is non-trivial; Av has the third largest mean

bST value (0.213), even after removing a portion of the variable’s

potential explanatory power through the bivariate regression (due

to its correlation with ETblack). Of the remaining variables that

were significant in more than 200 models, higher socio-economic

status (SES) and higher mobility (Mmob1) had the largest affect on

Figure 5. Data and methods workflow diagram. Yellow boxes represent data processing steps, grey boxes represent data, solid arrows
represent input/output from data processing, and dotted lines represent a subset process of the respective data.
doi:10.1371/journal.pone.0054900.g005
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Ustd (0.169 and 0.156, respectively). Interestingly, health insurance

coverage (Af) has a relatively low mean bST (0.128), although this

could likely be a result of diminished explanatory power stemming

from the removal of the correlation between Af and SES (through

bivariate regression).

Discussion

Although Roemer initially seemed somewhat surprised that his

statement had been bestowed the status of a law [20], our findings

provide compelling evidence to support this claim. We found that

a positive, significant relationship exists between hospital bed

availability and hospital utilization rates while controlling for the

most widely accepted determinants of hospital utilization. Addi-

tionally, this relationship was consistent across levels of spatial

aggregation providing support that the origin of the observed

effect is not a product of the scale of analysis.

In previous studies, Alexander et al. [12] and Clark [15] found

that hospital beds per capita was not a significant predictor of

hospital use rates in Michigan. In Alexander et al., SES variables

were the most significant predictors of hospital utilization, whereas

board certified physicians and registered nurses per hospital bed

were significant predictors in Clark’s study. In contrast, our results

illustrate that both SES and bed availability have significant

impacts on hospital utilization rates; however, we did not consider

measures of physicians or nursing as variables in our models. A

number of factors cause concern in the results of these previous

studies. First, although Alexander et al. controlled for temporal

autocorrelation in their regression models, neither study acknowl-

edged the spatial structure of their observations, thus likely

misspecifying their regression models. Second, in both studies,

hospital bed availability was calculated using a summation of the

beds and population within the administrative unit boundaries, not

incorporating the travel behavior of patients. Third, both studies

were limited to regional-level observation units (58 over Michi-

gan’s lower peninsula for Alexander et al. and 53 over Michigan’s

lower peninsula excluding Detroit for Clark) and a single scale of

analysis.

As Figure 6 illustrates, in the weighted SAR model, the

coefficient for Av decreases slightly as the data are aggregated to a

regional-level scale. The most similar level of aggregation used in

our analysis to those employed by Clark and Alexander et al. is 70

clusters (58 observations in the lower peninsula). At this level of

aggregation, the weighted SAR model provides a positive,

significant coefficient for hospital bed availability; however, the l
parameter is insignificant in this model. In a non-spatial weighted

OLS regression with 70 clusters, we find that hospital bed

availability is again not a significant predictor of utilization rates.

These results likely stem from the homogenization of the data that

occurs as the level of aggregation moves towards this regional scale

of analysis. Interestingly, the level of aggregation used by

Alexander et al. and Clark is very near an observed threshold

where l and Av become insignificant in the set of SAR models. In

fact, at 88 clusters, Av is a positive and significant predictor and the

l parameter is also significant, suggesting that both Alexander

et al. and Clark’s studies may have produced different findings had

they used less aggregated data. As a result, the effects of hospital

bed availability on utilization rates may go undetected at regional-

level scales. More specifically, our results provide empirical

evidence of a threshold level in the ability to observe the effects

of Roemer’s Law in small area studies.

Recent research has shown the danger in statistical inference

garnered from ecological-based relationships at a single geograph-

ic scale of analysis. Wright and Ricketts III [39], in a review of

Kravet et al. [73], showed that coefficient values related to the

supply of health care resources may change in significance and

even direction as the scale of analysis changes by way of data

aggregation. Their work highlights the problems associated with

the MAUP in health-based research. In our study, the stability of

the coefficients across levels of aggregation suggest that the

observed relationships are not highly susceptible to variation due

to the scale in which the data are aggregated. Although levels of

aggregation smaller than Zip Codes could not be tested (due to the

deidentification of the hospitalization data), the overall statistical

strength and invariant nature of the relationship between hospital

Figure 6. Standardized coefficients for weighted SAR models. Left: Av (red), Ucase (black), Af (green), Etblack (blue). Right: SES (black), Mtran1

(brown), Mmob1 (green), Mmob2 (blue), l (red). All coefficients are significant at a pv0:05.
doi:10.1371/journal.pone.0054900.g006
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bed availability and hospital utilization provide strong evidence

that our findings are not a product of the MAUP.

With support of Roemer’s Law demonstrated, we turn our

attention toward the implications of our research with regards to

CON programs. Previous research has suggested that over the past

40 years CON programs have not been successful in controlling

health care costs [5,74,75]. A recent study by Conover and Sloan

[76] reported that Michigan’s CON program had not effectively

contained hospital costs and recommended that the state abandon

regulation of acute care hospital beds. Although we did not

consider the effects of hospital bed availability on health care costs,

our findings of do suggest that efforts to control hospital bed

availability will affect hospital utilization rates. Furthermore, the

significant, stable, and positive nature of the observed relationship

indicates that CON-based regulation of hospital bed supply to

levels consistent with the needs of the population is justified.

Our results also showed a strong, positive association between a

higher proportion of Black (Etblack) and Hispanic populations

(Ethisp) and higher rates of hospital utilization. Given that other

possible determinants of hospital utilization, SES and access to

primary care (ACS hospitalizations) – which are often associated

with contributing to poorer health in disadvantaged populations–

were controlled for in our models, these findings are troubling

from a social justice perspective. Alarmingly, Etblack had the

greatest effect on hospitalization rates across all levels of

aggregation. Although the causes behind these relationships were

not further explored in the present analysis, recent work by Grady

[77,78] and Grady et al. [79] has demonstrated that neighbor-

hood segregation is associated with health disparities in New York

and Michigan. In the present context, higher hospitalization rates

for areas having a higher percentage of Black residents possibly

point to underlying health issues that stem from neighborhood

effects [80–82]. Considering that metropolitan Detroit is one of

the most segregated cities in the USA [83] and a large proportion

of Michigan’s Black population resides in this region, our findings

suggest that a more detailed analysis exploring the effects of race,

segregation, and neighborhoods on hospital utilization rates in

southeast Michigan is warranted.

Another notable result from this research is the identification of

the relative influence that each explanatory variable exerts on

hospital utilization rates. Given our efforts to ensure the variables

were independent from one another in the regression models and

the multi-scale implementation of our research design, the

standardized coefficients provide salient information regarding

the nature of these relationships. Importantly, Etblack, Ucase, and

Av are identified as having the greatest effect on hospital utilization

rates. Additionally, we find that SES, Av, and multiple mobility

measures impact utilization rates similarly. By revealing the

relative magnitudes of these relationships, our results have the

potential to guide future public health initiatives aimed toward

reducing hospital utilization. Given these ramifications, further

examination of the mechanisms leading to the observed relation-

ships is crucial.

Limitations
Our analysis did not consider alternative neighborhood

structures in the EB smoothing process or the spatial regression

models. Other neighborhood structures, such as those based on

distance or k-nearest neighbors, require a defined threshold value

for determining neighbor status. Given the large range of data

configurations evaluated and their dissimilar geographic scales (for

reference, see Figure 4), specifying a single distance or k threshold

would not provide a consistent spatial structure throughout scales

of analysis. Hence, the decision to employ a first-order neighbor-

hood structure was considered necessary due to the multi-scalar

nature of the research design. If the neighborhood structure was

defined using the 10 nearest neighbors, the neighborhood

organization would vary considerably as the data were aggregated

to more regional scales (e.g., 10 neighbors may approximate first-

order neighbors at low levels of aggregation, but 2nd or 3rd order

neighbors at higher levels of aggregation). The same difficultly

would manifest if a minimum distance threshold was implemented,

augmented by the limitations associated with measuring distances

among highly aggregated areal units [84]. For the purposes of our

analysis, the first-order neighborhood structure provided a

characterization of spatial structure supported by theory [85]

and flexible enough to accommodate the multi-scale nature of the

research design.

Although the scale effect of the MAUP was explored in our

analysis, the zoning effect was not explicitly examined. However,

the effect of zone modification was implicitly addressed through

the use of a non-agglomerative clustering methodology. Specifi-

cally, for each iteration in the clustering method, the Zip Code

data were clustered, not the clusters from the previous step in the

iteration. Hence, in many cases, regions were essentially

‘‘rezoned’’, thus providing an implied examination of the zoning

effect of the MAUP. To illustrate this point, Figure 7 contains an

example of a small region that was rezoned rather than

agglomerated as the level of aggregation changed. Given this

limitation, we recommend that further consideration of the zoning

effect of the MAUP to be included in future research of Roemer’s

Law.

Table 3. Coefficient statistics.

weighted SAR model coefficients

Variable Total Model positive negative insignificant bST

Av 268 268 254 0 14 0.213

Af 268 268 252 0 16 0.128

G 268 254 19 0 235 0.09

Mtran1 268 248 219 0 29 0.132

Mtran2 238 0 0 0 0 NA

Mmob1 268 260 254 0 6 0.156

Mmob2 268 252 237 0 15 0.096

SES 268 256 256 0 0 0.169

SES2 17 17 0 13 4 20.374

Etblack 268 268 268 0 0 0.574

Etasian 66 63 44 4 15 0.074

Etaian 99 98 0 95 3 20.11

Ethisp 106 103 102 0 1 0.127

Ethwpi 137 137 41 34 62 0.054

Ucase 268 268 268 0 0 0.294

l 268 268 252 4 12 0.118

Total is the number of times the variable is present; Model is the number of
times that the variable was included in the initial model (VIFv2); positive is
the number of time the variable’s coefficient was significant (pv0:05) and
positive in the final model; negative is the number of time the variable’s
coefficient was significant (pv0:05) and negative in the final model;
insignificant is the number of times the variable’s coefficient was insignificant
and removed from the final model; and bST is the mean of the significant
standardized regression coefficients over all levels of aggregation.
doi:10.1371/journal.pone.0054900.t003
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Conclusions
The relationship between hospital bed availability and hospital

utilization is spatial in nature. Yet, previous studies have not fully

considered the spatial issues embedded in Roemer’s Law. This

absence led us to question whether ‘‘a bed built is a bed filled’’ is

simply a statement or belief that has become entrenched in the

lexicon of health services research or an actual process that can be

observed.

This research found a positive, significant association between

hospital bed availability and hospital utilization rates while

controlling for other determinants of hospitalization. The research

design was implemented in an explicitly spatial context, incorpo-

rating a behavioral model of health care utilization with the spatial

and aspatial aspects of health care access and utilization and

considering the spatial structure of these relationships. The

ecological nature of the research design limits our ability to

establish a causal link between hospital bed availability and

utilization rates. However, given our research approach, the

magnitude and significance of the observed relationship, and the

stability of the relationship over levels of data aggregation, we

believe we have provided the most compelling evidence to date of

the existence of Roemers Law.

Harrington et al. [86] note that a limited number of health

services studies have integrated health behavioral models with

geographical or spatial factors. In this research, we have not only

provided useable and pertinent findings, but also have delivered a

research protocol that can be implemented in future health

services research.

The outcomes of this study address the research question

originally posed; however, they also elicit a number of new issues

regarding health care policy and health services research. Perhaps

the most important follow up query is, ‘‘what are the causal

mechanisms that lead to higher hospitalization rates in areas with

higher hospital bed availability?’’. While some have suggested that

the answer lies in the clinical decision-making process of physicians

[2], others have suggested that it may be the hospitals themselves

[11] and the question remains unanswered.

Recent hospital construction and expansion (bypassing CON

regulation through legislative action) and a proposed transfer of

beds into areas of the state without a demonstrated need for

additional hospital beds highlight the importance of our findings in

Michigan. Nationally, as health care systems and hospitals adapt

to increasing health care costs, a changing economic climate, and

a dynamic regulatory environment due to the Affordable Care

Act, understanding of the effects of hospital bed availability on

hospital utilization and their causes is more critical than ever.

Supporting Information

Figure S1 incF scores for cluster solutions in set S. Black

points represent peak values in incF scores. The data have been

truncated for display purposes.

(TIF)

Figure S2 Moran’s I of regression residuals for weight-
ed OLS regression model. All values less than 0.05 (dotted

line) have significant spatial autocorrelation in the model residuals.

(TIF)

Figure S3 Moran’s I of regression residuals for weight-
ed SAR and CAR models. All values less than 0.05 (dotted line)

have significant spatial autocorrelation in the model residuals.

(TIF)

Figure S4 Levene Test of regression residuals for SAR
and CAR models. All values less than 0.05 (dotted line) have

significant heteroscedasticity in the model residuals due to

population size.

(TIF)

Figure S5 Levene Test of regression residuals for
weighted SAR and CAR models. All values less than 0.05

Figure 7. Example of rezoned region. In the 84 cluster solution (Left), the region contains 6 clusters. In the 79 cluster solution (Right), the same
region contains 5 non-agglomerative clusters.
doi:10.1371/journal.pone.0054900.g007
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(dotted line) have significant heteroscedasticity in the model

residuals due to population size.

(TIF)

Table S1 Cluster solutions and incF scores.
(PDF)

Table S2 Number of components and % of the total
variance explained for each functional set of variables.
(PDF)

Text S1 Enhanced Two-Step Floating Catchment Area.
(PDF)
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